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Abstract A mathematical model for the transmission dynamics of silicosis in a mining environ-

ment is designed and its qualitative analysis is given. The model takes into account the severity

of silica dust exposure in a mining environment. The whole analysis is done in both fractional dif-

ferentiation and classical integer calculus. In the former case, the Haar wavelet numerical scheme is

used to solve the model and perform graphical representations. In the integer calculus case, it is

shown that the disease free and endemic equilibria are globally asymptotically stable in the absence

as well as in the presence of silica dust particles in the air, respectively. The epidemiological impli-

cations of these results are discussed. Numerical simulations are presented to support the theoretical

analysis. In fractional differentiation, we show graphically via the Haar wavelet scheme the conver-

gence to the disease free-equilibrium and the global stability of the endemic equilibrium, results suc-

cessfully confirmed analytically via the classical integer analysis.
� 2020 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The immense industrial boom of the 19th century has triggered

a massive exploitation in the mining sector, resulting in serious
environmental pollution and occupational health problems.
The fact is that some mining companies consistently failed to
employ proper measures to protect workers against excessive

dust inhalation and the concomitant risks of silicosis, cancer
and tuberculosis [14]. For instance, towards the end of the
1990’s only 8 of 48 South African gold mines had estimated
crystalline silica concentrations below the widely used

reference limit of 0:1 mg=m3 [14]. Workers are exposed to silica
dust in sectors such as mining and related milling operations,

construction, agricultural and ceramic industries. Furthermore,
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jewellery making also produces silica dust due to cutting,
grinding and polishing [20,22].

Silicosis is a lung disease caused by inhalation and deposi-

tion of silica particles, resulting in a pulmonary response which
can progress to tuberculosis or lung cancer [31,29]. It is char-
acterized by a progressive deterioration of the metabolism of

pulmonary macrophage, which leads to the death of cells
and tissues. Symptoms of silicosis include exertional dyspnea
or difficulty in breathing (shortness of breath), cough (often

persistent and sometimes severe), fatigue, fever, chest pain, loss
of appetite, night sweats and weight loss (Anorexia) [27]. Sili-
cosis has no cure and prevention is the best way to avoid the
disease [6,7]. Most of silicosis-related deaths seem to occur in

areas associated with mining industries [23]. Furthermore,
between 1968 and 2002, silicosis contributed to the death of
approximately 74 million people in the U.S. [32]. There are

three levels of silicosis depending on the degree and duration
of cumulative exposure to the crystalline silica particles. The
acute form occurs generally within a few weeks to 2 years of

substantial exposure to a high concentration of silica dust,
the accelerated form is caused by a medium exposure between
2 to 10 years and the symptoms of the chronic form appear

more than 10 years after the first exposure to low concentra-
tion of silica dust [22]. An evaluation study on mine workers
has shown that the incidence of pulmonary tuberculosis for
those suffering from silicosis was 3 to 39 times higher than

for those without silicosis [22]. The incidence rate was propor-
tional to the severity of the silicosis or the level of exposure to
silica dust [22,27,21,10].

In another side, differential models with derivative of frac-
tional order and their applications have been intensively anal-
ysed in many works [1–3,15,19,24]. Even though a certain

number of analyzes have been performed in the context of
modeling the spread of epidemic diseases, the large majority
of them were limited to models with integer order derivative.

In last decades, it has been proved that number of nature phe-
nomena portrayed by different fields in sciences, engineering
and technology can be successfully and accurately described
by the systems using concepts of fractional calculus. For

instance, in some works, a method like Adomian decomposi-
tion has been exploited to obtain solutions of a system of non-
linear fractional differential equations. Similar technique was

extended in [1], where the classical Darcy law was generalized
using a complementary decomposition method, namely Frobe-
nius method. In the paper [15], fractional calculus in epidemi-

ology has been applied to describe the dynamics related to the
outbreak of dengue fever. We are going to perform similar
investigation in this paper with the application of fractional
operators to a model symbolizing the transmission dynamics

of silicosis in a mining environment. A comparison with the
standard method will also be provided. However, we can
add that from a mathematical modelling point of view, not

enough has been done to understand the dynamics of the dis-
ease although some mathematical models have been described
to study the risk of airborne infectious diseases, which do not

capture the features of a disease like silicosis due to exhaled
and inhaled air [8,12]. To the authors’ best knowledge, the pro-
posed mathematical model is the first model to study the trans-

mission dynamics of silicosis in a mining environment. It is
instructive to use a mathematical model to gain some insights
into the transmission dynamics and impact of silicosis in a
community, especially in a resource-poor setting, where there
Please cite this article in press as: H.M. Tenkam et al., Classical and fractional analy
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is no precautionary or prevention measures are taken to avoid
or minimise silica dust inhalation.

The rest of the paper is organized as follows. In Section 2,

the model formulation is given. The qualitative analysis of the
model is provided in Section 3. Numerical simulations to sup-
port the theoretical analysis of the model are presented in Sec-

tion 4, which is followed by concluding remarks in Section 5.

2. Model formulation

To formulate the silicosis mathematical model, we make the
following assumptions. The total population (mining commu-
nity) at time t is denoted by H tð Þ. It consists of five mutually-

exclusive compartments or classes: susceptible S tð Þ, highly
exposed E1 tð Þ, medium exposed E2 tð Þ, low exposed E3 tð Þ indi-
viduals to silica dust and infected individuals with clinical

symptoms of silicosis I tð Þ, so that

H tð Þ ¼ S tð Þ þ E1 tð Þ þ E2 tð Þ þ E3 tð Þ þ I tð Þ:
The flow diagram of the dynamics of the silicosis in the mining

community is illustrated in Fig. 1.
We assume further that silica is found throughout the

earth’s crust in almost every mineral deposit and it is harmless

until disturbed in a way that creates dust. The dynamics of sil-
ica dust (which is the infecting agent) at time t, denoted by
C tð Þ, is mathematically given by

_C ¼ M� aC� Sk
X3
i¼1

ci Cð Þ; ð2:1Þ

where M P 0 is the constant production of silica dust in the
air-shed generated by the mining activities in the area, a is

the rate at which the silica dust is lost during mining, k is a
conversion coefficient and the term

ci Cð Þ ¼ bi

p

V
C ¼ biqC; ð2:2Þ

for i ¼ 1; 2; 3, represents the force of infection for silica dust
inhalation, in which b1; b2 and b3 are the effective contact

rates of susceptible individuals with high, medium and low sil-
ica exposed classes, respectively. The parameter q in (2.2) is the
probability of the inhaled silica not cleared by mucous or

coughing. Here, _C denotes the rate of change of silica dust con-
centration in the mining environment. In the absence of any

mining activities, we assume that there is no silica in the air
and M will be zero. This helps us to get a silica free environ-
ment (no silicosis).

