Classical and fractional analysis of the effects of Silicosis in a Mining Community

H.M. Tenkam, E.F. Doungmo Goufo, B. Tsanou, A.S. Hassan, N. Hussaini, Y.A. Terefe

Abstract A mathematical model for the transmission dynamics of silicosis in a mining environment is designed and its qualitative analysis is given. The model takes into account the severity of silica dust exposure in a mining environment. The whole analysis is done in both fractional differentiation and classical integer calculus. In the former case, the Haar wavelet numerical scheme is used to solve the model and perform graphical representations. In the integer calculus case, it is shown that the disease free and endemic equilibria are globally asymptotically stable in the absence as well as in the presence of silica dust particles in the air, respectively. The epidemiological implications of these results are discussed. Numerical simulations are presented to support the theoretical analysis. In fractional differentiation, we show graphically via the Haar wavelet scheme the convergence to the disease free-equilibrium and the global stability of the endemic equilibrium, results successfully confirmed analytically via the classical integer analysis.

1. Introduction

The immense industrial boom of the 19th century has triggered a massive exploitation in the mining sector, resulting in serious environmental pollution and occupational health problems. The fact is that some mining companies consistently failed to employ proper measures to protect workers against excessive dust inhalation and the concomitant risks of silicosis, cancer and tuberculosis [14]. For instance, towards the end of the 1990’s only 8 of 48 South African gold mines had estimated crystalline silica concentrations below the widely used reference limit of 0.1 mg/m³ [14]. Workers are exposed to silica dust in sectors such as mining and related milling operations, construction, agricultural and ceramic industries. Furthermore,
jewellery making also produces silica dust due to cutting, grinding and polishing [20,22]. Silicosis is a lung disease caused by inhalation and deposition of silica particles, resulting in a pulmonary response which can progress to tuberculosis or lung cancer [31,29]. It is characterized by a progressive deterioration of the metabolism of pulmonary macrophage, which leads to the death of cells and tissues. Symptoms of silicosis include exertional dyspnea or difficulty in breathing (shortness of breath), cough (often persistent and sometimes severe), fatigue, fever, chest pain, loss of appetite, night sweats and weight loss (Anorexia) [27]. Silicosis has no cure and prevention is the best way to avoid the disease [6,7]. Most of silicosis-related deaths seem to occur in areas associated with mining industries [23]. Furthermore, between 1968 and 2002, silicosis contributed to the death of approximately 74 million people in the U.S. [32]. There are three levels of silicosis depending on the degree and duration of cumulative exposure to the crystalline silica particles. The acute form occurs generally within a few weeks to 2 years of substantial exposure to a high concentration of silica dust, the accelerated form is caused by a medium exposure between 2 to 10 years and the symptoms of the chronic form appear more than 10 years after the first exposure to low concentration of silica dust [22]. An evaluation study on mine workers has shown that the incidence of pulmonary tuberculosis for those suffering from silicosis was 3 to 39 times higher than for those without silicosis [22]. The incidence rate was proportional to the severity of the silicosis or the level of exposure to silica dust [22,27,21,10].

In another side, differential models with derivative of fractional order and their applications have been intensively analysed in many works [1–3,15,19,24]. Even though a certain number of analyses have been performed in the context of modeling the spread of epidemic diseases, the large majority of them were limited to models with integer order derivative. In last decades, it has been proved that number of nature phenomena portrayed by different fields in sciences, engineering and technology can be successfully and accurately described by the systems using concepts of fractional calculus. For instance, in some works, a method like Adomian decomposition has been exploited to obtain solutions of a system of non-linear fractional differential equations. Similar technique was extended in [1], where the classical Darcy law was generalized using a complementary decomposition method, namely Frobenius method. In the paper [15], fractional calculus in epidemiology has been applied to describe the dynamics related to the outbreak of dengue fever. We are going to perform similar investigation in this paper with the application of fractional operators to a model symbolizing the transmission dynamics of silicosis in a mining environment. A comparison with the standard method will also be provided. However, we can add that from a mathematical modelling point of view, not enough has been done to understand the dynamics of the disease although some mathematical models have been described to study the risk of airborne infectious diseases, which do not capture the features of a disease like silicosis due to exhaled and inhaled air [8,12]. To the authors’ best knowledge, the proposed mathematical model is the first model to study the transmission dynamics of silicosis in a mining environment. It is instructive to use a mathematical model to gain some insights into the transmission dynamics and impact of silicosis in a community, especially in a resource-poor setting, where there is no precautionary or prevention measures are taken to avoid or minimise silica dust inhalation.

The rest of the paper is organized as follows. In Section 2, the model formulation is given. The qualitative analysis of the model is provided in Section 3. Numerical simulations to support the theoretical analysis of the model are presented in Section 4, which is followed by concluding remarks in Section 5.

2. Model formulation

To formulate the silicosis mathematical model, we make the following assumptions. The total population (mining community) at time t is denoted by \(H(t) \). It consists of five mutually-exclusive compartments or classes: susceptible \(S(t) \), highly exposed \(E_1(t) \), medium exposed \(E_2(t) \), low exposed \(E_3(t) \) individuals to silica dust and infected individuals with clinical symptoms of silicosis \(I(t) \), so that

\[
H(t) = S(t) + E_1(t) + E_2(t) + E_3(t) + I(t).
\]

The flow diagram of the dynamics of the silicosis in the mining community is illustrated in Fig. 1.

We assume further that silica is found throughout the earth’s crust in almost every mineral deposit and it is harmless until disturbed in a way that creates dust. The dynamics of silica dust (which is the infecting agent) at time t, denoted by \(C(t) \), is mathematically given by

\[
\dot{C} = M - aC - S\sum_{i=1}^{3} \gamma_i(C),
\]

where \(M \geq 0 \) is the constant production of silica dust in the air-shed generated by the mining activities in the area, \(a \) is the rate at which the silica dust is lost during mining, \(\dot{C} \) is a conversion coefficient and the term

\[
\gamma_i(C) = \beta_i \frac{\mu}{\Gamma(r)} C = \beta_i q C,
\]

for \(i = 1, 2, 3 \), represents the force of infection for silica dust inhalation, in which \(\beta_1, \beta_2, \beta_3 \) are the effective contact rates of susceptible individuals with high, medium and low silica exposed classes, respectively. The parameter \(q \) in (2.2) is the probability of the inhaled silica not cleared by mucous or coughing. Here, \(\dot{C} \) denotes the rate of change of silica dust concentration in the mining environment. In the absence of any mining activities, we assume that there is no silica in the air and \(M \) will be zero. This helps us to get a silica free environment (no silicosis).

