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Bluetongue (BT) is a haemorrhagic disease of wild and domestic ruminants with a huge

economic worldwide impact on livestock. The disease is caused by BT-virus transmitted

by Culicoides biting midges and disease control without vaccination is hardly possible.

Vaccination is the most feasible and cost-effective way to minimize economic losses.

Marketed BT vaccines are successfully used in different parts of the world. Inactivated

BT vaccines are efficacious and safe but relatively expensive, whereas live-attenuated

vaccines are efficacious and cheap but are unsafe because of under-attenuation, onward

spread, reversion to virulence, and reassortment events. Both manufactured BT vaccines

do not enable differentiating infected from vaccinated animals (DIVA) and protection

is limited to the respective serotype. The ideal BT vaccine is a licensed, affordable,

completely safe DIVA vaccine, that induces quick, lifelong, broad protection in all

susceptible ruminant species. Promising vaccine candidates show improvement for one

or more of these main vaccine standards. BTV protein vaccines and viral vector vaccines

have DIVA potential depending on the selected BTV antigens, but are less effective and

likely more costly per protected animal than current vaccines. Several vaccine platforms

based on replicating BTV are applied for many serotypes by exchange of serotype

dominant outer shell proteins. These platforms based on one BTV backbone result in

attenuation or abortive virus replication and prevent disease by and spread of vaccine

virus as well as reversion to virulence. These replicating BT vaccines induce humoral and

T-cell mediated immune responses to all viral proteins except to one, which could enable

DIVA tests. Most of these replicating vaccines can be produced similarly as currently

marketed BT vaccines. All replicating vaccine platforms developed by reverse genetics

are classified as genetic modified organisms. This implies extensive and expensive safety

trails in target ruminant species, and acceptance by the community could be hindered.

Nonetheless, several experimental BT vaccines show very promising improvements and

could compete with marketed vaccines regarding their vaccine profile, but none of these

next generation BT vaccines have been licensed yet.
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INTRODUCTION

Bluetongue Disease
Bluetongue (BT) is a hemorrhagic disease of wild and domestic
ruminants caused by bluetongue virus (BTV) (1, 2). BT is one
of the main veterinary diseases worldwide causing significant
economic losses (3, 4). The outcome of BTV infection varies
and depends on the pathogenicity of the virus strain and the
susceptibility of the ruminant host. Indigenous ruminants in BT
endemic areas, goats, and cattle are less susceptible than many
sheep breeds from BT-free areas (5). Sheep can induce severe
clinical disease (6, 7), whereas cattle rarely show clinical disease
but are readily infected and are an epidemiologically important
BTV reservoir. BTV is not contagious but transmitted by
biting competent Culicoides midges (8), whereas several recently
discovered BTV serotypes spread without midges by direct
contact transmission (9–11). Virulent BTV can also spread oro-
nasally or vertically (12, 13) and have been reported in the field
(14–16). A role of transplacental transmission in overwintering
has been hypothesized (17), and trade of pregnant heifers
can transport infectious BTV over long distances potentially
causing outbreaks in former BT-free areas by delivery of viremic
fetuses (18).

Bluetongue Virus
BTV is the prototype orbivirus within the genus Orbivirus of the
family of Reoviridae (19). Orbiviruses are non-enveloped viruses
and consist of a three-layered icosahedral capsid containing a
segmented genome. Ten double stranded RNA genome segments
S1-10 encode seven structural proteins VP1-7 and at least 4
non-structural proteins NS1-4 (19–22). BTV infection results
in a transcriptionally active core particle producing mRNAs of
all ten segments which are released into the cytoplasm (23).
BTV was recovered from core-derived mRNAs about 20 year
later (24), and BTV was rescued by double transfection of ten
synthetic RNA run-off transcripts from cDNAs, which is known
as reverse genetics (25). Reverse genetics has opened endless
possibilities to study viral functions in the BTV infected cell, in
particular of non-structural proteins (26, 27). The BTV species
or serogroup consists of many neutralization groups hardly
showing cross-neutralizing antibodies and poor cross-protection
(28, 29) (Figure 1).

BTV Serotypes
BTV serotypes 1–24 have been recognized by cross neutralization
assays and have been confirmed by phylogenetic analysis of
S2, which encodes the serotype specific and immunodominant
VP2 protein of the outer shell (34) (Figure 1). Eastern and
western topotypes of many serotypes are recognized, suggesting
segregation a long time ago (35). In the last decade, at least
five new BTV serotypes have been discovered (30, 32, 33, 36–
38) (Figure 1). BTV25-27 are known as “atypical BTV,” because,
in contrast to typical BTV1-24, these are exclusively found in
small ruminants, are not pathogenic, spread by direct contact
transmission, and cannot be cultured in Culicoides cells (9, 10,
39–41). BTV28 is also transmitted by in-contact transmission
but causes clinical disease and its VP2 is closest related to the

FIGURE 1 | Phylogenetic and neutralization relationship between BTV

serotypes. Related BTV serotypes based on genome segment 2 expressing

serotype specific immunodominant outer shell protein VP2 are grouped by

circles. Cross neutralization between BTV serotypes is indicated by lines;

strong (thick), some (normal) and weak neutralization (dashed). Adapted from

Erasmus et al. (28), and Maan et al. (30) and updated for BTV27-29 from

Bumbarov et al. (31), Wright (32), and Zientara (33).

main BTV genotype group consisting of serotypes 4, 10, 11, 17,
20, and 24 (31). BTV29 has been isolated from Alpaca in South
Africa and is closely related to serotype15 based on phylogenetic
and cross neutralization analysis (32). Two recently found BTVs
are not studied in detail yet, but are proposed as new serotypes
according to phylogenetic analysis of S2 sequences (37, 38).
Discovery of more typical and atypical BTV serotypes in livestock
and wild ruminant species can be expected by intensified surveys
with more sensitive and new technologies (42). These “to-be-
discovered” BTVs are likely not pathogenic but could become
of concern, since mutations and reassortment with virulent
BTV serotypes quickly change virus characteristics, including
pathogenicity and the epidemiology.

