Evaluation of nitrocatechol bearing cyclic chalcones and related analogues as dual monoamine oxidase and catechol-O-methyltransferase inhibitors

AD de Beer

orcid.org/0000-0002-5755-5969

Dissertation submitted in fulfilment of the requirements for the degree Masters of Science in Pharmaceutical Chemistry at the North West University

Supervisor: Prof LJ Legoabe
Co-Supervisor: Prof A Petzer
Co-Supervisor: Prof JP Petzer

Examination: October 2019
Student number: 25094963
DECLARATION

This dissertation is submitted in fulfilment of the requirements for the degree Master of Science in Pharmaceutical Chemistry, at the North-West University, Potchefstroom campus.

I the undersigned, Andries Daniël de Beer, hereby declare that the dissertation with the title: "Evaluation of nitrocatechol bearing cyclic chalcones and related analogues as dual monoamine oxidase and catechol-O-methyltransferase inhibitors." is my own work and has not been submitted at any other University either whole or in part.

[Signature]

Andries Daniël de Beer

Signed at Potchefstroom on the 15th day of October 2019
Dear Sir/Madam,

CO-AUTHORSHIP ON RESEARCH ARTICLE

The undersigned are co-authors of the research article listed below, and hereby give permission to Mr. AD de Beer to submit this article as part of the degree *Magister Scientiae in Pharmaceutical Chemistry* at the North-West University (NWU) Potchefstroom campus:

- Evaluation of nitrocatechol bearing cyclic chalcones and related analogues as dual monoamine oxidase and catechol-O-methyltransferase inhibitors.

Yours sincerely;

Prof. L.J. Legoabe

Prof. A. Petzer

Prof. J.P. Petzer
PREFACE

ACKNOWLEDGEMENTS

I would like to present my appreciation for the following people, who helped me through this study:

• To Prof. Lesetja Legoabe; thank you for all the patience and wisdom. You have made a huge impact on me as a scientist and person. I will be forever grateful.

• To Prof. Anèl and Prof. Jacques Petzer, thank you for all your expertise and patience with all my questions.

• To my parents, Dries and Elsabè, and my whole family, thank you for your undying support and love. You are the best.

• To Arisa, Coetsee, Erick, Leroux and Safiya; you guys are my best friends and I couldn’t have finished this without you.

• To all the personnel at Pharmaceutical Chemistry, thank you for a great two years, you made it a great place to work and do research.

I would also like to thank the following institutions who helped me in this study:

• The North-West University, who gave me the opportunity to do this study, and the financial support during my time here.

• Dr. D Otto for the NMR data, and Dr. J Jordaan for the MS data from the SASOL Centre for Chemistry.

“All we have to decide is what to do with the time that is given us.”

- Gandalf the Grey, The Fellowship of the Ring
ABSTRACT

Parkinson’s disease (PD) is one of the leading causes of disability in the world. A better understanding of the aetiology of this disorder will lead to better medications, and would improve the quality of life for millions of patients worldwide. By inhibiting the degradation of dopamine in the midbrain, enzyme inhibitors of both catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO) are important drugs in the treatment of PD.

Dopamine is degraded both peripherally and centrally by COMT to yield 3-O-methyldopa, which can reduce L-dopa absorption at the brain-blood barrier. COMT inhibitors have shown a great promise in reducing akinesia in controlled clinical trials. The MAO-catalysed degradation of dopamine yields reactive oxygen species which may accelerate neuronal degeneration in PD. Thus, MAO-B inhibitors are specifically used for PD pharmacotherapy. MAO-B inhibitors are considered to be safe medication with excellent safety profiles.

By employing the hybrid theory for the design of new drugs, this study used the chalcone structure and the nitrocatechol moiety to design dual inhibitors for COMT and MAO. By using acid catalysed aldol condensation, with a reflux time of 24 – 26 hours, a series of nitrocatechol derivatives of chalcone was synthesised in good yields (71–84%). Bicyclic systems were also incorporated into the chalcone structure. An analysis of the structure-activity relationships showed an increase in MAO-B inhibition activity with the inclusion of either a methoxy or hydroxy group on the 5-position of the indanone bicyclic system. Overall the inhibition of MAO-B was moderate, with none of the compounds exhibiting IC$_{50}$ values in the nanomolar range. The most potent IC$_{50}$ for MAO-B inhibition was 7.26 µM for compound G, which bears chromanone as the bicyclic system. In contrast to their MAO inhibition potencies, the chalcones were good potency COMT inhibitors with IC$_{50}$ values in the nanomolar range. The most potent COMT inhibitor was compound C with an IC$_{50}$ value of 0.163 µM. The potency of this compounds can be attributed to the addition of the nitrocatechol moiety.

This study concludes that the indanone bicyclic system substituted with methoxy or hydroxy groups on the 5-position has potential for the design of dual inhibitors of MAO-B and COMT.

Keywords: COMT, MAO, Parkinson’s disease, chalcone, nitrocatechol.
UITREKSEL

Parkinson se siekte (PS) is een van die hoofoorsake van gestremdheid in die wêreld. ’n Beter begrip van die oorsake van hierdie siekte sal lei tot beter geneesmiddels, en sal gevolglik die kwaliteit van lewe vir miljoene pasiënte wêreldwyd verbeter. Deur beide katesjol-O-metieltransferase (KOMT) en monoamienoksidase (MAO) te inhibeer sal die afbraak van dopamien in die brein vertraag word. Hierdie benadering kan ’n effektiewe strategie vir die behandeling van PS wees.

Dopamien word beide perifeer en sentraal deur KOMT gemetaboliseer om 3-O-metieldopa te lewer. Hierdie metaboliet kompeet met levodopa (L-dopa) vir opname by die bloed-brein skans. Daar is in verskeie studies gevind dat KOMT-inhibeerders akinesie in PS verminder. Die MAO-gekataliseerde afbraak van dopamien lei tot die produksie van reaktiewe suurstof spesies wat neurodegenerasie in PS kan versnel. MAO-B-inhibeerders word dus gebruik vir die farmakoterapie van PS. MAO-B inhibeerders word as veilige geneesmiddels beskou met uitstekende veiligheidsprofile.

Deur gebruik te maak van die hibridisasieteorie vir die ontwerp van die nuwe geneesmiddels, het hierdie studie die chalkoon- en nitrokatesjolstrukture saamgevoeg om verbindings te ontwerp wat beide KOMT en MAO inhibeer. Die sinteseroete het die suurgekataliseerde aldolkondensasie reaksie behels met ’n refluxstyd van 24–26 uur. Die reeks chalkone is so gesintetiseer met goeie opbrengste (71–84%). Bisikliese chalkoonsisteme is ook in hierdie studie ingesluit. Die analyse van die struktuur-aktiwiteit-verwantskappe het gewys dat MAO-B inhibisie aktiwiteit verbeter met substitusie van ’n metoksie- of hidroksiegroep op die 5-positie van die indanoon bisikliese sisteem. Oor die algemeen was die chalkone swak MAO-B-inhibeerders en geen verbinding het nanomolaar IC$_{50}$ waardes getoon nie. Die mees potente inhibeerder was verbinding G met ’n IC$_{50}$ waarde van 7.26 µM. Hierdie verbinding het chromanoon as die bisikliese sisteem besit. In teenstelling met die MAO-inhibisie waardes, was die chalkone goeie KOMT-inhibeeredrs met nanomolaar IC$_{50}$ waardes. Die mees potente KOMT-inhibeerder was verbinding C met ’n IC$_{50}$ waarde van 0.163 µM. Hierdie goeie potensie kan toegeskryf word aan die teenwoordigheid van die nitrokatesjolgroep.

Die studie het bewys dat die indanoon bisikliese struktuur met ’n metoksie- of hidroksiegroep op die 5-positie potensiaal besit vir die verdere ontwerp van verbindings wat beide KOMT en MAO-B inhibeer.

Sleutelwoorde: KOMT, MAO, Parkinson se siekte, chalkoon, nitrokatesjol.
TABLE OF CONTENTS

PREFACE ... III

ACKNOWLEDGEMENTS .. III

ABSTRACT ... IV

UITTREKSEL .. V

LIST OF TABLES .. X

LIST OF FIGURES ... XI

LIST OF ABBREVIATIONS ... XIV

CHAPTER 1 INTRODUCTION .. 17

1.1 Parkinson’s disease .. 17

1.2 Monoamine oxidase and its inhibitors ... 18

1.3 Catechol-O-methyltransferase (COMT) and its inhibitors 18

1.4 Dual COMT/MAO inhibitors .. 19

1.5 Hypothesis ... 21

1.6 Aims and objectives ... 21

1.7 Methodology .. 21

1.7.1 Synthesis ... 21

1.7.2 Biological Assays .. 22

1.7.2.1 MAO inhibition assay ... 22

1.7.2.2 COMT inhibition assay .. 22
1.8 Ethical considerations ... 23

REFERENCES ... 23

CHAPTER 2 LITERATURE OVERVIEW .. 29

2.1 History of Parkinson’s disease ... 29

2.2 Etiology and pathophysiology of Parkinson’s disease 29

 2.2.1 Neuropathological and neurochemical characteristics in Parkinson’s
disease ... 30
 2.2.1.1 Normal anatomy ... 30
 2.2.1.2 Neuropathological and motor dysfunctions in Parkinson’s disease 30
 2.2.1.3 Lewy bodies ... 31
 2.2.2 Neurochemical characteristics .. 32
 2.2.3 Etiology of Parkinson’s disease .. 32
 2.2.3.1 Oxidative stress ... 33
 2.2.3.2 Dopamine metabolism ... 33
 2.2.3.3 Genetic mutations and mitochondrial dysfunction 35
 2.2.3.4 Neuroinflammation ... 36
 2.2.3.5 Gender and prevalence of PD in men and women 36

2.3 Pharmacological treatment of Parkinson’s disease 36

 2.3.1 Levodopa and aromatic amino acid decarboxylase inhibitors 37
 2.3.2 Dopamine agonists ... 39
 2.3.2.1 Ergot derivatives ... 39
 2.3.2.2 Non-ergot derivatives ... 40
3.4.1.1 MAO inhibition ... 89
3.4.1.2 COMT inhibition ... 92
3.4.2 Physicochemical properties and in silico brain penetration 95
3.4.2.1 Brain penetration in silico methods 97
3.5 Conclusion .. 99
3.6 Experimental Section ... 99
 3.6.1 Chemicals and Instrumentation ... 99
 3.6.2 General Synthesis ... 100
 3.6.3 Physical characterisation of the synthesised compounds 101
 3.6.4 Protocol for the determination of IC_{50} values for the inhibition of MAO 105
 3.6.5 Protocol for the determination of IC_{50} values for the inhibition of COMT 105
3.7 Bibliography ... 107

CHAPTER 4 CONCLUSIONS .. 115
4.1 Final remarks .. 115
4.2 Future dual inhibitors of COMT and MAO-B 116

REFERENCES: .. 120
ANNEXURE A ¹H AND ¹³C NMR SPECTRA .. 121
ANNEXURE B MS SPECTRA ... 137
LIST OF TABLES

Table 2-1: Clinical manifestations of multiple region neuron loss in Parkinson’s disease (Alexander, 2004). 32
Table 2-2: Current dopaminergic and non-dopaminergic treatments for Parkinson’s disease (Du & Chen, 2017; Engelbrecht et al., 2018) 37
Table 3-1: Final compound characterisation 87
Table 3-2: IC_{50} Values (µM) for the inhibition of MAO and COMT by indanone and tetralone derivatives 94
Table 3-3: IC_{50} Values (µM) for the inhibition of MAO and COMT by the open chain and α-substituted chalcones 95
Table 3-4: Selected physicochemical properties of chalcones A-T 98
LIST OF FIGURES

Figure 1-1:	The degradation of dopamine in the presence of MAO	18
Figure 1-2:	Design approach for the discovery of dual COMT/MAO inhibitors	20
Figure 1-3:	Synthetic pathway for preparation of cyclic chalcones bearing the nitrocatechol as ring B	22
Figure 2-1:	Normal anatomy of the basal ganglia and associated projections (Photos & Server)	30
Figure 2-2:	Normal and parkinsonian state movement circuits (Dauer & Przedborski, 2003; Obeso et al., 2000; Zhai et al., 2018)	31
Figure 2-3:	Biosynthesis and degradation of dopamine (Blaschko, 1939; Carlsson, 1959; Delcambre et al., 2016; Meiser et al., 2013)	34
Figure 2-4:	Structures of MPTP and MPP⁺	35
Figure 2-5:	Structures of commercially used AADC inhibitors	38
Figure 2-6:	The metabolism of L-dopa by COMT and AADC (Kaakkola, 2000; Lee et al., 2008; Meiser et al., 2013)	39
Figure 2-7:	The different ergot derived dopamine agonists (Gonzalez-Usigli, 2017; Olanow et al., 2001; Shulman, 1999)	41
Figure 2-8:	The different non-ergot derived dopamine agonists (Olanow et al., 2001; Schapira, 2002; Stowe et al., 2008)	41
Figure 2-9:	Diverse dopaminergic and non-dopaminergic treatments of Parkinson’s disease (Bourque et al., 2015; Katzung et al., 2012; Stacy & Silver, 2008; Stowe et al., 2008)	42
Figure 2-10:	The oxidation reaction catalysed by MAO (Edmondson et al., 2004)	43
Figure 2-11:	The structure of MAO-A with harmine as inhibitor (Gaweska & Fitzpatrick, 2011; Rose et al., 2018)	44
Figure 2-12:	The structure of MAO-B (Gaweska & Fitzpatrick, 2011; Rose et al., 2018)	45
Figure 2-13: The FAD co-factor in MAO (Binda et al., 2002)............................... 45
Figure 2-14: The structures of MAO inhibitors discussed in the text.......................... 47
Figure 2-15: The structure of soluble COMT with SAM, the catechol substrate and the Mg	extsuperscript{2+} ion shown (green) (Rose et al., 2018; Vidgren et al., 1994).......................... 48
Figure 2-16: Scheme showing the catalysis of a catechol neurotransmitter by SAM in COMT (Ehler et al., 2014; Vidgren et al., 1994)... 49
Figure 2-17: Examples of nitrocatechol containing COMT inhibitors.......................... 51
Figure 2-18: The enzyme catalysed reaction (Fersht, 1999).. 53
Figure 2-19: Competitive inhibition of an enzyme catalysed reaction [E = Enzyme, S = Substrate, I = Inhibitor, P = Product]. Adapted from (Wharton, 2013)........... 54
Figure 2-20: Non-competitive inhibition of an enzyme catalysed reaction [E = Enzyme, S = Substrate, I = Inhibitor, P = Product]. Adapted from (Baynes & Dominiczak, 2009).. 54
Figure 2-21: Uncompetitive inhibition of an enzyme catalysed reaction [E = Enzyme, S = Substrate, I = Inhibitor, P = Product]. Adapted from (Silverman & Holladay, 2014).. 55
Figure 2-22: Approach to the design of biological inhibitors (Kuntz, 1992; Milne et al., 1998).. 56
Figure 2-23: Structural representations of the chalcone scaffold (Gomes et al., 2017).... 57
Figure 3-1: Metabolism of L-dopa by AADC.. 81
Figure 3-2: Structures of commercially used AADC inhibitors............................... 82
Figure 3-3: MAO inhibitors as discussed in text... 83
Figure 3-4: COMT inhibitors discussed in text... 84
Figure 3-5: Structural representations of the chalcone scaffold (Gomes et al., 2017).... 85
Figure 3-6: Design approach for dual-target-directed MAO and COMT inhibitors....... 86
Figure 3-7: General synthesis route of chalcones A-T... 87
Figure 3-8: Compound A ... 88
Figure 3-9: Compound I ... 89
Figure 3-10: The formation of 4-hydroxyquinolone in the presence of MAO 90
Figure 3-11: Sigmoidal inhibitory plots for MAO-B inhibition by compounds G, L and H. ... 92
Figure 3-12: The formation of scopoletin from esculetin via COMT 92
Figure 3-13: Sigmoidal inhibitory plots for COMT inhibition by compounds C, D and E. ... 93
Figure 4-1: Nitrocatechol derivatives to be investigated in future studies 116
Figure 4-2: Structures discussed in text (Zhao et al., 2016). ... 117
Figure 4-3: Structures of 3,4-dihydro-2(1H)-quinolinone derivatives discussed in the text (Meiring et al., 2013). ... 117
Figure 4-4: Hybridisation strategy for the 3-hydroxyquinolin-4(1H)-one derivatives as dual MAO and COMT inhibitors ... 118
Figure 4-5: 2-Phenylquinolin-4(1H)-one derivatives that showed antioxidant activity in a previous study (Greeff et al., 2012). .. 119
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[...]</td>
<td>Concentration</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>α-carbon</td>
<td>Alpha-carbon</td>
</tr>
<tr>
<td>α-helical</td>
<td>Alpha-helical</td>
</tr>
<tr>
<td>α-synuclein</td>
<td>Alpha-synuclein</td>
</tr>
<tr>
<td>λ_{em}</td>
<td>Emission wavelength</td>
</tr>
<tr>
<td>λ_{ex}</td>
<td>Excitation wavelength</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>µL</td>
<td>Microliter</td>
</tr>
<tr>
<td>3-OMD</td>
<td>3-Methyldopa</td>
</tr>
<tr>
<td>^1H</td>
<td>Proton</td>
</tr>
<tr>
<td>^{13}C</td>
<td>Carbon-13</td>
</tr>
<tr>
<td>AADC</td>
<td>Amino acid decarboxylase</td>
</tr>
<tr>
<td>ADME</td>
<td>Absorption, distribution, metabolism, excretion</td>
</tr>
<tr>
<td>AlCl$_3$</td>
<td>Aluminium trichloride</td>
</tr>
<tr>
<td>ALDH</td>
<td>Aldehyde dehydrogenase</td>
</tr>
<tr>
<td>APCI</td>
<td>Atmospheric pressure chemical ionisation</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood-brain barrier</td>
</tr>
<tr>
<td>Calc.</td>
<td>Calculated</td>
</tr>
<tr>
<td>CH$_3$OH</td>
<td>Methanol</td>
</tr>
<tr>
<td>CHCl$_3$</td>
<td>Chloroform</td>
</tr>
<tr>
<td>COMT</td>
<td>Catechol-O-methyltransferase</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>D$_2$</td>
<td>Dopamine-2 receptor</td>
</tr>
<tr>
<td>D$_3$</td>
<td>Dopamine-3 receptor</td>
</tr>
<tr>
<td>DA</td>
<td>Dopamine</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl suloxide</td>
</tr>
<tr>
<td>DMSO-d$_6$</td>
<td>Deuterated dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DOPAC</td>
<td>3,4-Dihydroxyphenylacetic acid</td>
</tr>
<tr>
<td>DOPAL</td>
<td>3,4-Dihydroxyacetaldehyde</td>
</tr>
<tr>
<td>E</td>
<td>Enzyme</td>
</tr>
<tr>
<td>EI</td>
<td>Enzyme-inhibitor complex</td>
</tr>
<tr>
<td>EIS</td>
<td>Enzyme-inhibitor-substrate complex</td>
</tr>
<tr>
<td>ES</td>
<td>Enzyme-substrate complex</td>
</tr>
<tr>
<td>EP</td>
<td>Enzyme-product complex</td>
</tr>
<tr>
<td>F</td>
<td>Flavin adenine dinucleotide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric oxidation/reduction</td>
</tr>
<tr>
<td>GPe</td>
<td>Globus pallidus (external)</td>
</tr>
<tr>
<td>GPi</td>
<td>Globus pallidus (internal)</td>
</tr>
<tr>
<td>H</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>H₂O</td>
<td>Water</td>
</tr>
<tr>
<td>H-bond</td>
<td>Hydrogen bond</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrogen chloride/hydrochloric acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>High resolution mass spectroscopy</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>I</td>
<td>Inhibitor</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>Inhibitor concentration at 50% inhibition</td>
</tr>
<tr>
<td>J</td>
<td>Joules</td>
</tr>
<tr>
<td>K</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>LB(s)</td>
<td>Lewy Body(ies)</td>
</tr>
<tr>
<td>L-dopa</td>
<td>Levodopa</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet</td>
</tr>
<tr>
<td>MAO-A</td>
<td>Monoamine oxidase isoform A</td>
</tr>
<tr>
<td>MAO-B</td>
<td>Monoamine oxidase isoform B</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>Magnesium(II) ion</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>Magnesium sulphate</td>
</tr>
<tr>
<td>MH⁺</td>
<td>Protonated molecular weight</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimole</td>
</tr>
<tr>
<td>MPP⁺</td>
<td>1-Methyl-4-phenylpyridinium</td>
</tr>
<tr>
<td>MPTP</td>
<td>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectroscopy</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>N</td>
<td>Molar</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>Ammonium ion</td>
</tr>
<tr>
<td>nM</td>
<td>Nanomolar</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NWU</td>
<td>North-West University</td>
</tr>
<tr>
<td>ORAC</td>
<td>Oxygen radical absorbance capacity</td>
</tr>
<tr>
<td>P</td>
<td>Product</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s disease</td>
</tr>
<tr>
<td>PSA</td>
<td>Polar surface area</td>
</tr>
<tr>
<td>R</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>S</td>
<td>Singlet</td>
</tr>
<tr>
<td>SAH</td>
<td>S-adenosyl-L-homocysteine</td>
</tr>
<tr>
<td>SAM</td>
<td>S-adenosyl-L-methionine</td>
</tr>
<tr>
<td>SAR(s)</td>
<td>Structure activity relationship(s)</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SI</td>
<td>Selectivity index</td>
</tr>
<tr>
<td>SNc</td>
<td>Substantia nigra pars compacta</td>
</tr>
<tr>
<td>SNr</td>
<td>Substantia nigra pars reticulata</td>
</tr>
<tr>
<td>STN</td>
<td>Subthalamic nucleus</td>
</tr>
<tr>
<td>T</td>
<td>Triplet</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbituric acid-reactive substances</td>
</tr>
<tr>
<td>TH</td>
<td>Tyrosine hydroxylase</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>tPSA</td>
<td>Total/topographic polar surface area</td>
</tr>
<tr>
<td>TYR</td>
<td>Tyrosinase</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
CHAPTER 1 INTRODUCTION

1.1 Parkinson’s disease

Parkinson’s disease (PD), with motor symptoms such as resting tremor, rigidity, bradykinesia and postural instability, as well as non-motor symptoms such as depression, constipation and anxiety, is the second most common neurodegenerative disease in the age of an ever increasing geriatric population (de Lau & Breteler, 2006; Dickson, 2018; Jancovic, 2008); According to Rodrigeuz-Oros et al. (2009), PD is characterised by a loss of dopaminergic (DA) neurons in the area of the brain known as the substantia nigra pars compacta and this causes reduced dopamine activation in the motor cortex (Limongi, 2017). PD represents a frequent cause of morbidity that affects 1–2 per 1000 of the population at any time, clearly most often in the older age groups (Tsynes & Storstein., 2017).