The susceptible population, \((S(t)) \), is increased by the recruitment of people into the mining community at a rate \(A \). The population is decreased by infection with silicosis at a rate \(\gamma_i \) and natural death rate \(\mu \), which is assumed to be occur in all human compartments. Hence, the rate of change of the susceptible individuals is given by

\[
\dot{S} = A - S\sum_{i=1}^{3} \gamma_i(C) - \mu S.
\]

The exposed compartments, \((E_i(t)) \), are generated by the infection of susceptible individuals with silicosis at the rate \(\gamma_i \), and are reduced by natural death rate \(\mu \) and progression to the infected compartment at the rate \(x_i, i = 1, 2, 3 \). It is assumed that \(x_1^1 \leq 5 \) years, \(5 \) years \(\leq x_2^1 \leq 10 \) years and \(x_3^1 \geq 10 \) years, so that
\[\dot{E}_i = S \gamma_i(C) - (\mu + \xi) E_i \quad i = 1, 2, 3. \]

Similarly, the compartment of silicosis infected individuals \(I(t) \) is increased by the progression of silicosis exposed individuals at rates \(\alpha_i \) and is decreased by natural and silicosis induced death rates \(\mu \) and \(\delta \), respectively. Thus,

\[\dot{I} = \sum_{i=1}^{3} \gamma_i(C) - (\mu + \xi) I. \]

Putting the above equations together, the model equations for the transmission dynamics of silicosis in a mining community is given by the following system of non-linear differential equations:

\[
\begin{align*}
\dot{S} &= A - S \sum_{i=1}^{3} \gamma_i(C) - \mu S, \\
\dot{E}_i &= S \gamma_i(C) - (\xi + \alpha) E_i \quad i = 1, 2, 3, \\
\dot{I} &= \sum_{i=1}^{3} \gamma_i(C) - (\mu + \xi) I, \\
\dot{C} &= M - \alpha C - \gamma C \sum_{i=1}^{3} \gamma_i(C).
\end{align*}
\] (2.3)

By using (2.2), the system (2.3) reads as

\[
\begin{align*}
\dot{S} &= A - \beta q C S - \mu S, \\
\dot{E}_i &= \beta q C S - \left((\xi + \alpha) E_i \right) - \sum_{i=1}^{3} \gamma_i(C) - (\mu + \xi) I, \\
\dot{I} &= \gamma C \sum_{i=1}^{3} \gamma_i(C), \\
\dot{C} &= M - \alpha C - \beta q C S.
\end{align*}
\] (2.4)

where \(\beta = \sum_{i=1}^{3} \beta_i \). Since we are dealing with human populations and silica dust concentration, all the variables and parameters are non-negative. The description of the parameters and their values are presented in Table 1.

The system (2.4) is appended with the following non-negative initial conditions:

\[
S(t_0) = S^0, \quad E_i(t_0) = E_i^0, \quad I(t_0) = I^0, \quad C(t_0) = C^0, \quad \text{for} \quad t_0 \geq 0 \quad \text{and} \quad i = 1, 2, 3.
\] (2.5)

3. Generalized dynamics of silicosis in a mining: Fractional approach

In order broaden the view on the effects of Silicosis, we generalize the model (2.4) by applying the Caputo fractional derivative which is defined as follows [4,11,18,17,25,28]:

Table 1 Variables and parameters with units for the SEI model (2.4).

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Descriptions</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>Conversion coefficient</td>
<td>0.51</td>
</tr>
<tr>
<td>(\beta_i)</td>
<td>Effective contact rate between susceptible and silica dust</td>
<td>0.5, 0.35, 0.22</td>
</tr>
<tr>
<td>(\alpha_i)</td>
<td>Progression rate (exposed to infective)</td>
<td>0.12, 0.15, 0.3/indiv - year</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Natural death rate of individuals</td>
<td>0.117 year(^{-1})</td>
</tr>
<tr>
<td>(\gamma_i)</td>
<td>Forces of infection due to silica dust inhalation</td>
<td>year(^{-1})</td>
</tr>
<tr>
<td>(M)</td>
<td>Constant dust produced</td>
<td>mg m(^{-3})</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Disease induced death rate of individuals</td>
<td>0.39 year(^{-1})</td>
</tr>
<tr>
<td>(A)</td>
<td>Recruitment of susceptible individuals</td>
<td>20/indiv.year</td>
</tr>
<tr>
<td>(C)</td>
<td>Silica dust concentration</td>
<td>mg m(^{-3})</td>
</tr>
<tr>
<td>(q)</td>
<td>Probability of the inhaled silica not cleared by coughing</td>
<td>0.65</td>
</tr>
<tr>
<td>(a)</td>
<td>Silica dust deposition rate</td>
<td>0.7</td>
</tr>
</tbody>
</table>
3.1. The Caputo fractional derivative

Let \(-\infty < a < t, b > a\) and the real function \(v : (a, b) \to \mathbb{R}\) be a locally integrable function. The Caputo fractional derivative in its classical version is defined for the order \(v\), a time \(t > 0\), as

\[
C^v D^t v(t) = \frac{d^{v-1}}{dt^{v-1}} \int_a^t v(\tau) (t-\tau)^{-v} d\tau, \quad 0 < v \leq 1.
\]

(3.1)

Using this derivative to solve differential equations necessitates the definition of its antiderivative. Then, the fractional integral of order \(v\) associated to the Caputo fractional derivative is given by

\[
J^v v(t) = \frac{1}{\Gamma(v)} \int_a^t v(\tau)(t-\tau)^{-v+1} d\tau.
\]

(3.2)

This leads to the generalized system modelling the dynamics of silicosis in a mining and reading as

\[
C^v D^t S = A - \beta v CS - \mu S,
\]

\[
C^v D^t E_i = \beta v CS - (\delta_i + \mu) E_i, \quad i = 1, 2, 3,
\]

\[
C^v D^t Y = \sum_{i=1}^3 z_i E_i - (\delta + \mu) Y,
\]

\[
C^v D^t C = M - a C - \beta v C S.
\]

We assume that for this model, the following initial conditions hold:

\[
S(t_0) = S^0, \quad E_i(t_0) = E_i^0, \quad R(t_0) = R^0,
\]

\[
C(t_0) = C^0, \text{ for } t_0 \geq 0 \text{ and } i = 1, 2, 3.
\]

(3.3)

(3.4)

To continue the analysis, a numerical approach, namely Haar wavelet numerical scheme is going to be used to address the solvability of the system (3.1)–(3.4). In the next section, the major concepts of the Haar wavelet technique are recalled.