Epidemiology
For a long time, BT has been widespread in tropical and
subtropical regions all over the world, but is restricted and
dependent on the local presence of specific competent biting
midges in different parts of the world (43). At the end of the
twentieth century, BT-affected areas had started to expand to
former BT-free areas with a moderate climate, and outbreaks
caused by emerging BTV serotypes have been frequently reported
since then (44, 45).
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BTV1, 2, 4, 9, and 16 entered southern Europe associated
with expansion of the Culicoides imicola vector from northern
Africa. In 2006, BTV8 (BTV8/net06) emerged in north-western
Europe (15, 46), and was spread by indigenous midge species of
the Culicoides obsoletus complex (47–49). Likely, global warming
favors expansion of well-known competent midges species as
well as increases the vector competence of some midge species.
Subsequently, BTV8/net06 survived the inter-seasonal “vector-
free” period known as “overwintering” and was spread to many
European countries resulting in the largest recorded BT outbreak.
Vaccination campaigns eradicated BTV8 in most European
countries but BTV8 re-emerged in France in 2015 after 5 years
of silence (50). This virus variant, BTV8/fr15, caused a lower
viremia, less severe disease and virus transmission was much
slower suggesting a lower vector competence. Likely, one or more
amino acid changes in BTV8/fr15 are involved in this changed
phenotype (51). In 2014, a new BTV reassortant of serotype 4
emerged in south-eastern Europe (52), and expanded to a wide
area into Italy and mainland France in following years. Like
BTV9 in this area, this BTV reassortant is likely spread by C.
obsoletus, since C. imicola has not been found in the Balkan
region. In 2017-18, BTV3 “jumped” from Tunisia to the Italian
islands Sicily and Sardinia (53–55).

Many serotypes are endemic in Northern Australia but
BTV5 emerged in 2015 for the first time (56). Additionally,
the Australian authorities have moved the installed border of
the BT-free area, including quarantine centers, southwards
due to expansion of the BTV affected area (https://
animalhealthaustralia.com.au). In large parts of the USA,
serotypes 2, 10, 11, 13, and 17 are endemic and temporarily
expand further northwards up to Canada depending on annual
environmental conditions (57). In addition, 11 serotypes
circulate in south-eastern USA, mainly in Florida, and
reassortants of serotype 3 have been recently isolated in
several states in the USA (58). Many serotypes are endemic in
large parts of South America (59), but little is known of the
BT-history on this continent.

BTV constantly evolves by mutations and reassortment events
leading to invasion of new variants in areas with susceptible hosts
and competent midges (60, 61). Additionally, global warming
and climate change likely contribute to expansion of BT affected
areas (57, 62). Intensified movements of animals and animal
products will also increase the chance on incursions of BT. In
conclusion, (re-)emerging BT outbreaks can be expected all over
the world. Preparedness on this threatening situation should be of
high priority to safeguard the health and production of ruminant
livestock in developing and developed countries (63).

Control of Bluetongue
BT control by restrictions on trade and movements and
vector control is inadequate, insufficient, non-proportional, and
expensive compared to the impact, while destruction of infected
ruminants is not acceptable by the community. The failure in
disease control is mainly caused by uncontrolled spread of BTV
by infected midges. Vaccination is the preferred method for BT
control (64–66). Prophylactic and emergency vaccination have
contributed to BT control and significantly reduce economic

losses caused by mortality, morbidity, reproduction problems,
animal losses and lower milk production (67–69). The success of
vaccination campaigns is best demonstrated by the eradication of
BT in many European countries after the devastating outbreak
caused by BTV8. Eradication of BT strongly depends on
participation of animal owners to reach a high vaccination
coverage of livestock, the used vaccine, and the field situation,
like the presence of wildlife species as BTV reservoir and
thus potential re-incursions (70). Still, intensified and repeated
monitoring for several years is required to proof the absence
of BTV circulation. Serological monitoring in the vaccination
population is hindered by lack of specific assays to discriminate
between infected and vaccinated animals, but is feasible by testing
of non-vaccination sentinel herds or testing of selected new-
born (non-vaccinated) animals after maternal antibodies have
been disappeared.

VACCINES

Vaccine Profile
The ideal BT vaccine is efficacious, safe, affordable, and has
been licensed. Preferably, the vaccine is a DIVA vaccine
[Differentiation Infected from VAccinated individuals (71)] to
support eradication and to safely allow trade and movement
of DIVA-vaccinated and BT-naïve animals. Each of these
main standards for vaccines is the sum of several criteria
(Figure 2). Efficacy is divided into protection against disease
and blocking of onward virus transmission. Further, protection
should be quick and lasting, preferably lifelong. Because of
many neutralization groups, the ideal vaccine is broad protective
or is tailor-made to anticipate on circulation of multiple
serotypes. Safety is subdivided into non-pathogenic and no
adverse effects in ruminants of different status, like pregnant
and young animals. Further, the vaccine should not spread into
the environment, like through uptake and spread by midges or
in-contact transmission. Affordability consists of costs/dose and