The WHO statistical records on chronic PD cases in the aged population raise extensive concerns amongst researchers in the pharmaceutical and medical industries. Although the exact cause of PD is unknown, evidence suggests that increased production of chemical species such as hydrogen peroxide contribute to oxidative stress, which results in neuronal degradation. In the human brain, hydrogen peroxide is the by-product of metabolism of amines such as dopamine by monoamine oxidase B (MAO-B) (Wang et al., 2009).

Several strategies exist for the symptomatic treatment of PD. One treatment strategy is to conserve dopamine by inhibiting the enzymes responsible for its catabolism (Yacoubian & Standaert, 2009). MAO-A and MAO-B are flavin adenine dinucleotide (FAD)-containing enzymes that are attached to the outer membrane of the mitochondrion (Youdim & Bakhle, 2006). These enzymes catalyse the α-carbon oxidation of a variety of neurotransmitters such as dopamine (Inoue et al., 1999). Clinically, inhibitors of MAO-B are considered to be a useful treatment strategy in PD, since the main pathological characteristic is a dopamine deficiency in the basal ganglia. In the basal ganglia MAO-B is the principle enzyme responsible for the catabolism of dopamine (Youdim et al., 2006).

Another drug class involved in the treatment of PD is catechol-O-methyltransferase (COMT) inhibitors. COMT is a magnesium-dependent enzyme which plays an important role in the peripheral catabolism of endogenous catecholamines such as dopamine (Ehler et al., 2014). Levodopa (L-dopa), the metabolic precursor of dopamine, is the drug of choice in PD treatment (Lees, 2005). Due to extensive peripheral enzymatic metabolism by COMT and other enzymes,
only a small portion of L-dopa reaches the brain (Kiss & Soares-da-Silva, 2014). Thus, the dual inhibition of MAO and COMT could not only conserve endogenous dopamine levels, but may also protect L-dopa against undesirable metabolism, thus improving its availability to the brain.

1.2 Monoamine oxidase and its inhibitors

The enzyme, MAO, is responsible for the oxidative deamination of many catecholamine compounds and is present in the central nervous system and the peripheral tissues (Johnston, 1968; Westlund et al., 1988). During the MAO catalytic cycle, hydrogen peroxide and 3,4-dihydroxyphenylacetaldehyde is produced as products, as shown by degradation of dopamine in the presence of MAO (Depicted in figure 1-1).

![Figure 1-1: The degradation of dopamine in the presence of MAO.]

Since hydrogen peroxide may be converted to reactive oxygen species (ROS), which are known to cause oxidative stress (Berman & Hastings, 1999), it may be concluded that with inhibition of MAO, less ROS will be produced and therefore oxidative stress will decrease.

MAO occurs in two isoforms, MAO-A and MAO-B, which differ in their action, distribution and substrate specificity. MAO-A is mostly present in the gut lining whereas MAO-B is more prevalent in the basal ganglia (Collins et al., 1970; Johnston, 1968). MAO-A is inhibited by clorgyline and its preferred substrates are noradrenaline and serotonin, while MAO-B is unaffected by clorgyline (Johnston, 1968). Both isoforms metabolise dopamine and tyramine equally (Youdim et al., 2005).

Clinically, MAO isoform inhibitors are employed for different indications. MAO-A inhibitors are used for treatment of depressive disorder and as anxiolytic agents, whereas inhibition of MAO-B inhibitors are used for the treatment of PD.

1.3 Catechol-O-methyltransferase (COMT) and its inhibitors

COMT is the enzyme that acts as the catalyst for the transfer of an activated methyl group to a catechol neurotransmitter substrate and thus renders it inactive (Vidgren et al., 1994). Clinically, COMT inhibitors are usually used in conjunction with L-dopa therapy to limit the peripheral metabolism of L-dopa to 3-methyldopa (3-OMD) (Rivera-Calimlim et al., 1977). By inhibiting the
peripheral metabolism of L-dopa, an increase in the amount of L-dopa that reaches the brain is obtained.

Furthermore, the reduction of the amount of 3-methyldopa (3-OMD) produced in the peripheral system will lead to increased penetration of L-dopa into the central nervous system (CNS) as 3-OMD competes directly with L-dopa for active transport across the blood-brain barrier (BBB) (Tohgi et al., 1991). The general structures of clinically used COMT inhibitors (entacapone and tolcapone) bear acidic nitro catechol groups. Their mechanism of action is described as reversible yet tight binding, dose dependent inhibition, with tolcapone being more potent (Lotta et al., 1995).

1.4 Dual COMT/MAO inhibitors

According to Beauchine et al. (2009), the degradation of dopamine in the brain is controlled by MAO and COMT, which suggests that inhibition of both enzymes will lead to elevated intrinsic dopamine concentrations and the reduction of the symptoms of PD. To achieve this, a combination of MAO and COMT inhibitors could be used or a single dual acting compound could be used to exert the same effect. However, the use of dual acting drugs can be favourable compared to the two distinct drugs since the single entity will have more predictable pharmacokinetic and pharmacodynamics properties (Wermuth, 2011).

Hybridisation is one of the approaches used in attempts to discover dual acting drugs, in which two different pharmacophores are incorporated into a new single entity which possess both initial pharmacological activities. This approach will only be appropriate when the two targeted enzymes or receptors are involved in the same disease or disorder (Wermuth, 2011), such as PD therapy, where both COMT and MAO affect the levels of dopamine, particularly with L-dopa therapy.

As depicted in figure 1-2, cyclic chalcone derivatives (1-3) have shown nanomolar activity as MAO-B inhibitors, while tolcapone and entacapone both bear the nitrocatechol moiety and are clinically used as COMT inhibitors.
Based on the promising properties of chalcones as inhibitors of MAO (Chimenti et al., 2009; Legoabe et al., 2014; Nel et al., 2016b) and nitrocatechol compounds as COMT inhibitors (Engelbrecht et al., 2018; Learmonth et al., 2012), we envisage to design the dual COMT/MAO inhibitors bearing both pharmacophores by employing the hybridisation approach.

Even though both centrally and peripherally acting COMT inhibitors are of value, it is a crucial that dual-acting COMT/MAO inhibitors are able to penetrate the BBB to reach the substantia nigra where it could exert MAO-B inhibitory action and thus contribute towards the conservation of dopamine. Therefore it’s essential to take into account the physicochemical properties essential for crossing BBB when designing dual-acting COMT/MAO inhibitors.

In the current study, the nitrocatechol pharmacophore will be retained for all compounds that will be designed since it is essential for COMT inhibition activity. The cyclic chalcone moiety will,
however, be targeted for structural modification, particularly to determine structure-activity relationships (SARs), and to modulate physicochemical properties such as log P and polar surface area (PSA) (Singh et al., 2017), which are determinants for BBB penetration.

1.5 Hypothesis

COMT is responsible for the peripheral metabolism of L-dopa, whereas more than 99% of the bioavailable dose is metabolised before it can reach the brain (Kaakkola, 2000). Furthermore, the metabolism of dopamine in the CNS by MAO further decreases the efficacy of L-dopa (Lees, 2005). Therefore it is hypothesised that, the dual inhibition of COMT and MAO will conserve endogenous dopamine levels in addition to protecting L-dopa against undesirable metabolism and thus improving its availability to the brain.

It is further envisaged that, given the known potential of cyclic chalcones as MAO-inhibitors and nitrocatechol compounds as COMT inhibitors, appropriate hybridisation of these pharmacophores could lead to dual COMT/MAO inhibition. With the presence of the nitrocatechol moiety and appropriate substitution of the cyclic chalcones, dual COMT/MAO inhibition may be obtained.

1.6 Aims and objectives

The aim of the current study is to design dual COMT/MAO inhibitors by hybridisation of the cyclic chalcone and nitrocatechol pharmacophores.

In order to achieve the above mentioned aim, the following objectives have been set:

(i) To synthesise the tetralone- and indanone-based cyclic chalcones bearing nitrocatechol as ring B (series 1).

(ii) To evaluate the synthesised compounds as inhibitors of MAO-A, MAO-B and COMT by measuring IC$_{50}$ values.

(iii) To determine SARs for the inhibition of COMT and MAO by the synthesised compounds.

1.7 Methodology

1.7.1 Synthesis

Compounds in this series are cyclic chalcones bearing the nitrocatechol moiety as ring B. Commercially available 5-nitrovanillin dissolved in chloroform will be reacted with AlCl$_3$ in the presence of pyridine to yield 3,4-dihydroxy-5-nitrobenzaldehyde according to the method described in literature (Walz & Sundberg, 2000). The catechol thus obtained, 3,4-dihydroxy-5-
Nitrobenzaldehyde, will undergo aldol condensation (Amakali, 2016; Nel et al., 2016a; Nel et al., 2016b) with an appropriate cyclic ketones to give the target compounds.

Figure 1-3: Synthetic pathway for preparation of cyclic chalcones bearing the nitrocatechol as ring B.

1.7.2 Biological Assays

1.7.2.1 MAO inhibition assay

Fluorescence spectrophotometry will be used to determine the IC₅₀ values for the inhibition of the recombinant human MAOs by the synthesised inhibitors. This protocol uses kynuramine as substrate. Kynuramine is oxidised by MAO-A and MAO-B to ultimately yield 4-hydroxyquinoline, a metabolite which fluoresces (λₑₓ = 310 nm; λₑₘ = 400 nm) in alkaline media (Strydom et al., 2010). From the MAO activity measurements in the presence of the test inhibitors, sigmoidal dose-response curves will be constructed and the inhibition potencies, the corresponding IC₅₀ values, will be calculated. Sigmoidal dose–response curves will be constructed using the Prism 5.0 software package (GraphPad), and the IC₅₀ values will be determined in triplicate and expressed as mean ± standard deviation (SD).

1.7.2.2 COMT inhibition assay

To determine whether the synthesised compounds are inhibitors of COMT, the method described in literature (Borchardt, 1974) will be used. This protocol uses esculetin (6,7-dihydroxycoumarin) as substrate for COMT. After the test inhibitor is incubated with esculetin and COMT, fluorescence spectrophotometry will be used to quantify the enzymatic product, scopoletin. Sigmoidal dose-response curves of scopoletin concentration versus the logarithm of inhibitor concentration (Log[I]) will be constructed using the Prism 5.0 software package, and the IC₅₀ values will be determined in triplicate and expressed as mean ± SD. As enzyme source, the soluble fraction obtained from homogenates of rat liver tissue will be used.
1.8 Ethical considerations

Rat liver tissue will be used as an enzyme source for COMT. The rat livers will be obtained from other ongoing studies. A category 0 application to obtain and use rat liver tissue has been submitted to AnimCare, and has been approved (NWU-000564-19-S5) To process the rat livers, a previously reported literature method will be applied (Hirano et al., 2005; Zhu et al., 1994) and the soluble fraction of COMT will be used for the evaluation of the IC$_{50}$ values of the various synthesised test compounds. Approximately 4 rat livers will be needed for this study. The recombinant mitochondrial-bound MAO enzymes, expressed in insect cells, will be purchased from a commercial supplier. For the enzyme work, HREC has been notified and approval has been obtained.

REFERENCES

Amakali, K.T. 2016. Synthesis and evaluation of cyclic chalcones as monoamine oxidase inhibitors. North-West University (South Africa), Potchefstroom Campus. (Dissertation – MSc).

CHAPTER 2 LITERATURE OVERVIEW

2.1 History of Parkinson's disease

In 1817, when James Parkinson wrote "An Essay on the Shaking Palsy", he started more than a 200 year study into the illness that would bear his name. He gave descriptions of the classic motor and non-motor symptoms we know today as the clinical signs of Parkinson’s disease (PD). He also had the hypothesis that the origin of the tremor is somewhere in the midbrain, as the dopaminergic pathways was unknown at that time (Parkinson, 2002). It was not until 1895 that the role of the substantia nigra pars compacta was implicated in the possible pathogenesis of the then newly named PD. Brissaud then dissected the brains of nine “palsy” patients and noticed that the midbrain was less pigmented than the healthy control brains that he had as reference (Brissaud, 1895).

After the discovery of the substantia nigra pars compacta as the origin of the illness, in 1957 an experiment with levodopa (L-dopa), the precursor to dopamine (DA), reversed the parkinsonian state induced by reserpine in rabbits. The precursor to serotonin, L-5-hydroxytryptophan, did not show the same effect, and thus L-dopa became the gold standard in the pharmacological treatment of PD (Carlsson et al., 1957).

In 1997 Polymeropoulos and co-workers published a paper regarding a genetic mutation in the proteins needed to control dopamine synthesis and metabolism, thus accelerating the loss of neurons. Thus a genetic link was established and alpha-synuclein was seen as a crucial missing link in the pathogenesis of PD (Polymeropoulos et al., 1997; Spillantini et al., 1997).

2.2 Etiology and pathophysiology of Parkinson's disease

PD is described as a multisystem, hypokinetic neurodegenerative disorder with the progressive loss of dopamine neurons in the midbrain (Brady et al., 2005). The loss of these dopaminergic neurons gives rise to the known clinical motor symptoms that are used to diagnose PD: resting tremor, stiffness, decreased movement and a loss of balance (Vijayakumar & Jankovic, 2016).

For a definitive diagnosis, post-mortem examination must show the presence of: intraneuronal inclusions – also known as Lewy bodies – and the loss of dopaminergic neurons (Alexander, 2004). Non-motor symptoms such as depression, constipation, psychosis and dementia also aid in the diagnosis (Gelb et al., 1999; Gonzalez-Usigli, 2017). To understand the occurrence of these symptoms, the abnormal physiology and anatomy in patients with PD must be evaluated.
2.2.1 Neuropathological and neurochemical characteristics in Parkinson's disease

2.2.1.1 Normal anatomy

The basal ganglia and the dopaminergic neurons in the substantia nigra are crucial to the normal functioning of the motor and cognitive areas of the brain (Brown & Marsden, 1998). The motor circuit consists of two sets of pathways: direct and indirect. A direct connection between the putamen and internal segment of the globus pallidus (GPI) and substantia nigra pars reticulata (SNr) constitutes the direct pathway. An indirect pathway from the putamen to the subthalamic nucleus (STN) via the external segment of the globus pallidus (GPe), and then back to the GPe, GPI, and SNr constitutes the indirect pathway. The GPI and SNr project to the thalamus and brainstem (Figure 2-1) (Alexander & Crutcher, 1990; Hoover & Strick, 1993).

2.2.1.2 Neuropathological and motor dysfunctions in Parkinson's disease

The striatum, which consists of both the putamen and caudate nucleus, is the major input nucleus of the basal ganglia. These projections also spread to other regions of the brain and can account for the non-motor symptoms of PD (Table 2.1) (Calabresi et al., 2013). The normal basal ganglia function is activated by an input from the cortex, which stimulates the substantia nigra pars compacta (SNC) to excite the direct pathway to the subthalamic nucleus (STN) and the globus pallidus pars externa (GPE). This excitatory pathway creates impulses that move through the thalamus to the cortex, which in turns redirects impulses to the spinal cord. The spinal cords then direct the impulses to the skeletal muscle for a smooth and controlled movement (Dauer &
Przedborski, 2003; DeLong, 1990; Obeso et al., 2000). This is shown in Figure 2.2 by the red arrows.

In the so-called parkinsonian state, the input from the cortex has a reduced effect on the dopamine secretion due to the destruction of dopaminergic neurons from the SNc. The lack of dopamine and inhibition of the indirect pathway reduces the impulse and causes a top-down inhibition of the entire pathway. This inhibitory effect has slow, uncontrolled movement as a result (Calabresi et al., 2013; Dauer & Przedborski, 2003; Dickson, 2018; Zhai et al., 2018). This shown in Figure 2.2 by the blue arrows.

![Diagram of normal and parkinsonian state movement circuits](attachment:figure2_2.png)

Figure 2-2: Normal and parkinsonian state movement circuits (Dauer & Przedborski, 2003; Obeso et al., 2000; Zhai et al., 2018).

2.2.1.3 Lewy bodies

Accompanying the loss of the dopaminergic neurons, there is also cellular inclusions called Lewy bodies (LBs). LBs are α-synuclein filled aggregates that form insoluble fibrils that infiltrate the neurons (Gonzalez-Usigli, 2017; Spillantini et al., 1997). In PD, the majority of LBs are found in
the SNc and surrounding tissues. The formation and effects of LBs will be discussed later in this chapter (Dickson, 2018; Jellinger, 1987; Rocha et al., 2018).

2.2.2 Neurochemical characteristics

Neurodegeneration is not only exclusive to the dopaminergic neurons, but several other types of neurons are also affected. This can account for the presence of the plethora of non-motor symptoms that can be witnessed months or years before the diagnosis of PD is made. Several studies have shown that the loss of multiple neuromodulators in the midbrain, spinal cord, thalamus and medulla oblongata are the basis of the non-motor symptoms (Gibb & Lees, 1991; Moore, 2003; Paulus & Jellinger, 1991). Table 2.1 list the neuromodulators and their effects in the clinical manifestations in PD.

