Synthesis and antitubercular activity of triazole-linked 1,4-benzoquinone derivatives

CM Horn

orcid.org/0000-0003-0650-646X

Dissertation submitted in fulfillment of the requirements for the degree Master of Science in Pharmaceutical Chemistry at the North-West University

Supervisor: Prof DD N’Da
Co-supervisor: Dr FJ Smit
Co-supervisor: Dr J Aucamp

Examination May 2019
Student number: 24658499
This work was supported by a grant from the National Research Foundation of South Africa (Grant specific unique reference number, UID 98937). Opinions expressed and conclusions arrived at, are those of the authors and therefore the NRF does not accept any liability in regard thereto.
This thesis is submitted in article format in accordance with the General Academic Rules (A.13.7.3) of the North-West University.

Chapter 3: Article for submission

Synthesis and antitubercular activity of triazole-linked 1,4-benzoquinone derivatives

This article will be submitted to the European Journal of Pharmaceutical sciences and was prepared according to author's guidelines, accessible in Annexure B and available on the Journal's homepage in the author information pack:

https://www.elsevier.com/journals/european-journal-of-pharmaceutical-sciences/0928-0987/guide-for-authors
ACKNOWLEDGEMENTS

I hereby express my sincerest appreciation to the following people and institutions for their support and guidance during the course of my Master’s degree:

- My supervisor: Prof David N’Da.
- My co-supervisors: Dr FJ Smit and Dr J Aucamp.
- Dr D Otto and Dr. J Jordaan for NMR and MS spectrometry.
- Mr P Cilliers for HPLC analyses.
- Prof Digby F. Warner for in vitro anti-mycobacterial screening of the synthesised compounds.
- The NWU and NRF for financial support and funding.
- To my friends and family, thank you. Words cannot describe the appreciation I have for your love and emotional support.
- Finally, a special thanks to Chané Erasmus, my lab partner. When our reactions were failing and tension and stress ran high I was always glad to have you by my side. I could not have asked for a better lab partner, thank you!
ABSTRACT

Tuberculosis (TB) has scourged humankind for hundreds of years. Not only are millions of people infected and killed by this disease annually, but more than a quarter of the world's population is living with latent TB. *Mycobacterium tuberculosis* (*Mtb*), the causative pathogen of TB, is effortlessly spread when a person with the active diseases coughs, spits, sings or sneezes, propelling the pathogen into the air. TB not only affected ten million people in 2017, but proved fatal to 1.6 million infected that same year, of which 0.3 million were co-infected with human immunodeficiency virus (HIV) making TB the leading killer of HIV-positive people.

TB disease is in fact curable, but it is the rise of multi- and extensively- drug-resistant strains of *Mtb* that renders the control and effective treatment of the disease challenging. Currently only 55 % of multidrug-resistant TB patients are treated successfully and, to make matters worse, second-line chemotherapy options used to treat these cases are not only expensive and toxic, but also extensive. Extensive regimens create an opening for various other disadvantages, such as patient non-adherence and therefore treatment failure and relapse. This can in turn lead to the emergence of drug. There is, therefore, an urgent need for novel effective and affordable anti-mycobacterial agents with better safety profiles to curb TB more efficiently.

In search for such agents a series of eleven novel hybrids linking directly hydroquinone and triazole moieties were investigated. The series was synthesised in a two-step process, starting with nucleophilic substitution SN2 reaction of commercial benzoquinone with sodium azide in acidic medium to form an azido intermediate. This was followed by Huisgen's copper-catalysed alkyne-azide cycloaddition 'click' chemistry of the intermediate with various alkynes to afford targeted hybrids in low to good yields (23 – 70 %). Routine characterisation techniques such as infrared spectrometry, nuclear magnetic resonance, and high resolution mass spectrometry, were used to confirm the structures of the hybrids. The purities were determined by means of high performance liquid chromatography and were found to be in the 92 – 98 % range.

The anti-mycobacterial activity of the hybrids was assessed *in vitro* against the human virulent H37Rv strain of *Mtb*. Cytotoxicity of the synthesised hybrids were evaluated using human embryonal kidney cells (HEK-293).

In general, the hybrids were nontoxic to the mammalian cells, but were either inactive or possessed poor anti-mycobacterial activity. Hybrid 14, featuring a thiobenzyl substituent on the triazole ring and with cLogP 3.03, was the most active of all. It possessed MIC₉₀ 16 μM and showed no toxicity to kidney cells, but was poorly selective for mycobacteria with a selectivity index, SI = 6, which disqualifies it as a potential anti-mycobacterial hit.
A leading explanation to the overall insignificant anti-mycobacterial activities of these hybrids could be attributed to their structural rigidity conferred by the lack of linker between the quinol and triazole rings. It is this rigidity that obstructs the passage of the hybrids through the bacterium cell wall, thus preventing them from reaching the targeted site within \textit{Mtb}. The impact of the linker on the biological activity may be elucidated through future investigation of flexible hybrids.

\textbf{Keywords:} Tuberculosis, \textit{Mycobacterium tuberculosis}, hybridisation, hydroquinone, triazole, click-chemistry
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ahpC</td>
<td>Alkyl hydroperoxide reductase C</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>APCI</td>
<td>Atmospheric pressure chemical ionisation</td>
</tr>
<tr>
<td>BCG</td>
<td>Bacillus Calmette-Guérin</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BQ</td>
<td>Benzoquinone</td>
</tr>
<tr>
<td>CAS</td>
<td>Casitone</td>
</tr>
<tr>
<td>CFP-10</td>
<td>Culture filtrate protein 10</td>
</tr>
<tr>
<td>CMI</td>
<td>Cell-mediated immunity</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>CT</td>
<td>Computer tomography</td>
</tr>
<tr>
<td>CuCAAC</td>
<td>Copper catalysed alkyne-azide cycloaddition</td>
</tr>
<tr>
<td>CXR</td>
<td>Chest x-rays</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DHFR</td>
<td>Dihydrofolate reductase</td>
</tr>
<tr>
<td>DHFS</td>
<td>Dihydrofolate synthase</td>
</tr>
<tr>
<td>DHPS</td>
<td>Dihydropteroate synthse</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DMSO-d</td>
<td>Dimethyl sulfoxide-d</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>EMA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>EMB</td>
<td>Ethambutol</td>
</tr>
<tr>
<td>EPTB</td>
<td>Extrapulmonary tuberculosis</td>
</tr>
<tr>
<td>ESTAT-6</td>
<td>Early secretory antigenic target-6</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
</tbody>
</table>
FQ: Fluoroquinolones
GFP: Green fluorescent protein
GLU: Glucose
H37Rv: Virulent culture strain of *Mycobacterium tuberculosis*
HEK-293: Human embryonic kidney cells
HIV: Human immunodeficiency virus
HPLC: High performance liquid chromatography
HRMS: High resolution mass spectrometry
HQ: Hydroquinone
I-A09: Benzofuran salicylic acid
IC_{50}: 50 % inhibitory concentration
IFN-γ: Interferon-gamma
IGRA: Interferon-gamma release assay
INH: Isoniazid
inhA: Enoyl-acyl carrier protein reductase
IR: Infrared
kasA: 3-oxoacyl-[acyl-carrier-protein] synthase 1
KatG: *Mycobacterium tuberculosis* catalase-peroxidase
LAM: Lipoarabinomannan
LM: Lipomannan
LPA: Line probe assay
LTBI: Latent tuberculosis infection
MA: Mycolic acid
mAGP: Mycolyl-arabinoglactan
MDR-TB: Multi-drug resistant tuberculosis
MHWD: Ministry of Health, Welfare and Labor
MIC: Minimum inhibitory concentration
mRNA: Messenger RNA
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mta</td>
<td>Mycobacterium avium</td>
</tr>
<tr>
<td>Mts</td>
<td>Mycobacterium smegmatis</td>
</tr>
<tr>
<td>Mtb</td>
<td>Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>NAA</td>
<td>Nucleic acid amplification</td>
</tr>
<tr>
<td>NaAsc</td>
<td>Sodium ascorbate</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADH-2</td>
<td>Nicotinamide adenine dinucleotide dehydrogenase</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>PABA</td>
<td>p-aminobenzoic acid</td>
</tr>
<tr>
<td>PAS</td>
<td>p-aminosalicylic acid</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PIMs</td>
<td>Phosphatidylinositol mannosides</td>
</tr>
<tr>
<td>POA</td>
<td>Pyrazinoic acid</td>
</tr>
<tr>
<td>PPD</td>
<td>Purified protein derivative</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PYZ</td>
<td>Pyrazinamide</td>
</tr>
<tr>
<td>QFT-GIT</td>
<td>QuantiFERON-TB Gold in-tube test</td>
</tr>
<tr>
<td>QT interval</td>
<td>Distance between the start of the Q wave and end of the T wave on the heart’s electrical cycle</td>
</tr>
<tr>
<td>RF</td>
<td>Radio frequency</td>
</tr>
<tr>
<td>RibD</td>
<td>Riboflavin biosynthesis protein</td>
</tr>
<tr>
<td>RIF</td>
<td>Rifampicin</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNS</td>
<td>Reactive nitrogen species</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>rpoB</td>
<td>RNA polymerase</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribose RNA</td>
</tr>
<tr>
<td>rt</td>
<td>Room temperature</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>SA</td>
<td>South Africa</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure activity relationship</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the means</td>
</tr>
<tr>
<td>SI</td>
<td>Selectivity index</td>
</tr>
<tr>
<td>Sol</td>
<td>Solute</td>
</tr>
<tr>
<td>SSM</td>
<td>Sputum smear microscopy</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>tRNA</td>
<td>Transfer RNA</td>
</tr>
<tr>
<td>T-spot</td>
<td>T-SPOT TB test</td>
</tr>
<tr>
<td>TST</td>
<td>Tuberculin skin test</td>
</tr>
<tr>
<td>Tx</td>
<td>Tyloxapol</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>XDR-TB</td>
<td>Extensively drug-resistant tuberculosis</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

PREFACE ... II
ACKNOWLEDGEMENTS .. III
ABSTRACT .. IV
ABBREVIATIONS ... VI

LIST OF TABLES .. XV
LIST OF FIGURES .. XVI

LIST OF SCHEMES .. ERROR! BOOKMARK NOT DEFINED.

CHAPTER 1: .. 1
INTRODUCTION ... 1
1.1 Introduction and literature background ... 1
1.2 Aim and objectives ... 4

BIBLIOGRAPHY ... 5

CHAPTER 2 .. 8
LITERATURE REVIEW .. 8
2.1 Introduction ... 8
2.2 Epidemiology of tuberculosis .. 8
2.3 Tuberculosis in South Africa .. 10
2.4 Transmission and pathology of tuberculosis .. 111
2.4.1 Transmission .. 111
2.4.2 *Mycobacterium tuberculosis* bacterium description and cell wall... 11
2.4.3 The life cycle of tuberculosis .. 133
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Clinical manifestation of tuberculosis</td>
<td>14</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Primary pulmonary tuberculosis</td>
<td>155</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Extrapulmonary tuberculosis</td>
<td>166</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Miliary tuberculosis</td>
<td>16</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Latent tuberculosis infection</td>
<td>177</td>
</tr>
<tr>
<td>2.6</td>
<td>Diagnosis of tuberculosis</td>
<td>17</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Tuberculosis sputum smear microscopy</td>
<td>17</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Tuberculosis skin test</td>
<td>188</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Tuberculosis Interferon-gamma release assays</td>
<td>18</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Chest X-rays</td>
<td>18</td>
</tr>
<tr>
<td>2.6.5</td>
<td>Tuberculosis culture test</td>
<td>199</td>
</tr>
<tr>
<td>2.6.6</td>
<td>Tuberculosis molecular tests</td>
<td>19</td>
</tr>
<tr>
<td>2.6.6.1</td>
<td>Xpert MTB/RIF assay</td>
<td>19</td>
</tr>
<tr>
<td>2.6.6.2</td>
<td>Line probe assay</td>
<td>20</td>
</tr>
<tr>
<td>2.6.7</td>
<td>Diagnostic test for drug-resistant tuberculosis</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Tuberculosis vaccine</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>Treatment of tuberculosis</td>
<td>21</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Treatment of drug susceptible tuberculosis</td>
<td>222</td>
</tr>
<tr>
<td>2.8.1.1</td>
<td>Isoniazid</td>
<td>22</td>
</tr>
<tr>
<td>2.8.1.2</td>
<td>Rifampicin</td>
<td>23</td>
</tr>
<tr>
<td>2.8.1.3</td>
<td>Pyrazinamide</td>
<td>24</td>
</tr>
<tr>
<td>2.8.1.4</td>
<td>Ethambutol</td>
<td>266</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Treatment of drug-resistant tuberculosis</td>
<td>26</td>
</tr>
</tbody>
</table>
3.2.3.1 Synthesis of azido intermediate (3) ... 69
3.2.3.2 Synthesis of compounds 4 – 14 .. 69
3.2.3.2.1 2-(4-butyl-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 4 .. 70
3.2.3.2.2 2-(4-pentyl-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 5 70
3.2.3.2.3 2-(4-hexyl-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 6 70
3.2.3.2.4 2-(4-octyl-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 7 71
3.2.3.2.5 2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 8 71
3.2.3.2.6 2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 9 71
3.2.3.2.7 Methyl 1-(2,5-dihydroxyphenyl)-1H-1,2,3-triazole-4-carboxylate; 10 71
3.2.3.2.8 2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 11 72
3.2.3.2.9 2-(4-(1-hydroxycyclohexyl)-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 12 72
3.2.3.2.10 2-(4-(((tertahydro-2H-pyran-2-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)benzene-
 1,4-diol; 13 .. 72
3.2.3.2.11 2-(4-(((phenylthio)methyl)-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 14 73

3.3 Biological evaluation ... 73
3.3.1 In vitro anti-mycobacterial assay .. 73
3.3.2 In vitro cytotoxicity assay .. 73

3.4 Results and discussion ... 74
3.4.1 Chemistry ... 74
3.4.2 Physiochemical properties .. 788
3.4.3 Biological activities ... 788

3.5 Conclusion ... 811

BIBLIOGRAPHY ... 833
LIST OF TABLES

Table 2-1: Second-line anti-tuberculosis agents shown in descending order of preference for use (WHO, 2016). ... 28

Table 3-1: *In vitro* anti-mycobacterial activities as well as cytotoxicity of hybrids 4 – 14, benzoquinone (1) and hydroquinone (2) against H37Rv strain using GFP assay in 7H9 GLU CAS medium. ... 799
LIST OF FIGURES

Figure 1-1:	Structures of 1,2,3-triazole and 1,4-benzoquinone scaffolds. ... 3
Figure 1-2:	General structure of target benzo/hydroquinone-triazole hybrids................................. 4
Figure 2-1:	Global tuberculosis prevalence, 2017 (WHO, 2018b). ... 9
Figure 2-2:	Schematic representation of *Mycobacterium tuberculosis* cell wall. mAG = mycolyl-arabinogalactan, AG = arabinogalactan, TMM = trehalose monomycolate, TDM = trehalose dimycolate (Thanna & Sucheck, 2016). 12
Figure 2-3:	Life cycle of *Mycobacterium tuberculosis* (Cambier et al., 2014). 14
Figure 2-4:	Structure of isoniazid (1). ... 22
Figure 2-5:	Structure of rifampicin (2). ... 24
Figure 2-6:	Structure of pyrazinamide (3). .. 255
Figure 2-7:	Structure of ethambutol (4). .. 26
Figure 2-8:	Structure of anti-tuberculosis clinical fluoroquinolones; ciprofloxacin (5), gatiflaxacin (6), moxiflaxacin (7), and levofloxacin (8). .. 29
Figure 2-9:	Structure of clinical anti-TB aminoglycosides; streptomycin (9), capreomycin (10), amikacin (11), and kanamycin (12). ... 31
Figure 2-10:	Structure of all Group C clinical anti-TB agents; linezolid (13), ethionamide (14), prothionamide (15), clofazimine (16), cycloserine (17), and terizidone (18). ... 33
Figure 2-11:	Structures of bedaquiline (19) and delamanid (20). ... 35
Figure 2-12:	Structures of all Group D3 clinical anti-TB agents; thioacetazone (21), imipenem (22), meropenem (23), and *p*-aminosalicylic acid (24). .. 37
Figure 2-13:	Structure of primin (28), a natural benzoquinone (Tasdemir et al., 2006). 39
Figure 2-14:	Structures of triazole derivatives currently on market; carboxyamidotriazole (29), TSAO (30), tazobactum (31), cefatrizine (32), and I-A09 (33). ... 40
Figure 2-15: Structures of synthesised 1,2,3-triazole derivatives with strong anti-TB activity (Ali et al., 2017). ... 41

Figure 2-16: Structures of different pyrazolo-1,2,3-triazole hybrids showing promising anti-mycobacterial activity (Emmadi et al., 2015). 42

Figure 2-17: Structure of different 1,2,3-triazole conjugates of 2-mercaptobenzothiazoles (Dheer et al., 2017).. 42

Figure 2-18: Structure of a substituted N-phenyl-1,2,3-triazole hybrid containing an isonicotinoyl hydrazide unit (44) (Boechat et al., 2011) and 1-(methylphenyl)-1,2,3-triazole-4-carbaldehyde (45) (Costa et al., 2006). 43

Figure 2-19: Structures of hybrids (46, 47 and 48) from 1,2,3-triazole and benzimidazole pharmacophores (Gill et al., 2008)... 43

Figure 2-20: Structure of β-lapachone-based 1,2,3-triazole hybrid (49) (Jardim et al., 2015).. 44

Figure 3-1: Structures of 1,2,3-triazoles currently on the market. .. 66

Figure 3-2: The effect of solvent volume on the optimisation of step (i) 75

Figure 3-3: The effect of reaction time on the optimisation of step (i)............................ 75
Figure 1-1: Structures of 1,2,3-triazole and 1,4-benzoquinone scaffolds. 2

Figure 1-2: General structure of target hydroquinone- and benzoquinone-triazole hybrids. ... 4

Figure 2-1: Global tuberculosis prevalence, 2017 (WHO, 2018b) ... 9

Figure 2-2: Schematic representation of *Mycobacterium tuberculosis* cell wall. mAG = mycolyl-arabinogalactan, AG = arabinogalactan, TMM = trehalose monomycolate, TDM = trehalose dimycolate (Thanna & Sucheck, 2016)..... 12

Figure 2-3: Life cycle of *Mycobacterium tuberculosis* (Cambier et al., 2014) 14

Figure 2-4: Structure of isoniazid (1). ... 22

Figure 2-5: Structure of rifampicin (2). .. 24

Figure 2-6: Structure of pyrazinamide (3). ... 25

Figure 2-7: Structure of ethambutol (4). .. 26

Figure 2-8: Structure of anti-tuberculosis clinical fluoroquinolones; ciprofloxacin (5), gatifloxacin (6), moxifloxacin (7), and levofloxacin (8). .. 29

Figure 2-9: Structure of clinical anti-TB aminoglycosides; streptomycin (9), capreomycin (10), amikacin (11), and kanamycin (12). ... 31

Figure 2-10: Structure of all Group C clinical anti-TB agents; linezolid (13), ethionamide (14), prothionamide (15), clofazimine (16), cycloserine (17), and terizidone (18). ... 33

Figure 2-11: Structures of bedaquiline (19) and delamanid (20). .. 35

Figure 2-12: Structures of all Group D3 clinical anti-TB agents; thioacetazone (21), imipenem (22), meropenem (23), and *p*-aminosalicylic acid (24).......................... 37

Figure 2-13: Structure of primin (28), a natural benzoquinone (Tasdemir et al., 2006). 39

Figure 2-14: Structures of triazole derivatives currently on market; carboxyamidotriazole (29), TSAO (30), tazobactum (31), cefatrizine (32), and I-A09 (33). .. 40
Figure 2-15: Structures of synthesised 1,2,3-triazole derivatives with strong anti-TB activity (Ali et al., 2017). ... 41

Figure 2-16: Structures of different pyrazolo-1,2,3-triazole hybrids showing promising anti-mycobacterial activity (Emmadi et al., 2015). .. 42

Figure 2-17: Structure of different 1,2,3-triazole conjugates of 2-mercaptobenzothiazoles (Dheer et al., 2017). ... 42

Figure 2-18: Structure of a substituted N-phenyl-1,2,3-triazole hybrid containing an isonicotinoyl hydrazide unit (44) (Boechat et al., 2011) and 1-(methylphenyl)-1,2,3-triazole-4-carbaldehyde (45) (Costa et al., 2006). 43

Figure 2-19: Structures of hybrids (46, 47 and 48) from 1,2,3-triazole and benzimidazole pharmacophores (Gill et al., 2008)................................. 43

Figure 2-20: Structure of β-lapachone-based 1,2,3-triazole hybrid (49) (Jardim et al., 2015).. 44

Figure 3-1: Structures of 1,2,3-triazoles currently on the market. ... 66
CHAPTER 1:
INTRODUCTION

1.1 Introduction and literature background

Tuberculosis (TB) is an infectious disease caused by the *Mycobacterium tuberculosis* (Mtbb) bacterium, one of the world’s most lethal infections to humans (Davies & Quah, 2017). It spreads from person to person when an individual with the active respiratory disease coughs or sneezes, expelling droplets containing the bacterium into the air (CDC, 2018a). The lungs (pulmonary TB) and other parts of the body (extrapulmonary TB) are typically affected by the bacterium (WHO, 2018a). However, only 5 – 15 % of the estimated two – three billion people infected essentially develop TB throughout their lifetime, because a healthy individual’s immune system acts to separate or “wall off” (WHO, 2015) the bacteria (WHO, 2018a).

In 2017 alone, an estimated ten million people contracted TB globally, with 1.7 billion people (23 %) of the world’s population infected with latent TB (WHO, 2018a). Eight countries accounted for two-thirds of the total number of new incidences, with India having the largest number of incidences and South Africa the eighth largest (WHO, 2018b). TB is the leading killer of human immunodeficiency virus (HIV)-positive people, with approximately 0.3 million people dying of HIV-associated TB in 2017. HIV-positive patients are 20 – 30 times more likely to develop active TB. Without proper treatment, nearly all HIV-positive people co-infected with TB pass away, compared to only 45 % of HIV-negative people succumbing to the disease without proper treatment. In 2017 there were approximately 0.9 million new cases of TB amongst HIV-positive people, of which seventy-two percent (72 %) were living in Africa (WHO, 2018b).

In order to end the global TB epidemic, the World Health Organisation (WHO) established an “End TB Strategy” that aims to reduce the absolute number of TB incidences and related deaths identified in 2015 by 90 % and 95 %, respectively, by the year 2035 (WHO, 2018a). Despite the steady annual decline in incidence, WHO still reported a global mortality of 1.6 million people in 2017 due to TB (WHO, 2018b). This puts TB, along with HIV-acquired immunodeficiency syndrome (AIDS), as the leading causes of death from a single infectious disease (Chetty et al., 2017).

A growing problem in the treatment of TB is drug resistance, and it is threatening to return civilization to an era where the diagnosis of TB was a death sentence (Goldberg et al., 2012). WHO estimates that there were 558 000 new cases of rifampicin resistance in 2017, of which 82 % were multidrug-resistant TB (MDR-TB) and about 8.5 % of MDR-TB cases were extensively drug resistant (WHO, 2018b).
The treatment of TB is divided into two phases, namely the intensive and the continuation phase. The intensive phase lasts two months, and consists of a four-drug regimen (Nahid & Hopewell, 2008; CDC, 2018b), namely isoniazid, rifampicin, pyrazinamide, and ethambutol, that rapidly kill the tubercle bacilli. The continuation phase of TB treatment follows the intensive, lasts four – seven months and consists of only two drugs, namely isoniazid and rifampicin. These drugs are bactericidal, eliminating the remaining bacilli and, in so doing, prevents relapse of the disease (DoHSA, 2014; CDC, 2018b). TB remains a global emergency (Zumla et al., 2013) and significant challenges exist with the current therapy. Treatment interruptions and/or changes to current regimens are often needed due to the development of drug intolerance, drug toxicities, and pharmacokinetic drug-drug interactions, especially in TB patients co-infected with HIV. The long-lasting six-month treatment period has a grave effect on patient adherence (Zumla et al., 2013), and the emergence of drug-resistant TB strains further complicate therapy (Sandgren et al., 2009).

Spontaneous and random mutations in the bacterial chromosome of \textit{Mtb} lead to the emergence of MDR-TB and extensively drug-resistant TB (XDR-TB) (Nachega & Chaisson, 2003). MDR-TB refers to resistance to at least rifampicin and isoniazid, the two most effective anti-TB drugs (WHO, 2018c). XDR-TB refers to MDR-TB with further resistance to any of the fluoroquinolones and at least one of the three injectable second-line anti-TB drugs (WHO, 2018d). The rise of drug-resistant TB is undermining the control over the treatment of TB and it is, therefore, crucial to develop new drugs and treatment regimens (Bark et al., 2011).

An established strategy in the discovery of new drugs is the molecular hybridisation of two or more pharmaceutically active scaffolds. The hybridisation strategy entails the linking of two different pharmacophores, with different biological functions, that do not necessarily act on the same biological target. This results in a molecule with a dual mode of action that can kill multiresistant strains (Meunier, 2007).

This study investigates whether the molecular hybridisation of 1,2,3-triazole and 1,4-benzoquinone pharmacophores (Figure 1.1) via copper-catalysed azide-alkyne cycloaddition (CuCAAC), will result in hybrid molecules that may be effective against \textit{Mtb}.