The susceptible population, S tð Þð Þ, is increased by the
recruitment of people into the mining community at a rate
K. The population is decreased by infection with silicosis at

a rate ci and natural death rate l, which is assumed to be occur
in all human compartments. Hence, the rate of change of the
susceptible individuals is given by

_S ¼ K� S
X3
i¼1

ci Cð Þ � lS:

The exposed compartments, Ei tð Þð Þ, are generated by the infec-
tion of susceptible individuals with silicosis at the rate ci, and
are reduced by natural death rate l and progression to the
infected compartment at the rate ai; i ¼ 1; 2; 3. It is assumed

that a�1
1 � 5 years, 5 years 6 a�1

2 � 10 years and a�1
3 P 10

years, so that
sis of the effects of Silicosis in a Mining Community, Alexandria Eng. J. (2020),
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Fig. 1 Flow diagram of the model.

Table 1 Variables and parameters with units for the SEI

model (2.4).

Symbols Descriptions Units

k Conversion coefficient 0:51

bi Effective contact rate

between susceptible and

silica dust

0.5, 0.35, 0.22

ai Progression rate (exposed to

infective)

0:12; 0:15; 0:3=indiv � year

l Natural death rate of

individuals
0:117 year�1

ci Forces of infection due to

silica dust inhalation
year�1

M Constant dust produced mg �m�3

d Disease induced death rate

of individuals
0:39 year�1

K Recruitment of susceptible

individuals

20=indiv:year

C Silica dust concentration mg �m�3

q Probability of the inhaled

silica not cleared by

coughing

0:65

a Silica dust deposition rate 0:7
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_Ei ¼ Sci Cð Þ � ai þ lð ÞEi i ¼ 1; 2; 3:

Similarly, the compartment of silicosis infected individuals
I tð Þð Þ is increased by the progression of silicosis exposed indi-

viduals at rates ai and is decreased by natural and silicosis
induced death rates l and d, respectively. Thus,

_I ¼
X3
i¼1

aiEi � dþ lð ÞI:

Putting the above equations together, the model equations for

the transmission dynamics of silicosis in a mining community
is given by the following system of non-linear differential
equations:

_S ¼ K� S
X3
i¼1

ci Cð Þ � lS;

_Ei ¼ Sci Cð Þ � ai þ lð ÞEi i ¼ 1; 2; 3;

_I ¼
X3
i¼1

aiEi � dþ lð ÞI;

_C ¼ M� aC� Sk
X3
i¼1

ci Cð Þ:

ð2:3Þ

By using (2.2), the system (2.3) reads as

_S¼ K�bqCS�lS;

_Ei ¼ biqCS�
�
ai þlð ÞEii¼ 1;2;3; _I¼

X3
i¼1

aiEi� dþlð ÞI; _C¼M�aC�kbqCS;

ð2:4Þ
where b ¼P3

i¼1bi. Since we are dealing with human popula-

tions and silica dust concentration, all the variables and
parameters are non-negative. The description of the parame-
ters and their values are presented in Table 1.

The system (2.4) is appended with the following non nega-
tive initial conditions:
Please cite this article in press as: H.M. Tenkam et al., Classical and fractional analys
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S t0ð Þ ¼ S0; Ei t0ð Þ ¼ E0
i ; I t0ð Þ ¼ I0;

C t0ð Þ ¼ C0; for t0 P 0 and i ¼ 1; 2; 3:
ð2:5Þ
3. Generalized dynamics of silicosis in a mining: Fractional

approach

In order broaden the view on the effects of Silicosis, we gener-

alize the model (2.4) by applying the Caputo fractional deriva-
tive which is defined as follows [4,11,18,17,25,28]:
is of the effects of Silicosis in a Mining Community, Alexandria Eng. J. (2020),
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3.1. The Caputo fractional derivative

Let �1 6 a < t; b > a and the real function v : a; bð Þ�!R be
a locally integrable function. The Caputo fractional derivative
in its classical version is defined for the order m, a time t > 0, as

CDm
tv tð Þ ¼ I1�m d

dt
v tð Þ; 0 < m 6 1: ð3:1Þ

Using this derivative to solve differential equations necessitates
the definition of its antiderivative. Then, the fractional integral

of order m associated to the Caputo fractional derivative is
given by

Imv tð Þ ¼ 1

C mð Þ
Z t

a

v sð Þ t� sð Þm�1
ds: ð3:2Þ

This leads to the generalized system modelling the dynamics of
silicosis in a mining and reading as

CDm
t S ¼ K� bmCS� lS;

CDm
tEi ¼ bimCS� ð ai þ lð ÞEi i ¼ 1; 2; 3;

CDm
t I ¼

X3
i¼1

aiEi � dþ lð ÞI;
CDm

tC ¼ M� aC� kbmCS:

ð3:3Þ

We assume that for this model, the following initial conditions
hold:

S t0ð Þ ¼ S0; Ei t0ð Þ ¼ E0
i ; I t0ð Þ ¼ I0;

C t0ð Þ ¼ C0; for t0 P 0 and i ¼ 1; 2; 3:
ð3:4Þ

To continue the analysis, a numerical approach, namely Haar
wavelet numerical scheme is going to be used to address the

solvability of the system (5.1)–(3.4). In the next section, the
major concepts of the Haar wavelet technique are recalled.

4. Haar wavelets numerical scheme

In the literature [5,13,16,26], the Haar wavelet is defined to be
the following function

F tð Þ ¼
1; if t 2 0; 1=2ð Þ;
�1; if t 2 1=2; 1ð Þ;
0; elsewhere:

8><>: ð4:1Þ

The function is obviously defined �1;þ1ð Þ. Note that every

a 2 0; 1; 2; 3; � � �f g can explicitly be expressed as a ¼ 2r þ e
with r ¼ 0; 1; 2; � � � and e ¼ 0; 1; 2; � � � ; 2r � 1. Taking t 2 0; 1½ Þ
and for every a 2 0; 1; 2; 3; � � �f g the following family can be

defined:

fa tð Þ ¼ 2
r
2F 2rt� eð Þ; for a ¼ 1; 2; � � � ;
1; for a ¼ 0:

(
ð4:2Þ

This means that fa tð Þf g1a¼0 defines a complete orthonormal sys-

tem in the space L2 0; 1½ Þ. Similarly for the function u 2 C 0; 1½ Þ,
the series