<table>
<thead>
<tr>
<th>REGION</th>
<th>NEUROMODULATORS</th>
<th>MANIFESTATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDBRAIN</td>
<td>Dopamine</td>
<td>Bradykinesia, rigidity, tremors (McRitchie et al., 1997)</td>
</tr>
<tr>
<td>PONS</td>
<td>Noradrenaline</td>
<td>Hypokinesia (Paulus & Jellinger, 1991), depression (Kish et al., 1984)</td>
</tr>
<tr>
<td></td>
<td>Serotonin</td>
<td>Depression (Paulus & Jellinger, 1991), insomnia (Olson et al., 2000; Onofrj et al., 2002)</td>
</tr>
<tr>
<td></td>
<td>Acetylcholine</td>
<td>Dysphagia and oesophageal dysmotility (Edwards et al., 1992), insomnia (Olson et al., 2000), dementia (Berridge & Waterhouse, 2003)</td>
</tr>
<tr>
<td>THALAMUS</td>
<td>Glutamate</td>
<td>Memory loss (McDonald, 1996), learning disability (Cardinal et al., 2002)</td>
</tr>
<tr>
<td>AMYGDALA</td>
<td>Glutamate</td>
<td>Visual hallucinations (Masson et al., 1993), hyposmia (inability to smell) (Harding et al., 2002; Ponsen et al., 2004)</td>
</tr>
</tbody>
</table>

2.2.3 Etiology of Parkinson's disease

There are several theories and hypotheses regarding the etiology of PD that include oxidative stress, environmental factors, genetic factors (including mitochondrial dysfunction and parkin mutations), neuroinflammation and gender difference (Alexander, 2004; Bourque et al., 2015; Brady et al., 2005; Dauer & Przedborski, 2003). These will be discussed below.
2.2.3.1 Oxidative stress

Oxidative stress is defined as “the imbalance between oxidants produced, and anti-oxidants available, and this may lead to macromolecular damage” (Jones, 2006; Sies, 2015).

The brain has a unique vulnerability to oxidative stress due the mismatching of weight of the brain and the total percentage of oxygen used. Even though the brain is only 2% of the total body weight, it uses about 20% of total oxygen due to high energy demand. The bulk of oxygen is used for ATP generation, the invoking of action potentials, neurotransmitter synthesis and enzymatic reactions (Frank, 2006; Patel, 2016). Oxidative stress in the brain is mostly derived from dopamine metabolism and mitochondrial dysfunction.

2.2.3.2 Dopamine metabolism

Dopamine metabolism through MAO and the intermediates that are produced may itself be a source of oxidative stress (Figure 2.3). Several ROS are produced in the complex metabolism of dopamine and these species may have a further degenerative effect on the neurons (Segura-Aguilar et al., 2014).

DA synthesis is mainly controlled by two enzymes, tyrosinase (TYR) and aromatic amino acid decarboxylase (AADC), to produce dopamine from L-tyrosine and L-dopa, respectively (Blaschko, 1939). DA degradation is controlled by MAO and COMT. MAO catalysis produces hydrogen peroxide and 3,4-dihydroxyacetaldehyde (DOPAL), which may damage neuronal cells under specific conditions (Carlsson et al., 1957; Meiser, 2013; Tohgi et al., 1991).

DA degradation has been shown to alter many processes in the brain. These include altered mitochondrial respiration, a change in the permeability of mitochondrial organelles, deactivation of the DA transporter and inhibition of tyrosine hydroxylase (Berman & Hastings, 1999; Blesa et al., 2015; Kuhn et al., 1999; Whitehead et al., 2001).

Dopaquinone can also be synthesised either spontaneously or in the presence of transition metals, and this compound can react with cysteine residues of certain proteins that are needed for normal cellular function (Spencer et al., 1998). Dopaquinone is an electron-poor and highly reactive metabolite of DA. Dopaquinone reacts with iron to produce 6-hydroxydopamine, a potent neurotoxin (Napolitano et al., 2011; Napolitano et al., 1999). The effect of these quinones on proteins can be seen in the misfolding of α-synuclein into the known LB’s. The misfolding of these proteins gives rise to reduced inhibition of dopamine synthesis and a subsequent increase in oxidative species (Giasson et al., 2000). Aggregates of this protein cause lesions and inclusions.
that can lead to an increase in cell membrane pores and cell leakages, and ultimately will lead to cell death (Winklhofer & Haass, 2010).

Figure 2-3: Biosynthesis and degradation of dopamine (Blaschko, 1939; Carlsson, 1959; Delcambre et al., 2016; Meiser et al., 2013).
2.2.3.3 Genetic mutations and mitochondrial dysfunction

The mitochondria use oxidative phosphorylation to provide energy in the form of adenosine triphosphate (ATP) to the cell. Oxidative phosphorylation synthesises ATP through the transport of electrons through several intracellular complexes (Saraste, 1999). The metabolism of nutrients to ultimately yield ATP is a significant source of superoxide and hydrogen peroxide in the neuronal cells (Hall et al., 2012). In the oxidative phosphorylation pathway, complex 1 of the electron transport chain is the point where electrons enter the chain and where most of the ROS are produced (Brandt, 2006). Complex 1 is where nicotinamide adenine dinucleotide (NADH) provides electrons to the rest of the chain. Complex 1 is thus a potent source of ROS production (Halliwell, 1992; Parker Jr et al., 1989).

In 1980 several patients were admitted after the intravenous admission of a complex 1 inhibitor namely MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), an impurity from a batch of illicit drugs (Sian et al., 1999). These patients presented with the characteristic parkinsonian symptoms. The findings of autopsy showed the characteristic degeneration of the substantia nigra pars compacta, and the consequent inhibition of the complex 1 of the oxidative phosphorylation chain. This inhibition causes a decrease in ATP production while ROS production is increased (Andreyev et al., 2005; Brandt, 2006; Chan et al., 1991; Davis et al., 1979; Murphy, 2009; Starkov, 2008).

![Figure 2-4: Structures of MPTP and MPP⁺.](image)

However, the inhibition of complex 1 is mainly due to the metabolite MPP⁺ (1-methyl-4-phenylpyridinium) (Figure 2-4) that is produced by oxidation of MPTP by MAO-B. MPP⁺ is taken up into the mitochondria where it reduces ATP formation, which results in the loss in ATP energy dependant processes such as transport and repair are impaired. The loss of these processes has degenerative effect on neuronal cells (Langston et al., 1984; Markey et al., 1984).

This observation led to the identification of certain genetic markers that code for complex 1 deficiency and that can lead to sporadic PD (Winklhofer & Haass, 2010). The different genes that are affected are numerous and complex, and many sources link the defects to changes in
mitochondrial DNA (due to less efficient DNA repair mechanisms and the absence of histones to protect the DNA during replication) (DiMauro & Davidzon, 2005; Reeve et al., 2008; Trifunovic & Larsson, 2008).

2.2.3.4 Neuroinflammation

Oxidative stress, reduced repair and anti-oxidant capabilities, certain pro-inflammatory cytokines and macrophages all can produce innate and acute inflammatory responses in the microglial cells of certain brain regions (Frank-Cannon et al., 2009). These responses can increase the permeability of the blood-brain-barrier (BBB) and can cause further oxidative damage due to the infiltration of oxidative species into the brain (McGuire et al., 2001).

2.2.3.5 Gender and prevalence of PD in men and women

The incidence of PD is more in men than women (Baldereschi et al., 2003; Bourque et al., 2018). Men are 50% more susceptible to PD than women (Marras et al., 2018). Early onset of disease and severity thereof is also less prominent in women (Haaxma et al., 2007). This suggests that a higher degree of circulating estrogen level can act as protective agent to postpone the onset time of PD (Frentzel et al., 2017; Yadav et al., 2012). 17β-Estradiol, more prevalent in women, has a multitude of effects including the inhibition of apoptosis, maintaining the integrity of dopaminergic neurons and the suppression of protein aggregates (Arnold et al., 2012; Bourque et al., 2015; Brewer et al., 2009).

2.3 Pharmacological treatment of Parkinson’s disease

There are many pharmacological treatments for PD, and they may be classified as dopaminergic and non-dopaminergic treatments (Table 2–2).

Although there are many drugs that may be used for the treatment of PD, the most effective remains the dopaminergic options, because of either their ability to increase DA concentrations or to reduce DA metabolism (LeWitt, 2015).
Table 2-2: Current dopaminergic and non-dopaminergic treatments for Parkinson’s disease (Du & Chen, 2017; Engelbrecht et al., 2018)

<table>
<thead>
<tr>
<th>DOPAMINERGIC TREATMENTS</th>
<th>NON-DOPAMINERGIC TREATMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Dopa (Raab & Gigee, 1951) and AADC-inhibitors (Bartholini & Pletscher, 1975)</td>
<td>Adenosine antagonists (Bara-Jimenez et al., 2003)</td>
</tr>
<tr>
<td>DA agonists (Shulman, 1999)</td>
<td>Anticholinergic drugs (Katzenschlager et al., 2002)</td>
</tr>
<tr>
<td>MAO-inhibitors (Fagervall & Ross, 1986)</td>
<td>Anti-oxidant therapy (Ebadi et al., 1996)</td>
</tr>
<tr>
<td>COMT-inhibitors (Nissinen et al., 1988)</td>
<td>Gonadal hormones and derivatives (Bourque et al., 2015)</td>
</tr>
</tbody>
</table>

2.3.1 Levodopa and aromatic amino acid decarboxylase inhibitors

In 1913 when Marcus Guggenheim isolated pure L-dopa, both he and Casimir Frank had thought they had found the parent precursor molecule to adrenaline, but later (in 1938) when Peter Holtz found it was converted to DA, L-dopa was correctly characterised and a new age in catechol research began (Guggenheim, 1913; Holtz et al., 1938; Hornykiewicz, 2002).

The rationale behind L-dopa therapy is that L-dopa is converted to DA after it has passed the BBB. The conversion to DA is catalysed by amino acid decarboxylase (AADC). DA metabolism continues via metabolism by MAO and COMT (Meiser et al., 2013). Furthermore, there are studies that show that, when L-dopa is metabolised peripherally via AADC, the metabolite 3-O-methyldopa can compete with L-dopa for active transport through the BBB [Figure 2.6] (Tohgi et al., 1991).

The use of a peripheral AADC inhibitor such as carbidopa or benserazide (Figure 2.5) can lower peripheral metabolism of DA and thus result in higher circulating concentrations of L-dopa available for penetration into the brain to be converted into DA. This is useful since the brain penetration of DA is very low compared to the penetration by L-dopa (Aminoff, 2004). This effect coincides with the “wearing off” effect in L-dopa therapy. “Wearing-off” is a condition of lowered efficacy due to reduced bioavailability of L-dopa to the brain, compared to the original dosage (Lee et al., 2008; Nord et al., 2010; Standaert & Roberson, 2015). In addition to L-dopa induced
dyskinesia, “wearing-off” is a major limitation of L-dopa therapy. AADC inhibitor therapy can dramatically reduce these limitations (Mucklow, 2000).

The use of AADC inhibitors also lessens the peripheral side effects of L-dopa therapy, (gastrointestinal irritation, anorexia and orthostatic hypotension) (Aminoff, 2004). Patients are rarely treated by only L-dopa, since the combination of L-dopa and AADC inhibitors is highly effective in raising DA levels in the brain. However, adverse neurological effects are also very common if spikes in DA concentrations occur. Hence, controlled dosage increments must be used to achieve a level appropriate for each individual patient (Nord et al., 2017).

Although DA concentrations are increased in the brain through the use of L-dopa and a AADC inhibitor, the use of MAO and COMT inhibitors can further decrease the breakdown of striatal dopamine and improve L-dopa therapy (Kaakkola, 2000; Youdim & Bakhle, 2006).

Figure 2-5: Structures of commercially used AADC inhibitors.
2.3.2 Dopamine agonists

At present, DA agonists, instead of L-dopa are considered as first-line treatment in PD, although many uncertainties concerning long-term effects of these drugs exist (Stowe et al., 2008). These uncertainties and prescribing complexities (titration of dosage up or down, as well as distressing adverse effects) make it difficult to assess the success of DA agonist treatment (Shulman, 1999). The rationale for the use of DA agonists is based on direct stimulation of DA receptors to mimic the effects of endogenous DA. Normally in PD, where reduced DA secretion in the synaptic cleft occurs, DA agonists can have a very beneficial effect if used properly (Katzung et al., 2012).

2.3.2.1 Ergot derivatives

Drugs such as bromocriptine, cabergoline and pergolide (Figure 2-7) are examples of DA agonists (Olanow et al., 2001). The use of these derivatives is, however, limited due to the vasospasm, fibrotic degeneration of cardiac valves and cardiac arrhythmias (Davie, 2008; Katzung et al., 2012; Mucklow, 2000). Certain effects can be exacerbated with the use of L-dopa in conjunction with these drugs, mainly because L-dopa dosage should be reduced. Many prescribers overlook this dosage reduction which results in increased dyskinesia that can cripple most patients. The use of
Ergot derivatives should be associated with an average of 20 – 30% reduction in L-dopa dosage (Brooks, 2000).

Ergot derivatives can also have a beneficial impact on brain chemistry since they are not oxidised by normal dopaminergic pathways and does not contribute to ROS formation. Ergot derivatives may also possess neuroprotective effects by suppressing dopamine release via negative feedback channels to prevent further neuronal damage (Rascol et al., 1998; Schapira, 2002).

2.3.2.2 Non-ergot derivatives

Pramipexole, ropinirole and rotigotine (Figure 2-8) are the non-ergot derivatives currently used as DA agonists. The removal of the ergot structure has a beneficial effect on the side effect profile of DA agonists. Non-ergot derivatives allow for a reduction in L-dopa dosage and combined with peroxide scavenging properties, these drugs may have both symptomatic effects and act as neuroprotective agents (Gottwald et al., 1997).

Most of these derivatives have an affinity for the dopamine 3 receptor (D3), which means they may have certain neurorestorative properties (Pich & Collo, 2015). Evidence exists that chronic L-dopa treatment may lead to an over-expression of these D3 receptors, which can explain certain L-dopa side effects (Chondrogiorgi et al., 2014; Visanji et al., 2009). Furthermore, studies showed that the use of DA agonists may lead to a reduction in dyskinesia and an enhanced quality of life due to better "wearing-off" tolerability (Group, 2000; Holloway et al., 2004; Pham & Nogid, 2008; Rascol et al., 2000).
2.3.3 Diverse dopaminergic and non-dopaminergic treatments

Amantadine is used as a dopamine reuptake inhibitor (Takahasi et al., 1996), and was first used as an anti-viral drug for influenza (Transm, 1994). Many studies suggest the efficacy of amantadine may be reduced due to the occurrence of tolerance to the effects. The combination with L-dopa can reduce the appearance of tolerance to amantadine (Zeldowicz & Huberman, 1973).

Apomorphine is a weak D₂ receptor agonist and is almost exclusively used as a short-term rescue for “off-period” dyskinesia (Ul Haq et al., 2007). It is used either as a subcutaneous injection or in
a pump system, and leads to a motor function response indistinguishable from L-dopa (Corsini et al., 1979). Side effects like postural hypotension, oedema and priapism have caused a decline in the use of apomorphine as a monotherapy (Lewitt & Oertel, 1999; Porst & Buvat, 2008; Stacy & Silver, 2008).

The repurposing of gonadal hormones and derivatives are of new interest in PD therapy where the use of 17β-estradiol in men has shown certain neuroprotective effects. 17β-Estradiol in combination with spironolactone has shown a reduction in motor and non-motor symptoms (Bourque et al., 2018). In contrast, testosterone has not shown the same effects as the estrogens (Ekue et al., 2002).

![Chemical structures of Apomorphine, Amantadine, and 17β-estradiol.](image)

Figure 2-9: Diverse dopaminergic and non-dopaminergic treatments of Parkinson’s disease (Bourque et al., 2015; Katzung et al., 2012; Stacy & Silver, 2008; Stowe et al., 2008).

2.3.4 Monoamine oxidase (MAO) and inhibitors

2.3.4.1 Biological importance of MAO

MAO (amine:oxygen oxidoreductase (deaminating) EC 1.4.3.4) is an enzyme that is mostly found on the outer membrane of the mitochondria, and catalyses the deamination of several neurotransmitters, including noradrenaline, serotonin and dopamine (Son et al., 2008). This reaction produces a corresponding aldehyde, hydrogen peroxide and either ammonia or a substituted amine (Youdim et al., 2006). MAO plays a decisive role in many neurological disorders as well as PD. Neurological pathways depend on a delicate balance of neurotransmitters, and with either an over- or under expression of this enzyme, sensitive motor states as well as emotional states can be affected (Youdim & Bakhle, 2006). Intraneuronal MAO plays a role in the metabolism of the monoamine neurotransmitters, as well as the regulation of monoamine storage and protects neurons from exogenous monoamine chemicals (Saura et al., 1996; Tong et al., 2013).
MAO is also a key player in many neurological states, where dysfunction or polymorphism of MAO genes can lead to many altered reality states including schizophrenia (Berk et al., 2007), bipolar disorder (Sun et al., 2012), pathological aggression (Brunner et al., 1993; Caspi et al., 2002) and depression (Meyer et al., 2006).

2.3.4.2 Isoforms of MAO and the impact on Parkinson’s disease

MAO is present as two isoforms, MAO-A and MAO-B, which has different substrate and inhibitor specificities (Shih et al., 1999; Tipton et al., 2004). The redox cofactor, flavin adenine dinucleotide (FAD), is the only cofactor present in both MAO-A and MAO-B. It is absolutely needed for catalysis (Edmondson et al., 2004). Figure 2.13 shows the structure of FAD as seen in MAO. Both isoforms also share a membrane binding domain, a C-terminal α-helical region that anchors the enzyme to the outer mitochondrial wall. This domain also has other hydrophobic interactions with the membrane (Binda et al., 2002; Ma et al., 2004; Rebrin et al., 2001). This chain is shown as red in the figures that follow (Figure 2-11 & Figure 2-12).

MAO-A and MAO-B share a 70% sequence identity, and with overlapping biological functions, a high level of inhibitor specificity is needed to produce little to no adverse effects (Bach et al., 1988). MAO-A is defined as being inhibited by clorgyline whilst catalysing the metabolism of norepinephrine, serotonin and tyramine. Clinical trials showed increased concentrations of norepinephrine and serotonin after treatment with this compound, which were associated with good anti-depressant properties. The development of this drug was abandoned due to a severe adverse effect called the “cheese effect” (This will be discussed later in this chapter) (Ochiai et al., 2006; Youdim & Bakhle, 2006). MAO-A is mostly found in catecholaminergic neurons (Jahng et al., 1997). MAO-A also mainly exists as a monomer when crystallised (Caccia et al., 2006).
MAO-B is resistant to clorgyline and favours benzylamine as substrate (Fowler et al., 1982). MAO-B is abundant in serotonergic and histaminic neurons, as well as in the basal ganglia, which makes it a good target for inhibition in PD (Collins et al., 1970; Luque et al., 1995). MAO-B is also responsible for the oxidation of MPTP to yield MPP⁺ (Chiba et al., 1984). Through high resolution crystal structures, the cavity of MAO-B was shown to be hydrophobic in nature with the FAD located at the back of the binding site (Binda et al., 2003; Binda et al., 2002). MAO-B is naturally a dimer, with each monomer anchored with the C-helix into the mitochondrial membrane (Caccia et al., 2006). The active site structure reveals the path, consisting of two cavities, that a substrate or inhibitor must follow in order to reach the FAD co-factor. The two cavities are lined with hydrophobic residues, and these connect to the FAD binding site (Binda et al., 2002; Edmondson et al., 2004). Present at the mitochondrial membrane is a loop of residues that act as a “gating switch”. This switch must be activated in order for the substrate or inhibitor to move into the active site (Binda et al., 2003). MAO-B is the enzyme more suited for inhibition in PD.
Even though both isoforms of MAO oxidises DA, the concentration of the substrate is a factor in enzyme catalysis. As seen, MAO-B is more prevalent in the basal ganglia, where DA acts as a substrate (Luque et al., 1995). There is evidence that MAO-B activity can increase with age (Diez & Maderdrut, 1977; Lewinsohn et al., 1980). Increased activity suggests that increased amounts of DA is being metabolised, which may further reduce DA in PD. This coupled with normal cellular degeneration and multiple other etiologies, can explain why MAO-B is so important in the therapy of PD.
2.3.4.3 Inhibitors of MAO

The inhibition of MAO is associated with symptomatic benefit in PD, but adverse effects, may occur with irreversible inhibition. The earliest known inhibitor of MAO was the tuberculosis drug, isoniazid. From this compound the related compound iproniazid was developed and became the first commercially used MAO inhibitor for depressive illness. However, severe liver toxicity led to the withdrawal of the drug from the market. It was found that the hydrazine structure of the drugs was responsible for the toxicity (Fagervall & Ross, 1986; Youdim et al., 1988; Youdim & Bakhle, 2006). Clogyline, selective for MAO-A, and pargyline, selective for MAO-B, were used as leads for the discovery of MAO inhibitors (Fišar et al., 2010).