FIGURE 2 | The main standards for modern veterinary vaccines. Each

standard can be subdivided into several criteria. The ideal vaccine completely

meets all these criteria, but profiles of marketed and experimental vaccines

mostly compromise between standards depending on the foreseen aim of

vaccination and on the field situation Feenstra and van Rijn (70).
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price/protected animal. The costs/dose depends on development
costs and production costs, while the price/protected animal also
depends on vaccine efficacy and vaccination strategy, like one
single vaccination or repeated vaccinations to achieve lasting
protection. Consequently, affordability is also associated with
the value and lifespan of the susceptible species in a certain
country or region. DIVA is subdivided into genetic DIVA to
detect acute BTV infections, and serological DIVA to massively
monitor (vaccinated) ruminant populations for anti-BTV Abs
in order to detect past BTV circulation. Finally, for massive
use and success of vaccination campaigns, the ideal BT vaccine
should be licensed, and of course, its own success will increase
the acceptance by users.

Marketed Vaccines
Currently, two types of marketed BT vaccines are used in
large parts of the world, conventionally live-attenuated vaccines
(LAVs) and inactivated BT vaccines. Both are based on whole BT-
virus, and induce immune responses against immunogenic BTV
proteins (Figure 3A).

Live-Attenuated Vaccines
Protection by LAV is serotype specific, although some cross
neutralization has been noticed (28) (Figure 1). A cocktail
containing LAVs of 14 serotypes did not result in broad
protection of sheep (72). However, multi-serotype LAV cocktails
can induce neutralizing antibodies against not-included
serotypes, and subsequent vaccinations with three different
pentavalent LAV cocktails induce broad protection (73). These
pentavalent cocktails contain 15 different serotypes in total;
bottle A (serotypes 1, 4, 6, 12, and 14), bottle B (serotypes 3,
8, 9, 10, and 11), and bottle C (serotypes 2, 5, 7, 13, and 19).
These LAVs induce some clinical reactions commonly including
a transient febrile reaction [reviews; (72, 73)], and may cause
teratogenic effects; abortions, stillbirths, fetal malformations,
temporary infertility in rams, and ewes, and reduced milk
production [(74) and included references]. Further, these LAV
cocktails require a correct order of use, since bottles B and C
contain under-attenuated LAVs, which could lead to a higher

incidence of disease if used as prime vaccination. Adverse effects
have been shown after vaccination with LAVs of serotypes 2, 4, 9,
and 16 in the Middle East and after temporarily use in southern
Europe [reviewed in (75)]. More importantly, LAV viremia is
sufficiently high for uptake by midges and thus onward spread,
and these LAVs are no longer used in South Europe (76–79).
Nonetheless, vaccination with LAVs prevent severe clinical
disease and reduce viremia of wild type BTV (wtBTV) (80).
Since the exact mutations and attenuation sites in LAVs are
unknown and are likely located on different genome segments
for each LAV, reversion to virulence and virulent variants by
reassortment are possible (75, 81, 82). Despite of the debatable
safety of conventionally live attenuated vaccines, these are used
in several parts of the world, since LAVs are cheap and effective,
while adverse reactions are marginal in local breeds (83, 84).

Inactivated Vaccines
In the 1970s and 1980s, inactivated BT vaccines have been
developed in the USA but have not been licensed (85–88). The
emergence of several BTV serotypes in Europe re-activated this
approach. Inactivated BT vaccines for some serotypes have been
licensed in Europe and are produced at industrial level on request
in case of emergency [reviewed in (89)]. Inactivated vaccine
cross protects early after vaccination by innate immunity but
protection switches to serotype specific protection later on (90).
In general, protection by inactivated vaccine is serotype specific,
although some heterologous protection against other serotypes
can be induced but hard to predict (91), whereas inactivated BT
vaccines for serotypes 1 and 4 showed negative interference for
serotype 4 (92). Inactivated BT vaccines are completely safe and,
although for a limited number of serotypes, the only type of BT
vaccine currently registered in Europe. Success of inactivated BT
vaccines is the best demonstrated by eradication of serotypes 1, 2,
4, and 8 in several European countries after massive vaccination
(75, 93–95). Field application shows very good records and
neutralizing antibodies persist for many years (96–98). Details
of BTV antigen production, formulation and adjuvant have not
been published in detail. The amount of antigen per dose of
inactivated BT vaccine typically corresponds to approximately

FIGURE 3 | Schematic representation of marketed and experimental BT vaccines. (A) Marketed vaccine is based on entire live-attenuated or inactivated BTV. (B)

Subunit vaccine is based on BTV protein(s) produced in artificial systems, and mostly contains the here presented serotype specific outer shell VP2 protein. (C) VLP

vaccine consists of empty virus particles produced in artificial systems consisting of BTV proteins VP2, 3, 5 and 7. (D) Viral vector vaccine is nonBT-virus expressing

one or more BTV proteins. Here, a VP2 expressing viral vector vaccine is presented. (E–G) The exchanged serotype specific outer shell proteins VP2 and VP5 are

indicated (white). (E) “Serotyped” LAV and inactivated BT vaccine are based on a common LAV or a production BTV backbone, respectively. (F) DISC vaccine lacks

expression of an essential BTV protein, and must be produced by in trans complementation as indicated. (G) DISA vaccine and NS4 knockout vaccine lacks

expression of nonessential NS3/NS3a or NS4, respectively (asterisk).
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107 TCID50 virus (99), which is about 100 times more than 105

TCID50 virus/dose for LAVs. Inactivated BT vaccine is therefore
more expensive but safer than LAV. Particularly, inactivated
vaccine is more expensive for large ruminants, since booster
vaccination is recommended (100). Inactivated BT vaccines are
potential DIVA vaccine, since non-structural (NS) proteins can
be removed from produced BTV antigen. ELISAs to detect
antibodies directed to NS proteins have been published (101–
103). However, stringent purification to removeNS proteins from
crude extract of produced BTV particles is required and will
increase the production costs of inactivated BT vaccine.