P1
a¼0 u; fah ifa is uniformly convergent to another

function u where u; fah i ¼ R1
0

u tð Þfa tð Þdt. Consequently the

function u take the form:

u tð Þ ¼
X1
a¼0

bifa tð Þ
Please cite this article in press as: H.M. Tenkam et al., Classical and fractional analy
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with ba ¼ u; fah i. Alternatively, the approximated solution can

take the form

u tð Þ � ue tð Þ ¼
Xe�1

a¼0

bifa tð Þ

where e 2 2r : r ¼ 0; 1; 2; � � �f g.
Now, let k 2 N, we define the function

fj;a tð Þ ¼ fa t� jþ 1ð Þ j ¼ 1; 2; � � � ; k and a ¼ 0; 1; 2; � � �
ð4:3Þ

as the translation of the Haar function on 0; k½ Þ, with fa defined
by (4.2). Note that fa and fj;a satisfy the same topological prop-

erties. Then, the family fj;a tð Þ� �1
a¼0

; j ¼ 1; 2; � � � ; kð Þ also

defines a complete orthonormal system in L2 0; 1½ Þ, the space
of square-integrable functions.

Moreover, we define the haar orthonormal basis functions

bj;a ¼ u; fj;a
� � ¼ Z 1

0

u tð Þfj;a tð Þdt

which are used to expand the solution u 2 L2 0; k½ Þ into the
series

u tð Þ ¼
Xk
j¼1

X1
a¼0

bj;afj;a tð Þ: ð4:4Þ

Practically, the solution is approximated as follows

u tð Þ � ue tð Þ ¼
Xk
j¼1

Xe�1

a¼0

bj;afj;a tð Þ ð4:5Þ

where e 2 2r : r ¼ 0; 1; 2; � � �f g. Lastly, note that (4.5) can
take the compact form

u tð Þ � ue tð Þ ¼ TGke�1Fke�1: ð4:6Þ
Here TGke�1 represents the transpose vector of
Gke�1 ¼

b1;0

..

.

b1;e�1

b2;0

..

.

b2;e�1

..

.

bk;0

..

.

bk;e�1

0BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA

and Fke�1 ¼

f1;0

..

.

f1;e�1

f2;0

..

.

f2;e�1

..

.

fk;0

..

.

fk;e�1

0BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

5. Mathematical solvability for the generalized dynamics of

silicosis in a mining

In this section, we solved numerically the generalized system of
dynamics of silicosis in a mining via the Haart wavelets
method. Recall that the model in its generalized form reads as
sis of the effects of Silicosis in a Mining Community, Alexandria Eng. J. (2020),
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CDm
t S ¼ K� bmCS� lS;

CDm
tEi ¼ bimCS� ð ai þ lð ÞEi i ¼ 1; 2; 3;

CDm
t I ¼

X3
i¼1

aiEi � dþ lð ÞI;
CDm

tC ¼ M� aC� kbmCS:

ð5:1Þ

We assume that for this model, the following initial conditions
hold:

S t0ð Þ ¼ S0; Ei t0ð Þ ¼ E0
i ; I t0ð Þ ¼ I0;

C t0ð Þ ¼ C0; for t0 P 0 and i ¼ 1; 2; 3:
ð5:2Þ

To use the numerical scheme described above [19,24], let us put

the system (5.1) and (5.2) into the compact form. Hence we
define the vectors

u tð Þ ¼

S tð Þ
Ei tð Þ
I tð Þ
C tð Þ

0BBB@
1CCCA and

g0 S;Ei; I;Cð Þ ¼ u t0ð Þ ¼

S t0ð Þ
Ei t0ð Þ
I t0ð Þ
C t0ð Þ

0BBB@
1CCCA ¼

bS
ÊibIbC

0BBBB@
1CCCCA

and we also define the matrix

M u tð Þ; tð Þ ¼M S tð Þ;Ei tð Þ; I tð Þ;C tð Þ; tð Þ ¼

M1 u tð Þ; tð Þ
M2 u tð Þ; tð Þ
M3 u tð Þ; tð Þ
M4 u tð Þ; tð Þ

0BBB@
1CCCA

¼

M1 S tð Þ;Ei tð Þ; I tð Þ;C tð Þ; tð Þ
M2 S tð Þ;Ei tð Þ; I tð Þ;C tð Þ; tð Þ
M3 S tð Þ;Ei tð Þ; I tð Þ;C tð Þ; tð Þ
M4 S tð Þ;Ei tð Þ; I tð Þ;C tð Þ; tð Þ

0BBB@
1CCCA

where

M1 u tð Þ; tð Þ ¼ K� bmC tð ÞS tð Þ � lS tð Þ;
M2 u tð Þ; tð Þ ¼ bimC tð ÞS tð Þ � ð ai þ lð ÞEi tð Þ i ¼ 1; 2; 3;

M3 u tð Þ; tð Þ ¼
X3
i¼1

aiEi tð Þ � dþ lð ÞI tð Þ;

M4 u tð Þ; tð Þ ¼ M� aC tð Þ � kbmC tð ÞS tð Þ

8>>>>>>>><>>>>>>>>:
Hence, (5.1) becomes

Dm
t h tð Þ ¼ M u tð Þ; tð Þ

equivalent to,

Dm
tS tð Þ ¼ M1 u tð Þ; tð Þ

Dm
tEi tð Þ ¼ M2 u tð Þ; tð Þ

Dm
t I tð Þ ¼ M3 u tð Þ; tð Þ

Dm
tC tð Þ ¼ M4 u tð Þ; tð Þ;

ð5:3Þ

still with assumption that the following initial conditions hold:

S 0ð Þ ¼ bS Sð Þ; Ei 0ð Þ ¼ Êi Eið Þ; i ¼ 1; 2; 3:; I 0ð Þ ¼ bI Ið Þ;
C 0ð Þ ¼ bC Cð Þ:
Please cite this article in press as: H.M. Tenkam et al., Classical and fractional analys
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Using the iteration in the compact form (4.6), the Haar wave-

lets scheme is used to approximate the silicosis model (5.3).
Hence, we obtain

Dm
t S tð Þ ¼ M1 u tð Þ; tð Þ � Dm

t Se tð Þ ¼ TG1
ke�1Fke�1

Dm
tEi tð Þ ¼ M2 u tð Þ; tð Þ � Dm

t Eie tð Þ¼TG2
ke�1Fke�1; i ¼ 1; 2; 3;