After the development of a non-hydrazine drug, namely tranylcypromine, a new side effect was observed, the “cheese effect”. The cheese effect is a severe hypertensive reaction to an excess of tyramine in the system after the irreversible inhibition of MAO-A. Tyramine cannot be normally metabolised when MAO in inhibited, and with a higher concentration of tyramine at the synaptic cleft, less noradrenaline is reabsorbed (Florvall et al., 1986). This leads to a higher than normal noradrenaline concentration, and results in a physiological overreaction to the sympathomimetic effects of noradrenaline (Fišar, 2016; Gottwald et al., 1997; Youdim & Bakhle, 2006). This side effect is mainly seen with non-selective MAO inhibitors, and MAO-A inhibitors, since tyramine is mainly metabolised by MAO-A in the periphery (Liccione & Azzaro, 1988).

Several MAO inhibitor drugs has since been tested and introduced into the market for PD. Isocarboxazid was used as a treatment for PD as well as other dementia related illnesses (Fagervall & Ross, 1986). (R)-Deprenyl (or selegiline) is a MAO-B selective irreversible inhibitor, with an added action of prolongation dopamine action (Kiray et al., 2006). Rasagiline is used in the late and early stages of PD, and is effective as monotherapy (Oldfield et al., 2007). Rasagiline has been shown to protect neuronal cells against cell death and may thus possess neuroprotective properties (Naoi et al., 2003).

Lazabemide and safinamide are both multiple action drugs and, in addition to the inhibition of MAO-B, also act as calcium channel blockers and dopamine reuptake inhibitors, respectively (Caccia et al., 2006; Henriot et al., 1994).
2.3.5 Catechol-O-methyl transferase

2.3.5.1 Structure and biological importance of COMT

COMT is an intracellular enzyme that catalyses the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to one of the hydroxyl groups in a catechol neurotransmitter (Kaakkola, 2000; Vidgren et al., 1994). The enzyme exists as two forms: a 221-residues soluble protein, mostly in the cytosol of the cells, and as a membrane-bound protein with 50 extra residues at the N-terminus (Backstrom et al., 1989; Bai et al., 2007; Huh & Friedhoff, 1979; Tenhunen et al., 1994).
The catechol binding site is situated in a shallow pocket with two “gate keeping” residues. These residues use van der Waals interactions to keep the substrate in place, and adjacent the SAM and Mg$^{2+}$ co-factor for methylation (Bonifácio et al., 2002; Lerner et al., 2003; Vidgren et al., 1994). Figure 2.16 shows the catalysis of a catechol neurotransmitter by SAM in COMT. The Mg$^{2+}$ co-factor binds the catechol neurotransmitter as a bidentate ligand, this deprotonates the neurotransmitter to form a nucleophile. The newly formed nucleophile attacks the activated methyl group of SAM. With the now methylated neurotransmitter, the Mg$^{2+}$ can no longer bind and the neurotransmitter dissociates (Lotta et al., 1995; Vidgren et al., 1994).

The reaction of methylation is almost exclusively regioselective towards meta-O-methylation (Axelrod, 1966), but under certain in vivo conditions para-O-methylation was possible. The extent of para-O-methylation is dependent on experimental conditions, including the pH of the solution and the nature of the substrate (Creveling et al., 1970). Catechols that bear more polar groups (like DA) are methylated at the meta position, whereas less polar catechol groups may undergo para methylation (Guldberg & Marsden, 1975). The SAM cofactor is converted to SAH (S-adenosyl-L-homocysteine) and is remethylated by vitamins B$_6$ or B$_{12}$ (Müller, 2008).

Figure 2-15: The structure of soluble COMT with SAM, the catechol substrate and the Mg$^{2+}$ ion shown (green) (Rose et al., 2018; Vidgren et al., 1994).

COMT’s biological function is to metabolic inactivate various endogenous catechol neurotransmitters and xenobiotic substances (Burba & Becking, 1969; Zhu et al., 1994). COMT has a wide variety of substrates, all including a catechol pharmacophore. These include
dopamine, epinephrine, norepinephrine, ascorbic acid and catechol estrogens such as 2-hydroxyestradiol and 2-hydroxyestrone (Kiss & Soares-da-Silva, 2014).

Many drugs are also substrates for COMT and may be metabolised. These include carbidopa (Porter et al., 1962), apomorphine (Muguet et al., 1995) and isoprenaline (Popa, 1984). COMT is distributed ubiquitously throughout the body and the central nervous system. It is present in the lungs, liver, spleen, stomach, intestines, uterus and gonads (Ellingson et al., 1999). However, the enzymatic activity in the liver is 3-4 times higher than that of the rest of the periphery, and activity in the brain is lower compared to that of the peripheral tissues (Borchardt et al., 1974).

Drug-induced inhibition of the methylation capacity by COMT can occur where anti-convulsion therapy with valproic acid, as well as long term L-dopa therapy, can consume activated methyl groups (Chuang et al., 2012; Müller, 2008). Subsequently, the decrease of methyl donating vitamins such as B₆ and B₁₂ also decrease, as they are needed to methylate SAH to yield SAM. These metabolic changes may, hypothetically, accelerate aging-associated brain degeneration by means of atrophy, cognitive deterioration and peripheral nerve function (Müller, 2011; Schwartz et al., 2012).

2.3.5.2 Inhibitors of catechol-O-methyltransferase and the role in Parkinson’s disease

Currently nitro-substituted catechol derivatives are the most potent COMT inhibitors available. The presence of the strong electron withdrawing nitro moiety prevents the reaction toward O-methylation (Backstrom et al., 1989, Learmonth et al., 2012). The reaction of catechol breakdown can be inhibited by acidic nitrocatechol containing drugs like tolcapone and entacapone (Ehler et al., 2014). No new COMT inhibitor has passed clinical trials since entacapone (Kaakkola, 2010).
COMT-inhibitors are used in conjunction with L-dopa to prevent further peripheral metabolism of L-dopa as well as the metabolism of DA to 3-O-methoxytyramine. 3-O-Methoxytyramine can compete with L-dopa for transport at the BBB (Ehler et al., 2014; Müller, 2015). Pharmacologically, COMT-inhibitors are used in conjunction with an L-dopa/AADC inhibitor combination, with tolcapone being more potent of the two drugs on the market (Männistö et al., 1992). Without a COMT inhibitor, only 10% of administered L-dopa reaches the brain, even when an AADC inhibitor is used to increase the effective dose of L-dopa (Rinne & Mölsä, 1979). With COMT present in the gastro-intestinal tract, much of the administered L-dopa is metabolised as it is absorbed into the bloodstream. In contrast, with COMT inhibited, much of the dosage will enter the bloodstream intact (Kaakkola, 2000).

Animal studies with entacapone showed an increased half-life and bioavailability of L-dopa in both rats and monkeys (Cedarbaum et al., 1991; Jenner & Smith, 1993; Nissinen et al., 1988). In later human studies, similar results were obtained with both healthy and PD patients (Jenner & Smith, 1993; Kaakkola et al., 1994; Nutt et al., 1994). Side effects included a harmless urine discolouration, but fatal cases of hepatotoxicity in 1998 led to the removal of tolcapone until April of 2004. At present it can be used under strict monitoring of liver enzyme activity (Müller, 2015; Smith et al., 2003).

Opicapone is a new COMT inhibitor that was clinically tested. It has shown a superior response to entacapone in phase 3 studies and has shown a longer lasting and sustained COMT inhibition (Rocha et al., 2014). Opicapone also showed profound reduction cell toxicity when compared to entacapone (Kiss et al., 2010). Further studies showed that opicapone results in 99% inhibition of COMT one hour after administration, with entacapone resulting in only 82% inhibition (Nuno Palma et al., 2012). Opicapone has been commercially available in Europe since 2016 under the tradename Ongentys (Vasconcelos et al., 2016).
2.3.6 Dual inhibition of COMT and MAO

In 1994, in a study involving MPTP-treated mice, researchers studied the synergistic effects of L-dopa with COMT/MAO-inhibitors. The mice received dual treatment with COMT and MAO inhibitors, and displayed a decrease in akinesia and an increase in overall movement when compared to control mice. Decreased DA metabolism was observed in the autopsied brain of the mice. The researchers concluded that a COMT inhibitor with L-dopa produced an anti-akinesia effect. When COMT inhibition was paired with L-dopa and a MAO-B inhibitor, an enhanced, possibly restorative, behavioural effect was seen (Fredriksson & Archer, 1995).

In a double blind, placebo controlled cross over study in 1997 further investigation of dual inhibition of both MAO and COMT was done by using selegiline as the MAO inhibitor and entacapone as the COMT inhibitor. The study concluded that, by inhibiting both enzymes, the half-life of L-dopa is significantly increased and 3-OMD formation is decreased. This enhances the brain penetration of L-dopa. The use of dual inhibitors, however, may promote catechol formation and breakdown via other metabolic pathways which may lead to adverse effects not associated with L-dopa treatment (Lyytinen et al., 1997). A later study showed that motor symptoms improve with dual MAO-B/COMT inhibition, especially in the “wear-off” times of L-dopa therapy (Rinne et al., 1998; Ruottinen & Rinne, 1996).

Thus with the studies on the inhibition of MAO and COMT, one can postulate that the dual inhibition of the enzymes may have significant pharmacological value in the treatment of PD (Engelbrecht et al., 2018; Mostert et al., 2015).
2.3.7 Theoretical blood-brain barrier values for central nervous system drugs

The blood-brain barrier (BBB) is the presence of high-resistance tight junctions between the brain endothelial capillaries that form a selective permeable barrier for certain drugs and proteins (Pardridge, 2002). The BBB prevent the uptake of almost >98% of all potential neurotherapeutics to the brain (Clark, 2003). Through several studies, certain rules of thumb have been developed to see a trend in certain structures and the brain permeability of said molecule (Atkinson et al., 2002; Clark, 2001; Norinder & Haeberlein, 2002).

These rules can be summarised as follows:

1. The sum of all nitrogen and oxygen atoms (N + O) must be five or less, this increases the chance of good penetration into the brain (Norinder & Haeberlein, 2002).

2. If ClogP = (N + O) > 0, then there could be a positive influx into the brain. ClogP is the logarithm of the octanol-water coefficient (P) of a certain compound. This coefficient denotes if a compound is more water or lipid soluble (Norinder & Haeberlein, 2002).

3. Limiting the polar surface area (PSA) to either below 90 Å² or between 60-70 Å², depending on the source. PSA is the measure of a molecule’s hydrogen-bonding capacity by calculated contribution of oxygen and nitrogen atoms, as well as the hydrogens bonded to oxygen and nitrogen atoms (Kelder et al., 1999; van de Waterbeemd et al., 1998).

4. The molecular weight should be kept under 450 (van de Waterbeemd et al., 1998).

5. The logD value must be between 1 – 3 (van de Waterbeemd et al., 1998).

To summarise, successful CNS drugs are rigid, more lipophilic, with fewer hydrogen-bond donors, fewer formal charges and a PSA lower than 80 Å² (Doan et al., 2002).

2.4 Enzyme kinetics and mode of inhibition

Enzymes are catalytic proteins that accelerate chemical reactions under physiological conditions favourable to that specific enzyme, without being consumed themselves (Baynes & Dominiczak, 2009). Factors such as pH and temperature are the main parameters which affect enzyme activity (Kilpatrick et al., 2013). Enzyme activity was described in 1894 as “lock and key”, where the substrate fits into the enzyme cavity and then the substrate is metabolised (Fisher, 1894). Today the binding and metabolism of a substrate by an enzyme is often described by the transition-state theory (Haldane, 1930; Pauling, 1948).
The transition state theory describes the activated enzyme-substrate-complex, and proposed that as the substrates binds to the enzyme, the activation energy of the system is lowered to favour the chemical reaction (Stein, 2011). This lowered activation energy is the sole driving force behind the catalysis of many enzymatic reactions (Garcia-Viloca et al., 2004).

\[
\text{Enzyme} + \text{Substrate} \xleftrightarrow{\text{Enzyme-Substrate Complex}} \xrightarrow{\text{Enzyme}} \text{Product}
\]

\[
E + S \xleftrightarrow{ES} E + P
\]

Figure 2-18: The enzyme catalysed reaction (Fersht, 1999).

As seen in Figure 2–18, the formation of the product is the rate limiting step in any reaction (thus the arrow from ES to E + P) (Baynes & Dominiczak, 2009). There are certain factors in the Enzyme-Substrate Complex (ES) that affects the enzyme induced reaction, and includes but is not limited to: reaction surface, reagent positioning and participation in the reaction (Garcia-Viloca et al., 2004; Kilpatrick et al., 2013).

Reaction surface and reagent positioning relates to the active site of the enzyme where the amino acids and certain cofactors play a role. Characteristics such as the level of hydrophobicity as well as the size of the cavity are all factors in enzyme kinetics as well as the design of inhibitors. This in turn also has an effect on the intra- and intermolecular forces used to stabilise the substrate in either a stereospecific position or orientation that is favourable for the reaction to take place (Benkovic & Hammes-Schiffer, 2003; Cannon et al., 1996; Kilpatrick et al., 2013; Knowles, 1991).

Reaction participation refers to certain inorganic cofactors (for example Zinc or Mg^{2+}) or organic molecules called coenzymes (for example NAD^+) used as part of the reaction either as a catalyst or as a substrate in the reaction (Broderick, 2001).

By using these factors one can inhibit an enzyme, so that the forward reaction of E+P is either reduced or totally inhibited, and this depends on the mode of inhibition. As a chemist one can look at the substrate or product structures of the reaction to design an inhibitor (Radzicka & Wolfenden, 1995). Enzyme inhibitors may act as either reversible or irreversible inhibitors, where reversible inhibitors can be explained as competitive, non-competitive or uncompetitive in terms of interaction with an inhibitor (Hollenberg, 2002).

Reversible inhibition states that the enzyme is inhibited for a short period in a dose dependant manner. When the drug has passed though the liver or kidneys, the rate and extent of inhibition begins to diminish (Lin et al., 2000).
Competitive inhibition states that the binding of the inhibitor to the enzyme prevents the substrate from entering the active site. The inhibitor mostly has some level of structural similarity to the endogenous substrate. When the substrate concentration is increased, the substrate will displace the inhibitor from the active site and normal product formation will continue (de Montellano & Correia, 1995).

\[E + S \rightarrow ES \rightarrow E + P \]
\[E + I \rightarrow EI \]

Figure 2-19: Competitive inhibition of an enzyme catalysed reaction [E = Enzyme, S = Substrate, I = Inhibitor, P = Product]. Adapted from (Wharton, 2013).

Non-competitive inhibition states that the inhibitor binds not the free enzyme, but rather to the enzyme-substrate-complex (ES), and not always in the active site but on an allosteric binding site that induces a conformational change in the active site (Silverman & Holladay, 2014). The allosteric binding site is distinct and physically separate from the active site (Baynes & Dominiczak, 2009). This in turn produces a non-productive complex in which the catalytic power has been reduced (Schenkman et al., 1981). In this instance, when the concentration of substrate is increased, the concentration of the complex increases, thus more inhibited complexes are present, which increases the rate and extent of inhibition (Baynes & Dominiczak, 2009).

\[E + S \rightarrow ES \rightarrow E + P \]
\[E + I \rightarrow ESI \]

Figure 2-20: Non-competitive inhibition of an enzyme catalysed reaction [E = Enzyme, S = Substrate, I = Inhibitor, P = Product]. Adapted from (Baynes & Dominiczak, 2009).

Uncompetitive inhibitors states that the inhibitor can either bind to the free enzyme at the active site, or with the enzyme-substrate-complex to reduce the metabolism of the substrate (Burlingham & Widlanski, 2003). The concentration of the substrate has no effect as this type of inhibition does not differentiate between free enzyme or enzyme-substrate-complexes (Kilpatrick et al., 2013).
The potency of enzyme inhibition is expressed as the IC\textsubscript{50} value, which is the concentration of inhibitor needed to inhibit enzyme activity with 50%. The lower the value, the more potent the compound. Normally good potency inhibitors possess IC\textsubscript{50} values in the micro to nanomolar range (Kilpatrick \textit{et al.}, 2013).

2.5 Molecular hybridisation and lead structure

Choosing the correct structure to synthesise can be a daunting task, but by using molecular hybridisation and lead discovery, one is able to hypothesise that the possible addition of certain substituents to a pharmacophore will produce active compounds (Viegas-Junior \textit{et al.}, 2007).

Lead discovery is when one looks at the natural occurring substrate for the enzyme/receptor in question, and breaks it down into the smallest active configuration, the pharmacophore, which are the minimum structural features needed for enzyme binding. This can be used to isolate structures with pharmacological activity (Milne \textit{et al.}, 1998). To ensure the possibility of a good match, novel compounds must be structurally and chemically compliant to the natural substrate (Dean, 1988).

Upon the identification of the lead pharmacophore, one can look at existing drugs and use the method of molecular hybridisation, to design bioactive derivatives. Two strategies exists; 1) the development of new ligands by the fusion of two pharmacophoric sub-structures, and this fusion leads to the forming of a new hybrid structure that maintain the characteristics of the pre-selected templates (Kuntz, 1992; Viegas-Junior \textit{et al.}, 2007), or 2) the use of two pharmacophoric entities, which is linked with a linker to merge the entities as a new chemical compound (Fraga, 2009).

The process of finding an active compound is explained in Figure 2-22. In this scheme an approach to design biological inhibitors is described. This design approach states that, to develop an inhibitor, one must have the structure of the receptor/enzyme. By considering the structures of the naturally occurring ligands, one may propose new ligands with the help of either SARs.
newly designed compounds are synthesised, they are subjected to thorough biological evaluation. The active compounds are identified, and can be used to start again and build on the knowledge gained (Kuntz, 1992).

Figure 2-22: Approach to the design of biological inhibitors (Kuntz, 1992; Milne et al., 1998).

To obtain a good candidate drug can be difficult, but via drug hybridisation studies, it is possible to arrive at active compounds with minimal effort (Amakali, 2016; Engelbrecht et al., 2018; Legoabe et al., 2014).

With this in mind, one must also have a scaffold as a starting point. For the purpose of this study the chalcone structure was selected as scaffold, for multiple reasons, which include their ease of synthesis, simple chemistry and their variety of biological activities (Gomes et al., 2017). Chalcones are very interesting chemical scaffolds, and have been used to design a large array of structures with many possible uses. Chalcones may exist as either the trans (E, 1) or the cis (Z, 2) isomers, while having two aromatic rings joined via a three-carbon α,β-unsaturated carbonyl system (Aksöz & Ertan, 2011). With the two aromatic rings, there is a large possible number of replaceable hydrogens that can be used for a large variety of derivatives (Gomes et al., 2017). The E isomer is more stable from a thermodynamic perspective, with the Z isomer being unfavourable due to strong steric effects between the carbonyl group and the B-ring (Aksöz & Ertan, 2011; Amslinger et al., 2013).
Figure 2-23: Structural representations of the chalcone scaffold (Gomes et al., 2017).

Photos, A.S. & Server, V.C. Adobe®.

CHAPTER 3 ARTICLE

3.1 Design, synthesis and biological evaluation of nitrocatechol bearing cyclic chalcones and related analogues as dual MAO/COMT inhibitors.

Mr. AD de Beer, Prof. LJ Legoabe, Prof. JP Petzer, Prof. A Petzer

Keywords:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoamine oxidase</td>
<td></td>
</tr>
<tr>
<td>Catechol-O-methyltransferase</td>
<td></td>
</tr>
<tr>
<td>Parkinson’s disease</td>
<td></td>
</tr>
<tr>
<td>Tetralone</td>
<td></td>
</tr>
<tr>
<td>Indanone</td>
<td></td>
</tr>
<tr>
<td>Dual inhibitors</td>
<td></td>
</tr>
</tbody>
</table>
3.2 Abstract:

Parkinson’s disease (PD) is rapidly becoming the leading cause of geriatric disability in the world. This, coupled with an expanding range of aetiologies and theories, is the driving force for the development of new drug therapies. The use of monoamine oxidase (MAO) inhibitors in PD is well established. Since catechol-O-methyltransferase (COMT) inhibitors are also used for the treatment of PD, this study hybridised the moieties of known MAO inhibitors with the acidic nitrocatechol moiety used in commercial COMT inhibitors.

This approach led to the discovery of a bicyclic chalcone, compound G, with an IC$_{50}$ value for the inhibition of MAO-B of 7.25 µM, and an IC$_{50}$ value of the inhibition of COMT of 0.567 µM. The use of the chroma-4-one moiety as bicyclic system yielded the most potent MAO-B inhibition and selectivity over MAO-A. The indanone bicyclic system showed the best overall average IC$_{50}$ value. The nitrocatechol chalcones showed good inhibition with the most potent inhibition value (IC$_{50}$) of 0.163 µM. This study shows that indanone-nitrocatechol hybrid compounds substituted with either the hydroxyl or methoxy groups on the 5-position of the indanone have potential in the future design of dual inhibitors of MAO-B and COMT.