![Figure 1-1: Structures of 1,2,3-triazole and 1,4-benzoquinone scaffolds.](image)
Significant development has been made in 1,2,3-triazole derivative research due to the wide range biological properties this moiety endows. These include anti-HIV (Gill et al., 2008), anti-mycobacterial (Gill et al., 2008; Boechat et al., 2011; Dixit et al., 2016), and anti-inflammatory (Costa et al., 2006) activity, as well as the inhibition of histidine biosynthesis (Gill et al., 2008). Examples of such triazole derivatives include; 2-(3-fluoro-phenyl)-1-[1-(substituted-phenyl)-1-H-[1,2,3]-triazol-4-yl-methyl]-1H-benzo[d] imidazole and N-substituted-phenyl-1,2,3-triazole-4-carbaldehydes derivatives. 1,2,3-Triazoles are also used in agrochemicals as fungicides and plant growth regulators as well as in dyes, corrosion inhibitors and photostabilisers in industrial applications (Gill et al., 2008).

The partner pharmacophore to 1,2,3-triazole in this study is 1,4-benzoquinone (p-benzoquinone, BQ). Quinones, the class of compounds to which BQ belongs, also display broad pharmaceutical applications, i.e. antifungal (Tasdemir et al., 2006), antimalarial (Tran et al., 2004; Tasdemir et al., 2006), anticancer (Tasdemir et al., 2006) and broad-spectrum anti-bacterial agents (Tran et al., 2004; Tasdemir et al., 2006). Examples of such quinones include; plumbagin, juglone and primin. However, various published reports assert a constant interconversion between hydroquinone (HQ) and BQ (Scheme 1.1) in aqueous medium. The reaction is orientated more to the production of HQ in an acidic environment, and in the presence of a complete microsomal system (Souček et al., 2000; McGregor, 2007; HCotN, 2012). By taking the effect that environmental conditions play on the generation of either HQ or BQ into account, investigation followed the synthesis of 1,4-benzoquinone/hydroquinone-1,2,3-triazole derivatives.

![Scheme 1-1: Interconversion of p-benzoquinone and hydroquinone.](image)

Limited research has been conducted on the anti-TB activity of BQ- and HQ-derived synthetic compounds, BQ/HQ-linked 1,2,3-triazole molecules in particular. However, the limited research reports that both BQ and 1,2,3-triazole containing compounds are biologically effective against *Mtb* (Tran et al., 2004; Gill et al., 2008; Boechat et al., 2014). This allows one to hypothesise that chemically linking the two pharmacophores might result in the development of a new hybrid molecule that has improved efficacy against TB in comparison to current available anti-TB medicine.
1.2 Aim and objectives

The aim of this study is to develop novel molecular entities, via the molecular hybridisation of 1,4-benzoquinone and various substituted 1,2,3-triazole moieties, that may have enhanced effectiveness against *Mtb* and improved safety profiles in comparison to the current existing drugs used in the treatment of TB.

The objectives of this study are:

- To synthesise a series of novel benzo/hydroquinone-triazole hybrids with the general structure depicted in Figure 1.2.

\[
\begin{align*}
\text{N} & \equiv \text{N} - \text{R} \\
\text{X}_1 & = \text{OH} \quad \text{and} \quad \text{X}_2 = \text{O}, \\
\text{and} \quad \text{R} & \text{is alkyl, aryl etc.}
\end{align*}
\]

Figure 1-2: General structure of target hydroquinone- and benzoquinone-triazole hybrids.

- To characterise the synthesised compounds by means of routine techniques such as Nuclear magnetic resonance (NMR), Mass spectrometry (MS) and Infrared (IR) spectroscopy.

- To assess the *in vitro* cytotoxicity of the synthesised compounds using mammalian cell lines.

- To assess the *in vitro* anti-tubercular activity of the synthesised compounds against the MDR-TB strain, *Mtb* H37Rv strain.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Tuberculosis (TB) is a disease that has been around for hundreds of years, plaguing humankind through history and human prehistory. *Mtb* may have resulted in more deaths than any other pathogen (Daniel, 2006). In 1944 the search to find a cure for TB finally ended with the discovery of streptomycin. A few years later, TB became a treatable disease with the introduction of more effective drugs including isoniazid (INH) (1952) and pyrazinamide (PZA) (1952) (Zhang, 2005). However, despite over 60 years of anti-TB chemotherapy, millions of new cases of active TB are still registered each year, with nearly a quarter of the human population living with latent TB (Gomez & McKinney, 2004; WHO, 2018a).

The rise of drug-resistant strains of TB has made the treatment of TB virtually untreatable. The treatment of drug-susceptible TB is already a lengthy and complex process that is further complicated with the appearance of multidrug-resistant strains of *Mtb*. Inappropriate management of drug-resistant TB could have life-threatening results since many of the second-line drugs have toxic side effects. Drug-resistant TB should always be managed by direct observation or close consultation (CDC, 2018a) that may result in infection of healthier individuals in countries equipped with poor health care facilities. Statistics show that 82% of the 558,000 new cases of TB reported in 2017, were multidrug-resistant and that only 55% of these cases were successfully treated (WHO, 2018a). The need for new and effective anti-mycobacterial drugs has been one of the main driving forces pushing research to find novel strategies in drug development in the struggle against TB (Bark et al., 2011).

In this chapter, current TB statistics, treatment control and drug resistance, as well as the challenges that drug-resistant TB bring to TB chemotherapy will be discussed. Chapter 2 will also discuss the strategy this study will embark on for the discovery of novel anti-TB drugs.

2.2 Epidemiology of tuberculosis

TB has been the leading cause of human deaths from a single infectious disease for the last five years, ranking above AIDS (WHO, 2018b). Not only is 23% of the world’s population infected with latent TB, but an estimated ten million new people fell ill with TB in 2017. In that year 1.6 million (including 0.3 million co-infected with HIV) succumbed to the disease (WHO, 2018a). Of the ten million new cases 5.8 million were men, 3.2 million were women, and one million were children (WHO, 2018b). The two-fold difference between males and females affected may
suggest that TB is primarily a disease of men and/or that the epidemiological differences between man and woman may play a role in both exposure to infection and in susceptibility to develop the active disease (Dye, 2006; WHO, 2018b). Eight countries accounted for two thirds of all the TB cases reported worldwide, with India leading the count, followed by China, Indonesia, Philippines, Pakistan, Nigeria, Bangladesh and South Africa (Figure 2.1) (WHO, 2018a).

However, when comparing statistics per 100 000 population Pakistan, South Africa and Mozambique have a much higher TB incidence rate (± 0.005 %) compared to India and China (0.002 and 0.0006 %, respectively.) (WHO, 2018b).

Figure 2-1: Global tuberculosis prevalence, 2017(WHO, 2018b).

Poverty stricken regions are the most affected by TB; with the most estimated cases occurring in the World Health Organisation (WHO) South-East Asia (44 %), African Region (25 %), and Western Pacific (18 %) regions in 2017. Smaller proportions of cases were registered in the WHO Eastern Mediterranean (7.7 %), Americas (2.8 %) and European region (2.7 %). The WHO African Region also had the highest number of TB cases co-infected with HIV, with parts of southern Africa exceeding 50 % (WHO, 2018b).

The “End TB Strategy” was established by WHO with the aim to end the global TB epidemic by 2035. The 2035 targets are a 95 % and 90% reduction in TB mortality and TB incidence rate, respectively. Interim milestones set for 2020 are a 35 % and 20 % reduction in TB mortality and TB incidence rate, respectively, compared with levels in 2015. From 2000 to 2017, there has been an estimated three percent annual decline in TB incidences. However, to reach the first (2020)
milestone of the “End TB Strategy” the rate of annual decline needs to be accelerated to four – five percent (WHO, 2018a; WHO, 2018b).

The WHO European and African Regions had the fastest decline in TB incidence with five and four percent per year, respectively from 2013 – 2017. The areas with the fastest decline in mortality rate were the WHO European and South-East Asia Regions with 11 % and 4.3 %, respectively, since 2013 and WHO African Region had the slowest rate of decline at 1.7 % per year (WHO, 2018b).

Drug resistance is undermining the control over TB. In 2017 there was an estimate of 558 000 new cases of rifampicin (RIF) resistance, of which 82 % had MDR-TB and 8.5 % of all MDR-TB cases had XDR-TB (WHO, 2018a). MDR-TB is defined as TB that is resistant to the two most effective first-line drugs, i.e. INH and RIF (WHO, 2018c). XDR-TB is defined as MDR-TB that is resistant to any fluoroquinolone, and at least one of the three injectable second-line drugs; amikacin, capreomycin, or kanamycin (WHO, 2018e). Drug-resistant TB is a growing problem that must be dealt with, or it will threaten to send civilization back into an era where the positive diagnosis of TB is a death sentence (Goldberg et al., 2012). However, despite the fact that the 2018 WHO Global Tuberculosis Report revealed a high number of new TB incidences, the data also showed that the global mortality rate of TB had decreased overall by 42 % between the years 2000 and 2017 (WHO, 2018b).

2.3 Tuberculosis in South Africa

TB remains a major health problem in South Africa (SA). SA is one of the top 30 high TB burden countries, with an annual TB incidence of over 500 per 100 000 population (WHO, 2018b). TB is also the leading cause of death in the country (Kanabus, 2018a). In 2015 the Eastern Cape was recorded to have the highest incidence rate in the country with 692 per 100 000, followed by KwaZulu-Natal, and Western Cape with 685 and 681 per 100 000, respectively. The KwaZulu-Natal incidence rate has decreased over the last five years from 1 185 to 685 per 100 000. The average rate of TB/HIV co-infection in 2015 across SA was 56.7 %, with Gauteng having the highest number of co-infections at 68.4 % (Massyn et al., 2016).

To control the rate of TB incidences in SA, four key aspects have been identified and need to be prioritised: (1) improve the cure rate of TB to ensure an interruption in the transmission of the disease; (2) improve the case detection rate of TB to ensure that fewer cases remain undiagnosed in the community to infect healthy individuals; (3) integrate TB and HIV services to ensure that 90 % of HIV-positive patients are screened for active TB and 90 % of TB patients are offered an HIV test (4) improve the identification and treatment of drug-resistant TB (Karim et al., 2009).
2.4 Transmission and pathology of tuberculosis

2.4.1 Transmission

Mtb, the causative pathogen of TB, is transmitted inter-individually through the air by small droplet nuclei that can stay in the air for several hours (Russell *et al.*, 2010). These droplets are spread when a person with pulmonary or laryngeal TB coughs, sneezes, spits or sings, propelling the pathogen into the air, causing people in the surrounding area to inhale the bacteria and become infected (CDC, 2018b; WHO, 2018a). Only 5 – 15% of infected people develop the active disease, though patients with compromised immune systems are at a much higher risk of developing the active disease (WHO, 2018a).

2.4.2 *Mycobacterium tuberculosis* bacterium description and cell wall

Mtb is a rod-shaped, non-spore-forming, aerobic bacterium that is classified as a, acid-fast bacillus. It characteristically measures at 0.5 – 3 µm and has a unique, well-developed and lipid-rich cell wall structure that is fundamental to its survival (Glickman & Jacobs, 2001; Knechel, 2009). *Mtb* is visualised by acid-fast (Ziehl-Neelsen) staining due to the lipid-rich cell wall which is capable of retaining carbol fuchsin dye, even in the presence of acidic alcohol (Glickman & Jacobs, 2001; Gengenbacher & Kaufmann, 2012).
Figure 2-2: Schematic representation of *Mycobacterium tuberculosis* cell wall. mAG = mycolyl-arabinogalactan, AG = arabinogalactan, TMM = trehalose monomycolate, TDM = trehalose dimycolate (Thanna & Sucheck, 2016).

Mtb’s cell wall is divided into upper and lower segments. The lower segment, termed “cell wall core”, consists of a mycolyl-arabinogalactan-peptidoglycan (mAGP) complex. Here mycolic acid (MA), a long chain fatty acid, is covalently attached to the underlying peptidoglycan-bound polysaccharide arabinogalactan, generating an effective lipid barrier (Figure 2.2) (Knechel, 2009). The upper segment is composed of free lipids and scattered cell wall components including phosphatidylinositol mannosides (PIMs), phthiocerol containing lipid, lipomannan (LM), and lipoarabinomannan (LAM) (Brennan, 2003). LAM is immunogenic and facilitates the survival of the bacterium within the macrophage. The architectural arrangement of the upper segment increases the bacilli’s resistance to degradation by host enzymes, its impermeability to toxic macromolecules, and the inactivation of reactive oxygen and nitrogen derivatives. (Korf et al.,
Disruption of the cell wall leads to the solubilisation of the upper segment (the free lipids, proteins, LAM, and PIMs). The lower segment, the mAGP complex, remains as an insoluble residue that is essential in the viability of the cell (Brennan, 2003).

2.4.3 The life cycle of tuberculosis

The expectorated pathogen-containing droplets are inhaled and carried to the lungs. Due to the small size of the droplet nuclei (1 – 5 µm) the tubercle bacilli are able to reach the alveolar spaces where it replicates (Figure 2.3) (Ahmad, 2010; Wani, 2013). Here the bacteria is ingested by alveolar macrophages and ultimately invade the subtending epithelial layer (Bermudez & Goodman, 1996; Gengenbacher & Kaufmann, 2012). Mtb has the ability to persist, survive and replicate in this extreme microbicidal environment of macrophages. The pathogen is able to elude most macrophage effector functions, such as inhibiting phagosome-lysosome fusion by inhibiting the acidification of phagosomes (Hingley-Wilson et al., 2003; Korf et al., 2005). The pathogen retards phagosome maturation (Russell, 1995) and shields itself from toxic oxidative burst caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced by the macrophages as part of their antimicrobial response (Piddington et al., 2001).

Intracellular replication of the bacteria at the initial pulmonary site of infection, the spread to lymph nodes in the lungs, and the simultaneous dissemination of the infection to extrapulmonary sites in the body occur before the development of the adaptive immune response (Glickman & Jacobs, 2001; Ahmad, 2010). The infected host cells induce a localised pro-inflammatory response that attracts T lymphocytes and mononuclear cells to build up a granuloma, a defining tissue reaction of TB (Gengenbacher & Kaufmann, 2012). At the beginning, the granuloma is an amorphous mass of macrophages, neutrophils and monocytes. The macrophages later differentiate into several specialised cells, namely; foamy- and epithelioid macrophages and multi-nucleated giant cells. The granuloma becomes more organised and stratified after the initiation of an acquired immune response and the arrival of lymphocytes. A mantle of lymphocytes surrounds the macrophage-rich centre that may then later be enclosed in a fibrous cuff that marks the periphery of the structure (Russell et al., 2010).

The granuloma acts to wall off the growing necrotic tissue caused by the pathogen, and in so doing limit the spread and replication of the pathogen (Ahmad, 2010). The immune response can normally eradicate virtually all of the Mtb in the caseating granulomas, halting the progression of the disease. However, the pathogen is very rarely completely eradicated as it has evolved to evade the immune response, survive and persist in the host in a non-replicating state (latent TB) (Glickman & Jacobs, 2001; Frieden et al., 2003; Ahmad, 2010).
The host’s immune system is, therefore, either able to take successful control over the infection, leading to a latent infection if not all bacteria are eradicated, or is not able to take effective control and the infection progresses to the active disease (primary progressive TB) (Frieden et al., 2003). An effective cell-mediated immunity (CMI), in infected people, usually develops two – eight weeks after infection (Frieden et al., 2003). The \textit{Mtb} bacilli will continue to replicate in the host’s system until an effective CMI has been developed. If the host fails to mount an effective CMI and damaged tissue is not repaired, progressive destruction of the lungs will take place (Wani, 2013).

Upon failure of eliminating the infection \textit{Mtb} bacilli proliferate inside the alveolar macrophages, killing the cells. Cytokines and chemokines are produced by the infected macrophages, attracting other phagocytic cells, such as other alveolar macrophages, monocytes and neutrophils. A nodular granulomatous structure, called a tubercle, is eventually formed. If the replication of the pathogen is not controlled the tubercle enlarges and the bacilli enter local draining lymph nodes, causing lymphadenopathy (a prominent characteristic of active TB), and the active disease occurs (Ahmad, 2010; Wani, 2013).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{life_cycle.png}
\caption{Life cycle of \textit{Mycobacterium tuberculosis} (Cambier et al., 2014).}
\end{figure}

\subsection*{2.5 Clinical manifestation of tuberculosis}

The development of TB disease depends on the immune system of every patient and the disease may, therefore, present differently in each patient. Each stage of TB also has its own clinical
manifestation (Knechel, 2009), with the most common symptoms being coughing, chest pains, weight loss, fever, weakness, fatigue, malaise and night sweats (ATS, 1999; WHO, 2018b). These symptoms are non-specific, which sometimes results in misdiagnosis and/or delayed diagnosis (Babajide & Mukadi Ya, 2006). TB disease associated with the lungs of a patient is referred to as pulmonary TB, while TB disease in any part of the body (e.g. the spine, kidneys, or lymph nodes) is classified as extrapulmonary TB (CDC, 2018c). The risk of developing extrapulmonary TB increases with immunosuppression (CDC, 2018d).

2.5.1 Primary pulmonary tuberculosis

The primary disease essentially exists sub-clinically and is often asymptomatic, with the only evidence of disease being the diagnostic result, and some self-limiting findings such as paratracheal lymphadenopathy and pleural effusion being noticed during an assessment. (Knechel, 2009). As mentioned in paragraph 2.4.1, only 5 – 15% of infected people develop the active disease, though patients with compromised immune systems are at a much higher risk of developing the active disease (WHO, 2018a).

The *Mtb* bacilli spread through the lymphatic system from the lungs, causing paratracheal lymphadenopathy. Pleural effusion may develop due to the bacilli infiltrating the pleural space. When the effusion becomes large enough, it induces symptoms such as pleuritic chest pain, fever, and dyspnea. Affected lung tissue with poor gas exchange causes dyspnea (Knechel, 2009).

As mentioned in paragraph 2.4.3, if the host’s immune system is unable to take successful control over the infection the mycobacteria multiply and grow in the host, leading to primary progressive (active) TB. Early stages of the disease are non-specific, with the most common symptoms being; malaise, progressive fatigue, low-grade fever, weight-loss, chills and night sweats (ATS, 1999; Knechel, 2009).

Inflammatory and immune responses caused by pulmonary TB create a lack of appetite and an altered metabolism that results in wasting. Wasting is the loss of both lean and fat tissue, and it is a classic feature of TB (MacAllan et al., 1998; Paton et al., 2004). Another definitive feature of pulmonary TB is a bad cough that lasts for three weeks or more (CDC, 2018e). The coughing may at first be non-productive but can develop to a productive cough with purulent sputum that may be streaked with blood (haemoptysis). There are numerous reasons for haemoptysis, including the destruction of a patent vessel positioned in the wall of the cavity, the formation of an aspergilloma in an old cavity, and/or the rupture of a dilated vessel in the cavity. Pleuritic chest pain is attributed to inflamed parenchyma (Knechel, 2009).
2.5.2 Extrapulmonary tuberculosis

Pulmonary TB is the most common form of TB, but when the infection disseminates to other body parts the disease is classified as extrapulmonary TB (EPTB) (Peirse & Houston, 2017). EPTB is, therefore, the infection of any organ by \textit{Mtb}, excluding the lungs. EPTB is caused by the reactivation of a latent infection and the dissemination of the bacteria through the body to various organs. Immunodeficiency (especially in HIV-positive individuals) increases the risk of developing EPTB. Other important risk factors of EPTB include corticosteroids, malignancy, tumour necrosis factor-\(\alpha\) antagonists (infliximab), not smoking and female gender (Peirse & Houston, 2017) as opposed to the primary disease being more prominent with the male gender (see paragraph 2.2).

Patients with EPTB have non-specific symptoms, such as anorexia, fever, weight-loss, fatigue, and malaise, and symptoms can differ vastly depending on the affected organ(s) (Sharma & Mohan, 2004). The most severe signs and symptoms of EPTB are those implicating the involvement of the central nervous system (CNS) (Knechel, 2009). Infection of the CNS can result in meningitis (infection of the meninges) or space-occupying lesions (tuberculomas) of the brain (Knechel, 2009). Infection of the blood stream by \textit{Mtb} (disseminated or miliary TB) is another fatal form of EPTB (Knechel, 2009).

Other possible locations for infection EPTB include the bones or joints (the spine being the most common structure affected) (Frieden et al., 2003), genitourinary system (although uncommon, and difficult to distinguish from other genitourinary tract infections) (Frieden et al., 2003), and the lymphatic system (the most common form of EPTB) (Knechel, 2009).

2.5.3 Miliary tuberculosis

Miliary TB develops when the host’s immune system becomes suppressed, resulting in the proliferation and dissemination of the organism throughout the body (Sharma et al., 2005). Two methods by which miliary TB can occur include (1) lympho-haematogenous dissemination of the bacteria through the body from an extrapulmonary focus and embolisation to the vascular beds of several organs, and (2) less commonly, the reactivation of several foci in various organs.

Miliary TB accounts for three percent of EPTB and can affect any organ in the body (Babajide & Mukadi Ya, 2006; Peirse & Houston, 2017). The diagnosis of miliary TB is made when diffuse miliary infiltrate is present on high-resolution computer tomography (CT) scans or chest radiographs, or when miliary tubercles are observed in several organs during laparoscopy, autopsy, or open surgery (Sharma et al., 2005). Previously, miliary TB was often only diagnosed during autopsies and it has been revealed that the disease most frequently affects organs with a high blood flow (e.g. spleen, bone marrow, lungs, liver, adrenals, and kidneys). The availability of high-resolution CT scans has made it possible to diagnose that condition in living patients. Miliary
TB, affecting almost all organs, is most often asymptomatic or accompanied by protean and non-specific symptoms such as fever, weight-loss, anorexia, coughing, and lethargy. Mental status changes and headaches are more severe forms of symptoms and could suggest meningeal involvement (Sharma et al., 2005).

2.5.4 Latent tuberculosis infection

Latent TB infection (LTBI) occurs when an individual infected with *Mtb* has an immune response controlling the pathogen, forcing it into a dormant state (Parrish et al., 1998). Latent TB individuals have no symptoms and cannot spread the pathogen to others, yet generally have a positive TB blood or skin test reaction (refer to paragraph 2.6). LTBI does not always develop into the active disease as it can remain inside the host, inactive for a lifetime never causing disease (CDC, 2018d). A person with latent TB has a 5 –15 % lifetime risk of TB reactivation and the risk increases considerably in the presence of predisposing factors, such as weakened immune system (WHO, 2018a), critical illness (Knechel, 2009), HIV co-infection (the greatest risk factor for reactivation) (Frieden et al., 2003), malnutrition, cancer, drug abuse, diabetes, immunosuppressive drug therapy and chronic renal infection (Parrish et al., 1998).

2.6 Diagnosis of tuberculosis

There are several tests that can be used to diagnose TB. However, diagnosing a patient with TB is often difficult, with most tests being inaccurate and/or time consuming. Diagnostic tests for TB vary in specificity (the ability to correctly detect people with TB – leading to false positives), sensitivity (the ability to correctly detect people who do not have TB – leading to false negatives), cost, and speed (Frieden et al., 2003; Kanabus, 2018b). The most commonly used tests are discussed in paragraph 2.6.

2.6.1 Tuberculosis sputum smear microscopy

The sputum smear microscopy (SSM) method is still used in many countries as the cornerstone method of TB diagnosis, especially in low to middle-income countries (Dorman, 2010) or in countries where there is a high TB morbidity rate (WHO, 2018b). Ziehl-Neelsen, Fluorochrome, and Kinyoun staining methods can all be used in the sputum smear test and these methods are regarded as relatively inexpensive rapid tests (Frieden et al., 2003). The SSM method includes a few limitations, such as: (1) only half of the number of TB cases are accurately detected; (2) all mycobacteria are acid-fast and morphologically similar, making it difficult for technicians to distinguish between non-pathogenic and pathogenic mycobacteria; (3) SSM cannot detect drug-resistant mycobacteria. This method requires trained laboratory technicians to examine sputum samples under a microscope and determine whether the *Mtb* bacteria are present in the samples (Van Deun, 2004; WHO, 2018b). A collected sputum smear sample is placed on a microscope
slide and is stained with the primary stain dye, Carbol fuchsin, to detect acid-fast bacteria, which stains red. The sputum smear is then decolourised, using three percent acid-alcohol or 25% sulphuric acid solutions, and is then treated with a secondary stain, methylene blue that stains non-acid fast bacteria blue. *Mycobacteria* is acid-fast and, therefore, retains the red colour despite the decolouration steps, leading to its identification (Rieder et al., 2007; Dezemon et al., 2014).

2.6.2 Tuberculosis skin test

The Mantoux tuberculin skin test (TST) requires two visits to a health care provider. Upon the first visit the patient receives an intradermal injection, containing a tuberculin-purified protein derivative (PPD), into the lower part of their arm. The patient must return within 48 – 72 hours to examine the reaction on the arm and determine the results of the test (CDC, 2018f). The test results depend on the size of the raised, hard area or swelling (erythema is not included when size is measured). If the TST tests positive, it indicates that the patient is infected with *Mtb*, but does not show whether the patient has latent TB or the active disease. False-positives are also high for patients infected with non-TB mycobacteria and people who have had the bacilli Calmette-Guérin (BCG) vaccine. A negative test result suggests that latent TB or active TB disease is highly unlikely. The TST is the preferred TB test for children younger than five years (CDC, 2018f).

