In vitro evaluation of the efficacy of selected medicinal plant extracts against multidrug resistant cancer cells

RA Swanepoel

Dissertation submitted in fulfilment of the requirements for the degree Masters of Science in Pharmaceutics at the North West University

Supervisor Prof C Gouws
Co-supervisor Prof JH Hamman
Co-supervisor Dr C Willers

Graduation: May 2019
Student number: 24166936
The financial assistance of the National Research Foundation (NRF) and the South African Medical Research Council (SAMRC) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF or the MRC.
Die kinders van God.

1 Johannes 3:1

Kyk wat ‘n groot liefde die Vader aan ons bewys het, dat ons kinders van God genoem kan word! Om hierdie rede ken die wêreld ons nie, omdat dit Hom nie geken het nie.
Acknowledgments

I thank my heavenly Father for giving me the physical and emotional strength I needed every day during the last 2 years.

To my family; Pa Bertus, Ma Marie, Ousus Marilize and Swaer Corné, thank you for the support you gave me.

I had the privilege to work with innovative mentors, which I want to thank for their guidance. Prof C Gouws (supervisor), Prof JH Hamman (Co-supervisor) and Dr C Willers (Co-supervisors). I am grateful for all the scientific input and emotional support I received from you.

To my cell culture lab-family: Dr C Willers, Dr C Calitz, Dr H Svitnia, MJ Rossouw and T Smit. What happens in the cell lab, stays in the cell lab! Without you I could not have done it.

Prof W Liebenberg: you were always willing to assist in any matter. Thank you.

Prof AM Viljoen and the staff at the Department of Pharmaceutical Sciences, Tshwane University of Technology for characterising the plant extracts.

Prof S Ellis from the statistical consultation services for your assistance with all my data.

The two institutions I want to thank for funding are the North-West University (masters and postgraduate merit bursaries) and the National Research Foundation (freestanding bursary and travel grant).
Abstract

Cancer is ranked as one of the leading causes of death globally, and a significant number of these diagnosed malignancies are found in lung tissue. Small cell lung cancer (SCLC) is a high grade neuroendocrine cancer, which is responsible for high mortality rates worldwide. The failure of therapeutic regimes in cancer management can be ascribed to increased cancer metastasis and the occurrence of multidrug resistance (MDR). MDR in SCLC is often the result of hyperexpression of several adenosine triphosphates (ATP)-binding cassette (ABC) efflux transporters in these tumours, which can decrease the intracellular accumulation of chemotherapeutic drugs, resulting in sub-therapeutic levels. P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are some of the most widely studied efflux transporters involved in cancer MDR.

There is an urgent need to identify novel treatment approaches to combat MDR in cancer, and various traditionally used medicinal plants are believed to cure, prevent or manage cancer. In this study, *Aloe vera* gel material and precipitated polysaccharides, *Sutherlandia frutescens* and *Xysmalobium undulatum* were investigated as an ethno-medicinal approach to combat MDR in cancer. This was done through evaluation of their potential *in vitro* anticancer efficacy against selected chemosensitive and chemoresistant SCLC cell models. These SCLC cell models included a chemosensitive line (H69V), a multidrug resistant line with hyperexpressed MRP1 efflux transporters (H69AR), as well as the multidrug resistant NCI-H69/LX4 line with hyperexpressed P-gp transporters. A porcine kidney non-tumorigenic cell line (LLC-PK1) was also included to evaluate the cytotoxic effects of the selected plant materials.

The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay was used as a preliminary screening method to determine the relative reduction in cell viability (IC) of each selected SCLC cell line, after a 96 h exposure to the various plant materials. Subsequently, the effect of the selected plant materials on intracellular ATP and extracellular adenylate kinase (AK) levels of the different SCLC and LLC-PK1 cells were measured to establish their anticancer efficacy and cytotoxic potential more accurately.

All the selected plant materials investigated in this study resulted in a statistically significant reduction in cell viability for all of the SCLC cell lines (p<0.05), although a measure of resistance was observed in the chemoresistant cell lines. The anticancer phytochemicals in the crude extracts are therefore most probably substrates for MRP1 and P-gp related efflux. The aqueous *S. frutescens* extract was found to possibly induce necrosis in the MRP1 hyperexpressive SCLC cell line at 1.406 mg/ml, while the MTT data suggested that *S. frutescens* extract had the highest cancer selectivity ratio in P-glycoprotein (P-gp) hyperexpressive SCLC management of all the materials investigated. The
cytotoxic effect of the *X. undulatum* extract on non-cancerous cells (LLC-PK1 cell line) contradicts its use in SCLC management.

The selected medicinal plant materials significantly altered both the intracellular ATP and extracellular AK levels of the chemosensitive and chemoresistant SCLC cell lines, indicating anticancer effects against SCLC cells. However, indications of cytotoxicity to some extent were also detected in a non-cancerous LLC-PK1 cell line for all of the plant materials.

The affinity of phytochemicals in the plant materials for the efflux transporters may be put to use though combination with standard anticancer drugs with an affinity for these efflux transporters. The phytochemicals may enhance intracellular drug accumulation by saturating the transporter binding sites, or competing with the standard drugs for binding.

Key words:

Opsomming

Kanker word universeel beskou as een van die hoofoorsake van sterfes, waarvan 'n baie groot persentasie diagnoses toegeskryf word aan longkanker. Klein sel longkanker (KSLK), 'n ernstig neuro-endokriene kanker, is veral verantwoordelik vir 'n hoë aantal sterfes wêreldwyd. Swak terapeutiese uitkomstes tydens kanker behandeling kan toegeskryf word aan verhoogde kanker metastase, asook veelvoudige geneesmiddel weerstandbiedendheid (VGW). VGW in KSLK word merendeels geassosieer met die verhoogde uitdrukking van verskeie adenosien trifosfaat (ATP)-bindingskasset (ABK) efbruks pompe in hierdie tipe karsinoom, wat daartoe lei dat sub-terapeutiese geneesmiddel vlakke bereik word weens die verlaagde intrasellulêre akkumulasie van chemoterapeutiese middels. In terme van VGW in kanker is P-glikoproteïne (P-gp), veelvoudige geneesmiddel weerstandbiedende proteïen 1 (MRP1) en bors kanker weerstandbiedendheidsproteïen (BKRP) van die efbruks pompe wat al die meeste ondersoek is.

Daar is dus 'n dringende behoefte om innoverende terapeutiese benaderings te identifiseer om VGW in kanker te oorkom. Daar word ook geglo dat verskeie medisinale plante wat tradisioneel gebruik word kanker kan genees, voorkom of help bestuur. In hierdie studie is die gebruik van Aloe vera jell materiaal en 'n gepresipiteerde polisakkaried fraksie, Sutherlandia frutescens en Xysmalobium undulatum ondersoek as 'n moontlike plant-gebaseerde benadering om kanker te behandel. Die moontlike in vitro antikanker eienskappe van die gekose plante was ondersoek in beide chemosensitiewe en chemoweerstandbiedende KSLK selkulturemodelle. Hierdie KSLK modelle het 'n chemosensitiewe sellyn (H69V), 'n veelvoudige weerstandbiedende sellyn met verhoogde MRP1 uitdrukking (H69AR), asook 'n veelvoudige geneesmiddel weerstandbiedende sellyn met verhoogde P-gp uitdrukking (NCI-H69V/LX4), ingesluit. Om die moontlike sitotoksiese effekte van die gekose plantmateriaal te ondersoek, is daar ook 'n nie-kanker vark nier sellyn (LLC-PK1) gebruik.

'n Voorlopige analyse van die antikanker effektiwiteit van die gekose plantmateriaal is uitgeo d.m.v. die 3-[4,5-dimetieltiasol-2-iel]-2,5-difeniel tetrazolium bromied (MTT) toets, na blootstelling vir 96 uur. Dit is gedoen deur die relatiewe afname in lewensvatbaarheid van die selkulture (IC) te bepaal vir elke KSLK sellyn na behandeling met elke ekstrak. Beide die antikanker, asook die sitotoksiese potensiaal van die plantmateriaal is daarna verder ondersoek deur hulle effek op die vlakke van intrasellulêre ATP en ekstrasellulêre adenilaat kinase (AK) te bepaal in die verskeie KSLK sellyne, asook die LLC-PK1 selle.

Daar is gevind dat al die gekose plantmateriaal bestudeer in hierdie studie die lewensvatbaarheid van al die KSLK sellyne statisties betekenisvol verlaag het (p<0.05), alhoewel daar 'n mate van weerstandigheid teen die behandeling waargeneem is in die chemoweerstandige selkulture. Die
fitochemiese komponente in die plantmateriaal wat die antikanker effekte veroorsaak het, kan dus moontlik as substrate dien vir die MRP1 en P-gp pompe. Die waterige *S. frutescens* ekstrak het moontlik nekrose veroorsaak in die weerstandige KSLK selkultuur met verhoogde MRP1 uitdrukking teen 1.406 mg/ml, terwyl die MTT data aangedui het dat die *S. frutescens* ekstrak die hoogste kanker selektiwiteit verhouding in die behandeling van KSLK selle met verhoogde P-gp uitdrukking getoon het. Die gebruik van die *X. undulatum* ekstrak vir die behandeling van KSLK is egter weerspreek deur die sitotoksisiteit waargeneem in die nie-kanker selle (LLC-PK1).

Al die medisinale plantmateriaal gebruik in hierdie studie het beide die intrasellulêre ATP en ekstrasellulêre AK vlakke statisties betekenisvol verander, in beide die chemosensitiewe en die chemoweerstandige KSLK selle. Dit dui dus op 'n antikanker effek teen KSLK. Daar was egter ook 'n mate van sitotoksisiteit waargeneem in die nie-kanker (LLC-PK1) selle na behandeling met al die geselecteerde plantmateriaal.

Die fitochemiese komponente in die plantmateriaal se affiniteit vir die efluks pompe mag egter positief gebruik word deur dit te kombineer met standaard antikanker geneesmiddels wat ook affiniteit toon vir hierdie pompe. Gevolglik mag die fitochemiese komponente die intrasellulêre geneesmiddel akkumulasie verhoog deur die pompe se bindingsetels te versadig of deur te kompeteer met die geneesmiddels om te bind aan die bindingsetels van die pompe.

Sleutel terme:

Table of Content

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Opsomming</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Content</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Equations</td>
<td>xix</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>xx</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xxii</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1. Background
1.2. Research problem
1.3. Aim and objectives
1.4. Structure of dissertation
1.5. Publication status of research
1.6. Collaboration
1.7. References

Chapter 2 Literature overview

2.1. Introduction
2.2. Cancer
2.2.1. Introduction
2.2.2. Small cell lung cancer
2.2.3. Current treatment options for small cell lung cancer
2.2.4. Models to investigate small cell lung cancer and related multidrug resistance
2.2.5. Drug resistance in cancer
2.3. Multidrug resistance
2.3.1. Introduction
2.3.2. P-glycoprotein (P-gp)
2.3.3. Multidrug resistance-associated protein 1 (MRP1)
2.3.4. Breast cancer resistance protein (BCRP) 15
2.3.5. Current treatment approaches towards multidrug resistance 16

2.4. Natural remedies 17
2.4.1. Introduction 17
2.4.2. Aloe vera 18
 2.4.2.1. Traditional preparation and use of Aloe vera 18
 2.4.2.2. Biologically active constituents of Aloe vera 19
 2.4.2.3. Cancer research involving Aloe vera 20
2.4.3. Sutherlandia frutescens 21
 2.4.3.1. Traditional preparation and use of Sutherlandia frutescens 21
 2.4.3.2. Biologically active constituents of Sutherlandia frutescens 21
 2.4.3.3. Cancer research involving Sutherlandia frutescens 22
2.4.4. Xysmalobium undulatum 23
 2.4.4.1. Traditional preparation and use of Xysmalobium undulatum 23
 2.4.4.2. Biologically active constituents of Xysmalobium undulatum 23
 2.4.4.3. Cancer research involving Xysmalobium undulatum 24

2.5. Summary 24
2.6. References 24

Chapter 3 Review manuscript 43
Abstract 44
Keywords 44
1. Introduction 44
2. Multidrug resistant cancer treatment approaches 45
3. In vitro models for multidrug resistant cancer treatment screening 45
 3.1. Conventional cell-based models 45
 3.2. Complex cell-based models 47
 3.2.1. Integrated discrete multiple organ culture (IdMOC) system 47
 3.2.2. Microfluidic channel-based systems 48
 3.2.2.1. Multi-organ co-culture in tumour-on-a-chip system 48
 3.2.2.2. Lung-on-a-chip microfluidic device 48
 3.2.2.3. 3D lung cancer microfluidic constructs 48
 3.2.3. 3D spheroid cell cultures 49
 3.2.3.1. 3D multicellular models mediating MDR 50
 3.2.3.2. Hollow fibre-based spheroid cultures 50
 3.2.3.3. Cell printing: 50
4. In vivo models for multidrug resistant cancer treatment screening 50
 4.1. In vivo hollow fibre assay models 51
4.11.1. Chemical characterisation of the plant extracts 83
 4.11.1.1. Aloe vera (gel material and precipitated polysaccharides) 83
 4.11.1.2. Sutherlandia frutescens 84
 4.11.1.3. Xysmalobium undulatum 85

4.11.2. Cytotoxicity evaluation 86
 4.11.2.1. Aloe vera gel material 86
 4.11.2.1.1. LLC-PK1 - non-cancerous cell line 86
 4.11.2.1.2. H69V - chemosensitive SCLC cell line 86
 4.11.2.1.3. H69AR - multidrug resistant SCLC cell line (MRP1 hyperexpressive) 87
 4.11.2.1.4. NCI-H69/LX4 - multidrug resistant SCLC cell line (P-gp hyperexpressive) 88
 4.11.2.1.5. Summary of the A. vera gel material MTT results 89
 4.11.2.2. Aloe vera precipitated polysaccharides 89
 4.11.2.2.1. LLC-PK1 - non-cancerous cell line 89
 4.11.2.2.2. H69V - chemosensitive SCLC cell line 90
 4.11.2.2.3. H69AR - multidrug resistant SCLC cell line (MRP1 hyperexpressive) 91
 4.11.2.2.4. NCI-H69/LX4 - multidrug resistant SCLC cell line (P-gp hyperexpressive) 92
 4.11.2.2.5. Summary of the A. vera precipitated polysaccharide MTT results 93
 4.11.2.3. Sutherlandia frutescens 93
 4.11.2.3.1. LLC-PK1 - non-cancerous cell line 93
 4.11.2.3.2. H69V - chemosensitive SCLC cell line 94
 4.11.2.3.3. H69AR - multidrug resistant SCLC cell line (MRP1 hyperexpressive) 94
 4.11.2.3.4. NCI-H69/LX4 - multidrug resistant SCLC cell line (P-gp hyperexpressive) 95
 4.11.2.3.5. Summary of the S. frutescens MTT results 99
 4.11.2.4. Xysmalobium undulatum 99
 4.11.2.4.1. LLC-PK1 – non-cancerous cell line 99
 4.11.2.4.2. H69V – chemosensitive SCLC cell line 99
 4.11.2.4.3. H69AR - multidrug resistant SCLC cell line (MRP1 hyperexpressive) 99
 4.11.2.4.4. NCI-H69/LX4 - multidrug resistant SCLC cell line (P-gp hyperexpressive) 103
 4.11.2.4.5. Summary of the X. undulatum MTT results 103
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3. Sutherlandia frutescens crude aqueous extract</td>
<td>128</td>
</tr>
<tr>
<td>3.3.4. Xysmalobium undulatum crude aqueous extract</td>
<td>130</td>
</tr>
<tr>
<td>4. Conclusion</td>
<td>131</td>
</tr>
<tr>
<td>5. Acknowledgements</td>
<td>132</td>
</tr>
<tr>
<td>6. Conflict of interest</td>
<td>133</td>
</tr>
<tr>
<td>7. References</td>
<td>133</td>
</tr>
<tr>
<td>Chapter 6 Concluding remarks and future recommendations</td>
<td>136</td>
</tr>
<tr>
<td>6.1. Introduction</td>
<td>136</td>
</tr>
<tr>
<td>6.2. Chemical characterisation of the plant material</td>
<td>136</td>
</tr>
<tr>
<td>6.3. Preliminary anticancer efficacy screening</td>
<td>137</td>
</tr>
<tr>
<td>6.4. Advanced anticancer efficacy evaluation</td>
<td>137</td>
</tr>
<tr>
<td>6.4.1. Anticancer efficacy of Aloe vera gel material</td>
<td>138</td>
</tr>
<tr>
<td>6.4.2. Anticancer efficacy of Aloe vera precipitated polysaccharides</td>
<td>138</td>
</tr>
<tr>
<td>6.4.3. Anticancer efficacy of Sutherlandia frutescens crude aqueous extract</td>
<td>139</td>
</tr>
<tr>
<td>6.4.4. Anticancer efficacy of Xysmalobium undulatum crude aqueous extract</td>
<td>139</td>
</tr>
<tr>
<td>6.5. Final conclusion</td>
<td>140</td>
</tr>
<tr>
<td>6.6. Future recommendations</td>
<td>140</td>
</tr>
<tr>
<td>6.7. References</td>
<td>141</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>Appendix A: The author guidelines of Current Cancer Drug Targets</td>
<td>143</td>
</tr>
<tr>
<td>Appendix B: The author guidelines of Journal of Ethnopharmacology</td>
<td>161</td>
</tr>
<tr>
<td>Appendix C: Certificate of analysis of commercial plant material</td>
<td>177</td>
</tr>
<tr>
<td>Appendix D: Supplementary data for Chapter 4</td>
<td>179</td>
</tr>
<tr>
<td>Appendix E: Supplementary data for Chapter 5</td>
<td>183</td>
</tr>
<tr>
<td>Appendix F: Proof of participation in the First Conference of Biomedical and Natural Sciences and Therapeutics (CoBNeST)</td>
<td>187</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Pg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1: The experimental design included the preparation of crude aqueous extracts from the dried plant materials of S. frutescens and X. undulatum. The plant material and extracts were chemically profiled to confirm the presence of specific marker molecules. The preliminary anticancer screening, using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, was used to calculate a 50% viability reduction concentration (IC$_{50}$) for each crude extract in each cell line. These values were then used in the advanced anticancer efficacy evaluations.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Pg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1: The minimum structural features of the ABC transporter family include two nucleotide binding domains (NBD), responsible for ATP hydrolysis, and a permeation pathway consisting of two transmembrane domains (TMD) adapted from (Sharom, 2008; Tarapcsák et al., 2017).</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.2: A simplistic illustration of the three commonly described P-gp transporter associated efflux models adapted from (Dewanjee et al., 2017).</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.3: An illustration of the mechanistic impact of glutathione on MRP1 efflux, as adapted from (Kruh & Belinsky, 2003). Key to abbreviations: ET - etoposide; ES - estrone 3-sulfate; GSH - glutathione; GS-X - drug conjugated glutathione; GSSG - glutathione disulfide; GSTs - glutathione S-transferases; H$_2$O - water; H$_2$O$_2$ - hydrogen peroxide; VP - verapamil and X - drug.</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Pg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4.1: The H-NMR spectra of Aloe vera gel material indicating the presence of several marker molecules according to marker molecule peaks indentified by Jiao et al., 2010.</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.2: The H-NMR spectra of Aloe vera precipitated polysaccharides.</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.3: The LC-MS chromatogram of the Sutherlandia frutescens crude aqueous extract.</td>
<td>85</td>
</tr>
</tbody>
</table>
Figure 4.4: The UPLC chromatogram of the *Xysmalobium undulatum* crude aqueous extract.

Figure 4.5: Inhibition of cell viability relative to an untreated control, following treatment of the LLC-PK1 cell line with a concentration series of *A. vera* gel material for 96 h ($n = 3$; error bars = standard deviation). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.

Figure 4.6: Inhibition of cell viability relative to an untreated control, following treatment of the H69V cell line with a concentration series of *A. vera* gel material for 96 h ($n = 3$; error bars = standard deviation). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.

Figure 4.7: Inhibition of cell viability relative to an untreated control, following treatment of the H69AR cell line with a concentration series of *A. vera* gel material for 96 h ($n = 3$; error bars = standard deviation). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.

Figure 4.8: Inhibition of cell viability relative to an untreated control, following treatment of the NCI-H69/LX4 cell line with a concentration series of *A. vera* gel material for 96 h ($n = 3$; error bars = standard deviation). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.

Figure 4.9: Inhibition of cell viability relative to an untreated control, following treatment of the LLC-PK1 cell line with a concentration series of *A. vera* precipitated polysaccharides for 96 h ($n = 3$; error bars = standard deviation). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.

Figure 4.10: Inhibition of cell viability relative to an untreated control, following treatment of the H69V cell line with a concentration series of *A. vera* precipitated polysaccharides for 96 h ($n = 3$; error bars = standard deviation). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.

Figure 4.11: Inhibition of cell viability relative to an untreated control, following treatment of the H69AR cell line with a concentration series of *A. vera* precipitated polysaccharides for 96 h ($n = 3$; error bars = standard deviation). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.
Figure 4.12: Inhibition of cell viability relative to an untreated control, following treatment of the NCI-H69/LX4 cell line with a concentration series of *A. vera* precipitated polysaccharides for 96 h ($n = 3$; error bars = standard deviation). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.

Figure 4.13: Inhibition of cell viability relative to an untreated control, following treatment of the LLC-PK1 cell line with a concentration series of *S. frutescens* for 96 h ($n = 3$; Error bars = standard deviation). The positive control consisted of cells treated with TritonX (DEAD), while the untreated cells are indicated as UN.

Figure 4.14: Inhibition of cell viability relative to an untreated control, following treatment of the H69V cell line with a concentration series of *S. frutescens* for 96 h ($n = 3$; Error bars = standard deviation). The positive control consisted of cells treated with Triton X (DEAD), while the untreated cells are indicated as UN.

Figure 4.15: Inhibition of cell viability relative to an untreated control, following treatment of the H69AR cell line with a concentration series of *S. frutescens* for 96 h ($n = 3$; Error bars = standard deviation). The positive control consisted of cells being treated with Triton X (DEAD), while the untreated cells are indicated as UN.

Figure 4.16: Inhibition of cell viability relative to an untreated control, following treatment of the NCI-H69/LX4 cell line with a concentration series of *S. frutescens* for 96 hours ($n = 3$; Error bars = standard deviation). The positive control consisted of cells treated with Triton X (DEAD), while the untreated cells are indicated as UN.

Figure 4.17: Inhibition of cell viability relative to the untreated control, following treatment of the LLC-KP1 cell line with a concentration series of *X. undulatum* for 96 h ($n = 3$; Error bars = standard deviation). The positive control consisted of cells treated with Triton X (DEAD), while the untreated cells are indicated as UN.

Figure 4.18: Inhibition of cell viability relative to an untreated control, following treatment of the H69V cell line with a concentration series of *X. undulatum* for 96 h ($n = 3$; Error bars = standard deviation). The positive control consisted of cells treated with Triton X (DEAD), while the untreated cells are indicated as UN.
Figure 4.19: Inhibition of cell viability relative to an untreated control, following treatment of the H69AR cell line with a concentration series of of X. undulatum for 96 h ($n = 3$; Error bars = standard deviation). The positive control consisted of cells treated with Triton X (DEAD), while the untreated cells are indicated as UN.

Figure 4.20: Inhibition of cell viability relative to an untreated control, following treatment of the NCI-H69/LX4 cell line with a concentration series of of X. undulatum for 96 h ($n = 3$; Error bars = standard deviation). The positive control consisted of cells treated with Triton X (DEAD), while the untreated cells are indicated as UN.

Chapter 5

Figure 1: Chemical characterisation of the plant materials indicating the presence of marker molecules, with (A) A. vera gel material 1H NMR spectrum, (B) A. vera precipitated polysaccharide 1H NMR spectrum, (C) S. frutescens (LC-MS chromatogram) and (D) X. undulatum (UPLC chromatogram).

Figure 2: Normalised intracellular adenosine triphosphate (ATP) per protein content and extracellular adenylate kinase (AK) per protein content of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after treatment with A. vera gel material for 96 h (* indicates statistical significance between the samples and the untreated control ($p < 0.05$), and Δ indicates significant differences between the samples, $n = 6$; error bars = standard deviation (SD)).