In conclusion, LAVs and inactivated BT vaccines are available,
although for the latter only for a limited number of serotypes.
Despite of several success stories in different parts of the world
for these marketed vaccines, both vaccine types have their
specific shortcomings. The current choice of vaccine depends on
many aspects, including the objective, local legislation, and their
vaccine profile taking pros and cons into account. Clearly, there
is ample room for improvement of currently used vaccines (70).

Promising Experimental Vaccines
Several experimental BT vaccines are under development, and
are divided into; (1) vaccines based on BTV proteins, e.g., VP2
subunit and virus like particles (VLPs); (2) viral vector vaccines
based on nonBT-virus expressing one or more BTV proteins,
and; (3) vaccine platforms based on BTV (Figure 3). These
approaches are subject of vaccine research for many years and
show improvements compared to marketed vaccines.

BTV Protein Vaccines
Experimental protein based BT vaccines all include the serotype
specific immunodominant VP2 protein (Figure 3B). Protein
production has been studied in bacteria (104), in insect cells
(105–108), in yeast (109), and in plants (110–112).

VP2 subunit vaccines
A protective dose by VP2 could be reduced 50% by adding
VP5 protein, but adding of Freund’s adjuvant or other BTV
proteins did not further enhance the protective immunity (113).
Recently, 150 µg purified VP2, NS1, and NS2 proteins with
the immunostimulating complex AbISCO-300 showed a good
cellular and humoral immunity in cattle (114). This candidate
protects calves 3 weeks after booster vaccination. T-lymphocytes
were mainly raised against NS1 and are cross reactive amongst
different serotypes because of a higher conservation of NS1
protein. This suggests that the cellular responses to NS1, and
likely NS2, can be the fundament of vaccine for other serotypes by
varying VP2 protein (115). Other experimental subunit vaccine
candidates have been developed and showed promising results
but are mostly not tested in the natural ruminant host yet
(110). Two domains of VP2 (aa 63–471 and 555–956) and
VP5 lacking the first 100 amino acids are produced in bacteria
as soluble fusion-proteins with glutathione S-transferase (116).
Immunized IFNAR(−/−) mice expressed neutralizing antibodies
and survived homologous challenge without clinical signs after
booster vaccination with 15 µg of the VP2 domains and 25
µg VP5. Addition of VP5 protein enhanced the immunity but

addition of VP7 did not. VP2, VP7, and NS1 were incorporated
in MuNS microspheres (117). An advantage of these inclusions
using the baculovirus expression system is the easy method of
purification and their potent adjuvant activity (118). IFNAR(−/−)

mice immunized with these particles without adjuvant induced
both humoral and cellular immune responses, and these mice
were protected against lethal BTV challenge. VP2 has also been
fused to the antigen presenting cell homing (APCH) molecule,
and was produced in insect cells (119). APCH fusion has
been demonstrated to improve the immune responses induced
against many different antigens. This antigen formulated with
oil adjuvant Montanide ISA50 showed a good humoral immune
response in cattle with a minimal dose of 900 ng, but a BTV
challenge has not been performed. IFNAR(−/−) mice have also
been vaccinated and specific CD4+ and CD8+ T cells producing
IFNγ following virus stimulation were observed, whereas lower
levels were recorded for mice immunized with only VP2. Part of
the VP2 gene has also been expressed using Pichia pastoris (109).
High level of secreted expression was achieved, and the produced
protein is immunogenic in rabbits.

VLP vaccines
VLPs are empty virus particles consisting of structural proteins
and are investigated as vaccine candidates for decades. BTV
VLPs consist of VP3, VP7, VP2, and VP5 which are expressed
in insect cells using baculovirus expression (120–124), and by
the Nicotiana benthamiana plant and the cowpea mosaic virus
based HyperTrans plant transient expression vector system (125)
(Figure 3C). A cocktail of VLPs for several serotypes 1, 2, 10,
13, and 17 protected against all five serotypes and partially
protected against some other serotypes (126). Huge sheep trials
with 50–200 sheep per trial showed afforded protection by
VLP vaccination against homologous challenge (127). Despite
of all these efforts and promising results, VLPs have not been
manufactured in that time. Most likely, marketed inactivated BT
vaccines are much cheaper to produce, and equally safe. Protein
and VLP production in plants have become an increasingly
popular alternative for artificial protein production of complex
high-value proteins, and might become cost effective.

New inactivated BT vaccines
A vaccine platform for production of inactivated BTVs has
been developed (128). Reverse genetics for BTV1 (25) was used
to exchange serotype specific outer shell proteins of 18 BTV
serotypes (Figure 3E). The prototype “serotyped” inactivated BT
vaccine for serotype 8 induces serotype specific neutralizing
antibodies and protects sheep against virulent BTV8 challenge.
This synthetic biology approach will optimize production and
will shorten the time to produce inactivated BT vaccines for new
and emerging serotypes.

Summarizing, protein based BT vaccines provide
opportunities compared to commercial inactivated BT vaccines.
VP2 subunit and VLP vaccines contain specific BTV proteins
and are produced in artificial production systems. Therefore,
these require minimal biocontainment facilities and can be DIVA
compliant. In particular, guaranteed vaccine safety by lack of
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infectious BTV or contamination of animal related viruses is a
great advantage of protein based BT vaccines.