2.6.3 Tuberculosis Interferon-gamma release assays

There are two TB blood tests available and both are interferon-gamma release assays (IGRAs): the QuantiFERON-TB Gold in-tube test (QFT-GIT) and the T-SPOT TB test (T-spot). IGRAs assess a patient’s cell-mediated immune reactivity to *Mtb* and requires the health care provider to take a single draw of blood from the patient. The lymphocytes of most patients infected with *Mtb* release interferon-gamma (IFN-γ) when the blood is mixed with certain antigens viz. culture filtrate protein 10 (CFP-10) and early secretory antigenic target-6 (ESTAT-6) derived from *Mtb* (Mazurek et al., 2010; Belknap & Daley, 2014; CDC, 2018g). IGRAs were developed to replace TST, as the antigens used are specific to *Mtb* and are not present in most non-TB mycobacteria or BCG strains (Belknap & Daley, 2014), making this method of diagnosis more specific. Even though these tests were developed as replacement tests, they are not useful when used alone in the diagnosis of active TB in both HIV-negative and positive patients (Ampath, 2012). IGRAs are the preferred TB test for people who have received the TB vaccine (BCG) and people who are not able to return for a second appointment, as is required for the TST (CDC, 2018g).

2.6.4 Chest X-rays

Chest abnormalities are identified by using a posterior-anterior chest radiograph. Lesions in the lungs differ in shape, size, cavitation and density and can appear anywhere in the lungs. This
method of diagnosis is very low in specificity, as the appearance of the chest x-rays (CXR) are never typical of TB. They either present as classical (mildly immunocompromised patients) or atypical patterns, especially in the case of severely immunocompromised patients, creating a window for misdiagnosis as many other lung diseases present CXR patterns similar to TB. CXR can also result in an over diagnosis of pulmonary TB because of lung fibrosis/destruction caused by old TB. The sensitivity of CXR is also low for HIV-positive patients, due to the lung cavities being less pronounced (Harries et al., 2005; Van Cleeff et al., 2005; DoHSA, 2014). Regardless of the low specificity and sensitivity of CXR, it is still widely used as a method of diagnosis of pulmonary TB. However, due to the limitations of this method, CXR cannot be used as a definitive diagnosis for TB. It is recommended that further tests be done to increase sensitivity and specificity, such as TST and IGRAs, to ensure a correct diagnosis (du Preez & Loots, 2014; CDC, 2018d).

2.6.5 Tuberculosis culture test

A culture test is used to determine whether specific bacteria is present in a patient. The bacteria is grown on different media, either on solid culture plates or in liquid culture broths. TB culture tests are used to determine drug resistance and can also identify Mycobacterium complex species other than TB. TB drug resistance is tested by growing the Mtb bacteria in the culture medium in the presence of anti-TB drugs (LL, 2016; Kanabus, 2018b). If bacterial growth continues, it means that the bacteria is resistant to the drug present in the growing medium. If there is no bacterial growth, there is no drug resistance and the drugs are effective against the bacteria. A large advantage that this diagnosis method has over the other methods is that cultures provide a very definitive and accurate diagnosis of TB, with high sensitivity (80 %) and specificity (98 %) values. Significant disadvantages of this method are that the final results are only obtained after two – six weeks and that it is an expensive procedure, as more sophisticated equipment and laboratory facilities are required (LL, 2016; Kanabus, 2018b).

2.6.6 Tuberculosis molecular tests

Molecular TB tests have developed drastically over the last two decades in an effort to improve the early detection of TB and MDR-TB. Two molecular test methods that are currently recognised by the WHO are the Xpert MTB/RIF assay and line probe assays (Noor et al., 2015).

2.6.6.1 Xpert MTB/RIF assay

The Xpert MTB/RIF assay is a fully automated real-time cartridge-based polymerase chain reaction (PCR) test that is able to detect both TB and RIF resistance within 2 hours (Weyer et al., 2013; WHO, 2013). The specificity and sensitivity of Xpert MTB/RIF assays are greater than that of TB culture tests, with a pooled sensitivity of 88 %, and specificity of 99 % (WHO, 2013). Xpert
MTB/RIF is also able to detect RIF resistance with a sensitivity of 95% and a specificity of 98% (WHO, 2013). It requires only minimally trained staff and, because the assay is enclosed in a self-enclosed unit, contamination is minimal. However, the equipment used is sensitive and requires protection, and the cost of the assay is also relatively expensive (Boyle & Pai, 2014).

2.6.6.2 Line probe assay

Line probe assays (LPA) were the first TB molecular tests endorsed by the WHO (Noor et al., 2015). Both the LPA and Xpert MTB/RIF assays target the ribonucleic acid (RNA) polymerase (rpoB) gene (Rufai et al., 2014). LPA are centred on reverse hybridisation and involves the extraction of deoxyribonucleic acid (DNA), followed by PCR amplification of the rpoB gene (WHO, 2008). The PCR products are then hybridised by specific oligonucleotide probes (Rufai et al., 2014; Noor et al., 2015). The sensitivity and specificity of LPA in the detection of RIF resistance are high, with 97% sensitivity and 99% specificity, and test results are available rapidly (within 48 hours) (Noor et al., 2015). LPA are able to detect both RIF and INH resistance (DoHSA, 2014).

Disadvantages of this method include a higher risk of cross-contamination (open system PCR), the requirement of highly trained and skilled personnel, and the fact that the tests have to be performed in a laboratory with prerequisite biosafety level precautions (WHO, 2008; Noor et al., 2015).

2.6.7 Diagnostic test for drug-resistant tuberculosis

Drug resistance develops spontaneously and at random. It is a growing problem in the treatment of TB disease, rendering strategy for the control of TB difficult. The faster and more accurately drug resistance is identified, the better and more effective treatment a patient can receive (LoBue et al., 2009; Sandgren et al., 2009).

The use of the Xpert MTB/RIF assay (paragraph 2.6.6.1) has expanded considerably in the last seven years. The test can simultaneously detect Mtb and RIF resistance within two hours, much faster than the standard two – six weeks taken by conventional diagnostic tests (CDC, 2018;i; WHO, 2018a; WHO, 2018b). The Xpert MTB/RIF assay is a nucleic acid amplification (NAA) test, the test is carried out by collecting sputum from a suspected TB patient. The sputum is mixed with the reagent provided with the assay, and this mixture is placed in the GeneXpert machine (CDC, 2018i).

The diagnostic test, named MTBDRs1, is the most reliable way to rule out second-line drug resistance. It is a DNA-based test that is able to identify the genetic mutations that made the MDR-TB bacteria resistant to fluoroquinolones and injectable second-line TB drugs. The MTBDRs1 test yields results within 24 – 48 hours, much faster than the current period of 3 months or longer. Therefore, patients are diagnosed quicker and can receive the correct second-line
regimes from the start. Faster and more accurate diagnosis is a high priority, as the WHO reports that less than 20% of the 480,000 estimated MDR-TB patients are being treated properly (WHO, 2018f).

2.7 Tuberculosis vaccine

Currently there is only one vaccine for TB, namely the BCG vaccine. The BCG vaccine is made up of a live-attenuated strain of *Mycobacterium bovis* (Mahairas et al., 1996). It triggers an immune response to ensure that the patients who receive the vaccine have a good immunity towards TB, but do not actually develop the disease as the live strain is too weak (Iqbal & Hussain, 2014). The vaccine is often given to infants and small children to prevent childhood TB meningitis and miliary disease, but only in countries where the prevalence of TB is high. Due to the potential interference of the vaccine with TST reactivity and the poor effectiveness of the vaccine against adult pulmonary TB, countries such as the United States, where the prevalence of TB is low, do not widely administer the vaccine (CDC, 2018h).

There were, originally, concerns about the efficiency of the BCG vaccine with various clinical trials showing BCG effectiveness ranging between 0 – 80% (Tuberculosis Prevention Trial, 1980). However, a meta-analysis of published literature done by Colditz et al. (1994) and Brewer (2000), confirmed that a BCG vaccination does in fact significantly reduce the risk of TB infection (by an average of 50%), pulmonary TB, and extrapulmonary disease (Colditz et al., 1994; Brewer, 2000). A limitation of the vaccine is that it does not prevent TB infection or the reactivation of LTBI. Due to the inconsistent effectiveness of the BCG vaccine, there has been rapid advancements in new experimental vaccines for TB, especially in areas such as mycobacterial genomics and immunology (WHO, 2018d), DNA and recombinant vaccines (Orme et al., 2001).

2.8 Treatment of tuberculosis

Effective treatment of TB has been available for over 60 years, but a prolonged treatment regimen (six – nine months), poor patient compliance, and the increasing rate of drug resistance threaten the successful treatment of TB (Maher et al., 2003; Horsburgh et al., 2015). Medications used in the treatment of TB are divided into two sections, namely first-line and second-line treatment antimicrobial drugs. Both active- and latent-TB diseases can be cured by strictly following a standard regimen of a combination of first-line drugs for six – nine months (CDC, 2018a). INH and RIF are the two most powerful first-line antimicrobials and form the core of standard TB regimens. Other first-line agents include ethambutol (EMB) and PZA (WHO, 2018a).

However, the emergence of TB strains resistant to one or more of the first-line anti-TB drugs weakens the probability of successful treatment, with only 55% of MDR-TB patients receiving
successful treatment in 2017 (WHO, 2018a). This necessitates a regimen of at least five effective second-line agents. Second-line agents are divided into groups A – D, where: Group A includes all the fluoroquinolones; Group B is second-line injectable agents (aminoglycosides); Group C is other core second-line agents (Ethionamide /Prothionamide, Cycloserine/Terizidone, Linezolid, and Clofazimine); and Group D includes all the add-on agents that are not part of the core drug-resistant treatment regimen (WHO, 2010; WHO, 2016).

2.8.1 Treatment of drug susceptible tuberculosis

TB is treatable and curable with 54 million lives saved between 2000 and 2017 through its diagnosis and treatment. Active, drug-susceptible TB is treated by a four-drug (INH, RIF, EMB, and PZA) regimen for six – nine months. Patient adherence is often difficult so support is frequently provided to the patient (health worker or trained volunteer) to ensure proper medicine consumption. When anti-mycobacterial drugs are taken incorrectly the bacteria that survive the treatment develop resistance to those drugs, which then further complicate therapy (CDC, 2018a; WHO, 2018a).

2.8.1.1 Isoniazid

INH (isonicotinic acid hydrazide, 1), along with RIF (discussed in paragraph 2.8.1.2), is one of the most active drugs against drug susceptible TB (Ahmand & Mokaddas, 2009) and has been used against TB since 1952 (Zhang, 2005). INH comprises of a hydrazine bond and carbonyl group attached to a pyridine ring (Arbex et al., 2010) as seen in Figure 2.4. It is also bactericidal against actively growing tubercle bacilli. INH has a minimum inhibitory concentration (MIC) of 0.2 µg/mL or less against most tubercle bacilli (Deck & Winston, 2012a), with a MIC against susceptible strains of less than 0.02 – 0.05 µg/mL (Musser, 1995; Ramaswamy & Musser, 1998). INH is freely water soluble, and is readily absorbed from the gastrointestinal tract, with peak plasma concentrations being achieved within one – two hours (half-life of 1 hour) post-administration (Deck & Winston, 2012a). The half-life of a drug is the period of time required for the concentration of drug in the body to be reduced by one-half, also known as the duration of action (Wharrad, 2015). INH is metabolised in the liver and is, therefore, potentially hepatotoxic (Tostmann et al., 2008).

![Structure of isoniazid (1).](image-url)

Figure 2-4: Structure of isoniazid (1).
INH is a prodrug that is activated in vivo by the Mtb catalase-peroxidase (KatG) enzyme. After activation, INH mainly targets NADH-specific mycobacterial proteins (such as InhA), that are essential for the synthesis of MA (discussed in paragraph 2.4.2). Depletion of MA causes DNA damage and, subsequently, bacilli cell death (Arbex et al., 2010; Gumbo, 2011; Ahmand & Mokaddas, 2009).

The prevalence of INH drug-resistant isolates are 1 in 10⁶ bacilli (Gumbo, 2011). Resistance against INH is most often the result of a mutation and/or depletion of the catalase-peroxidase (katG) gene, or mutations of the inhA operon causing an increase in drug target. The KatG enzyme is the only Mtb enzyme that is able to activate the INH prodrug (Sherman et al., 1996) and KatG mutants, therefore, have a high level of INH resistance (Deck & Winston, 2012a). Alterations to the katG gene is most often attributed to mutations coding for Ser315Thr shift (Marttila et al., 1998) that alters the structure of the catalase-peroxidase enzymes (Ramaswamy & Musser, 1998; Somoskovi et al., 2001). The altered enzyme no longer effectively metabolizes INH to its biologically active form (Ramaswamy & Musser, 1998). Consequently, MA synthesis is no longer inhibited and the bacteria survives the treatment with INH.

INH resistance can also occur through: (1) promoter mutations that result in the overexpression of alkyl hydroperoxide reductase C (ahpC), a gene that protects the tubercle cell against oxidative stress, and (2) mutations in 3–oxoacyl-[acyl-carrier-protein] synthase 1 (kasA) (Deck & Winston, 2012a), an enzyme that is also involved in MA synthesis (Somoskovi et al., 2001). Administration of INH in isolation rarely cause adverse effects. However, INH hepatotoxicity is potentiated when used in combination with RIF. RIF is a potent CYP2E1 inducer, an enzyme that converts INH to hepatotoxic metabolites (Arbex et al., 2010; Gumbo, 2011). Neurological toxicities can include convulsions, especially in patients suffering from seizure disorders. Patients may also develop haematological reactions and hypersensitivity to isoniazid. Arthritic symptoms such as arthralgia of the knees, wrists, and elbows, back pain, and the “shoulder-hand” syndrome are also attributed to INH therapy (Gumbo, 2011). Other minor effects include fever, nausea, vomiting, headache, and acne (Arbex et al., 2010). The administration of INH to persons predisposed to pyridoxine-deficiency anaemia may result in dramatic anaemia, which can be countered by treatments of large doses of vitamin B₆ (Gumbo, 2011).

2.8.1.2 Rifampicin

RIF (rifampin, 2) was first developed in 1966 (Zhang, 2005), and was only used as anti-TB therapy in the 1970s (Musser, 1995; Niemi et al., 2003). RIF is used in combination with INH as first-line treatment against TB, as it is bactericidal to mycobacteria. RIF is well absorbed after oral administration, with peak plasma concentration reached after two – four hours (half-life of 3.5 hours). The CYP450 liver system metabolises approximately 85 % of RIF (making it a potential
hepatotoxic drug) (Tostmann et al., 2008) and it is excreted mainly via the biliary duct (Arbex et al., 2010; Deck & Winston, 2012a). Food intake reduces the absorption of RIF by as much as 26% and it is, therefore, advised that RIF should be taken on an empty stomach (Arbex et al., 2010; Gumbo, 2011). RIF has a MIC ranging between 0.05 – 0.5 µg/mL against Mtb (Zhang, 2005), is poorly water soluble and is characterised by a long aliphatic bridge spanning a chromophoric naphthohydroquinone group, and an acetyl group at C25 (Gumbo, 2011), as seen in Figure 2.5.

![Structure of rifampicin (2)](image)

Figure 2-5: Structure of rifampicin (2).

RIF brings about its effect by binding to the β subunit of bacterial DNA-dependant rpoB, forming a drug-enzyme complex that suppresses chain formation in RNA synthesis, thus inhibiting mycobacterial transcription and causing cell death (Somoskovi et al., 2001; Gumbo, 2011; Deck & Winston, 2012a). Resistance to RIF occurs as a result of mutations on any of the possible points in the rpoB gene. Such mutations lead to a reduced binding ability of RIF to RNA polymerase, thereby deterring the effect of RIF on tubercle bacilli (Deck & Winston, 2012a). The prevalence of RIF drug-resistant isolates is one in every 10^7 to 10^8 bacilli (Gumbo, 2011). Almost all (more than 98%) RIF-resistant strains have a mutation in the 81 base pair (bp) region of rpoB, with resistance due to mutations at codon 526 and 531 in the 81 bp area accounting for 86% of cases (Somoskovi et al., 2001).

RIF is generally well tolerated with more than 4% of patients developing adverse effects commonly including fever, rash, nausea and vomiting (Gumbo, 2011), and a harmless orange colour change of urine, sweat and tears (Deck & Winston, 2012a).

2.8.1.3 Pyrazinamide

PZA (3) not only bares many similarities to INH, it was also discovered the same year (1952) (Zhang, 2005). PZA is also related to nicotinamide and requires activation to a bioactive form to
produce pharmacological effects. No cross-resistance of \textit{Mtb} exists between INH and PZA (Arbex \textit{et al.}, 2010; Deck & Winston, 2012a). The structure of PZA is seen in Figure 2.6.

![Structure of pyrazinamide (3).](image)

Figure 2-6: Structure of pyrazinamide (3).

PZA is only slightly water soluble, but well absorbed after oral administration, with peak plasma concentrations reached after two hours (Arbex \textit{et al.}, 2010). PZA is metabolised by liver enzymes and has a very long half-life of 8 – 11 hours. It is therefore recommended that PZA be administered three times a week, and not daily, in patients on haemodialysis and patients with a creatinine clearance less than 30 mL/min (Deck & Winston, 2012a). PZA is bactericidal to \textit{Mtb} and has a strong sterilising effect on semi-dormant bacilli. PZA has a MIC of 6.25 – 50.0 µg/mL at a pH of 5.5 (Arbex \textit{et al.}, 2010).

PZA is converted to its active form, pyrazinoic acid (POA), by a mycobacterial pyrazinamidase encoded by \textit{pncA}. It is inactive at neutral pH and is activated in an acidic environment. PZA passively enters the \textit{Mtb} bacillus where it is converted to POA. Due to an ineffective efflux system, POA concentrations in the bacterial cytoplasm increases with rising concentrations, lowering the intracellular pH to suboptimal levels that result in the inactivation of vital enzyme, fatty acid synthase 1. This enzyme plays a vital role in the synthesis of fatty acids and its inactivation consequently impairs MA synthesis (Somoskovi \textit{et al.}, 2001; Arbex \textit{et al.}, 2010; Deck & Winston, 2012a).

Resistance to PZA arises as a result of mutations on the \textit{pncA} gene that encodes the mycobacterial pyrazinamidase enzyme needed in the activation of PZA. Pyrazinamidase then has a reduced affinity for PZA, leading to a decrease in the conversion to POA. Single point mutations in the \textit{pncA} gene constitute 70% of resistant isolates (Arbex \textit{et al.}, 2010; Gumbo, 2011).

Hepatotoxicity is the most serious side effect of PZA and PZA should, therefore, only be given to patients with hepatic dysfunction if it is unavoidable. Other adverse effects of PZA include drug fever (Gumbo, 2011; Deck & Winston, 2012a), nausea and vomiting (Gumbo, 2011; Deck & Winston, 2012a), anorexia (Gumbo, 2011), malaise (Gumbo, 2011) and hyperuricemia (Deck & Winston, 2012a).
2.8.1.4 Ethambutol

EMB (4) as seen in Figure 2.7, was discovered in 1961 (Zhang, 2005). EMB is a dihydrochloride salt, that is synthetic, heat-stable, and water-soluble (Arbex et al., 2010; Deck & Winston, 2012a). EMB is bacteriostatic (stops the growth) against Mtb, especially rapidly growing bacilli. EMB is well absorbed after administration, with peak plasma concentrations reached after two – four hours. It has a half-life of 4 hours and 50 % of the drug is excreted unchanged in the urine (Deck & Winston, 2012a). In patients with severe kidney failure the half-life of the drug can be as long as ten hours (Arbex et al., 2010). The dosage is, therefore, reduced by half for patients with a creatinine clearance of less than 10 mL/min (Deck & Winston, 2012a). The MIC of EMB against susceptible Mtb strains is 1 – 5 µg/mL (Deck & Winston, 2012a).

![Structure of ethambutol (4).](image)

EMB disrupts the biosynthesis of the principal polysaccharide on the mycobacterial cell wall, arabinogalactan. EMB inhibits the arabinosyl transferase enzyme that mediates the polymerisation of arabinose into arabinogalactan. Arabinosyl transferase is encoded by the embCAB operon and resistance to EMB is, therefore, most likely due to mutations within the embB gene or mutations that cause an overexpression of emb gene products (Arbex et al., 2010; Gumbo, 2011; Deck & Winston, 2012a). EMB resistance develops rapidly if the drug is used as monotherapy. Mutations that occur at codon 306 of the embB gene accounts for 30 – 70 % of clinical isolates that are resistant to EMB. Another cause of resistance to both EMB and INH could be attributed to an enhanced efflux pump activity (Gumbo, 2011).

EMB is generally well tolerated with very few serious adverse effects, the most important being retrobulbar optic neuritis. Retrobulbar optic neuritis results in the diminution of visual acuity and red-green colour blindness. Its severity is dependent on the dose and duration of administration and is reversible (Arbex et al., 2010; Gumbo, 2011; Deck & Winston, 2012a). Other negative effects of EMB include gastrointestinal effects (nausea, vomiting, hepatotoxicity and abdominal pain), skin rash and drug fever (Arbex et al., 2010; Gumbo, 2011).

2.8.2 Treatment of drug-resistant tuberculosis

Only 55 % of current MDR-TB cases worldwide are treated successfully. In 2016 the WHO approved the use of a short, 9 – 12 month, standardised regimen for patients with MDR-TB who
are not additionally resistant to second-line anti-mycobacterial drugs. The conventional treatment regimen for MDR-TB can take up to 2 years, making the standardised regimen less expensive as well. Patients that are resistant to second-line agents or have XDR-TB cannot use this regimen and have to follow a longer MDR-TB regimen to which either delamanid and bedaquiline may be added (WHO, 2018a).

According to the new WHO treatment guidelines for drug-resistant TB, patients with RIF resistance or MDR-TB should follow a regimen that is comprised of at least five effective TB medicines during the initiation phase. This should include PZA and four core second-line antimicrobials – one from both group A and B, and at least two from group C. In the scenario of impossibility to compose a regimen as stated above, an agent from group D2 and other agents from group D3 may be added to bring the total to five effective medicines (WHO, 2016; Tiberi et al., 2017). In the case where PZA is compromised, the regimen can be reinforced with a drug from either group C or group D (preferably D2, if that is not possible, from D3). Group D1 agents are only added if they are believed to add benefit (Tiberi et al., 2017). The core second-line drugs, in their respective groups, are summarised in Table 2.1.

Furthermore, the WHO recommends that the standard treatment regimen for patients with RIF resistance, MDR-TB or patients without a high-level INH resistance be further strengthened with a high-dose of EMB and/or INH (WHO, 2016; Tiberi et al., 2017).
Table 2-1: Second-line anti-tuberculosis agents shown in descending order of preference for use (WHO, 2016).

<table>
<thead>
<tr>
<th>Core second-line agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A: Fluoroquinolones</td>
</tr>
<tr>
<td>Levofoxacin</td>
</tr>
<tr>
<td>Moxifloxacin</td>
</tr>
<tr>
<td>Gatifloxacin</td>
</tr>
<tr>
<td>Ciprofoxacin</td>
</tr>
<tr>
<td>Levofloxacin</td>
</tr>
</tbody>
</table>

2.8.2.1 Group A – Fluoroquinolones

Group A core second-line anti-TB agents are the fluoroquinolones (FQs). This group includes ciprofoxacin (5), gatifloxacin (6), moxifloxacin (7), and levofloxacin (8), seen in Figure 2.8. The favourable pharmacokinetic, microbiological, drug interaction, and toxicity profile of FQs have made this class of medication promising agents against TB (Berning, 2001). FQs are synthetic fluorinated analogues of nalidixic acid that act by inhibiting DNA gyrase (Gumbo, 2011; Deck & Winston, 2012b). FQ are generally well absorbed after oral administration, with peak plasma concentrations reached after one – two hours. Oral absorption of FQ is reduced by concomitant uptake of food and di- and trivalent cations. FQs exhibit a concentration-dependant effect, have a MIC of less than 2 µg/mL, and a half-life of three – ten hours, which permits once-daily dosing (Berning, 2001; Deck & Winston, 2012b).
Figure 2-8: Structure of anti-tuberculosis clinical fluoroquinolones; ciprofloxacin (5), gatiflaxacin (6), moxiflaxacin (7), and levofloxacin (8).

FQs act by obstructing bacterial DNA synthesis through the inhibition of DNA gyrase (topoisomerase II) and topoisomerase IV enzymes. DNA gyrase is composed of two A and two B subunits, encoded by the genes gyrA and gyrB, respectively (Musser, 1995; Petri, 2011). DNA gyrase inhibition disrupts normal transcription and replication by preventing the relaxation of supercoiled DNA. Topoisomerase IV inhibition hinders cell division by interfering with the separation of the replicated chromosomal DNA into respective daughter strands (Deck & Winston, 2012b). Resistance to FQs arise due to a decrease in the permeability of the mycobacterium cell wall or one or more point mutations in the gyrase A subunit. Resistance to one FQ generally confers cross-resistance to all other FQs, especially if the level of resistance is high (Deck & Winston, 2012b).

FQs are generally well tolerated with the most common adverse effects being gastrointestinal (diarrhoea, nausea and vomiting) and the occasional headache, skin rash, dizziness, and insomnia (Deck & Winston, 2012b). Other, more severe adverse effects include tendonitis and tendon rupture (Ginsburg et al., 2003), seizures (Ginsburg et al., 2003) and prolongation of the QT interval (distance between the start of the Q wave and end of the T wave on the electrocardiogram (ECG)), triggering life threatening ventricular arrhythmias known as Torsades de Pointes (Isbister, 2015) (especially with moxifloxacin, levofloxacin and gatifloxacin (Deck & Winston, 2012b)). FQs are not routinely recommended to patients under the age of 18 years. This restriction is due to the possibility of cartilage damage, as FQ may damage growing cartilage and cause arthropathy (Ginsburg et al., 2003; Deck & Winston, 2012b).
Group B core agents are aminoglycosides and include second-line anti-TB injectable agents, streptomycin (9), capreomycin (10), amikacin (11), and kanamycin (12), seen in Figure 2.9. They are important in the treatment of TB, especially MDR-TB (Deck & Winston, 2012a). The intramuscular route is the adopted route of administration, due to very poor absorption from the gastrointestinal tract and an almost complete excretion in the faeces after oral administration. Peak plasma concentrations are reached within 30 – 90 minutes after intramuscular injection. Aminoglycosides inhibit protein synthesis by binding to the 30S ribosomal subunit, resulting in the misinterpretation of the genetic code during translation and, ultimately, to irreversible protein synthesis inhibition (Deck & Winston, 2012b). There are three mechanisms of action by which aminoglycosides inhibit protein synthesis: (1) interference with the initiation complex of peptide formation; (2) aminoglycosides cause the break-up of polysomes into non-functional monosomes; and (3) misinterpretation during translation (therefore mRNA) that results in the incorporation of incorrect amino acids in the peptide and the formation of toxic or non-functional proteins. Monotherapy of aminoglycosides is not recommended but always in combination therapy with at least one, and preferably two or three other \textit{Mtb} is susceptible drugs (Deck & Winston, 2012b).