Figure 3: Normalised intracellular adenosine triphosphate, extracellular adenylate kinase and protein levels of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after administration of A. vera precipitated polysaccharide concentrations. (* indicates statistical significance between the samples and the untreated control ($p < 0.05$), and Δ indicates significant differences between the samples, $n = 6$; error bars = standard deviation (SD)).

Figure 4: Normalised intracellular adenosine triphosphate, extracellular adenylate kinase and protein levels of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after administration of S. frutescens. (* indicates statistical significance between the samples and the untreated control ($p < 0.05$), and Δ indicates significant differences between the samples, $n = 6$; error bars = standard deviation (SD)).
Figure 5: Normalised intracellular adenosine triphosphate, extracellular adenylate kinase and protein levels of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after administration of *X. undulatum*. (* indicates statistical significance between the samples and the untreated control (\(p < 0.05\)), and \(\Delta\) indicates significant differences between the samples, \(n = 6\); error bars = standard deviation (SD)).

Appendices

Figure E.1: Normalised protein content of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after treatment with *A. vera* gel material for 96 h. (* indicates statistical significance between the samples and the untreated control (\(p < 0.05\)), \(n = 6\), error bars = standard deviation (SD)).

Figure E.2: Normalised protein content of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after administration of *A. vera* precipitated polysaccharide concentrations. (* indicates statistical significance between the samples and the untreated control (\(p < 0.05\)), and \(\Delta\) indicates significant differences between the samples, \(n = 6\); error bars = standard deviation (SD)).

Figure E.3: Normalised protein content of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after administration of *S. frutescens*. (* indicates statistical significance between the samples and the untreated control (\(p < 0.05\)), and \(\Delta\) indicates significant differences between the samples, \(n = 6\); error bars = standard deviation (SD)).

Figure E.4: Normalised protein content of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after administration of *X. undulatum*. (* indicates statistical significance between the samples and the untreated control (\(p < 0.05\)), and \(\Delta\) indicates significant differences between the samples, \(n = 6\); error bars = standard deviation (SD)).
List of Tables

Chapter 2

Table 2.1: Differences in the cellular characteristics of benign and malignant cells 8

Table 2.2: A summary of the chemical constituents inside *Aloe vera* leaf (Choi & Chung, 2003; Hamman, 2008) 19

Chapter 3

Table 1: *In vitro* efflux-based models used for anticancer drug screening 56

Table 2: *In vivo* efflux-based models used for anticancer drug screening 60

Chapter 4

Table 4.1: The chemical fingerprint of *A. vera* gel material by means of H-NMR spectroscopy as adapted from (Beneke *et al.*, 2012) 77

Table 4.2: Quantification of selected components following chemical fingerprinting of the precipitated polysaccharide fraction with H-MNR spectroscopy 78

Table 4.3: Summary of the statistically determined cell viability reduction, cancer selectivity and resistance ratios for the various plant extracts 106

Chapter 5

Table 1: The IC_{50} values determined for the selected medicinal plant materials after 96 h treatment in each selected cell line obtained from the MTT assay 123

Appendices

Table D.1: Estimated confluency of the H69V cell line over a period of 120 h, when seeded at different concentrations 179

Table D.2: Estimated confluency of the H69AR cell line over a period of 120 h when seeded at different concentrations 180
Table D.3: Estimated confluency of the LLC-PK1 cell line over a period of 120 h when seeded at different concentrations

Table D.4: The statistically determined cell viability reduction (IC$_{75}$), for the various plant extracts
List of Equations

<table>
<thead>
<tr>
<th>Equation 1:</th>
<th>[\text{Cell viability} % = \frac{(\Delta \text{Sample} - \Delta \text{Blank})}{(\Delta \text{Control} - \Delta \text{Blank})} \times 100]</th>
<th>83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 2:</td>
<td>[\text{Cell inhibition} % = 100 - \text{cell viability} %]</td>
<td>83</td>
</tr>
</tbody>
</table>
Lists of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Alpha</td>
</tr>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>B</td>
<td>Beta</td>
</tr>
<tr>
<td>Cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>∆</td>
<td>Delta or change</td>
</tr>
<tr>
<td>γ</td>
<td>Gamma</td>
</tr>
<tr>
<td>G</td>
<td>Gram</td>
</tr>
<tr>
<td>H</td>
<td>Hour</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>l/h</td>
<td>Litre per hour</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass-to-charge ratio</td>
</tr>
<tr>
<td>M</td>
<td>Meter</td>
</tr>
<tr>
<td>µg/mg</td>
<td>Microgram per milligram</td>
</tr>
<tr>
<td>µg/ml</td>
<td>Microgram per millilitre</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µl/well</td>
<td>Microlitre per well</td>
</tr>
<tr>
<td>Mm</td>
<td>Micrometre</td>
</tr>
<tr>
<td>Mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>mg/ml</td>
<td>Milligram per millilitre</td>
</tr>
<tr>
<td>Ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>ml/min</td>
<td>Millilitre per minute</td>
</tr>
<tr>
<td>Mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>Min</td>
<td>Minute</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>nM</td>
<td>Nano Molar</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>PDA</td>
<td>Photodiode Array</td>
</tr>
<tr>
<td>G</td>
<td>Relative centrifugal force</td>
</tr>
<tr>
<td>Sec</td>
<td>Second</td>
</tr>
<tr>
<td>mm²</td>
<td>Square millimetre</td>
</tr>
<tr>
<td>U/ml</td>
<td>Units per millilitre</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>A549</td>
<td>Human non-small cell lung carcinoma</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP-binding cassette</td>
</tr>
<tr>
<td>ABCA-G</td>
<td>Subfamilies of ABC</td>
</tr>
<tr>
<td>ABCB1</td>
<td>P-glycoprotein</td>
</tr>
<tr>
<td>ABCC1</td>
<td>Multidrug resistance-associated protein 1</td>
</tr>
<tr>
<td>ABCG2</td>
<td>Breast cancer resistance protein</td>
</tr>
<tr>
<td>abcg2</td>
<td>Breast cancer resistance protein (gene)</td>
</tr>
<tr>
<td>ABK</td>
<td>Adenosien trifosfaat (ATP)-bindingskasset (ABK) ei fluks pompe</td>
</tr>
<tr>
<td>ADME</td>
<td>Absorption, distribution, metabolism and excretion</td>
</tr>
<tr>
<td>AGS</td>
<td>Human Caucasian gastric adenocarcinoma</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired immune deficiency syndrome</td>
</tr>
<tr>
<td>AK</td>
<td>Adenylate kinase</td>
</tr>
<tr>
<td>ATCC</td>
<td>The American Tissue Culture Collection</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>ATPase</td>
<td>Adenosine triphosphatase</td>
</tr>
<tr>
<td>B143B</td>
<td>Osteosarcoma cell line</td>
</tr>
<tr>
<td>Balb/c</td>
<td>Nude mice</td>
</tr>
<tr>
<td>BCRP</td>
<td>Breast cancer resistance protein</td>
</tr>
<tr>
<td>BKRP</td>
<td>Bors kanker weerstandbiedendheidsproïen</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>Caco-2</td>
<td>Human Caucasian colon adenocarcinoma</td>
</tr>
<tr>
<td>CBT-01®</td>
<td>Natural alkaloid (tetrandrine)</td>
</tr>
<tr>
<td>CCRF-CEM</td>
<td>Leukaemia cell line</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary cell</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>COLO 320 DM</td>
<td>Human colon cancer</td>
</tr>
<tr>
<td>CS</td>
<td>Collateral sensitivity</td>
</tr>
<tr>
<td>D</td>
<td>Dulbecco's Modified Eagle's medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
</tbody>
</table>
DNA Deoxyribonucleic acid
DOX Doxorubicin hydrochloride
E Ethylenediaminetetraacetic acid
ECACC The European Collection of Authenticated Cell Cultures
ECM Extracellular matrix
EDTA Ethylenediaminetetraacetic acid
e.g. For example
ES Estrone 3-sulfate
ET Etoposide
F Foetal bovine serum
FD18 Flavonoid dimer
FVB Albino inbred mouse strain susceptible to Friend leukemia virus B
G ÿ-aminobutyric acid
GSH Glutathione
GSSG Glutathione disulfide
GSTs Glutathione S-transferases
GS-X Drug conjugated glutathione
H Hydrogen
H2O Hydrogen oxide (water)
H2O2 Hydrogen peroxide
H69 Classic human SCLC cell line
H69AR Hyperexpressed MRP1 SCLC cell line
H69CIS200 Cisplatin deviant cell lines
H69/LX4 Hyperexpressed P-gp SCLC cell line
H69OX400 Oxaliplatin deviant cell lines
H69V Chemosensitive SCLC cell line
H82 Variant SCLC cell lines
HEK293 Human embryonic kidney cells
Hep3B Human liver cancer cell line
HepG2 Human liver cancer cell line
HepG2/C3A Hepatocellular carcinoma cell line
HIV Human Immunodeficiency Virus
HL60 Human promyelocyte cells
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM30181</td>
<td>Derivate of known P-gp inhibitor</td>
</tr>
<tr>
<td>H-NMR</td>
<td>Nuclear magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>I</td>
<td>Cell viability</td>
</tr>
<tr>
<td>IC</td>
<td>Concentrations reducing cell viability by 50%, relative to an untreated control</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>Concentrations reducing cell viability by 75%, relative to an untreated control</td>
</tr>
<tr>
<td>K</td>
<td>Potassium ion</td>
</tr>
<tr>
<td>K+</td>
<td>Potassium ion</td>
</tr>
<tr>
<td>KSLK</td>
<td>Klein sel longkanker</td>
</tr>
<tr>
<td>L</td>
<td>Human breast cancer cell line</td>
</tr>
<tr>
<td>LCC6MDR</td>
<td>Human breast cancer cell line</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid chromatography-mass spectrometry</td>
</tr>
<tr>
<td>LLC-PK1</td>
<td>Porcine kidney non-tumorigenic cell line/ nie-kanker vark nier sellyn</td>
</tr>
<tr>
<td>LS174T</td>
<td>Human colon cancer cell line</td>
</tr>
<tr>
<td>M</td>
<td>Breast cancer cell line</td>
</tr>
<tr>
<td>MCF-7</td>
<td>Breast cancer cell line</td>
</tr>
<tr>
<td>MCF-7/ADR</td>
<td>Drug resistance breast cancer cell line</td>
</tr>
<tr>
<td>MCF-12A</td>
<td>Non-tumorigenic breast cell line</td>
</tr>
<tr>
<td>MDA435/LCC6</td>
<td>Hyperexpressed P-g cancer cell line</td>
</tr>
<tr>
<td>MDA-MB-468</td>
<td>Human mammary adenocarcinoma</td>
</tr>
<tr>
<td>MDR</td>
<td>Multidrug resistant/ Multidrug resistance</td>
</tr>
<tr>
<td>miRNA</td>
<td>Micro ribonucleic acid</td>
</tr>
<tr>
<td>mrp</td>
<td>Multidrug resistance protein (gene)</td>
</tr>
<tr>
<td>MRP1</td>
<td>Multidrug resistance-associated protein 1/ veelvoudige geneesmiddel weerstandbiedendheid-geassosieerde proteïen 1</td>
</tr>
<tr>
<td>MRP2</td>
<td>Multidrug resistance-associated protein 2</td>
</tr>
<tr>
<td>MTT</td>
<td>3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyl tetrazolium bromide/3-[4,5-dimetieltiasol-2-iel]-2,5-difeniel tetrazolium bromied</td>
</tr>
<tr>
<td>N</td>
<td>Sodium ion</td>
</tr>
<tr>
<td>Na+</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NBD</td>
<td>Nucleotide binding domains</td>
</tr>
<tr>
<td>NCI</td>
<td>National cancer institute</td>
</tr>
<tr>
<td>NCI-H187</td>
<td>Variant SCLC cell lines</td>
</tr>
<tr>
<td>NCI-N417</td>
<td>Variant SCLC cell lines</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>NCI-H526</td>
<td>Variant SCLC cell lines</td>
</tr>
<tr>
<td>NCI-H69</td>
<td>Classic human SCLC cell line</td>
</tr>
<tr>
<td>NCI-H69AR</td>
<td>Resistant SCLC cell lines</td>
</tr>
<tr>
<td>NCI-H69/LX4</td>
<td>Hyperexpressed P-gp suspension SCLC cell line</td>
</tr>
<tr>
<td>NCI-H69/LX10</td>
<td>Hyperexpressed P-gp adherent SCLC cell line</td>
</tr>
<tr>
<td>NEAA</td>
<td>Non-essential amino acids</td>
</tr>
<tr>
<td>NSCLC</td>
<td>Non-small cell lung cancer</td>
</tr>
<tr>
<td>O</td>
<td>Hydroxyl group</td>
</tr>
<tr>
<td>-OH</td>
<td>Hydroxyl group</td>
</tr>
<tr>
<td>Pen/Strep</td>
<td>Penicillin/streptomycin</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline</td>
</tr>
<tr>
<td>Pg</td>
<td>Page</td>
</tr>
<tr>
<td>P-gp</td>
<td>P-glycoprotein/ P-glikoproteïen</td>
</tr>
<tr>
<td>Pi/ADP</td>
<td>Inorganic phosphate adenosine 5’-diphosphate complex</td>
</tr>
<tr>
<td>PX-478</td>
<td>Small-molecule inhibitor of hypoxia-inducible factor 1α</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute 1640</td>
</tr>
<tr>
<td>S</td>
<td>Small cell lung cancer</td>
</tr>
<tr>
<td>SFFW</td>
<td>Sutherlandia frutescens</td>
</tr>
<tr>
<td>siRNA</td>
<td>Small interfering RNA</td>
</tr>
<tr>
<td>SU1</td>
<td>Cycloartane-type triterpene glycoside</td>
</tr>
<tr>
<td>T</td>
<td>Transmembrane domains</td>
</tr>
<tr>
<td>TNM</td>
<td>Primary tumour (T), the regional lymph nodes (N) and distant metastasis (M)</td>
</tr>
<tr>
<td>U</td>
<td>United kingdom</td>
</tr>
<tr>
<td>UN</td>
<td>Untreated</td>
</tr>
<tr>
<td>UPLC</td>
<td>Ultra-performance liquid chromatography</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
V
VP Verapamil
VGW Veelvoudige geneesmiddel weerstandbiedendheid
W
WHO World Health Organization
X
X Drug
XU174 *Xysmalobium undulatum*
Chapter 1
Introduction

1.1. Background

An astonishing one in every six reported deaths globally are caused by cancer (WHO, 2018). Lung cancer is one of the most diagnosed cancers in both male and female patients, which highlights its high prevalence in the population (Ahmed et al., 2017). Small cell lung cancer (SCLC) is a type of lung cancer defined by a rapid proliferation rate and early metastasis (Tartarone et al., 2017). The treatment approaches for SCLC have not changed in the last three decades, which involve platinum combined chemotherapy, prophylactic cranial irradiation of brain metastases or hyperfractionation (Paumier & Le Péchoux, 2010; Kaur et al., 2016). Tumour cells can have primary resistance to chemotherapy prior to drug exposure. On the other hand, acquired resistance can also develop after exposure to a chemotherapeutic drug (Wu et al., 2014). Cancer cells demonstrating drug resistance towards structurally and functionally unrelated compounds are described as multidrug resistant (Saraswathy & Gong, 2013). Efflux transporter mediated resistance is a well-known mechanism of multidrug resistance (MDR), which decreases the intracellular drug concentration in the cancer cells and leads to a reduction of the therapeutic effect (Triller et al., 2006).

Transporter mediated resistance in cancer tissue is often associated with a group of adenosine triphosphate (ATP)-binding cassette (ABC) transporters, acting as large membrane proteins responsible for transporting different substrates across the cell membrane (Fletcher et al., 2016). These transporters include P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) (Ozben, 2006). Several known anticancer drugs (e.g. doxorubicin and vincristine) are substrates for some of the ABC transporters (Cole, 2014). Inhibition of these efflux transporters to reduce anticancer drug efflux is a possible mechanism to combat cancer MDR (Amaral et al., 2016). Another avenue being explored to combat MDR in cancer is the use of medicinal plants, which consist of abundant phytochemical constituents that can act by different mechanisms in an additive or synergistic way (Mbaveng et al., 2018).

A survey summarising indigenous medicinal knowledge in the southern Karoo region of South Africa identified three medicinal plants traditionally used in cancer treatment, namely *Sutherlandia microphylla*, *Withania somnifera* and *Dicoma capensis* (Van Wyk et al., 2008). Another traditionally used anticancer plant, named *Sutherlandia frutescens* (cancer bush), is found in some of the Cape provinces and the KwaZulu-Natal region (Aboyade et al., 2014). Several in vitro studies have established the anticancer efficacy of *S. frutescens* against prostate, breast and cervical cancer (Chinkwo, 2005; Vorster et al., 2012; Lu et al., 2015). Furthermore, several phytochemicals found
in *Aloe vera* and *Xysmalobium undulatum* are also purported to have anticancer efficacy (Choi & Chung, 2003; Krishna *et al.*, 2015). It is important to keep in mind that several allopathic chemotherapeutic drugs, such as vinca alkaloids, paclitaxel and camptothecin, initially originated from plants. Therefore, natural flora are still one of the cornerstone resources in finding alternative cancer treatments (Efferth *et al.*, 2017).

1.2. Research problem

The occurrence of multidrug resistant cancer due to the hyperexpression of several ABC transporter proteins causes a reduced chemotherapeutic treatment outcome. Thus, there is an urgent need to explore ways to combat MDR. Worldwide, and especially in Southern Africa, various medicinal plants are commonly used as alternative and more cost-effective anticancer treatment options. Several traditional healing practices include the use of medicinal plants for their anticancer activity, therefore, it is necessary to scientifically investigate their anticancer potential using appropriate preclinical screening models and assays.

1.3. Aim and objectives

The aim of this study is to evaluate the possible anticancer efficacy of three selected medicinal plants (including *Aloe vera*, *Sutherlandia frutescens* and *Xysmalobium undulatum*) using a panel of chemosensitive and chemoresistant SCLC cell models. A non-tumorigenic cell line was also included to assess the possible cytotoxicity of the selected plants.

To accomplish the aim, the following objectives were set:

- Preparation and chemical fingerprinting of crude aqueous extracts from dried *S. frutescens* and *X. undulatum* plant materials.
- Chemical fingerprinting of *Aloe vera* gel material and precipitated polysaccharide materials.
- Culturing human SCLC cell lines consisting of H69V (chemosensitive), H69AR (MRP1 hyperexpressive) and NCI-H69/LX4 (P-gp hyperexpressive); as well as a non-tumorigenic porcine kidney cell line (LLC-PK1).
- Preliminary screening of the selected medicinal plant materials for anticancer potential by means of a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay on the selected SCLC and LLC-PK1 cell models to estimate inhibitory concentration (IC$_{50}$) values.
- Advanced evaluation of the anticancer potential by determining the influence of selected concentrations of the plant materials on extracellular adenylate kinase (AK) and intracellular ATP levels in the SCLC and LLC-PK1 cell models.
1.4. Structure of dissertation

This dissertation consists of an introductory chapter (Chapter 1), which gives a condensed background of the challenges regarding cancer treatment, and a summary of the research problem, aims and objectives, the study outline, publication status and collaborations. Chapter 2 presents a literature review as background for the current study. Chapter 3 consists of a review manuscript, discussing the different models currently available to screen treatment for efflux-based MDR in cancer. This manuscript has been submitted for publication. The methods and results of the MTT assays are discussed in Chapter 4, while Chapter 5 consists of a research article describing the advanced screening of the anticancer efficacy of the three plants on the SCLC and LLC-PK1 cells. This manuscript has been prepared for submission for publication. Finally, the concluding remarks and future recommendations are stated in Chapter 6. Figure 1.1 illustrates the experimental design for the study.

Figure 1.1: The experimental design included the preparation of crude aqueous extracts from the dried plant materials of *S. frutescens* and *X. undulatum*. The plant material and extracts were chemically profiled to confirm the presence of specific marker molecules. The preliminary anticancer screening, using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, was used to calculate a 50% viability reduction concentration (IC$_{50}$) for each crude extract in each cell line. These values were then used in the advanced anticancer efficacy evaluations.
1.5. Publication status of research

Supplementary to the literature overview (Chapter 2), a review article was prepared in which models contributing to efflux-based cancer treatment screening were presented. This manuscript was included in Chapter 3, and has been submitted to the journal *Current Cancer Drug Targets* for publication. The first three authors contributed equally to the content of the manuscript.

The results of the advanced anticancer efficacy screening of the selected plant materials on the different SCLC cell lines were also prepared as a research article. This manuscript was included in Chapter 5, and is to be submitted for publication to the *Journal of Ethnopharmacology*. The contribution of the authors are stated in the manuscript.

The results from the current study were also presented at the First Conference of Biomedical and Natural Sciences and Therapeutics (CoBNeST) in Stellenbosch, 7-10 October 2018 (See Appendix F).

1.6. Collaboration

The current study formed part of a larger study, and the validation of the SCLC models used formed part of another MSc study (Rossouw, 2018). The current study, therefore, did not include validation of the suitability of the various SCLC cell lines as screening models, but only used them to evaluate the anticancer potential of the three selected medicinal plants.

1.7. References

2.1. Introduction

Chemotherapy is considered the leading practice in cancer management (Zhang et al., 2017). Unfortunately, multidrug resistance (MDR) can be acquired when chemotherapy treatment is administered continuously or due to primarily intrinsic resistance before treatment (Lopes-Rodrigues et al., 2017). Contributing to MDR is the adenosine triphosphate (ATP)-binding cassette (ABC) transporter protein family consisting of 48 known transporters (Köhler et al., 2016). The hyperexpressed MDR proteins in cancer cells are located on the cytoplasmic cell surface and can actively transport anticancer drugs or their metabolites to the extracellular environment, affecting the therapeutic outcome of cancer management (Wu et al., 2014; Błauż & Rychlik, 2017). Thus, the ABC transporter family is a possible target for inhibition in an attempt to enhance the response to chemotherapy and to reduce MDR facilitated by anticancer drug efflux. Currently, ethno-medical approaches in treating a wide variety of health conditions are increasing due to its low cost, decreased side effects and traditional beliefs regarding health benefits (Oga et al., 2016). Therefore, evaluating the anticancer properties of selected medicinal plants which are traditionally used to treat cancer may result in an innovative therapeutic approach towards MDR.

2.2. Cancer

2.2.1. Introduction

The World Health Organization (WHO, 2018) reported cancer as the second major cause of death in 2018 based on 9.6 million cancer associated deaths and an estimated mortality rate of 1:6 worldwide. In the United States (US), 14.8 per 100 000 of the US population died due to colorectal cancer in the period from 2010 - 2014 (Siegel et al., 2017). In South Africa, the Eastern Cape Province population-based cancer registry documented a high prevalence of oesophageal cancer in men between 1998 and 2012 (Somdyala et al., 2015). Metastasis to lung tissue is reported to occur in 25% of patients living with oesophageal cancer (Tu et al., 2014). Hence, cancer is classified as a fatal disease in the modern world and is defined by irregular cell development and uncontrollable cell growth not restricted to one part of the human body (Singh, 2016; Bhatta, 2017). The major difference in cellular behaviour between benign (non-cancerous) cells and malignant (cancerous) cells is listed in Table 2.1. Cancer cells have the ability to alter their metabolism to sustain cell proliferation through the production of biomolecules and energy (Pattni et al., 2017). Rapidly proliferating cancer cells are known to have an increased glucose consumption rate, recognised as
the Warburg effect, compared to the normal cellular glucose consumption in benign tissues (DeBerardinis et al., 2008). Furthermore, cancer cells are capable of metastasis which is known as the ability of cancer cells to invade neighbouring or distant organs (Bhatta, 2017).

The invasion process occurs when the cancer cells develop a migration path by degrading their extracellular matrix (ECM) environment (Paul et al., 2017). The ECM of cancer cells consist of a network of macromolecules having biomechanical, physical and biochemical features (Lu et al., 2012). Irregular functionality of the ECM, due to proteolytic degradation, has the ability to enhance cancer progression (Lu et al., 2012; Seguin et al., 2015).