In silico determination via SwissADME shows poor brain penetration but very high absorption from the gastrointestinal tract, which suggests that these compounds may act as peripheral COMT inhibitors for future development as antiparkinsonian drugs.

Keywords: MAO, COMT, Parkinson’s disease, chalcone, nitrocatechol, hybrids.

3.3 Introduction

Parkinson’s disease (PD) is described as a multi-system, hypokinetic neurodegenerative disorder with the progressive loss of dopamine neurons in the midbrain (Brady et al., 2005). The loss of these dopaminergic neurons gives rise to the known clinical motor symptoms that are used to diagnose PD: resting tremor, stiffness, decreased movement and a loss of balance (Vijayakumar & Jankovic, 2016). For a definitive diagnosis, the following must be present, normally seen in post mortem examinations: intraneuronal inclusions – also known as Lewy bodies – and the loss of dopaminergic neurons in the midbrain and associated structures (Alexander, 2004). Non-motor symptoms such as depression, constipation, psychosis and dementia also aid in the diagnosis (Gelb et al., 1999; Gonzalez-Usigli, 2017). There are several theories and hypotheses on the aetiology of PD which involves oxidative stress, environmental factors, genetic factors, mitochondrial dysfunction, neuroinflammation and gender difference (Alexander, 2004; Bourque et al., 2015; Brady et al., 2005; Dauer & Przedborski, 2003).

Levodopa (L-dopa) is used in PD because, unlike dopamine (DA), it is able to cross the blood-brain barrier (BBB) and can thus be converted to dopamine in the central nervous system (CNS). L-Dopa leads to elevated DA levels in the brain by supplementing endogenous DA levels. The conversion to DA is achieved via the enzyme amino acid decarboxylase (AADC) (Figure 3-1) while DA metabolism occurs via monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT) (Meiser, 2013). Evidence further show that when L-dopa is metabolised peripherally by COMT, the metabolite, 3-O-methyldopa, may compete with L-dopa for active absorption through the BBB (Tohgi et al., 1991).

![Figure 3-1: Metabolism of L-dopa by AADC](image)

A peripheral AADC inhibitor such as carbidopa or benserazide (Figure 3-2) can reduce the extent of peripheral metabolism of L-dopa. This leads to a higher concentration of L-dopa that is available
to penetrate the brain and that is converted to DA. This is useful as the brain penetration by DA is very low compared to the ability of L-dopa to penetrate the brain (Aminoff, 2004). L-Dopa therapy is prone to an effect called “wearing-off”. “Wearing-off” is associated with a reduced availability of L-dopa to the brain at a specific dosage. This is due to an increased peripheral metabolism of L-dopa (Lee et al., 2008; Nord et al., 2010; Standaert & Roberson, 2015). “Wearing-off” is responsible for most of the challenges with L-dopa therapy such as induced dyskinesia and bradykinesia. For this reason, L-dopa is not used as monotherapy and an AADC inhibitor can dramatically reduce adverse effects associated with L-dopa (Mucklow, 2000). These adverse effects include gastrointestinal irritation, anorexia and orthostatic hypotension (Aminoff, 2004).

![Carbidopa](image1.png)

Figure 3-2: Structures of commercially used AADC inhibitors.

The combination of L-dopa with an AADC inhibitor is highly effective in raising DA levels in the brain. However, adverse neurological effects may occur with a sudden increase in central DA levels. Hence controlled dosage increments must be used to achieve a level appropriate for each individual patient (Nord et al., 2017). While DA is increased in the brain by the use of L-dopa and an AADC inhibitor, MAO and COMT inhibitors may also be used as adjunct therapies. MAO and COMT inhibitors decrease the breakdown of striatal dopamine and increase the concentration of usable DA in the striatal cortex (Kaakkola, 2000; Youdim & Bakhle, 2006).

DA degradation catalysed by MAO produces potentially harmful products such as hydrogen peroxide and 3,4-dihydroxyacetaldehyde (DOPAL) (Carlsson et al., 1957; Meiser, 2013; Tohgi et al., 1991). Several reactive oxygen species (ROS) are produced in the complex metabolism of DA and these species may have a further degenerative effect on neurons (Segura-Aguilar et al., 2014).
MAO is an enzyme mostly found on the outer membrane of the mitochondria, and catalyses the deamination of several neurotransmitters including noradrenaline, serotonin and dopamine (Son et al., 2008). This reaction produces a corresponding aldehyde, hydrogen peroxide and either ammonia or a substituted amine (Youdim et al., 2006). MAO is present as two isoforms, MAO-A and MAO-B, with different substrate and inhibitor specificities (Shih et al., 1999; Tipton et al., 2004). MAO-A inhibitors are used for the treatment of anxiety and depression (Aminoff, 2004), whereas MAO-B inhibitors are used for the treatment of PD (Collins et al., 1970). MAO inhibitors are considered as useful drugs although adverse effects, especially with the use of irreversible inhibitors have been reported. The earliest known inhibitor of MAO was the tuberculosis drug, isoniazid. The related compound, iproniazid, became the first commercially used MAO inhibitor used in depressive illness. However, severe liver toxicity led to the removal of the drug from the market. It was postulated that the hydrazine structure of this drug is linked to the observed toxicity (Figure 3-2) (Fagervall & Ross, 1986; Youdim et al., 1988; Youdim & Bakhle, 2006).

After the development of a non-hydrazine drug, namely tranylcypromine, a new adverse effect was noticed, the “cheese effect”. The “cheese effect” is a severe hypertensive reaction to an excess of tyramine in the system. The excess tyramine cannot be metabolised by MAO-A due to inhibition by tranylcypromine. Tyramine enhances the physiological response to the sympathomimetic effects of noradrenaline, and thus may induce severe hypertension, which may be fatal (Fišar, 2016; Gottwald et al., 1997; Youdim & Bakhle, 2006). This effect is mainly seen in non-selective irreversible inhibitors (Liccione & Azzaro, 1988).

![Figure 3-3: MAO inhibitors as discussed in text.](image-url)

COMT is an intracellular enzyme that catalyses the transfer of an activated methyl group from S-adenosyl-L-methionine to one of the hydroxyl groups in a catechol neurotransmitter (Kaakkola,
The enzyme exists as two forms: a 221-residues soluble protein, mostly in the cytosol of the cells, and as a membrane-bound protein with 50 extra residues at the N-terminus (Backstrom et al., 1989; Bai et al., 2007; Huh & Friedhoff, 1979; Tenhunen et al., 1994). The nitro-substituted catechol derivatives are well-known inhibitors of COMT, and these compounds represent the most potent COMT inhibitors (Backstrom et al., 1989). The reaction of catechol breakdown can be inhibited by acidic nitrocatechol containing drugs including clinically used tolcapone and entacapone (Ehler et al., 2014).

![Diagram of COMT inhibitors](image)

Figure 3-4: COMT inhibitors discussed in text.

3.3.1 Dual inhibition of COMT and MAO

In a study involving MPTP-treated mice, researchers investigated the synergistic effects of L-dopa with COMT and MAO inhibitors. Following treatment with both COMT and MAO inhibitors, the animal models showed decreased akinesia and an increase in overall movement compared to the control group. Decreased DA metabolism was observed in the autopsies performed post-experiment (Fredriksson & Archer, 1995). In a double blind, placebo controlled cross over study in 1997, further investigation of dual inhibition of both MAO and COMT was done by using selegiline as the MAO inhibitor and entacapone as the COMT inhibitor. The findings showed that the inhibition of both enzymes increased the half-life of L-dopa and decreased the amount of 3-OMD that forms, thus increasing the brain penetration of L-dopa. The use of dual inhibitors can possibly direct catechol metabolism down other pathways that can induce different side effects not associated with known side effect profiles of these compounds (Lyttinen et al., 1997). A later study showed that motor symptoms improve with dual MAO-B/COMT inhibition, especially in the “wear-off” times of L-dopa therapy (Rinne & Mölsä, 1979; Ruottinen & Rinne, 1996).

3.3.2 Molecular hybridisation and lead structure

Selecting a structure to synthesise can be a daunting task, but by using approaches such as molecular hybridisation and lead discovery, one is able to hypothesise a possible combination of effective substituents that may be added to a pharmacophore to produce targeted activity (Viegas-Junior et al., 2007). Lead discovery is the process of considering the natural occurring substrate
for the enzyme/receptor in question, and reducing it to the smallest active configuration, the *pharmacophore*, which is the minimum structural features needed for enzyme binding (Milne et al., 1998). To assure the possibility of a good match, novel compounds must be structurally and chemically compliant to the natural substrate. In the case of MAO, DA is the natural substrate (Dean, 1988). Upon the identification of the lead pharmacophore, one can consider existing drugs and use the method of molecular hybridisation to proposed plausible bioactive derivatives. Two strategies exists: 1) the development of new ligands by the fusion of two pharmacophoric substructures, and this fusion leads to the forming of a new hybrid structure that maintain the characteristics of the pre-selected templates (Kuntz, 1992; Viegas-Junior et al., 2007); 2) the use of two pharmacophoric entities and a linker to merge the entities as a new chemical compound (Fraga, 2009).

Chalcones are very interesting chemical scaffolds and are found in large array of structures with many possible uses. Although in theory chalcones can occur in either E- or Z-configuration, it was reported that E-configuration is favourable on a thermodynamic basis due to steric interaction between the aryl and carbonyl groups in case of the Z-isomers. Indeed, in previous studies it was found that most synthetic chalcones occur in that E-configuration (Chimenti et al., 2009). With two aromatic rings, there is a large possible number of replaceable hydrogens that can be used to synthesise a large variety of derivatives (Gomes et al., 2017).

![Figure 3-5: Structural representations of the chalcone scaffold (Gomes et al., 2017).](image)

Studies showed that α-tetralones are promising MAO-inhibitors with average IC$_{50}$ values of 14.8 ± 2.12 µM for MAO-A and 18.6 ± 1.58 µM for MAO-B (Legobe et al., 2014). Furthermore, indanone analogues are also MAO inhibitors with average IC$_{50}$ values of 64.7 ± 4.28 µM for MAO-A and 85.4 ± 5.82 µM for MAO-B (Medvedev et al., 1995; Mostert et al., 2015). Based on these reports, the present study uses the chalcone structure as lead to produce the corresponding ring-closed tetralone and indanone analogues.

Compounds bearing nitrocatechol moiety that have been associated with high potency COMT inhibition, and this activity is attributed to nitrocatechol moiety. (Kiss & Soares-da-Silva, 2014). In
addition, previous studies reported MAO inhibitors that bears the nitrocatechol (Tripathi et al., 2018), which suggest that if appropriately done its hybridisation with known MAO inhibitors will not lead to loss of activity for either enzyme target.

Based on the aforementioned findings, we envisage that appropriate hybridising of ring-closed chalcone and nitrocatechol moieties will lead to compounds with dual MAO-B/COMT inhibitory properties as seen in Figure 3-6.

Figure 3-6: Design approach for dual-target-directed MAO and COMT inhibitors

3.4 Results and Discussion:

3.4.1 Chemistry
This study synthesised ring-closed tetralone and indanone analogues of chalcone in an attempt to discover dual-target-directed MAO and COMT inhibitors. As shown in Figure 3-7, the first step was to demethylate 5-nitrovanillin by treatment with a mixture of aluminium chloride in chloroform and pyridine. The aldehyde produced was isolated by ethyl acetate extraction and hot filtration with boiling toluene, and was subsequently combined with derivatives of indanone, tetralone or acetophenone to produce the corresponding chalcone. The chalcones were synthesised with the Claisen-Schmidt condensation in acidic conditions (32% HCl). The reactions were monitored by TLC using petroleum ether and ethyl acetate (1:1) as mobile phase. After 24-26 h reflux, the chalcone precipitated when treated with ice cold water. The yields that were obtained were good, ranging between 77 and 91%.

The collected final products were dried and characterised by NMR, MS and HPLC.

Table 3-1: Final compound characterisation.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Molecular formula</th>
<th>HPLC Purity</th>
<th>MS (APCI-HRMS) (g.mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calc. (MH⁺)</td>
</tr>
<tr>
<td>A</td>
<td>C₁₆H₁₈NO₅</td>
<td>98.9%</td>
<td>298.0709</td>
</tr>
<tr>
<td>B</td>
<td>C₁₈H₁₉NO₇</td>
<td>95%</td>
<td>358.0921</td>
</tr>
<tr>
<td>C</td>
<td>C₁₇H₁₇NO₇</td>
<td>N.A.</td>
<td>342.0608</td>
</tr>
<tr>
<td>D</td>
<td>C₁₈H₁₉NO₈</td>
<td>94.3%</td>
<td>328.0815</td>
</tr>
<tr>
<td>E</td>
<td>C₁₅H₁₅NO₇</td>
<td>98.7%</td>
<td>316.0451</td>
</tr>
<tr>
<td>F</td>
<td>C₁₆H₁₇NO₆</td>
<td>99.7%</td>
<td>314.0659</td>
</tr>
<tr>
<td>G</td>
<td>C₁₆H₁₇NO₆</td>
<td>99.5%</td>
<td>314.0659</td>
</tr>
<tr>
<td>H</td>
<td>C₁₆H₁₅NO₆S</td>
<td>100%</td>
<td>330.0438</td>
</tr>
<tr>
<td>I</td>
<td>C₁₇H₁₉NO₅</td>
<td>100%</td>
<td>312.0866</td>
</tr>
<tr>
<td>J</td>
<td>C₁₉H₁₇NO₇</td>
<td>95.4%</td>
<td>372.1077</td>
</tr>
<tr>
<td>K</td>
<td>C₁₈H₁₉NO₆</td>
<td>99.5%</td>
<td>342.0972</td>
</tr>
<tr>
<td>L</td>
<td>C₁₈H₁₅NO₆</td>
<td>98.8%</td>
<td>342.0972</td>
</tr>
<tr>
<td>M</td>
<td>C₁₈H₁₅NO₆</td>
<td>100%</td>
<td>342.0972</td>
</tr>
<tr>
<td>N</td>
<td>C₁₇H₁₅N₂O₅</td>
<td>98.3%</td>
<td>327.0975</td>
</tr>
<tr>
<td>O</td>
<td>C₁₅H₁₅NO₅</td>
<td>96.5%</td>
<td>286.0709</td>
</tr>
<tr>
<td>Q</td>
<td>C₁₅H₁₅BrNO₅</td>
<td>97.7%</td>
<td>363.9815</td>
</tr>
</tbody>
</table>
As seen in table 3-1, the synthesised compounds were characterised by MS and the purity was determined by HPLC. A majority of the compounds showed purity > 91%. The purities of compounds C and T could not be determined since these compounds are too poorly soluble in methanol and acetonitrile. Both ethanol and acetone were considered, but stability studies were not considered in the scope of this study. All MS data correlate with the proposed structures of the synthesised compounds, with the exception to compound S. A possible explanation for this discrepancy could be due to inappropriate storage of the compound, which could lead to degradation, as a significant period of time elapsed between final synthesis and characterisation. For most compounds, the ppm values were <5 ppm, which indicate good agreement between the calculated and experimentally determined molecular weights.

The structures were also characterised by 1H and 13C NMR. DMSO-d_6 was used as NMR solvent. As example, the NMR data of compound A will briefly be discussed. In the NMR of compound A (figure 3-8), the vinilic hydrogen at C10 is represented by the signal at 7.42 ppm (s, 1H). Since the NMR spectrum shows the presence of only one isomer, it is postulated that this compound is in the trans conformation (Perjési et al., 2004). The two protons on C1 are represented by the signal at 4.07 ppm (s, 2H). For compounds with a methoxy at C7, the C7 methoxy protons are represented by the signal at 3.82 ppm (s, 3H) while the C8 methoxy protons are represented by the signal at 3.90 ppm (s, 3H). The catechol hydrogens, on C13 and C14, shows as a broad signal at 10.69 ppm (s, 2H). The six aromatic protons are represented by signals at 7.51 – 7.46 (2H), 7.70 (2H) and 7.76 ppm (2H). These catechol hydrogens were used as reference for the integration of protons of the rest of the structure. The 13C NMR spectrum shows the carbonyl carbon signal (C10) at 193.15 ppm, and the indanone carbon signal (C1) at 31.75 ppm. The aromatic and vinilic carbons are represented by 14 signals: 118.07, 120.23, 123.63, 125.51, 126.74, 127.79, 131.47, 134.26, 134.94, 137.23, 137.83, 142.99, 147.88 and 149.83 ppm.

<table>
<thead>
<tr>
<th></th>
<th>C$_{15}$H$_9$BrFNO$_5$</th>
<th>91%</th>
<th>381.972</th>
<th>338.022</th>
<th>N.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>C$_{16}$H$_9$BrN$_2$O$_5$</td>
<td>N.A.</td>
<td>388.976</td>
<td>389.051</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Figure 3-8: Compound A
For the unsubstituted tetralone derivative I (figure 3-9), the 1H NMR shows the signals of the C1 and C2 hydrogens at 2.90 ppm (t, $J = 6.2$ Hz, 2H) and 3.03 ppm (t, $J = 6.1$ Hz, 2H), respectively. As expected these signals are two sets of triplets. The C12 vinilic proton is represented by the signal at 7.22 (s, 1H). The six aromatic protons are represented by signals at 7.39 - 7.32 (2H), 7.47 (1H), 7.54 (2H) and 7.90 ppm (1H). The catechol hydrogens are not found on the 1H NMR spectrum, and likely overlap with the signals of water or DMSO-d6. The 13C NMR spectrum shows the signals of C1 and C2 at 27.02 and 28.18 ppm, respectively. The carbonyl carbon of C5 is represented by the signal at 187.28, while the 14 aromatic and vinilic carbons are signals at: 117.15, 120.88, 126.14, 127.58, 127.87, 129.05, 133.14, 134.21, 134.65, 135.65, 137.68, 142.76, 143.85 and 148.00 ppm.

![Figure 3-9: Compound I](image)

3.4.1.1 MAO inhibition

The IC$_{50}$ values for the inhibition of MAO-A and MAO-B were measured using the commercially available recombinant human enzymes. Kynuramine served as substrate for the measurement of enzyme catalytic rates for both isoforms of the MAO enzyme (Weissbach et. al., 1960). Kynuramine is oxidised by the MAOs to yield 4-hydroxyquinoline, which can conveniently be measured by fluorescence spectrophotometry.

The reaction shown in Figure 3-10 gives the reaction kynuramine undergo in the presence of MAO.
The IC\textsubscript{50} values of compounds A–T for the inhibition of MAO are shown in Table 3-2. As expected the chalcones exhibited MAO inhibitory activity although with low potencies. The IC\textsubscript{50} values are > 30.34 µM for MAO-A, and > 7.25 µM for MAO-B.

Structure-activity relationships are important for novel compounds, and may explain certain aspects of the interaction of the molecules and the drug target. The indanone based chalcones (compounds A-F) showed relatively good inhibitory activity. Compound B showed a drastic reduction in activity for MAO-B (IC\textsubscript{50} = 60.48 µM), and when compared to compound D (IC\textsubscript{50} = 14.18 µM) showed that the monomethoxy substituent has the better activity. For the methylenedioxy compound, compound C, increased activity (IC\textsubscript{50} = 24.2 µM) was observed, suggesting that dimethoxy substitution of compound B causes steric hindrance in the active site. The use of the monomethoxy in compound D was explored further in compound F, and resulted in a slight reduction in activity (IC\textsubscript{50} = 15.04 µM) when the methoxy was substituted with a hydroxy group. This suggests that the active site of MAO-B is more lipophilic than polar. Compound E supports this hypothesis since the activity decreases further (IC\textsubscript{50} = 17.34 µM) when the indanone is replaced by the benzofuranone. The activity of compound A (IC\textsubscript{50} = 20.7 µM) shows that in general monosubstitution on the A-ring with either hydroxyl or methoxy increases MAO-B inhibition activity (compare A with D and F).