As with the mechanism of action, there are also three principal mechanisms of resistance to aminoglycosides (Deck & Winston, 2012a; Deck & Winston, 2012b): (1) diminished entry of aminoglycoside into the cell; (2) alteration or deletion of the receptor protein on the 30S ribosomal subunit due to mutation. Mutations that take place in either the \textit{rrs} gene that encode 16S ribosomal rRNA, or in the \textit{rpsL} gene that encode S12 ribosomal protein cause such receptor protein alterations. (3) Production of transferase enzymes or enzymes which cause the inactivation of aminoglycoside by acetylation, adenylylation, or phosphorylation. Amikacin is usually indicated in streptomycin-resistant TB, as there is no cross-resistance between amikacin and streptomycin. However, kanamycin resistance is often indicative of amikacin resistance (Deck & Winston, 2012a; Deck & Winston, 2012b).

Aminoglycosides are ototoxic and nephrotoxic, especially if the therapy is continued for longer than five days. Other adverse effects of aminoglycoside include deafness, tinnitus and vestibular disturbances (Deck & Winston, 2012a).
Figure 2-9: Structure of clinical anti-TB aminoglycosides; streptomycin (9), capreomycin (10), amikacin (11), and kanamycin (12).

2.8.2.3 Group C – Other core second-line drugs

Group C agents include all other core second-line agents, i.e. ethionamide/prothionamide, cycloserine/terizidone, linezolid and clofazimine. Figure 2.10 include the structures of Group C agents.

Linezolid (13), an oxazolidinone antibiotic (Sotgiu et al., 2012), is a core anti-TB drug with both bactericidal and bacteriostatic effects on the bacterium (Caminero & Scardigli, 2015). Linezolid brings about its effect by binding onto 23S rRNA (Dooley et al., 2013) on the 50S ribosomal subunit, preventing the bacteria from assembling ribosomes from their dissociated subunits and ultimately inhibiting ribosomal protein synthesis (Lin et al., 1997; Moellering, 2003). Consequently, mutations affecting 23S rRNA gene confer a high-level of linezolid resistance (Dooley et al., 2013).

The limited information available on Linezolid suggests that it is very active against Mtb, but unfortunately its safety and tolerability profile is not as favourable, with many patients experiencing major adverse effects (Sotgiu et al., 2012; Sotgiu et al., 2015). The main adverse
effects include anaemia, gastrointestinal disorders, peripheral neuropathy, optic neuritis and thrombocytopenia (Sotgiu et al., 2012). In an effort to reduce or prevent the adverse effects experienced, the standard 600 mg taken twice daily for gram-positive infections has been adjusted to 300 – 600 mg once daily for drug-resistant TB (Schecter et al., 2010; Dooley et al., 2013; Sotgiu et al., 2015).

Ethionamide (14)/Prothionamide (15) are classified as thionamide drugs that are used interchangeably in the treatment of multibacillary leprosy (WHO, 2018g) and MDR-TB (WHO, 2016). The biological and structural properties and therapeutic potencies of ethionamide and prothionamide are very similar (WHO, 2018g). Prothionamide has a propyl group in the 2nd position of the pyridine ring, as seen in Figure 2.10.

Not only is ethionamide and prothionamide structurally similar to INH, but the mechanism of action is also similar to that of INH. Ethionamide brings about its effect by inhibiting InhA (Wang et al., 2007), and thereby inhibiting mycolic acid synthesis (Caminero et al., 2010). The similar mechanism of action could possibly confer resistance to both INH and ethionamide (Wang et al., 2007; Caminero et al., 2010). Ethionamide is a prodrug that must be activated first to bring about its effect. However, unlike INH that is activated by KatG, ethionamide is activated by FAD-containing monoxygenase (EthA) enzyme, encoded by the ethA gene. Therefore, KatG mutant strains that are resistant to INH retain their sensitivity to ethionamide (DeBarber et al., 2000; Wang et al., 2007). Resistance to ethionamide occurs when there is a mutation of inhA or ethA (Wang et al., 2007).

Adverse effects of ethionamide and prothionamide are rarely reported, but 8.2 % of patients experience serious effects, including gastro-intestinal disturbances and hypothyroidism, especially when used in combination with p-aminosalicylic acid (WHO, 2016).

Clofazimine (16) is a riminophenazine that was specifically developed to treat TB, but inconsistent animal models delayed its development into anti-TB drug. However, extensive research revealed its usefulness against other mycobacterial infections, such as *Mycobacterium leprae* (Reddy et al., 1999; Dooley et al., 2013). The mechanism of action of clofazimine remains unclear, but existing evidence suggests a redox cycling pathway where clofazimine is enzymatically reduced by nicotinamide adenine dinucleotide (NADH) dehydrogenase (NDH-2), and then spontaneously re-oxidised by oxygen to release ROS (Yano et al., 2011; Hartkoorn et al., 2014). Very little is known about the mechanism of resistance to clofazimine, but mutations in the rv0678 gene are suggested to be a confounding factor (Hartkoorn et al., 2014).
Clofazimine has a sterilising activity (Tiberi et al., 2017) and is generally well tolerated, with the main adverse effect being reversible red-black skin discoloration occurring in virtually all patients (Dooley et al., 2013; WHO, 2016).

Cycloserine (17)/Terizidone (18) are used interchangeably in the treatment of drug-resistant TB (WHO, 2016). Cycloserine (D-cycloserine) is a structural analogue of D-alanine and is bacteriostatic against mycobacteria (Chopra & Brennan, 1998). It acts by competitively blocking peptidoglycan biosynthesis, a building block in the cell wall of Mtb. D-cycloserine competitively inhibits both D-alanine racemase (which racemizes L-alanine to D-alanine), and D-alanyl-D-alanine synthase (which catalyses the formation of dipeptide D-alanine-D-alanine) (David et al., 1970; Chopra & Brennan, 1998). The mechanism of resistance to cycloserine is still unclear, but genetic analysis has clearly demonstrated that the overexpression of alrA confers it (Chopra & Brennan, 1998). Terizidone results from the chemical combination of two cycloserine molecules. It was developed to improve the toxicity profile of this group of drugs. Psychiatric adverse events (i.e. psychotic reactions with suicidal tendencies) are some of the major drawbacks of these medicines, especially cycloserine (Caminero et al., 2010).

Other symptoms include anxiety, dizziness and slurred speech, and treatment should be halted immediately if a patient is suicidal or psychotic (Tomlinson, 2011).

![Structure of all Group C clinical anti-TB agents](image)

Figure 2-10: Structure of all Group C clinical anti-TB agents; linezolid (13), ethionamide (14), prothionamide (15), clofazimine (16), cycloserine (17), and terizidone (18).
2.8.2.4 Group D – Other add-on agents

Group D agents are add-on agents and not core MDR-TB regimen components. This group includes; bedaquiline, delamanid, p-aminosalicylic acid, thioacetazone and carbapenems (e.g. imipenem and meropenem).

2.8.2.4.1 Group D2

Bedaquiline (19) and delamanid (see Figure 2.11) are two of the first drugs approved for the treatment of drug-resistant TB in over 40 years (Mahajan, 2013). Bedaquiline is a diarylquinoline (Diacon et al., 2014) that targets both dormant and actively replicating TB bacilli (Caminero & Scardigli, 2015; Tiberi et al., 2017). Bedaquiline brings about its effect by inhibiting the proton pump of adenosine triphosphate (ATP) synthase. Bedaquiline binds to the oligomeric and proteolipid subunit-c of mycobacterial ATP synthase, thus causing the inhibition of ATP synthesis, which subsequently leads to bacterial cell death (Mahajan, 2013; Andries et al., 2014). One method by which bedaquiline resistance develop is as a result of mutations in the atpE gene (the gene that encodes the subunit-c of ATP synthase) (Mahajan, 2013). Another mechanism of resistance, and a reason for the cross-resistance between bedaquiline and clofazimine, are mutations in the Rv0678 gene, involved in the encoding of the MmpS5-MmpL5 efflux pump (Andries et al., 2014).

The Food and Drug Administration (FDA) has voiced its concern over the use of bedaquiline and a concomitant increase in number of deaths. Only 2.5 % of patients taking placebos during the clinical trials died, compared to 11.4 % of patients, who used bedaquiline. (Mahajan, 2013). Other adverse effects caused by bedaquiline include, nausea, vomiting, and arthralgia (Diacon et al., 2014) and with the most common effect being prolongation of the QT interval (Mahajan, 2013; Caminero & Scardigli, 2015). Bedaquiline and delamanid both have the characteristics of core drugs, but with limited data available on the effectiveness of the drugs, it is only used in the first six months of treatment (Caminero & Scardigli, 2015).

Delamanid (20) is a dihydro-imidazooxazole that has already been approved by the Japanese Ministry of Health, Welfare and Labor (MHWL) and the European Medicines Agency (EMA) for the treatment of MDR-TB (Lewis & Sloan, 2015). Delamanid has both bactericidal and sterilising activity, and its absorption is increased two-fold when co-administered with food (Caminero & Scardigli, 2015; Szumowski & Lynch, 2015). The mechanism of action of delamanid is not completely understood, but it is thought to inhibit the synthesis of mycolic acid synthesis, primarily keto-mycolic and methoxy-mycolic acid (components in the mycobacterial cell wall). Delamanid is a prodrug that is activated by the mycobacterial F420 co-enzyme system. Therefore, resistance to delamanid is thought to arise when there are mutations to the mycobacterial F420 genes, fgd,
Rv3547, fbiA, fbiB, and fbiC, involved in the activation of the drug (Lewis & Sloan, 2015; Szumowski & Lynch, 2015). However, no cross-resistance exists between delamanid and other anti-TB drugs as of yet (Tiberi et al., 2017).

Delamanid is generally well tolerated, with the most frequent adverse effects being nausea, vomiting, dizziness, paraesthesia, tremor, anxiety, and the most severe being QT interval prolongation. As with bedaquiline, delamanid requires significant efficacy and safety data before it can be used during the entire length of treatment against TB, and not just six months (Caminero & Scardigli, 2015).

Figure 2-11: Structures of bedaquiline (19) and delamanid (20).

2.8.2.4.2 Group D3

The anti-TB Group D3 drugs include thioacetazone (21), carbapenems (e.g. imipenem (22) and meropenem (23)) and p-aminosalicylic acid (24), see Figure 2.12. Group D3 agents are only used in MDR- and XDR-TB treatment as a last resort. Therefore, if the minimum effective TB treatment regimen cannot be composed of one drug from group A, one from group B, and at least two drugs from group C, only then should one drug from group D2 and other drugs from group D3 be included to make up the five drug regimen recommended by WHO (WHO, 2016).

The use of thioacetazone as part of the first-line combination treatment of TB was restricted in the 1990s due to severe life threatening skin reactions (such as Stevens-Johnson syndrome and toxic epidermal necrolysis) and the widespread availability of safer, more affordable alternative medicines (WHO, 2016). Thioacetazone is a bacteriostatic prodrug that is activated by the same mycobacterial monoxygenase that activates ethionamide, EthA, leading to the inhibition of mycolic acid synthesis (Alahari et al., 2007).

Although carbapenems are currently used in the treatment of MDR- and XDR-TB, evidence on their safety, efficacy, and tolerability are still anecdotal (Sotgiu et al., 2016). However, reports have shown that carbapenems, a subclass of β-lactam antibiotics, also exhibit high antimicrobial
potency against *Mtb* and should, therefore, be effective in the treatment of TB (Kaushik *et al.*, 2015). WHO recommends that carbapenems always be administered in combination with amoxicillin-clavulanate (WHO, 2016).

p-aminosalicylic acid

The anti-TB activity of para-aminosalicylic acid (PAS) was discovered in 1943 by Swedish chemist Jörgen Lehmann (O’Connor, 1948). However, after the introduction of better, more effective anti-TB drugs (RIF and PZA), PAS therapy was mainly discontinued (Mathys *et al.*, 2009) and is currently used only for drug-resistant TB. Even though the drug has been used clinically for over 60 years, its exact mechanism of action is elusive. Due to the structural similarities of PAS to *para*-aminobenzoic acid (PABA), it is speculated that PAS is also involved in the folate biosynthetic pathway (Zheng *et al.*, 2013). The folate metabolic pathway in prokaryotes and eukaryotes generates tetrahydrofolate that is needed for the synthesis of formylmethionyl tRNA^fMet, an essential component in the initiation of protein synthesis. Upon incorporation into the folate pathway, the prodrug PAS interacts with dihydrofolate synthase (DHFS) and dihydropteroate synthase (DHPS) to form a hydroxyl dihydrofolate antimetabolite that inhibits the enzymatic activity of dihydrofolate reductase (DHFR) (Zheng *et al.*, 2013).

Mycobacterial resistance to PAS has been associated with mutations to the *thyA* gene that encodes thymidylate synthase in the folate pathway (Mathys *et al.*, 2009; Zhao *et al.*, 2014). As PAS is a prodrug that targets the activity of DHFR, mutations to or overexpression of genes involved in the conversion of PAS to its active form in the folate pathway also result in resistance to PAS. Therefore, the overexpression of *dfrA* (the gene that encodes DHFR in *Mtb* (Zheng *et al.*, 2013)) and mutations to *folC* (the gene that encodes DHFS in *Mtb* (Zhao *et al.*, 2014)) are responsible for PAS resistance. In addition to the above mentioned mechanisms of resistance, it has been discovered that the overexpression of the enzyme riboflavin biosynthesis protein (RibD), a functional analogue of DHFR, conferred PAS resistance as well (Zheng *et al.*, 2013).

The effectiveness of PAS against TB is very poor. It is expensive and poorly tolerated with a high frequency of adverse effects (gastro-intestinal disturbances, and hypothyroidism, especially when used in combination with ethionamide/prothionamide) (WHO, 2016). Regardless of the drawbacks, PAS is an important drug in the treatment of MDR and XDR TB, but should still be reserved for cases where there are no other options of drugs to use (Caminero *et al.*, 2010; WHO, 2016).
2.9 Drug rationale

In this project 1,4-benzoquinone and the pharmacophore 1,2,3-triazole are hybridised to form various 1,2,3-triazole linked quinone derivatives to be utilised in drug development against TB. Discussed further is the justification for the use of these compounds.

2.9.1 Benzoquinone-hydroquinone

Benzoquinone (BQ, 25) and hydroquinone (HQ, 26) are both members of naturally occurring quinones (Kim et al., 2010). When present in an aqueous solution BQ and HQ are both susceptible to spontaneous and enzymatically mediated redox cycling and acid-base transformations. This leads to the reversible interconversion of HQ and BQ, respectively, as seen in Scheme 2.1.

\[
\text{Scheme 2.1: The interconversion of 1,4-benzoquinone (25) to hydroquinone (26), via semiquinone (27).}
\]
In an aqueous solution, HQ undergoes autoxidation to form BQ, via a semiquinone radical (Souček et al., 2000). The reaction is exerted by cytochrome P450 and various peroxidases (e.g. myeloperoxidase, prostaglandin H synthase and horseradish peroxidase) (McGregor, 2007; HCotN, 2012). BQ, however, can either be reduced via a one-electron transfer process (by enzymes such as cytochrome P450 reductase and ubiquinone oxidoreductase), or a two-electron process (catalysed by flavoproteins NAD(P)H-quinone oxidoreductases, NQO1 and NQO2) to produce hydroquinone. Since BQ and HQ are interconverted to each other in an aqueous medium, observations made for one compound might also be relevant to the other compound. The biotransformation of the two compounds are, therefore, combined (HCotN, 2012).

The rate of oxidation and reduction of HQ to BQ and BQ to HQ, respectively, is influenced by the presence of a microsomal system (microsomes plus NADPH) (Souček et al., 2000). The rate of HQ oxidation can be significantly slowed down by the presence of NADPH and completely stopped in the presence of a complete microsomal system. For BQ, the rate of reduction of BQ to HQ is significantly faster when stimulated by a complete microsomal system (less than five minutes). The microsomal environment exerts a reducing action and strongly influences the redox cycling of quinones. The autoxidation of HQ is also influenced by the pH of the medium. HQ rapidly autoxidises to BQ under alkaline conditions, and slowly under acidic conditions, with the opposite being true for the autoreduction of BQ to HQ (HCotN, 2012).

The naturally occurring BQ is found primarily in higher plants, bacteria, fungi and small parts of the animal kingdom. BQ is a poorly water soluble substance that possesses several pharmacological properties, such as anti-inflammatory (Sagnou et al., 2009), anticancer (Lindsey et al., 2004), antiviral (Bogdanova et al., 1970) and antimicrobial (Yezerski et al., 2007) activities. An additional major use of BQ is its transformation into HQ (HCotN, 2012). Other effects of BQ include gene mutation (Ludewig et al., 1989) and the inhibition of amyloid fibril formation of lysosomes (Wang et al., 2006). BQ has shown dose dependant inhibitory effects against fibrillogenesis and is believed to help in the understanding and future prevention of amyloidogenic disease (Wang et al., 2006). Nevertheless, BQ was never tested against TB in these studies. BQ is readily absorbed from the gastro-intestinal tract and via subcutaneous tissue (HCotN, 2012).

HQ is a crystalline structure that is water soluble and is almost exclusively used as an industrial chemical. It is also used as a photographic chemical, polymerisation inhibitor, tanning agent (HCotN, 2012), antioxidant in the rubber industry, and as a stabiliser in paints, motor fuels, oils and varnishes (McGregor, 2007). HQ is rapidly and extensively absorbed after oral administration, but absorption through the skin is much slower (HCotN, 2012).
In a study done by Kim et al. (2010), BQ has shown significant antibacterial activity (Kim et al., 2010), especially against pathogens that cause food poisoning, as well as antioxidant and cytotoxic activities (Lana et al., 2006).

In another study conducted by Tasdemir et al. (2006), primin, 28, (a natural BQ) was synthesised and its anti-mycobacterial activity, as well as activity against other pathogens, was investigated. The study revealed that primin has only moderate inhibitory activity against Mtb (MIC 60.3 μM or 12.55 μg/mL) (see Figure 2.13), but significant in vitro anti-leishmanicidal potential half-maximum inhibitory concentration (IC₅₀ 0.711 μM) compared to reference drug miltefosine (IC₅₀ 0.373 μM) (Tasdemir et al., 2006). The IC₅₀ value indicates the concentration of a particular drug (inhibitor) that is needed to inhibit a given biological process by half (Aykul & Martinez-Hackert, 2016).

![Structure of primin (28)](image)

Figure 2-13: Structure of primin (28), a natural benzoquinone (Tasdemir et al., 2006).

Tran and co-workers conducted a study to determine the possibility of quinones as anti-mycobacterial agents. With MIC values of 50, 100 and 25 μg/mL against M. smegmatis (Mts), M. avium (Mta) and Mtb, respectively, 1,4-Benzquinone has been found to possess anti-mycobacterial activity (Tran et al., 2004). Nonetheless, the extent of research done on BQ and, more so, on BQ-linked 1,2,3-triazole compounds and their activity against Mtb remain limited.

In a study done by Jyoti et al. (2016), ursolic acid and HQ were extracted from the plant Artemisia capillaris, and tested against various strains of Mtb to determine their inhibitory effects. It has been determined that HQ did in fact inhibit several strains (resistant and susceptible) of TB with a MIC ranging between 12.5 to 25 μg/mL. The mode of action of HQ is still unclear, it has been suggested that HQ disrupts intracellular components, such as RNA, DNA, internal proteins or other organelles, affecting Mtb cells (Jyoti et al., 2016).

2.9.2 1,2,3-Triazole

Triazoles are five membered heterocyclic compounds, containing three nitrogen atoms and two carbon atoms (Dheer et al., 2017), that have gained significant interest over the last few years as part of compounds with extensive biological activities (Emmadi et al., 2015; Dheer et al., 2017). Triazoles are capable of hydrogen bonding and the binding of biomolecular targets that improve
the solubility (Ali et al., 2017). There are two isomeric triazoles, namely 1,2,3-triazole and 1,2,4-triazole, but for the purpose of this study we focused on the 1,2,3-triazole moiety. The broad spectrum of pharmaceutical and therapeutic applications of the 1,2,3-triazole moiety include anticancer (carboxyamidotriazole, 29), anti-HIV (TSAO, 30), anti-bacterial activities (tazobactum, 31, and cefatrizine, 32) and benzofuran salicylic acid derivative (I-A09, 33), a leading anti-tubercular agent currently on the market (Ali et al., 2017; Zhang et al., 2017). Structures of these compounds are seen in Figure 2.14. Additionally, 1,2,3-triazole derivatives have been used as enzyme inhibitors, such as histone deacetylase and alkaline phosphate. It also serves as a key synthetic intermediate in many industrial applications such as corrosion inhibitors, additives, agrochemicals, photostabilisers, liquid crystals, and metal chelators (Dheer et al., 2017).

The moiety’s enhanced biological activities are due to the favourable properties of the triazole ring (moderate dipole character, rigidity, hydrogen bonding capability, and stability under in vivo conditions) (Zhang et al., 2017). The mechanism of action of triazoles is similar to that of INH, i.e. the inhibition of cell wall synthesis by blocking lipid biosynthesis (Kumar et al., 2014; Zhang et al., 2017).

![Figure 2-14: Structures of triazole derivatives currently on market; carboxyamidotriazole (29), TSAO (30), tazobactum (31), cefatrizine (32), and I-A09 (33).](image)

2.9.3 Molecular hybridisation

Drug-resistant pathogens, in this study’s case MDR- and XDR-TB, has created a continuous demand for the development of more selective, efficient, and economically accessible pharmaceutical agents (Viegas-Junior et al., 2007; Ali et al., 2017). This demand is pushing
researchers into the direction of molecular hybridisation, an emerging strategy in drug discovery and medicinal chemistry. The molecular hybridisation strategy is essentially based on the chemical combination of two or more pharmacophore moieties of different bioactivities. This results in the creation of a single hybrid molecule that possesses pre-selected characteristics of the initial pharmacophores, improving the efficacy and affinity compared to the parent drugs (Viegas-Junior et al., 2007; Xu et al., 2017). Molecular hybridisation also includes the modulation of undesirable effects into a hybrid, or the incorporation of two agents, with two different therapeutic profiles, into one potentially new dual-acting therapeutic agent. This strategy allows for the activation of different targets by a single molecule, thereby improving the bioavailability and the therapeutic efficacy profile. Molecular hybridisation is an important tool in the innovation of new drugs and the development of new hybrid molecules with novel mechanisms of action (Viegas-Junior et al., 2007; Ali et al., 2017).

In a study conducted by Ali et al. (2017), seventeen synthesised 1,2,3-triazole derivatives were screened for in vitro anti-TB activity against Mtb H37Ra. Six derivatives have shown good activity, with MIC ranging between 3.12 – 0.78 µg/mL and the remaining 11 compounds having MIC less than 12.5 µg/mL. Figure 2.15 indicates the structures of the four compounds (34 – 37) with the strongest MIC. The MIC of INH and EMB in the study were 0.025 and 2.00 µg/mL, respectively (Ali et al., 2017).

![Structures of synthesised 1,2,3-triazole derivatives with strong anti-TB activity](image_url)

Figure 2-15: Structures of synthesised 1,2,3-triazole derivatives with strong anti-TB activity (Ali et al., 2017).

Emmadi et al. (2015) screened pyrazolo-1,2,3-triazole hybrids for anti-mycobacterial activity against Mts. The screening has revealed that some of the synthesised compounds showed promising anti-mycobacterial activity with the MIC values of the compounds ranging from 15 – 95 µg/mL. Compound 38, 39, and 40 showed the most promising anti-mycobacterial activity, MIC
15.34, 16.18 and 16.60 µg/mL, respectively, with compound 38 emerging as a potential anti-TB agent with low cytotoxicity (Emmadi et al., 2015), see Figure 2.16.

![Figure 2-16: Structures of different pyrazolo-1,2,3-triazole hybrids showing promising antimycobacterial activity (Emmadi et al., 2015).](image)

Dheer et al. (2017), screened 1,2,3-triazole conjugates of 2-mercaptobenzothiazoles for activity against *Mtb* H37Rv. A few of the synthesised compounds (41 – 43), structures seen in Figure 2.17, has shown to be potent analogues against the *Mtb* H37Rv strain, with MIC of 8 µg/mL (Dheer et al., 2017).

![Figure 2-17: Structure of different 1,2,3-triazole conjugates of 2-mercaptobenzothiazoles (Dheer et al., 2017).](image)

The synthesis of 1H-1,2,3-triazoles derived from the antifungal agent, econazole, led to the discovery of a different method for optimising *Mtb* specific agents (Dheer et al., 2017). The hydroxyl-triazole compound no longer had antifungal effects, but rather anti-TB activity that is two times more potent than econazole, suggesting that this 1H-1,2,3-triazole scaffold could be further utilised to optimise anti-TB agents (Dheer et al., 2017).
Boechat et al. (2011), has shown that various phenyl-1,2,3-triazole derivatives, especially those with isonicotinoyl hydrazide functional groups (44), had tuberculostatic activity, with MIC values in the 2.5 – 0.62 μg/mL range (Boechat et al., 2011). Costa et al. (2006), also published results on the tuberculostatic activity of a series of 1,2,3-triazoles, of which 1-(methylphenyl)-1,2,3-triazole-4-carbaldehyde (45) had the lowest MIC value (2.5 μg/mL) (Costa et al., 2006), see Figure 2.18.