Table 2.1: Differences in the cellular characteristics of benign and malignant cells

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Benign cells</th>
<th>Malignant cells</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deoxyribonucleic acid (DNA) composition</td>
<td>Normal DNA methylation</td>
<td>Abnormal DNA methylation</td>
<td>(Siebenkäs et al., 2017; Wang et al., 2017)</td>
</tr>
<tr>
<td>Glucose metabolism</td>
<td>Decreased glucose uptake compared to cancer cells</td>
<td>Conform to the Warburg effect</td>
<td>(Zhang et al., 2014; Devic, 2016)</td>
</tr>
<tr>
<td>Cell replication</td>
<td>Replication is terminated through cell contact inhibition</td>
<td>Fast replication which is uninhibited through cell-to-cell contact</td>
<td>(Kalyanaraman, 2017)</td>
</tr>
<tr>
<td>Intracellular nutrient concentrations</td>
<td>Increased</td>
<td>Decreased by adapted metabolism</td>
<td>(Birsoy et al., 2014)</td>
</tr>
<tr>
<td>ATP production</td>
<td>Lower rate of ATP production</td>
<td>Abundant ATP production</td>
<td>(DeBerardinis et al., 2008)</td>
</tr>
<tr>
<td>Blood supply</td>
<td>Organised blood vessel orientation</td>
<td>Hypoxia occurs due to disorganised blood vessel orientation</td>
<td>(Hsu & Sabatini, 2008)</td>
</tr>
</tbody>
</table>

Cancer is divided into sarcomas, carcinomas and lymphomas or leukaemia, where carcinomas (malignancies of epithelial cells) are purported to show a higher prevalence in humans (Sengupta et al., 2017). Therefore, in this study small cell lung cancer (SCLC) was used as a carcinoma model for the evaluation of the anticancer properties of selected medicinal plants.

2.2.2. Small cell lung cancer

Lung cancer is considered one of the leading causes of cancer deaths globally, accounting for an estimated 1.76 million deaths in 2018, according to the World Health Organization (WHO, 2018). Histologically, lung cancer can be divided into non-small cell (NSCLC) and small cell (SCLC) lung cancer (Hodkinson et al., 2007). The clinical development of SCLC, distinguishing this lung cancer from NSCLC, is a rapid doubling time and a higher incidence of metastases (Govindan et al., 2006). The distinct SCLC entity will be the main focus for this study, and is responsible for approximately 13% of reported lung cancers (Ahmed et al., 2017). In the absence of SCLC therapy, the median
survival period from diagnosis is approximately 5 weeks to 3 months, however, the treatment of SCLC is claimed to extend the survival median to 8 months (Buttery et al., 2004; Hodkinson et al., 2007). Although SCLC is sensitive to first line platinum combined therapy, recurrence of SCLC still occurs and less than 5% of patients with recurrent malignancy live longer than 5 years (Gomez-Casal et al., 2016; Kaur et al., 2016). The destructive clinical progression of SCLC arises from the widespread metastasis, enhanced cell proliferation, poor prognosis and recurrence (Tartarone et al., 2017). Lung cancer is categorised according to the TNM classification which defines the primary tumour (T), the regional lymph nodes (N) and distant metastasis (M), and can help to determine the therapeutic approach to be followed (Goldstraw et al., 2007).

2.2.3. Current treatment options for small cell lung cancer

The treatment objectives for SCLC malignancy are based on curing SCLC or extending the survival period through several combinations of anticancer drugs (Wells et al., 2012). The commonly prescribed treatments for SCLC include prophylactic cranial irradiation, platinum combined therapy and hyperfractionated thoracic radiation (Kaur et al., 2016). Multimodality therapy of etoposide with carboplatin or cisplatinum (also known as cisplatin) extended the survival period in clinical trials (phase III) (Parsons et al., 2014). A new approach involving the combination of standard platinum treatment with pravastatin showed no value in treating SCLC (Seckl et al., 2017). Topotecan is the preferred second-line treatment option; however, amrubicin can also be considered (Rossi et al., 2016). During stage one SCLC, the recommended treatment approach for a T1-2, N0, M0 classified tumour (tumour size between 3 – 7 cm, no metastasis detected in the lymph nodes and no distant metastasis), is surgery with adjuvant cancer treatment afterwards (Jazieh, 2012; Ricciuti et al., 2017). Some SCLC tumours are intrinsically drug resistant and will respond poorly to cytotoxic drugs, whereas other SCLC tumours can acquire resistance during the prolonged treatment period (Triller et al., 2006).

The anticancer agent etoposide induces cell death by damaging the cellular DNA through modifying DNA topoisomerase IIα. However, one of the mechanisms known to induce resistance against etoposide is the occurrence of mutations in DNA topoisomerase IIα (Kreisholt et al., 1998). Furthermore, the cellular communication between the SCLC cells and the ECM (known as integrin-mediated cell-ECM binding) can also contribute to the occurrence of drug resistance (Buttery et al., 2004). Integrins are present on the cell surface and can be defined as heterodimeric glycoproteins responsible for cell survival, migration, cellular adhesion and differentiation (Hodkinson et al., 2007; McHugh et al., 2012). The attachment of SCLC cells to parts of the ECM, namely collagen IV, laminin and fibronectin by means of β1 integrins, can inhibit the therapeutic response to cisplatinum, etoposide and adriamycin (Rintoul & Sethi, 2002). In SCLC cells, β1 integrin activation subsequently activates phosphoinositide-3-OH kinase, which results in intercepting etoposide-induced caspase-3 activation and cellular apoptosis (Hodkinson et al., 2007).
Etoposide treatment options are limited in MDR caused by the hyperexpression of P-glycoprotein (P-gp) and multidrug resistant protein (MRP) (Keilholz et al., 2017). Hyperexpressed P-gp and MRP1 in SCLC cells were shown to decrease the response rate of anticancer therapy and contribute to cross-resistance between colchicines, taxanes, epipodophyllotoxins, antracyclines and vinka alcaloids, even though they differ functionally and structurally from one another (Triller et al., 2006). Cellular transport of cisplatin can change by means of reduced uptake and/or an increased drug efflux, which can influence the intracellular accumulation and result in cisplatin resistance (Köberle et al., 2010). Efflux transporters also influence drug delivery to internal organelles, including the mitochondria and nuclei, causing anticancer drugs to not reach their intracellular target e.g. deoxyribonucleic acid (DNA) (Yuan et al., 2015). The major cause of treatment failure in SCLC is the occurrence of MDR. Thus, the urgent need for new treatment strategies against MDR is crucial (Rossi et al., 2016).

2.2.4. Models to investigate small cell lung cancer and related multidrug resistance

The models generally used to study drug resistance in cancer can be broadly divided into in vitro (conventional and advanced cell culture models) and in vivo (e.g. xenografts), as described extensively in Chapter 3.

The classic H69 human SCLC conventional cell line has been used widely to develop numerous sub-clone cell models for the evaluation of MDR SCLC. These models include, but are not restricted to, the H69V (drug sensitive), H69AR (hyperexpressing MRP1), NCI-H69/LX4 (hyperexpressing P-gp) and NCI-H69/LX10 (hyperexpressing P-gp) cell lines (Wishart et al., 1990; Sadava & Winesburg, 2005; Sandvold et al., 2010; Stefan et al., 2017). The technique used to develop the H69AR MDR variant cell line included exposing the H69 model to increased doxorubicin concentrations for 14 months (Mirski et al., 1987). These cell culture models can further be used to develop an in vivo SCLC model, as done by Moreira et al. (2001), where the subcutaneous inoculation of the H69 cell line resulted in a Balb/c nude mice SCLC xenograft model. The application of the classic and variant cell models are commonly used in in vitro cancer studies.

The original H69 human SCLC cell line was used in the evaluation of the progression of platinum drug (oxaliplatin and cisplatin) resistance, during which two further cell lines (H69OX400 and H69CIS200) were developed after treatment with the studied drugs (Stordal et al., 2006). The elucidation of the molecular MDR mechanism in SCLC was possible through evaluation of 856 micro ribonucleic acid (miRNA) expression in NCI-H69AR and NCI-H69 cell lines. This demonstrated a specific miRNA correlation with SCLC drug resistance (Guo et al., 2010). The H69/LX4 model, exposed to doxorubicin for 6 - 9 months, was used in a drug sensitisation study and demonstrated the interaction between nanoparticle formulations and P-gp receptors (Puranik et al., 2016). Two SCLC cell lines (H82 and H69) were exposed to
epirubicin, resulting in two extended multidrug resistant cell lines, used to evaluate the potential of paclitaxel to treat refractory SCLC (Su et al., 1998). Additional advanced cancer models entail the injection of SCLC (NCI-H187 and NCI-N417) cells into organs (including the lungs of an animal model), to investigate the effect of PX-478 on lung tumours (Jacob et al., 2010). An NCI-H526 (SCLC) xenograft model was also established inside a chick chorioallantoic membrane for the evaluation of drug resistance (Chin et al., 2007).

2.2.5. Drug resistance in cancer

The occurrence of tumour metastasis and drug resistance are responsible for a decreased therapeutic effect and a high prevalence of cancer mortality (Yang et al., 2003). Drug resistance is branched into intrinsic resistance, occurring long before the treatment with chemotherapy, and acquired resistance which develop during the course of the cancer treatment (Majidinia & Yousefi, 2016). Cancer cells are capable of becoming concurrently resistant to a varied range of structurally unrelated cancer drugs and this phenomenon is known as MDR (Gottesman et al., 2002; Singh et al., 2017). Chemoresistance in cancer cells can develop by means of decreased cellular apoptosis, drug target modification, adaptive DNA repair mechanisms and the occurrence of transporter-associated drug efflux (Cree & Charlton, 2017). However, the hyperexpression of efflux transporters such as the ABC family in cancer cells is claimed to be a major barrier contributing to drug resistance (Zhang et al., 2017).

The following studies targeted transporter-associated drug efflux, to alter drug resistance by increasing the intracellular drug concentration. The inhibition of apoptosis and MDR was shown to enhance the anticancer activity of doxorubicin through a liposomal drug delivery system (Pakunlu et al., 2003). Verapamil, a known calcium channel blocker, increased the intracellular accumulation of doxorubicin through possible efflux inhibition (Harker et al., 1986). The first generation MDR modulator, Cyclosporin A, reversed MDR although this reversed effect was detected at a high dosage and subsequently led to an immunosuppressant effect (Krishna & Mayer, 2000). Multidrug resistance was bridged in murine colon carcinoma cells during the simultaneous administration of doxorubicin and a P-gp inhibitor as a combined polymeric conjugate (Sivak et al., 2017). Several phytochemicals in plants which inhibit the ABC transporters can increase the cytotoxic effect of cancer drugs when used in combination therapy (Molnar et al., 2010). Natural alkaloids were reviewed in demonstrating their MDR reversal activity, of which tetrandrine/CBT-01® was found to be tested in clinical trials for inhibition of P-gp in cancer (Joshi et al., 2017).
2.3. Multidrug resistance

2.3.1. Introduction

Cells exposed to a single anticancer drug can develop a broad cellular resistance towards other structurally, mechanistically and functionally unrelated drugs, which is known as multidrug resistance (MDR) and may further be associated with ATP dependent drug efflux (Ford & Hait, 1990; Yu et al., 2016b). In humans, there are 48 distinctive ABC efflux transporters that are subdivided into seven families (ABCA-G) according to different structural features and size (Taylor et al., 2017). The basic fundamental components of the ABC transporter family are illustrated in Figure 2.1. The ABC transporter family effluxes substrates actively from the intracellular to the extracellular environment by using the energy produced during the hydrolysis of ATP to adenosine diphosphate (ADP), resulting in the detoxification of the cancer cell (Lopes-Rodrigues et al., 2017). The following members of the ABC transporter family namely P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and multidrug resistance-associated protein 1 (MRP1, ABCC1) are associated with MDR and can display hyperexpression in MDR carcinomas (Köhler et al., 2016).

![Figure 2.1: The minimum structural features of the ABC transporter family include two nucleotide binding domains (NBD), responsible for ATP hydrolysis, and a permeation pathway consisting of two transmembrane domains (TMD) (adapted from Sharom, 2008 and Tarapcsák et al., 2017).](image)

2.3.2. P-glycoprotein (P-gp)

The identification of P-gp was primarily done in multidrug resistant Chinese hamster ovary cells (Ling & Thompson, 1974). This 170 kDa protein structure are made up of 1 280 amino acids and two homologous halves, both consisting of a transmembrane domain (TMD), six α–helix segments and an intracellular nucleotide binding domain (NBD) (Loo & Clarke, 2005; Pluchino et al., 2016). The P-gp transporter protein depends on the basal ATPase activity (which can be stimulated through
various substrates) and the hydrolysis of ATP as the efflux power supply (Sharom, 2014). Furthermore, the attachment of the two ATP molecules at the NBDs is the driving force behind the conformational alterations of the TMDs and changes the whole transporter structure from inward to an outward facing, which results in the opening of the drug-binding pocket (Ward et al., 2013; Wessler et al., 2013). The NBDs (also known as ATP-binding domains) transfer the generated energy to actively efflux the substrates across the lipid bilayers (Dewanjee et al., 2017). The closing of the drug-binding pocket arises after the hydrolysis of the ATP molecule to inorganic phosphate adenosine 5'-diphosphate complex (Pi/ADP) (Ward et al., 2013). The P-gp protein is responsible for maintaining physiological absorption, distribution, metabolism and excretion (ADME) processes in the body, yet, in cancer cells P-gp decreases drug accumulation and reduce the therapeutic effect (Joshi et al., 2014).

Figure 2.2: A simplistic illustration of the three commonly described P-gp transporter associated efflux models adapted from (Dewanjee et al., 2017).

The three different models as illustrated in Figure 2.2, explain the efflux mechanism of P-gp and include: the pore model, flippase model and the hydrophobic vacuum cleaner (Ferreira et al., 2015; Dewanjee et al., 2017). The classic pore pump mechanism states that the P-gp efflux pathway is hydrophilic and the ejection of the substrate through this pore keeps the substrate from interacting with the hydrophobic lipid part of the membrane (Sharom, 2008). The ability of the P-gp protein to interrupt the substrate permeation through the lipid bilayer, by flipping the substrate to the outer leaflet of the lipid bilayer or instantaneously to the extracellular environment, are taken into account in the flippase model (Hennessy & Spiers, 2007). The uptake of the substrate from the lipid bilayer, rather than from the aqueous cytosol, is described by the hydrophobic vacuum cleaner model (Romsicki & Sharom, 2001).

Structurally, P-gp substrates are commonly grouped as organic molecules consisting of aromatic substitutes with a size parameter between 200 and 1 900 Da (Schinkel & Jonker, 2003). The P-gp
efflux pump is claimed to increase resistance to the following substrates used in cancer management: paclitaxel, anthracyclines, vinca alkaloids, epipodophyllotoxins and camptothecins (Leslie et al., 2005). The clinical use of some P-gp inhibitors such as verapamil (a MDR modulator) are restricted due to several adverse effects, of which verapamil can result in in vivo cardio-toxicity at high concentrations (Di Pietro et al., 2002).

2.3.3. Multidrug resistance-associated protein 1 (MRP1)

The C-subfamily of the ABC superfamily consists of nine human multidrug resistance-associated protein (MRP) transporters, of which the first MRP1 transporter with a crystal structure of 22 Å was established during the exposure of the NCI-H69AR (SCLC cell line) to doxorubicin (Cole et al., 1992; Zhang et al., 2015). The gene encoding for the MRP1 190 kDa glycoprotein pump (identified by using HL60 cells resistant to adriamycin) is expressed as mrp (multidrug resistance protein) (Krishnamachary & Center, 1993). The MRP1 efflux pump positioned on the basolateral layer of the cell membrane consists of twelve TMDs, two ATP binding sites and another five TMDs located at the end of the amino terminal (Wind & Holen, 2011). Structural conformation changes of the protein occur through ATP binding and hydrolysis, yet, MRP1 can also efflux anticancer drugs such as vincristine by means of glutathione (GSH) (Cole, 2014).

The influence of glutathione in MRP1 efflux is illustrated in Figure 2.3. The conjugation of GSH with the drug is catalysed by means of the glutathione S-transferases (GSTs) enzyme (Figure 2.3a), resulting in the efflux of the conjugated product (Morrow et al., 1998). The transport of etoposide as a GSH S-conjugate is not known and findings rather indicate a co-transportation of etoposide with GSH (Figure 2.3b) (Rappa et al., 1997). The efflux of estrone 3-sulfate, an MRP1 substrate, was found to be improved in the presence of GSH as indicated in Figure 2.3c (Qian et al., 2001). MRP1 transport requires GSH, although, a decreased intracellular GSH accumulation was detected in the presence of verapamil (Figure 2.3d) (Cullen et al., 2001). Glutathione reductase is responsible for the conversion of GSH to glutathione disulfide (GSSG) which is a substrate for MRP1 (Figure 2.3e) (Hirrlinger et al., 2001).

One of the strategies in reducing MRP1 drug efflux was demonstrated by depleting the GSH intracellular concentrations, by mimicking the effect of verapamil through several flavonoids. Chrysin, a flavonoid, was suggested as a compound to consider in MDR cancer therapy (Lorendeau et al., 2014). Numerous methoxylated flavonoids also indicated MRP1 inhibition properties (Van Zanden et al., 2005). A triterpene, namely 3β-acetyl tormentic acid, was found to inhibit MRP1 activity through reducing both the GSH intracellular pool and conjugated drug complexes (Da Graça Rocha et al., 2014). The influence of MRP1 transport on daunorubicin (chemodrug) was evaluated by using different SCLC and NSCLC cell lines and a known MRP1 substrate and chemotherapeutic drug namely vincristine (Renes et al., 1999). The concluding remarks noted daunorubicin as a MRP1
substrate as the transport increased in the presence of GSH. Anticancer drugs such as doxorubicin, etoposide, paclitaxel, epirubicin and vinorelbine are some of the commonly listed MRP1 substrates. Furthermore, the conjugated estrogens chlorambucil and leukotrine C\textsubscript{4} are also considered MRP1 substrates (Leier \textit{et al.}, 1994; Loe \textit{et al.}, 1996; Barnoin \textit{et al.}, 1998; Ozben, 2006).

![Diagram](image)

Figure 2.3: An illustration of the mechanistic impact of glutathione on MRP1 efflux, as adapted from (Kruh & Belinsky, 2003). Key to abbreviations: ET - etoposide; ES - estrone 3-sulfate; GSH - glutathione; GS-X - drug conjugated glutathione; GSSG - glutathione disulfide; GSTs - glutathione S-transferases; H\textsubscript{2}0 - water; H\textsubscript{2}O\textsubscript{2} - hydrogen peroxide; VP - verapamil and X - drug.

2.3.4. Breast cancer resistance protein (BCRP)

One of the G-subfamily transporters which contribute to the drug resistance mechanism in SCLC is the breast cancer resistance protein (BCRP) (Kim \textit{et al.}, 2009). Retrospectively, the cloning of the \textit{abcg2} gene was done in the late 1990’s, from a human breast carcinoma cell line (Doyle \textit{et al.}, 1998). The BCRP structure consists of only one NBD, one TMD with six membrane α-helices and 655 amino acids; signifying why BCRP is referred to as half a transporter (Jani \textit{et al.}, 2014). Furthermore, the BCRP transporter functionality is based on either a homodimer or a tetramer fashion which consists out of disulphide bindings (Staud & Pavek, 2005). Intra- and intermolecular disulphide bindings are considered of utmost importance for optimal functionality (Henriksen \textit{et al.}, 2005). The BCRP efflux protein can be a promising target in SCLC treatment.

The hyperexpression of the BCRP transporter in several cell lines reduces the intracellular accumulation of numerous drugs including topotecan, mitoxantrone and daunorubicin (Litman \textit{et al.}, 2000). The BCRP transporter shows resistance to the following substrates commonly used in cancer treatment irinotecan, gefitinib and imatinib (Maliepaard \textit{et al.}, 2001; Burger \textit{et al.}, 2004; Elkind \textit{et al.}, 2005). However, the intracellular pool of anticancer drugs can increase in the presence of erlotinib, which can reverse both P-gp and BCRP-associated MDR (Shi \textit{et al.}, 2007). The BCRP inhibition
properties of 31 flavonoids were investigated and the founding remarks indicated both ayanin and retusin to be less toxic with BCRP inhibition (Pick et al., 2011). Novel compounds were synthesised from a known third-generation P-gp inhibitor (HM30181), to investigate BCRP inhibition and possible toxicity by performing a cell viability assay. The results indicated that the compounds without the tetrahydroisoquinoline group were selective BCRP inhibitors (Köhler & Wiese, 2015).

2.3.5. Current treatment approaches towards multidrug resistance

The establishment of small interfering ribonucleic acid (siRNA) in 1993, evolved into a prognostic, diagnostic and therapeutic tool in cancer research (Iorio & Croce, 2009). These low molecular RNA structures are taken up by the cancer cell and reduce specific genes’ expression which are required for cancer cell proliferation (Weinstein & Joe, 2006). A study combined siRNA and doxorubicin in a polymeric system which reduced P-gp associated doxorubicin resistance (Xiong & Lavasanifar, 2011). In an attempt to improve the cellular uptake of siRNA, a nanocarrier particle consisting of polymers showed effective uptake through endocytosis by the MDA435/LCC6 carcinoma cell line which expressed P-gp efflux transporters (Xiong et al., 2009). A silicon nanostructure capable of delivering siRNA to the cell was capable of down regulating MRP1 expression in glioblastoma multiforme cells (Tong et al., 2018). Although siRNA MDR treatment have shown to be a promising approach, some of the down falls includes ineffective target delivery due to enzyme degradation, reduced cellular influx and clearance (first pass effect) (Patil et al., 2011).

The phenomenon termed collateral sensitivity (CS) defines the ability of an anticancer drug to target a MDR cell line to a greater extent, in comparison to the parental line (Hall et al., 2009). Several ABC transporter substrates, acting as CS agents, can increase reactive oxygen species (ROS), causing the apoptosis of MDR cells as a result of a decreased ATP replenishment (Pluchino et al., 2012). In a strategy to overcome MDR in colon cancer, the phytochemical cryptotanshinone was found to cause autophagic cell death in a ROS dependent manner (Xu et al., 2017). The formulation of nanoparticles consisting of conjugated copper(II)-doxorubicin and ascorbic acid increased intracellular hydrogen peroxide, resulting in ROS production that can be used to overcome MDR (Kankala et al., 2017).

In an overview, seven P-gp inhibitors researched in clinical trials were listed highlighting this as a modern approach strategy to abate MDR (Binkhathlan & Lavasanifar, 2013). The energy source used by the P-gp transporters for active efflux was targeted by developing a cationic water soluble pillar[6]arene complex with ATP (Yu et al., 2016a). Thus, Yu and colleagues evaluated P-gp efflux inhibition by means of decreasing ATP hydrolysis, which resulted in efficient doxorubicin intracellular concentrations in MCF-7/ADR cells. The combination of an ATP inhibitor with paclitaxel in a liposome drug delivery system mechanistically altered the mitochondria, followed by both MDR and P-gp inhibition (Assanhou et al., 2015). Several attempts to increase the therapeutic outcome of
chemotherapy by developing ABC transporter modulators have been studied. However, the therapeutic applications thereof are hindered by pharmacokinetic interfaces and toxicity (Ferreira et al., 2014). Current treatment approaches in MDR cancer is further discussed in the review manuscript presented in Chapter 3.

2.4. Natural remedies

2.4.1. Introduction

An estimated 80% of the world’s population living in developing countries rely primarily on ethno-botanic plant remedies for treating primary health care needs (Aziz et al., 2017). Traditional knowledge and the comprehensive availability of medicinal plants contribute to their widespread use in developing countries (Ochwangi et al., 2018). The traditional use of plants for healing purposes in the Cape region of South Africa was originally initiated by the Khoi-khoi and San community (Van Wyk, 2008b). In the Eastern Cape province, seventeen plant species were found to be used traditionally in cancer management through oral consumption as decoctions or infusions, prepared from different sections of the plant (e.g. roots, bulbs and corms) (Koduru et al., 2007). One known medicinal plant Hypoxis hemerocalleidea (African potato) have been used in the treatment of cancer, and a traditional preparation technique includes the boiling of chopped corm (20 g) for 20 min to obtain a daily dose of 250 ml for oral consumption (Owira & Ojewole, 2009).