Viral Vector Vaccines
Different viruses have been explored as vector for the
development viral vector vaccines expressing one or more
BTV proteins intracellularly and therefore inducing cytotoxic
T lymphocyte responses in addition to humoral responses
(Figure 3D). Replication of viral vector vaccines is abortive,
and will not induce clinical signs associated to BTV infection.
Canarypox virus expressing both VP2 and VP5 induced sterile
immunity in sheep (129), whereas capripox viruses expressing
VP2, VP7, NS1, or NS3 induced partial protection (130).
Myxomavirus expressing VP2 or both VP2 and VP5 also
partially protects sheep against BT (131). Bovine herpes virus
expressing VP2 targeted to the cell membrane also induced
partial protection in IFNAR(−/−) mice (132). Immunization
of IFNAR(−/−) mice with equine herpes virus expressing
both VP2 and VP5 protects against mortality but mild
clinical signs were observed after challenge (133). All these
viral vector vaccine candidates require booster vaccination,
and most of these did not completely protect mice or the
ruminant host. A promising exception with regard to previous
research on viral vector vaccines is the wide immunoprotection
of IFNAR(−/−) mice by inoculation with modified vaccinia
Ankara virus (MVA) vector expressing an immunodominant
epitope on BTV-NS1 protein (134). Research in ruminants
is needed to study broad and effective protection in the
target species.

The main obstacle of viral vector vaccines is immunity against
vector associated antigens by previous exposure [reviewed in
(135)]. Priming by DNA vaccination followed by vaccination
with viral vector vaccine can partially overcome the disadvantage,
and DNA vaccine is a potent inducer of Th1 responses. However,
reliability and effectiveness of DNA vaccines are questionable
by inefficient delivery and is therefore still limited [reviewed in
(136)]. Prime vaccination with BTV1 pCAGGS DNA vaccine
(137), followed by recombinant fowlpox virus vaccine for VP2,
VP5, or both proteins induced T-cell response in BALB/c mice,
and high titres of neutralizing antibodies in both mice and
sheep but protection against BTV was not investigated (138).
Similar strategies showed protection in IFNAR(−/−) mice with
plasmids encoding VP2, VP5, and VP7 and MVA vector (139),
and with NS1 instead of VP5 showed a higher T-cell response
and heterologous immunity (140). VP2 expression induced
protection to homologous challenge similar as expression of
VP2, VP5, and VP7 together, which indicates the importance
of serotype specific immunodominant VP2 protein (141). The
prime-boost strategy with DNA and viral vector vaccines is
promising but more research in the susceptible ruminant host
is needed.

Viral vector vaccines are potential DIVA vaccines and safety
with regard to lack of infectious BTV is guaranteed. In addition,
production of viral vector vaccines requires a permitted (lower)
biocontainment level and will lower the production costs. Some
viral vectors have been registered and likely further reduces the
costs to license these viral vector vaccines for BT.

Replicating BT Vaccines (MLVs)
Development of reverse genetics for orbivirus prototype BTV
was a breakthrough in orbivirus research (25), and has been
optimized to robustly generate BTV mutants, modified-live
vaccines (MLVs) and “synthetic” reassortants (142–144). Reverse
genetics has been used for fundamental and applied research to
investigate viral functions in the BTV infected cell. Synthetically
derived BTV is indistinguishable from its virulent or nonvirulent
ancestor BTV (145). The segmented BTV genome is very flexible,
and many desired so-named “synthetic” BTV reassortants can
be generated easily using a set of 10 selected RNA run-off
transcripts (145, 146). One example as used for the here described
vaccine platforms is the forced exchange of S2[VP2] and S6[VP5]
encoding serotype immunodominant outer shell proteins. In
addition, reverse genetics opened possibilities to manipulate viral
functions by genetic modification of BTV in order to develop
replicating vaccine platforms (MLV platforms).

“Serotyped” live-attenuated vaccines
Anew generation of experimental LAVs is based on LAV serotype
6 (BTV6/net08) (35, 147) with exchanged outer shell proteins
(Figure 3E). This LAV platform has been studied for serotypes 1
and 8 and results in nonvirulent so-named “serotyped” LAV1 and
8, respectively (148). Vaccination with monovalent or a trivalent
cocktail of serotyped LAVs protects sheep against virulent BTV
and induces serotype specific neutralizing antibodies against
included serotypes. To combat multiple serotypes, tailor-made
cocktails of serotyped LAVs could be freely applied, since
reversion to virulence by reassortment between serotyped LAVs
will be negligible because of the common LAV backbone.
Consequently, these LAVs share most genome segments and the
risk of arise of virulent variants has minimized. Further, negative
interference of protection by different serotyped LAVs will be
minimized because of the shared replication machinery. Though,
reversion to virulence of serotyped LAVs by point mutations is
a potential risk (149). Furthermore, elevated body temperature,
clinical signs and viremia have been observed after vaccination
(148). Therefore, safety of serotyped LAVs is incomplete and
debatable as viremia could lead to undesired onward spread of
vaccine virus by midges. Altogether, cocktails of serotyped LAVs
are safer than cocktails of conventional LAVs, but their safety is
still debatable due to the risk of reassortment events with wtBTV.