�
Dm

t I tð Þ ¼ M3 u tð Þ; tð Þ � Dm
t Ie tð Þ ¼ TG3

ke�1Fke�1

Dm
tC tð Þ ¼ M4 u tð Þ; tð Þ � Dm

tCe tð Þ ¼ TG4
ke�1Fke�1

ð5:4Þ
The application of (3.2) on both sides of system (5.4) gives

S tð Þ � bS � Dm
t Se tð Þ ¼ TG1

ke�1B
m
ke�keFke�1

Ei tð Þ � Êi � Dm
tEie tð Þ¼TG2

ke�1B
m
ke�keFke�1; i ¼ 1; 2; 3;

I tð Þ � bI � Dm
t Ie tð Þ ¼ TG3

ke�1B
m
ke�keFke�1

C tð Þ � bC � Dm
tCe tð Þ ¼ TG4

ke�1B
m
ke�keFke�1

ð5:5Þ

equivalent to

S tð Þ � Se tð Þ ¼ TG1
ke�1B

m
ke�keFke�1 þ bS

Ei tð Þ � Eie tð Þ¼TG2
ke�1B

m
ke�keFke�1 þ Êi; i ¼ 1; 2; 3;

I tð Þ � Ie tð Þ ¼ TG3
ke�1B

m
ke�keFke�1 þ bI

C tð Þ � Ce tð Þ ¼ TG4
ke�1B

m
ke�keFke�1 þ bC:

ð5:6Þ

Here Bm
ke�ke is called the haar wavelets matrix of fractional

order [5,13]. The use of Galerkin numerical scheme of the col-
location points to solve the model (5.1) and (5.2), leads to the

substitution of (5.4) and (5.6) into (5.1). We therefore obtain
the residual errors caused by such a technique and reading as

H1-1;-2;-3;-4; t

¼ TG1
ke�1Fke�1 �M1

TG1
ke�1B

m
ke�keFke�1;

TG2
ke�1B

m
ke�keFke�1;

TG3
ke�1B

m
ke�keFke�1; t

� �
H2-1;-2;-3;-4; t

¼ TG2
ke�1Fke�1 �M2

TG1
ke�1B

m
ke�keFke�1;

TG2
ke�1B

m
ke�keFke�1;

TG3
ke�1B

m
ke�keFke�1; t

� �
H3-1;-2;-3;-4; t

¼ TG3
ke�1Fke�1 �M3

TG1
ke�1B

m
ke�keFke�1;

TG2
ke�1B

m
ke�keFke�1;

TG3
ke�1B

m
ke�keFke�1; t

� �
H4-1;-2;-3;-4; t

¼ TG4
ke�1Fke�1 �M4

TG1
ke�1B

m
ke�keFke�1;

TG2
ke�1B

m
ke�keFke�1;

TG3
ke�1B

m
ke�keFke�1; t

� �
ð5:7Þ

with

-1 ¼ b1
1;0; � � � ; b1

1;e�1; � � � ; b1
k;0; � � � ; b1

k;e�1

-2 ¼ b2
1;0; � � � ; b2

1;e�1; � � � ; b2
k;0; � � � ; b2

k;e�1

-3 ¼ b3
1;0; � � � ; b3

1;e�1; � � � ; b3
k;0; � � � ; b3

k;e�1

-4 ¼ b4
1;0; � � � ; b4

1;e�1; � � � ; b4
k;0; � � � ; b4

k;e�1

where ba
�;� are defined as the components of TGa

���.
Now we assume that

H1 -1;-2;-3;-4; tj;a
� � ¼ 0

H2 -1;-2;-3;-4; tj;a
� � ¼ 0

H3 -1;-2;-3;-4; tj;a
� � ¼ 0

H4 -1;-2;-3;-4; tj;a
� � ¼ 0
is of the effects of Silicosis in a Mining Community, Alexandria Eng. J. (2020),
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Fig. 2 Numerical simulations, for the fractional order m ¼ 0:8,

showing the solution trajectories of the system (5.1) converging to

6 H.M. Tenkam et al.
with

tj;a ¼ 2a� 1

2e
þ j� 1; j ¼ 1; 2; � � � ; k; a ¼ 1; 2; � � � ; e

that are a ke number of collocation points. We then have

b1
1;0; � � � ; b1

1;e�1; � � � ; b1
k;0; � � � ; b1

k;e�1

b2
1;0; � � � ; b2

1;e�1; � � � ; b2
k;0; � � � ; b2

k;e�1

b3
1;0; � � � ; b3

1;e�1; � � � ; b3
k;0; � � � ; b3

k;e�1:

b4
1;0; � � � ; b4

1;e�1; � � � ; b4
k;0; � � � ; b4

k;e�1:

which are system of 4ke equations with 4ke unknowns. We
obtain these unknowns by a substitution into (5.6) that yields
the approximated solution to the silicosis model and given by

u tð Þ �

Se tð Þ
Eie tð Þ
Ie tð Þ
Ce tð Þ

0BBB@
1CCCA

The convergence of this method is given by the following
results [5,13,16,26]:

Proposition 5.1. Consider 05 � 1;S 2 H1 0; k½ Þ;Ei 2 H1 0; k½ Þ
i ¼ 1; 2; 3; I 2 H1 0; k½ Þ and C 2 H1 0; k½ Þ. If for
e 2 2r : r ¼ 0; 1; 2; � � �f g, the expression with Caputo operator
Dm

t ue tð Þ approximates Dm
t u tð Þ using the Haar wavelet scheme,

hence the quantity

kDm
t u tð Þ �Dm

t ue tð Þk2 6 n n mð Þð Þ�1
; ð5:8Þ

represents the exact upper bound caused by the use of such an

approximation. Here n mð Þ ¼ 2C 1�mð Þ 1�mð Þ

k2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�3e 1�mð Þð Þ
22m�2

þ
3�3e 2�2mð Þð Þ

22m�4

q and n 2 Rþ.
a single point believed, as shown in Fig. 4, to be the disease-free

equilibrium (or silica-free environment). Here we take M ¼ 0 and

(a) S ¼ K
l , (b) number of infected individuals with silicosis (0).
6. Numerical representations of the generalized form

Now that the error committed by using Haar wavelets scheme
in our context has been successfully analyzed and shown to be

insubstantial, we can provide numerical simulations using the
scheme presented above and the same parameter values shown
in Table 1. It appears here that the fractional model displays

some expected and accurate results. In fact in Fig. 2, plotted
in fractional case for the derivative order m ¼ 0:8, we observed
by testing different initial conditions, that the solution trajecto-

ries of the system (5.1) converge to a single point believed, as
we will show here below, to be the disease-free equilibrium
(or silica-free environment). Similar observation is done
Fig. 2 where the solution trajectories of the system (5.1) con-

verge to a another single point believed to be the endemic equi-
librium point (found in the next section). In the next section we
will fix the derivative order m at one to recover the standard

classical calculus and perform some analysis on the model in
order to compare the results (Fig. 3).