![Figure 2-18:](image)

Gill et al. (2008), revealed the emergence of potent anti-mycobacterial derivatives, owing to the attachment of a 1,2,3-triazole ring to fluorine benzimidazole. The MIC of the most active compounds (46 – 48) has been found to be between 0.32 to 0.58 μM of which 46, at 0.32 μM (0.129 μg/mL), was the most active compound (Gill et al., 2008), see Figure 2.19.

![Figure 2-19:](image)

Limited research has been done on benzoquinone-triazole linked hybrids and their anti-mycobacterial activity. However, reports on quinone-triazole linked hybrids are not as rare. Jardim et al. (2015) conducted a study where lapachone-based 1,2,3-triazoles compounds were
synthesised (49). Both the lapachol and β-lapachone were classified as quinones. The afforded compounds and their derivatives were evaluated for their effectiveness against *Mtb*. The β-lapachone-based 1,2,3-triazoles have demonstrated potent anti-mycobacterial activity, with MIC values less than 6.25 μg/mL (Jardim *et al.*, 2015), see Figure 2.20.

![Structure of β-lapachone-based 1,2,3-triazole hybrid (49) (Jardim *et al.*, 2015).](image)

Due to these results, it is hypothesised that the hybridisation of 1,2,3-triazole and BQ scaffolds via copper catalysed azide-alkyne cycloaddition may result in a novel compound with a dual mode of action and enhanced pharmacological features. These features may possess the much-needed improved activity against *Mtb*.

Chapter 3 comprises of a manuscript for publication and reports the details of the synthetic, biological work, as well as the results, analysis, and conclusions of the synthesised anti-mycobacterial hybrids of this project.

Ludewig, G., Dogra, S. & Glatt, H. 1989. Genotoxicity of 1, 4-benzoquinone and 1, 4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells. *Environmental Health Perspectives*, 82:223.

CHAPTER 3

ARTICLE FOR SUBMISSION

Chapter 3 comprises the manuscript of an article to be submitted to the European Journal of Pharmaceutical Sciences. Contained within the article is the Introduction, Materials and methods, Results, Discussion and Conclusion. The article is prepared according to the author's guidelines, accessible in Annexure B and available on the Journal’s homepage:

https://www.elsevier.com/journals/european-journal-of-pharmaceutical-sciences/0928-0987/guide-for-authors
SYNTHESIS AND ANTI-TUBERCULAR ACTIVITY OF TRIAZOLE-LINKED 1,4-BENZOQUINONE DERIVATIVES

Chris-Marie Horna, Frans J Smitb, Ronnet Seldonc, Janine Aucampb, Audrey Jordaand,*, Digby F. Warnerd,*, David D. N'Da*b

aPharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa.
b Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
cSAMRC Drug Discovery and Development Research Unit, University of Cape Town, Cape Town 7700, South Africa
dSAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town 7925, South Africa
eWellcome Centre for Clinical Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa

*Corresponding author: E-mail: david.nda@nwu.ac.za, Tel.: +27 18 299 2256; Fax: +27 18 299 4243

The synthesis part of this project was conducted by C-M Horn under the guidance of Dr FJ Smit and Prof DD N'Da. The cytotoxicity was assessed by Dr J Aucamp while the antimycobacterial activity determination was conducted by Ms A Jordaan, Dr R Seldon and Prof Digby Warner.
ABSTRACT

Today tuberculosis continues to reign as one of the world’s most lethal infectious diseases, killing approximately 1.6 million people in 2017 and infecting a quarter of the world’s population with its latent form. A major factor contributing to the poor control of tuberculosis is the increasing rise of multidrug-resistant strains of the pathogen *Mycobacterium tuberculosis* that has led to the pressing need to develop new and effective anti-tubercular drugs. This need for such agents has led to the investigation of a series of hydroquinone-triazole hybrids of which the design, synthesis and biological activity against the human virulent H37Rv strain of *Mt*b are herein reported. The synthesis of the hybrid molecules followed a two-step process, starting with the formation of an azido intermediate via aromatic nucleophilic substitution and followed by the reaction of the intermediate with various alkynes through ‘click’ chemistry to form the targeted hybrid molecules.

The hydroquinone-triazole hybrids were nontoxic towards human kidney embryonic (HEK-293) cells, but expressed poor cellular anti-mycobacterial activity. Hybrid 14, with a strong electron withdrawing thiobenzyl R group and cLogP 3.03, expressed the best activity (MIC$_{90}$ 16.4 µM) with a poor safety profile, being as toxic to mammalian cells as to mycobacteria.

Keywords: *Mycobacterium tuberculosis*, hydroquinone, 1,4-benzoquinone, 1,2,3-triazole, molecular hybridisation, click-chemistry
GRAPHICAL ABSTRACT

p-Benzoquinone

\[Mtb \text{ H37Rv } \text{MIC}_{90} > 125 \mu M \]
\[\text{cLogP } 0.20, \text{ HEK-293 IC}_{50} > 100 \mu M \]

Hybrid 14

\[Mtb \text{ H37Rv } \text{MIC}_{90} 16.38 \mu M \]
\[\text{cLogP } 3.03, \text{ HEK-293 IC}_{50} > 100 \mu M \]
3.1 Introduction

After decades of effective chemotherapeutic treatment, tuberculosis (TB) still affects and kills millions of people each year. TB is one of the top ten causes of mortality worldwide (WHO, 2018a) and is the leading cause of death from a single infectious disease, surpassing human immunodeficiency virus (HIV) (WHO, 2018b). In 2017 alone, ten million people contracted TB and 1.6 million fatalities were registered, of which more than 95 % occurred in low- and middle-income countries (CDC, 2018a; WHO, 2018a). The majority of the estimated incidence cases occurred in South-East Asia (44 %), and Africa (25 %) (WHO, 2018c), making TB a disease of the developing world.

The use of anti-tubercular drugs is currently the only viable option available for the control of TB, as other control measures (such as the use of Bacillus Calmette-Guérin (BCG) vaccine and TB chemoprophylaxis) appear to be unsatisfactory (du Toit et al., 2006). The existing anti-tubercular drugs, although of immense value in controlling the disease, have several limitations with the most important shortcoming being the emergence of drug-resistant TB strains that renders the frontline drugs inactive (Amir et al., 2014). Drug-resistant TB occurs when *Mycobacterium tuberculosis* (*Mtb*), the causative agent of TB, becomes resistant to at least one of the first-line anti-TB drugs. Multidrug-resistant TB (MDR-TB) occurs when *Mtb* becomes resistant to the two most effective anti-TB drugs, isoniazid and rifampicin (CDC, 2018b). Additionally, MDR-TB patients with further resistance to any fluoroquinolone and at least one of the three injectable second-line drugs (capreomycin, kanamycin, or amikacin) is classified as extensively drug-resistant TB (XDR-TB) (CDC, 2018b). In 2017 alone the WHO revealed an estimate of 558 000 new cases of rifampicin resistance with 82 % suffering from MDR-TB, of which 8.5 % were reported as XDR-TB cases. To make matters worse, only 55 % of MDR-TB cases were treated successfully (WHO, 2018a) during that year. The advent of drug-resistant TB has made the treatment and cure of TB even more complicated.

Drug susceptible TB chemotherapy is a lengthy regimen, spanning over a six – nine month period and consisting of a multidrug therapy that combines four anti-TB drugs, namely rifampicin (RIF), isoniazid (INH), pyrazinamide (PYZ) and ethambutol (EMB) (CDC, 2018c). In contrast, the treatment of drug-resistant TB requires a regimen that consists of at least five effective TB agents during the intensive phase. The combination should comprise PYZ and four core second-line TB agents, namely one fluoroquinolone, one aminoglycoside, one thionamide (ethionamide or prothionamide), and either cycloserine or terizidone (WHO, 2016).

However, apart from drug resistance the current anti-TB drugs possess several limitations, including a high prevalence of adverse side-effects and the inability to act upon latent forms of the *Mtb* bacillus (Amir et al., 2014), leading to patient non-compliance and ultimately to a
discontinuation of therapy with further implications. Adverse side-effects caused by drug therapy may incur substantial additional costs due to outpatient visits, additional tests and, in more serious cases, hospitalisation. Second-line agents often have more severe effects, are less effective, have worse toxicity profiles and are more expensive (Kumar et al., 2014a; Yee et al., 2003). The treatment duration using second-line agents is often prolonged by two years (Kumar et al., 2014a), adding additional challenges to patient compliance and resulting in a high risk of treatment failure and relapse (Yee et al., 2003).

These limitations and challenges necessitate an urgent need for new anti-TB drugs with novel mechanisms of action to achieve effective control over the disease (Sajja et al., 2017). A promising strategy for the discovery of such drugs is molecular hybridisation. It is defined as the chemical (covalent) linking of two or more pharmacophores to create a single new chemical entity, with two structural domains and biological functions that may act on different targets (dual drug action) or wherein one part may equipoise the side effects caused by another part (Kumar et al., 2014a; Smit et al., 2015). Hybrid molecules have improved efficacy and affinity (Viegas-Junior et al., 2007) and are therapeutically and medicinally more effective than individual components (Smit et al., 2015).

A well-known privileged nucleus that has drawn much attention in drug discovery is the triazole core (Dheer et al., 2017). 1,2,3-Triazole is a five-member N-heterocyclic compound (Ali et al., 2017) which has attracted significant attention due to the wide range of biological properties of compounds containing this moiety, including anti-tubercular (Boechat et al., 2011), anti-fungal (Dai et al., 2015), anti-HIV (Mohammed et al., 2016), anti-malarial (Kumar et al., 2014b; Singh et al., 2017), and anti-inflammatory (Shafi et al., 2012) activity. The moiety possesses hydrogen bonding capability, moderate dipole character, rigidity and stability under in vivo conditions, which all together are responsible for its enhanced biological properties (Zhang et al., 2017).

Interestingly, some triazole containing compounds and isoniazid share a similar mechanism of action as they inhibit microbial cell wall synthesis by blocking lipid biosynthesis (Kumar et al., 2014a; Zhang et al., 2017). Drugs currently on the market that possess the 1,2,3-triazole moiety include cefatrizine and tazobactam (antibiotics) (Ali et al., 2017; Zhang et al., 2017), TSAO (anti-HIV) (Zhang et al., 2017), and carboxamidotriazole (anti-cancer) (Figure 3.1) (Ali et al., 2017; Zhang et al., 2017). Benzofuran salicylic acid derivative (I-A09), a synthesised 1,2,3-triazole derivative, is currently the lead anti-tubercular agent in clinical evaluations and may be used to treat TB in the near future (Ali et al., 2017; Zhang et al., 2017).
Figure 3-1: Structures of 1,2,3-triazoles currently on the market.

1,4-benzoquinone is the envisaged partner pharmacophore to 1,2,3-triazole investigated in this study. The reduction of benzoquinone to hydroquinone, via semiquinone, occurs spontaneously and by the action of various enzymes in a biological system (Scheme 3.1), the same also being valid for the reverse reaction (hydroquinone ↔ benzoquinone) (McGregor, 2007; Netherlands, 2012). In an aqueous solution 1,4-benzoquinone is reduced to hydroquinone at a significant rate, with the rate being further stimulated by the presence of nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) and more so in the presence of NADPH and microsomes (a complete microsomal system). In contrast the autoxidation of hydroquinone is slow, the rate of oxidation is slowed down even further in the presence of NADPH, and stopped entirely by a complete microsomal system. Therefore, in an aqueous medium the main direction of conversion between benzoquinone and hydroquinone is the reduction of benzoquinone, with the complete reduction of benzoquinone to hydroquinone taking place within five minutes in a complete system (NADPH and microsomes) (Souček et al., 2000). Hydroquinone autoxidation in an aqueous medium is pH-dependent, occurring rapidly under alkaline conditions and slowly under acidic conditions (McGregor, 2007; Netherlands, 2012).
Benzoquinone and hydroquinone are metabolites of each other, with the interconversion rate dependent in prevailing local conditions. Due to this constant interconversion between \(p \)-benzoquinone and hydroquinone in an aqueous medium (Netherlands, 2012), we justified synthesising hydroquinone-linked 1,2,3-triazoles instead of 1,4-benzoquinone-linked 1,2,3-triazoles.

Benzoquinone is mainly used in the production of hydroquinone, a compound used almost exclusively as an industrial chemical (Netherlands, 2012). Pharmacological properties of benzoquinone compounds include anti-inflammatory (Sagnou et al., 2009), anti-cancer (Lindsey et al., 2004; Tasdemir et al., 2006), anti-viral (Tasdemir et al., 2006), anti-mycobacterial (Jyoti et al., 2016; Tasdemir et al., 2006) and anti-malarial (Tasdemir et al., 2006) activities. Even though limited research has been done on \(p \)-benzoquinone and hydroquinone, the available literature does suggest that benzoquinone and hydroquinone both possess anti-mycobacterial activity (Jyoti et al., 2016; Tasdemir et al., 2006).

Quinones have a number of biological activities and, although the precise mechanism of action is not fully understood, most of their effects are attributed to redox cycling and the generation of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, that damage the cell (Tran et al., 2004). ROS directly combat infection by signalling cascades to prompt other protective cellular measures (such as apoptosis) or by causing sever oxidative stress within cells (Tasdemir et al., 2006). Likewise, hydroquinone might affect \(Mtb \) by disrupting intracellular components such as RNA, DNA, internal proteins, and other organelles (Jyoti et al., 2016).

In this article, we investigated whether the hybridisation of hydroquinone and 1,2,3-triazoles, both pharmacophores with reported anti-TB activity (Ali et al., 2017; Dheer et al., 2017; Emmadi et al., 2015; Jardim et al., 2015; Jyoti et al., 2016; Tasdemir et al., 2006; Tran et al., 2004), will result in derivatives with enhanced anti-mycobacterial potencies comparison to the parent pharmacophores.
3.2 Materials and methods

3.2.1 Materials

p-Benzquinone, sodium azide (NaN₃), β-cyclodextrin, sodium ascorbate (NaAsc), copper ascorbate (CuAsc), copper sulfate (CuSO₄), cyclohexanol, 1-hexyne, 1-heptyne, 1-octyne, 1-decyne, phenylacetylene, tetrahydro-2-(2-propynloxy)-2H-pyrane, methyl propiolate, propargyl alcohol, 4-ethynyltoluene, phenyl propargyl sulphide, sodium nitrite (NaNO₂) magnesium sulphate (MgSO₄), sodium bicarbonate (NaHCO₃) were purchased from Sigma-Aldrich (South Africa). All solvents used – methanol (MeOH), acetone, tetrahydrofuran (THF), ethyl acetate (EtOAc), dichloromethane (DCM), hexane, dimethyl sulfoxide (DMSO) – were purchased from Associated Chemical Enterprises (ACE, South Africa) or from Sigma-Aldrich (South Africa). All chemicals and reagents were of analytical grade and were used without further purification. For inert reactions, DCM was distilled over calcium hydride and stored over 3 Å molecular sieves.

3.2.2 General procedures

The ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a Burker Avance™ III 600 spectrometer at a frequency of 150 MHz, respectively, in deuterated dimethyl sulfoxide (DMSO- d₆). Chemical shifts are reported in parts per million (ppm) with the residual protons of the solvent as reference (¹H NMR (600 MHz, DMSO) δ 2.5 and ¹³C NMR (151 MHz, DMSO) δ ¹³C 40). The splitting pattern abbreviations are as follows: s (singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet), p (pentet), and m (multiplet).

High resolution mass spectrometry (HRMS) was recorded on a Bruker MicroTOF Q II mass spectrometer that had an atmospheric pressure chemical ionisation (APCI) source set at 200 °C using Bruker Compass DataAnalysis 4.0 software. A full scan, ranging between 50 – 1500 m/z, was generated at a capillary voltage of 4500 V, an end plate offset voltage of 500 V and a collision cell radio frequency (RF) voltage of 100 Vpp.

Infrared (IR) spectra were recorded on a Bruker Alpha-P FTIR instrument. Melting points (mp) were determined with a BUCHI melting point B-545 instrument and were uncorrected. Thin layer chromatography (TLC) was performed using silica gel plates (60F₂₅₄), acquired from Merck (South Africa).

High performance liquid chromatography (HPLC) analysis of the final compounds were performed to determine purity. An Agilent 1100 HPLC system equipped with a quaternary pump and an Agilent 1100 series diode array detector were utilized. HPLC-grade acetonitrile (Merck) and Milli-Q water (Millipore) were used for chromatography. A Venusil XBP C18 column (4.60 x 150 mm, 5 μm), with an initial mobile phase (70 % MilliQ water: 30 % acetonitrile), was employed at a flow
rate of 1 ml/min. The concentration of acetonitrile in the mobile phase was linearly increased over a period of five minutes to a final concentration of 85%. The time allowed for equilibration between runs was five minutes and the duration of each HPLC run was 15 minutes. The concentration of the test compounds injected varied (20 μl of 1 mM to 20 μl of 0.25 mM). The eluent was monitored at wavelengths of 210, 254, and 300 nm.

3.2.3 Synthesis

3.2.3.1 Synthesis of azido intermediate (3)

In a single neck round bottom flask, p-benzoquinone 1 (18.6 mmol, 2.0 g, 1.00 eq) was dissolved in MeOH (80 mL) upon stirring at -78 °C (on dry ice), and flushed with argon. Sodium azide, (74.0 mmol, 4.8 g, 4.00 eq) was dissolved in MeOH (30 mL) and pH of the solution was adjusted to 4 using 1M HCl then added portionwise to benzoquinone solution at regular intervals (5 x 10 min) (Scheme 3.2, step i). The resulting mixture was then stirred at -78 °C under argon for 1.5 h to produce the azide intermediate. The progress of the reaction was monitored using TLC. Upon completion, the solvent was evaporated and NaHCO\(_3\) (50 mL) was added to the residue. The crude organic layer was successively extracted with EtOAc (150 mL) and DCM (150 mL). The resulting organic layers were dried over anhydrous magnesium sulphate (MgSO\(_4\)), filtered, evaporated to dryness. The resulting residue was purified by column chromatography on silica gel eluting DCM/MeOH (9:1, v/v) to yield the isolated azide intermediate.

Dark brown powder; yield: 89 %; \(^1\)H NMR (600 MHz, DMSO) \(\delta\) 9.21 (s, 1H, H-1a), 8.96 (s, 1H, H-4a), 6.67 (d, \(J = 8.7\) Hz, 1H, H-3), 6.41 (dd, \(J = 8.7, 2.8\) Hz, 1H, H-5), 6.33 (d, \(J = 2.8\) Hz, 1H, H-6); \(^{13}\)C NMR (151 MHz, DMSO) \(\delta\) 150.77 (C-4), 143.08 (C-1), 125.99 (C-2), 117.43 (C-5), 112.80 (C-6), 107.54 (C-3).

3.2.3.2 Synthesis of compounds 4 – 14

Compounds 4 – 14 were prepared in accordance with the general procedure depicted in Scheme 3.2, step ii and is described as follows:

In a single neck flat bottom flask, alkyne (1.20 eq) was mixed in THF (6 mL), MeOH (6 mL) and distilled H\(_2\)O (6 mL). β-Cyclodextrin (0.02 eq), sodium ascorbate (0.20 eq), intermediate 3 (1.00 eq), and copper sulphate (0.10 eq) was consecutively added to the flask. The reaction was left to stir at room temperature for 28 – 29 h (Scheme 1, step ii). The progress of the reaction was monitored using TLC. Afterwards, the solvent was evaporated, the product was extracted with hot EtOAc, washed with NaHCO\(_3\), dried over anhydrous MgSO\(_4\), and recrystallized using hot EtOAc and hexane, to produce the desired pure compound.
During the optimisation of step (ii) various attempts were made to determine the correct order of addition of the reagents. The reaction temperature and the length of (step (ii)) reaction had to be adjusted to improve the yield. To optimise the yield after purification, purification by column chromatography and recrystallization was attempted, with purification by recrystallization resulting in a greater yield of product.

3.2.3.2.1 2-(4-buty1-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 4

The reaction with 1-Hexyne afforded hybrid 4 as brown crystals; yield: 42%; m.p. 159.4 – 162.4 °C IR νmax: 3185, 3079, 2955, 2579, 1614, 1533, 1467, 1432, 1407 cm⁻¹; ¹H NMR (600 MHz, DMSO) δ 9.71 (s, 1H, H-4a), 9.24 (s, 1H, H-1a), 8.21 (s, 1H, H-11), 7.04 (d, J = 2.9 Hz, 1H, H-3), 6.92 (d, J = 8.8 Hz, 1H, H-6), 6.74 (dd, J = 2.9 Hz, 1H, H-5), 2.69 (t, J = 7.6 Hz, 2H, H-12), 1.63 (m, 2H, H-13), 1.36 (dd, J = 14.9, 7.4 Hz, 2H, H-14), 0.92 (t, J = 7.4 Hz, 3H, H-15); ¹³C NMR (151 MHz, DMSO) δ 150.55 (C-10), 147.10 (C-9), 125.10 (C-11), 118.35 (C-5), 116.88 (C-6), 111.15 (C-3), 31.59 (C-13), 25.09 (C-12), 22.22 (C-14), 14.19 (C-15); HRMS (APCI) m/z: [M+H]⁺ 234.1233 (calcd for C₁₂H₁₆N₂O₂: 234.1243); Purity (HPLC): 96 %.

3.2.3.2.2 2-(4-pentyl-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 5

The reaction with 1-Hexyne gave hybrid 5 as off white crystals; yield: 47%; m.p. 156.3 – 158.3 °C; IR νmax: 3180, 3080, 3024, 2588, 1614, 1529, 1473, 1439, 1380 cm⁻¹; ¹H NMR (600 MHz, DMSO) δ 9.70 (s, 1H, H-4a), 9.23 (m, 1H, H-1a), 8.21 (m, 1H, H-11), 7.05 (d, J = 2.9 Hz, 1H, H-3), 6.92 (d, J = 8.8 Hz, 1H, H-6), 6.73 (dd, J = 8.8, 2.9 Hz, 1H, H-5), 2.69 (t, J = 7.7 Hz, 2H, H-12), 1.64 (m, 2H, H-15), 1.33 (q, J = 7.1, 3.3 Hz, 4H, H-13, H-14), 0.88 (t, J = 7.0 Hz, 3H, H-16); ¹³C NMR (151 MHz, DMSO) δ 150.56 (C-10), 147.16 (C-9), 141.88 (C-1), 125.10 (C-2), 123.57 (C-11), 118.35 (C-5), 116.89 (C-6), 111.15 (C-3), 31.34 (C-13), 29.12 (C-12), 25.38 (C-13), 22.34 (C-15), 14.38 (C-16); HRMS (APCI) m/z: [M+H]⁺ 248.1411 (calcd for C₁₃H₁₈N₂O₂: 248.1399); Purity (HPLC): 97 %.

3.2.3.2.3 2-(4-hexyl-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 6

The reaction with 1-Octyne produced hybrid 6 as brown crystals; yield: 46%; m.p. 157.4 – 159.5 °C; IR νmax: 3180, 3081, 3020, 2583, 1614, 1472, 1388 cm⁻¹; ¹H NMR (600 MHz, DMSO) δ 9.72 (s, 1H, H-4a), 9.24 (s, 1H, H-1a), 8.21 (s, 1H, H-11), 7.06 (d, J = 17.9, 2.9 Hz, 1H, H-3), 6.93 (d, J = 13.1 Hz, 1H, H-6), 6.74 (dd, J = 8.8, 2.9 Hz, 1H, H-5), 2.68 (t, J = 7.6 Hz, 2H, H-12), 1.64 (m, 2H, H-13), 1.29 (m, 6H, H-14, H-15, H-16), 0.87 (t, J = 6.9 Hz, 3H, H-17); ¹³C NMR (151 MHz, DMSO) δ 150.55 (C-10), 147.14 (C-9), 141.87 (C-1), 125.08 (C-2), 123.59 (C-11), 118.33 (C-5), 116.88 (C-6), 111.13 (C-3), 31.50 (C-13), 29.42 (C-14), 28.79 (C-12), 25.42 (C-13), 22.53 (C-16), 14.43 (C-17); HRMS (APCI) m/z: [M+H]⁺ 262.1556 (calcd for C₁₄H₂₀N₂O₂: 262.1556); Purity (HPLC): 96 %.
3.2.3.2.4 2-(4-octyl-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 7

The reaction with 1-Decyne gave hybrid 7 as off white crystals; yield: 52 %; m.p. 146.3 – 150.3 °C; IR v_{max}: 3173, 3042, 2958, 2592, 1614, 1477, 1440, 1219 cm$^{-1}$; 1H NMR (600 MHz, DMSO) δ 9.71 (s, 1H, H-4a), 9.24 (s, 1H, H-1a), 8.21 (s, 1H, H-11), 7.04 (d, $J = 2.9$ Hz, 1H, H-3), 6.92 (d, $J = 8.8$ Hz, 1H, H-6), 6.73 (dd, $J = 8.8$, 2.9 Hz, 1H, H-5), 2.68 (t, $J = 7.6$ Hz, 2H, H-12), 1.64 (m, 2H, H-18), 1.29 (m, 10H, H-13, H-14, H-15, H-16, H-17), 0.86 (t, $J = 7.0$ Hz, 3H, H-19); 13C NMR (151 MHz, DMSO) δ 150.55 (C-10), 147.19 (C-4), 141.86 (C-1), 125.08 (C-2), 123.60 (C-11), 118.32 (C-5), 116.87 C-6), 111.12 (C-3), 31.76 (C-17), 29.46 (C-16), 29.26 – 29.23 (C-15), 29.20 (C-14), 29.14 (C-12), 25.52 – 25.33 (C-13), 22.58 (C-18), 14.44 (C-19); HRMS (APCI) m/z: [M+H]$^+$ 290.1862 (calcld for C$_{16}$H$_{14}$N$_{2}$O$_{2}$: 290.1869); Purity (HPLC): 97 %.