4. Haar wavelets numerical scheme

In the literature [5,13,16,26], the Haar wavelet is defined to be the following function

\[
\Phi(t) = \begin{cases}
1, & \text{if } t \in (0, 1/2); \\
-1, & \text{if } t \in (1/2, 1); \\
0, & \text{elsewhere}.
\end{cases}
\]

(4.1)

The function is obviously defined \((-\infty, +\infty)\). Note that every \(a \in \{0, 1, 2, 3, \ldots\}\) can explicitly be expressed as \(a = 2^r + e\) with \(r = 0, 1, 2, \ldots\) and \(e = 0, 1, 2, \ldots, 2^r - 1\). Taking \(t \in [0, 1]\) and for every \(a \in \{0, 1, 2, 3, \ldots\}\) the following family can be defined:

\[
f_a(t) = \begin{cases} 2^r \Phi(2^r t - e), & \text{for } a = 1, 2, \ldots; \\
1, & \text{for } a = 0.
\end{cases}
\]

(4.2)

This means that \(\{f_a(t)\}_{a=0}^\infty\) defines a complete orthonormal system in the space \(L^2[0, 1]\). Similarly for the function \(u \in C(0, 1]\), the series \(\sum_{a=0}^\infty (u, f_a) f_a\) is uniformly convergent to another function \(u\) where \((u, f_a) = \int_0^1 u(t)f_a(t) dt\). Consequently the function \(u\) take the form:

\[
u(t) = \sum_{a=0}^\infty (u, f_a) f_a(t)
\]

with \(\beta_a = (u, f_a)\). Alternatively, the approximated solution can take the form

\[
u(t) \approx u_e(t) = \sum_{a=0}^{e-1} \beta_a f_a(t)
\]

where \(e \in \{2^r : r = 0, 1, 2, \ldots\}\).

Now, let \(k \in \mathbb{N}\), we define the function

\[f_{j,k}(t) = f_j(t - k + 1) \quad j = 1, 2, \ldots, k \quad \text{and} \quad a = 0, 1, 2, \ldots, k\]

(4.3)

as the translation of the Haar function on \([0, k]\), with \(f_j\) defined by (4.2). Note that \(f_{j,k}\) and \(f_j\) satisfy the same topological properties. Then, the family \(\{f_{j,k}(t)\}_{j=0}^\infty\) also defines a complete orthonormal system in \(L^2[0, 1]\), the space of square-integrable functions.

Moreover, we define the Haar orthonormal basis functions

\[
\beta_{j,k} = (u, f_{j,k}) = \int_0^1 u(t)f_{j,k}(t) dt
\]

which are used to expand the solution \(u \in L^2[0, k]\) into the series

\[
u(t) \approx u_e(t) = \sum_{j=0}^{k-1} \sum_{a=0}^{e-1} \beta_{j,k} f_{j,k}(t).
\]

(4.4)

Practically, the solution is approximated as follows

\[
u(t) \approx u_e(t) = \sum_{j=0}^{k-1} \sum_{a=0}^{e-1} \beta_{j,k} f_{j,k}(t)
\]

(4.5)

where \(e \in \{2^r : r = 0, 1, 2, \ldots\}\). Lastly, note that (4.5) can take the compact form

\[
u(t) \approx u_e(t) = \tau G_{k\times 1} \Phi_{k\times 1}.
\]

(4.6)

Here \(\tau G_{k\times 1}\) represents the transpose vector of

\[
\begin{pmatrix}
\beta_{1,0} \\
\vdots \\
\beta_{1,e-1} \\
\beta_{2,0} \\
\vdots \\
\beta_{2,e-1} \\
\vdots \\
\beta_{k,0} \\
\vdots \\
\beta_{k,e-1}
\end{pmatrix}
\]

and \(\Phi_{k\times 1} =

\begin{pmatrix}
f_{1,0} \\
\vdots \\
f_{1,e-1} \\
f_{2,0} \\
\vdots \\
f_{2,e-1} \\
\vdots \\
f_{k,0} \\
\vdots \\
f_{k,e-1}
\end{pmatrix}.\]

5. Mathematical solvability for the generalized dynamics of silicosis in a mining

In this section, we solved numerically the generalized system of dynamics of silicosis in a mining via the Haar wavelets method. Recall that the model in its generalized form reads as
Using the iteration in the compact form (4.6), the Haar wavelets scheme is used to approximate the silicosis model (5.3). Hence, we obtain

\[
\begin{align*}
D_{ij}^i S(t) &= \mathbf{M}_1(u(t), t) \approx D_{ij}^i S_i(t) = T G_{x,k+1}^1 \mathbf{\hat{S}}_{x,k+1} \\
D_{ij}^i E_i(t) &= \mathbf{M}_2(u(t), t) \approx D_{ij}^i E_i(t) = T G_{x,k+1}^1 \mathbf{\hat{E}}_{x,k+1}, \quad i = 1, 2, 3, \\
D_{ij}^i I(t) &= \mathbf{M}_3(u(t), t) \approx D_{ij}^i I_i(t) = T G_{x,k+1}^1 \mathbf{\hat{I}}_{x,k+1}, \\
D_{ij}^i C(t) &= \mathbf{M}_4(u(t), t) \approx D_{ij}^i C_i(t) = T G_{x,k+1}^1 \mathbf{\hat{C}}_{x,k+1}
\end{align*}
\]

The application of (3.2) on both sides of system (5.4) gives

\[
\begin{align*}
S_i(t) - \mathbf{\bar{S}} &\approx D_{ij}^i S_i(t) = T G_{x,k+1}^1 B_{x,k+1} \mathbf{\hat{S}}_{x,k+1}, \\
E_i(t) - \mathbf{\bar{E}} &\approx D_{ij}^i E_i(t) = T G_{x,k+1}^1 B_{x,k+1} \mathbf{\hat{E}}_{x,k+1}, \quad i = 1, 2, 3, \\
I_i(t) - \mathbf{\bar{I}} &\approx D_{ij}^i I_i(t) = T G_{x,k+1}^1 B_{x,k+1} \mathbf{\hat{I}}_{x,k+1}, \\
C_i(t) - \mathbf{\bar{C}} &\approx D_{ij}^i C_i(t) = T G_{x,k+1}^1 B_{x,k+1} \mathbf{\hat{C}}_{x,k+1}
\end{align*}
\]

equivalent to

\[
\begin{align*}
S_i(t) &\approx S_i(t) + \mathbf{\bar{S}}, \\
E_i(t) &\approx E_i(t) + \mathbf{\bar{E}}, \quad i = 1, 2, 3, \\
I_i(t) &\approx I_i(t) + \mathbf{\bar{I}}, \\
C_i(t) &\approx C_i(t) + \mathbf{\bar{C}}.
\end{align*}
\]