Disabled infectious single cycle (DISC) vaccines
Reverse genetics has initiated the development of improved
vaccines by genetic modification of BTV. The Disabled Infectious
Single Cycle (DISC) vaccine platform is based on BTV1 without
expression of essential viral helicase VP6 (150). DISC vaccine
virus cannot fulfill the virus replication cycle by lack of de novo
VP6 synthesis, and DISC vaccine viruses must be produced
by in trans complementation in cells expressing VP6 protein
(Figure 3F). Consequently, DISC vaccine virus infects cells of
the vaccinated ruminant only once, since infectious BTV cannot
be assembled. The abortive replication of DISC vaccine virus
induce a full blown immune response closely mimicking BTV
infection, and results in mRNA synthesis and expression of all
BTV proteins, except for VP6. The DISC vaccine platform has
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been applied for several serotypes by exchange of the serotype
specific outer shell. Monovalent DISC vaccine and some DISC
cocktail vaccines have been studied in sheep and cattle (150–
152). A single DISC vaccination is protective in both sheep
and cattle. In these studies, DISC vaccination contains crude
cell lysate with ±1 × 107 TCID50/ml per DISC vaccine virus,
but the minimal protective dose of DISC vaccine has not been
determined yet. DISC vaccine virus is completely safe with
respect to clinical signs and viremia, although transient positivity
by PCR has been observed short after vaccination. Monovalent
DISC vaccine for serotype 8 protects sheep against clinical signs
and viremia (150). Trivalent DISC vaccine for serotype 2, 4, and
8 completely protects sheep and cattle at 3 weeks post booster
vaccination against virulent BTV2, 4 or 8 (151). Hexavalent
DISC vaccine for serotypes 1, 2, 4, 8, 13, and 21 also protects
against virulent BTV2 or 8 (152). Moreover, hexavalent DISC
vaccine induced neutralizing antibodies against all included
serotypes after booster vaccination, suggesting protection for all
these serotypes. The deletion in S9[VP6/NS4] of DISC vaccine
abolishes expression of VP6 but also of recently discovered NS4
protein. NS4 protein is not essential for virus replication in
vitro but antagonizes Interferon-I expression in vivo (26, 153).
Likely, lack of NS4 will positively affect the immune response
by DISC vaccination, although this has not been studied. So far,
the studied DISC vaccine consists of crude cell lysate with minor
amounts of complemented VP6 protein. The DIVA potential of
the DISC vaccine platform based on VP6 or NS4 has not been
investigated yet.

Disabled infectious single animal (DISA) vaccines
The principle of Disabled Infectious Single Animal (DISA) is
a blockade on transmission of vaccine virus by midges. The
key of DISA vaccine platform is knockout of NS3/NS3a protein
by a deletion in S10[NS3/NS3a] (Figure 3G). Both NS3 and
NS3a protein are not essential for virus replication in vitro,
whereas virus release from Culicoides cells depends on NS3/NS3a
protein (27). DISA vaccine virus cannot propagate in competent
midges after intrathoracic inoculation (154). Moreover, a small
in-frame deletion of 72 amino acid codons in NS3/NS3a protein
leads to the same phenotype (155). Furthermore, DISA vaccine
virus cannot pass the midge midgut barrier after blood feeding,
and cannot reach the salivary glands, and therefore will not be
secreted in saliva (155). It has been proposed that DISA vaccine
virus only replicates near the vaccination site (156). Altogether,
onward transmission of DISA vaccine has been blocked on
uptake as well as on secretion (Figure 4). The DISA vaccine
platform has applied for several serotypes by single S2[VP2]
exchange (157), by exchange of both outer shell proteins as
described (128, 148), and by incorporation of chimeric S2[VP2]
of serotype 1 and 16 (157). DISA vaccine can be produced in
established vaccine production facilities similar as for production
of LAV or BTV antigen.

Virulent BTV8 without NS3/NS3a expression does not
cause disease in sheep, indicating that NS3/NS3a is essential
for virulence (156). Several deletions in S10[NS3/NS3a] are
genetically unstable, but NS3/NS3a expression and pathogenicity
of BTV has never been restored (158). Replication of DISA
vaccine virus is required for protection but does not cause

FIGURE 4 | Overview of the vaccine profile of the DISA vaccine platform.

viremia (156). DISA vaccine based on BTV6/net08 (159) is
superior to that based on a BTV1 or BTV8/net06 backbone
with respect to protection, and completely protects sheep against
virulent BTV8 at 3 week post single vaccination (156). Prime-
boost DISA vaccination results in lasting serotype specific
protection (160). A standardized dose of 2 x 1ml 105 TCID50/ml
DISA vaccine was subcutaneously administered in these studies,
however, a 100 times diluted vaccine dose, 2 × 1ml 103

TCID50/ml, and intramuscular or intravenous vaccination with
a standard dose all results in VP7 seroconversion (161). Recent
vaccination-challenge studies demonstrate early and serotype
specific protection after intramuscular vaccination of cattle with
DISA vaccine with the small in-frame deletion (van Rijn et al.
personal communication). Further, prime-boost intramuscular
vaccination of sheep with a pentavalent cocktail of DISA vaccines
for the “European” serotypes 1, 2, 3, 4, and 8 based on the same
DISA platform protects against virulent BTV2 or 8, suggesting
that sheep are protected for all five serotypes (van Rijn et al.
personal communication) (Figure 4). Lack of NS3/NS3a protein
likely enhances the interferon mediated immune response, since
NS3/NS3a counteracts the innate immune response, and in
particular the type I interferon (IFN-α/β) pathway by different
mechanisms (162–164).