Some well-known traditionally used anticancer plants are available as commercial products, such as African potato as Harzol® (Germany) and Sutherlandia frutescens as Phyto nova Sutherlandia (Van Wyk, 2011). Some traditional Chinese herbal medicines are suggested to have anticancer properties through modifying epigenetic targets (Zhou et al., 2017). Medicinal plants are considered as reservoirs, consisting of chemical entities which can contribute to the field of cancer research (Iqbal et al., 2017).

The chemical constituents of plants are non-nutritive derivatives (phytochemicals) and are purported to cure or prevent a variety of health conditions (Mugomeri et al., 2014). A wide range of phytochemicals, including lipophilic terpenoids, some alkaloids, steroids and triterpenes are also suggested to inhibit MRP1, P-gp and BRCP in a competitive manner (Wink et al., 2012). Flavonoids and terpenoids are chemical constituents occurring in several plant extracts, which may result in herb-drug interactions through modification or inhibition of P-gp expression (Yu et al., 2016b). The cytotoxicity of ardisiacrispin B, an oleanane-type triterpene saponin, induced apoptosis in CCRF-CEM leukaemia cells which mechanistically involved ROS production and the modification of caspases 8 and 9 (Mbaveng et al., 2018). Sanguin H-6 was one of six ellagitannins that inhibited cell viability of breast cancer adriamycin resistant cells (Berdowska et al., 2018). The inhibition of P-gp efflux by Stemona alkaloids increased cellular sensitivity towards anticancer drugs (Umsumarng et al., 2017).
Herbal medicines are often used in combination with western medicines, which may result in pharmacokinetic and pharmacodynamic herb-drug interactions (Oga et al., 2016; Ondieki et al., 2017). Pharmacokinetic interactions between doxorubicin and both capsaicin and piperine were evaluated in vivo, with concluding remarks of capsaicin being able to reverse MDR cancer (Kim et al., 2018). The combination of the flavonoid dimer (FD18), a known P-gp modulator, with paclitaxel reduced the LCC6MDR (human breast cancer cell line) xenograft volume to a greater extent than paclitaxel alone. Furthermore, FD18 is considered a “safe” in vivo P-gp modulator (Yan et al., 2015).

Three Aconitum alkaloids often used in combination with chemical drugs were shown to induce the expression of multidrug resistance-associated protein 2 (MRP2) and BCRP transporters in both the digestive tract of an albino inbred mouse strain susceptible to Friend leukemia virus B (FVB) mice and in vitro cell cultures, such as LS174T (human colon cancer cell line) (Wu et al., 2018). Thus, the possibility of reduced efficacy can also arise with the combination of western medicine (especially MRP2 and BCRP substrates) and Aconitum alkaloids. In a study done by Saeed et al. (2016), seven South African plant extracts inhibited a P-gp hyperexpressive leukaemia cell line. Saeed and colleagues concluded that South African medicinal plants can contribute to the development of new improved strategies in combating MDR.

2.4.2. Aloe vera

2.4.2.1. Traditional preparation and use of Aloe vera

Aloe vera is also referred to as either Aloe vulgaris or Aloe barbadensis (Richardson et al., 2005). Aloe vera is a semi-tropical plant grouped under the Asphodelaceae botanic family and is one of approximately 250 Aloe species (Gupta et al., 2018). One of the characteristics of the A. vera plant is the thick spear shaped leaves (12-16 per plant which can reach a length close to 90 cm) with saw-like diverticula around the edges (Eshun & He, 2004). The A. vera leaf is divided into the outer green rind (vascular bundles) and the inner pale parenchyma layer with a gel-like consistency (Dick et al., 2016). The term parenchyma tissue or pulp are used to define the intact fleshy inner layer of the A. vera leaf, which consists of both the organelles and cell walls, yet, inside the parenchyma cells a viscous pale liquid is harboured known as the aloe gel (Sharma et al., 2015). The viscosity of the pale liquid can be linked to a phytochemical named mannan (a mannose containing polysaccharide) present in the gel (Ni et al., 2004). The yellow flowers of the A. vera plant are not claimed to have any ethnomedicinal value (Moghaddasi & Verma, 2011).

The three primary processing methods of A. vera leaf include the traditional hand-filleting method, whole leaf processing and total processing (Ramachandra & Rao, 2008). The traditional hand-filleting technique of processing the A. vera leaves involves the removal of the diverticula, the white part of the base and the pointed tip of the leaf (approximately 2.5 - 5 cm of the extended parts of the leaf) by using a sharp knife. The knife is then used to detach the rind to expose the aloe gel (Dayal...
et al., 2018). During whole leaf processing, the leaves are cut into several sections while the base and extended tip segments are removed; followed by the grinding or crushing of the remaining whole A. vera leaf sections, producing a liquid soup which is then filtered and stabilised resulting in an increased bio-active aloe juice product (Pandey & Singh, 2016). Total processed A. vera product is a combination of the green rinds and the aloe gel which provides a product containing less unwanted laxative anthraquinones, (Ramachandra & Rao, 2008).

The ethno-botanic plant Aloe vera has been used as a traditional medicinal remedy for more than 2000 years. However, this plant is still used currently as an important medicinal component in India, Japan and China (Boudreau & Beland, 2006). A. vera is considered a “wonder plant” and is deemed to be beneficial for treating diabetes, arthritis, heart diseases and cancer, with additional antioxidant and hepatic protective properties (Nazir & Ahsan, 2017). A. vera is used topical to treat abrasions and orally for constipation. Moreover, A. vera contributes to the cosmetic industry, with reports claiming the improvement of skin hydration (Dal’Belo et al., 2006; Ünlü et al., 2016). In a single-blind clinical trial, A. vera gel was injected into the periodontal area of patients with periodontitis, during which A. vera gel was suggested as an adjunctive treatment option (Moghaddam et al., 2017). A crude polysaccharide fraction prepared from A. vera indicated antioxidant properties, with suggests a cosmetic application (Kang et al., 2014). The medicinal value of A. vera is attributed to the polysaccharides present in the parenchyma, yet, the bioactivity can be apportioned to synergistic activity of different constituents (Radha & Laxmipriya, 2015).

2.4.2.2. Biologically active constituents of Aloe vera

Water is a major constituent of A. vera, given that it represents 98.8% of the aloe leaf pulp and 99.5% of the aloe gel (Eshun & He, 2004). The most studied chemical components of A. vera include polysaccharides, amino acids, vitamins, enzymes, anthraquinones and low molecular weight constituents (Choi & Chung, 2003). The abovementioned constituents are listed in Table 2.2. The gel-like consistency of the leaf is suggested to contain the following: zinc, magnesium, vitamins (A, C, E), saponins, salicylic acid, polysaccharides, amino acids and sterols. However, the latex leaf lining primarily contains several anthraquinone glucosides (Moghaddasi & Verma, 2011).

Table 2.2: A summary of the chemical constituents inside Aloe vera leaf (Choi & Chung, 2003; Hamman, 2008)

<table>
<thead>
<tr>
<th>Chemical constituent</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic components</td>
<td>Magnesium, calcium, copper</td>
</tr>
<tr>
<td>Polysaccharides</td>
<td>Acemannan (acetylated mannan), mannose derivatives, pectins</td>
</tr>
<tr>
<td>Amino acids</td>
<td>Glutamic acid, histidine, leucine, arginine</td>
</tr>
<tr>
<td>Vitamins</td>
<td>Vitamin B(1,2,6), vitamin C, folic acid, α-tocopherol, choline</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Enzymes</td>
<td>Catalase, oxidase, lipase, amylase, carboxypeptidase</td>
</tr>
<tr>
<td>Anthraquinones</td>
<td>Emodin, aloin A and B, anthranol, aloe-emodin, isobarbaloin</td>
</tr>
<tr>
<td>Low molecular weight constituents</td>
<td>Salicylic acid, β-sitosterol, lectin-like substance, lignins, cholesterol</td>
</tr>
</tbody>
</table>

2.4.2.3. Cancer research involving *Aloe vera*

The initiation of apoptosis in a human hepatocellular carcinoma cell line was detected during treatment with *A. vera*, demonstrating the cytotoxic and genotoxic effects of this plant (Shalabi *et al.*, 2015). A possible anticancer mechanism of *A. vera* gel involves the down regulation of new blood vessel formation in tumours, even though no reduction in tumour volume have been found in an *in vivo* induced L-1 sarcoma mouse study (Kocik *et al.*, 2014). *A. vera* was found to have chemopreventive properties that were associated with lectins, glycoproteins and polysaccharides (Singh *et al.*, 2000). In a study, the crude modified *Aloe* polysaccharides of *A. vera* gel showed increased *in vivo* antitumour activity from a 400 – 5 KDa mass (Im *et al.*, 2005). Extracted polysaccharides showed *in vivo* and *in vitro* alteration of benzo[a]pyrene diol epoxide I DNA adduct formation, which suggests that the fractionated polysaccharides are chemopreventive and antigenotoxic (Kim & Lee, 1997). The extracted di(2-ethylhexyl)phthalate component from *A. vera* Linne was found to have antimutagenic activity and reduced the cellular growth of three human leukemic cell lines (Lee *et al.*, 2000).

Emodin, a known anthraquinone also present in Chinese herbal medicine, was found to reduce glutathione, hence, an increased platinum-drug efficacy and reduced MRP1 expression in a human gallbladder cell line were detected (Wang *et al.*, 2010). Emodin used in combination with cisplatin resulted in both increased ROS levels and chemosensitivity in an MDR prostate carcinoma cell line (Huang *et al.*, 2008). In two human liver cancer cell lines (HepG2 and Hep3B), Aloe-emodin induced apoptosis and was further suggested as a chemopreventive phytochemical (Kuo *et al.*, 2002). In another study, Aloe-emodin and emodin demonstrated cytotoxicity through induction of apoptosis in both lung carcinoma and human lung squamous carcinoma cell lines (Lee, 2001). The ability of emodin and Aloe-emodin to alter DNA formation was detected against human tongue cancer cells, and occurred in a dose dependent manner (Chen *et al.*, 2010). Thus the above mentioned studies suggest the phytochemicals present in *A. vera*, including emodin and Aloe-emodin, have promising anticancer effects.
2.4.3. Sutherlandia frutescens

2.4.3.1. Traditional preparation and use of Sutherlandia frutescens

Sutherlandia frutescens is grouped under the *Fabaceae* botanic family and is indigenously known as “cancer bush” (Van Wyk *et al.*, 2009). *S. frutescens* is a shrub that can reach a height between 0.2-2.5 m, and is recognised by the prominent butterfly-shaped red flowers and hairy leaves with an almost greenish-grey appearance (Van Wyk & Albrecht, 2008; Aboyade *et al.*, 2014). *S. frutescens* is indigenous to South Africa (mainly KwaZulu-Natal and the northern-, western- and eastern Cape), Lesotho, South-Eastern Botswana and southern Namibia (Aboyade *et al.*, 2014; Van der Walt *et al.*, 2016). The wide distribution of *S. frutescens* led to variance in the genetic and chemical makeup of this plant across these geographical areas (Aboyade *et al.*, 2014). Common names given to *S. frutescens* include turkey bush, duckling (English), kortbeenwildekeur, kankerbos (Afrikaans) and phetola (Tswana) (Van Wyk *et al.*, 2008; Aboyade *et al.*, 2014).

The name “cancer bush” originated from traditional beliefs that *S. frutescens* can be used as a treatment option in cancer management (Fasinu *et al.*, 2013). This multi-purpose plant can be used for treating viral diseases including HIV/AIDS, inflammatory conditions, gastritis, diabetes, anxiety, fever and skin disorders (Atawodi, 2005; Van Wyk, 2008a; Müller *et al.*, 2013). Commercial *S. frutescens* capsules filled with 300 mg dried, powdered leaves are recommended to be taken twice a day orally, and are available in herbal shops all over South Africa (Van Wyk & Albrecht, 2008). A clinical study evaluating the safety of powdered *S. frutescens* leave capsules have reported a well-tolerated daily dosage of 800 mg (Fu *et al.*, 2008). Traditionally, a *S. frutescens* tea solution is consumed orally to treat stomach problems (Van Wyk *et al.*, 2008). A decoction prepared by traditional healers can consist of the flowers, stem, leaves and the roots, depending on the patient’s needs and medical condition (Aboyade *et al.*, 2014).

2.4.3.2. Biologically active constituents of Sutherlandia frutescens

The leaves of *S. frutescens* contain the following phytochemicals: γ-aminobutyric acid (GABA), L-canavanine, flavonoids, pinitol, triterpenoid saponins and other compounds (Van Wyk & Albrecht, 2008; Van Wyk *et al.*, 2009). In the brain, GABA acts as an inhibitory neurotransmitter that supports the use of *S. frutescens* for anxiety. Furthermore, GABA has been shown to have anticancer properties by inhibiting SW 480 colon carcinoma cell migration (Joseph *et al.*, 2002; Van Wyk & Albrecht, 2008). The analogue form of L-arginine is L-canavanine, a non-protein amino acid which modulates ribosomal protein biosynthesis by means of changing the 3D conformation and functionality of the formed protein (Nurcahyanti & Wink, 2015). Hence, the ability of L-canavanine to alter ribosomal protein biosynthesis inhibits cell growth; leading to cell death (Nurcahyanti & Wink, 2015). The flavonoids (sutherlandins A-D) present in *S. frutescens* are grouped according to their preliminary chemical structure as flavonol glycosides (Van Wyk & Albrecht, 2008; Avula *et al.*, 2010).
Pinitol is claimed to have an insulin-like action by improving glycaemic control and stimulates glucose uptake, which supports the traditional use of *S. frutescens* for diabetes (Bates *et al*., 2000; Aboyade *et al*., 2014). The main triterpene glycoside detected in commercial *Sutherlandia* plant material is a cycloartane-type triterpene glycoside known as SU1 (Van Wyk & Albrecht, 2008). The potential of SU1 to act as a chemo-preventive agent in chemical carcinogenesis is result of a hydroxy group on the C-24 atom (Standen *et al*., 2009). Other phytochemicals including stigmast-4-en-3-one, γ-sitosterol, hexadecanoic acid and unidentified polysaccharides, have also been found in *S. frutescens* (Van Wyk & Albrecht, 2008).

2.4.3.3. Cancer research involving *Sutherlandia frutescens*

The isolation of a single phytochemical responsible for all the multi-purpose medicinal uses of *S. frutescens* has not been reported. However, the cumulative combination of several bioactive phytochemicals in *S. frutescens* are purported to contribute to an antiproliferative effect (Vorster *et al*., 2012). The antiproliferative effect of *S. frutescens* was shown through *in vitro* studies in human leukemia Jurkat cells, human promyelocyte HL60 cells, human mammary adenocarcinoma MDA-MB-468 and MCF7 cells (Tai *et al*., 2004). An *S. frutescens* methanol extract impaired the growth of human prostate cancer cells and mouse prostate cancer cells in a time-and-dose dependent manner (Lin *et al*., 2016). In the same study using the *S. frutescens* methanol extract, a dose dependent impairment of the Gli-reporter activity in TRAMP-C2QGli and Shh Light II cells was shown (Lin *et al*., 2016). The inhibition of Gli/hedgehog signalling in prostate cancer cells was found to suppress cancer cell proliferation (Lu *et al*., 2015).

The anticancer activity of an aqueous *S. frutescens* extract against a non-tumorigenic breast cell line (MCF-12A) and an adenocarcinoma epithelial cell line (MCF-7), was detected as the induction of cellular death through autophagy and apoptosis (Mqoco *et al*., 2014). Programmed cell death or apoptosis is defined as the activation of the cellular suicide mechanism, which results in the elimination of unwanted cells (Chinkwo, 2005). An *S. frutescens* extract showed induction of apoptosis in Jurkat T lymphoma cells, Chinese hamster ovary (CHO) cells and Caski cells via the flip-flop translocation of the membrane protein phosphatidylserine (Standen *et al*., 2009). Phosphatidylserine is an amino phospholipid forming part of the cytoplasmic surface of mammillary plasma membranes, hence the flip-flop movement of phosphatidylserine disturbs the asymmetry of the cellular membrane (Sasaki *et al*., 2004). The effect of the translocation of phosphatidylserine through the flip-flop effect also resulted in the loss of mitochondrial membrane potential (Barroso *et al*., 2006).

The anticancer treatment of MDR cancer cells may require it to overcome a hyperexpressed barrier of several efflux transporters. An *S. frutescens* extract (IC₅₀ of 324.8 µg/ml) contributed to an increased therapeutic effect by inhibiting P-gp efflux (Ondieki *et al*., 2017). The P-gp efflux inhibitory
effect was also confirmed in a study using a 100 mg/ml aqueous *S. frutescens* extract (Müller et al., 2012). The phytochemical L-canavanine significantly inhibited nevirapine efflux when the transport of this antiretroviral drug was tested in Caco-2 cells (Brown et al., 2008). A triterpenoid glucoside, known as sutherlandioside B, was shown to be an MRP and P-gp substrate with the ability to inhibit both MRP2 and P-gp efflux of the antiretroviral drug atazanavir (Müller et al., 2012).

2.4.4. *Xysmalobium undulatum*

2.4.4.1. Traditional preparation and use of *Xysmalobium undulatum*

Xysmalobium undulatum forms part of the *Apocynaceae* botanic family and is commonly known as uzara, milkwort (English), melkbos, bitterwortel (Afrikaans), ishongwane and iyeza elimhlophe (Xhosa) (Van Wyk et al., 2009; Balogun et al., 2016). The revision of *Apocynaceae* resulted in the inclusion of the *Asclepiadaceae* family into the *Apocynaceae* family (Madani et al., 2017). Geographically *X. undulatum* is distributed in the savannah region of southern Africa and the prevalence of this plant can be seasonal, depending on the regional rainfall patterns (Van Wyk et al., 2009). The identifying characteristics of *X. undulatum* include the green-creamy almost yellow flowers, hairy heart shaped leaves and a rootstock reaching a height between 0.5 - 2 m (Bester, 2009). A decoction of the bitter rootstock is traditionally used to treat afterbirth cramps, diarrhoea and colic (Van Wyk, 2008a). The traditional preparation of *X. undulatum* is done through boiling 125 ml of the powdered rootstock in 1 l water; forming a decoction that can be orally consumed and taken as a 125 ml dosage twice a day (Van Wyk et al., 2009). Powdered rootstock is also traditionally sniffed to treat hysteria and annoyance (headache), or applied topically for wound healing (Van Wyk, 2008a).

2.4.4.2. Biologically active constituents of *Xysmalobium undulatum*

The major glycosides present in the rootstock of *X. undulatum* include xysmalorin, uzarin and their H-17 β-isomers namely alloxsimalorin and allouzarin (Ghorbani et al., 1996). Minor phytochemicals include xysmalogenin and uzarigenin known as cardenolide aglycones (Vermaak et al., 2014). The cardiac glycoside, uzarin, has also been detected in *Gomphocarpus fruticosus* (*Apocynaceae*) and *Asclepias curassavica* (*Asclepiadaceae*) (Roy et al., 2005; Baskar et al., 2012; Krishna et al., 2015). Toxic cardiac glycosides have been reported to occur in *G. fruticosus*, which is responsible for livestock poisoning (Fouché et al., 2006). Cardenolides can inhibit cell death and enhance proliferation in normal cells, nevertheless, the modulation of cancer cells through cardenolides differ and is considered a promising anticancer approach (Krishna et al., 2015). Supporting the proposed effects on cancer cells, the medicinal use of *A. curassavica* include treating abdominal tumours (Baskar et al., 2012).
2.4.4.3. Cancer research involving *Xysmalobium undulatum*

The botanical plant family *Apocynaceae* (*Asclepiadaceae*) is known to be toxic. The cytotoxic effects of this family is associated with the presence of cardenolide constituents (Mothana *et al.*, 2009; Agrawal *et al.*, 2012). A possible anticancer target of cardenolides includes the sodium-potassium pump (Na+/K+-ATPase), given that cardenolides are a natural Na+/K+-ATPase ligand affecting numerous signalling cascades which can suppress tumour growth (Krishna *et al.*, 2015). Cardenolides inhibit the ubiquitous mammillary Na+/K+-ATPase and disturb the cationic transport of sodium (Na+) and potassium (K+) across the cell membrane, disrupting the membrane potential and secondary cellular transport (Agrawal *et al.*, 2012). Cardenolides can be considered a substrate for P-gp due to the suggested efflux of cardenolides entering intestinal cells (Agrawal *et al.*, 2012). In a study conducted by Delebinski *et al.* (2015), the anticancer property of uzarin was tested at 100 µM, no antiproliferative or apoptotic effect was observed against an osteosarcoma (143B) cell line. A dose- and time dependent antiproliferative effect of *A. curassavica* in an ethyl acetate extract form was detected against several human tumour cells (MCF-7, COLO 320 DM, AGS and A549) (Baskar *et al.*, 2012). A crude *X. undulatum* aqueous extract demonstrated antiproliferating efficacy towards a hepatocellular carcinoma cell line (Calitz *et al.*, 2018). Therefore, the anticancer properties of uzarin still need to be investigated in the plant material of *X. undulatum*, due to the possibility of the *Apocynaceae* family having anticancer effects.

2.5. Summary

One of the major challenges in lung cancer treatment is the potential hyperexpression of ABC efflux transporters. These transporters show cross-resistance to a variety of anticancer drugs, altering their intracellular accumulation and decreasing their therapeutic efficacy. One of the approaches to increase the therapeutic response in cancer patients is to inhibit these efflux transporters in an effort to reduce drug efflux and increase drug accumulation. Several studies included the use of medicinal plants to target efflux transporters in cancer cells. Traditional medicinal remedies, which are claimed to prevent or treat cancer are still widely used in modern society, yet, evidence supporting these beliefs are lacking. To evaluate the potential anticancer and cytotoxic effects of three selected medicinal plants (A. vera, *S. frutescens* and *X. undulatum*) a panel of SCLC cell lines with varying resistance profiles, as well as a non-tumorigenic cell line, were used. This panel of SCLC cells consist of a chemosensitive, a MRP1 hyperexpressive and a P-gp hyperexpressive cell line, which were used to determine the ability of the selected plants to reduce MDR in cancer.

2.6. References

Chapter 3
Review manuscript

Chapter 3 consist of a review article submitted for publication in *Current Cancer Drug Targets*. The manuscript was prepared as prescribed by the specific author guideline of *Current Cancer Drug Targets*, as presented in Appendix A.
Efflux-Based Models for Multidrug Resistant Cancer Treatment Screening

Clarissa Willers*a, Michael J. Rossouw*a, Roan A. Swanepoel*a, Hanna Svitina*a, Josias H. Hamman*a and Chrisna Gouws*a

aPharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.

Abstract: Efflux transporters of the adenosine triphosphate (ATP)-binding cassette (ABC)-superfamily play an important role in the development of multidrug resistance (MDR) in cancer. The overexpression of these transporters can directly contribute to the failure of chemotherapeutic drugs. Several in vitro and in vivo models exist to screen for the efficacy of chemotherapeutic drugs against multidrug resistant cancer, facilitated by efflux transporters. This article reviews a range of efflux-based models used to test the efficacy of compounds to overcome MDR in cancer. These models are classified as either in vitro or in vivo and are categorised from the most basic, conventional models to more complex and advanced systems. Each model’s origin, advantages and limitations, as well as specific efflux-based MDR applications are discussed. Accordingly, future modifications to existing models or new research approaches are suggested to develop prototypes that closely resemble the true nature of multidrug resistant cancer in the human body. It is evident from this review that a combination of both in vitro and in vivo preclinical models can provide a better understanding of cancer itself, than using a single model only.

Keywords: Cancer, efflux transporters, genetically engineered mouse models, multidrug resistance, preclinical screening model, two dimensional and three dimensional cell culture, xenograft.