7. Analytical studies

In this section, we study the existence, uniqueness, bounded-
ness and positivity of the solutions of (2.4). First, we show

the local existence of solutions and then we confirm the global
Please cite this article in press as: H.M. Tenkam et al., Classical and fractional analy
https://doi.org/10.1016/j.aej.2020.04.044
existence. For this purpose, we rewrite the right hand side of
system (2.4) as f t; u tð Þð Þ ¼ f u tð Þð Þ, where
u tð Þ ¼ u1 tð Þ; u2 tð Þ; u3 tð Þ; u4 tð Þ; u5 tð Þ; u6 tð Þð Þ

¼ S tð Þ;E1 tð Þ;E2 tð Þ;E3 tð Þ; I tð Þ;C tð Þð Þ:
Then the Cauchy problem (2.4) and (2.5) is equivalent to

_u tð Þ ¼ f u tð Þð Þ; t 2 t0;þ1½ Þ; ui tð Þ 2 R

u0i t0ð Þ ¼ u0i ; where u
0
i P 0:

	
ð7:1Þ

For the existence and uniqueness of solution of (7.1), let us

recall the following theorem from [9].

Theorem 7.1. If f is continuous in t; uð Þ in a neighbourhood of

t0; u
0

� �
and Lipschitz continuous in u, then there exists a unique

solution of (7.1) defined in a neighbourhood of t0. In this study,
we would like to show the existence and uniqueness of a

nonnegative global solution.
7.1. Existence of a local solution

First of all, we prove the local existence in a neighbourhood of
initial time t0.
sis of the effects of Silicosis in a Mining Community, Alexandria Eng. J. (2020),
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Fig. 3 Numerical simulations, for the fractional order m ¼ 0:8,

showing the solution trajectories of the system (5.1) converging to

a single point believed, as shown in Fig. 5, to be the endemic

equilibrium, and foreseing its global stability. Here we take (a)

M ¼ 0:00001, so that I� ¼ 0:0397, (b) M ¼ 90, so that I� ’ 22.
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Theorem 7.2. For the system (7.1),

(i) there exists a local solution in neighbourhood of t0 on a
closed interval in t0;þ1½ Þ,

(ii) the solution is non negative on its domain of definition,

(iii) if the solution exists, it is unique.

Proof. (i) For any given x, let N xð Þ denote a neighbourhood of
x. Since all the parameters in Table 1 are nonnegative for all

t 2 t0;þ1½ Þ, and the components of the vector fields f are

readily polynomials, we infer that f is continuous on R6. Fur-

thermore, since u0i ; i ¼ 1; 2; � � � 6, are non-negative, it follows

from a continuity argument that u0i ; i ¼ 1; 2; � � � 6, are all non-

negative on small neighbourhood N u0i
� �

; i ¼ 1; 2; � � � 6. Define

N u0
� � ¼ N u01

� ��N u02
� ��N u03

� ��N u04
� ��N u05

� ��N u06
� �

:;

that is, f 2 C N u0ð Þ;Rð Þ. Since all spaces are finite dimensional

Banach spaces, using the Cauchy-Peano theorem, there exists
(not yet unique) a local solution of system (7.1) on a small
enough neighbourhood (interval containing t0) N t0ð Þ of t0. In
case if N t0ð Þ is not a closed interval, we can reduce it to obtain
Please cite this article in press as: H.M. Tenkam et al., Classical and fractional analys
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a closed one. For instance, if N t0ð Þ ¼ t0; tf

 �

, then we choose tf

such that t0 < tf < tf and t0; tf

 �

is a closed neighbourhood. We

can denote it similarly by N t0ð Þ. Its compactness will be used in
the proof of part iiið Þ.

(ii) Now we establish the positivity of the solution on the

small neighbourhood N t0ð Þ of t0.
Consider the first equation in (7.1) or equivalently, the first

equation in (2.4):

_u1 tð Þ ¼ K� u1 tð Þ
X3
i¼1

ci u6 tð Þð Þ � lu1 tð Þ;

P �
X3
i¼1

ci u6 tð Þð Þ � l

 !
u1 tð Þ;

which implies that

u1 tð Þ P u01 exp

Z t

0

X3
i¼1

ci u6 sð Þð Þ � l

" #
ds

 !
:

Therefore, u1 tð Þ P 0 at all times t P 0.
Similarly, from the fourth equation in (7.1), we have

_u6 tð Þ ¼ M� au6 tð Þ � u1 tð Þk
X3
i¼1

ci u6 tð Þð Þ;

P � a� u1 tð Þk
X3
i¼1

ci

 !
u6 tð Þ;

so that

u6 tð Þ P u06 exp

Z t

0

�a� u1 sð Þk
X3
i¼1

ci

" #
ds

 !
:

Hence, u6 P 0 at all times t P 0.

Next, we consider the second equation in (7.1). From the
positivity of u1 and u6, it implies that

_ui tð Þ P � ai þ lð Þui tð Þ; for i ¼ 1; 2; 3;

P u0i exp ai � lð Þt:
Thus u1; u2 and u3 are also non-negative for all t P 0.

Similarly, we can prove that u5 P 0 for time t P 0.
Therefore, the local solutions of (7.1) defined on N t0ð Þ are
nonnegative as claimed in (ii).

(iii) The uniqueness of solutions follows readily from the
fact that the components of the vector field f in the right hand

side of (7.1) are polynomials (thus Lipschitz functions on the
neighbourhood N t0ð Þ) and form the application of the Cauchy-
Lipschitz theorem. �.
7.2. Existence of global solutions

Before showing that the local solutions in Theorem 7.2 are glo-
bal solutions (i.e. defined on t0;þ1½ Þ), we establish the follow-
ing lemma about the boundedness of the solutions.

Lemma 7.3. Whenever the solution of (7.1) exists, it is bounded.