Here $B_{x,k+1}$ is called the haar wavelets matrix of fractional order $[5,13]$. The use of Galerkin numerical scheme of the collocation points to solve the model (5.1) and (5.2), leads to the substitution of (5.4) and (5.6) into (5.1). We therefore obtain the residual errors caused by such a technique and reading as

\[
\begin{align*}
\Theta_{i}(m^1, m^2, m^3, m^4, t) &= \mathbf{G}_{x,k+1}^1 - \mathbf{M}_i(\mathbf{G}_{x,k+1}^1 B_{x,k+1} \mathbf{\bar{E}}_{x,k+1}, \mathbf{G}_{x,k+1}^1 B_{x,k+1} \mathbf{\bar{I}}_{x,k+1}, \mathbf{G}_{x,k+1}^1 B_{x,k+1} \mathbf{\bar{C}}_{x,k+1}, t) \\
\Theta_{i}(m^1, m^2, m^3, m^4, t) &= \mathbf{G}_{x,k+1}^1 - \mathbf{M}_i(\mathbf{G}_{x,k+1}^1 B_{x,k+1} \mathbf{\bar{E}}_{x,k+1}, \mathbf{G}_{x,k+1}^1 B_{x,k+1} \mathbf{\bar{I}}_{x,k+1}, \mathbf{G}_{x,k+1}^1 B_{x,k+1} \mathbf{\bar{C}}_{x,k+1}, t) \\
\Theta_{i}(m^1, m^2, m^3, m^4, t) &= \mathbf{G}_{x,k+1}^1 - \mathbf{M}_i(\mathbf{G}_{x,k+1}^1 B_{x,k+1} \mathbf{\bar{E}}_{x,k+1}, \mathbf{G}_{x,k+1}^1 B_{x,k+1} \mathbf{\bar{I}}_{x,k+1}, \mathbf{G}_{x,k+1}^1 B_{x,k+1} \mathbf{\bar{C}}_{x,k+1}, t) \\
\Theta_{i}(m^1, m^2, m^3, m^4, t) &= \mathbf{G}_{x,k+1}^1 - \mathbf{M}_i(\mathbf{G}_{x,k+1}^1 B_{x,k+1} \mathbf{\bar{E}}_{x,k+1}, \mathbf{G}_{x,k+1}^1 B_{x,k+1} \mathbf{\bar{I}}_{x,k+1}, \mathbf{G}_{x,k+1}^1 B_{x,k+1} \mathbf{\bar{C}}_{x,k+1}, t)
\end{align*}
\]

where

\[
\begin{align*}
m^1 &= \beta_{1,0}^1, \ldots, \beta_{1,0}^{k+1}, \ldots, \beta_{1,0}^1, \\
m^2 &= \beta_{1,1}^1, \ldots, \beta_{1,1}^{k+1}, \ldots, \beta_{1,1}^1, \\
m^3 &= \beta_{1,2}^1, \ldots, \beta_{1,2}^{k+1}, \ldots, \beta_{1,2}^1, \\
m^4 &= \beta_{1,3}^1, \ldots, \beta_{1,3}^{k+1}, \ldots, \beta_{1,3}^1
\end{align*}
\]

with

\[
\begin{align*}
\beta_{1,0}^i &= \beta_{1,0}^i, \ldots, \beta_{1,0}^{k+1}, \ldots, \beta_{1,0}^1, \\
\beta_{1,1}^i &= \beta_{1,1}^i, \ldots, \beta_{1,1}^{k+1}, \ldots, \beta_{1,1}^1, \\
\beta_{1,2}^i &= \beta_{1,2}^i, \ldots, \beta_{1,2}^{k+1}, \ldots, \beta_{1,2}^1, \\
\beta_{1,3}^i &= \beta_{1,3}^i, \ldots, \beta_{1,3}^{k+1}, \ldots, \beta_{1,3}^1
\end{align*}
\]

where $\beta_{1,0}^i$ are defined as the components of $\mathbf{T} \mathbf{G}_{x,k+1}^1$.

Now we assume that

\[
\begin{align*}
\Theta_{1}(m^1, m^2, m^3, m^4, t_m) &= 0, \\
\Theta_{2}(m^1, m^2, m^3, m^4, t_m) &= 0, \\
\Theta_{3}(m^1, m^2, m^3, m^4, t_m) &= 0, \\
\Theta_{4}(m^1, m^2, m^3, m^4, t_m) &= 0
\end{align*}
\]
with
\[t_{j,a} = \frac{2a - 1}{2e} + j - 1, \quad j = 1, 2, \ldots, k; \quad a = 1, 2, \ldots, e \]
that are a ke number of collocation points. We then have
\[
\begin{align*}
\beta^{(1)}_{i,0} \cdots \beta^{(1)}_{i,k-1} & \\
\beta^{(2)}_{i,0} \cdots \beta^{(2)}_{i,k-1} & \\
\beta^{(3)}_{i,0} \cdots \beta^{(3)}_{i,k-1} & \\
\beta^{(4)}_{i,0} \cdots \beta^{(4)}_{i,k-1} & \\
\beta^{(5)}_{i,0} \cdots \beta^{(5)}_{i,k-1} &
\end{align*}
\]
which are system of 4ke equations with 4ke unknowns. We obtain these unknowns by a substitution into (5.6) that yields the approximated solution to the silicosis model and given by
\[
u(t) \approx \begin{pmatrix} S_i(t) \\ E_i(t) \\ L_i(t) \\ C_i(t) \end{pmatrix}
\]
The convergence of this method is given by the following results [5,13,16,26]:

Proposition 5.1. Consider \(0 \leq \leq 1, S \in H^1(0, k), E_i \in H^1(0, k) \)
\(i = 1, 2, 3, I \in H^1(0, k) \) and \(C \in H^1(0, k) \). If for \(v \in \{2^r : r = 0, 1, 2, \ldots\} \), the expression with Caputo operator \(D^v_i u(t) \) approximates \(D^v_i u(t) \) using the Haar wavelet scheme, hence the quantity
\[
\|D^v_i u(t) - D^v_i u(t)\|_2 \leq C(n(v))^{-1},
\]
represents the exact upper bound caused by the use of such an approximation. Here \(n(v) = \frac{1}{\sqrt{\frac{1}{2^r} \sqrt{1 + \frac{1}{2^r} - \frac{1}{2^r+1}}}} \) and \(n \in \mathbb{R}^+ \).

6. Numerical representations of the generalized form

Now that the error committed by using Haar wavelets scheme in our context has been successfully analyzed and shown to be insubstantial, we can provide numerical simulations using the scheme presented above and the same parameter values shown in Table 1. It appears here that the fractional model displays some expected and accurate results. In fact in Fig. 2, plotted in fractional case for the derivative order \(v = 0.8 \), we observed by testing different initial conditions, that the solution trajectories of the system (5.1) converge to a single point believed, as we will show here below, to be the disease-free equilibrium (or silica-free environment). Similar observation is done Fig. 2 where the solution trajectories of the system (5.1) converge to a second single point believed to be the endemic equilibrium point (found in the next section). In the next section we will fix the derivative order \(v \) at one to recover the standard classical calculus and perform some analysis on the model in order to compare the results (Fig. 3).