1. INTRODUCTION

According to the International Agency for Research on Cancer, 18.1 million new cancer cases were registered around the world in 2018. The estimated number of deaths due to cancer in 2018 were approximately 9.6 million and this number is expected to increase to 29.5 million by 2040 [https://gco.iarc.fr/], mainly because of phenomena such as multidrug resistance (MDR). Multidrug resistance is defined as the ability of a living cell to display resistance to multiple unrelated anticancer drugs that are structurally and/or functionally different [1]. To date, MDR has been shown to develop via cell death inhibition, drug inactivation, deoxyribonucleic acid (DNA) damage repair, drug target alteration, the epithelial-mesenchymal transition and epigenetic modifications, but the most widely studied MDR mechanism is that of drug efflux involving adenosine triphosphate (ATP)-binding cassette (ABC) membrane transporters [2-3]. At least 49 structurally related transporters, known collectively as the ABC-superfamily, have been identified and categorised into 7 subfamilies. Of these, 16 are primarily involved in human diseases [4], of which P-glycoprotein (P-gp; MDR1/ABCB1), multidrug resistance-associated protein 1 (MRP1/ABCC1) and breast cancer resistance protein (BCRP1/ABCG2) are the major drug transporters widely implicated in drug resistant cancers [5-6]. P-gp, MRP1 and BCRP1 are present in the epithelial lining of the lungs, testes, skin, kidneys, small intestines and in heart and muscle tissues, acting as a barrier against many xenobiotics [7-8]. Through staining, P-gp and BCRP1 have been observed predominantly in the apical side of certain epithelium, whereas MRP1 has a basolateral cell localisation [9]. All three transporters have significantly overlapping resistance profiles [9], but MRP1 does not confer resistance to taxanes and some classes of tyrosine kinase inhibitors [10-11], while BCRP1 is not inhibited by arylmethoxy-derivatives [12].

The more ABC transporters are expressed in the cancer tissue, the lower the chance will be to have effective anticancer results with chemotherapy. For example, a recent study on children with acute myeloid leukaemia found a strong association between the relapse of patients and the number of overexpressed ABC transporters such as ABCA3, ABCB1, ABCC3 and ABCG2 in the cancer cells [13]. Furthermore, a compensatory effect between different ABC transporters has been proposed in the sense that the down-regulation of one transporter is interchanged by the up-regulation of another [14-15]. This highlights the challenge with the development of new anticancer drugs that should be able to deal with complex interactions between different efflux transporters.

This review presents and discusses the different in vitro and in vivo models currently available to evaluate the treatment of efflux-based MDR in cancer. The in vitro models that are discussed include both conventional cell culture-based models cultured as basic two-dimensional (2D) flat cultures and more complex cell-based models that make use of specialised matrices or objects to culture non-conventional or three-dimensional (3D) models. The in vivo models that are discussed include cell- and patient-derived xenografts as well as genetically engineered mouse models (GEMMs). In addition to the discussions of these selected models, a comprehensive summary of both in vitro (Table 1) and in vivo models (Table 2) are given which have been used in previous studies to investigate the anticancer efficacy of compounds by influencing efflux transporter activity and/or expression. Lastly, a few suggestions are provided on future modifications that can be made to existing models, as well as newly developed approaches, that can accurately imitate the true drug response of tumours occurring in the human body.

*Address correspondence to Clarissa Willers at Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Tel: +27-18-285-2486; Fax: +27-87-231-5432; E-mail: 20672322@nwu.ac.za
2. MULTIDRUG RESISTANT CANCER TREATMENT APPROACHES

Common treatments of cancer include surgery, radiation therapy and chemotherapy, or combinations thereof [16]. Chemotherapy specifically is important in the treatment of metastatic and haematological malignancies [17]. The phenomenon of MDR is, however, a major challenge causing failures in chemotherapy, but the mechanisms responsible for both intrinsic and acquired MDR also provide potential targets for new anticancer drugs to overcome MDR. Therefore, many innovative therapeutic strategies focus specifically on reversing, suppressing or evading MDR mechanisms in tumours [1, 3, 18].

Inhibition of efflux transporters, specifically P-gp, by co-administration of transporter inhibitors has been explored as a treatment strategy to overcome MDR. Different P-gp inhibitors have been investigated (including first, second and third generation inhibitors) by using in silico, in vitro and in vivo models [2-3,19]. However, many clinical trials that tested the efficacy of co-administration of P-gp inhibitors with anticancer drugs could not provide sufficient evidence that this strategy could overcome MDR in most cancers. Several reasons were given for this outcome such as associated toxicity, poor planning or lack of randomisation in clinical trial design and the fact that little effort was made to determine if the tumours in the subjects did actually express P-gp [20]. Besides competitive and non-competitive inhibition of P-gp, modulation of P-gp expression has also been investigated as a strategy to overcome chemoresistance. Several signalling pathways that modulate P-gp expression in cancer cells have been targeted to regulate P-gp function and expression. However, P-gp modulators appeared to have selective efficacy depending on the specific anticancer drug that it was combined with [21].

Despite the failure to produce significant improvements in the treatment of multidrug resistant cancer with co-administering efflux transporter inhibitors, research relevant to this approach remains ongoing. In a recent study, it was shown that combining an approved anticancer drug that suppresses efflux activity (i.e. regorafenib) with another anticancer drug (i.e. paclitaxel), resulted in increased concentrations of paclitaxel in the tumours and thereby provided a synergistic anti-tumour effect [2].

Some of the other strategies that have been attempted to overcome MDR in chemotherapy, besides efflux inhibition, are briefly outlined here. Collateral sensitivity is the use of compounds that selectively kill multidrug resistant cells without killing the non-resistant parental cells from which they were derived. The genetic alterations accrued by cancer cells to obtain resistance against one compound may provide hypersensitivity towards another compound, which can be exploited. An important aspect of this strategy is that its efficacy is independent of other mechanisms of MDR in cancer cells [17]. Another strategy that was proposed to overcome MDR is ribonucleic acid (RNA) interference (RNAi) therapy. In brief, this approach aims to silence or down-regulate the expression of specific genes by means of destroying mRNA molecules as triggered by other RNA molecules [3]. Metronomic chemotherapy is the long-term administration of low, but active, concentrations of chemotherapeutic drugs on a frequent basis that target endothelial cells and thereby provide an anti-angiogenic effect [22]. The combination of metronomic chemotherapy and immunotherapy exhibited promising results in both preclinical and clinical studies, but more research is necessary to be conclusive [23]. Microparticles have been identified as vectors to spread MDR to drug sensitive cancer cells by means of a non-genetic mechanism [24]. Compounds that are capable of inhibiting formation of microparticles are under investigation to potentially overcome MDR in cancer [25]. Replication competent viruses have been used to kill cancer cells without harming normal cells. In order to improve the anticancer activities of oncolytic viruses, they can be engineered to express exogenous transgenes for tumour proteins (e.g. tumour protein p53) [26]. Several models are available to study the anti-tumour effect of potential compounds in an attempt to overcome MDR caused by efflux transporter up-regulation.

3. IN VITRO MODELS FOR MULTIDRUG RESISTANT CANCER TREATMENT SCREENING

For the screening of the effectiveness of anticancer drugs, it is essential to use a viable test system that truly represents the disease as it appears in human subjects. Systems used as preclinical screening models include, among others, in vitro approaches such as cultured stem cells or other unicellular or multicellular cell lines [27-29]. Cultured human cancer cells form a strong pillar in anticancer drug screening and an exhaustive number of high-throughput assays and types of cellular material are available for measuring anticancer effects [30-31]. Furthermore, it is relatively easy to perform genetic manipulation of these cells that can provide information on the genetic mutations occurring in cancer cells that correlates with tumour tissues [31-33]. Essentiall, in vitro approaches refine preclinical results before advancing to animal and human trials, thus reducing ethical concerns, time and cost. In vitro cell culture-based models also have certain drawbacks as outlined in the next sections.

Cultured cell models can range from very simple systems to very intricate and complex models consisting of multiple cell types (i.e. co-cultures), additional matrices or mechanical support. For the purpose of this review, the in vitro cell-based models used to screen for the anticancer efficacy of efflux-targeting MDR treatments are divided into conventional (basic mammalian cell lines cultured as 2D or flat cultures) and complex (mammalian cell lines cultured with additional matrices, foreign objects or as 3D cultures) cell-based models.

3.1. Conventional cell-based models

For the purpose of this review, “conventional models” include all adherent cell cultures which are grown in an artificial environment in a 2D state as a monolayer or flat culture, although some suspension cells can also be classified as conventional cell-based models. Conventional mammalian cell culture models have served as the primary pillar for the evaluation of tumour biology, drug screening and mechanistic studies [30].
The introduction of cell cultures in 1950 provided an exciting new method for cancer drug screening in an *in vitro* environment [34]. Retrospectively, during the mid-1970’s the Chinese hamster ovary cell line was the first cell model to indicate a correlation between the drug-resistant phenotype and the drug efflux P-gp membrane transporter, which was indicated by a change in the drug permeation rate [35]. Drug resistance was induced in the cultured cells through exposure to actinomycin D, which resulted in a 2500-fold increase in resistance compared to the parental cell line [36]. In the 1980’s, the United States National Cancer Institute (NCI) listed 60 human tumour cell lines which can be used for *in vitro* drug screening and discovery [37], which is available online on the NCI’s website. These cell lines encompass nine different tumour organs/systems including blood, prostate, colon, central nervous system, ovaries, kidney, skin, breast and lung. This NCI-60 cell panel is considered an important platform for high-throughput models for characterisation and a biologically based approach to investigate treatment of malignancies [38].

The initial technique used in developing the drug-resistant Chinese hamster cell model in the mid-1970’s is still used in modern cell culture laboratories, which entails continuous exposure of a parental cell line to an anticancer drug that can result in a drug-resistant daughter cell line. Furthermore, conventional efflux cell culture models and modified cell culture models are used together with suitable assays during drug screening to investigate MDR. Determination of P-gp protein levels can be done through a Western blot assay [39]. Several other cell viability, proliferation and cytotoxicity assays (e.g. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)), bidirectional transport studies and clonogenic assays are commonly used to compare the sensitivity or resistance of both the parental and daughter cell lines towards anticancer drugs [40–43]. Furthermore, the inhibition of ABC transporters and the extent of substrate efflux can be determined through fluorescent dye accumulation and vesicular transport assays [44–45].

The effect of the ABC transporter family on chemotherapeutics, and potential inhibitors of these transporters, has been studied using the conventional cell lines as listed by the NCI (see Table 1). Human leukaemia K562 and K562/Dox cells were used to evaluate the influence of metformin on the P-gp efflux of doxorubicin and the cytotoxicity of doxorubicin was shown to increase in the presence of metformin [43]. A human embryonic kidney (HEK293) cell line was used to modify an inverted membrane vesicle and estradiol-17β-glucuronide was subsequently identified as a substrate for MRP2, P-gp and BCRP. This shared substrate was then used to determine the transport inhibition ability of nine inhibitors, showing different inhibitory properties towards the studied ABC transporters [46]. The ability of cordycepin, a phytochemical in dietary mushrooms, to modulate the functionality and expression of MRP1, P-gp and BCRP transporter proteins was assessed in the following cell lines: MDR human non-small cell lung carcinoma (NSCLC) cell line NCI-H460/MX20, MDR human hepatocellular carcinoma cell line HepG2-vin and MDR human cervical cancer cell line KB-vin. The findings purported cordycepin to influence P-gp ATPase activity, resulting in the inhibition of the P-gp transporter and thereby illustrated cordycepin as a promising substance to be used in combination with chemotherapy [47].

In a study conducted by Kim et al. [48], a doxorubicin resistant breast cancer cell line (MCF-7/ADR) was obtained by exposing the parental MCF-7 cell line to 0.3 µM doxorubicin (Adriamycin®) over an extended period of time. The combined effect of doxorubicin and resveratrol subsequently decreased the gene expression of MDR1 and MRP1 in this breast cancer model, which simultaneously increased the intracellular doxorubicin concentration. The same MDR MCF-7/ADR model was also used to establish a novel micelle-based drug delivery system to increase the uptake of paclitaxel into the tumour tissue [49]. The MDR MCF-7/ADR cell line is one of the most widely used conventional models in cancer research, although its true origin is still questionable. Therefore, it should rather be used for hormone-responsive breast cancer studies due to its expression of oestrogen and progesterone receptors [50–51].

The cytotoxic ability of fascaplysin (a natural product with anticancer activity) was screened between 134 and 1740 nM against a panel of cell lines including NSCLC, small cell lung cancer (SCLC), unrelated cell lines and the HEK293 cell line. The concluding remarks suggested the alteration of reactive oxygen species (ROS), topoisomerase I and poly-(adenosine diphosphate (ADP)-ribose) polymerase (PARP) activity through the influence of several cellular mechanisms [42]. Other conventional cell models, including a cell clone of human epidermoid carcinoma (KB-3-1), namely KB-CV60, were used to evaluate the ability of sulindac sulfide to inhibit MRP1 efflux [44]. More recently, it was shown that the efflux of doxorubicin and rhodamine 123, through ABCB1 and ABCG2 transporters, was inhibited by abemaciclib in hyper-expressing cell lines such as KB, MCF-7, the human colon carcinoma cell line S1 and HEK293 cells [52].

Contributing further to the development of drug screening models is the transfection of a parent cell line with microRNA or small interfering RNA (siRNA). These models enable targeted alteration of the transporter expression of the parental line in the hope of modifying the extent of drug efflux, resulting in anticancer drug accumulation in the tumour and consequently increased therapeutic effects [53–54]. However, the shortcomings of using nucleic acid (RNA and DNA) interference therapies include ineffective tumour targeting, reduced RNA stability and short circulation time, which limit its clinical use [55]. In a study conducted by Yang et al. [56], a co-delivery system containing both siRNA (to silence MDR1 mRNA) and paclitaxel, showed increased cytotoxicity of paclitaxel in MCF-7 and MCF7/taxol cells. The ovarian carcinoma cell line (SKOV-3) was used to evaluate the effectiveness of a nanoscale metal–organic framework co-delivery system of siRNA and cisplatin, to decrease the expression of MDR genes, and an increased chemotherapeutic efficacy was observed [57]. More recently, a hollow carbon nanoparticle was used to treat MCF-7 and MCF-7/ADR cells by delivering either cisplatin or doxorubicin, in combination with siRNAs targeting MDR1. The findings included a down regulation
of up to 96% of MDR1 protein expression in the MCF-7/ADR cells [58].

Resistance in a paclitaxel resistant human colon cell line (HCT 116) was reduced through incorporation of paclitaxel into a nanoparticle delivery system [59]. Furthermore, an exosome-encapsulated paclitaxel delivery system was tested in P-gp expressing Madin-Darby canine kidney (MDCK) and RAW 264.7 macrophage cells, indicating a potential strategy for future chemotherapeutic treatment [48]. The screening of a multifunctional nanoparticle containing paclitaxel and curcumin was recently performed on a breast cancer cell line expressing P-gp (MCF-7/ADR). This delivery system was able to inhibit the P-gp mediated efflux of paclitaxel, thus increasing its intracellular accumulation [60].

In a sub-clone of human colorectal adenocarcinoma cells (Caco-2; sub-clone C2BBBe1), the zinc finger nuclease-mediated gene knockout approach was used to reduce the extent of transport facilitated by several ABC transporters. This subsequently produced a successful tool for explaining transport interactions [61]. Human cervix carcinoma (HeLa) cells have also been used for transcription activator-like effector nucleases (TALEN)-mediated Nanog gene knockout, resulting in weakened malignancy [62].

Although continuous 2D cell lines are easily maintained and the same cell line can be used for long-term experimental evaluations, these models do not fully correlate with in vivo conditions [63]. The monolayer cellular growth pattern of conventional cells is a problem, since few primary tumours can grow as a monolayer ex vivo [64]. Other drawbacks of conventional cell models are the absence of 3D architecture, limited cell-cell and cell-extracellular matrix interactions and uncontrolled exponential growth [65-67]. All these drawbacks add to the need for development of more advanced cell culture systems in an attempt to overcome these limitations.

3.2. Complex cell-based models

The lack of models that consider and include the organisational physiological structure of human tissues is deemed the major precursor of clinical drug failure during in vivo trials [68-69], while large scale screening of anticancer drug compounds in in vivo models (e.g. rodent models) is for the most part unpractical and subject to ethical scrutiny [70-71]. Intrinsic limitations of conventional models cause isolation of certain characteristics, thus ignoring major pharmacokinetic parameters. This inability to accurately extrapolate to humans caused a major void in clinical trials and eventually stimulated the design of more complex systems resulting in advanced in vitro models [72]. These models are designed to better reproduce the primary elements of MDR, allowing better screening of drug compounds before they advance to the later stages of clinical trials. For the purpose of this review, advanced cell culture models are defined as mammalian cells incorporated into advanced systems with more realistic intercellular communications and other features that better resemble those of the in vivo microenvironment. Table 1 provides some examples of complex cell-based models.

3.2.1. Integrated discrete multiple organ culture (IdMOC) system:

The integrated discrete multiple organ culture (IdMOC) system was designed to consist of individual wells, each containing their own cell culture and growth medium, embedded in a larger outer chamber [73]. Once the cells in each well reached experimental viability, a universal medium containing the test compound is added to such an extent that it overflows into all the wells and fills up the outer chamber, thereby creating an interconnected system. This universal medium serves as a blood surrogate between the different cells in the system, containing metabolites and waste products produced by each organ-representative well, and thereby mimic the in vivo state by exposing the blood surrogate to every part of the system. This overcomes the problem of cell type isolation that is present in traditional 2D cell culture studies. The universal medium can be analysed to determine accumulative system metabolism, whereas each individual cell culture can be individually analysed for organ toxicity, bio-accumulation and cytotoxicity [74-77]. The IdMOC system was designed to incorporate primary hepatocytes, cell cultures representing several organs and a cancer cell line to allow more effective testing of potential anticancer drugs on multiple organ systems [78]. This model currently permits for the screening of organ selective toxicity, cytotoxicity, drug-drug interactions and metabolic activation and also enables analyses of pharmacokinetic parameters (e.g. MDR1 and MRP1 influence) [73].

The major advantages of the IdMOC system include the ability to do high-throughput screening assays, retaining the homogeneity of the individual culture conditions of each cell line and the possibility of inter-cell metabolite interactions between each organ-representative. The model also functions as a low cost alternative for screening with an adaptable microenvironment to optimise growth conditions for each individual cell type. A major problem with this system, however, is the elevated risk for cross contamination. The model is also not designed to homogeneously spread universal medium through the system like a classic blood circulatory system, which makes this model vulnerable to criticism. Another restriction lies in the disparity of the metabolic needs of the various cultures, potentially causing saturation or starvation of some of the cells receiving universal medium [77, 79]. Time-dependent interactions between the organs are also not simulated, reducing this model’s capability of giving exact quantitative results [80].

The application of the IdMOC system in MDR studies was suggested by Uzgare and Li [79] in a review of the IdMOC model. Targeted disruption of specific transporters responsible for MDR (e.g. MDR1, MRP1, etc.), and the pharmacokinetic consequences thereof can be investigated in this model due to the incorporation of liver cells [79]. A cytotoxicity study on tamoxifen was completed using the IdMOC system incorporating primary cells of different origin namely hepatocytes (liver), cortical cells (kidney), small airway epithelial cells (lung), astrocytes (central nervous system), aortic endothelial cells (blood vessels) and the MCF-7 human breast adenocarcinoma line. This allowed for the effective
quantification of cytotoxicity in normal cells compared to cancer cells. Each individual organ system provided results comparable to those seen in literature during human trial cytotoxicity studies, thus validating this model [79, 81].

3.2.2. Microfluidic channel-based systems:

The idea of microfluidic systems was conceptualised around the design of a system encapsulating complicated, time intensive and expensive laboratory protocols into a relatively inexpensive, portable cell culture model that involves the manipulation of relatively small amounts of fluid (microlitre or picolitre) in a channel-based system on a chip [82-83]. Microfluidic systems were designed to overcome the absence of pharmacokinetic features in in vitro cell-based models as well as to refine, automate and reduce the associated costs of current laboratory practises [84]. The incorporation of multiple barriers commonly affecting drug delivery into organ/tissue compartments, as well as an interconnected microfluidic channel arrangement acting as a vascular circulating system, allowed for testing the compounds’ permeability capabilities in the in vivo setting. Culture medium acts as a blood surrogate in the microfluidic channels, delivering important nutrients into the cells, while carrying metabolites away from the cells. The microfluidic channel model is scaled according to human physiological parameters, which provides a realistic degree of drug exposure to each specific physiological barrier. This also allows a better understanding of pharmacokinetic interactions at each of the barriers, thus increasing predictive capabilities during extrapolation to the in vivo situation [85]. Microfluidic chips containing cell cultures are equipped with microsensors capable of measuring numerous metabolic parameters (e.g. oxygen consumption, glucose uptake, lactate production) by means of microsensors [86]. The incorporation of multiple-well plates (e.g. 96-well plates) also makes this model a viable option for high-throughput screening [87]. Its dynamic nature ensures the real-time monitoring of cell culture parameters needed for drug development, while minimising standard deviations of results due to the concentrated amounts of reagent used in these studies. Human cell lines can be used in these systems, each chosen to have the desired characteristics of the designated organ portrayed in the model (e.g. multidrug resistant cancer combined with a normal epithelial cell line). A physiologically-based pharmacokinetic model (PBPK) is usually used adjacent in combination with the microfluidic channel systems in order to mathematically translate absorption, distribution, metabolism and excretion (ADME) data obtained from the micro-scale cell culture analogue (µCCA) model into actual in vivo-relatable results [88]. The model can also be manipulated to test permeability potential through different barriers by sequential organisation of the tissue chambers (e.g. intestinal lumen before the cancer cells) [89-90]. Microfluidic based systems also have the capability to present drug synergistic effects that cannot be seen in traditional in vitro studies and the replicated vascular system allows for different dose exposure parameters, giving results similar to those in vivo. Currently, there are vast selections of these chips, each containing unique mechanisms and added protocols. Organ systems included in this design is lung, liver, intestinal, urinary, breast, brain and bone marrow tumours [91-93].

The microfluidic channel system incorporates conventional cell models, which presents its own range of drawbacks including cell changes and differentiations through passages and physiological structure differences compared to cells within organs in vivo. Adapting this model for high-throughput screening studies is difficult and expensive because of the expertise needed to maintain viability and sterility for all the different cell cultures in play [89]. Different types of microfluidic channel systems have been developed and used in studies as briefly described in the sections below.

3.2.2.1. Multi-organ co-culture in tumour-on-a-chip system:

The next step in developing advanced organ-on-a-chip systems was to incorporate multiple organ cell cultures in the same system. This creates an in vivo like microphysiological system that represents all of the major tissues responsible for metabolic processes, as well as influencing drug pharmacokinetic and pharmacodynamics [94].

One example of a multi-organ co-culture as part of a tumour-on-a-chip design included HepG2/C3A (hepatocellular carcinoma / liver cells), MEG-01 (megakaryoblast / bone marrow), MES-SA (drug sensitive uterine sarcoma) and MES-SA/DX-5 (MDR uterine sarcoma) cell lines. The HepG2/C3A cell line was included to view the effect of the metabolism of doxorubicin towards the less active doxorubicinol. The MEG-01 cell line represented the thrombocytopenic effect of this drug due to bone marrow suppression, while the cancer cell line MES-SA/DX-5 was transfected to over-express P-gp, thereby inducing MDR. This P-gp over-expression allowed the researchers to determine if the required concentration of drug needed to have cytotoxic effects on the resistant cancer cells, was in an acceptable range to avoid systemic toxicity [95].

3.2.2.2. Lung-on-a-chip microfluidic device:

This novel biomimetic device was developed to improve the model by incorporating key characteristics of tissues that were absent from the traditional microfluidic channel system. The lung-on-a-chip microfluidic device was designed to accommodate an extracellular matrix coating (consisting of collagen and fibronectan), whilst human alveolar epithelial cells and human pulmonary microvascular endothelial cells were cultured to confluent monolayers on opposing membrane sides, which allowed airflow between the barriers. This airflow allowed for an air-liquid interface similar to the alveolar airspace found in human lungs. The compartmentalised design enabled controlled delivery of nutrients to the different cell cultures. Two vacuum inducing micro-chambers were installed to mimic sub-atmospheric pressure driven stretching of the membranes to replicate normal breathing. In this model, the researchers attempted to replicate the major factors of pulmonary physiology in order to evaluate how drug compounds may act in these systems and to compare the outcomes to actual in vivo results [96].