Proof. We estimate the derivative of the first unknown func-
tion u1 tð Þ using the result of Theorem 7.2 above. Notice that
is of the effects of Silicosis in a Mining Community, Alexandria Eng. J. (2020),
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the solution is non negative on the corresponding domain

(since u1; u2; u3 and u5 are positive and the remaining compo-
nents are non negative). Moreover, on N t0ð Þ, we have,

_u1 tð Þ ¼ K� bqu6 tð Þu1 tð Þ � lu1 tð Þ 6 K� lu1 tð Þ: ð7:2Þ
By the Gronwall inequality, from Eq. (7.2), we obtain

u1 tð Þ 6 K
l
þ u01 �

K
l

� 

e�lt;

and

lim sup
t!þ1

u1 tð Þ 6 K
l
:

Since

_H tð Þ ¼ K� lH tð Þ � du5 tð Þ 6 K� lH tð Þ;
and

_u6 tð Þ ¼ M� au6 tð Þ � kbqu6 tð Þu1 tð Þ 6 M� au6 tð Þ;
we have similarly (after applying the Gronwall inequality
twice):

lim sup
t!þ1

H tð Þ 6 K
l
;

and

lim sup
t!þ1

u6 tð Þ 6 M

a
:

From the above bounds, if we set

H0 ¼ H t0ð Þ ¼ u01 þ u02 þ u03 þ u04 þ u05, then the solutions of

(7.1) are bounded in the following manner:

0 < H tð Þ ¼
X5
i¼1

ui tð Þ 6 max H0;
K
l

n o
;

0 6 u6 tð Þ 6 max u06;
M
a

� �
: �

ð7:3Þ

Remark 7.4. Due to (7.3), it is straightforward that X a subset

of R6
þ satisfies

X ¼ u1; u2; u3; u4; u5ð Þ 2 R5
þ : H tð Þ ¼

X5
i¼1

ui 6 K
l

( )
� u6 2 Rþ : u6 tð Þ 6 M

a

� �
;

and is positively invariant with respect to the flow of system

(7.1).

By using the above results, we prove the following theorem.

Theorem 7.5. The silicosis model (7.1) has a bounded and
unique non negative solution on t0;þ1½ Þ, where t0 is the initial
time.

Proof. Since the solutions are bounded according to Lemma
7.3, Theorem 7.5 is a straightforward consequence of the finite
time blow-up theorem of differential equations. Indeed, by
setting

�a ¼ sup t..
.
t belongs to the defined domain of the solution

	 �
;

Please cite this article in press as: H.M. Tenkam et al., Classical and fractional analy
https://doi.org/10.1016/j.aej.2020.04.044
we notice that �a > t0 . We already proved the existence of a

unique solution locally in a neighbourhood N t0ð Þ. From the
part where the solution exists, it stays non negative and

bounded. Taking any t1 2 N t0ð Þ with t1 > t0, using the same
argument from Theorem 7.2, we can prove that the function

f is also Lipschitz in a neighbourhood N t1ð Þ of t1, so the solu-

tion can be extended on N t1ð Þ.
Now to prove the theorem at �a ¼ þ1, we use proof by

contradiction. Hence, assume that �a < þ1, and assume
further that the solution can be extended to t0; �a½ Þ but not
yet to t0; �a½ �. If �a is finite then we define u �að Þ ¼ lim u tð Þ. Due to

the continuity of _u tð Þ and the function f u tð Þð Þ, we have

_u �að Þ ¼ lim
t!�a

_u tð Þ ¼ lim
t!�a

f u tð Þð Þ ¼ f �a; u �að Þð Þ:

Thus, the solution can be extended to �a. Hence, the solution
exists up to �a and therefore, �a belongs to the defined domain
of the solution of (7.1). Note that from Lemma 7.3, in finite

time every component of the solution is bounded by a constant
positive number. Hence, at the point �a, the values of function
ui are non negative and satisfy the conditions as in the proof of

Theorem 7.2. Because of this, we can continue to apply Theo-
rem 7.2 to extend the solution over a small neighbourhood
N �að Þ. Denoting the radius of this neighbourhood by d > 0,
the solution is also defined at �aþ d=2 > �a. This contradicts

with the fact that �a is the supremum of all the t in the domain
of the solution. Hence, we have shown that �a ¼ þ1. By virtue
of Theorem 7.2, we infer that system (7.1) has a unique non

negative global solution on t0;þ1½ Þ. �
7.3. Asymptotic behaviour of solutions

In this subsection, for convenience, we work with the system
(2.4) rather than (7.1).

7.3.1. Simple solutions: equilibria

The equilibriums points of system (2.4) are solutions of

K� bqCS� lS ¼ 0;

biqCS� ai þ lð ÞEi ¼ 0; i ¼ 1; 2; 3X3
i¼1

aiEi � dþ lð ÞI ¼ 0;

M� aC� kbqCS ¼ 0:

ð7:4Þ

From the last equation of (7.4), we get

C ¼ M

aþ kbqSð Þ :

On the other hand, from the dynamics of silicosis, if there is no
silica production in the community, then it means that there

are no silicosis patients in the community and clearly M ¼ 0.
Hence, if u0 is the disease-free (silica-free) equilibrium point,
then from (7.4), we obtain

u0 ¼ K
l
; 0; 0; 0; 0; 0

� 

: ð7:5Þ

Similarly, when mining workers are in state of mining produc-
tion, the constant rate of silica dust production M is positive

and the expected equilibrium point for system (2.4) must sat-
isfy M > 0. Denoting this equilibrium by
sis of the effects of Silicosis in a Mining Community, Alexandria Eng. J. (2020),
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u� ¼ S�;Ei; I
�;C�ð Þ

and calling it the positive (or silicosis persistent) equilibrium
point, after further simplification in (7.4), we get quadratic

equation in S�:

kbql S�ð Þ2 þ bqMþ la� Kkbqð ÞS� � Ka ¼ 0; ð7:6Þ
and

E�
i ¼ biqC

�S�
aiþl ; i ¼ 1; 2; 3

I� ¼
P3

i¼1
aiE�

i

lþd ;

C� ¼ M 1
aþkbqS� :

ð7:7Þ

Thus, u� is obtained by solving for the positive root S� of (7.6)
and substitute it into (7.7) to get the remaining components.

We denote the discriminant of the quadratic Eq. (7.6) by

D ¼ bqMþ la� Kkbqð Þ2 þ 4kbqlKa > 0;

and solving (7.6) gives

S� ¼ Kkbq� bqM� lað Þ þ ffiffiffiffi
D

p

2kbql
: ð7:8Þ

Clearly, S� > 0. Thus, the two simple solutions u0 and u� of
(2.4) are determined. In the next subsections, we are going to
show that whenever any of these equilibrium points exists,

the other solutions of the system converge globally to that
point.

7.3.2. Global asymptotic stability of the disease-free equilibrium

Theorem 7.6. For M ¼ 0, the unique disease-free equilibrium u0
of (2.4) is locally asymptotically stable.
Proof. The Jacobian matrix of (2.4) evaluated at the disease-
free equilibrium u0 is

Ju0 ¼

�l 0 0 0 0 �bq K
l

0 �l� a1 0 0 0 b1q
K
l

0 0 �l� a2 0 0 b2q
K
l

0 0 0 �l� a3 0 b3q
K
l

0 a1 a2 a3 �l� d 0

0 0 0 0 0 �a� kbq K
l

0BBBBBBBBB@

1CCCCCCCCCA
:

The eigenvalues of Ju0 are �a2 � l;�l;�a1 � l;�d� l;
�l� a3;� 1

l alþ qKbkð Þ and all are negative. Thus u0 is

locally asymptotically stable. �

Theorem 7.7. For M ¼ 0, the system (2.4) has a unique disease-
free equilibrium u0 which is globally asymptotically stable.