Finally, DISA vaccine is DIVA compatible with panBTV PCR
tests targeting S10 (36, 165–167), since the deletion in S10
partially overlaps their PCR targets (168). Furthermore, BTV
infection induces NS3 Abs (102), and DISA vaccine is therefore
DIVA compatible with an experimental NS3 competitive ELISA
(103). Indeed, the NS3 competitive ELISA differentiates BTV
infected from DISA vaccinated animals (156, 160) (Figure 4).
Studies in large animal groups, preferably in the field, are
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required to determine the final vaccine profile of these DISA
vaccines. Although DISA vaccines are scientifically safe and
rationally acceptable, the current hurdle is permission to perform
field trials with DISA vaccines as these BTVs with a small deletion
are classified as GMOs.

NS4 knockout vaccines
BTV without NS4 expression from S9[VP6/NS4] could be an
attractive vaccine platform, as NS4 is a determinant of virus
virulence (153) (Figure 3G). Three silent point mutations in the
VP6 open reading frame result in a mutated NS4 start codon
and two in-frame stop codons in the open reading frame of
NS4 adjacent downstream the NS4 start codon and selectively
abolish NS4 expression. The BTV NS4 knockout mutant did not
induce elevated body temperature nor clinical signs in sheep,
while neutralizing antibodies were raised against the BTV NS4
knockout mutant similar as by wtBTV infection. Unfortunately,
viremia was observed after inoculation and lasted for up to 28
days and protection against BTV challenge was not studied.
Recovery of NS4 expression, and thus virulence, is minimized
by the triple point mutation. However, due to its lasting viremia,
and potential onward spread by midges, reversion to virulence
cannot be excluded. BTV NS4 knockout mutants are not further
explored as potential vaccine yet, but a NS4 knockout mutant
of the related African horse sickness virus has shown promising
results in horses (169). The BTVNS4 knockout mutant replicates
in cell lines as used for BTV propagation, indicating that
production of BT NS4 knockout vaccines should be possible
in established facilities. Similar to other published BT vaccine
platforms, this platform will be applicable for many serotypes by
exchange of serotype specific outer shell proteins.

The here described MLV platforms are based on one
appropriate virus backbone used to vary one or two segments
encoding serotype specific outer shell proteins. Thus, each
platform share 8 or 9 out of 10 genome segments including
one mutated segment for most of the vaccine platforms
(Figures 3E–G). Consequently, the vaccinated animal induces
humoral as well as T-cell mediated responses directed against
all BTV proteins, except for the one encoded by the modified
genome segment. The lack of expression leads to attenuation
(NS4 knockout platform), abortive replication (DISC platform),
or a combined non-transmissibility, non-virulence and DIVA
(DISA platform). Importantly, the shared backbone prevents
reversion of virulence by reassortment between vaccine viruses.
Tailor-made cocktail vaccines or foreseen broad protective
vaccines are equally safe as single vaccines. Nonetheless,
these modern vaccine platforms based on reverse genetics are
genetically modified organisms (GMOs), and more efforts must
be invested to proof their complete safety but eventually could
allow a lower biosecurity level for vaccine production.

Expectedly, the here described approaches could be combined
by improved technologies in the future. Inactivated DISA vaccine
combines DIVA and avoids the GMO issue. Reverse genetics for
circulating or (re-)emerging wtBTVs will be quickly developed
in the future. In combination with the modification according to
the described MLV platforms will result in a safe and protective
vaccine that will induce an immune response exactly matching to

the field BTV strain. More importantly, this strategy will avoid
arise of virulent variants by reassortment events between vaccine
strain and wtBTV.

CONCLUDING REMARKS

The main vaccine standards are efficacy, safety, affordability,
DIVA, and acceptance by the community. Marketed LAVs
and inactivated BT vaccines are both successful to control BT
outbreaks but have their specific pros and cons. LAVs are cheap
but considered unsafe, while inactivated BT vaccines are safe but
more expensive (Table 1).

In addition, both marketed BT vaccines lack DIVA and
have limitations with regard to safely combat multi-serotype
situations in the field. Experimental BT vaccines, such as protein
vaccines, viral vector vaccines, and replicating vaccines, have
been developed and some are well studied but none have
been licensed yet. Nonetheless, new vaccine candidates show
improvement for one or more of the vaccine standards. However,
their final vaccine profile has not been definitely determined
yet, although some can be assumed based on the present
data. Because of this incompleteness, comparison of their final
(expected) vaccine profiles is hardly possible (Table 1).

Efficacy
MLVs are likely more effective than BTV protein vaccines and
viral vector vaccines, since replicating BT vaccines can induce
humoral and T-cell mediated immune responses against almost
every BTV protein, and show protection after single vaccination.
Further, broad protection is likely easier to achieve, since more
conserved epitopes among BTVs as well as serotype specific
epitopes are exposed to the immune system. Furthermore,
application for multiple serotypes have been successfully studied
for several MLV vaccine platforms.

Safety
BTV protein vaccines and viral vector vaccines are completely
safe due by the absence of infectious BTV, although local
reactions on the vaccination site could be induced depending
on the used adjuvant. Safety of MLVs varies between different
platforms. DISC and DISA vaccines do not cause viremia or
adverse effects, and are blocked on spread of vaccine virus
between animals. “Serotyped” LAVs and NS4 knockout vaccine
are not 100% safe, since a significant viremia could lead to
onward transmission of vaccine virus by midges and might
transmit vertically to the fetus.

Affordability
The price per dose as well as per protected animal is hard
to calculate for these experimental vaccines. Expectedly, vector
vaccines and MLVs will be cheaper than BTV protein vaccines,
since replication of MLVs in the receipt will trigger the immune
system better than BTV protein based vaccines. Generally, the
protective dose will be lower for replicating vaccines. Eventually,
affordability will depend on vaccine efficacy but also on required
boost vaccinations.