3.2.2.3. 3D lung cancer microfluidic constructs:
Polydimethylsiloxane (PDMS) round bottom micro-wells were constructed as microchip bases and hydrostatic pressure was used to guide the introduced cancer cell suspension to the membranes. Gravitational forces kept the cells in place and forced the formation of 3D cell culture constructs. The mesothelioma cell line (H2052) and primary cell lines from patients (NSCLC, squamous carcinoma and pericytes) were introduced into the model as mono- and co-cultures to test the effect of stromal cells on MDR, using cisplatin as chemotherapeutic compound. This system allowed viable assays, but a concentration gradient generator was proposed for future, more realistic studies [97].

3.2.3. 3D spheroid cell cultures:

Complex 3D spheroid cell cultures are being incorporated into modern in vitro screening models, which attempt to bridge the gap between traditional flat culture shortcomings and the limitations experienced with in vivo studies [98-99]. This design more realistically mimics the physiological characteristics of in vivo tumours by allowing cell-cell interaction as well as better communication within the microenvironment (e.g. extracellular matrix). Intercellular communication includes the activation of signalling pathways, which mediates a cascade of effects including molecular, subcellular and cellular changes. These changes can include alterations in protein/gene expression, molecular exchanges, enhanced cellular transport effects (endocytosis/exocytosis) and cellular behavioural changes (e.g. apoptosis, proliferation, cell shape, motility) [100-101].

3D spheroid cell culture is seen as the first and oldest 3D cell culture model construct and dates back to the 1970’s. This model depends on the tumour cells’ capability to differentiate into heterogeneous multi-cellular spheroids by either introducing them into an extracellular matrix (ECM) as a scaffold-dependant (i.e. scaffold-based) construct or by introducing external factors to enforce spheroid growth (non-scaffold based). Scaffold-based cell culture models include matrix-on-top, matrix-embedded, matrix-encapsulation, spinner flasks and the micro-patterned plate technique. Non-scaffold-based cell culture models employ ultra-low attachment plates, hanging drop, microgravity (rotating wall-vessels/bioreactors or clinostat), spontaneous aggregation, magnetic levitation and 3D bioprinting [102]. After the cells start piling up on each other in 3D spheroid cultures, they develop surface receptors known as integrins, which are used to anchor themselves onto the ECM and thereby sustaining tumour growth and enhancing cell-cell communication [103-104].

The connection of these cells to the microenvironment initiates increased protein and gene expression levels of MDR precursors, which are generally limited in conventional models. Changes that were found to occur in these cell structures included metabolic changes, increased responses to cellular stress, cellular structural changes, increased signal transduction, slowing down proliferation cycles (quiescent cells), limiting drug surface contact, inhibiting apoptotic precursors and elevated expression of cellular transporter proteins, all playing a role in the increased resistance of these cell models to cancer treatment [102]. The capability of these cells to use cadherin molecules and integrin surface receptors to mediate resistance against drug treatment, allowed for the design of effective MDR cell culture models [105-107].

The combination of acquired MDR characteristics with surface ABC transporters created a cellular model that more accurately predicted the in vivo occurrences of drug interactions. The major advantage of this 3D spheroid cell culture model is the formation of the in vivo-like necrotic centres (although recent publications showed some spheroid systems to be devoid of necrotic centres) and an overall heterogeneity [108]. Modern 3D tumour cell model concepts incorporated angiogenesis to recreate the in vivo microenvironment even more closely. Vascularisations of breast and prostate 3D spheroid cellular models (MCF-7, MDA-MB-231, LNCaP and PC3) were initiated by incorporating glycosaminoglycan-based hydrogel culture systems containing vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and stromal cell-derived factor-1 (SDF1), thus creating a multi-parametric bioengineered tumour angiogenesis microenvironment. This vascularisation ultimately resulted in increased chemo-resistance as well as tumour regression rates comparable to that observed clinically [109].

Further investigation found that the introduction of an exogenous ECM into the 3D cell culture model design can increase the in vivo imitation of cancer cells, ultimately resulting in more predictable screening. This model has the capacity not only for screening of anticancer compounds, but also to investigate protein changes (mRNA inducing protein expression and complex interactions), cellular communication and cellular metabolic and functional processes (ATP production and cell migration/invasion). In most larger 3D cell spheroids (i.e. exceeding 150 µm in diameter), the nutritional starvation and hypoxic conditions of the tumour centre causes necrosis accompanied by micro-metastatic behaviour, thus allowing investigation of anticancer compound evasion mechanisms, as well as the overall influence that these physiological changes may have on tumour biology [110-112].

The superiority of this model lies in its ability to shy away from the exponential growth phase priority that 2D cell cultures exhibit, by re-directing energy to develop advanced tumour-like structures [65]. This mechanism of sophisticated self-assembly occurs because the cells reach a “dynamic equilibrium”, and this phenomenon essentially bridges the gap between in vivo and in vitro screening [65]. The development of 3D multicellular tumour spheroids is also purported to be more time and cost effective in the identification of novel anticancer drugs and produce data of superior quality compared to that of conventional models [113].

Three-dimensional cell models have been shown to have greater chemotherapeutic resistance compared to their 2D counterparts and they show similar characteristics to those expressed by native cancers, including lactate accumulation, oxygen/hypoxia and proliferation. It has also been suggested that 3D cell culture models lead to more aggressive cancer
phenotypes, including sustained proliferative signalling, inducing angiogenesis, resisting cell death, genome instability and mutations, and deregulating cellular energetics [114]. The 3D spheroids can also be used to determine lethal doses closely related to in vivo values [115]. It has also been claimed that in 3D cell culture models, the non-hologynic exposure of the cells within the spheroid to the drug being tested and the non-constant proliferation rate of the cells inside the spheroid, will contribute to the deeper understanding of mechanistic properties of cancer treatments [116].

Unfortunately, 3D cell culture operating techniques can be time consuming and the reproducibility of some techniques are questionable [117]. Furthermore, if the size of the spheroid is greater than 150 μm, necrosis of the core can occur due to inadequate nutrient and oxygen diffusion [118], although this is greatly dependent on the type of spheroid system being used [108]. Drug penetration can also be restricted by the size of the spheroid, diffusion through the ECM and cell-to-cell and cell-matrix adhesion, influencing the effect of chemotherapy [114].

3.2.3.1. 3D multicellular models mediating MDR:

One practical application of a 3D multicellular model consisted of two NSCLC cell lines, isolated from primary lung cancer pleural effusions in patients who have not received any chemotherapy. The two cell lines INER-37 (well-differentiated adenocarcinoma) and INER-51 (weak-differentiated adenocarcinoma) each had a differing histological appearance, with the former cell line being a smaller aggregate (550 ± 25 μm), whilst the latter appeared to be a much larger aggregate (1314 ± 30 μm). These two cell lines were cultured separately as multicellular spheroid aggregates as well as monolayer models, while differentiation and changes in drug sensitivity were monitored. The ultimate goal was to disprove that drug resistance in these multicellular models was primarily caused by lower surface exposure of drugs to cells, due to lower diffusion of drugs into the larger spheroids, as had been previously stated [119]. Upon gene analysis using real-time polymerase chain reaction (RT-PCR) it was found that INER-37 induced gene expression of both mdr1 and mrp1 in multicellular spheroids, while this was not the case in the 2D cell culture model. The mdr1 gene is ultimately responsible for the expression of the major MDR surface efflux transporter, P-gp [120]. INER-51 showed no changes to mdr1 expression between culture conditions, and mrp1 expression was absent in both models. Other changes were also induced, such as larger cells going into a quiescent state thus allowing less DNA damage and faster DNA repair capabilities. Several anticancer compounds (including etoposide, doxorubicin and camptothecin) were used in this study to compare the chemo sensitivity of cells grown in multicellular tumour models (3D models) and those in conventional 2D models. Ultimately, it was found that the 3D models conferred MDR to cells through numerous gene expression changes, most notably the induction of MDR transporters e.g. P-gp [107].

3.2.3.2. Hollow fibre-based spheroid cultures:

Biocompatible polyvinylidine fluoride (PVDF) hollow fibres were introduced into this model as an inducing agent of tumour cells, to accumulate into solid masses resembling spheroids [121]. Large concentrations of tumour cells are injected into the hollow lumen of the fibres, and thereafter they are periodically sealed and left in Petri dishes to proliferate into solid spheroid masses. The fibres, which acted as bioreactors, are then separated and transferred into cell culture plate wells, containing the test drug. This model produces versatile drug resistant 3D cancer spheroids, but the growth of these cells are severely limited by the fibre walls. This approach needs consideration of maximum cell growth and the time that is paired with it, to prevent a decline in cell numbers. Migration studies are also not permitted in these models, since the hollow fibres serve as a barrier to large molecules, limiting these studies to only toxicity screening [122-124]. Nevertheless, this model allows the quantification of multiple metabolic precursors and has immense potential in MDR studies, but to our knowledge, this model has not featured immensely in efflux-based resistance studies.

3.2.3.3. Cell printing:

Cell printing is based on bio-additive technology with the ability to build 3D spheroid constructs in a carrier medium [125]. This technology entails implanting the cells layer by layer, and assembles a heterogeneous tumour model with a relative high density capacity. Biological 3D printing can be modified to produce high-throughput in vivo-like tumour models with ECM-cell interactions on a large scale. It allows controlled cell distribution by the researchers, thus creating a biomimetic design that resembles the in vivo situation, as well as allowing alterations to the tumour morphology. These alterations can be used to test specific tumour properties, accommodate certain assays and to investigate tumour behaviour [125, 126]. The ability to adjust cell morphology gives researchers the opportunity to create models with specific MDR properties, e.g. increased MDR1 gene expression.

4. IN VIVO MODELS FOR MULTIDRUG RESISTANT CANCER TREATMENT SCREENING

Although in vitro cell culture-based models are fundamental building-blocks in preclinical cancer research, in vivo animal models are still used as the decisive factor in the preclinical anticancer drug screening process before further clinical trials in humans may be conducted [127-128]. In vivo animal models resemble in part the in vivo responses and physiological conditions in humans [129], providing predictive means to study patient responses to anticancer drugs. Mice are the most commonly used animal model in cancer treatment research as their genome is well-characterised, making the manipulation of their genes much easier with the established genetic engineering techniques already available. Furthermore, their small size and short development period alleviates excessive breeding and maintenance costs in comparison to larger animals [130-132]. The most frequently used mouse cancer models involve xenografts, where human cell-derived tumours or human tumour explants (patient-derived) are implanted into immunocompromised mice, and genetically engineered mouse models (GEMMs) that are genetically
manipulated to form spontaneous tumours. As both these models have been applied in cancer research to study efflux transporter-related MDR, they will be discussed in the following sections. However, it is important to mention that other rodent models also exist, but have not necessarily been commonly utilised for efflux-related MDR cancer studies.

Mouse allografts involve the injection of immunocompetent mice with murine cancer cells or tumours. This model eliminates the bias of xenografts, which use only immunocompromised mice [133-134]. However, the interspecies differences between human and mouse cells result in poor translation between the drug efficacy in allograft models compared to humans, as comprehensively reviewed by Rangarajan and Weinberg [131]. Despite such discrepancies, mouse allografts have been used to generate orthoallobanks of NSCLC for preclinical drug screening [135], as well as basal cell carcinoma models for carcinogenesis and drug pathway studies [136].

By exposing rodents to carcinogens such as DMBA (dimethylbenz(a)anthracene), MNU (N-methyl-N-nitrosourea) and NNK (4-(dimethylamino)butanone), spontaneous carcinogen-induced tumours can develop [137-138]. However, the locality of tumour formation is not always constant or controllable. In addition, there is the unpredictable tumour formation rate and the adverse effects (cancer-unrelated) of such chemical substances on overall tissues [139].

4.1. In vivo hollow fibre assay models

In 1995, the NCI of the USA developed the hollow fibre assay (HFA) for the preliminary in vivo screening of anticancer drugs as a means to bridge the gap between in vitro cell-based assays and in vivo xenograft models [140]. This assay entails the culturing of 12 human cancer cell lines (of 6 different histologies) in highly permeable biocompatible PVDF hollow fibres, followed by implanting them into nude mice at both subcutaneous and intraperitoneal locations. After anticancer drug exposure for 4-6 days, the fibres are removed and cytotoxicity effects detected with colorimetric tetrazolium-based dye (i.e. MTT) [140-141]. The majority of HFA-based data have been used in prioritising anticancer drugs with a high probability of antitumour activity in follow-up in vivo xenograft models. By implementing a few modifications to the original NCI protocol such as extending the drug exposure period, using immunocompetent mice or conducting other end-point measurements, several studies have proven the potential of HFA to study antitumour vasculature drugs and tumour angiogenesis [142-143], DNA damaging agents [144], proteasome-inhibiting drugs [145] and the antitumour effects of active plant constituents [146-147].

The antitumour activity determined with the HFA has been found to positively correlate with that of xenograft models [148-149].

4.2. Xenograft cancer models

Xenograft cancer models are based on the implantation of a tumour(s) into immunocompromised mice, which ensures that no rejection of the induced tumour occurs [150]. Such immunocompromised mice can either be athymic nude mice, with a mutation in the Foxn1 gene [151], or severely compromised immunodeficient (SCID) mice, with a nucleotide polymorphism in the Prkdc gene causing abnormalities to or complete absence of T and B lymphocytes [152-153]. The tumour implantations can either be done orthotopically or heterotopically [154-155]. Orthotopic models are formed when the tumour is directly implanted into its organ of origin, whereas heterotopic models are placed directly underneath the skin (subcutaneous). As subcutaneous heterotopic xenografts can be observed with the naked eye in hairless (nude) mice and the procedure is much easier and less invasive than orthotopic surgeries, this model is frequently used for rapid cytotoxic or cytostatic anticancer drug screening [156-157]. In contrast, orthotopic tumours provide a more appropriate measure to study the tumour at its primary site of origin and to evaluate possible metastasis and invasion [156]. However, orthotopic models have to be excised from sacrificed mice to measure the tumour volume, and therefore only end-point measurements can be taken. Xenograft cancer models can be classified as either cell-derived or patient-derived, as discussed in the following sections, with the focus on efflux transporter-based models used for anticancer drug screening applications.

4.2.1. Cell-derived xenografts:

The transplantation of in vitro cultured human cancer cell lines into mice with compromised immune systems is the traditional way to generate a xenograft. The specific type of induced cancer, the exact amount of cells required to form a solid tumour and the time it takes for tumour formation, all depend on the specific cancer cell line used [151, 154, 158]. Given that a considerable number of established cell lines are available for transplantation, a wide range of human cancer types can be studied. Nonetheless, the continuous passaging of the in vitro cell lines can lead to drifted cells with different genetic characteristics than their primary cancer tissue of origin [159-160]. In addition, the homogeneity of an injected cell mass does not recapitulate the complexity of a tumour with evolved cells in symbiotic growth [161]. The implantation of tumour cells in different sites than where they normally occur as a disease in humans can also contribute to discrepancies in translation [162]. As previously mentioned, the use of immunocompromised mice can also provide misleading results as not all cancers arise in immunodeficient patients [133, 163]. Even though cell-derived xenografts (CDXs) have several limitations, this in vivo model is still frequently used for preclinical anticancer treatment screening.

Overall, for the screening of anticancer drugs against MDR tumours associated with efflux transporter up-regulation, human cancer cells showing efflux transporter over-expression are injected either subcutaneously (used predominantly) or orthotopically into immunocompromised mice generating a CDX. After the allocated drug treatment period, the cell-based tumour growth is evaluated for subsequent changes to the tumour size and volume. This is followed by immunohistochemical (IHC) analysis or Western Blot and quantitative reverse transcription polymerase chain reaction (RT-qPCR) experiments to identify the transporter protein expression levels. By using these end-point measurements, CDXs can provide valuable
information regarding the efflux transporter proteins responsible for drug resistance in specific cancers [164-166], the modulation effect of drug combinations on efflux-related MDR in cancer [167-169] and the potential of herbal medicine to re-sensitise tumours towards anticancer drugs [170].

By using in vivo CDXs in conjunction with in vitro cytotoxicity assays, several studies have proposed the combinational therapy of drugs as an effective regimen to overcome cancer MDR. Table 2 provides a broad overview of a range of CDXs used for efflux transporter-based anticancer drug screening. Argov et al. [169] studied the modulation effect of fluoxetine (Prozac) on the moderate drug resistance of doxorubicin in subcutaneous human colon cancer (HCT-15) CDXs expressing only P-gp. Fluoxetine was found to reverse moderate MDR in vitro by inhibiting the P-gp efflux pump and improving doxorubicin intracellular accumulation. Tumour progression was drastically delayed when fluoxetine was combined with doxorubicin in vivo, which proved the combination therapy to be as efficient as bevacizumab treatment. Chakravarty et al. [168] used the aggressive MDR breast cancer cell line, MCF-7/Dox, in orthotopic xenografts to investigate the anticancer efficacy of the clinically approved antiretroviral drug, nelfinavir. Multiple exposures to nelfinavir in vitro enhanced intracellular doxorubicin levels and inhibited P-gp expression and efflux. The co-exposure to nelfinavir and doxorubicin resulted in a 65-80% reduction of in vivo tumour growth, in comparison to each drug alone. As this breast cancer model over-expressed P-gp, nelfinavir was shown to counteract MDR by inhibiting P-gp activity. Another study utilised human embryonic kidney cells (HEK293) transfected with the ABCG2 transporter, also known as BCRP, to generate ABCG2-expressing xenografts [170]. These MDR xenografts were implemented to assess the potential of MBLI-87, a non-toxic ABCG2-specific inhibitor, to increase irinotecan accumulation by modulating ABCG2-related drug resistance. The MBLI-87 inhibitor was able to re-sensitise the resistant tumours to irinotecan therapy, although it had no significant effect when treatments were discontinued for 14 days and reconstituted thereafter. This incident was similar to clinical findings also stating premature discontinuation to be a cause of survival failure [171]. Cell-derived xenografts have also been used to evaluate the anticancer efficacy of drug-loaded nanoparticles against efflux-related cancer MDR. Patil et al. [172] used poly(D,L-lactide-co-glycolide) (PLGA) and polyethyleneimine (PEI) to induce gene silencing in P-gp over-expressing xenograft models (JC cells used). By using nanoparticles encapsulating PLGA-PEI and paclitaxel and with the surface functionalised with biotin for specific tumour targeting, the efficacy of paclitaxel to inhibit in vivo tumour growth was significantly higher compared to treatments without gene silencing. Therefore, the use of dual-agent nanoparticles focusing on gene silencing and cytotoxic drug encapsulation shows potential to defeat cancer MDR, especially when the particle surface is coated with specific ligands commonly recognised by cancer cell receptors, such as biotin [172].

4.2.2. Patient-derived xenografts:

In an attempt to improve on the shortcomings of CDXs, the direct transplantation of a patient’s primary tumour material as fresh explants into immunocompromised mice has been developed [153, 173-174]. These models, known as patient-derived xenografts (PDXs) or tumour grafts, more closely recapitulate the parental tumour behaviour, histology, genetic diversity and metastatic patterns [175-177]. Bearing in mind that the tumour is directly transplanted into the murine host, the in vitro manipulation of the tumour is completely eliminated, ensuring the preservation of the original tumour heterogeneity. With the genomic analysis of 1075 established PDXs and corresponding cell lines, Gao et al. [178] demonstrated that several signalling pathways were over- or under-represented in cell lines, whereas matching PDXs showed accurate representation thereof. Moreover, only minimum genetic drift occurred between the passages of a particular PDX, in contrast to the loss of certain developmental pathways in the cell lines upon continuous in vitro culturing. Such similarities between PDXs and the original tumours were also observed for human breast cancer models [175]. This explains the deferral of the in vitro NCI-60 cell panels, used for more than 25 years as the golden standard for anticancer drug screening, in favour of PDX collections that closely mimic the human tumour drug response [179]. The concept of using PDXs as mouse surrogates (newly referred to as “avatars”) in chemotherapeutic research has evolved into a promising practice to improve patient treatment regimens. A patient’s tumour is used to generate a number of PDXs in various murine hosts and these xenografts are then studied concurrently or ahead of the actual patient treatment program [180]. This “avatar” approach can help guide the therapeutic management of the clinical trial and introduce key features necessary for the development of personalised medicine [181]. Patient-derived xenografts have also been shown to accurately portray the biodistribution of anticancer drugs when coupled to radiolabelled tracers and examined with micropositron emission tomography (microPET) imaging [182].

Patient-derived xenografts are more commonly implanted subcutaneously, but orthotopic and mammary fat pad implantations have also been done before [174-175]. The development of validated PDX models is a long-term process with high costs. Just the average tumour latency, from tumour implantation to graft appearance, takes up to 12 months. Sadly, patients with rapidly growing tumours will most probably not benefit from their “avatar” models, established for their personalised therapy, as these model development programs are too time-consuming. Furthermore, the engraftment into an immunocompromised host has the potential to select for a more aggressive phenotype than originally present in the human patient [175]. The lack of an intact immune system in the immunocompromised murine host hinders the ability to study cancer-related immune responses in PDXs [183-184]. However, this limitation has been addressed with bioengineering approaches using GEMMs (discussed in the following section), immune cells and fibroblasts to establish an immunocompetent mouse model [185].
Irrespective of the abovementioned disadvantages of PDXs, these models can provide predictive preclinical means to evaluate patient drug responses, especially those related to efflux transporters involved in cancer MDR (Table 2). Earlier research conducted by Arvelo et al. [186] investigated the potential of the P-gp inhibitor, verapamil, to counter MDR in SCLC PDXs. By combining verapamil with CyCAV, a multifaceted chemotherapeutic dosing consisting of cyclophosphamide, cisplatin, doxorubicin (adriamycin) (198) and etoposide, the drug efficacy was improved against the resistant tumours. Therefore, verapamil inhibited the P-gp efflux transporter responsible for MDR in SCLCs. A recent study investigated the role of the transporter ABCB5 in the drug resistance of neuroendocrine skin cancer or Merkel cell carcinoma (MCC) [187]. After the treatment of intraperitoneal MCC PDXs with carboplatin or etoposide, the expression level of ABCB5 was 8-fold higher than the control PDXs. But, when these anticancer drugs were combined with an ABCB5 blocking antibody, tumour growth was significantly reduced and tumour apoptosis drastically enhanced. These results clearly showed the potential of ABCB5-targeted drug resistance reversal therapies to enhance the success of MCC treatment in the clinic.

4.3. Genetically engineered mouse models

Genetically engineered mouse models (GEMMs) are the most advanced in vivo models used for human cancer research. These models involve the genetic manipulation of cancer-related genes for drug efficacy screening, studying the interactions between chemotherapeutic agents as well as research on the role of these target genes in tumour biology and tumorigenesis [133]. For the purpose of this review, GEMMs can be categorised as either transgenic or endogenous [163, 188]. In essence, transgenic GEMMs are generated through the microinjection of cDNA with specific promoters into the nuclei of fertilised oocytes, which induces the expression of targeted oncogenes [189-190]. However, the expression level of such oncogenes may not always be predictable or accurately controlled, as apoptosis or senescence may also result from such manipulations [191]. Endogenous GEMMs, on the other hand, can either lose the ability to express oncogenes through the disruption or inactivation of the target allele (through knockout techniques) or express modified regions of the target allele by the insertion of the desired mutation into the target allele (knock-in approaches) [189]. Yet, several of these allele disruption approaches can cause embryonic lethality or developmental defects as these mutations are present in the whole mouse [192]. Through the use of conditional alleles requiring site-specific recombinases to induce mutations, the locality of mutations can be restricted to specific tissues [133].

The use of GEMMs in cancer research harbours a number of improvements on other model pitfalls. As GEMMs are generated in the presence of an intact immune system [193], the inadequacy of xenografts to study cancer-related immune responses is overcome [134]. Furthermore, the histopathological and molecular analyses of GEMMs have shown the accurate recapitulation of essential characteristics of human tumours, which is not always the case for CDXs. Liu et al. [194] developed a mouse model for human BRCA1-associated breast cancer through the simultaneous deletion of the Brca1 and p53 alleles. These tumours were found to closely resemble human basal-like breast cancers based on expansive growth, the expression of basal epithelial biomarkers and genomic instability. A year later, Rottenberg and colleagues used the same breast cancer GEMMs (K14cre;Brca1F/F;p53F/F) to investigate the mechanism involved in the acquired resistance of the PARP inhibitor, AZD2281 [195]. The over-expression of the P-gp efflux transporter was the observed mechanism of acquired resistance as the P-gp inhibitor, tariquidar, successfully reversed the resistance. By breeding mice carrying Abcg2-deleted alleles with the K14cre;Brca1F/F;p53F/F GEMM, Zander et al. [196] confirmed that the ABCG2 transporter confers resistance to the topoisomerase I inhibitor, topotecan, in vivo. Therefore, this specific model proves to be a valuable predictor of human BRCA1-mutated breast cancers in preclinical trials.