Proof. To prove the global asymptotic stability we make use

of Lyapunov-LaSalle’s Principle [30] by defining the following
function:

L0 uð Þ ¼ L0 S;Ei; I;Cð Þ ¼ k
X3
i¼1

Ei þ kIþ C;

where u ¼ S;Ei; I;Cð Þ and L0 uð Þ > 0 for u0 – u 2 X. Hence, L0

is a positive definite on X. The Lie derivative of L0 , denoted by
Please cite this article in press as: H.M. Tenkam et al., Classical and fractional analys
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_L0, in the direction of the vector field given by the right-hand
side of (2.4) is

_L0 ¼ � kl
X3
i¼1

Ei þ k lþ dð ÞIþ aC

" #
6 0:

Thus, _L0 is a negative definite. Moreover, _L0 ¼ 0 if only if
Ei ¼ I ¼ C ¼ 0; i ¼ 1; 2; 3. Hence, the largest invariant subset

M 0 contained in E0 ¼ S;Ei; I;Cð Þ : _L0 ¼ 0
� �

is obtained by

setting Ei ¼ I ¼ C ¼ 0 in the equation _S ¼ K� bqCS� lS
and gives S tð Þ ¼ K=lþ S 0ð Þ�K=l�e�lt



. Thus, as

t ! 1;S tð Þ ! K=l, and M 0 ¼ u0f g. By LaSalle’s Invariance

Principle, we conclude that u0 is globally asymptotically
stable. �
7.3.3. Global asymptotic stability of the positive equilibrium

Theorem 7.8. For M ¼ 0, the unique positive equilibrium u� of
(2.4) is locally asymptotically stable.
Proof. The Jacobian matrix of (2.4) evaluated at the positive

equilibrium point u� is

Ju� ¼

�bqC� � l 0 0 0 0 �bqS�

b1qC
� �a1 � l 0 0 0 b1qS

�

b2qC
� 0 �a2 � l 0 0 b2qS

�

b3qC
� 0 0 �a3 � l 0 b3qS

�

0 a1 a2 a3 �d� l 0

�kbqC� 0 0 0 0 �a� kbqS�

0BBBBBBBB@

1CCCCCCCCA

It is easy to see that the eigenvalues of Ju� are:
�a1 � l < 0;�a2 � l < 0;�d� l < 0;�l� a3 < 0 and those

of the following 2� 2 matrix have negative real parts:

J2 ¼
�bqC� � l �bqS�

�kbqC� �a� kbqS�:

� 

:

Because, the trace of J2 is negative and its determinant

l aþ kbqS�ð Þ þ abqC� is positive. Thus u� is locally asymptot-
ically stable. �

Theorem 7.9. Whenever the constant production rate of silica
dust M is positive, the unique positive equilibrium point u� of sys-
tem (2.4) is globally asymptotically stable.

Proof. To establish the global asymptotic stability of u�, since
I does not appear in the remaining equations of the model, we
can decouple the dynamics of I from the system and propose

the following Volterra type Lyapunov functional:

V ¼ S� S� � ln
S

S�

� �
þ
X3
i¼1

Ei � E�
i � ln

Ei

E�
i

� �
þ 1

k
C� C� � ln

C

C�

� �
: ð7:9Þ

We note that V is defined, continuous in X and positive definite
with respect to u ¼ u� in X. Furthermore, the global minimum
V ¼ 0 occurs at the endemic equilibrium u�. We compute the
derivative of V along the trajectories of the system (2.4)
is of the effects of Silicosis in a Mining Community, Alexandria Eng. J. (2020),
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_V ¼ 1� S�
S

� �
_Sþ
X3
i¼1

1� E�
i

Ei

� �
_Ei þ 1� C�

C

� �
_C

¼ 1� S�
S

� �
K� bqCS� lSð Þ þ

X3
i¼1

1� E�
i

Ei

� �
biqCS� ai þ lð ÞEið Þ

h i
þ 1

k 1� C�
C

� �
M� aC� kbqCSð Þ

ð7:10Þ
Taking into account the endemic steady state of the model
where K ¼ bqC�S� þ lS�, biqC

�S� ¼ ai þ lð ÞE�
i ¼ 0,

M ¼ aC� þ kbqC�S�, it follows that
Fig. 4 Global stability of the disease-free equilibrium point

when M ¼ 0 and (a) S ¼ K
l , (b) number of infected individuals

with silicosis (0).
1� S�
S

� �
_S ¼ K� bqCS� lS� S�

S
Kþ bqCS� þ lS�

¼ K 1� S�
S

� �� bqCþ lð Þ S� S�ð Þ
¼ bqC�S� þ lS�ð Þ 1� S�

S

� �þ S� bqCþ lð Þ 1� S
S�

� �
¼ lS� 1� S�

S

� �þ lS� 1� S
S�

� �þ bqC�S� 1� S�
S

� �þ bqCS� 1� S
S�

� �
¼ lS� 2� S�

S
� S

S�
� �þ bqC�S� 1� S�

S

� �þ bqCS� 1� S
S�

� �
¼ lS� 2� S�

S
� S

S�
� �þX3

i¼1

biqC
�S� 1� S�

S

� �þX3
i¼1

biqCS
� 1� S

S�
� �

;

ð7:11Þ

X3
i¼1

1� E�
i

Ei

� �
_Ei ¼

X3
i¼1

biqCS� ai þ lð ÞEið Þ �
X3
i¼1

E�
i

Ei
biqCS� ai þ lð ÞEið Þ

¼
X3
i¼1

biqCS� biqC
�S� Ei

E�
i

� �
�
X3
i¼1

biqC
�S� CSE�

i

C�S�Ei
þ
X3
i¼1

biqC
�S�;