7. Analytical studies

In this section, we study the existence, uniqueness, boundedness and positivity of the solutions of (2.4). First, we show the local existence of solutions and then we confirm the global existence. For this purpose, we rewrite the right hand side of system (2.4) as \(f(t, u(t)) = f(u(t)) \), where
\[
\begin{align*}
u(t) & = (u_1(t), u_2(t), u_3(t), u_4(t), u_5(t)) \\
& = (S_i(t), E_i(t), L_i(t), C_i(t), C_i(t))
\end{align*}
\]
Then the Cauchy problem (2.4) and (2.5) is equivalent to
\[
\begin{align*}
u(t) & = f(u(t)), \quad t \in [t_0, +\infty), u(t) \in \mathbb{R} \\
u_0(t_0) & = u_0^*, \quad u_0^* \geq 0
\end{align*}
\]
For the existence and uniqueness of solution of (7.1), let us recall the following theorem from [9].

Theorem 7.1. If \(f \) is continuous in \((t, u)\) in a neighbourhood of \((t_0, u_0^*)\) and Lipschitz continuous in \(u \), then there exists a unique solution of (7.1) defined in a neighbourhood of \(t_0 \). In this study, we would like to show the existence and uniqueness of a nonnegative global solution.

7.1. Existence of a local solution

First of all, we prove the local existence in a neighbourhood of initial time \(t_0 \).
Theorem 7.2. For the system (7.1),

(i) there exists a local solution in neighbourhood of \(t_0 \) on a closed interval in \([t_0, +\infty) \),
(ii) the solution is non negative on its domain of definition,
(iii) if the solution exists, it is unique.

Proof. (i) For any given \(x \), let \(N(x) \) denote a neighbourhood of \(x \). Since all the parameters in Table 1 are nonnegative for all \(t \in [t_0, +\infty) \), and the components of the vector fields \(f \) are readily polynomials, we infer that \(f \) is continuous on \(\mathbb{R}^6 \). Furthermore, since \(u_i^0, i = 1, 2, \cdots, 6 \), are non-negative, it follows from a continuity argument that \(u_i^0, i = 1, 2, \cdots, 6 \), are all non-negative on small neighbourhood \(N(u_i^0), i = 1, 2, \cdots, 6 \). Define

\[
N(u^0) = N(u_1^0) \times N(u_2^0) \times N(u_3^0) \times N(u_4^0) \times N(u_5^0) \times N(u_6^0),
\]

that is, \(f \in \mathcal{C}(N(u^0), \mathbb{R}) \). Since all spaces are finite dimensional Banach spaces, using the Cauchy-Peano theorem, there exists (not yet unique) a local solution of system (7.1) on a small enough neighbourhood (interval containing \(t_0 \)) \(N(t_0) \) of \(t_0 \). In case if \(N(t_0) \) is not a closed interval, we can reduce it to obtain a closed one. For instance, if \(N(t_0) = [t_0, t_1] \), then we choose \(T \) such that \(t_0 < T < t_1 \) and \([t_0, T] \) is a closed neighbourhood. We can denote it similarly by \(N(t_0) \). Its compactness will be used in the proof of part (iii).

(ii) Now we establish the positivity of the solution on the small neighbourhood \(N(t_0) \) of \(t_0 \).

Consider the first equation in (7.1) or equivalently, the first equation in (2.4):

\[
\dot{u}_i(t) = A - u_i(t) \sum_{j=1}^{3} \gamma_j(u_0(t)) - \mu u_i(t),
\]

which implies that

\[
u_i(t) \geq u_i^0 \exp \left(\int_0^t \left[\sum_{j=1}^{3} \gamma_j(u_0(s)) - \mu \right] ds \right).
\]

Therefore, \(u_i(t) \geq 0 \) at all times \(t \geq 0 \).

Similarly, from the fourth equation in (7.1), we have

\[
u_i(t) = M - au_i(t) - u_i(t) \sum_{j=1}^{3} \gamma_j(u_0(t)),
\]

so that

\[
u_i(t) \geq u_i^0 \exp \left(\int_0^t \left[-a - u_i(t) \sum_{j=1}^{3} \gamma_j \right] ds \right).
\]

Hence, \(u_i \geq 0 \) at all times \(t \geq 0 \).

Next, we consider the second equation in (7.1). From the positivity of \(u_1 \) and \(u_6 \), it implies that

\[
u_i(t) \geq (z_i + \mu) u_i(t), \quad \text{for} \quad i = 1, 2, 3,
\]

\[\geq u_i^0 \exp (z_i - \mu) t.\]

Thus \(u_1, u_2, \) and \(u_3 \) are also non-negative for all \(t \geq 0 \).

Similarly, we can prove that \(u_4 \geq 0 \) for time \(t \geq 0 \). Therefore, the local solutions of (7.1) defined on \(N(t_0) \) are nonnegative as claimed in (ii).

(iii) The uniqueness of solutions follows readily from the fact that the components of the vector field \(f \) in the right hand side of (7.1) are polynomials (thus Lipschitz functions on the neighbourhood \(N(t_0) \)) and form the application of the Cauchy-Lipschitz theorem. \(\square \)

7.2. Existence of global solutions

Before showing that the local solutions in Theorem 7.2 are global solutions (i.e. defined on \([t_0, +\infty) \)), we establish the following lemma about the boundedness of the solutions.

Lemma 7.3. Whenever the solution of (7.1) exists, it is bounded.

Proof. We estimate the derivative of the first unknown function \(u_1(t) \) using the result of Theorem 7.2 above. Notice that

\[
\dot{u}_1(t) = -\sum_{j=1}^{3} \gamma_j(u_0(t)) - \mu u_1(t),
\]

which implies

\[
u_1(t) \geq u_1^0 \exp \left(-\mu t - \sum_{j=1}^{3} \gamma_j(u_0(t)) \right).
\]

Since all the parameters in Table 1 are nonnegative for all \(t \in [t_0, +\infty) \), we infer that \(\gamma_j(u_0(t)) \leq \gamma_j(u_0(t_0)) \) for all \(t \geq t_0 \).

Therefore, \(u_1(t) \leq u_1^0 \exp \left(-\mu t - \sum_{j=1}^{3} \gamma_j(u_0(t_0)) \right) \) for all \(t \geq t_0 \). Hence, \(u_1 \) is bounded. Similarly, we can prove that \(u_2, u_3, u_4, u_5, u_6 \) are also bounded. Therefore, the solution \((u_1, u_2, u_3, u_4, u_5, u_6) \) is bounded for all \(t \geq t_0 \).
the solution is non negative on the corresponding domain (since \(u_1, u_2, u_3 \) and \(u_5 \) are positive and the remaining components are non negative). Moreover, on \(N(t_0) \), we have,
\[
\dot{u}_i(t) = A - \beta q u_i(t) u_5(t) - \mu u_i(t) \leq A - \mu u_i(t). \tag{7.2}
\]
By the Gronwall inequality, from Eq. (7.2), we obtain
\[
u_i(t) \leq A + \left(u_i^0 - A \right) e^{-\mu t},
\]
and
\[
\limsup_{t \to +\infty} u_i(t) \leq \frac{A}{\mu}.
\]
Since
\[
\dot{H}(t) = A - \mu H(t) - \delta u_5(t) \leq A - \mu H(t),
\]
and
\[
\dot{u}_6(t) = M - a u_6(t) - \lambda \beta q u_5(t) u_1(t) \leq M - a u_6(t),
\]
we have similarly (after applying the Gronwall inequality twice):
\[
\limsup_{t \to +\infty} H(t) \leq \frac{A}{\mu},
\]
and
\[
\limsup_{t \to +\infty} u_6(t) \leq \frac{M}{a}.
\]
From the above bounds, if we set \(H_0 = H(t_0) = u_0^1 + u_0^2 + u_0^3 + u_0^4 \), then the solutions of (7.1) are bounded in the following manner:
\[
\begin{align*}
0 &< H(t) = \sum_{i=1}^5 u_i(t) \leq \max \left\{ H_0, \frac{A}{\mu} \right\};
0 &\leq u_6(t) \leq \max \left\{ u_6^0, \frac{M}{a} \right\}. \tag{7.3}
\end{align*}
\]