3.2.3.2.5 2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 8

The reaction with phenylacetylene afforded hybrid 8 as brown-yellow crystals; yield: 70 %; m.p.257.0 – 261.7 °C; IR v_{max}: 3194, 3080, 3028, 2584, 1610 cm$^{-1}$; 1H NMR (600 MHz, DMSO) δ 9.81 (s, 1H, H-4a), 9.30 (s, 1H, H-1a), 8.91 (s, 1H, H-11), 7.95 (m, 2H, H-3, H-15), 7.48 (t, $J = 7.7$ Hz, 2H, H-14, H-16), 7.37 (t, $J = 7.4$ Hz,1H, H-15), 7.08 (d, $J = 2.9$ Hz, 1H, H-3), 6.98 (d, $J = 8.8$ Hz, 1H, H-6), 6.81 (dd, $J = 8.8$, 2.9 Hz, 1H, H-5); 13C NMR (151 MHz, DMSO) δ 150.58 (C-10), 146.53 (C-4), 142.42 (C-1), 131.05 (C-12), 129.41 (C-2), 128.44 (C-14, C-16), 125.80 (C-15), 124.90 (C-13, C-17), 123.27 (C-11), 118.36 (C-5), 117.51 (C-6), 111.66 (C-3); HRMS (APCI) m/z: [M+H]$^+$ 254.0917 (calcld for C$_{14}$H$_{12}$N$_{2}$O$_{2}$: 254.0930); Purity (HPLC): 98 %.

3.2.3.2.6 2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)benzene-1,4-diol; 9

The reaction with 4-ethyltoluene gave hybrid 9 as brown crystals; yield: 58 %; m.p. 275.7 – 276.7 °C; IR v_{max}: 3188, 3074, 3025, 2581, 1615, 1474 cm$^{-1}$; 1H NMR (600 MHz, DMSO) δ 9.81 (s, 1H, H-4a), 9.31 (s, 1H, H-1a), 8.85 (s, 1H, H-11), 7.84 (d, $J = 8.1$ Hz, 2H, H-3, H-17), 7.29 (d, $J = 7.9$ Hz, 2H, H-14, H-16), 7.07 (d, $J = 2.9$ Hz, 1H, H-3), 6.97 (d, $J = 8.8$ Hz, 1H, H-6), 6.80 (dd, $J = 8.8$, 2.9 Hz, 1H, H-5), 2.35 (s, 3H, H-18); 13C NMR (151 MHz, DMSO) δ 150.55 (C-10), 146.58 (C-4), 142.39 (C-1), 137.75 (C-15), 129.96 (C-12), 128.26 (C-2), 125.72 (C-14, C-16), 124.91 (C-13, C-17), 122.84 (C-11), 118.32 (C-5), 117.43 (C-6), 111.63 (C-3), 21.35 (C-18); HRMS (APCI) m/z: [M+H]$^+$ 268.1096 (calcld for C$_{15}$H$_{14}$N$_{2}$O$_{2}$: 268.1086); Purity (HPLC): 98 %.

3.2.3.2.7 Methyl 1-(2,5-dihydroxyphenyl)-1H-1,2,3-triazole-4-carboxylate; 10

The reaction with methyl propiolate produced hybrid 10 as fluffy off white crystals; yield: 69 %; m.p. 238.0 – 238.4 °C; IR v_{max}: 3177, 2953, 1693, 1556, 1475, 1212 cm$^{-1}$; 1H NMR (600 MHz, DMSO) δ 9.97 (s, 1H, H-4a), 9.36 (s, 1H, H-1a), 9.02 (s, 1H, H-11), 7.07 (d, $J = 2.9$ Hz, 1H, H-3), 6.96 (d, $J = 8.8$ Hz, 1H, H-6), 6.82 (dd, $J = 8.8$, 2.9 Hz, 1H, H-5), 3.88 (s, 3H, H-14); 13C NMR
The reaction with propargyl alcohol gave hybrid 11 as dark brown crystals; yield: 29%; m.p. 228.0 – 233.6 °C; IR \(\nu_{\text{max}} \): 3357, 3183, 3085, 1615, 1472 cm\(^{-1}\); \(^1\)H NMR (600 MHz, DMSO) \(\delta \): 9.77 (s, 1H, H1a), 9.25 (s, 1H, H-H1a), 8.33 (s, 1H, H-H11), 7.06 (d, \(J = 2.9 \) Hz, 1H, H-3), 6.93 (d, \(J = 8.8 \) Hz, 1H, H-6), 6.75 (dd, \(J = 8.8, 2.9 \) Hz, 1H, H-5), 5.26 (t, \(J = 5.3 \) Hz, 1H, H-13), 4.60 (d, \(J = 4.8 \) Hz, 2H, H-12); \(^13\)C NMR (151 MHz, DMSO) \(\delta \): 150.58 (C12), 118.42 (C11), 117.04 (C10), 111.17 (C13), 55.43 (C12); HRMS (APCI) \(m/z \): [M+H]\(^+\) 208.0727 (calcld for C\(_9\)H\(_{10}\)N\(_3\)O\(_3\): 208.0722); Purity (HPLC): 98 %.

The reaction with cyclohexanol produced hybrid 12 as fluffy off white crystals; yield: 43%; m.p. 46.2 – 46.3 °C; IR \(\nu_{\text{max}} \): 3263, 3171, 3074, 3025, 2857, 1614, 1494, 1473 cm\(^{-1}\); \(^1\)H NMR (600 MHz, DMSO) \(\delta \): 9.65 (s, 1H, H1a), 9.25 (s, 1H, H-H1a), 8.25 (s, 1H, H-H11), 7.05 (d, \(J = 2.9 \) Hz, 1H, H-3), 6.93 (d, \(J = 8.8 \) Hz, 1H, H-6), 6.74 (dd, \(J = 8.8, 2.9 \) Hz, 1H, H-5), 4.98 (s, 1H, H-12a), 1.92 (m, 2H, H-15), 1.72 (m, 4H, H13, H-17), 1.49 (m, 4H, H-14, H-16); \(^13\)C NMR (151 MHz, DMSO) \(\delta \): 156.15 (C4), 150.59 (C10), 141.68 (C1), 125.03 (C2), 122.56 (C11), 118.42 (C5), 116.86 (C6), 110.93 (C3), 68.51 (C12), 38.26 (C13, C-17), 25.72 (C15), 22.10 (C14, C-16); HRMS (APCI) \(m/z \): [M+H]\(^+\) 276.1334 (calcld for C\(_{14}\)H\(_{16}\)N\(_3\)O\(_3\): 276.1348); Purity (HPLC): 97 %.

The reaction with tetrahydro-2-(2-propynyloxy)-2H-pyran gave hybrid 13 as brown-red crystals; yield: 45%; m.p. 140.1 – 141.3 °C; IR \(\nu_{\text{max}} \): 3179, 3084, 2584, 1720, 1614, 1473, 1019 cm\(^{-1}\); \(^1\)H NMR (600 MHz, DMSO) \(\delta \): 9.81 (s, 1H, H-H14), 9.25 (s, 1H, H-H1a), 8.45 (s, 1H, H-H11), 7.05 (d, \(J = 2.9 \) Hz, 1H, H-3), 6.93 (d, \(J = 8.8 \) Hz, 1H, H-6), 6.76 (dd, \(J = 8.8, 2.9 \) Hz, 1H, H-5), 4.77 (d, \(J = 12.2 \) Hz, 2H, H-12), 4.58 (d, \(J = 12.1 \) Hz, 1H, H-14), 3.83 (t, 2H, H-16), 3.50 (t, 2H, H-16), 1.67 (m, 2H, H-19), 1.50 (m, 4H, H-H17, H-18); \(^13\)C NMR (151 MHz, DMSO) \(\delta \): 150.56 (C-4), 144.07 (C-10), 142.04 (C-1), 125.85 (C-2), 124.84 (C-11), 118.33 (C-5), 117.22 (C-6), 111.32 (C-3), 97.69 (C-14), 61.78 (C-16), 59.89 (C-12), 30.55 (C-19), 25.47 (C-17), 19.47 (C-18); HRMS (APCI) \(m/z \): [M+H]\(^+\) 292.1314 (calcld for C\(_{16}\)H\(_{18}\)N\(_3\)O\(_4\): 292.1297); Purity (HPLC): 97 %.
The reaction with phenyl propargyl sulphide afforded hybrid 14 as brown-black crystals; yield: 23%; m.p. 151.8 – 153.0 °C; IR ν_{max}: 3177, 3074, 2595, 1719, 1614 cm$^{-1}$; 1H NMR (600 MHz, DMSO) δ: 9.79 (s, 1H, H-4a), 9.26 (s, 1H, H-1a), 8.33 (s, 1H, H-11), 7.42 (d, $J = 7.7$ Hz, 2H, H-14, H-18), 7.33 (t, $J = 7.7$ Hz, 2H, H-15, H-17), 7.20 (t, $J = 7.4$ Hz, 1H, H-16), 7.05 (d, $J = 2.9$ Hz, 1H, H-3), 6.92 (d, $J = 8.8$ Hz, 1H, H-6), 6.75 (dd, $J = 8.8$, 2.9 Hz, 1H, H-5), 4.37 (s, 2H, H-12); 13C NMR (151 MHz, DMSO) δ: 150.59 (C-4), 143.77 (C-1), 141.78 (C-10), 136.30 (C-13), 129.49 (C-14, C-18), 128.75 (C-15, C-17), 126.42 (C-2), 124.94 (C-16), 124.74 (C-11), 118.40 (C-5), 117.17 (C-6), 110.95 (C-3), 27.58 (C-12); HRMS (APCI) m/z: [M+H]$^+$ 300.0808 (calcd for C$_{15}$H$_{14}$N$_3$O$_2$S: 300.0807); Purity (HPLC): 92%.

3.3 Biological evaluation

3.3.1 In vitro anti-mycobacterial assay

The in vitro anti-mycobacterial activity assay of the synthesised compounds was carried out in one culture medium, 7H9 CAS Tx, using reported literature (Stringer et al., 2017). The 7H9 GLU CAS Tx medium is comprised of a standard 7H9 base, supplemented with casitone (CAS) and tyloxapol (Tx) as surfactant. CAS does not contain albumin, therefore there is no proxy for protein binding.

3.3.2 In vitro cytotoxicity assay

Human embryonal kidney (HEK-293) cells were cultured in Hyclone Dulbecco’s modified Eagle’s medium with high glucose supplemented with 10 % fetal bovine serum (Thermofishe Scientific) and 1 % L-glutamine (Lonza), penicillin-streptomycin (Lonza), amphotericin B (Lonza) and non-essential amino acids (Lonza). The cells are maintained in a humidified atmosphere at 37 °C and 5 % CO$_2$. For the MTT assay, 96 well plates were prepared with 200 μL of cell suspension (25 000 cells/mL) and incubated for 24 hours. The growth medium was then removed and the cells treated with: (1) 100 μL of emetine dihydrochloride solution diluted with growth medium to the necessary concentrations (positive control); (2) 80 μL of growth medium and 20 μL of solvent (negative control to compensate for possible solvent effects); (3) 80 μL of growth medium and 20 μL of experimental compound solutions. Blanks contained growth medium without cells. The treated plates were incubated for 48 hours.

Due to light sensitivity of MTT reagent, the assay was performed in the dark. Sterile-filtered MTT solution (20 μL of 1 mg/mL solution in PBS) was added to initiate the MTT assay, the plates covered with aluminium foil and incubated for four hours. The growth medium-MTT mixture was then aspirated and 100 μL of 2-propanol added to dissolve purple formazan crystals. The contents
were gently mixed for 5 minutes at room temperature. Absorbance was measured at 560 and 650 nm using the Thermofisher Scientific GO Multiscan plate reader. Data analysis was performed for each biological replicate using SkanIt 4.0 Research Edition software. Background absorbance (650 nm) was subtracted from absorbance values (560 nm), the mean absorbance calculated and the percentage cell viability was determined by the following equation:

\[
\text{Cell viability} \% = \left(\frac{\Delta \text{Abs sample} - \Delta \text{Abs blank}}{\Delta \text{Abs neg control} - \Delta \text{Abs blank}}\right) \times 100.
\]

For the final IC\textsubscript{50} of each compound, the mean IC\textsubscript{50} of three biological replicates were calculated in GraphPad Prism 5.

3.4 Results and discussion

3.4.1 Chemistry

We envisaged to investigate a series of benzoquinone-1,2,3-triazole hybrids by primarily focusing on compounds resulting from the direct binding of both scaffolds. Three possible synthetic routes to bring about these hybrids were considered. First, an 2-azidobenzophenone intermediate is formed from commercially available benzoquinone, then the intermediate is subjected to click chemistry with various alkynes to afford the target hybrids in an overall two-step process. Second, 2-azido hydroquinone intermediate is formed from commercial hydroquinone. It then undergoes click chemistry with various alkynes to give hydroquinone-triazole hybrids, which are further oxidised into the benzoquinone-triazole compounds – an overall three-step process (Guimarães et al., 2013; Dixit et al., 2012). However, considering the interconversion between benzoquinone and hydroquinone (Netherlands, 2012) and the non-availability of commercial hydroquinone, a third synthetic route combining the first two routes was adopted. It is depicted in Scheme 3.2 and is described as follows: a series of hydroquinone-1,2,3-triazole derivatives were synthesised using a two-step process. In the first step 2-azidohydroquinone, also referred to as azidoquinol intermediate, was synthesised via acid-catalyzed aromatic nucleophilic substitution and reduction using a modified method (Guimarães et al., 2013). The reaction was performed in methanolic acid medium (pH 4) that favoured the reduction of the benzoquinone moiety (Netherlands, 2012).

Before a final and successful method for step (i) was adopted, various modifications were introduced to the published method; room temperature revealed to be too exothermic thus the reaction was run at -78 °C.

Likewise, the volume of the solvent (MeOH) and the reaction time of step (i) were adjusted and optimal yield of the azido-intermediate was obtained with the adopted solvent volume and time figures.
In the second step the azido intermediate was reacted with various individual alkynes through Huisgen's copper-catalysed alkyne-azide cycloaddition (CuCAAC) reaction, or otherwise referred to as click-chemistry, to produce different hydroquinone-1,2,3-triazole hybrids. The CuCAAC reaction employed is adapted from a procedure previously reported (Dixit et al., 2012). All synthesised hybrids (Table 3.1) were produced in poor to good yields (23 – 70 %) after purification by recrystallization with hexane. Structurally, all hybrids differ by the substituent at C-10 of the triazole ring.
Scheme 3-2: General reaction procedure of hydroquinone-1,2,3-triazole hybrids.

Reagents and conditions: (i) 1: p-benzoquinone (1.00 eq), MeOH, -78 °C, NaN₃ (4.00 eq)/MeOH sol. (pH~4), 1.5 h. (ii) 4 – 14: alkyne (1.20 eq), THF, MeOH, H₂O, β-cyclodextrin (0.02 eq), sodium ascorbate (0.20 eq), 3 (1 eq) and CuSO₄ (0.10 eq), rt, 28 h.

<table>
<thead>
<tr>
<th>Compd</th>
<th>R</th>
<th>Compd</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>12 14 15</td>
<td>10</td>
<td>O 13 14</td>
</tr>
<tr>
<td>5</td>
<td>12 13 14 15 16</td>
<td>11</td>
<td>OH 12</td>
</tr>
<tr>
<td>6</td>
<td>12 13 14 15 16 17</td>
<td>12</td>
<td>15 16 17 13 12</td>
</tr>
<tr>
<td>7</td>
<td>12 13 14 15 16 18 19</td>
<td>13</td>
<td>O 15 16 17 14 12</td>
</tr>
<tr>
<td>8</td>
<td>13 14 17 18</td>
<td>14</td>
<td>15 16 17 13 12</td>
</tr>
</tbody>
</table>
Two oxidative routes were attempted to convert the hydroquinone-triazole hybrids 4 – 14 to benzoquinone hybrids (Scheme 3.3). These include the copper-catalysed hydroquinone oxidation (Li & Trush, 1993) and oxidation by nitrogen oxide (Bosch et al., 1994), as illustrated below.

Scheme 3-3: Attempted routes of oxidative conversion of hydroquinone to benzoquinone hybrids.

Reagents and conditions: (i) MeOH, CuAsc (1.00 eq), O₂, reflux, 1 h, 60 °C then 4 h, rt; (ii) THF, NaNO₂, O₂, HCl 32 % (two drops), 46 h, rt.

ρ-Hydroquinone is electron rich and serves as a potential electron donor (Burner et al., 2000). The 1,2,3-Triazole ring, on the other hand, is a π-conjugated electron-deficient system; therefore, an electron withdrawing group by resonance. Thus, the direct conjugation of triazole to the quinol ring should logically favour oxidation of the latter, especially where R is also electron-withdrawing by induction. However, following the failure of these reactions, the investigation was pursued with the hydroquinone-triazole hybrids.

The formation of the target compounds was confirmed by routine chemical structure elucidation techniques, NMR, HRMS and IR.

The ¹H NMR spectra of all title compounds were thoroughly examined for characteristic signals, evidence of the hydroquinone and triazole scaffolds. The hydroquinone moiety was clearly identified in the ¹H spectra of all hybrids by the presence of two singlets at 9.7 and 9.2 ppm, attributed to quinolic protons H-4a and H-1a, respectively. Additionally, two doublets at 7.0 and 6.9 ppm attributed to H-3 and H-6, in m- and o-position, respectively of the benzene ring, and a doublet of doublets ca 6.7 ppm, attributed to the resonance of H-5, caused by coupling with proton H-3 and H-6, were also present in the spectra. The triazole scaffold is clearly identified by the singlet peak at 8.2 ppm, attributed to the resonance of the triazolyl proton H-11.

The ¹³C NMR spectra further confirmed the quinol moiety in the structures of the hybrids as evidenced by the presence of six pronounced peaks at 147.1, 141.6, 125.0, 118.3, 116.8, and 111.1 ppm attributed to the resonance of aryl carbons, C-4, C-1, C-2, C-5, C-6, and C-3 of hydroquinone moiety. Further evidence of the total conversion of benzoquinone to hydroquinone is the absence of carbonyl carbons peaks in the spectra. The ¹³C NMR spectra, likewise, further support the presence of the triazole with two singlet peaks at 150.5 and 122.5 ppm pertaining to the resonance of triazolyl carbons, C-10 and C-11.
The IR-spectra of all compounds were also inspected for the presence of characteristic absorptions, allowing for the identification of functional groups. The IR spectra clearly illustrate the vibration of the alcohol OH functional groups of quinol indicated as variable broad and sharp peaks at 3000 – 3200 cm\(^{-1}\) and a strong stretch, corresponding with the C=C bond of the triazole moiety, in 1550 – 1650 cm\(^{-1}\).

HRMS using APCI ion source show the presence of [M+H]\(^+\) in the spectra that confirmed the presence of M\(^+\) molecular ion of each hybrid. The experimental \(m/z\) values of compound corresponded to the exact mass calculated via ChemBioDraw.

3.4.2 Physiochemical properties

Transmembrane transport gives a good indication of the biological properties, such as oral bioavailability, cellular uptake, receptor affinity, protein binding, toxicity, and pharmacological activity of a compound (Gombar & Enslein, 1996). An ideal drug must possess well-equipped hydrophilic/lipophilic properties, so as to efficiently permeate biological membranes and be absorbed into the systemic circulation (Lipinski et al., 1997). The \(n\)-octanol/water partition coefficient (logP) is a key parameter used in the measurement of the hydrophilicity and lipophilicity of a chemical, allowing one to predict the transport characteristics of a substance across biological membranes through passive diffusion (Gombar & Enslein, 1996). LogP values between one and five are often targeted, with values between one and three being ideal (Lipinski et al., 1997).

All compounds, 4 – 15, showed good drug-like properties with cLogP values within the targeted range. However, these cLogP values were merely an estimate of the lipophilic/hydrophilic characteristics of the synthesised hybrids. This implies that with the cLogP values in the targeted range, these hybrids may still be inactive as biological activity is dependent of many parameters aside from physicochemical properties (Pop et al., 2004)

3.4.3 Biological activities

Before a novel drug can advance to the use in humans, a series of preclinical studies (viz. a sequence of \textit{in vitro} assays, followed by a series of \textit{in vivo} assays) must be completed (Franzblau et al., 2012). The mycobacterium growth inhibitory potential of the hybrids was assessed using a Green Fluorescent Protein-expression (GFP) assay. The GFP assay used a glucose-based Middlebrook 7H9-CAS broth base as growth medium for tubercle bacilli.

The minimum inhibitory concentration of each hybrid that is required to inhibit the growth of 90 % of mycobacteria of H37Rv, expressed as MIC\(_{90}\), is shown in Table 3.2, alongside rifampicin (RIF) as anti-tubercular standard. In addition, HEK-293 cells were used to determine the cytotoxicity of the compounds, alongside cytotoxic drug emetine as reference (Table 3.1).
Table 3-1: *In vitro* anti-mycobacterial activities as well as cytotoxicity of hybrids 4 – 14, benzoquinone (1) and hydroquinone (2) against H37Rv strain using GFP assay in 7H9 GLU CAS medium.

<table>
<thead>
<tr>
<th>Compd</th>
<th>cLogP<sup>a</sup></th>
<th>Anti-mycobacterial activity, MIC<sub>90</sub> (µM)<sup>b</sup></th>
<th>Cytotoxicity IC<sub>50</sub> (µM)<sup>c</sup></th>
<th>Selectivity index, SI<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>RIF</td>
<td>3.71</td>
<td>0.075</td>
<td>>125</td>
<td>>100</td>
</tr>
<tr>
<td>1</td>
<td>0.20</td>
<td>>125</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>2</td>
<td>0.80</td>
<td>>125</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>4</td>
<td>2.76</td>
<td>>125</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>5</td>
<td>3.29</td>
<td>>125</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>6</td>
<td>3.82</td>
<td>>125</td>
<td>17.5 ± 2.1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.88</td>
<td>>125</td>
<td>71.0± 7.7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3.00</td>
<td>>125</td>
<td>77.6 ± 7.2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3.50</td>
<td>33.84</td>
<td>41.9 ± 7.9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1.21</td>
<td>>125</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-0.12</td>
<td>>125</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.89</td>
<td>>125</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.20</td>
<td>>125</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3.03</td>
<td>16.38</td>
<td>>100</td>
<td>6</td>
</tr>
<tr>
<td>EM</td>
<td>0.01± 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^acLogP values calculated using ChemBioDraw Ultra Version 12.0; ^bcompounds screened in media: 7H9 GLU CAS; ^cHEK-293 cell line; ^dSelectivity Index (SI) = HEK293/H37Rv; EM: emetine.

None of the hybrids in the series possessed notable anti-mycobacterial activity. All *n*-alkyl chain hybrids were inactive and so were the precursor scaffolds, *p*-benzoquinone and hydroquinone with MIC₉₀ values greater than 125 µM. Only compounds 9 and 14 had MIC₉₀ values below 125 µM and thus were considered active. Hybrids 14 and 9 with MIC₉₀ 16.38 and 33.84 µM, respectively, were the first and second most active hybrids in the series, respectively. Anti-mycobacterial active hybrid 9 had a *para*-benzene substituted electron donating methyl group. However, removal of this methyl group resulted in hybrid 8 that was found to be completely inactive, having MIC₉₀ greater than 125 µM. Hybrid 14, on the other hand, had a thiobenzyl...
substituent that is the strongest electron withdrawing group. Hybrids 10 and 13 possessed strong electron withdrawing and donating groups, respectively, and yet were inactive. This leads to the inference that the biological activity of these compounds might not have been controlled by electrochemical properties. However, due to the limited number of active compounds relative to inactive compounds it is difficult to make any definitive conclusions.

All synthesised hybrids showed favourable drug-like properties, with all hybrids except 11 having cLogP values in the targeted area (one – five) and thus were expected to be efficiently transported into the mycobacterium through passive diffusion. However, none of the hybrids showed any activity against *Mtb*. The unique, lipid rich (Glickman & Jacobs, 2001; Knechel, 2009) cell wall structure of mycobacteria is crucial to the pathogen’s survival (Knechel, 2009). Therefore, lipophilicity of a drug is an imperative consideration in the design and activity of novel anti-mycobacterial drugs (Suresh et al., 2014). The anti-mycobacterial activity could, therefore, be enhanced by improving the lipophilic property of a drug viz. the attachment of a bulky lipophilic moiety facilitating diffusion through bio-membranes. However, similarly to the current study, hybrids that possessed a good lipophilic character, such as bis-1,2,3-triazole, exhibited poor anti-TB activities, suggesting that lipophilicity might not be the sole parameter modulating anti-TB activity (Zhang et al., 2017).

A structure activity relationship (SAR) study done by Nagesh et al., (2013) on various 6-(4-((substituted-1H-1,2,3-triazol-4-yl)methyl)piperazin-1-yl)phenanthridine derivatives revealed that the addition of a functional group that is capable of acting as a hydrogen bond acceptor, preferably through its lone pair, might enhance binding interactions and, therefore, improve anti-mycobacterial activity (Gill et al., 2008; Nagesh et al., 2013), presuming it is inhibiting the same target. Hybrid 14, through its thiobenzyl group of which the S atom acts as H-acceptor, corroborates this early finding.