Frontiers in Veterinary Science | www.frontiersin.org 8 November 2019 | Volume 6 | Article 407

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


va
n
R
ijn

P
ro
sp

e
c
ts

o
f
N
e
xt-G

e
n
e
ra
tio

n
V
a
c
c
in
e
s
fo
r
B
lu
e
to
n
g
u
e

TABLE 1 | Evaluation of vaccine profiles of marketed and experimental vaccines.

Marketed vaccines Protection Safe Affordable Acceptable DIVA Main advantages Main disadvantages Remarks

Live-attenuated vaccine

(LAV)

Yes No1 Yes Yes/No2 No Cheap full blown

response

No DIVA unsafe, in

particular for

cocktails

1: Virulence (residual and/or reversion)
2: Licensed in African countries, not

accepted in other countries

Inactivated vaccine Yes1 Yes Yes2 Yes3 No Safe No DIVA expensive 1: Most require annual revaccination
2 : More expensive than LAVs
3: Available for limited serotypes

Experimental vaccines Protection Safe Affordable Acceptable DIVA Main advantages Main disadvantages Remarks

PROTEIN VACCINES

VP2 subunit vaccine Yes1 Yes No2 Yes Yes3 Commercial DIVA test Expensive

late onset

1: Requires booster vaccination
2: Likely expensive
3: Commercial VP7 cELISA

VLP vaccine Yes1 Yes No2 Yes Yes3 Safe Expensive

late onset

1: Requires booster vaccination
2: Likely expensive
3: Experimental NS ELISAs

“Serotyped” inactivated

vaccine

Yes1 Yes Yes2 Yes No Traditional vaccine

production

No DIVA 1: Requires annual revaccination
2: More expensive than LAVs

VIRAL VECTOR VACCINES

VP2 expressing vector

vaccine

Yes1 Yes ?2 Yes3 Yes4 Commercial DIVA Late onset

unknown efficacy

in ruminants

1: Requires booster vaccination
2: Not or marginally tested in ruminants
3: Safe viral vector but GMO
4: Commercial VP7 cELISA

NS expressing vector

vaccine

Yes1 Yes ?2 Yes3 Yes4 Commercial DIVA test

proposed broad

protection

Late onset

unknown efficacy

in ruminants

1:Requires booster vaccination
2: Not or marginally tested in ruminants
3: Safe viral vector but GMO
4: Commercial VP7 cELISA

REPLICATING VACCINES (MLV)

“Serotyped” LAV Yes No1 Yes Yes2 No Traditional vaccine

production full blown

response

No DIVA viremia 1 : Viremia suggests onward transmission

cocktails will be safer than of LAVs
2: BTV reassortant (GMO issue)

DISC vaccine Yes Yes1 Yes2 Yes3 No Abortive vaccine

replication combined

with full blown

response

No DIVA high dose 1: Abortive replication
2: Likely high protective dose
3: Complemented

BTV (GMO issue)

DISA vaccine Yes Yes1 Yes Yes2 Yes3 No vaccine

transmission

combined with DIVA

and full blown

response

GMO 1: Not transmittable by midges
2: Deletion BTV (GMO issue)
3: Experimental NS3 cELISA

NS4 knockout vaccine Not tested No1 Yes Yes2 No Cheap No DIVA efficacy

unknown

1: Viremia suggests onward transmission
2: BTV knockout mutant (GMO issue)

For each vaccine, comments on some main vaccine standards (numbered) are described in the column “Remarks”. In addition, the most important advantages and disadvantages of each of the vaccines are indicated based on the

current available data.
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DIVA
BTV protein vaccines and viral vector vaccines are DIVA
compatible with the commercially available and widely used VP7
ELISA if VP7 protein is not part of the vaccine. Therefore,
DIVA monitoring will be very easy and cheap by testing bulk
milk samples, in particular if combined with other monitoring
programs like for Infectious Bovine Rhinotracheitis and Bovine
Viral Diarrhea (170, 171). This will support eradication programs
in an affordablemanner, andwill increase the acceptance of DIVA
testing. DISA vaccination can have the same advantage, since
an experimental NS3 ELISA accompanying the DISA vaccine
platform has been developed but this ELISA is not extensively
validated and evaluated for milk samples yet.

Acceptance
BTV protein vaccines will be acceptable, since these are
completely safe. Even more, unnoticed pathogens, like in
contaminated serum used for antigen production, will be
inactivated or removed during down processing of antigen.
With regard to viral vector vaccines and MLVs, control of used
components in advance as well as of produced vaccine batches is
extremely important. Many incidences of contaminated batches
of replicating vaccines have been reported (172). Complete
synthetic culture medium will avoid this disadvantage of
replicating vaccines but is still quite expensive. Nevertheless,
all here described MLV vaccine platforms are classified as
GMOs, and licensing and acceptance will be costly due to
extra safety trials. DISC and DISA platforms are based on
disabled BTV due to a single deletion, and their safety has been

scientifically predicted and has been proven in many sheep and
cattle trials.

Several research groups have developed experimental BT
vaccines and BT vaccine platforms showing promising vaccine
profiles close to animal trial required for official vaccine
registration. Licensing and launching next-generation BT
vaccine, however, will mainly depend on the need for better
than current vaccines in order to combat Bluetongue in mono-
serotype situations to eradicate the disease and in multi-serotype
endemic situations to minimize economic losses.
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