Remark 7.4. Due to (7.3), it is straightforward that \(\Omega \) a subset of \(\mathbb{R}_+^6 \) satisfies
\[
\Omega = \left\{ (u_1, u_2, u_3, u_4, u_5, u_6) \in \mathbb{R}_+^6 : H(t) = \sum_{i=1}^5 u_i(t) \leq \frac{A}{\mu} \right\}
\times \left\{ u_6 \in \mathbb{R}_+ : u_6(t) \leq \frac{M}{a} \right\},
\]
and is positively invariant with respect to the flow of system (7.1).

By using the above results, we prove the following theorem.

Theorem 7.5. The silicosis model (7.1) has a bounded and unique non negative solution on \([t_0, +\infty)\), where \(t_0 \) is the initial time.

Proof. Since the solutions are bounded according to Lemma 7.3, Theorem 7.5 is a straightforward consequence of the finite time blow-up theorem of differential equations. Indeed, by setting
\[
\bar{a} = \sup \left\{ \bar{a} : \bar{a} \; \text{belongs to the defined domain of the solution} \right\},
\]
we notice that \(\bar{a} > t_0 \). We already proved the existence of a unique solution locally in a neighbourhood \(N(t_0) \). From the part where the solution exists, it stays non negative and bounded. Taking any \(t^1 \in N(t_0) \) with \(t^1 > t_0 \), using the same argument from Theorem 7.2, we can prove that the function \(f \) is also Lipschitz in a neighbourhood \(N(t^1) \) of \(t^1 \), so the solution can be extended on \(N(t^1) \).

Now to prove the theorem at \(\bar{a} = +\infty \), we use proof by contradiction. Hence, assume that \(\bar{a} < +\infty \), and assume further that the solution can be extended to \([t_0, \bar{a}] \) but not yet to \([\bar{a}, \bar{a}] \). If \(\bar{a} \) is finite then we define \(u(\bar{a}) = \lim u(t) \). Due to the continuity of \(u(t) \) and the function \(f(u(t)) \), we have
\[
\dot{u}(\bar{a}) = \lim_{t \to \bar{a}} \dot{u}(t) = \lim_{t \to \bar{a}} f(u(t)) = f(\bar{a}, u(\bar{a})).
\]
Thus, the solution can be extended to \(\bar{a} \). Hence, the solution exists up to \(\bar{a} \) and therefore, \(\bar{a} \) belongs to the defined domain of the solution of (7.1). Note that from Lemma 7.3, in finite time every component of the solution is bounded by a constant positive number. Hence, at the point \(\bar{a} \), the values of function \(u_i \) are non negative and satisfy the conditions as in the proof of Theorem 7.2. Because of this, we can continue to apply Theorem 7.2 to extend the solution over a small neighbourhood \(N(\bar{a}) \). Denoting the radius of this neighbourhood by \(\bar{a} > 0 \), the solution is also defined at \(\bar{a} + \delta/2 > \bar{a} \). This contradicts with the fact that \(\bar{a} \) is the supremum of all the \(t \) in the domain of the solution. Hence, we have shown that \(\bar{a} = +\infty \). By virtue of Theorem 7.2, we infer that system (7.1) has a unique non negative global solution on \([t_0, +\infty) \). \(\square \)

7.3. Asymptotic behaviour of solutions

In this subsection, for convenience, we work with the system (2.4) rather than (7.1).

7.3.1. Simple solutions: equilibria

The equilibriums points of system (2.4) are solutions of
\[
\begin{align*}
A - \beta q CS &- \mu S = 0, \\
\beta q CS - (\alpha + \mu) E_i &\leq 0, \quad i = 1, 2, 3 \\
\sum_{i=1}^3 2 \alpha E_i - (\delta + \mu) I &\leq 0, \\
M - aC - \lambda \beta q CS &\leq 0.
\end{align*}
\tag{7.4}
\]
From the last equation of (7.4), we get
\[
C = \frac{M}{(\bar{a} + \lambda \beta q S)}.
\]
On the other hand, from the dynamics of silicosis, if there is no silica production in the community, then it means that there are no silicosis patients in the community and clearly \(M = 0 \). Hence, if \(u_0 \) is the disease-free (silica-free) equilibrium point, then from (7.4), we obtain
\[
u_0 = \left(\frac{A}{\mu}, 0, 0, 0, 0, 0 \right). \tag{7.5}
\]
Similarly, when mining workers are in state of mining production, the constant rate of silica dust production \(M \) is positive and the expected equilibrium point for system (2.4) must satisfy \(M > 0 \). Denoting this equilibrium by
\(u' = (S', E_i, I_i, C') \)

and calling it the positive (or silicosis persistent) equilibrium point, after further simplification in (7.4), we get quadratic equation in \(S' \):

\[
\dot{S}' = \frac{(\beta qM + \mu - \lambda \beta q)S' - \Lambda S}{2\beta qM},
\]

(7.6)

and

\[
E_i = \frac{\beta qCS}{
\begin{array}{c}
p \in \mathbb{N}
\end{array}
\}
\]

(7.7)

\[
C' = M \frac{1}{\beta qM}
\]

Thus, \(u' \) is obtained by solving for the positive root \(S' \) of (7.6) and substitute it into (7.7) to get the remaining components. We denote the discriminant of the quadratic Eq. (7.6) by

\[
\Delta = (\beta qM + \mu - \lambda \beta q)^2 + 4\beta qM\Lambda > 0,
\]

and solving (7.6) gives

\[
S' = \frac{(\beta qM + \mu - \lambda \beta q) + \sqrt{\Delta}}{2\beta qM}.
\]

(7.8)

Clearly, \(S' > 0 \). Thus, the two simple solutions \(u_0 \) and \(u' \) of (2.4) are determined. In the next subsections, we are going to show that whenever any of these equilibrium points exists, the other solutions of the system converge globally to that point.