Knockout GEMMs have been used to investigate the role of efflux transporters in anticancer drug failure and cancer MDR. Table 2 provides evidence of several knockout models. An Mrp4 knockout mouse model showed that MRP4 restricts topotecan drug distribution and its over-expression caused resistance to topotecan [197]. Marchetti et al. [198] used Mdr1a/b−/− (P-gp) knockout mice to study the pharmacokinetics of the C-4 methyl carbonate paclitaxel analogue, BMS-275,183, in the presence of the proton pump inhibitor, pantoprazole. After an exposure period of 6 h, the apparent oral bioavailability of Mdr1a/b−/− mice in comparison to wild-type mice was 97% and 63%, respectively. Significant increases were also observed in the absolute brain concentrations of BMS-275,183 in knockout mice, compared to control groups. The in vivo double-knockout GEMMs confirmed the affinity of BMS-275,183 for the P-gp efflux transporter. Not only knockout approaches are used; knock-in models can also provide information on efflux transporters. Gu et al. [199] created a mouse model by inserting a firefly luciferase (JLUC) gene into the murine mdr1a genetic locus. This model proved to faithfully show basal mdr1a expression, as well as induced expression after xenobiotic treatment. Changes in luminescence intensities were observed after treatment with paclitaxel, doxetaxel and pregnenolone-16α-carbonitride. These correlated to the statistically significant induction of mdr1a/JLUC expression in drug-exposed mice compared to controls, demonstrating the feasibility of linking the conditional knock-in system with a luminescent reporter gene for potential in vivo tumour bio-imaging.

5. IMPROVEMENTS FOR PRECLINICAL MDR TREATMENT SCREENING

For the past 30 to 40 years, the NCI made significant contributions to the list of standard drugs available for chemotherapy. The majority of these drugs were tested on the NCI-60 cell panel, even though today researchers are sceptic about using conventional 2D flat cultures for anticancer efficacy screening. Such scepticism can be substantiated by the proven discrepancies in conventional 2D cell culture growth patterns, when compared to human tumour tissues. Calitz et al. [200] and Wrzesinski et al.
Adding to the heterogeneity and complexity of a human tumour is the fact that tumours can contain their own sub-population of stem cells responsible for cellular “plasticity”. These cancer stem cells (CSCs) can shift as a response to external/internal stimuli from a quiescent state to actively proliferating; from chemosensitive to chemoresistant (by overexpressing ABC-efflux transporters) and from an epithelial to a mesenchymal phenotype (see Fiori et al. [204] and Zakaria et al. [205] for a comprehensive discussion on CSC biology). The hypothesis is that these CSCs hold the key to cancer recurrence (after remission has been medically confirmed) or the emergence of the same type of cancer in various organs. Therefore, by targeting CSCs specifically, improved anticancer treatment strategies can evolve for clinical applications.

3D cell culture models have proven to be suitable for use in CSC research. Stankevicius et al. [206] used scaffold-attached laminin rich ECM and scaffold-free multicellular spheroid models (liquid-overlay technique) to investigate CSC marker expression, associated with self-renewal and epithelial to mesenchymal transition, of human colorectal carcinoma (CRC) cells (DLD1 and HT29). In comparison to 2D culture conditions, the CRC cells showed higher expression of the CSC-associated genes when cultured in 3D. This is in accordance with the findings of Reynolds et al. [207], who found that CSC content was the highest in 3D embedded spheroid models compared to 2D cultures.

To this end, complex 3D cell culture-based models continuously demonstrate truthful resemblances to the in vivo or human-like environment in which tumours can arise. Seeing as tumour complexity and stem cell characteristics can add to the long list of tumour properties portrayed in 3D models, this approach can contribute to this approach becoming the gold standard in efflux-based MDR screening of anticancer drugs.

6. CONCLUSIONS

The causative effect of drug efflux transporters, especially those of the ABC-superfamily, to the occurrence of MDR in cancer is widely recognised. A collection of therapeutic strategies exist to combat efflux-based MDR mechanisms in cancer including the co-administration of efflux transporter inhibitors/modulators, RNAi therapy, metronomic chemotherapy combined with immunotherapy, to name but a few. The preclinical screening of such therapeutic strategies form a fundamental part of the drug development process and both in vitro and in vivo models are used for this purpose; each with their own strengths and limitations. In vitro models applied can range from easily maintained conventional 2D flat cultures (having poor translatability towards in vivo tissues) to more intricate 3D culture systems that closely imitate the true in vivo microenvironment. In vivo animal models, predominantly used for efflux-based MDR treatment screening, involve the grafting of either cell-derived or patient-derived tumours into immunodeficient rodents to generate xenografts. Although predictive patient drug responses can be obtained from xenografting, the model development is extremely time-consuming and the...
absence of a fully functioning immune system in the murine host restricts studies on cancer immune responses. By genetically manipulating cancer-associated genes in mouse models, accurate representations of human tumour properties can be achieved while using models with intact immune systems.

Given that cancer research to overcoming efflux transporter-driven MDR is a multifaceted approach, no particular model should be used solitary. In fact, the utilisation of a complete “package” of preclinical screening models would provide a better understanding and refinement of which therapeutic strategies to explore in further effective clinical trials.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest, financial or otherwise. This work was carried out with the financial support of the National Research Foundation (NRF) of South Africa and the South African Medical Research Council (MRC). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors only, and are not necessarily to be attributed to the NRF or the MRC.

ACKNOWLEDGEMENTS

All the authors contributed substantially to this paper.
Table 1. *In vitro* efflux-based models used for anticancer drug screening.

<table>
<thead>
<tr>
<th>Model</th>
<th>Drug target</th>
<th>Transporter studied</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D flat cultures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCF-7 (MCF-7/ADR) cells (Doxorubicin-resistant human breast cancer cells)</td>
<td>• Resveratrol</td>
<td>MDR1 (P-gp)</td>
<td>• Doxorubicin-induced cell death is potentiated by resveratrol.</td>
<td>[208]</td>
</tr>
<tr>
<td></td>
<td>• Doxorubicin</td>
<td></td>
<td>• Enhanced intracellular doxorubicin accumulation is facilitated by resveratrol.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MRP1/MRP2</td>
<td>• MDR1 and MRP1 mRNA-expression is down regulated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BCRP</td>
<td>• Resveratrol acts as a P-gp inhibitor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• No effect was witnessed on MRP2 and BCRP.</td>
<td></td>
</tr>
<tr>
<td>LoVo and LoVoDX cells (colon cancer cells resistant to doxorubicin)</td>
<td>• Melatonin</td>
<td>P-gp</td>
<td>• In some concentrations melatonin intensified the cytotoxicity effect of doxorubicin in the LoVoDX cells.</td>
<td>[209]</td>
</tr>
<tr>
<td></td>
<td>• Doxorubicin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H460/MX20; HEK293/pcDNA3.1; HEK/R482T cells (Large cell lung cancer cells; human embryonic kidney cells)</td>
<td>• CCTA-1523 (ABCG2 inhibitor)</td>
<td>ABCG2</td>
<td>• CCTA-1523 is a potent, selective & reversible modulator of ABCG2.</td>
<td>[210]</td>
</tr>
<tr>
<td></td>
<td>• Mitoxantrone</td>
<td></td>
<td>• CCTA-1523 enhances the cytotoxicity of mitoxantrone & SN-38.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Doxorubicin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SN-38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cisplatin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW620/Ad300 cells (human colon cancer cells)</td>
<td>• Regorafenib (multikinase inhibitor)</td>
<td>ABCB1</td>
<td>• Regorafenib reversed the ABCB1-mediated MDR & increased the accumulation of [3H]-paclitaxel in ABCB1-overexpressing cells, by suppressing efflux activity of ABCB1, but not altering expression level & localisation of ABCB1.</td>
<td>[211]</td>
</tr>
<tr>
<td></td>
<td>• Paclitaxel</td>
<td></td>
<td>• Regorafenib & paclitaxel synergistically shrink resistant colorectal tumours.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Doxorubicin</td>
<td></td>
<td>• Regorafenib inhibits the efflux activity of ABCB1 transporter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vincristine</td>
<td></td>
<td>• Use of imatinib may be preferable over the use of etoposide in the treatment of CML.</td>
<td>[212]</td>
</tr>
<tr>
<td></td>
<td>• Cisplatin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K562 and K562/ADM cells (human chronic myeloid leukaemia (CML) cells)</td>
<td>• Imatinib</td>
<td>MRP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Etoposide</td>
<td>MDR1 / P-gp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Efflux-based models for anticancer screening

Current Cancer Drug Targets, 2019, Vol. 0

<table>
<thead>
<tr>
<th>BxPC3, Cfpac-1, and HPAC cells (human pancreatic cancer cells)</th>
<th>CG200745 (HDAC inhibitor)</th>
<th>Erlotinib</th>
<th>Gemcitabine</th>
<th>MRP3 MRP4</th>
<th>A synergistic inhibitory & apoptotic effect with CG200745 was witnessed when combined with gemcitabine/erlotinib in pancreatic cancer cells.</th>
<th>Decreased expression of MRP mRNA</th>
<th>Pristimerin</th>
<th>P-gp / ABCB1 / MDR1</th>
<th>Decreased expression of MRP mRNA</th>
<th>Disturbed the subcellular distribution of P-gp with decreased location in the plasma membrane.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KB200 (drug resistant) and HEK293/ABCB1 stable transfected cells (human embryonic kidney cells)</td>
<td>Pristimerin</td>
<td>P-gp / ABCB1 / MDR1</td>
<td>Decreased expression of MRP mRNA</td>
<td>Decreased P-gp activity in a dose-dependent manner was independent of mRNA levels but primarily owing to its protein stability.</td>
<td>Disturbed the subcellular distribution of P-gp with decreased location in the plasma membrane.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCF-7 / ADR cells (human drug resistant breast cancer cells)</td>
<td>Doxorubicin</td>
<td>Hyaluronic acid-g-poly(l-histidine) (HA-PHis) and d-α-tocopheryl polyethylene glycol 2000 (TPGS2k) copolymers</td>
<td>P-gp</td>
<td>Incorporation of doxorubicin into a nanoparticle limited distribution (thus reducing cardio toxicity).</td>
<td>The doxorubicin-loaded mixed micelles (HPHM/TPGS2k) caused increased MDR sensitisation due to reversal of transporter efflux.</td>
<td>Blank HPHM/TPGS2k inhibited P-gp activity by reducing mitochondrial membrane potential & depletion of ATP but without inhibition of P-gp expression.</td>
<td>Mixed micelles can effectively improve the accumulation of paclitaxel in multidrug resistant MCF-7 cells.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCF-7 and MCF-7/ADR cells (human breast cancer cells and their multidrug resistant phenotype)</td>
<td>Paclitaxel</td>
<td>d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and the mPEG-SS-PTX conjugate</td>
<td>P-gp</td>
<td>Tariquidar increased the intracellular paclitaxel levels & its cytotoxicity.</td>
<td>Tariquidar increased the intracellular paclitaxel levels & its cytotoxicity.</td>
<td>TF-targeting of these micellar nanoformulations can further enhance their efficacy by targeting deeper layers of tumours.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKOV-3TR and A2780-Adr cells (Ovarian carcinoma cells)</td>
<td>Paclitaxel</td>
<td>Tariquidar (P-gp inhibitor)</td>
<td>Transferrin (TF)-modified polyethylene glycol-phosphatidyl ethanolamine-based micellar delivery system</td>
<td>P-gp</td>
<td>Tariquidar increased the intracellular paclitaxel levels & its cytotoxicity.</td>
<td>TF-targeting of these micellar nanoformulations can further enhance their efficacy by targeting deeper layers of tumours.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nanoparticles developed

<table>
<thead>
<tr>
<th>Nanoparticles</th>
<th>MCF-7/T cells (Taxol-resistant breast cancer cells)</th>
<th>HCT 116 cells (human colon cancer cells)</th>
<th>MCF-7 and MCF-7/ADR cells (Doxorubicin resistant breast cancer cells)</th>
<th>T24 and TCC-SUP cells (Bladder cancer cells & acquired resistant cells towards gemcitabine and vinblastine)</th>
<th>MCF-7/ADR cells (Doxorubicin resistant breast cancer cells)</th>
<th>Advanced complex cell-cultures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selenium / Ruthenium (nanoparticles)</td>
<td>Paclitaxel combined with rod-shaped gadolinium arsenite nanoparticles</td>
<td>Doxorubicin in combination with siMDR1</td>
<td>Nanoparticle albumin-bound (nab) paclitaxel</td>
<td>Doxorubicin combined with microRNAs</td>
<td>Ko143 (inhibitor) ABCG2</td>
</tr>
<tr>
<td></td>
<td>P-gp</td>
<td>P-gp</td>
<td>P-gp</td>
<td>ABCB1 (P-gp)</td>
<td>P-gp</td>
<td>Gefitinib ABCG2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hyperexpessive ABCB1 cell lines showed a comparable resistance pattern towards both paclitaxel & nab paclitaxel.</td>
<td>The higher miR-129-5p expression led to P-gp inhibition & decreased cellular efflux of doxorubicin.</td>
<td>Cisplatin LiCl (chemical activator of Wnt5a) IWR-1 (pathway inhibitor) Recombinant human Wnt5a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transporter expression was induced in primary healthy lung tissue 3D aggregates, by adding precursors responsible for transporter expression.</td>
<td>ABCB1 ABCG2</td>
</tr>
</tbody>
</table>

Advanced complex cell-cultures

<table>
<thead>
<tr>
<th>HEK cells cultured as scaffold-free, 3D spheroids formed in nonadhesive micromolds (human embryonic kidney cells)</th>
<th>NHLF, SAEC and HMVEC-L co-cultured cells dispensed on poly-HEMA-coated plates and centrifuged to form 3D aggregates.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ko143 (inhibitor) Gefitinib Elacridar ABCG2</td>
<td>Recombinant human Wnt5a Cisplatin LiCl (chemical activator of Wnt5a) IWR-1 (pathway inhibitor) ABCB1 ABCG2</td>
</tr>
<tr>
<td>This model gave a better idea of pharmacokinetic characteristics of transporter inhibitors. Drug uptake and penetration was modelled more effectively. Overall effectiveness of inhibitors was lower than in 2D models due to diffusion barriers in spheroids. Elacridar showed effectiveness 5 hours after removal, thus showing differentiation abilities of the model between static and dynamic inhibitors. Transporter expression was induced in primary healthy lung tissue 3D aggregates, by adding precursors responsible for transporter expression. Chemical manipulation of Wnt5a pathway induced or reduced transporter expression.</td>
<td></td>
</tr>
</tbody>
</table>
Efflux-based models for anticancer screening

Current Cancer Drug Targets, 2019, Vol. 0

<table>
<thead>
<tr>
<th>HER2-positive breast cancer cell lines cultured as 3D models using the poly-HEMA method.</th>
<th>MCF-7 and DOX resistant MCF-7/ADR cells entrapped in alginate-oligochitosan microcapsules to form 3D aggregates.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Neratinib (HER2 targeted therapy) • Docetaxel (chemotherapy)</td>
<td>• Doxorubicin derivatives (Palm-N2H-DOX, N-Palm-DOX, DOX-5FU, DOX-TPP and DOX-AMG) • Doxorubicin • Carboplatin • Paclitaxel</td>
</tr>
<tr>
<td>HER2</td>
<td>BCRP P-gp</td>
</tr>
<tr>
<td></td>
<td>MRP2</td>
</tr>
</tbody>
</table>

- Determining the most effective derivative (Palm-N2H-DOX) in the MDR 3D cancer model.
- This model had increased resistance towards drugs in comparison to flat culture models.
- 3D aggregates had distinct cell proliferation, cellular aggregate formation and expression of drug resistance-related genes/proteins compared to that of 2D models.
- The distinctive characteristics made the model more comparable to the *in vivo* environment.
- Drug resistance of the 3D model increased due to alterations in the cell cycle distribution and increased presence of breast cancer stem cells.
- This 3D model indicated a higher innate resistance due to alterations in cell survival precursors such as the receptor proteins, drug transporters and metabolic enzymes when compared to the 2D cells.
- An overall increased expression of drug targets, cell survival proteins and drug transporters was also reported when compared to the 2D counterpart.
- An overall increased cellular viability was reported when 3D cells were dosed with toxic concentrations in 2D.

[224]

Adriamycin-resistant cells, MCF-7R, and parental control cell line, MCF 7, seeded in silk-collagen scaffolds to form 3D aggregate models.

- Determining the most effective derivative (Palm-N2H-DOX) in the MDR 3D cancer model.
- This model had increased resistance towards drugs in comparison to flat culture models.
- 3D aggregates had distinct cell proliferation, cellular aggregate formation and expression of drug resistance-related genes/proteins compared to that of 2D models.
- The distinctive characteristics made the model more comparable to the *in vivo* environment.
- Drug resistance of the 3D model increased due to alterations in the cell cycle distribution and increased presence of breast cancer stem cells.
- This 3D model indicated a higher innate resistance due to alterations in cell survival precursors such as the receptor proteins, drug transporters and metabolic enzymes when compared to the 2D cells.
- An overall increased expression of drug targets, cell survival proteins and drug transporters was also reported when compared to the 2D counterpart.
- An overall increased cellular viability was reported when 3D cells were dosed with toxic concentrations in 2D.

[225]

[226]
Table 2. *In vivo* efflux-based models used for anticancer drug screening.

<table>
<thead>
<tr>
<th>Model</th>
<th>Drug target</th>
<th>Transporter studied</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell-derived xenografts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCG2-HEK293 cells (human embryonic kidney cells)</td>
<td>• MBLI-87 (ABCG2 inhibitor)</td>
<td>ABCG2 / BCRP</td>
<td>• Significant sensitisation to irinotecan.</td>
<td>[170]</td>
</tr>
<tr>
<td></td>
<td>• Irinotecan</td>
<td></td>
<td>• Increased irinotecan’s effect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• MBLI-87 prevents drug efflux by ABCG2 inhibition.</td>
<td></td>
</tr>
<tr>
<td>ABCB1-KB-C2; ABCG2-H460/MX-20 & ABCC10-HEK/MPR7 cells (human non-small cell lung cancer cells, human embryonic kidney cells)</td>
<td>• Nilotinib</td>
<td>ABCB1; ABCG2; ABCC10</td>
<td>• Nilotinib potentiates the anticancer effect of paclitaxel & doxorubicin in MDR xenograft models.</td>
<td>[227]</td>
</tr>
<tr>
<td>SKOV-3 cells (human ovarian cancer cell line)</td>
<td>• NSC23925 (P-gp inhibitor)</td>
<td>P-gp / MDR1</td>
<td>• Combination of paclitaxel & NSC23925 showed inhibition of tumour growth.</td>
<td>[164]</td>
</tr>
<tr>
<td></td>
<td>• Paclitaxel</td>
<td></td>
<td>• NSC23925 prevented development of paclitaxel resistance in vivo.</td>
<td></td>
</tr>
<tr>
<td>MCF-7 / ADR cells (human breast cancer cells resistant to adriamycin)</td>
<td>• Psi-Pgp-tGC nanoparticles</td>
<td>P-gp</td>
<td>• Psi-Pgp-tGC nanoparticles down-regulated P-gp expression.</td>
<td>[228]</td>
</tr>
<tr>
<td></td>
<td>• Doxorubicin</td>
<td></td>
<td>• Nanoparticles potentiated doxorubicin-mediated inhibition of tumour growth & showed lower tumour volume.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Trametinib in combination with vincristine inhibited the tumour growth of ABCB1-overexpressing xenografts.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Trametinib</td>
<td></td>
<td>• Trametinib used in combination therapy has the potential to combat efflux pump related MDR.</td>
<td>[229]</td>
</tr>
<tr>
<td></td>
<td>• Vincristine</td>
<td></td>
<td>• Doxorubicin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ABCB1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBV200 cells (human keratin-forming HeLa-derivative, ABCB1-overexpressing cells)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Line</td>
<td>Drugs</td>
<td>Transporters</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>--------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>MDA-MB-231 and BT-474 cells</td>
<td>Doxorubicin, Mitoxantrone, 5-fluorouracil</td>
<td>ABCC1 & ABCC3</td>
<td>Like ABCC1, ABCC3 is also overexpressed in primary breast cancers. ABCC3 was responsible for drug resistance, whereas ABCC3 knockdown reversed resistance.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Combination of bicalutamide & docetaxel overcomes resistance. Bicalutamide and enzalutamide inhibit ABCB1 transporter activity.</td>
<td></td>
</tr>
<tr>
<td>C4-2B, TaxR and DU145-DTXR cells</td>
<td>Bicalutamide, Enzalutamide, Docetaxel</td>
<td>ABCB1</td>
<td>Combination of doxorubicin & fluoxetine showed significant slow-down of tumour progression, comparable to aggressive treatment with bevacizumab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluoxetine improved doxorubicin intracellular accumulation & uptake. Ability of fluoxetine to modulate resistance in vivo.</td>
<td></td>
</tr>
<tr>
<td>HCT-15 cells (human colorectal adenocarcinoma)</td>
<td>Fluoxetine (Prozac), Doxorubicin, Bevacizumab (avastin)</td>
<td>P-gp; MRP & BCRP – tested, but not detected</td>
<td>P-gp overexpression is the major cause of ceritinib & crizotinib resistance in NSCLC cells. Ceritinib & crizotinib are P-gp substrates. By downregulating the MRP1 expression, emodin improves the chemosensitivity to cisplatin. Sulindac reduced doxorubicin resistance by inhibiting MRP1 activity.</td>
<td></td>
</tr>
<tr>
<td>JFCR013-2 cells (human non-small cell lung cancer cells resistant to ceritinib)</td>
<td>Ceritinib, Crizotinib, Alectinib</td>
<td>P-gp</td>
<td>Nanoparticles, containing both paclitaxel and P-gp targeted siRNA, showed effective MDR1 gene silencing & the improved accumulation of paclitaxel in drug-resistant cells.</td>
<td></td>
</tr>
<tr>
<td>T24 cells (human bladder cancer cells)</td>
<td>Emodin, Cisplatin</td>
<td>MRP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H460 cells (human large cell lung carcinoma cells)</td>
<td>Sulindac, Doxorubicin</td>
<td>MRP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JC cells (mouse primary mammary gland adenocarcinoma cells)</td>
<td>Paclitaxel, Poly(D,L-lactide-co-glycolide) nanoparticles</td>
<td>P-gp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Orthotopic implantations

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Inhibitors/Drugs</th>
<th>Efflux Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF-7/DOX cells (human breast cancer cells)</td>
<td>Nelfinavir (inhibitor), Doxorubicin</td>
<td>P-gp</td>
</tr>
<tr>
<td>MCF-7/DOX cells (human breast cancer cells)</td>
<td>Co-exposure to the anti-HIV-drug nelfinavir enhanced the antitumor efficacy of doxorubicin.</td>
<td></td>
</tr>
<tr>
<td>MDA-MB-231 cells (human breast cancer cells)</td>
<td>Curcumin, Paclitaxel, Cisplatin, Doxorubicin</td>
<td>ABCG2, ABCC1</td>
</tr>
<tr>
<td>MDA-MB-231 cells (human breast cancer cells)</td>
<td>Curcumin downregulated ABCG2 and ABCC1 expression. Curcumin enhanced the sensitivity of the cancer to paclitaxel, cisplatin, doxorubicin & mitomycin C.</td>
<td></td>
</tr>
</tbody>
</table>