However, it is hypothesised that the inactivity of the compounds could most likely be attributed to their structural rigidity that obstructs the hybrid at one of two places, namely (a) the binding site of the compound or, more plausibly, (b) its permeation through the bacterium cell wall. Indeed, with regards to (a), as previously stated, triazoles and isoniazid share a similar mechanism of action that inhibits the growth of bacteria by blocking lipid biosynthesis (Zhang et al., 2017) through inhibition of enoyl-acyl carrier protein reductase (*inhA*) protein (Dheer et al., 2017). Site II, a key region in *InhA* binding site has a flexible hydrophobic pocket that accommodates long alkyl chains. This flexible pocket allows for significant movement of alkyl side chain (Campaniço et al., 2018). The extension of *InhA* substrate-competitive inhibitors into the hydrophobic pocket increases the potency and significantly enhances lipophilicity of synthesised inhibitors (Shirude et al., 2013). The triazole moiety, however, is rigid (Zhang et al., 2017), so is the quinol, and ultimately the synthesised hybrids. The poor anti-mycobacterial activity of the synthesised hybrids
may thus be ascribed to their commonly shared rigidity. No significant movement is able to take place within the compound and, therefore, interaction with the binding site is impeded. The addition of a linker between the two pharmacophores could improve the flexibility and, therefore, the interaction of the hybrids with the binding site, which may result in an enhanced, more potent anti-mycobacterial effect.

Furthermore, with regards to (b), before anti-mycobacterial drugs can reach their respective target sites within *Mtb* they must first penetrate the *Mtb* cell wall. The architecture of the *Mtb* cell wall is dominated by a variety of lipids and carbohydrates that form an impermeable barrier, especially to hydrophilic anti-microbials (Bhat et al., 2017). A method by which solutes penetrate the cell wall is through water-filled porin channels. Nevertheless, the influx of solutes through porins pose several restrictions. Only solutes that are long and flexible with high molecular weights and small cross-sections are able to slowly pass through porin channels, twisting their way through the narrow channel (Nikaido, 2001). The rigidity of the synthesised hybrids may, therefore, impede their transportation across the porin channel, which may also explain the observed activity.

Benzoquinone (1), hydroquinone (2) and the hybrids (exception of 6 – 9) in general showed no toxicity to the HEK-293 cells, whereas hybrids 6 – 9 displayed mild to moderate toxicity. This may be ascribed to their relatively higher lipophilicity with cLogP values, varying in the three – five range. In the alkyl chain-substituted sub-series, the short chain containing hybrids 4 (n = 4) and 5 (n = 5) were found to be non-cytotoxic. However, a further increase in chain length resulted in a cytotoxicity decrease, with 7 (n = 8; IC$_{50}$ 71.0 μM) being less toxic than 6 (n = 6; IC$_{50}$ 17.5 μM). Hybrids 6 and 7 possessed mild and moderate toxicities, respectively.

The most anti-mycobacterial active hybrid 14 (MIC$_{90}$ 16.38 μM) showed no toxicity to HEK-293 cells, but had a poor selectivity towards the bacteria (SI = 6). All together, these biological features disqualify this hybrid as a potential anti-mycobacterial hit (Katsuno et al., 2015).

3.5 Conclusion

A series of benzoquinone-triazole hybrids linking directly p-1,4-benzoquinone and 1,2,3-triazole scaffolds were initially targeted. However, the adoption of acidic experimental medium coupled with unsuccessful oxidation of hydroquinone to benzoquinone ultimately resulted in the investigation of hydroquinone-1,2,3-triazole hybrids. A series of novel quinone-1,2,3-triazole derivatives were synthesised in poor to moderate yields following a two-step process that included an aromatic nucleophilic substitution in methanolic acid medium from commercial benzoquinone, followed by Huisgen’s copper-catalysed azide-alkyne cycloaddition.

Routine characterisation techniques (NMR, IR, HRMS) served to confirm the structures. The anti-mycobacterial activity of the hybrids was evaluated *in vitro* against human virulent *Mtb* H37Rv.
strain using a GFP assay in Middlebrook 7H9 broth media. The cytotoxicity of the compounds was also assessed using HEK-293 cells. Even though all hybrids showed good drug-like properties, they were found to be mostly inactive. The most active hybrid, 14 featuring para-methylbenzyl substituent, although non-toxic to mammalian cells, possessed moderate anti-mycobacterial activity (MIC$_{90}$ 16.38 μM) and poor bacterial selective action. Thus, no anti-tubercular hit was discovered during this study.

Upon analysis of the biological data, it could be deduced that Mtb activity was structure-specific. The hybrids were all rigid in structure; therefore, the inactivity could be linked this rigidity as a consequence of their inability to permeate through the bacterium cell wall. It could be speculated that the addition of a linker between the two pharmacophores to improve the flexibility might endow the resulting hybrids with anti-mycobacterial activity, effective cell wall permeation and better interaction with the binding site.

Disclaimer

Any opinions, findings and conclusions, or recommendations expressed in this material are those of the authors and therefore the NRF does not accept any liability in regard thereto.

This work was funded by South African National Research Foundation Grant to DD N’Da (UID 98937). The authors thank Dr. D. Otto for NMR analysis and Dr. JHL Jordaan for MS analysis.
BIBLIOGRAPHY

CDC, 2018a. CDC | TB | Data and Statistics.

CDC, 2018b. CDC | TB | Drug-resistant TB.

CDC, 2018c. CDC | TB | Treatment.

Lindsey, R.H., Bromberg, K.D., Felix, C.A. & Osheroff, N. 2004. 1,4-Benzoxquinone is a topoisomerase II poison. Biochem. 43, 7563-7574.

WHO, 2018b. Global Health Observatory (GHO) data.

CHAPTER 4

SUMMARY AND CONCLUSION

Tuberculosis (TB) is a global problem, instilling an enormous burden on the general health of the public, affecting ten million and killing 1.6 million people in 2017 alone. Furthermore, approximately a quarter of the world’s population is living with latent TB, with a 5 – 15 % lifetime risk of developing the active disease (WHO, 2018a). TB is predominantly found in poverty stricken areas with 44 % of estimated cases in 2017 occurring in WHO South-East Asia region and 25 % in WHO African region (WHO, 2018b).

Mycobacterium tuberculosis (*Mtb*) is spread when a person with the active disease sneezes, coughs or spits, propelling the pathogen into the air for it to be inhaled by someone else and become infected. TB, in general, affects the lungs (pulmonary TB) and is communicable in this form (WHO, 2018a). When other organ systems of the body are affected, the disease is referred to as extrapulmonary TB (CDC, 2018a).

Even with the abysmal statistics, TB remains a treatable and preventable disease. Active, drug-susceptible TB is treated with four antimicrobial drugs (viz. isoniazid, rifampicin, ethambutol and pyrazinamide) for six – nine months. A combination of the four drugs are given during the first two months, followed by isoniazid and rifampicin for four – seven months. However, infected individuals that do not comply to the treatments result in the rise of *Mtb* strains resistant to available anti-mycobacterial drugs, a growing problem in the management of the disease (Sandgren et al., 2009). The treatment and cure of drug-resistant TB is complex, with inappropriate treatment having life-threatening results (CDC, 2018b). Presently only 55 % of all multidrug-resistant cases are being treated successfully (WHO, 2018a), creating an urgent need for the development of effective novel anti-mycobacterial drugs.

An innovative strategy for the discovery of more selective and efficient therapeutic agents is molecular hybridisation. Molecular hybridisation is the formation of a single molecule through the adequate fusion of two or more bioactive pharmacophores. The synthesised hybrid maintains the carefully chosen characteristics, such as biological function and structural domains of the parent molecules, thereby improving its affinity and efficacy compared to the parent drugs (Viegas-Junior et al., 2007; Xu et al., 2017). The molecular hybridisation strategy was adopted in the search for new anti-tubercular drugs in the framework of this study and involved 1,4-benzoquinone and 1,2,3-triazole scaffolds.
The 1,2,3-triazole scaffold possesses a wide range of biological activities (viz. anti-malaria (Kumar et al., 2014; Singh et al., 2017), anti-TB (Boechat et al., 2011), anti-HIV (Mohammed et al., 2016), anti-fungal (Dai et al., 2015), and anti-inflammatory (Shafi et al., 2012) properties), that have attracted a considerable amount of attention towards this pharmacophore (Ali et al., 2017).

The partner pharmacophore to triazole is 1,4-bezoquinone. Benzoquinone and hydroquinone are metabolites of one another. There is a constant interconversion of each metabolite into the other, with the rate of interconversion dependant on a number of factors, including medium, pH of medium, and the presence of substances such nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) and/or microsomes (HCotN, 2012).

Both benzoquinone and hydroquinone possess a wide range of biological activities such as anti-cancer (Lindsey et al., 2004; Tasdemir et al., 2006), anti-viral (Tasdemir et al., 2006), anti-malarial (Tasdemir et al., 2006), anti-inflammatory (Sagnou et al., 2009), and anti-mycobacterial (Tasdemir et al., 2006; Jyoti et al., 2016) activity. However, benzoquinone is largely used as an industrial chemical in the production of hydroquinone and hydroquinone(HCotN, 2012).

The aim of this study was to synthesise novel 1,4-benzoquinone/hydroquinone-linked 1,2,3-triazoles, via molecular hybridisation, with the ultimate goal that the afforded compounds have enhanced effectiveness against Mtb and an improved safety profile compared to current anti-mycobacterial drugs.

The following objectives were set to help achieve the aim of the study:

- To synthesise a series of novel benzo/hydroquinone-triazole hybrids
- To characterise the synthesised compounds by means of routine techniques such as nuclear magnetic resonance (NMR), mass spectrometry (MS) and infrared spectroscopy (IR).
- To assess the in vitro cytotoxicity of synthesised compounds using mammalian cell lines.
- To assess the in vitro anti-tubercular activity against the MDR-TB strain, Mtb H37Rv strain.

The hybrids were synthesised following a two-step process; starting with an aromatic nucleophilic substitution reaction using a modified method (Guimarães et al., 2013) of sodium azide and commercially available benzoquinone to form the 2-azidohydroquinone intermediate. Secondly, various individual alkynes were reacted with the azido intermediate through click-chemistry to
produce different hydroquinone-linked 1,2,3-triazole hybrids. The click-chemistry reaction method used was adapted and modified from a literature reported method (Dixit et al., 2012). All hybrids were subjected to purification by recrystallization from hexane and were isolated in poor to good yields (23 – 70 %). The structures of all the synthesised hybrids were confirmed by IR, HRSM, NMR techniques and the purity was assessed by HPLC and was found to be in the 92 – 98 % range.

The in vitro anti-mycobacterial activity of the synthesised hybrids was assessed against *Mtb* H37Rv using a Green Fluorescent Protein (GFP) assay in Middlebrook 7H9-CAS broth media. Dejectedly, none of the synthesised hybrids possessed notable anti-mycobacterial activity, with MIC values all significantly higher than 10 µM. Compounds 9 and 14 had the lowest MIC values 34 and 16 µM, respectively.

Overall the synthesised hybrids expressed poor toxicity against human embryonic kidney cells, with only hybrids 6 – 9 displaying mild to moderate toxicity. The most active compound, 14 (MIC16 µM), expressed no toxicity against the mammalian cells, but was poorly selective towards *Mtb* (SI = 6), which ruled it out as a potential anti-mycobacterial hit.

The hybrids generally possessed favourable drug-like properties, with cLogP values ranging from one to five. It was thus anticipated that they would be efficiently transported across the bio-membranes of *Mtb* through passive diffusion and be anti-mycobacterial active. However, none of the hybrids showed noteworthy activity. The calculated cLogP values are merely an estimate of drug-likeness, other parameters exist that influence the uptake of a drug and, therefore, its overall activity (Pop et al., 2004; Chereson, 2009). With the cell wall of *Mtb* being lipid rich in nature, (Glickman & Jacobs, 2001; Knechel, 2009) lipophilicity should be imperative in the design and activity of anti-mycobacterial drugs (Suresh et al., 2014).

The overall poor activity of the hybrids may be attributed to their structural rigidity. Flexibility of a compound is vital in order to permeate the bacterium cell wall (Nikaido, 2001) and to interact with the binding site (Shirude et al., 2013). Therefore, the addition of a linker between the triazole and hydroquinone moieties, creating a more flexible hybrid that can efficiently permeate the *Mtb* cell wall and interact with the binding site, might enhance the anti-mycobacterial activity.
BIBLIOGRAPHY

Date of access: 22/10/2018.

ANNEXURE A: ANALYTICAL DATA FOR CHAPTER 3

Azido Intermediate; 3

IR
1H in DMSO

13C in DMSO
Compound 4

IR

HRMS
1H in DMSO

13C in DMSO
Compound 5

IR

![IR Spectrogram]

HRMS

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>APCI</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>4500 V</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
<td>500 V</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
</tr>
<tr>
<td>Set Nebulizer</td>
<td>1.6 Bar</td>
</tr>
<tr>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

![HRMS Spectrum]
Compound 6

IR

![IR spectrum](chart)

HRMS

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>APCI</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Focus</td>
<td>Not active</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
</tr>
<tr>
<td>Scan End</td>
<td>1500 m/z</td>
</tr>
<tr>
<td>Set Capillary Offset</td>
<td>650 V</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
<td>100.0 Vsp</td>
</tr>
</tbody>
</table>

![HRMS spectrum](chart)
1H in DMSO

13C in DMSO
Compound 7

IR

HRMS
Compound 8

IR

HRMS

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>APCI</td>
</tr>
<tr>
<td>Focus</td>
<td>Not active</td>
</tr>
<tr>
<td>Scan Began</td>
<td>50 m/z</td>
</tr>
<tr>
<td>Scan End</td>
<td>1500 m/z</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>4500 V</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
<td>-500 V</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
</tr>
<tr>
<td>Set Nebulizer</td>
<td>1.6 Bar</td>
</tr>
<tr>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Sel Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>
1H in DMSO

13C in DMSO
Compound 9

IR

HRMS
1H in DMSO

13C in DMSO
Compound 10

IR

HRMS
Compound 11

IR

[Graph showing IR spectrum with a chemical structure image]

HRMS

Acquisition Parameter:

- Source Type: APCI
- Ion Polarity: Positive
- Set Capillary: 4500 V
- Set End Plate Offset: -500 V
- Set Collision Cell RF: 100.0 Vpp
- Ion Source: Not active
- Set Nebulizer: 1.6 Bar
- Set Dry Heater: 200 °C
- Set Dry Gas: 6.0 l/min
- Set Divert Valve: Waste

[Graph showing HRMS spectrum with peaks labeled]
1H in DMSO

13C in DMSO
Compound 12

IR

HRMS

Acquisition Parameter

<table>
<thead>
<tr>
<th>Source Type</th>
<th>APCI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Set Nebulizer</th>
<th>1.0 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Not active</td>
<td>Set Capillary</td>
<td>4500 Y</td>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
<td>Set End Plate Offset</td>
<td>-500 V</td>
<td>Set Dry Gas</td>
<td>6.0 l/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>1500 m/z</td>
<td>Set Collision Cell RF</td>
<td>1000 Vpp</td>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

![Mass Spectrogram](image)
1H in DMSO

13C in DMSO
Compound 13

IR

![Graph showing IR spectrum]

HRMS

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>APCI</td>
</tr>
<tr>
<td>Focus</td>
<td>Not active</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
</tr>
<tr>
<td>Scan End</td>
<td>1500 m/z</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>4500 V</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
<td>-500 V</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
</tr>
<tr>
<td>Set Nebulizer</td>
<td>1.6 Bar</td>
</tr>
<tr>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Set Dry Gas</td>
<td>6.0 L/min</td>
</tr>
<tr>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

![Graph showing HRMS spectrum]
1H in DMSO

13C in DMSO
Compound 14

IR

HRMS

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>AFCI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Set Nebulizer</th>
<th>1.0 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Not active</td>
<td>Set Capillary</td>
<td>4500 V</td>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
<td>Set End Plate Offset</td>
<td>-500 V</td>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>1500 m/z</td>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

*MS, 0.5-0.9 min (35-36)
ANNEXURE B: GUIDE FOR AUTHORS

EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
Official Journal of the European Federation for Pharmaceutical Sciences (EUFPS)

TABLE OF CONTENTS
- Description p.1
- Audience p.1
- Impact Factor p.2
- Abstracting and Indexing p.2
- Editorial Board p.2
- Guide for Authors p.4

DESCRIPTION
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.

More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.

Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.

Manuscripts submitted to the Journal are only accepted on the understanding that (a) they are subject to editorial review (generally by two independent reviewers); (b) they have not been, and will not be, published in whole or in part in any other journal; (c) the recommendations of the most recent version of the Declaration of Helsinki, for humans, and the European Community guidelines as accepted principles for the use of experimental animals have been adhered to.

Benefits to authors
We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.

Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center.

AUDIENCE
Pharmaceutical and Biopharmaceutical Scientists, Medicinal Chemists, Pharmacologists, Analytical Chemists, Clinical Pharmacologists, Pharmaceutical Engineers
IMPACT FACTOR

2017: 3.466 © Clarivate Analytics Journal Citation Reports 2018

ABSTRACTING AND INDEXING

BIOSIS
CAB Abstracts
Chemical Abstracts
Current Contents/Life Sciences
EMBASE
International Pharmaceutical Abstracts
Natural Products Update/Royal Society of Chemistry
S.E.F. Editoriale
Science Citation Index
Reaxys
MEDLINE®
Scopus

EDITORIAL BOARD

Editor-in-Chief
M. Brandi, Dept. of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark

Section Editors

C. Altomare, Università degli Studi di Bari Aldo Moro, Bari, Italy
J. C. Ehrhardt, Trinity College Dublin, Dublin, Ireland
J. Filipović-Grčić, Sveučilišta u Zagrebu, Zagreb, Croatia
J. Rantanen, University of Copenhagen, Copenhagen, Denmark
C. Ritter, University of Greifswald, Greifswald, Germany
C. Saal, Merck KGaA, Darmstadt, Germany
B. Sarmento, Universidade do Porto, Porto, Portugal
S. Schmidt, University of Florida, Orlando, Florida, USA
N. Škalíko-Basnet, Universitetet i Tromsø, Tromsø, Norway
J. Z. Zuo, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Editorial Board

L. J. Aarons, University of Manchester, Manchester, UK
F. Ahsan, Texas Tech School of Pharmacy, Amarillo, Texas, USA
J. M. Alache, University of Clermont-Ferrand, Clermont-Ferrand, France
M. J. Alonso, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
P. Artursson, Uppsala Universitet, Uppsala, Sweden
B. Aungst, AUC Sciences, Newark, DE USA
S. Aurio, University of Eastern Finland, Kuopio, Finland
A. Avdeef, In-ADME Research, New York, New York, USA
M. Bermejo Sanz, Universidad Miguel Hernández (UMH), San Juan de Alicante, Spain
O. J. Bjerrum, University of Copenhagen, Copenhagen, Denmark
H. H. Blume, Socrates R&D, Oberursel, Germany
J. A. Bouwstra, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden, Netherlands
D. Brayden, University College Dublin, Dublin, Ireland
C. Caramella, Università degli Studi di Pavia, Pavia, Italy
A. Dahan, Ben-Gurion University of the Negev, Israel
M. Davies, The University of Nottingham, Nottingham, UK
S. C. De Smedt, Universiteit Gent, Gent, Belgium
H. Derendorf, University of Florida, Gainesville, Florida, USA
M. Eichelbaum, Dr. Margarete Fischer-Bosch Inst., Stuttgart, Germany
A. Fahr, Friedrich-Schiller-Universitat Jena, Jena, Germany
E. Fattal, Université Paris-Sud (Paris XI), Chêtenay-Malabry, France
M. Finel, University of Helsinki, Helsinki, Finland
S. Y. K. Fong, University of Southern Denmark, Odense, Denmark
G. Fricker, Institut für Pharmazie und Molekulare Biotechnologie, Heidelberg, Germany
H. W. Frijlink, Rijksuniversiteit Groningen, Groningen, Netherlands

AUTHOR INFORMATION PACK 23 Oct 2018 www.elsevier.com/locate/ejps
GUIDE FOR AUTHORS

INTRODUCTION
Manuscripts submitted to the journal are accepted on the understanding that: (1) they are subject to editorial review, (2) they have not been and will not be published in whole or in part in any other journal and (3) the recommendations of the most recent version of the Declaration of Helsinki, for humans, and the European Community guidelines as accepted principles for the use of experimental animals, have been adhered to. The European Journal of Pharmaceutical Sciences will, therefore, only consider manuscripts that describe experiments which have been carried out under approval of an institutional or local ethics committee.

Types of Paper
Research articles

The European Journal of Pharmaceutical Sciences publishes research articles in the multidisciplinary field of pharmaceutical sciences, with a focus on topics relevant for drug discovery and development.

More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation.

The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.

Important other criteria for manuscript acceptance are conceptual novelty, scientific rigorousness of the experiments, relevance for a broad readership beyond the specific topic of the manuscript, and adherence to high ethics standards of experimentation. Research articles should comply with the format requirements set forth in the section "Article Structure below".

Review articles

The manuscript of a review article should be arranged as described for research articles but according to the following sections: title page, abstract and keywords (indexing terms, normally 3-6 items), Introduction, Specific sections determined by the author, Conclusions, Acknowledgements, References, Figure legends and Figures, Tables. Sections ranging from the Introduction to the Conclusions should be numbered. Subdivisions within a section should also be numbered within that section: 2.1., 2.2., 2.3. etc. All pages should be numbered consecutively, the title page being p.1.

Commentaries and Mini-reviews

One page suggestions for comprehensive reviews, commentaries or mini-reviews should be sent to the Editor-in-Chief at ejps@sdu.dk for consideration. Please see detailed information on commentaries and mini-reviews below.

Commentaries (Guidance)

The definition of a Commentary for EJPS is three-fold. Firstly, it can be an argued piece of provocative scientific writing purporting to take a balanced position on a controversial pharmaceutical science topic. A second option is for the author to approach the topic from a particular viewpoint on one side of an argument. A third option is to provide a topical update on a hot topic in Pharmaceutical Sciences and this can be more informative than controversial.

Commentaries will be commissioned by the editors in advance or invited from non-commissioned authors if they wish to initially submit a one page summary of the intended Commentary to the editors in advance. All manuscripts will be assessed by 2-3 independent referees.

AUTHOR INFORMATION PACK 23 Oct 2018 www.elsevier.com/locate/ejps 4
The journal is looking for a stimulating and provoking essays, with referenced material, but without an extensive reference list. Commentaries can contain one summary figure and/or table and should have no more than 30 references to preferably recent peer-reviewed material. The word count should be approximately 2,000 words maximum. The commentary should have a short abstract summary of 150 to 200 words and 4-5 key words should be included. The text should be broken down into 4-5 numbered sections beginning with an Introduction and ending with a Conclusions section. A model of the structures is to be found in Eur. J. Pharm. Sci. 19, 1-11 by R.D. Combes.

Mini-review (Guidance)

Mini-reviews are thought provoking reviews of contemporary pharmaceutical research. Themes are as described in the Scope of the Journal section.

Mini-reviews will usually be commissioned by the editors in advance, but contributions are invited from non-commissioned authors if they wish to initially submit a one page summary of the intended review to the editors in advance. All manuscripts will be assessed by 2-3 independent referees.

The structure of the mini-review is as follows: a title page followed by a 200-300 word abstract with 4-5 key words. The text is then divided into numbered sections finishing with a Summary section. References should be kept to a maximum of 60 and should be mostly to recent peer-reviewed material. There is a combined maximum of 5 figures / tables. Authors are encouraged to submit their original unpublished work as part of the review if appropriate. The total length of the review should be a maximum of 4,000 words.

Submission checklist

You can use this list to carry out a final check of your submission before you send it to the journal for review. Please check the relevant section in this Guide for Authors for more details.

Ensure that the following items are present:

One author has been designated as the corresponding author with contact details:
• E-mail address
• Full postal address

All necessary files have been uploaded:
Manuscript:
• Include keywords
• All figures (include relevant captions)
• All tables (including titles, description, footnotes)
• Ensure all figure and table citations in the text match the files provided
• Indicate clearly if color should be used for any figures in print
Graphical Abstracts / Highlights files (where applicable)
Supplemental files (where applicable)

Further considerations
• Manuscript has been 'spell checked' and 'grammar checked'.
• All references mentioned in the Reference List are cited in the text, and vice versa
• Permission has been obtained for use of copyrighted material from other sources (including the Internet)
• A competing interests statement is provided, even if the authors have no competing interests to declare
• Journal policies detailed in this guide have been reviewed
• Referee suggestions and contact details provided, based on journal requirements

For further information, visit our Support Center.

BEFORE YOU BEGIN

Ethics in publishing

Please see our information pages on Ethics in publishing and Ethical guidelines for journal publication.

AUTHOR INFORMATION PACK 23 Oct 2018 www.elsevier.com/locate/ejps
Declaration of interest
All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential competing interests include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. Authors must disclose any interests in two places: 1. A summary declaration of interest statement in the title page file (if double-blind) or the manuscript file (if single-blind). If there are no interests to declare then please state this: 'Declarations of interest: none'. This summary statement will be ultimately published if the article is accepted. 2. Detailed disclosures as part of a separate Declaration of Interest form, which forms part of the journal's official records. It is important for potential interests to be declared in both places and that the information matches. More information.

Submission declaration and verification
Submission of an article implies that the work described has not been published previously (except in the form of an abstract, a published lecture or academic thesis, see 'Multiple, redundant or concurrent publication' for more information), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service Crossref Similarity Check.