7.3.2. Global asymptotic stability of the disease-free equilibrium

Theorem 7.6. For \(M = 0 \), the unique disease-free equilibrium \(u_0 \) of (2.4) is locally asymptotically stable.

Proof. The Jacobian matrix of (2.4) evaluated at the disease-free equilibrium \(u_0 \) is

\[
J_u = \begin{pmatrix}
-\mu & 0 & 0 & 0 & 0 & -\beta qS \\
0 & -\mu - \delta & 0 & 0 & \beta qS \\
0 & 0 & -\mu & 0 & \beta qS \\
0 & 0 & 0 & -\mu - \delta & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\mu - \delta & 0
\end{pmatrix}
\]

The eigenvalues of \(J_u \) are \(-\mu - \delta, -\mu, -\mu - \delta, -\mu - \delta, -\mu - \delta \) and all are negative. Thus \(u_0 \) is locally asymptotically stable. □

Theorem 7.7. For \(M = 0 \), the system (2.4) has a unique disease-free equilibrium \(u_0 \) which is globally asymptotically stable.

Proof. To prove the global asymptotic stability we make use of Lyapunov-LaSalle’s Principle [30] by defining the following function:

\[
L_0(u) = L_0(S, E_i, I, C) = \sum_{i=1}^{3} E_i + \lambda I + C,
\]

where \(u = (S, E_i, I, C) \) and \(L_0(u) > 0 \) for \(u_0 \neq u \in \Omega \). Hence, \(L_0 \) is a positive definite on \(\Omega \). The Lie derivative of \(L_0 \), denoted by \(\dot{L}_0 \), in the direction of the vector field given by the right-hand side of (2.4) is

\[
\dot{L}_0 = - \left[j\mu \sum_{i=1}^{3} E_i + \lambda (\mu + \delta) I + aC \right] \leq 0.
\]

Thus, \(\dot{L}_0 \) is a negative definite. Moreover, \(\dot{L}_0 = 0 \) if only if \(E_i = I = C = 0, i = 1, 2, 3 \). Hence, the largest invariant subset \(\mathcal{M}_0 \) contained in \(\mathcal{E}_0 = \{ \{S, E_i, I, C \} : \dot{L}_0 = 0 \} \) is obtained by setting \(E_i = I = C = 0 \) in the equation \(S = \lambda + \beta qCS - \mu S \) and gives \(S(t) = \lambda/\mu + [S(0) - \lambda/\mu]e^{-\mu t} \). Thus, as \(t \to \infty, S(t) \to \lambda/\mu \), and \(S(0) \to \lambda/\mu \). By LaSalle’s Invariance Principle, we conclude that \(u_0 \) is globally asymptotically stable. □

7.3.3. Global asymptotic stability of the positive equilibrium

Theorem 7.8. For \(M = 0 \), the unique positive equilibrium \(u' \) of (2.4) is locally asymptotically stable.

Proof. The Jacobian matrix of (2.4) evaluated at the positive equilibrium point \(u' \) is

\[
J_u = \begin{pmatrix}
-\beta qC - \mu & 0 & 0 & 0 & 0 & -\beta qS \\
\beta qC & -\mu - \delta & 0 & 0 & \beta qS \\
\beta qC & 0 & -\mu & 0 & \beta qS \\
\beta qC & 0 & 0 & -\mu & \beta qS \\
-\lambda \beta qC & 0 & 0 & 0 & 0
\end{pmatrix}
\]

It is easy to see that the eigenvalues of \(J_u \) are:

\(-\lambda, -\mu - \delta, -\mu, -\mu, -\mu - \delta, -\mu - \delta\)

Because, the trace of \(J_u \) is negative and its determinant \(\mu(a + \beta qS') + a\beta qS' \) is positive. Thus \(u' \) is locally asymptotically stable. □

Theorem 7.9. Whenever the constant production rate of silica dust \(M \) is positive, the unique positive equilibrium point \(u' \) of system (2.4) is globally asymptotically stable.

Proof. To establish the global asymptotic stability of \(u' \), since \(I \) does not appear in the remaining equations of the model, we can decouple the dynamics of \(I \) from the system and propose the following Volterra type Lyapunov functional:

\[
V = \left[S - S' - \ln \frac{S}{S'} \right] + \sum_{i=1}^{3} \left[E_i - E'_i - \ln \frac{E_i}{E'_i} \right] + \frac{1}{2} \left[C - C' - \ln \frac{C}{C'} \right].
\]

(7.9)

We note that \(V \) is defined, continuous in \(\Omega \) and positive definite with respect to \(u = u' \) in \(\Omega \). Furthermore, the global minimum \(V = 0 \) occurs at the endemic equilibrium \(u' \). We compute the derivative of \(V \) along the trajectories of the system (2.4)
\[V = (1 - \frac{x}{S})S + \sum_{i=1}^{n} \left(1 - \frac{x}{E_i}\right)E_i + (1 - \frac{x}{C})C \]
\[= (1 - \frac{x}{S})(A - \beta_d CS - \mu S) + \sum_{i=1}^{n} \left(1 - \frac{x}{E_i}\right)\left[\beta_q CS - (x_i + \mu)E_i\right] \]
\[+ \frac{1}{2} (1 - \frac{x}{C}) (M - aC - \beta_d CS) \]
\[(7.10) \]

Taking into account the endemic steady state of the model where \(A = \beta_d CS + \mu S \), \(\beta_q CS = (x_i + \mu)E_i = 0 \), \(M = aC + \beta_d CS \), it follows that
\[(1 - \frac{x}{S})S = A - \beta_d CS - \mu S - \frac{x}{S} A + \beta_d CS + \mu S \]
\[= A\left(1 - \frac{x}{S}\right) - (\beta_d CS + \mu)S \]
\[= (\beta_d CS + \mu)S + \beta_d CS + \mu (1 - \frac{x}{S}) \]
\[= \mu S (1 - \frac{x}{S}) + \mu S (1 - \frac{x}{S}) + \beta_d CS (1 - \frac{x}{S}) + \beta_d CS (1 - \frac{x}{S}) \]
\[= \mu S (1 - \frac{x}{S}) + \sum_{i=1}^{n} \beta q CS (1 - \frac{x}{S}) + \sum_{i=1}^{n} \beta q CS (1 - \frac{x}{S}). \]
\[(7.11) \]

\[\sum_{i=1}^{n} \left(1 - \frac{x}{E_i}\right)E_i = \sum_{i=1}^{n} \left[\beta q CS - (x_i + \mu)E_i\right] - \sum_{i=1}^{n} \frac{1}{2} \beta q CS - \frac{1}{2} \beta q CS \sum_{i=1}^{n} \left(1 - \frac{x}{E_i}\right) \]
\[= \sum_{i=1}^{n} \left[\beta q CS - \beta q CS (1 - \frac{x}{S})\right] - \sum_{i=1}^{n} \frac{1}{2} \beta q CS S + \frac{1}{2} \beta q CS S \]
\[(7.12) \]

and
\[(1 - \frac{x}{C})C = (\alpha C + \alpha \beta_d CS) (1 - \frac{x}{C}) - (\alpha C + \alpha \beta_d CS) (1 - \frac{x}{C}) \]
\[= \alpha C (1 - \frac{x}{C}) - \alpha C (1 - \frac{x}{C}) + \alpha \beta_d CS (1 - \frac{x}{C}) - \alpha \beta_d CS (1 - \frac{x}{C}) \]
\[= \alpha C (1 - \frac{x}{C}) + \alpha \beta_d CS (1 - \frac{x}{C}) - \alpha \beta_d CS (1 - \frac{x}{C}) \]
\[(7.13) \]