The tetralone derivatives (compound G-N) yielded of the more potent MAO-B inhibitors in the series, and in general the activity decreased as the molar mass increased. The most potent MAO inhibitor was found to be compound G with an IC\textsubscript{50} value of 7.26 µM for MAO-B. Compound G also shows the highest degree of specificity towards MAO-B with an SI value of 6.33. Compound G, a chromanone derivative, thus exhibited the most potent MAO-B inhibition activity, which
suggests that the ether oxygen in the ring system may be involved in productive interactions with the MAO-B active site. This is supported by the observation that replacement of the oxygen (compound G) by sulphur (compound H) led to significant decrease in MAO-B inhibition activity. When these results are compared to the unsubstituted compound I, it may be concluded that the addition of an oxygen in the tetralone ring can increase the MAO-B inhibition activity overall.

The second most potent MAO-B inhibitor was compound L with an IC$_{50}$ of 7.83 µM. Compound L, which has a methoxy substituent at position 5 on the tetralone moiety, exhibited good inhibition activity (IC$_{50}$ = 7.83 µM) against MAO-B. Substitution with a methoxy on position 7 (compound M) yielded slightly lower activity (IC$_{50}$ = 11.0 µM), while substitution with a methoxy on position 6 (compound K) yielded a drastic reduction in activity (IC$_{50}$ = 29.6 µM). Disubstitution with methoxy groups on positions 6 and 7 yielded compound J, which exhibited a further decrease in MAO-B inhibition activity (IC$_{50}$ = 45.9 µM) compared to the corresponding monosubstituted analogues. Substitution of the methoxy group for an amine group (compound N) also slightly enhanced MAO-B inhibition (compare with K).

The open-chained chalcones (compounds O-T) showed overall reduction in MAO-B inhibition potency. The use of two halogen substituents in compound S resulted in the most potent MAO-B inhibition activity with an IC$_{50}$ value of 16.3 µM. Compound O shows that unsubstituted chalcones has low potency, and by adding electron withdrawing groups on the unsaturated (enone) system (compounds Q, T and S) an increase in activity was observed, with all three compounds possessing a bromine on the enone system.

While the goal of this study was to discover dual-target-directed COMT/MAO-B inhibitors, the study compounds were also evaluated as MAO-A inhibitors. The results show that only compounds B, E and J are selective towards MAO-A. The most potent inhibition of MAO-A was achieved with compound D with an IC$_{50}$ = 29.4 µM. Overall the compounds showed less potent MAO-A inhibition compared to MAO-B inhibition, which may be expected since chalcones are known to be MAO-B specific inhibitors. The use of the highly polar nitrocatechol group may further limit MAO-A inhibition. The weak inhibition of MAO-A observed with some compounds could, however, be useful in alleviating non-motor symptoms of PD such as depression. Since the MAO-B inhibitory properties would treat the motor symptoms, compounds such as D that inhibit both MAO-A and MAO-B (although weakly) may possess multiple mechanisms relevant to PD.
Figure 3-11: Sigmoidal inhibitory plots for MAO-B inhibition by compounds G, L and H.

3.4.1.2 COMT inhibition

COMT activity was measured using esculetin (6,7-dihydroxycoumarin) as substrate. The reaction that takes place between COMT and esculetin is presented in Figure 3-12. Esculetin is methylated when the hydroxyl groups binds with the Mg$^{2+}$ of COMT and an activated methyl group is transferred from S-adenosyl-L-methionine (SAM). SAM is subsequently converted to s-adenosyl-L-homocysteine (SAH), while esculetin is converted to scopoletin. The formation of scopoletin may be monitored by fluorescence spectrophotometry (Müller, 2008). In the enzyme SAM (5 mM) is added to aid in the forward reaction and ensure the enzyme’s natural SAM is not depleted.

Figure 3-12: The formation of scopoletin from esculetin via COMT

In this study tolcapone was used as reference COMT inhibitor, and exhibits IC$_{50}$ value of 0.26 μM for the inhibition of COMT (Engelbrecht et al., 2018). The indanone derivatives (compounds A-F) showed similar inhibitory activities, with compound F being the least potent with an IC$_{50}$ value of 0.37 μM. Compound C showed the best activity with an IC$_{50}$ value of 0.162 μM, while compound D (IC$_{50} = 0.166$ μM) and compound E (IC$_{50} = 0.188$ μM) were also potent COMT inhibitors. These compounds are structurally related and have either a hydroxy or methoxy group on the 5-position. Compound B, with dimethoxy substitution also is a potent inhibitor, but with lower activity compared to the other compounds in the indanone class.
For the tetralone derivatives, (compounds **G-N**), meta substitution with a methoxy group, as seen with compound **L** yields enhanced COMT inhibition, whereas substitution in the para and ortho positions yields lower inhibition activity as seen with compounds **K** and **M**. The addition of an amino group on the 5-position resulted in a drastic decrease of activity (compound **N** with an IC_{50} value of 1.92 µM). Compounds **G** and **H**, also showed drastic reduction in activity, indicating that the addition of either an oxygen or sulphur group within the tetralone ring has a negative effect on COMT inhibition.

It is noteworthy that the indanone compound **A** is a more potent COMT inhibitor compared to tetralone compound **I**, showing that without ring substitution, the indanone scaffolds has better COMT inhibition activity than the tetralone derived compounds. The unsubstituted open chain chalcone, compound **O**, showed a further decrease in activity with an IC_{50} value of 0.897 µM, indicating that either the lack of the bicyclic system or the change in molecular weight can result in different COMT inhibition values.

The open chain chalcones in general were the least active COMT inhibitors with compound **T** showing the best activity at 0.41 µM. The relatively good potency of **T** may be due to the addition of the nitrile group as an electron withdrawing group. The addition of a halogen in the enone system showed little to no change in COMT inhibition activity (compounds **Q** and **S**).

Figure 3-13: Sigmoidal inhibitory plots for COMT inhibition by compounds **C**, **D** and **E**.
Table 3-2: IC$_{50}$ Values (µM) for the inhibition of MAO and COMT by indanone and tetralone derivatives.

<table>
<thead>
<tr>
<th>Compound</th>
<th>X</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>IC$_{50}$ (µM)a</th>
<th>SIb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MAO-A</td>
<td>MAO-B</td>
</tr>
<tr>
<td>Toloxatone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.92c</td>
<td></td>
</tr>
<tr>
<td>Lazabemide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.091c</td>
</tr>
<tr>
<td>Tolcapone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.26b</td>
</tr>
<tr>
<td>A</td>
<td>-CH$_2$-</td>
<td>-H</td>
<td>-H</td>
<td>-H</td>
<td>34.3 ± 3.19</td>
<td>20.7 ± 0.96</td>
</tr>
<tr>
<td>B</td>
<td>-CH$_2$-</td>
<td>-H</td>
<td>-OCH$_3$</td>
<td>-OCH$_3$</td>
<td>37.4 ± 0.247</td>
<td>60.5 ± 4.74</td>
</tr>
<tr>
<td>C</td>
<td>-CH$_2$-</td>
<td>-H</td>
<td></td>
<td></td>
<td>47.0 ± 6.43</td>
<td>24.2 ± 3.56</td>
</tr>
<tr>
<td>D</td>
<td>-CH$_2$-</td>
<td>-H</td>
<td>-OCH$_3$</td>
<td>-H</td>
<td>29.4 ± 2.42</td>
<td>14.2 ± 2.73</td>
</tr>
<tr>
<td>E</td>
<td>-O-</td>
<td>-H</td>
<td>-OH</td>
<td>-H</td>
<td>41.8 ± 5.72</td>
<td>17.3 ± 0.98</td>
</tr>
<tr>
<td>F</td>
<td>-CH$_2$-</td>
<td>-H</td>
<td>-OH</td>
<td>-H</td>
<td>32.7 ± 1.26</td>
<td>15.0 ± 0.39</td>
</tr>
<tr>
<td>G</td>
<td>-OCH$_2$-</td>
<td>-H</td>
<td>-H</td>
<td>-H</td>
<td>46.0 ± 5.26</td>
<td>7.26 ± 0.65</td>
</tr>
<tr>
<td>H</td>
<td>-SCH$_2$-</td>
<td>-H</td>
<td>-H</td>
<td>-H</td>
<td>32.5 ± 3.37</td>
<td>11.2 ± 1.10</td>
</tr>
<tr>
<td>I</td>
<td>-(CH$_2$)$_2$-</td>
<td>-H</td>
<td>-H</td>
<td>-H</td>
<td>42.3 ± 2.71</td>
<td>15.4 ± 0.64</td>
</tr>
<tr>
<td>J</td>
<td>-(CH$_2$)$_2$-</td>
<td>-H</td>
<td>-OCH$_3$</td>
<td>-OCH$_3$</td>
<td>37.9 ± 1.09</td>
<td>45.9 ± 1.93</td>
</tr>
</tbody>
</table>
Table 3-3: IC₅₀ Values (µM) for the inhibition of MAO and COMT by the open chain and α-substituted chalcones.

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>IC₅₀ (µM)</th>
<th>SI²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MAO-A</td>
<td>MAO-B</td>
</tr>
<tr>
<td>O</td>
<td>-H</td>
<td>-H</td>
<td>-H</td>
<td>42.5 ± 3.35</td>
<td>39.8 ± 4.93</td>
</tr>
<tr>
<td>Q</td>
<td>-Br</td>
<td>-H</td>
<td>-H</td>
<td>48.6 ± 0.66</td>
<td>18.0 ± 4.01</td>
</tr>
<tr>
<td>S</td>
<td>-Br</td>
<td>-H</td>
<td>-F</td>
<td>49.9 ± 3.26</td>
<td>16.3 ± 1.13</td>
</tr>
<tr>
<td>T</td>
<td>-Br</td>
<td>-NC</td>
<td>-H</td>
<td>42.0 ± 2.58</td>
<td>28.5 ± 1.85</td>
</tr>
</tbody>
</table>

*All values expressed as mean ± SD of triplicate determinations.

²Selectivity Index [SI = IC₅₀(MAO-A)/IC₅₀(MAO-B)].

3.4.2 Physicochemical properties and in silico brain penetration

Central nervous system (CNS) treatment is the second largest area of pharmacotherapy next to cardiovascular disease (Silva et al., 2015). The main route CNS drugs take to enter the brain is through the BBB. The BBB consists of the microcapillary blood vessels that are in close proximity to brain cells that carry oxygen and nutrients to brain cells, and waste products from the brain. The total area of the BBB is estimated to be over 12 m² and the length to be over 400 miles (±...
625 km) (Pardridge, 2001). The BBB is composed of endothelial cells that form a single cell lining on the inner surface of the capillaries (Allt & Lawrenson, 2001). The endothelial layer has several mechanisms that either hinder or promote diffusion of the CNS drugs into the brain including transcellular passive diffusion, efflux and influx as well as paracellular transport (Pardridge, 2005).

Transcellular passive diffusion is the normal Brownian movement observed when the drug moves from a high concentration to a low concentration over a selective permeable membrane (Fischer et al., 1998). Passive diffusion is mostly limited by the physiochemical characteristics of the molecule in question. There is a general correlation between the structure of the molecule and the rate of passive diffusion. The most important structural features that determine BBB permeability are the number of hydrogen bonds, lipophilicity, polar surface area (PSA), molecular weight (MW) and acidity.

There exists a set of rules that may be used to evaluate the possibility of BBB penetration. Pardridge suggested the following (Pardridge, 1998):

- Hydrogen bonds (total) < 8 – 10
- MW < 400 – 500
- No acids
- Spranklin suggests H-bond donors < 2 and H-bond receptors < 6 (Maurer et al., 2005).

Another set of rules were compiled by Clark (2001) and Lobell et al. (2003):

- Nitrogen + Oxygen < 6
- PSA < 60 – 70 Å²
- MW < 450
- LogD between 1 – 3
- cLogP – (N + O) > 0

These are only guidelines, as there are molecules that do not abide by these rules, but are still active in the CNS (Bodor & Buchwald, 2003).

Influx and efflux are the active uptake or elimination of drugs, respectively. Influx is determined by a drug’s structure and substrates for uptake transport are usually amino acid, peptides or glucose transporters. Efflux is the removal of drugs in the endothelial lining, before brain penetration can take place. This occurs via a P-glycoprotein system (Pgp) (Maurer et al., 2005). These Pgp-efflux transporters use ATP to transport a wide array of lipid-soluble compounds from
the CNS back into the capillary space. These transporters protect the brain tissue from potentially neurotoxic molecules, either endogenous or xenobiotic in nature, and detoxify the brain (Dallas et al., 2006).

Paracellular transport is the passive transport of molecule through spaces known as tight junctions that runs between the endothelial cells (Begley et al., 2008). The brain endothelial cells lack the abundance of tight junctions, thus transport via this route is limited (Graff & Pollack, 2004). Evidence suggests that in neurodegenerative disease with a prevalence of neuroinflammation, these tight junctions become more abundant due to inflammation processes in the brain, and can contribute to the permeation of toxins and drugs into the brain (Alexander, 2004; Patel, 2016; Sies, 2015).

3.4.2.1 Brain penetration in silico methods

Drug discovery is a time consuming and resource demanding process. Large amounts of synthesised and designed molecules must be tested against various parameters to ensure patient safety and therapeutic effectiveness. The use of in silico methods are inexpensive and time saving as they need less input to run and no added cost. These computer models uses parameters set up by various researchers to determine key physiochemical characteristics and to predict the ADME (absorption, distribution, metabolism and excretion) profile (Tian et al., 2015). However, most computational methods focus on one specific property, whereas the SwissADME tool, provided by the Swiss Institute of Informatics, is a free platform used to evaluate compounds against wide variety of parameters. These include ligand-based virtual screening, biotarget prediction, molecular docking, bio-isosteric design, molecular mechanics, ADME and pharmacokinetics (Cheng et al., 2012; Daina et al., 2014; Daina & Zoete, 2016; Gfeller et al., 2014; Grosdidier et al., 2011; Pires et al., 2015; Wirth et al., 2012; Zoete et al., 2011; Zoete et al., 2016).

The SwissADME tool was applied in this study to predict the brain penetration of several nitrocatechol compounds that were investigated in this study.

Brain penetration in SwissADME was calculated by the following guidelines: Chemical structure and certain physiochemical attributes are used to produce a bioavailability radar, which uses lipophilicity (Amott & Planey, 2012; Pliška et al., 1996), size, polarity, solubility (Ali et al., 2012; Delaney, 2004), flexibility and saturation to produce a plot which shows whether a compound is considered drug-like (Lovering et al., 2009; Ritchie et al., 2011). These, coupled with attributes such as molecular weight, molecular refractivity and polar surface area (calculated as the topographic polar surface area, with sulphur and phosphorous seen as polar groups) are used to
predict biological barrier permeation, specifically gastrointestinal absorption and brain permeation (Ertl et al., 2000; Daina & Zoete, 2016). The chalcones of this study show negative in silico brain penetration (Table 3-4), primarily because of the higher tPSA (> 80 Å²). This is unfavourable since the biological main targets of this study, COMT and MAO-B, are located in the brain. The molecules, however, show good absorption form the gastrointestinal tract, and no rule exceptions with respect to the rules of Lipinski.

Table 3-4: Selected physicochemical properties of chalcones A-T

<table>
<thead>
<tr>
<th>Molecule</th>
<th>MW</th>
<th>tPSA</th>
<th>Gastrointestinal absorption</th>
<th>CLogP</th>
<th>BBB penetration</th>
<th>Lipinski violations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>297.26</td>
<td>103.35</td>
<td>High</td>
<td>2.22</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>357.31</td>
<td>121.81</td>
<td>High</td>
<td>2.07</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>341.27</td>
<td>121.81</td>
<td>High</td>
<td>1.9</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>327.29</td>
<td>112.58</td>
<td>High</td>
<td>2.08</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>315.23</td>
<td>132.81</td>
<td>High</td>
<td>1.49</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>313.26</td>
<td>123.58</td>
<td>High</td>
<td>1.84</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>313.26</td>
<td>112.58</td>
<td>High</td>
<td>1.78</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>329.33</td>
<td>128.65</td>
<td>High</td>
<td>2.33</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>311.29</td>
<td>103.35</td>
<td>High</td>
<td>2.46</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>371.34</td>
<td>121.81</td>
<td>High</td>
<td>2.46</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>341.31</td>
<td>112.58</td>
<td>High</td>
<td>2.25</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>341.31</td>
<td>112.58</td>
<td>High</td>
<td>2.37</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>341.31</td>
<td>112.58</td>
<td>High</td>
<td>2.38</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>326.3</td>
<td>129.37</td>
<td>High</td>
<td>1.89</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>285.25</td>
<td>103.35</td>
<td>High</td>
<td>1.89</td>
<td>No</td>
<td>0</td>
</tr>
</tbody>
</table>
3.5 Conclusion

In this study, nitrocatechol containing chalcone derivatives were synthesised and evaluated as inhibitors of the MAO and COMT enzymes. Among the compounds, G and L exhibited promising inhibition properties. Compound G showed an IC$_{50}$ value for the inhibition of MAO-B of 7.25 µM (with a selectivity index of 6.3 for MAO-B) and an IC$_{50}$ value for the inhibition of COMT of 0.567 µM. The 6-methoxy substituted tetralone derivative (compound L) exhibited an IC$_{50}$ value for the inhibition of MAO-B of 7.83 µM, and an IC$_{50}$ value for the inhibition of COMT of 0.421 µM. These findings suggest that dual inhibition of two different, unrelated enzymes may be achieved. The compounds synthesised in this study show that dual inhibition of MAO-B and COMT is possible.

Computer modelling may provide some much needed insight into the mechanism of binding of inhibitors to the active sites of both enzymes. It may be hypothesised that hydrophobic residues located towards the outside the COMT active site may interact with the ring system not bearing the nitrocatechol moiety (i.e. ring A), and in this way alter the binding strength or duration. By employing hydrophobic interactions, it is postulated that the inhibitor side chains may be employed to better the binding in the active site.

As seen with compounds G and L, dual inhibition of MAO-B and COMT may be possible. Since the IC$_{50}$ values for COMT and MAO-B differ to a large degree (2 orders of magnitude), these compounds will have to be optimised further in order to have clinical value. Inhibition activity levels (IC$_{50}$ values) towards both enzymes should be similar to prepare stable dosages at later stages of development. This coupled with the high tPSA, which in turn limits the penetration into the brain, show that further optimisation will be necessary to discover compounds that may be advanced to the clinical phases.

3.6 Experimental Section

3.6.1 Chemicals and Instrumentation

All starting materials were obtained from Sigma-Aldrich, and were used “as is” without further purification. Carbon (13C) and proton (1H) NMR spectra were recorded on a Bruker Advance III 600 spectrometer at frequencies of 600 MHz and 151 MHz, respectively. DMSO-d_6 served as
solvent for all compounds. Multiplicities are given as s (singlet), d (doublet), dd (doublet of doublets), ddd (doublet of doublet of doublets), t (triplet) and m (multiplet) (Annexure A). Silica gel 60 (Merck) with UV254 fluorescent indicator was used for the thin layer chromatography (TLC). High resolution mass spectra (HRMS) were recorded with a Bruker micrOTOF-Q II mass spectrometer in atmospheric pressure chemical ionisation (APCI) mode (Annexure B). Purity of the synthesised compounds were determined by high performance liquid chromatography (HPLC). Analyses were carried out with an Agilent 11000 HPLC system equipped with a quaternary pump and an Agilent 1100 series diode detector. HPLC grade acetonitrile (Merck) and Milli-Q water (Millipore) were used as mobile phase. The initial ratio was 30:70, the acetonitrile was increased linearly to 85% over 5 min. The flow rate was 1 mL/min. A Venusil XBP C18 column (4.60 x 150 mm, 5 µm) was used for the separation. Each run lasted 15 min and a period of 5 min was allowed as equilibrium between runs. 10 µL of test compound solution was injected to the system, and the eluent was monitored at wavelengths of 210, 230, 254 and 280 nm. The test compounds were dissolved in methanol and acetonitrile (50:50).

3.6.2 General Synthesis

Synthesis of the 3,4-dihydroxy-5-nitrobenzaldehyde intermediate

To a dry round bottom flask, 5-nitrovanillin (5 g, 25.4 mmol) and aluminium trichloride (3.72 g, 27.9 mmol) was placed and 50 mL chloroform was added. The mixture was cooled to 0 °C in an ice bath, and pyridine (9.01 mL, 111 mmol) was added dropwise. The flask was removed from the ice bath and the reaction mixture was refluxed in an atmosphere of nitrogen for 24 hours. The chloroform was removed under reduced pressure, and the crude product was quenched with a 100 mL aqueous hydrochloric acid (HCl) (20%) for one hour at room temperature. The water phase was extracted with three portions of ethyl acetate (50 mL). The combined organic phases were dried with anhydrous MgSO₄ for 30 min. The ethyl acetate was removed under reduced pressure and the crude was hot filtered with toluene (50 mL) to produce yellow crystals (Walz & Sundberg, 2000).

