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ABSTRACT Surface water systems in South Africa are experiencing a major decline
in quality due to various anthropogenic factors. This poses a possible health risk for
humans. Here, we present the draft genome sequences of three Clostridium perfrin-
gens isolates obtained from a fecally polluted river system in the North West prov-
ince of South Africa.

Clostridium perfringens is a Gram-positive bacterium that requires strict anaerobic
conditions to grow. Its ability to produce endospores ensures its survival under

unfavorable conditions, e.g., in aerobic environments. Due to its ubiquitous nature
(especially in soil and aquatic systems), C. perfringens could also be a looming clinical
problem. This species can cause severe disease in humans (1, 2). C. perfringens strains
are classified into seven types (A through G) according to the production of six major
toxins (alpha-, beta-, epsilon-, iota-, Clostridium perfringens enterotoxin [CPE], and
necrotic enteritis B-like [NetB] toxins) (3). C. perfringens type A strains are known to
cause gas gangrene (clostridial myonecrosis) and necrotic enteritis, as well as mild
diarrhea, in humans (4).

This paper presents the draft genome assemblies of C. perfringens strains derived
from river water during a warm rainy season. The water quality is influenced by various
anthropogenic activities, including mining (gold and diamonds), agriculture, and, in
particular, return flows from wastewater treatment plants (5, 6). Recently, high levels of
indicator bacteria showed occurrences of fecal contamination, and various points in this
river were designated potential “hot spots” for outbreaks of bacterial diseases (7;
http://www.dwa.gov.za/iwqs/microbio/nmmp.asp).

Clostridium perfringens were isolated from river water using a modified version of the
Fung double-tube method (8). The bacteria were grown in tryptose sulfite cycloserine
agar (Oxoid, UK) at 42°C for 6 h. Single colonies were incubated anaerobically overnight
in reinforced clostridial medium (Oxoid, UK) and then pelleted. Total genomic DNA was
extracted from each pellet with the use of a NucleoSpin tissue kit (Macherey-Nagel).
Amplification and sequencing of the 16S rRNA genes confirmed the identities of the
three isolates to be C. perfringens. Paired-end sequencing libraries were generated
with a Nextera XT DNA library prep kit (Illumina, San Diego, CA, USA), and this was
followed by whole-genome sequencing with a MiSeq reagent kit v3 (600 cycles).
Quality evaluation and trimming of short (less than 50 bp) or low-quality nucleo-
tides (Q � 15) were performed in Trimmomatic (v.0.36) (9). De novo assembly was
conducted in SPAdes (v.3.9.0) (10), followed by gene prediction and annotation
using the NCBI Prokaryotic Genome Annotation Pipeline (v.4.3) (11). BLASTx com-
parison was used to search databases for virulence factors (VF) and antibiotic
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resistance genes (ARGs) in deepARG (v.2.0) (12, 13). Average nucleotide identity
(ANI) was determined by OrthoANI (v.1.4) (14). Default parameters were used for all
software unless otherwise specified.

In silico analysis of the C. perfringens strains (Table 1) created, on average, 110 to 205
scaffolds, with an overall average genome coverage of 186�. Draft genomes were
generated with a total length of between 3.44 Mbp and 3.6 Mbp and an average G�C
content of 28.18%.

The draft genomes described here were also analyzed for the presence of VF and
ARGs. This revealed 35 genes that encode VF such as hemolysins, enterotoxins, siali-
dase, collagenase, perfringolysin O, and alpha-clostripain. The genome assembly also
revealed the presence of four hyaluronidase genes, as well as two members of the
double-component VirR/VirS regulon. The ARG analysis revealed the presence of
macrolide-lincosamide-streptogramin, �-lactam, trimethoprim, tetracycline, kasugamy-
cin, and bacitracin genes. They also harbored the vanRI and vanRG genes, which encode
glycopeptides, and vgaB, arlR, and MepA, which are responsible for multidrug-resistant
efflux pumps.

Genomic comparison with the well-characterized C. perfringens strain 13 (GenBank
accession number BA000016) resulted in values of between 98.50% and 98.52%.
Therefore, our three C. perfringens strains can be classified as type A strains, which are
human pathogens.

Data availability. These draft genome assemblies have been deposited at GenBank
under the accession numbers RQNR00000000 (Clostridium perfringens SC4-C13),
RQNQ00000000 (Clostridium perfringens SC4-C17), and RQNP00000000 (Clostridium per-
fringens SC4-C24). The Sequence Read Archive accession numbers are SRR8867692,
SRR8867693, and SRR8867691, respectively.
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TABLE 1 Genome characteristics and accession numbers of C. perfringens strains

Characteristic

Data for strain:

SC4-C13 SC4-C17 SC4-C24

No. of reads 8,746,682 8,055,822 11,557,934
Avg read length (bp) 233.678 238.49 244.97
No. of scaffolds 205 205 110
Largest contig size (bp) 1,386,217 1,397,833 1,428,470
N50 461,812 461,812 356,343
G�C content (%) 28.19 28.14 28.21

Gene annotation data
Genome size (bp) 3,604,770 3,514,948 3,437,837
No. of CDSa 3,245 3,201 3,079
No. of total RNAs 125 124 130
No. of total rRNAs 29 29 34
No. of total tRNAs 92 91 92
No. of pseudogenes 55 66 55

GenBank accession no. RQNR00000000 RQNQ00000000 RQNP00000000
SRA accession no. SRR8867692 SRR8867693 SRR8867691
a CDS, coding sequences.
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