Substituting (7.11)–(7.13) into (7.10) leads to
\[V = \mu S (2 - \frac{x}{S} - \frac{x}{C}) + \sum_{i=1}^{n} \beta q CS (1 - \frac{x}{S}) + \sum_{i=1}^{n} \beta q CS (1 - \frac{x}{C}) \]
\[+ \frac{1}{2} \beta q CS (1 - \frac{x}{S} - \frac{x}{C}) + \frac{1}{2} \beta q CS (1 - \frac{x}{S} - \frac{x}{C}) + \frac{1}{2} \beta q CS (1 - \frac{x}{S} - \frac{x}{C}) \]
\[+ \frac{1}{2} \beta q CS (1 - \frac{x}{S} - \frac{x}{C}) + \frac{1}{2} \beta q CS (1 - \frac{x}{S} - \frac{x}{C}) \]
\[(7.14) \]

or
\[V = \mu S (2 - \frac{x}{S} - \frac{x}{C}) + \sum_{i=1}^{n} \beta q CS (1 - \frac{x}{S}) + \sum_{i=1}^{n} \beta q CS (1 - \frac{x}{C}) \]
\[+ \frac{1}{2} \beta q CS (1 - \frac{x}{S} - \frac{x}{C}) + \frac{1}{2} \beta q CS (1 - \frac{x}{S} - \frac{x}{C}) + \frac{1}{2} \beta q CS (1 - \frac{x}{S} - \frac{x}{C}) \]
\[+ \frac{1}{2} \beta q CS (1 - \frac{x}{S} - \frac{x}{C}) + \frac{1}{2} \beta q CS (1 - \frac{x}{S} - \frac{x}{C}) \]
\[(7.15) \]

Further rearrangements lead to
\[V = \mu S (2 - \frac{x}{S} - \frac{x}{C}) + (2 - \frac{x}{S} - \frac{x}{C}) + \frac{1}{2} \beta q CS (1 - \frac{x}{S} - \frac{x}{C}) \]
\[+ \sum_{i=1}^{n} \beta q CS (1 - \frac{x}{S}) + \sum_{i=1}^{n} \beta q CS (1 - \frac{x}{C}) - \sum_{i=1}^{n} \beta q CS (1 - \frac{x}{S}) \]
\[= \mu S (2 - \frac{x}{S} - \frac{x}{C}) + (2 - \frac{x}{S} - \frac{x}{C}) + \frac{1}{2} \beta q CS (1 - \frac{x}{S} - \frac{x}{C}) \]
\[+ \sum_{i=1}^{n} \beta q CS (1 - \frac{x}{S}) + \sum_{i=1}^{n} \beta q CS (1 - \frac{x}{C}) - \sum_{i=1}^{n} \beta q CS (1 - \frac{x}{S}) \]
\[(7.15) \]

where \(m = \min \left(\frac{x}{S}, \frac{x}{C} \right) \) Applying the arithmetic-geometric inequality to (7.16), we obtain \(\dot{V} \leq 0 \) for all \(u \in \Omega \) and \(\dot{V} = 0 \) if only if \(u = u^* \). Hence, \(\mathcal{M} = \{ u \in \Omega : \dot{V} = 0 \} = \{ u^* \} \) is the largest invariant subset. From LaSalle’s Invariance Principle [30], \(u^* \) is globally asymptotically stable. \(\square \)

8. Numerical simulation

In this section, we present numerical simulations in order to support the theoretical results proved in the previous sections. In Fig. 4, by using different initial conditions, we observed that the solution profiles of the system (2.4) converge to the disease-free equilibrium (or silica-free environment). This result
implies that the disease-free equilibrium is globally asymptotically stable whenever the mining area is free from silica concentration (i.e. $M = 0$) as proved in Theorem 7.7. In the presence of silica production (i.e., $M > 0$), a unique endemic equilibrium exists and it is globally asymptotically stable (see Fig. 5). To show the effect of silica dust in the environment, we use a small value of $M = 0.00001$ in Fig. 5 (a) and it illustrates the global asymptotic stability of $\Gamma = 0.0397$. Using the same initial conditions with M large in Fig. 5 (b), the endemic equilibrium, is also depicted to be globally asymptotically stable, with $\Gamma \approx 22$. The relation between the production of silica in the mining and the number of new silicosis infected individuals is illustrated in Fig. 6. From the same figure, we can observe that the silicosis dynamics doesn’t change significantly once the environment reached into silica saturated rate. To perform all the simulations, we used the parameter values given in Table 1.

9. Conclusion

As a starting point in modelling silicosis infection, we have provided a simple ordinary differential equations model for the dynamics of the silicosis disease in a mining community is designed and subsequently analysed. The whole analysis has been done in both fractional differentiation and classical integer calculus. In the former case, the Haar wavelet numerical scheme has been used to solve the model and perform graphical representations. In the classical integer calculus, it is shown that the disease-free equilibrium point exists in the absence of silica dust in the environment and is globally asymptotically stable. The biological implication of this result is that the disease doesn’t invade the community irrespective of the initial size population in the community. Furthermore, it has been proven that whenever workers are exposed to crystalline silica particles, the endemic equilibrium exists and is globally asymptotically stable. Most of those results concur with those found in fractional differentiation where the global stability of the endemic equilibrium were shown graphically via the Haar wavelet scheme.

The given model is relatively simple and it captures some basic features of the silicosis exposure dynamics. However, if it enters in an environment where Tuberculosis (TB) is epidemic, co-infection will happen and the problem becomes too complicated. For such a case, we need to propose a more general model which incorporates some additional realities of the silicosis transmission dynamics. Future directions for our work include fitting the model to estimate the parameters and proposing a non-standard finite difference scheme that replicates the properties of the continuous model.

Moreover, since silicosis disease can cause Tuberculosis which is an aerosol transmitted disease, it will be very interesting to couple an advection-diffusion model (e.g. atmospheric dispersion modelling framework) for the dynamics of silica dust with a reaction model for Tuberculosis. In this new setting of partial differential equations, one could investigate the existence of travelling waves solutions. This more complicated project is under investigation by the authors as a second step on this adventure.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References