ð7:12Þ

and

1� C�
C

� �
_C ¼ aC� þ kbqC�S�ð Þ 1� C�

C

� �� aCþ kbqCSð Þ 1� C�
C

� �
¼ aC� 1� C�

C

� �� aC 1� C�
C

� �þ kbqC�S� 1� C�
C

� �� kbqCS 1� C�
C

� �
¼ aC� 2� C�

C
� C

C�
� �þ kbqC�S� 1� C�

C

� �� kbqCS 1� C�
C

� �
ð7:13Þ

Substituting (7.11)–(7.13) into (7.10) leads to

_V¼ lS� 2�S�
S
� S

S�
� �þX3

i¼1

biqC
�S� 1�S�

S

� �þX3
i¼1

biqCS
� 1� S

S�
� �

þ
X3
i¼1

biqCS�biqC
�S�ð þbiqC

�S� �biqC
�S� Ei

E�
i

�
þ
X3
i¼1

biqC
�S� 1� CSE�

i

C�S�Ei

� �
þ a

kC
� 2�C�

C
� C

C�
� �þbqC�S� 1�C�

C

� ��bqCS 1�C�
C

� �
or

_V¼ lS� 2�S�
S
� S

S�
� �þX3

i¼1

biqC
�S� 1�S�

S

� �þX3
i¼1

biqCS
� 1� S

S�
� �þX3

i¼1

biqCS 1�C�S�
CS

� �
þ
X3
i¼1

biqC
�S� 1� Ei

E�
i

� �
þ
X3
i¼1

biqC
�S� 1� CSE�

i

C�S�Ei

� �
þ a

kC
� 2�C�

C
� C

C�
� �

þ
X3
i¼1

biqC
�S� 1�C�

C

� ��X3
i¼1

biqCS 1�C�
C

� �
ð7:14Þ

Further rearrangements lead to

_V¼ lS� 2�S�
S
� S

S�
� �þ 2�C�

C
� C

C�
� �þX3

i¼1

biqC
�S� 4�S�

S
� Ei

E�
i
�C�

C
� CSE�

i

C�S�Ei

� �
þ
X3
i¼1

biqCS 1�C�S�
CS

� �þX3
i¼1

biqCS
� 1� S

S�
� ��X3

i¼1

biqCS 1�C�
C

� �
¼ lS� 2�S�

S
� S

S�
� �þ 2�C�

C
� C

C�
� �þX3

i¼1

biqC
�S� 4�S�

S
� Ei

E�
i
�C�

C
� CSE�

i

C�S�Ei

� �
þ
X3
i¼1

biqCS 1�C�S�
CS

� �þS�
S

1� S
S�

� �þ

C�
C

1� C
C�

� ��
ð7:15Þ
Please cite this article in press as: H.M. Tenkam et al., Classical and fractional analy
https://doi.org/10.1016/j.aej.2020.04.044
_V 6 lS� 2� S�
S
� S

S�
� �þ 2� C�

C
� C

C�
� �

þ
X3
i¼1

biqC
�S� 4� S�

S
� Ei

E�
i
� C�

C
� CSE�

i

C�S�Ei

� �
þ
X3
i¼1

biqCSm 3� S
S� � C

C� � C�S�
CS

� �
;

ð7:16Þ

where m ¼ min 1; S
�
S
; C

�
C

� �
Applying the arithmetic-geometric

inequality to (7.16), we obtain _V 6 0 for all u 2 X and _V ¼ 0

if only if u ¼ u�. HenceM ¼ u 2 X : _V ¼ 0
� � ¼ u�f g is the lar-

gest invariant subset. From LaSalle’s Invariance Principle [30],

u� is globally asymptotically stable. �
8. Numerical simulation

In this section, we present numerical simulations in order to
support the theoretical results proved in the previous sections.

In Fig. 4, by using different initial conditions, we observed that
the solution profiles of the system (2.4) converge to the disease-
free equilibrium (or silica-free environment). This result
sis of the effects of Silicosis in a Mining Community, Alexandria Eng. J. (2020),

https://doi.org/10.1016/j.aej.2020.04.044


Fig. 5 Global stability of the endemic equilibrium point when

(a)M ¼ 0:00001, so that I� ¼ 0:0397, (b)M ¼ 90, so that I� ’ 22.

Fig. 6 The effect of silica dust on the new cases of Silicosis.
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implies that the disease-free equilibrium is globally asymptoti-
cally stable whenever the mining area is free from silica con-
centration (i.e. M ¼ 0) as proved in Theorem 7.7. In the

presence of silica production (i.e., M > 0), a unique endemic
equilibrium exists and it is globally asymptotically stable (see
Fig. 5). To show the effect of silica dust in the environment,

we use a small value of M ¼ 0:00001 in Fig. 5 (a) and it illus-
trate the global asymptotic stability of I� ¼ 0:0397. Using the
same initial conditions with M large in Fig. 5 (b), the endemic

equilibrium, is also depicted to be globally asymptotically
stable, with I� ’ 22. The relation between the production of
silica in the mining and the number of new silicosis infected
individuals is illustrated in Fig. 6. From the same figure, we

can observe that the silicosis dynamics doesn’t change signifi-
cantly once the environment reached into silica saturated rate.
To perform all the simulations, we used the parameter values

given in Table 1.

9. Conclusion

As a starting point in modelling silicosis infection, we have
provided a simple ordinary differential equations model for
the dynamics of the silicosis disease in a mining community

is designed and subsequently analysed. The whole analysis
Please cite this article in press as: H.M. Tenkam et al., Classical and fractional analys
https://doi.org/10.1016/j.aej.2020.04.044
has been done in both fractional differentiation and classical

integer calculus. In the former case, the Haar wavelet numeri-
cal scheme has been used to solve the model and perform
graphical representations. In the classical integer calculus, it

is shown that the disease-free equilibrium point exists in the
absence of silica dust in the environment and is globally
asymptotically stable. The biological implication of this result

is that the disease doesn’t invade the community irrespective of
the initial size population in the community. Furthermore, it
has been proven that whenever workers are exposed to crys-
talline silica particles, the endemic equilibrium exists and is

globally asymptotically stable. Most of those results concur
with those found in fractional differentiation where the global
stability of the endemic equilibrium were shown graphically

via the Haar wavelet scheme.
The given model is relatively simple and it captures some

basic features of the silicosis exposure dynamics. However, if

it enters in an environment where Tuberculosis (TB) is epi-
demic, co-infection will happen and the problem becomes
too complicated. For such a case, we need to propose a

more general model which incorporates some additional
realities of the silicosis transmission dynamics. Future direc-
tions for our work include fitting the model to estimate the
parameters and proposing a non-standard finite difference

scheme that replicates the properties of the continuous
model.

Moreover, since silicosis disease can cause Tuberculosis

which is an aerosol transmitted disease, it will be very interest-
ing to couple an advection-diffusion model (e.g. atmospheric
dispersion modelling framework) for the dynamics of silica

dust with a reaction model for Tuberculosis. In this new setting
of partial differential equations, one could investigate the exis-
tence of travelling waves solutions. This more complicated
project is under investigation by the authors as a second step

on this adventure.
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