Preprints
Please note that preprints can be shared anywhere at any time, in line with Elsevier’s sharing policy. Sharing your preprints e.g. on a preprint server will not count as prior publication (see ‘Multiple, redundant or concurrent publication’ for more information).

Use of inclusive language
Inclusive language acknowledges diversity, conveys respect to all people, is sensitive to differences, and promotes equal opportunities. Articles should make no assumptions about the beliefs or commitments of any reader, should contain nothing which might imply that one individual is superior to another on the grounds of race, sex, culture or any other characteristic, and should use inclusive language throughout. Authors should ensure that writing is free from bias, for instance by using ‘he or she’, ‘his/her’ instead of ‘he’ or ‘his’, and by making use of job titles that are free of stereotyping (e.g. ‘chairperson’ instead of ‘chairman’ and ‘flight attendant’ instead of ‘stewardess’).

Author contributions
For transparency, we encourage authors to submit an author statement file outlining their individual contributions to the paper using the relevant CRediT roles: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing. Authorship statements should be formatted with the names of authors first and CRediT role(s) following. More details and an example

Changes to authorship
Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.
Article transfer service
This journal is part of our Article Transfer Service. This means that if the Editor feels your article is more suitable in one of our other participating journals, then you may be asked to consider transferring the article to one of those. If you agree, your article will be transferred automatically on your behalf with no need to reformat. Please note that your article will be reviewed again by the new journal.
More information.

Copyright
Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (see more information on this). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations. If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases.

For gold open access articles: Upon acceptance of an article, authors will be asked to complete an 'Exclusive License Agreement' (more information). Permitted third party reuse of gold open access articles is determined by the author’s choice of user license.

Author rights
As an author you (or your employer or institution) have certain rights to reuse your work. More information.

Elsevier supports responsible sharing
Find out how you can share your research published in Elsevier journals.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies
Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder’s open access policies. Some funding bodies will reimburse the author for the gold open access publication fee. Details of existing agreements are available online.

Open access
This journal offers authors a choice in publishing their research:

Subscription
- Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs.
- No open access publication fee payable by authors.
- The Author is entitled to post the accepted manuscript in their institution’s repository and make this public after an embargo period (known as green Open Access). The published journal article cannot be shared publicly, for example on ResearchGate or Academia.edu, to ensure the sustainability of peer-reviewed research in journal publications. The embargo period for this journal can be found below.

Gold open access
- Articles are freely available to both subscribers and the wider public with permitted reuse.
- A gold open access publication fee is payable by authors or on their behalf, e.g. by their research funder or institution.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards.
For gold open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses:

Creative Commons Attribution (CC BY)

Lets others distribute and copy the article, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), include in a collective work (such as an anthology), and text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author's honor or reputation.

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

The gold open access publication fee for this journal is **USD 3500**, excluding taxes. Learn more about Elsevier's pricing policy: https://www.elsevier.com/openaccesspricing.

Green open access

Authors can share their research in a variety of different ways and Elsevier has a number of green open access options available. We recommend authors see our [green open access page](https://www.elsevier.com/openaccessoptions) for further information. Authors can also self-archive their manuscripts immediately and enable public access from their institution's repository after an embargo period. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications. Embargo period: For subscription articles, an appropriate amount of time is needed for journals to deliver value to subscribing customers before an article becomes freely available to the public. This is the embargo period and it begins from the date the article is formally published online in its final and fully citable form. [Find out more](https://www.elsevier.com/openaccessoptions).

This journal has an embargo period of 12 months.

Elsevier Researcher Academy

Researcher Academy is a free e-learning platform designed to support early and mid-career researchers throughout their research journey. The "Learn" environment at Researcher Academy offers several interactive modules, webinars, downloadable guides and resources to guide you through the process of writing for research and going through peer review. Feel free to use these free resources to improve your submission and navigate the publication process with ease.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the [English Language Editing service](https://www.elsevier.com/locate/locate/elsing) available from Elsevier's WebShop.

Informed consent and patient details

Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper. Appropriate consents, permissions and releases must be obtained where an author wishes to include case details or other personal information or images of patients and any other individuals in an Elsevier publication. Written consents must be retained by the author but copies should not be provided to the journal. Only if specifically requested by the journal in exceptional circumstances (for example if a legal issue arises) the author must provide copies of the consents or evidence that such consents have been obtained. For more information, please review the Elsevier Policy on the Use of Images or Personal Information of Patients or other Individuals. Unless you have written permission from the patient (or, where applicable, the next of kin), the personal details of any patient included in any part of the article and in any supplementary materials (including all illustrations and videos) must be removed before submission.

Submission

Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor’s decision and requests for revision, is sent by e-mail.
Additional Information

Editorial review: All manuscripts are generally submitted to 2-3 reviewers who are selected for their ability to evaluate the work. Supplementary material may be included to facilitate the review process. Authors may request that certain reviewers should not be chosen, but should then also explain why. Members of the editorial board will usually be called upon for advice when there is disagreement among the reviewers or between reviewers and authors, or when the editors feel that the manuscript has not received adequate consideration by the reviewers.

Please submit, with the manuscript, the names, postal addresses and e-mail addresses of at least four potential reviewers. Good suggestions lead to faster processing of your paper. Please note: Reviewers who do not have an institutional e-mail address will only be considered if their affiliations are given and can be verified. Please ensure that the e-mail addresses are current. International reviewers who have recently published in the appropriate field should be nominated, and their areas of expertise must be stated clearly. Note that the editor retains the sole right to decide whether or not the suggested reviewers are contacted. To aid the editorial process when suggested reviewers are not chosen or decline to review, ensure that the classifications chosen are as detailed as possible. It is not sufficient to select e.g. ‘analytical chemistry’ or ‘physical pharmacy and pharmaceutical technology’.

All reviewers’ comments must be responded to, and suggested changes be made. The author should detail the changes made in response to the referees’ comments and suggestions in an accompanying letter. If the author disagrees with some comments, the reason, supported by data, should be given. The editors may refuse to publish manuscripts from authors who persistently ignore referees’ comments. A revised manuscript should be received by the editorial office no later than 2 months after the editorial decision was sent to the author(s); otherwise it will be processed as a new manuscript.

PREPARATION

Peer review
This journal operates a single blind review process. All contributions will be initially assessed by the editor for suitability for the journal. Papers deemed suitable are then typically sent to a minimum of two independent expert reviewers to assess the scientific quality of the paper. The Editor is responsible for the final decision regarding acceptance or rejection of articles. The Editor’s decision is final. More information on types of peer review.

Use of word processing software
It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor’s options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the ‘spell-check’ and ‘grammar-check’ functions of your word processor.

LaTeX
You are recommended to use the Elsevier article class elsarticle.cls to prepare your manuscript and BibTeX to generate your bibliography.
Our LaTeX site has detailed submission instructions, templates and other information.

Article structure
Subdivision - numbered sections
Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to ‘the text’. Any subsection may be given a brief heading. Each heading should appear on its own separate line.
Introduction
State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.
Material and methods
Provide sufficient details to allow the work to be reproduced by an independent researcher. Methods that are already published should be summarized, and indicated by a reference. If quoting directly from a previously published method, use quotation marks and also cite the source. Any modifications to existing methods should also be described.

Results
Results should be clear and concise.

Text, tables and figures must show minimal overlap, and must be internally consistent.

Discussion
This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions
The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Appendices
If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.

Essential title page information
• Title. Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
• Corresponding author.
The manuscript must be submitted by the person who is in charge of correspondence at all stages of the editorial process, production, and post-publication. Ensure that phone numbers (with country and area codes) are provided, in addition to the e-mail address (preferably an institutional e-mail address) and the complete postal address. Contact details of the other authors must be kept up to date by the corresponding author.
• Author names and affiliations. Where names may be ambiguous (e.g., a double name, or possible confusion about first/last names), please indicate this clearly. Present the authors’ affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author’s name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and the e-mail address (preferably an institutional email address) of each author.
• Present/permanent address. If an author has moved since the work described in the article was done, or was visiting at the time, a ‘Present address’ (or ‘Permanent address’) may be indicated as a footnote to that author’s name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Abstract
A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

Graphical abstract
A Graphical abstract is mandatory for this journal. It should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership online. Authors must provide images that clearly represent the work described in the article. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: please provide an image with a minimum of 531 x 1328 pixels (h x w) or proportionally more, but should be readable on screen at a size of 200 x 500 pixels (at 96 dpi this corresponds to 5 x 13 cm). Bear in mind readability after reduction, especially if using one of the figures from the article itself. Preferred file types: TIFF, EPS, PDF or MS Office files. See http://www.elsevier.com/graphicalabstracts for examples.
Keywords
Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, “and”, “of”). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations
Abbreviations are a hindrance for the reader. Use as few abbreviations as possible and write out names of compounds, receptors, etc., in full throughout the text of the manuscript, with the exceptions given below. Unnecessary and nonsense abbreviations are not allowed. Generic names should not be abbreviated. As an example, AMP, HAL, HIST, RAMH, TAM, SST, for amphetamine, haloperidol, histamine, (R)-o-methylhistamine, tamoxifen, somatostatin, are not accepted. Abbreviations which have come to replace the full term (e.g., GABA, DOPA, PDGF, 5-HT, for Y-aminoxylic acid, 3,4-dihydroxyphenylalanine, PDGF, 5-hydroxytryptamine) may be used, provided the term is spelled out in the abstract and in the body of the manuscript the first time the abbreviation is used. Unwieldy chemical names may be abbreviated. As an example, 8-OH-DPAT, DOI, DTG, BAPTA, for 8-hydroxy-2-(di-n-propylamino)tetroxal, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, 1,3-di(2-toly)guanidine, 1,2-bis(o-aminophenox)ethane-N,N,N',N'-tetraacetic acid, are acceptable; however, the full chemical name should be given once in the body of the manuscript and in the abstract, followed in both cases by the abbreviation. Code names may be used, but the full chemical name should be given in the text and in the abstract. Authors not conforming to these demands may have their manuscripts returned for correction with delayed publication as a result.

Some abbreviations may be used without definition:
1 ADP, CDP, GDP, IDP5′-pyrophosphates of adenosine UDPcytidine, guanosine, inosine, uridine AMP etc. adenosine 5′-monophosphate etc. ADP etc. adenosine 5′-diphosphate etc. ATP etc. adenosine 5′-triphosphate etc. CM-cellulosecarboxymethylcellulose CoA and acetyl-CoAenzyme A and its acyl derivatives DEAE-cellulose O-(diethylaminoethyl)-cellulose DNAoxyribonucleic acid EGTAethylene glycol-bis(β-aminoethyl ether) N,N,N′,N′-tetraacetic acid FMNflavin adenine dinucleotide FADflavin adenine dinucleotide GSH, GSSGglutathione, reduced and oxidized Hepes 2-hydroxyethyl)piperazine-ethanesulfonic acid NADnicotinamideadenine dinucleotide NADPnicotinamideadenine dinucleotide phosphate NMP nucleotide P, PPorthophosphate, pyrophosphate RNArribonucleic acid Tris2-amino-2-hydroxyethylpropane-1,3-diol

Two alternative conventions are currently in use in some cases. For example, for the phosphoinositides there are both the abbreviations recommended by the IUPAC-IUB and those of the Chilton Convention (e.g., PtdIns(4,5)P2 vs. PIP2 for phosphatidylinositol 4,5-biphosphate). The journal will accept either of these forms but not their combination.

Abbreviations of units of measurements and other terms are as follows:

Units of mass
1 kilogram kg gram mg milligram µg microgram ng nanogram mg mole (gram-molecule) mol millimole mmol micromole µmol nanomol nmol picomole pmol femtomole fmol equivalents

Units of time
1 hour min minute sec second m sec microsec sec seconds

Units of volume
1 liter l milliliter ml microliter µl

Units of length
1 meter m centimeter cm millimeter mm micrometer µm nanometer nm
Units of concentration

1 molar (mol/l)M millimolar mM micromolar µM nanomolar nM picomolar pM

Units of heat, energy, electricity

1 joule J degree Celsius (centigrade)°C coulomb C ampere A volt V ohm Ω siemens S

Units of radiation

1 curie Ci counts per minute CPM disintegrations per minute DPM becquerel Bq

Miscellaneous

1 gravity g dissociation constant Kd median doses LD50, ED50 probability P routes of drug administration i.v., i.p., s.c., i.m. square centimeter cm² standard deviation S.D. standard error of the mean S.E.M. Svedberg unit of sedimentation coefficient S Hill coefficient nH

The isotope mass number should appear before the atomic symbol, e.g., [3H]noradrenaline, [14C]choline. Ions should be written: Fe³⁺, Ca²⁺, Mg²⁺. The term absorbance (A) is preferred to extinction or optical density. For abbreviations not included in this list consult: Units, Symbols and Abbreviations, A Guide for Biological and Medical Authors and Editors, 1994 (The Royal Society of Medicine, London), ISBN 0-905958-78-0, or Scientific Style and Format: The CBE Manual for Authors, Editors, and Publishers, 6th edn. (Cambridge University Press, Cambridge), ISBN 0-521-47154-0.

Acknowledgements

Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g. lab technicians, statisticians, colleagues providing help preparing the manuscript).

Formatting of funding sources

List funding sources in this standard way to facilitate compliance to funder’s requirements:

Funding: This work was supported by the National Institutes of Health [grant numbers xxx, yyyy]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz]; and the United States Institutes of Peace [grant number aaaa].

It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding.

If no funding has been provided for the research, please include the following sentence:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Nomenclature and Units

Only generic and chemical names of drugs should be used, although a proprietary equivalent may be indicated once, in parentheses. Pharmacological and Chemical Synonyms, E.E.J. Marler, 9th edn. (Elsevier, Amsterdam, 1990) may be consulted.

The nomenclature of chemical substances should be consistent, clear and unambiguous, and should conform to the usage of the American Chemical Society and the convention recommended by the International Union of Pure and Applied Chemistry (IUPAC). When in doubt, writers should consult the indexes of Chemical Abstracts; the various reports and pamphlets of the American Chemical
Society Committee on Nomenclature, Spelling and Pronunciation; and from the International Union of Biochemistry and Molecular Biology (IUBMB): Biochemical Nomenclature and Related Documents (Portland Press, London).

When drugs, which are mixtures of stereoisomers are used, the fact that they have a composite nature and the implication of this for interpretation of the data and drawing of conclusions should be made clear. The use of the appropriate prefix is essential. Use of the generic name alone without prefix would be taken to refer to agents with no stereoisomers. The nomenclature of the various isomers and isomeric mixtures can be found in: (i) IUPAC, Nomenclature of Organic Chemistry, eds. J. Rigaudy and S.P. Klesney (Pergamon Press, London), 1979, p. 481; (ii) Signs of the times: the need for a stereochimically informative generic name system, Simonyi, M., J. Gal and B. Testa, 1989, Trends Pharmacol. Sci. 10, 349. For nomenclature of peptides, see Peptides, Vol. 1, 1981, p. 231.

The nomenclature of receptors and their subtypes should conform to the TIPS 1995 Receptor & Ion Channel Nomenclature Supplement (Trends Pharmacol. Sci. Receptor Nomenclature Supplement 1995). Copies of this supplement are available from the publisher (Elsevier Trends Journals, Oxford Fulfilment Centre, P.O. Box 800, Kidlington, Oxford OX5 1DX, UK. Tel.: (44-1865) 843-699; Fax: (44-1865) 843-911).

The trivial name of the enzyme may be used in the text, but the systematic name and classification number according to Enzyme Nomenclature, rev. edn. (Academic Press, New York, NY, 1984) should be quoted the first time the enzyme is mentioned.

GenBank accession numbers
Gene accession numbers refer to genes or DNA sequences about which further information can be found in the databases at the National Center for Biotechnical Information (NCBI) at the National Library of Medicine. Authors wishing to enable other scientists to use the accession numbers cited in their papers via links to these sources, should reference this information in the following manner:

For each and every accession number cited in an article, authors should type the accession number in bold, underlined text. Letters in the accession number should always be capitalised. (See Example 1 below.) This combination of letters and format will enable Elsevier's typesetters to recognize the relevant texts as accession numbers and add the required link to GenBank's sequences.

Example 1: "GenBank accession nos. AI631510, AI631511, AI632198, and BF223228", a B-cell tumor from a chronic lymphatic leukemia (GenBank accession no. BE675048), and a T-cell lymphoma (GenBank accession no. AA361117).

Authors are encouraged to check accession numbers used very carefully. An error in a letter or number can result in a dead link.

In the final version of the printed article, the accession number text will not appear bold or underlined (see Example 2 below).

Example 2: "GenBank accession nos. AI631510, AI631511, AI632198, and BF223228", a B-cell tumor from a chronic lymphatic leukemia (GenBank accession no. BE675048), and a T-cell lymphoma (GenBank accession no. AA361117).

In the final version of the electronic copy, the accession number text will be linked to the appropriate source in the NCBI databases enabling readers to go directly to that source from the article (see Example 3 below).

Example 3: "GenBank accession nos. AI631510, AI631511, AI632198, and BF223228", a B-cell tumor from a chronic lymphatic leukemia (GenBank accession no. BE675048), and a T-cell lymphoma (GenBank accession no. AA361117).

Formulas and equations
Structural chemical formulas, process flow diagrams and complicated mathematical expressions should be very clearly presented. All subscripts, superscripts, Greek letters and unusual characters must be identified. Structural chemical formulas and process flow diagrams should be prepared in the same way as graphs.
Present simple formulae in the line of normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).

Footnotes
Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors can build footnotes into the text, and this feature may be used. Otherwise, please indicate the position of footnotes in the text and list the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Artwork
Image manipulation
Whilst it is accepted that authors sometimes need to manipulate images for clarity, manipulation for purposes of deception or fraud will be seen as scientific ethical abuse and will be dealt with accordingly. For graphical images, this journal is applying the following policy: no specific feature within an image may be enhanced, obscured, moved, removed, or introduced. Adjustments of brightness, contrast, or color balance are acceptable if and as long as they do not obscure or eliminate any information present in the original. Nonlinear adjustments (e.g. changes to gamma settings) must be disclosed in the figure legend.

Electronic artwork
General points
• Make sure you use uniform lettering and sizing of your original artwork.
• Embed the used fonts if the application provides that option.
• Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Provide captions to illustrations separately.
• Size the illustrations close to the desired dimensions of the published version.
• Submit each illustration as a separate file.
A detailed guide on electronic artwork is available.
You are urged to visit this site; some excerpts from the detailed information are given here.

Formats
If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format. Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please 'Save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):
EPS (or PDF): Vector drawings, embed all used fonts.
TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi.
TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi.
TIFF (or JPEG): Combinations bitmapped line/half-tone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:
• Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.

Color artwork
Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color online (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color: in print or online only. Further information on the preparation of electronic artwork.

AUTHOR INFORMATION PACK 23 Oct 2018 www.elsevier.com/locate/ejps
Figure captions
Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables
Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules and shading in table cells.

References
Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication and a copy of the title page of the relevant article must be submitted.

Reference links
Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are correct. Please note that incorrect surnames, journal/book titles, publication year and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is highly encouraged.

A DOI is guaranteed never to change, so you can use it as a permanent link to any electronic article. An example of a citation using DOI for an article not yet in an issue is: VanDecar J.C., Russo R.M., James D.E., Ambeh W.B., Franke M, (2003). Aseismic continuation of the Lesser Antilles slab beneath northeastern Venezuela. Journal of Geophysical Research, https://doi.org/10.1029/2001JB000884. Please note the format of such citations should be in the same style as all other references in the paper.

Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

Data references
This journal encourages you to cite underlying or relevant datasets in your manuscript by citing them in your text and including a data reference in your Reference List. Data references should include the following elements: author name(s), dataset title, data repository, version (where available), year, and global persistent identifier. Add [dataset] immediately before the reference so we can properly identify it as a data reference. The [dataset] identifier will not appear in your published article.

References in a special issue
Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference management software
Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles, such as Mendeley and Zotero, as well as EndNote. Using the word processor plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal's style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide. If you use reference management software, please ensure that you remove all field codes before submitting the electronic manuscript. More information on how to remove field codes.
Users of Mendeley Desktop can easily install the reference style for this journal by clicking the following link:
http://open.mendeley.com/use-citation-style/european-journal-of-pharmaceutical-sciences
When preparing your manuscript, you will then be able to select this style using the Mendeley plugins for Microsoft Word or LibreOffice.

Reference formatting
There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the article number or pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct. If you do wish to format the references yourself they should be arranged according to the following examples:

Reference style
Text: All citations in the text should refer to:
1. Single author: the author’s name (without initials, unless there is ambiguity) and the year of publication;
2. Two authors: both authors’ names and the year of publication;
3. Three or more authors: first author’s name followed by ‘et al.’ and the year of publication.
Citations may be made directly (or parenthetically). Groups of references can be listed either first alphabetically, then chronologically, or vice versa.
Examples: as demonstrated (Allan, 2000a, 2000b, 1999; Allan and Jones, 1999).... Or, as demonstrated (Jones, 1999; Allan, 2000). Kramer et al. (2010) have recently shown ...
List: References should be arranged first alphabetically and then further sorted chronologically if necessary. More than one reference from the same author(s) in the same year must be identified by the letters ‘a’, ‘b’, ‘c’, etc., placed after the year of publication.
Examples:
Reference to a journal publication:
Reference to a journal publication with an article number:
Reference to a book:
Reference to a chapter in an edited book:
Reference to a website:
Reference to a dataset:

Journal abbreviations source
Journal names should be abbreviated according to the List of Title Word Abbreviations.

Video
Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file’s content. In order to ensure that your video or animation material is directly usable, please provide the file in one of our recommended file formats with a preferred maximum size of 150 MB per file, 1 GB in total. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect. Please supply ‘stills’ with your files: you can choose any frame from the video or animation or make a separate
image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Data visualization
Include interactive data visualizations in your publication and let your readers interact and engage more closely with your research. Follow the instructions here to find out about available data visualization options and how to include them with your article.

Supplementary material
Supplementary material such as applications, images and sound clips, can be published with your article to enhance it. Submitted supplementary items are published exactly as they are received (Excel or PowerPoint files will appear as such online). Please submit your material together with the article and supply a concise, descriptive caption for each supplementary file. If you wish to make changes to supplementary material during any stage of the process, please make sure to provide an updated file. Do not annotate any corrections on a previous version. Please switch off the ‘Track Changes’ option in Microsoft Office files as these will appear in the published version.

Research data
This journal encourages and enables you to share data that supports your research publication where appropriate, and enables you to interlink the data with your published articles. Research data refers to the results of observations or experimentation that validate research findings. To facilitate reproducibility and data reuse, this journal also encourages you to share your software, code, models, algorithms, protocols, methods and other useful materials related to the project.

Below are a number of ways in which you can associate data with your article or make a statement about the availability of your data when submitting your manuscript. If you are sharing data in one of these ways, you are encouraged to cite the data in your manuscript and reference list. Please refer to the “References” section for more information about data citation. For more information on depositing, sharing and using research data and other relevant materials, visit the research data page.

Data linking
If you have made your research data available in a data repository, you can link your article directly to the dataset. Elsevier collaborates with a number of repositories to link articles on ScienceDirect with relevant repositories, giving readers access to underlying data that gives them a better understanding of the research described.

There are different ways to link your datasets to your article. When available, you can directly link your dataset to your article by providing the relevant information in the submission system. For more information, visit the database linking page.

For supported data repositories a repository banner will automatically appear next to your published article on ScienceDirect.

In addition, you can link to relevant data or entities through identifiers within the text of your manuscript, using the following format: Database: xxxx (e.g., TAIR: AT1G01020; CCDC: 734053; PDB: 1XFN).

Mendeley Data
This journal supports Mendeley Data, enabling you to deposit any research data (including raw and processed data, video, code, software, algorithms, protocols, and methods) associated with your manuscript in a free-to-use, open access repository. During the submission process, after uploading your manuscript, you will have the opportunity to upload your relevant datasets directly to Mendeley Data. The datasets will be listed and directly accessible to readers next to your published article online.

For more information, visit the Mendeley Data for journals page.

Data in Brief
You have the option of converting any or all parts of your supplementary or additional raw data into one or multiple data articles, a new kind of article that houses and describes your data. Data articles ensure that your data is actively reviewed, curated, formatted, indexed, given a DOI and publicly available to all upon publication. You are encouraged to submit your article for Data in Brief as an
additional item directly alongside the revised version of your manuscript. If your research article is accepted, your data article will automatically be transferred over to Data in Brief where it will be editorially reviewed and published in the open access data journal, Data in Brief. Please note an open access fee of 500 USD is payable for publication in Data in Brief. Full details can be found on the Data in Brief website. Please use this template to write your Data in Brief.

Data statement
To foster transparency, we encourage you to state the availability of your data in your submission. This may be a requirement of your funding body or institution. If your data is unavailable to access or unsuitable to post, you will have the opportunity to indicate why during the submission process, for example by stating that the research data is confidential. The statement will appear with your published article on ScienceDirect. For more information, visit the Data Statement page.

AFTER ACCEPTANCE

Online proof correction
Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word; in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors.

If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.

We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints
The corresponding author will, at no cost, receive a customized Share Link providing 50 days free access to the final published version of the article on ScienceDirect. The Share Link can be used for sharing the article via any communication channel, including email and social media. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier’s Webshop. Corresponding authors who have published their article gold open access do not receive a Share Link as their final published version of the article is available open access on ScienceDirect and can be shared through the article DOI link.

Additional information
No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of the rapid advances made in the medical sciences, independent verification of diagnoses and drug doses should be made.

AUTHOR INQUIRIES
Visit the Elsevier Support Center to find the answers you need. Here you will find everything from Frequently Asked Questions to ways to get in touch.
You can also check the status of your submitted article or find out when your accepted article will be published.

© Copyright 2018 Elsevier | https://www.elsevier.com