Synthesis of the target chalcones (Compounds A–T)

3,4-Dihydroxy-5-nitrobenzaldehyde (200 mg, 1.092 mmol) and 1.092 mmol of the appropriate indanone, tetralone or acetophenone were dissolved in a mixture of 6 mL HCl (32%) and 4 mL methanol, and heated under reflux for 24–26 hours. The progress of the reactions was monitored with silica gel TLC with petroleum ether: ethyl acetate (1:1) as mobile phase. Upon completion, the reaction was quenched with addition of ice water (50 mL) and the products precipitated. The precipitated material was collected by filtration and dried at 60 °C for 48 hours before further
analysis. Compound B and T were purified by recrystallisation from ethanol and acetonitrile, respectively.

3.6.3 Physical characterisation of the synthesised compounds

\((2E)\)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-2,3-dihydro-1\(H\)-inden-1-one (A)

A yield of 79.6% of a bright yellow powder was obtained. \(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 4.07 (s, 2H), 7.42 (s, 1H), 7.51 – 7.46 (m, 2H), 7.70 (ddd, \(J = 14.7, 10.6, 4.2\) Hz, 2H), 7.76 (dd, \(J = 10.1, 4.8\) Hz, 2H), 10.69 (s, 2H). \(^{13}\)C NMR (151 MHz, DMSO-\(d_6\)) \(\delta\) 31.75, 118.07, 120.23, 123.63, 125.51, 126.74, 127.79, 131.47, 134.26, 134.94, 137.23, 137.83, 142.99, 147.88, 149.83, 193.15. APCI-HRMS \(m/z\): calc. for C\(_{16}\)H\(_{11}\)NO\(_5\) (MH\(^+\)), 298.070, found 298.073. Purity (HPLC – 254 nm): 98.9%.

\((2E)\)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5,6-dimethoxy-2,3-dihydro-1\(H\)-inden-1-one (B)

The crude was recrystallised from ethanol to produce a yield of 87.6% of a yellow powder. \(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 3.82 (s, 3H), 3.90 (s, 3H), 3.93 (s, 2H), 7.20 (d, \(J = 12.0\) Hz, 2H), 7.29 (s, 1H), 7.44 (s, 1H), 7.71 (s, 1H). \(^{13}\)C NMR (151 MHz, DMSO-\(d_6\)) \(\delta\) 31.83, 56.10, 56.47, 104.95, 108.55, 117.79, 120.91, 126.16, 130.02, 130.36, 135.59, 138.14, 143.19, 145.31, 148.29, 149.81, 155.75, 192.07. APCI-HRMS \(m/z\): calc. for C\(_{18}\)H\(_{12}\)NO\(_7\) (MH\(^+\)), 358.092, found 358.092. Purity (HPLC – 254 nm): 95%.

\((6E)\)-6-(3,4-Dihydroxy-5-nitrobenzylidene)-6,7-dihydro-5\(H\)-indeno[5,6-\(d\)][1,3]dioxol-5-one (C)

A yield of 88.1% of a dark yellow powder was obtained. \(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 3.94 (s, 2H), 6.19 (s, 2H), 6.19 (s, 2H), 7.17 (s, 1H), 7.19 (s, 1H), 7.29 (s, 1H), 7.44 (s, 1H), 7.71 (s, 1H), 10.63 (s, 1H). APCI-HRMS \(m/z\): calc. for C\(_{17}\)H\(_{12}\)NO\(_7\) (MH\(^+\)), 342.060, found 342.060.

\((2E)\)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5-methoxy-2,3-dihydro-1\(H\)-inden-1-one (D)

A yield of 84.15% of a dark orange powder was obtained. \(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 7.74 – 7.67 (m, 2H), 7.44 (s, 1H), 7.30 (s, 1H), 7.17 (s, 1H), 7.01 (d, \(J = 8.5\) Hz, 1H), 3.99 (s, 2H), 3.88 (s, 3H). \(^{13}\)C NMR (151 MHz, DMSO-\(d_6\)) \(\delta\) 31.81, 55.84, 110.24, 115.43, 117.53, 120.41, 125.46, 125.68, 130.06, 130.51, 134.90, 137.74, 142.79, 147.86, 152.71, 164.96, 191.38. APCI-HRMS \(m/z\): calc. for C\(_{18}\)H\(_{11}\)NO\(_6\) (MH\(^+\)), 328.081, found 328.081. Purity (HPLC – 254 nm): 94.3%.

\((2Z)\)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-6-hydroxy-1-benzofuran-3(2\(H\))one (E)

101
A yield of 89.4% of a brownish orange powder was obtained. 1H NMR (600 MHz, DMSO-d$_6$) δ 6.760-06.96 (m, 6H), 7.62 (d, $J = 8.4$ Hz, 2H), 7.75 (d, $J = 2.0$ Hz, 2H), 7.90 (d, $J = 1.9$ Hz, 2H), 10.68 (s, 3H), 11.26 (s, 2H). 13C NMR (151 MHz, DMSO-d$_6$) δ 98.46, 109.40, 112.86, 113.20, 118.45, 120.57, 122.73, 126.11, 137.69, 143.02, 146.97, 147.83, 166.59, 167.73, 181.22. APCI-HRMS m/z: calc. for C$_{15}$H$_{15}$NO$_5$ (MH$^+$), 316.045, found 316.045. Purity (HPLC – 254 nm): 98.7%.

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5-hydroxy-2,3-dihydro-1H-inden-1-one (F)

A yield of 84.7% of a mustard yellow powder was obtained. 1H NMR (600 MHz, DMSO-d$_6$) δ 3.96 (s, 1H), 6.86 (dd, $J = 8.4$, 2.1 Hz, 1H), 6.96 (d, $J = 1.7$ Hz, 1H), 7.28 (s, 1H), 7.46 (d, $J = 2.0$ Hz, 1H), 7.63 (d, $J = 8.4$ Hz, 1H), 7.70 (d, $J = 2.0$ Hz, 1H), 10.66 (s, 2H). 13C NMR (151 MHz, DMSO-d$_6$) δ 31.62, 112.00, 116.25, 117.56, 120.17, 125.82, 125.87, 129.29, 120.60, 135.20, 137.087, 142.60, 147.84, 152.86, 163.99, 191.23. APCI-HRMS m/z: calc. for C$_{16}$H$_{11}$NO$_6$ (MH$^+$), 314.065, found 314.066. Purity (HPLC – 254 nm): 99.7%.

(3E)-3-(3,4-Dihydroxy-5-nitrobenzylidene)-2,3-dihydro-4H-chromen-4-one (G)

A yield of 78.2% of an orange yellow powder was obtained. 1H NMR (600 MHz, DMSO-d$_6$) δ 5.36 (s, 2H), 7.03 (d, $J = 8.1$ Hz, 1H), 7.20 - 7.06 (m, 2H), 7.41 (s, 1H), 7.58 (d, $J = 8.4$ Hz, 2H), 7.91 - 7.76 (m, 1H). 13C NMR (151 MHz, DMSO-d$_6$) δ 67.51, 117.65, 118.22, 120.64, 121.67, 122.36, 124.54, 127.55, 130.56, 135.36, 136.63, 137.79, 143.26, 147.98, 160.85, 181.30. APCI-HRMS m/z: calc. for C$_{16}$H$_{11}$NO$_6$ (MH$^+$), 314.065, found 314.065. Purity (HPLC – 254 nm): 99.5%.

(3Z)-3-(3,4-Dihydroxy-5-nitrobenzylidene)-2,3-dihydro-4H-thiochromen-4-one (H)

A yield of 90.6% of an orange powder was obtained. 1H NMR (600 MHz, DMSO-d$_6$) δ 4.22 (s, 2H), 7.20 (s, 1H), 7.31 (t, $J = 7.6$ Hz, 1H), 7.39 (d, $J = 7.9$ Hz, 1H), 7.49 (t, $J = 10.5$ Hz, 3H), 8.02 (d, $J = 7.9$ Hz, 1H). 13C NMR (151 MHz, DMSO-d$_6$) δ 28.78, 117.11, 120.45, 125.20, 126.41, 128.37, 130.21, 132.15, 132.93, 133.96, 135.55, 137.92, 140.97, 142.94, 48.17, 185.43. APCI-HRMS m/z: calc. for C$_{16}$H$_{11}$NO$_6$S (MH$^+$), 330.043, found 330.043. Purity (HPLC): 100%.

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-3,4-dihyronaphthalen-1(2H)-one (I)

A yield of 89.54% of an orange powder was obtained. 1H NMR (600 MHz, DMSO-d$_6$) δ 2.90 (t, $J = 6.2$ Hz, 2H), 3.03 (t, $J = 6.1$ Hz, 2H), 7.22 (s, 1H), 7.39 - 7.32 (m, 2H), 7.47 (s, 1H), 7.54 (dd, $J = 14.0$, 6.3 Hz, 2H), 7.90 (d, $J = 7.8$ Hz, 1H). 13C NMR (151 MHz, DMSO-d$_6$) δ 27.07, 28.18, 117.15, 120.88, 126.14, 127.58, 127.87, 129.05, 133.14, 134.21, 134.65, 135.65, 137.68, 142.76, 143.85, 148.00, 187.28. APCI-HRMS m/z: calc. for C$_{17}$H$_{13}$NO$_5$ (MH$^+$), 312.086, found 312.086. Purity (HPLC – 254 nm): 100%.
(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-6,7-dimethoxy-3,4-dihyronaphthalen-1(2H)-one (J)

A yield of 85.88% of a bright yellow powder was obtained. 1H NMR (600 MHz, DMSO-d6) δ 2.86 (t, $J = 6.0$ Hz, 2H), 3.01 (d, $J = 5.7$ Hz, 2H), 3.77 (s, 3H), 3.83 (s, 3H), 6.90 (s, 1H), 7.21 (s, 1H), 7.39 (s, 1H), 7.46 (d, $J = 2.2$ Hz, 2H). 13C NMR (151 MHz, DMSO-d6) δ 27.20, 27.79, 55.80, 56.16, 109.22, 110.97, 116.79, 120.67, 125.86, 126.21, 133.54, 135.60, 137.64, 138.79, 142.35, 147.84, 148.19, 153.86, 185.64. APCI-HRMS m/z: calc. for C$_{19}$H$_7$NO$_7$ (MH$^+$), 372.107, found 372.107. Purity (HPLC – 254 nm): 95.4%.

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-6-methoxy-3,4-dihyronaphthalen-1(2H)-one (K)

A yield of 77.86% of a bright orange powder was obtained. 1H NMR (600 MHz, DMSO-d6) δ 2.92 (t, $J = 6.4$ Hz, 2H), 3.05 (t, $J = 6.0$ Hz, 2H), 3.84 (s, 3H), 6.90 (d, $J = 2.1$ Hz, 1H), 6.94 (dd, $J = 8.7$, 2.4 Hz, 1H), 7.23 (d, $J = 1.7$ Hz, 1H), 7.53 – 7.47 (m, 2H), 7.91 (d, $J = 8.7$ Hz, 1H), 10.53 (s, 2H). 13C NMR (151 MHz, DMSO-d6) δ 26.69, 28.20, 55.60, 112.34, 113.81, 116.61, 120.37, 125.89, 126.27, 129.95, 133.39, 135.33, 137.49, 141.98, 145.97, 147.54, 163.34, 185.20. APCI-HRMS m/z: calc. for C$_{19}$H$_7$NO$_6$ (MH$^+$), 342.097, found 342.097. Purity (HPLC – 254 nm): 99.5%.

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5-methoxy-3,4-dihyronaphthalen-1(2H)-one (L)

A yield of 82.8% of a dusty yellow powder was obtained. 1H NMR (600 MHz, DMSO-d6) δ 2.08 (s, 3H), 2.86 (t, $J = 6.5$ Hz, 2H), 3.05 (t, $J = 5.9$ Hz, 2H), 3.84 (s, 3H), 7.26 – 7.24 (m, 2H), 7.37 (t, $J = 8.0$ Hz, 1H), 7.50 (d, $J = 1.7$ Hz, 1H), 7.53 (s, 1H). APCI-HRMS m/z: calc. for C$_{19}$H$_7$NO$_6$ (MH$^+$), 342.097, found 342.097. Purity (HPLC – 254 nm): 98.8%.

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-7-methoxy-3,4-dihyronaphthalen-1(2H)-one (M)

A yield of 87.1% of a yellow powder was obtained. 1H NMR (600 MHz, DMSO-d6) δ 2.08 (s, 2H), 2.88 (t, $J = 6.4$ Hz, 2H), 3.05 (t, $J = 5.8$ Hz, 2H), 3.80 (s, 3H), 7.17 (dd, $J = 8.4$, 208 Hz, 1H), 7.25 (d, $J = 1.8$ Hz, 1H), 7.30 (d, $J = 8.4$, 1H), 7.42 (d, $J = 2.8$ Hz, 1H), 7.51 (d, $J = 1.8$ Hz, 1H), 7.56 (s, 1H), 10.55 (s, 2H). 13C NMR (151 MHz, DMSO-d6) δ 26.83, 26.96, 30.72, 55.33, 110.16, 116.81, 120.33, 120.91, 125.70, 129.94, 133.67, 134.23, 135.04, 135.81, 137.49, 142.13, 147.55, 158.22, 186.33. APCI-HRMS m/z: calc. for C$_{19}$H$_7$NO$_6$ (MH$^+$), 342.097, found 342.097. Purity (HPLC – 254 nm): 100%.

(2E)-6-Amino-2-(3,4-dihydroxy-5-nitrobenzylidene)-3,4-dihyronaphthalen-1(2H)-one (N)
A yield of 78.6% of a reddish orange powder. 1H NMR (600 MHz, DMSO-d$_6$) δ 2.77 (t, $J = 6.4$ Hz, 6H), 2.98 (t, $J = 5.9$ Hz, 6H). 6.46 (s, 3H), 6.60 (dd, $J = 8.5$, 1.8 Hz, 3H), 7.23 (d, $J = 1.9$Hz, 3H), 7.46 – 7.39 (m, 6H), 7.50 (d, $J = 1.9$ Hz, 1H), 7.73 (d, $J = 8.5$ Hz, 3H), 7.97 (d, $J = 1.9$ Hz, 1H), 9.80 (s, 1H). 13C NMR (151 MHz, DMSO-d$_6$) δ 26.75, 28.31, 115.83, 116.28, 119.66, 120.39, 126.23, 127.01, 130.10, 123.04, 136.12, 137.51, 141.67, 145.50, 147.52, 148.36, 184.13, 190.65. APCI-HRMS m/z: calc. for C$_{17}$H$_{14}$N$_2$O$_5$ (MH$^+$), 327.097, found 327.097. Purity (HPLC – 254 nm): 98.3%.

(2E)-3-(3,4-Dihydroxy-5-nitrophenyl)-1-phenylprop-2-en-1-one (O)

A yield of 72% of a bright yellow powder was obtained. 1H NMR (600 MHz, DMSO-d$_6$) δ 2.08 (s, 3H), 7.56 (dd, $J = 15.4$, 7.7 Hz, 12H), 7.66 (dd, $J = 14.8$, 6.1 Hz, 8H), 7.82 (d, $J = 15.5$, 4H), 7.96 (s, 4H), 8.15 (d, $J = 7.7$ Hz, 8H), 10.60 (s, 8H). 13C NMR (151 MHz, DMSO-d$_6$) δ 30.73, 116.04, 118.97, 121.51, 125.56, 128.57, 128.82, 133.18, 137.61, 137.89, 142.61, 143.55, 147.86, 188.95. APCI-HRMS m/z: calc. for C$_{15}$H$_{11}$NO$_5$ (MH$^+$), 286.070, found 286.071. Purity (HPLC – 254 nm): 96.5%.

(2Z)-2-Bromo-3-(3,4-dihydroxy-5-nitrophenyl)-1-phenylprop-2-en-1-one (Q)

A yield of 77.6% of a dull yellow powder was obtained. 1H NMR (600 MHz, DMSO-d$_6$) δ 7.53 (s, 1H), 7.66 (d, $J = 15.5$ Hz, 1H), 7.79 (t, $J = 11.2$ Hz, 3H), 7.96 (s, 1H), 8.09 (d, $J = 8.4$ Hz, 2H), 10.59 (s, 2H). APCI-HRMS m/z: calc. for C$_{15}$H$_{10}$BrNO$_5$ (MH$^+$), 363.981, found 363.981. Purity (HPLC – 254 nm): 97.7%.

(2Z)-2-Bromo-3-(3,4-dihydroxy-5-nitrophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (S)

A yield 76%, of a yellow powder was obtained, after the crude was extracted with 3x50mL ethyl acetate and then the solvent was removed under reduced pressure. 1H NMR (600 MHz, DMSO-d$_6$) δ 2.08 (s, 2H), 7.17 (d, $J = 16.0$ Hz, 1H), 7.44 (s, 1H), 7.68 (d, $J = 16.0$ Hz, 2H), 7.80 (s, 1H), 8.10 (s, 1H), 10.59 (s, 2H). APCI-HRMS m/z: calc. for C$_{15}$H$_{9}$BrFNO$_5$ (MH$^+$), 381.972, found 383.022. Purity (HPLC – 254 nm): 91%.

(2Z)-2-Bromo-3-(3,4-dihydroxy-5-nitrophenyl)-1-(4-isocyanophenyl)prop-2-en-1-one (T)

The crude was recrystallised from acetonitrile to produce a yield of 21.4% of a dull yellow powder. 1H NMR (600 MHz, DMSO-d$_6$) δ 7.17 (d, $J = 16.0$ Hz, 1H), 7.40 (dd, $J = 24.3$, 15.8 Hz, 2H), 7.56 (s, 1H), 7.68 (d, $J = 16.0$ Hz, 1H), 7.89 – 7.77 (m, 2H), 7.93 (s, 1H), 10.69 (s, 1H). APCI-HRMS m/z: calc. for C$_{16}$H$_{9}$BrN$_2$O$_5$ (MH$^+$), 388.976, found 389.051.
3.6.4 Protocol for the determination of IC₅₀ values for the inhibition of MAO

All enzyme reactions were carried out in white polypropylene 96-well microtiter plates to a final volume of 200 µL. The reactions contained potassium phosphate buffer (100 mM, pH 7.4, made isotonic with 20.1 mM KCl), kynuramine (50 µM) and the test inhibitors at seven different concentration levels namely 0; 0.003; 0.01; 0.1; 1; 10 and 100 µM. Stock solutions of the inhibitors were prepared in dimethyl sulfoxide (DMSO) and added to reactions to yield a final concentration of 4% (v/v) DMSO. Control reactions were carried out in the absence of an inhibitor that also contained 4% DMSO.

The reactions were incubated for 30 minutes at 37 °C and were subsequently initiated with the addition of MAO-A and MAO-B to yield a final enzyme concentration of 0.0075 mg protein/mL and 0.015 mg protein/mL for MAO-A and MAO-B, respectively. The reactions were incubated for a further 20 minutes at 37 °C, and were subsequently terminated by the addition of 80 µL NaOH (2 N). The concentration of 4-hydroxyquinoline generated by MAO was measured by fluorescence spectrophotometry at an excitation wavelength of 310 nm and an emission wavelength of 400 nm. Refer to Figure 3-10.

To quantitate 4-hydroxyquinoline, a linear calibration curve was constructed with authentic 4-hydroxyquinoline (0.047–1.50 µM). In order to confirm that the test compounds do not fluoresce or quench the fluorescence of 4-hydroxyquinoline, control samples were included in the assay. These control samples (200 µL) contained 4-hydroxyquinoline (1.50 µM), the test compound (100 µM) and 80 µL NaOH. By employing the calibration curve, the enzyme catalytic rates were determined and sigmoidal plots of rate versus the logarithm of the concentration of the test inhibitor were constructed. These kinetic data were fitted to the one site competition model incorporated into the Prism 5 Software Package (GraphPad) and the corresponding IC₅₀ values of the test compounds were estimated. The IC₅₀ values were determined in triplicate and expressed as mean ± standard deviation (SD) as seen in Table 3-1 and Table 3-2 (Engelbrecht et al., 2015; Engelbrecht et al., 2018; Mostert et al., 2015; Petzer et al., 2014).

3.6.5 Protocol for the determination of IC₅₀ values for the inhibition of COMT

To determine whether the synthesised compounds are inhibitors of COMT, the method described in literature (Borchardt, 1974) was used.

This protocol uses esculetin (6,7-dihydroxycoumarin) as substrate for COMT. After the test inhibitor is incubated with esculetin and COMT, fluorescence spectrophotometry was used to quantify the enzymatic product, scopoletin. Sigmoidal dose-response curves of COMT activity versus the logarithm of inhibitor concentration (Log[I]) were constructed using the Prism 5.0
software package (GraphPad), and the IC\textsubscript{50} values were determined in triplicate and expressed as mean ± standard deviation (SD). As enzyme source, the soluble fraction obtained from homogenates of rat liver tissue was used.

The rat liver tissue was obtained under category 0 ethical approval (AnimCare). Sprague Dawley rats were bred, supplied and housed at the Vivarium of the Preclinical Drug Development Platform at the Potchefstroom campus of the North-West University (NWU) (SACV reg no. FR15/13458; SANAS GLP compliance no. G0019). Experiments were approved by the AnimCare animal research ethics committee (NHREC reg. number AREC-130913-015) at the NWU. All animals were maintained and procedures performed in accordance with the code of ethics in research, training and testing of drugs in South Africa, and complied with national legislation. Ethical approval for the collection and use of animal tissue was obtained from the Research Ethics Committee, NWU. Ethics approval number: NWU-00564-19-S5. The liver tissue was prepared as reported in literature (Hirano et al., 2005; Zhu et al., 1994).

Frozen liver tissue was washed with ice cold saline, cut into smaller pieces and homogenised in three volumes sodium phosphate buffer (25 mM, pH 7.8, containing 0.5 mM dithiothreitol) for 2 min with a polytron homogeniser. The homogenate was centrifuged at 100,000 × g for 30 min at 4 °C, and the supernatant was stored as soluble COMT at −86 °C. Protein determination was carried out by the method of Bradford (Bradford, 1970). The enzyme reactions were prepared in potassium phosphate buffer (100 mM, pH 7.4) and contained esculetin, S-adenosyl-L-methionine as co-factor, magnesium chloride, L-cysteine, the test inhibitor (0.003–80 μM) and COMT. All reactions were carried out in 96-well microtiter plates (black) to a volume of 200 μl, and stock solutions of the test inhibitors were prepared in DMSO and added to the reactions to yield a final DMSO concentration of 4%. After addition and mixing of the reagents, the 96-well plate was placed in the oven to pre-incubate at 37 °C for 15 min. The reactions were initiated with the addition of the enzyme and the fluorescence intensities were recorded continuously (λ\textsubscript{ex} 355, λ\textsubscript{em} 460 nm) for 500 s (8.3 min) using a SpectraMax® iD3 instrument (Molecular Devices). From plots of fluorescence intensity versus time, the slopes were recorded and used to construct sigmoidal dose-response curves of slope versus Log[I]. For this purpose, the Prism 5.0 software package (GraphPad) was used. IC\textsubscript{50} values were determined in triplicate from the sigmoidal plots, and expressed as mean ± SD.
3.7 Bibliography

References

CHAPTER 4 CONCLUSIONS

4.1 Final remarks

In this study, the main goal to design and synthesise bicyclic nitrocatechol chalcone derivatives, were achieved. By following a hybridisation approach, dual-target-directed inhibitors of MAO and COMT were designed. By using Claisen-Schmidt condensation in an acidic environment, the chalcones were produced in poor (21%) to high (>75%) yields.

Three series of chalcone derivatives were thus synthesised and included tetralone, indanone and open-chain chalcone derivatives. The general structures of these series are given in Tables 3-1 and Table 3-2. The results of the MAO inhibition studies showed that the potencies of the compounds are average to poor, ranging between 7.2 to 60.5 µM for MAO-B, and 29.43 to 53.07 µM for MAO-A. Most compounds showed selectivity towards MAO-B, except compounds J, B and E. Selectivity towards MAO-B is advantageous since MAO-B is the target for reducing dopamine metabolism in PD. Thus the side effects of MAO-A can be avoided as all the compounds showed lower potency towards the MAO-A isoform. MOA-B activity can be increased by decreasing polarity of the molecules, as seen in the difference in activity between compounds D and F. In this case, substitution of the hydroxy group on the 6-position with a methoxy group resulted in an increase in activity.

In contrast, the compounds proved to be potent COMT inhibitors with IC$_{50}$ values ranging from 0.162 to 1.69 µM. This is due to the use of the nitrocatechol moiety, which is present in potent COMT inhibitors. Compounds A–E and N showed more potent inhibition than the reference drugs tolcapone (0.26 µM) and entacapone (0.25 µM). Compound H, a thiochromanone, showed the lowest activity, possibly due a loss of polar interaction with COMT. The indanone compounds proved to be higher potency COMT inhibitors compared to the tetralones, and either a methoxy or hydroxy at the 5-position of the bicyclic system are suitable for COMT inhibition.

It may be concluded that some of the compounds investigated in this study exhibit dual inhibition of MAO-B and COMT, thus the hypothesis of designing dual inhibitors by hybridisation of active moieties is possible. Due to potent COMT inhibition and average MAO-B inhibition values expressed by compounds G and L, it can be postulated that these molecules can conserve endogenous dopamine levels and show promise as therapies in PD.

However, when the physicochemical properties are taken into account, these compounds showed in in silico simulations that the brain penetration is very low. The tPSA of the compounds are too high to be properly absorbed though the BBB. This will lead to a very low concentration in the
CNS and the targeted enzymes will not be reached. COMT in the periphery will, however, be adequately inhibited, thus increasing the amount of unaltered or non-metabolised L-dopa from conventional PD therapy. The absorption of these compounds from the gastrointestinal tract may be good, as seen by the CLogP values of 1–3. The potential use of these compounds in conjunction with an AADC inhibitor can show promise in the future, as both of these therapies will inhibit the peripheral metabolism of L-dopa.

Certain assays that could have been included in this study is the ORAC (oxygen radical absorbance capacity), FRAP (ferric oxidation/reduction) and TBARS (thioburbituric acid-reactive substances) assays (Greeff et al., 2012). These assays test for antioxidant potency, and since neurodegenerative disease such as PD are associated with oxidative stress and oxidative damage, this could show a possible third mechanism of action for the chalcones in this study.

Other possible nitrocatechol derivatives of chalcone may also be synthesised to be evaluated for inhibitory action future studies. These are 6,7-dihydroxy-5-nitro-3,4-dihydronaphthalen-1(2H)-one or 5,6-dihydroxy-4-nitro-2,3-dihydro-1H-inden-1-one derivatives. In this case, the nitrocatechol moiety is part of the bicyclic scaffold as seen in figure 4-1. This would be an investigational study that may attempt to enhance MAO-B inhibition.

The success is this study may be attributed to hybridisation, a now acceptable method of drug design. The conclusions of this study can be used in future studies to design more potent dual inhibitors of COMT and MAO-B.

4.2 Future dual inhibitors of COMT and MAO-B

The use of the catechol moiety can be problematic since it is a moiety shared with many endogenous neurotransmitters. This can be overcome by replacing the moiety used for COMT inhibition. The large tPSA may be reduced by replacing the nitrocatechol for N-heterocyclic pyridinones as reported in literature (Zhao et al., 2016). Literature has shown that derivatives of N-heterocyclic pyridinones has potent COMT inhibition properties when tested against the
membrane-bound COMT isoform. Compound 1a this has an IC$_{50}$ value of 40 nM for the inhibition of COMT, followed by 1b with an IC$_{50}$ of 35 nM (Zhao et al., 2016). The pharmacophore of this series is the 3-hydroxy-4-pyridinone system.

Figure 4-2: Structures discussed in text (Zhao et al., 2016).

Literature reports that bicyclic systems are often good potency MAO-B inhibitors (Section 3.3.5, Figure 3-5). In a study by Meiring et al. (2013), a series of 3,4-dihydro-2(1H)-quinolinone derivatives were synthesised and evaluated as human MAO inhibitors. This study showed that substitution of 3,4-dihydro-2(1H)-quinolinone with the benzoyloxy moiety produced potent inhibitors (IC$_{50}$ values of 0.0062 µM [2a] and 0.0029 µM [2b], respectively), which are all selective for MAO-B (selectivity index of 2751). Both inhibitors showed reversible inhibition in dialysis studies. The study concluded that the bromine substituent on the benzoyloxy ring is more potent than the chlorine substituent, and that placement of the benzoyloxy moiety on the C7 position resulted in better overall inhibition compared to the C6 position (Meiring et al., 2013)

Figure 4-3: Structures of 3,4-dihydro-2(1H)-quinolinone derivatives discussed in the text (Meiring et al., 2013).
Figure 4-4: Hybridisation strategy for the 3-hydroxyquinolin-4(1H)-one derivatives as dual MAO and COMT inhibitors.

With these two studies in mind, a new hybrid structure can be proposed that combines the quinolinone scaffold with the N-heterocyclic pyridinone moiety as seen in Figure 4-4. These new hybrid compounds can be substituted with hydroxy- and methoxy-containing benzyloxy substituents (3a), phenyl substituents (3b), phenoxy substituents (3c) or the beta-styryl ketone (3d). Phenyl or phenoxy derivatives can mimic the chalcone structure, while the hybrid compounds substituted with beta-styryl ketone will closely resemble the structure of chalcone (Duarte et al., 2007).
Oxidative stress is described as an imbalance between pro-oxidants (reactive oxygen species) and anti-oxidants (Patel, 2016). This leads to many secondary complications, many of which further increases oxidative stress, such as neuroinflammation, increased macrophage activation and permeation of mitochondrial cell walls (Berman & Hastings, 1999; Blesa et al., 2015; Ebadi et al., 1996; Meiser et al., 2013). A previous study showed the potential of 4-quinolones and related flavones as antioxidants (4a–b), and the results indicated that substitution with hydrogen donating substituents increases antioxidant effect, as shown with assays for ORAC (oxygen radical absorbance capacity), FRAP (ferric oxidation/reduction) and TBARS (thioburbituric acid-reactive substances) (Greeff et al., 2012). The proposed hybrid derivatives 3a–d show similarity in structures to these 4-quinolones, which suggest that 3a–d may possess antioxidant activities. This would further increase their relevance to the treatment of PD.

![Chemical structures](image)

Figure 4-5: 2-Phenylquinolin-4(1H)-one derivatives that showed antioxidant activity in a previous study (Greeff et al., 2012).
REFERENCES:

ANNEXURE A 1H AND 13C NMR SPECTRA

$(2E)$-2-$(3,4$-Dihydroxy-5-nitrobenzylidene)-2,3-dihydro-1H-inden-1-one (A) [1H NMR]

$(2E)$-2-$(3,4$-Dihydroxy-5-nitrobenzylidene)-2,3-dihydro-1H-inden-1-one (A) [13C NMR]
(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5,6-dimethoxy-2,3-dihydro-1H-inden-1-one (B) \[^1H\text{NMR}\]

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5,6-dimethoxy-2,3-dihydro-1H-inden-1-one (B) \[^{13}C\text{NMR}\]
(6\text{E})-6-(3,4-Dihydroxy-5-nitrobenzylidene)-6,7-dihydro-5\text{H}-indeno[5,6-d][1,3]dioxol-5-one (C) [1H NMR]

(2\text{E})-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5-methoxy-2,3-dihydro-1\text{H}-inden-1-one (D) [1H NMR]
(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5-methoxy-2,3-dihydro-1H-inden-1-one (D) [\(^{13}\)C NMR]

(2Z)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-6-hydroxy-1-benzofuran-3(2H)-one (E) [\(^{1}H\) NMR]
(2Z)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-6-hydroxy-1-benzofuran-3(2H)-one (E) $[^{13}\text{C NMR}]$

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5-hydroxy-2,3-dihydro-1H-inden-1-one (F) $[^1\text{H NMR}]$
(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5-hydroxy-2,3-dihydro-1H-inden-1-one (F) $[^{13}C$ NMR]

(3E)-3-(3,4-Dihydroxy-5-nitrobenzylidene)-2,3-dihydro-4H-chromen-4-one (G) $[^1H$ NMR]
(3E)-3-(3,4-Dihydroxy-5-nitrobenzylidene)-2,3-dihydro-4H-chromen-4-one (G) [13C NMR]

(3Z)-3-(3,4-Dihydroxy-5-nitrobenzylidene)-2,3-dihydro-4H-thiochromen-4-one (H) [1H NMR]
(3Z)-3-(3,4-Dihydroxy-5-nitrobenzylidene)-2,3-dihydro-4H-thiochromen-4-one (H) \([^{13}\text{C NMR]}\)

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-3,4-dihydronaphthalen-1(2H)-one (I) \([^{1}\text{H NMR]}\)
(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-3,4-dihydronaphthalen-1(2H)-one (I) \[^{13}\text{C} \text{NMR}]\)

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-6,7-dimethoxy-3,4-dihydronaphthalen-1(2H)-one (J) \[^{1}\text{H} \text{NMR}]\)
(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-6,7-dimethoxy-3,4-dihydronaphthalen-1(2H)-one (J) \[^{13}\text{C NMR}\]

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-6-methoxy-3,4-dihydronaphthalen-1(2H)-one (K) \[^{1}\text{H NMR}\]
(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-6-methoxy-3,4-dihydronaphthalen-1(2H)-one (K) [\(^{13}\)C NMR]

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5-methoxy-3,4-dihydronaphthalen-1(2H)-one (L) [\(^{1}\)H NMR]
$(2E)$-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5-methoxy-3,4-dihyronaphthalen-1($2H$)-one (L) $[^{13}$C NMR]

$(2E)$-2-(3,4-Dihydroxy-5-nitrobenzylidene)-7-methoxy-3,4-dihyronaphthalen-1($2H$)-one (M) $[^{1}$H NMR]
(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-7-methoxy-3,4-dihyronaphthalen-1(2H)-one (M) $[^{13}\text{C}\ NMR]$

(2E)-6-Amino-2-(3,4-dihydroxy-5-nitrobenzylidene)-3,4-dihyronaphthalen-1(2H)-one (N) $[^{1}\text{H}\ NMR]$
(2E)-6-Amino-2-(3,4-dihydroxy-5-nitrobenzylidene)-3,4-dihyronaphthalen-1(2H)-one (N) $[^{13}\text{C}]$ NMR

(2E)-3-(3,4-Dihydroxy-5-nitrophenyl)-1-phenylprop-2-en-1-one (O) $[^{1}H$ NMR
(2E)-3-(3,4-Dihydroxy-5-nitrophenyl)-1-phenylprop-2-en-1-one (O) $[^{13}\text{C NMR}]$

(2Z)-2-Bromo-3-(3,4-dihydroxy-5-nitrophenyl)-1-phenylprop-2-en-1-one (Q) $[^{1}\text{H}]$
(2Z)-2-Bromo-3-(3,4-dihydroxy-5-nitrophenyl)-1-phenylprop-2-en-1-one (Q) [\(^{13}\)C NMR]
ANNEXURE B MS SPECTRA

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-2,3-dihydro-1H-inden-1-one (A)

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
</tr>
<tr>
<td>Focus</td>
</tr>
<tr>
<td>Scan Begin</td>
</tr>
<tr>
<td>Scan End</td>
</tr>
</tbody>
</table>

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5,6-dimethoxy-2,3-dihydro-1H-inden-1-one (B)

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
</tr>
<tr>
<td>Focus</td>
</tr>
<tr>
<td>Scan Begin</td>
</tr>
<tr>
<td>Scan End</td>
</tr>
</tbody>
</table>

(6E)-6-(3,4-Dihydroxy-5-nitrobenzylidene)-6,7-dihydro-5H-indeno[5,6-d][1,3]dioxol-5-one (C)

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
</tr>
<tr>
<td>Focus</td>
</tr>
<tr>
<td>Scan Begin</td>
</tr>
<tr>
<td>Scan End</td>
</tr>
</tbody>
</table>
(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5-methoxy-2,3-dihydro-1H-inden-1-one (D)

(2Z)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-6-hydroxy-1-benzofuran-3(2H)-one (E)

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5-hydroxy-2,3-dihydro-1H-inden-1-one (F)
(3E)-3-(3,4-Dihydroxy-5-nitrobenzylidene)-2,3-dihydro-4H-chromen-4-one (G)

<table>
<thead>
<tr>
<th>Source Type</th>
<th>APCI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Set Nebulizer</th>
<th>1.6 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Not active</td>
<td>Set Capillary</td>
<td>-4000 V</td>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
<td>Set End Plate Offset</td>
<td>-500 V</td>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>1600 m/z</td>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

(3Z)-3-(3,4-Dihydroxy-5-nitrobenzylidene)-2,3-dihydro-4H-thiochromen-4-one (H)

<table>
<thead>
<tr>
<th>Source Type</th>
<th>APCI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Set Nebulizer</th>
<th>1.6 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Not active</td>
<td>Set Capillary</td>
<td>-4000 V</td>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
<td>Set End Plate Offset</td>
<td>-500 V</td>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>1600 m/z</td>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-3,4-dihydronaphthalen-1(2H)-one (I)

<table>
<thead>
<tr>
<th>Source Type</th>
<th>APCI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Set Nebulizer</th>
<th>1.6 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Not active</td>
<td>Set Capillary</td>
<td>-4000 V</td>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
<td>Set End Plate Offset</td>
<td>-500 V</td>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>1600 m/z</td>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

MS, 0.4-0.4min #22-24

MS, 0.5min #30

MS, 0.4min #26
(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-6,7-dimethoxy-3,4-dihydronaphthalen-1(2H)-one (J)

Acquisition Parameter

<table>
<thead>
<tr>
<th>Source Type</th>
<th>APCI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Set Nebulizer</th>
<th>1.6 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Not active</td>
<td>Set Capillary</td>
<td>4000 V</td>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
<td>Set End Plate Offset</td>
<td>-500 V</td>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>1600 m/z</td>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-6-methoxy-3,4-dihydronaphthalen-1(2H)-one (K)

Acquisition Parameter

<table>
<thead>
<tr>
<th>Source Type</th>
<th>APCI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Set Nebulizer</th>
<th>1.6 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Not active</td>
<td>Set Capillary</td>
<td>4000 V</td>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
<td>Set End Plate Offset</td>
<td>-500 V</td>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>1600 m/z</td>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-5-methoxy-3,4-dihydronaphthalen-1(2H)-one (L)

Acquisition Parameter

<table>
<thead>
<tr>
<th>Source Type</th>
<th>APCI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Set Nebulizer</th>
<th>1.6 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Not active</td>
<td>Set Capillary</td>
<td>4000 V</td>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
<td>Set End Plate Offset</td>
<td>-500 V</td>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>1600 m/z</td>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>
(2E)-2-(3,4-Dihydroxy-5-nitrobenzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one (M)

Acquisition Parameter
<table>
<thead>
<tr>
<th>Source Type</th>
<th>APCI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Set Nebulizer</th>
<th>1.6 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Not active</td>
<td>Set Capillary</td>
<td>4000 V</td>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
<td>Set End Plate Offset</td>
<td>-500 V</td>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>1000 m/z</td>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

(2E)-6-Amino-2-(3,4-dihydroxy-5-nitrobenzylidene)-3,4-dihydronaphthalen-1(2H)-one (N)

Acquisition Parameter
<table>
<thead>
<tr>
<th>Source Type</th>
<th>APCI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Set Nebulizer</th>
<th>1.6 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Not active</td>
<td>Set Capillary</td>
<td>4000 V</td>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
<td>Set End Plate Offset</td>
<td>-500 V</td>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>1600 m/z</td>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

(2E)-3-(3,4-Dihydroxy-5-nitrophenyl)-1-phenylprop-2-en-1-one (O)

Acquisition Parameter
<table>
<thead>
<tr>
<th>Source Type</th>
<th>APCI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Set Nebulizer</th>
<th>1.6 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Not active</td>
<td>Set Capillary</td>
<td>4000 V</td>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
<td>Set End Plate Offset</td>
<td>-500 V</td>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>1600 m/z</td>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>
(2Z)-2-Bromo-3-(3,4-dihydroxy-5-nitrophenyl)-1-phenylprop-2-en-1-one (Q)

(2E)-3-(3,4-Dihydroxy-5-nitrophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (R)

(2Z)-2-Bromo-3-(3,4-dihydroxy-5-nitrophenyl)-1-(4-isocyanophenyl)prop-2-en-1-one (T)