Patient-derived xenografts

Subcutaneous implantations

<table>
<thead>
<tr>
<th>Tumour Type</th>
<th>Inhibitors/Drugs</th>
<th>Efflux Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small cell lung cancer</td>
<td>Cyclophosphamide, Cisplatin, Doxorubicin, Etoposide, Verapamil (inhibitor)</td>
<td>P-gp / MDR1</td>
</tr>
<tr>
<td>Human colorectal tumours</td>
<td>PF-309 (inhibitor)</td>
<td>P-gp / ABCB1 gene</td>
</tr>
<tr>
<td>Merkel cell carcinoma (MCC)</td>
<td>Carboplatin, Etoposide</td>
<td>ABCB5</td>
</tr>
<tr>
<td>Merkel cell carcinoma (MCC)</td>
<td>The co-administration of verapamil enhanced the antitumor efficacy of CyCav treatment regimen. PF-309 efficacy is affected by the expression of P-gp in tumours. MCC cancers showing carboplatin and etoposide resistance, had high ABCB5 expression levels. Tumour growth was reduced by the reversal of drug resistance, through the administration of ABCB5 blockade.</td>
<td></td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td>Etoposide, Carboplatin, Gemcitabine, Paclitaxel, Erlotinib</td>
<td>BCRP, MDR1, MRP1</td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td>A low correlation between BCRP expression & PDX response to etoposide was found. No other efflux transporter expression levels were correlated to any drug responses in vivo.</td>
<td></td>
</tr>
<tr>
<td>Retinoblastoma (eye cancer)</td>
<td>Topotecan, Melphalan</td>
<td>ABCB1, ABCC1, ABCG2</td>
</tr>
<tr>
<td>Retinoblastoma (eye cancer)</td>
<td>The single exposure to melphalan or topotecan did not influence the expression levels of the efflux transporters in the PDXs.</td>
<td></td>
</tr>
</tbody>
</table>
Genetically engineered mouse models

Knock-in mice

| mdr1a/JLUC knock-in mice | MDR1 | • Paclitaxel
| • Docetaxel
| • Pregnenolone-16α-carbonitrile (PCN) |
| • By inserting a firefly luciferase (fLUC) gene into the mdr1a locus of the murine host, luminescence intensities could be accurately detected. | [199] |

Knockout mice

| Mdr1a/1b⁻/⁻ double knockout mice | P-gp / ABCB1, MRP2 / ABCC2, BCRP / ABCG2 | • BMS-275,183 (analogue of paclitaxel)
| • Pantoprazole (proton pump inhibitor) |
| • Topotecan |
| • By genetically deleting P-gp, it was shown that P-gp plays a role in the pharmacokinetics & brain distribution of BMS-275,183. | [198]
| • The distribution of the anticancer drug, topotecan, is restricted by the Mrp4 transporter. | [197]
| • The overexpression of Mrp4 causes topotecan resistance. |
| • Methotrexate is a good substrate for Mrp4, whereas irinotecan is poorly effluxed. | [237] |

| Mrp4⁻/⁻ knockout mice | MRP4 | • Topotecan |

| Mdr1a/b/Mrp2⁻/⁻ triple knockout mice | P-gp / MDR1, MRP2 | • Irinotecan
| • Methotrexate
| • Doxorubicin |
| • Doxorubicin resistance is caused by increased expression of the Mdr1 gene encoding P-gp. | [238]
| • The third-generation P-gp inhibitor, tariquidar, can reverse this resistance. |
| • The up-regulation of P-gp induced acquired resistance to AZD2281. | [195] |

| Doxorubicin-sensitive & doxorubicin-resistant Brca1⁻/⁻;p53⁻/⁻ tumours in K14cre;Brca1^{F/F};p53^{F/F} mice | MDR1 | • Doxorubicin
| • Tariquidar |

| Brcal⁻/⁻;p53⁻/⁻ tumours in K14cre;Brca1^{F/F};p53^{F/F} mice | P-gp / Abcb1^a and Abcb1^b | • Doxorubicin
| • AZD2281 (inhibitor)
<p>| • Tariquidar (inhibitor) |

| • The addition of the P-gp inhibitor, tariquidar, reversed this resistance. | [195] |</p>
<table>
<thead>
<tr>
<th>Alleles Bred with</th>
<th>Drug(s) Transported</th>
<th>Transporters Involved</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abcg2-deleted alleles bred with K14cre;Brca1<sup>F/F</sup>;p53<sup>F/F</sup> mice</td>
<td>Topotecan</td>
<td>BCRP / ABCG2</td>
<td>ABCG2 contributes to topotecan resistance in vivo. [196]</td>
</tr>
<tr>
<td>Slco1a/1b<sup>−/−</sup>;1A2<sup>tg</sup>, Slco1a/1b<sup>−/−</sup>;1B1<sup>tg</sup>, Slco1a/1b<sup>−/−</sup>;1B3<sup>tg</sup> mice</td>
<td>Paclitaxel, Methotrexate</td>
<td>OATP1B1, OATP1B3, OATP1A2</td>
<td>Methotrexate is a substrate of all three human OATP1A/B transporters. Paclitaxel is transported by OATP1B3 and OATP1A2, but not OATP1B1. [239]</td>
</tr>
</tbody>
</table>
REFERENCES

Efflux-based models for anticancer screening Current Cancer Drug Targets, 2019, Vol. 0

Efflux-based models for anticancer screening | Current Cancer Drug Targets, 2019, Vol. 0

[77] Li, A.P.; Uzgare, A.; LaForge, Y.S. Definition of metabolism-dependent xenobiotic toxicity with co-cultures of human hepatocytes and mouse 3T3 fibroblasts in the novel integrated discrete multiple organ co-culture (IdMOC) experimental system. Results with model toxicants aflatoxin B1, cyclophosphamide and tamoxifen. Chem.-Biol. Interact., 2012, 196(1), 1-8.

A novel system for Efflux-based models for anticancer screening Current Drug Targets, 2019, Vol. 0

Efflux-based models for anticancer screening Current Drug Targets, 2019, Vol. 0

Efflux-based models for anticancer screening Current Cancer Drug Targets, 2019, Vol. 0

Efflux-based models for anticancer screening Current Cancer Drug Targets, 2019, Vol. 0

Efflux-based models for anticancer screening Current Cancer Drug Targets, 2019, Vol. 0

Chapter 4
Preliminary anticancer efficacy screening

4.1. Introduction

A decreased therapeutic response towards chemotherapy in cancer management is frequently caused by multidrug resistance (MDR). In overcoming MDR, the general therapeutic response in human malignancies can be increased (Mbaveng et al., 2017; Stark & Assaraf, 2017). Many people, especially in Africa, rely on plant remedies for treating diseases such as cancer (Mbele et al., 2017). The anticancer efficacy of these plant extracts can be evaluated in cultured mammalian cells through cell inhibition assays, and an IC\textsubscript{50} value (the concentration of the extracts which result in a 50% reduction in cancer cell viability) can be calculated (Casuga et al., 2016). Several assays are available for cytotoxicity testing, but the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay is largely considered the pillar of cytotoxicity assays and is frequently used for high-throughput screening of medicinal plant extracts (Van Tonder et al., 2015).

The principle of the MTT assay lies in the enzymes, such as dehydrogenases and mitochondrial nicotinamide adenine dinucleotide phosphate (NADP) hydrogen (H)-dependent oxidoreductases, present in metabolically active cells. These enzymes can reduce yellow tetrazolium salts to purple formazan crystals, which enables detection of metabolically active cells (Mosmann, 1983; Berridge et al., 2005). The MTT assay is known to be a rapid and simplistic method with high levels of effectiveness (Bahuguna et al., 2017; Präbst et al., 2017). However, the conversion of the salt to formazan crystals depends on the metabolic rate of the cells and the number of mitochondria present, and it is possible that the plasma membrane may be injured due to the needle shaped formazan crystals (Lü et al., 2012; Van Tonder et al., 2015). The reduction of the MTT salt has been shown to differ between several cell lines, and the amount of MTT being reduced has been shown to decrease as the cell culture ages (Vistica et al., 1991). Furthermore, the phytochemicals in plant extracts may interact with the MTT compound through antioxidant activity, which can cause false positive results (Karakaş et al., 2017).

Despite these limitations, the MTT assay is still widely used in cancer research and for the screening of phytochemicals. The cytotoxic effects of fascaplysin (a natural product with anticancer activity) was determined to be between 134 and 1 740 nM against a panel of non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC) and human embryonic kidney cells (HEK293) (Hamilton, 2014). The combination of paclitaxel and curcumin in a multifunctional nanomedicine-based drug delivery system was also examined in a breast cancer cell line expressing P-glycoprotein (P-gp)
(MCF-7/ADR) using MTT (Baek & Cho, 2017). Recently, the anticancer properties of several Indian medicinal plant extracts were also determined with the MTT assay (Nile et al., 2017).

In this study, the MTT assay was used as a cost effective screening method to determine the range of anticancer efficacy of three selected traditional medicinal plant, namely Aloe vera (gel material and polysaccharides fraction), Sutherlandia frutescens and Xysmalobium undulatum. From this investigation IC_{50} values were determined statistically for use in subsequent more advanced evaluations, presented in Chapter 5.

4.2. Materials and methods

4.2.1. Experimental approach

The anticancer potential of the selected plant material were evaluated with the MTT assay after exposure to a concentration range of each selected crude plant extract for 96 h. The relative cell inhibition values were then used to calculate IC_{50} ranges for each crude extract, in each cell line. The mammalian cell lines included in this study consisted of LLC-PK1 porcine kidney cells as a non-cancerous control, and three human SCLC cell lines – H69V (chemosensitive), H69AR (this cell line is considered multidrug resistant due to the overexpression of the multidrug resistance-associated protein 1 (MRP1)) and NCI-H69/LX4 (this cell line is also multidrug resistant, given that it is P-gp hyperexpressive).

4.2.2. Materials and reagents

Raw powdered plant material of S. frutescens (SFFW) and X. undulatum (XU174) were purchased from Afrinatural holdings (Prestige Laboratory Supplies CC, KwaZulu-Natal, South Africa). The A. vera gel material (Daltonmax 700® #7004Q11PK01), was supplied by Improve, USA, Inc (Texas, USA). The polysaccharides of A. vera used in this study were previously precipitated for the Daltonmax 700® gel material (Beneke et al., 2013). The European Collection of Authenticated Cell Cultures (ECACC) was the authorised supplier for both the H69V (ECACC; #91091803) and NCI-H69/LX4 (ECACC; #96042329) cell lines. The American Tissue Culture Collection (ATCC) supplied the H69AR (ATCC®; #CRL-11351™) and LLC-PK1 (ATCC®; #CL-101™) cell lines. The culture medium used included Roswell Park Memorial Institute (RPMI) 1640 (Gibco, #A10491-01 and #11835-063; Thermo Fisher Scientific, Johannesburg, South Africa) and Dulbecco's Modified Eagle's medium (DMEM) (HyClone, #SH30243.01; Separations, Johannesburg, South Africa). Culture medium supplements included foetal bovine serum (FBS) (Gibco, #10270-106; Thermo Fisher Scientific, Johannesburg, South Africa), L-glutamine (Lonza, 200 mM, #BE17-605E; Whitehead Scientific, Cape Town, South Africa), non-essential amino acids (NEAA) (Lonza, 100X, #BE13-114E; Whitehead Scientific, Cape Town, South Africa), penicillin/streptomycin (Pen/Strep) (Lonza, 10 000 Penicillin U/ml/ 10 000 Streptomycin U/ml, #DE17-602E; Whitehead Scientific, Cape
Town, South Africa) and doxorubicin hydrochloride (DOX) (#D1515; Sigma-Aldrich (Pty) Ltd, Johannesburg, South Africa). Other reagents used during sub-culturing were purchased from Whitehead Scientific (Cape Town, South Africa) and included trypsin-ethylenediaminetetraacetic acid (EDTA) (Lonza, #BE17-161F), and phosphate-buffered saline (PBS) (HyClone, 1X, #SH30256.01). Trypan blue (#T8154) was obtained from Sigma-Aldrich (Johannesburg, South Africa). The adherent cell lines were seeded in flat bottom 96-well plates (Costar®, #3596, Corning Incorporated, New York, United States of America), whereas V-bottom 96-well plates (Costar®, #3894, Corning Incorporated, New York, USA) were used to seed the suspension cell line. Thiazolyl blue tetrazolium bromide powder (#M5655), Triton X-100 (#SLBB1491V) and dimethyl sulfoxide (DMSO) (#SHBJ4602) were purchased from Sigma-Aldrich, Johannesburg, South Africa.

4.3. Crude plant extract preparation

Traditionally, aqueous decoctions of *S. frutescens* and *X. undulatum* are prepared and used as a hot beverage for the treatment of several illnesses, including cancer (Van Wyk et al., 2009; Vorster et al., 2012). To investigate the anticancer efficacy of the plants selected for this study it was, therefore, decided to prepare a crude aqueous extract to mimic these traditional ethno-botanical decoctions more closely.

4.3.1. *Aloe vera* gel material and precipitated polysaccharides

The *A. vera* gel material was supplied in a powder form, and no additional preparation techniques was done on the gel fraction. The polysaccharides were previously precipitated from *A. vera* Dalton Max700® by means of centrifugal separation at 4000 rpm for 10 min, followed by washing with 80% ethanol (v/v), and finally lyophilised (Beneke et al., 2013). The amount of aloveros, a known marker molecule was quantified in 2018 (Table 4.2).

4.3.2. *Sutherlandia frutescens*

An aqueous plant suspension of *S. frutescens* was prepared at a ratio of 1:10 (product:water). For each 10 g raw powder, 100 ml distilled water was added and the suspension was sonicated at 45°C for 45 min in a digital Eumax® ultrasonic cleaner (Labotec, Midrand, South Africa). Following sonication, the suspension was centrifuged at 5 000 x g for 10 min in a Sigma 3-16 KL Laborzentrifugen (Germany). The supernatant was collected and the pellet was re-suspended in water, followed by the same sonication and centrifugation conditions as above. The combined supernatants were centrifuged at 1 218 x g for 5 min, followed by filtration of the supernatant. The filtration was performed through Whatman™ filtration paper with a pore diameter of 125 mm (Whatman™, #1114125, Sigma, Johannesburg, South Africa). The collected filtrate was frozen overnight in a -86°C freezer (Forma Scientific, Marietta OHIO, USA), and following lyophilisation in a Virtis freeze dryer (SP Scientific, Gardiner, New York, USA) it was powdered with a mortar and pestle and stored in a desiccator until further use.
4.3.3. *Xysmalobium undulatum*

An aqueous suspension of *X. undulatum* was prepared in a 1:10 product to water ratio in distilled water. The suspension was sonicated at 45°C for 45 min before centrifugation for 10 min at 5 000 x g. The supernatant was collected and the pellet was re-suspended in water, and the sonication and centrifugation repeated. The combined supernatants were then filtered through 125 mm filtration paper (Whatman™, #1114125, Sigma, South Africa) and frozen overnight at -86°C. The frozen plant extract was lyophilised, crushed with a mortar and pestle to powder and kept in a desiccator for further experiments.

4.4. Chemical fingerprinting of the crude aqueous extracts

All crude extracts prepared from plant material need to be chemically characterised. This enables the identification, comparison and detection of the main active phytochemicals in the prepared crude aqueous extracts. The ultra-performance liquid chromatography (UPLC) analyses were performed by Prof. A Viljoen (Tshwane University of Technology, South Africa), while nuclear magnetic resonance H-NMR spectroscopy of the *A. vera* gel was done previously (Beneke et al., 2012). The H-NMR spectroscopy of the *A. vera* polysaccharide was done by Spectral service (Cologne, Germany).

4.4.1. *Aloe vera* (gel material and precipitated polysaccharides)

The NMR fingerprinting of the *A. vera* gel material included identification of several marker molecules, including aloverose (referred to as either acemannan or partly acetylated polymannose), malic acid, glucose and citric acid. The quantified marker molecules are listed in Table 4.1.

Table 4.1: The chemical fingerprint of *A. vera* gel material by means of H-NMR spectroscopy as adapted from (Beneke et al., 2012)

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Concentration [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aloeverose</td>
<td>15.200</td>
</tr>
<tr>
<td>Glucose</td>
<td>9.800</td>
</tr>
<tr>
<td>Malic acid</td>
<td>20.700</td>
</tr>
<tr>
<td>Citric acid</td>
<td>2.000</td>
</tr>
</tbody>
</table>

The chemical fingerprinting of the precipitated polysaccharides detected the following marker molecules: aloverose, glucose, malic acid, citric acid and calcium. The quantification of these marker molecules are presented in Table 4.2.
Table 4.2: Quantification of selected components following chemical fingerprinting of the A. vera precipitated polysaccharide fraction with H-MNR spectroscopy

<table>
<thead>
<tr>
<th>Concentration [%] of selected constituents in the precipitated polysaccharide fraction of the A. vera gel material (Daltonmax700®)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aloverose</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>47.1</td>
</tr>
</tbody>
</table>

4.4.2. Sutherlandia frutescens

Prior to the UPLC analysis a sample of the S. frutescens extract was prepared (2 ml of methanol and 2 mg of freeze-dried powder). The sample was sonicated for 10 min and syringed filtered (0.2 μm filter). Through UPLC a cycloartane-like triterpene glycoside (SU1) marker molecule was identified. The UPLC analysis of S. frutescens aqueous extract was performed on a Waters Acquity UPLC system, equipped with a photodiode array (PDA) detector (Waters, Milford, MA, USA) and an Acquity UPLC BEH C18 column (150 mm × 2.1 mm, i.d., 1.7 μm particle size, Waters) maintained at 40°C. The mobile phase consisted of (A) 0.1% formic acid in water and (B) acetonitrile, at a flow rate of 0.35 ml/min and an injection volume of 5.0 μl (full-loop injection). A gradient elution was used at 80% (A): 20% (B) for the first 0.5 min, changing to 40% (A): 60% (B) in 13 min, adjusting to 100% (B) in 2.5 min, holding for 1 min and back to the initial ratio in 1 min. Mass spectrometry was operated in negative ion electrospray mode. The desolvation gas used was N₂, at a temperature of 350°C, a flow rate of 500 l/h and the source temperature was set to 100°C. The capillary and cone voltages were set to 2 500 and 45 V, respectively. Scans were collected throughout the run between 100 and 1 500 m/z.

4.4.3. Xysmalobium undulatum

The UPLC analysis of X. undulatum aqueous extract was performed on a Waters Acquity UPLC system with a PDA detector as described for S. frutescens, with the following variations. The sample prepared for the UPLS consisted of 2 mg of X. undulatum freeze-dried material and 2 ml of methanol which was sonicated for 10 min and syringe filtered (0.2 μm). The mobile phase consisted of 0.1% formic acid in water (solvent A) and acetonitrile (solvent B) at a flow rate of 0.3 ml/min. The gradient elution was as follows: 85% A: 15% B to 65% A: 35% B in 10 min, changed to 50% A: 50% B in 0.5 min, keeping for 1 min and back to initial ratio in 0.5 min. The running time was 12 min. The samples were injected in the mobile phase at an injection volume of 2.0 μl (full-loop injection). Mass spectrometry was operated in positive ion electrospray mode, and the desolvation temperature was set to 250°C at a flow rate of 600 l/h. The capillary and cone voltages were set to 3 000 and 40 V, respectively. Data were collected between 100 and 1 000 m/z.
4.5. Mammalian cell culture models

4.5.1. Culturing and sub-culturing procedures

4.5.1.1. Culturing of the H69V adherent cell line

The H69V cell line was cultured in RPMI 1640 (#11835-063) culture medium, supplemented with 10% FBS, 2 mM L-glutamine, 1% NEAA and 1% Pen/Strep. Cells were incubated at 37°C in 5% CO₂ and 95% humidified air in an ESCO CelCulture CO₂ incubator (ESCO Micro Pte Ltd, Changi, Singapore). The culture medium was replaced every third day, and an inverted light microscope (Nikon Eclipse TS100/TS100F, Nikon Instruments, Tokyo, Japan) was used to observe the cell confluence. Cells were sub-cultured at approximately 80% confluence, following trypsinisation. The spent culture medium was removed, followed by rinsing with 10 ml PBS, twice. The cells were trypsinised in 3 ml trypsin at 37°C, for 4 min. Cells were agitated to aid detachment, and 1 ml FBS together with 5 ml of culture medium was added. The cell suspension was transferred to a 15 ml centrifuge tube and centrifuged for 5 min at 140 \times g. The supernatant was decanted and 5 ml culture medium was used to re-suspend the cell pellet. The cell suspension was subcultured into new flasks, usually at a ratio between 1:4 and 1:10, and culture media was added to a final volume of 15 ml per flask. The H69V cells used for experimental work were between passages 13 and 18.

4.5.1.2. Culturing of the H69AR adherent cell line

The multidrug resistant H69AR cell line was cultured in RPMI 1640 (#A10491-01) culture medium, supplemented with 1% NEAA, 20% FBS, 1% Pen/Strep and 2 mM L-glutamine. Cells were incubated with 5% CO₂ and 95% humidified air at 37°C. Culture medium was exchanged every second day. The cells were sub-cultured at approximately 80% confluence, following trypsinisation as described for the H69V cells. The H69AR cells used for experiments were between passages 5 and 9.

4.5.1.3. Culturing of the NCI-H69/LX4 suspension cell line

The P-gp hyperexpressive NCI-H69/LX4 cell line was cultured in RPMI 1640 (#11835-063) culture medium with additional 10% FBS, 1% NEAA, 1% Pen/Strep, 2 mM L-glutamine and DOX (0.4 µg/ml). The culture medium was replaced every second day, and cells were incubated at 37°C, with 5% CO₂ and 95% humidified air. Since this cell line forms aggregates in suspension, the cells were centrifuged before replacing the culture medium. A serological pipette was used to transfer the whole cell suspension from the cell culture flask to a 15 ml centrifuge tube, and centrifuged (Hettich, Tuttingen, Germany) for 5 min at 200 \times g. If the cells started to adhere to the flask surface, a cell scraper was used to loosen them before transfer. The supernatant was decanted and 5 ml of culture medium was used to re-suspend the cells, before transferring them to a new flask. An additional 10 ml of culture medium was added to the flask.
At approximately 80% cell confluence, the suspension cell line was sub-cultured after the culture flask was scraped. The cell suspension was transferred to a 15 ml centrifuge tube and centrifuged for 5 min at 200 x g. The supernatant was decanted and the pellet was re-suspended in 5 ml culture medium. The cell suspension was divided according to the desired sub-culturing ratio (never more than 1:3) and the culture medium adjusted accordingly. NCI-H69/LX4 cells were used for experimental work between passages 6 and 18.

4.5.1.4. Culturing of the LLC-PK1 adherent cell line

LLC-PK1 cells were cultured in DMEM (high glucose) culture medium with the following additives: 1% NEAA, 10% FBS, 1% Pen/Strep and 2 mM L-glutamine. The culture medium was replaced every second day, and the culturing conditions consisted of a humidity of 95%, with 5% CO₂ at 37°C. Cells were sub-cultured at approximately 80% confluence following trypsinisation as described for the other cell lines, although the flask was incubated for 9 - 10 min after addition of the trypsin. LLC-PK1 cells were used for experimental work between passages 13 and 16.

4.6. Seeding of cells in 96-well plates

The SCLC cell line is known to have a short doubling time and a rapid growth rate, allowing SCLC cells to act as an aggressive cancer (Tang et al., 2016). The cell viability reducing properties of the plant extracts were to be evaluated through comparison with normal physiological cellular growth over a time period of 96 h. The 96 h time frame is comparable to literature, including a study conducted by Mirza et al. (2013) where the cytotoxicity of various natural compounds on breast cancer cells was tested by means of MTT after 96 h exposure. The normal physiological growth pattern of each of the selected cell lines was first evaluated, as well as the optimal seeding density to obtain an 80% confluence at 96 h, before seeding the 96-well plates.

Prior to seeding cell suspensions were prepared as described above, followed by cell counting. The adherent cell lines were counted with a haemocytometer (Marienfeld-Superior, 0.0025 mm², Germany), by loading 10 μl of cell counting solution (prepared with 25 μl trypan blue, 15 μl PBS and 10 μl cells) in each counting chamber. The final seeding concentrations were prepared and 200 μl cell suspension pipetted per well into flat bottom 96-well plates. The outer wells of each plate were filled with 200 μl PBS to reduce the edge effect, and the plates were incubated at 37°C, 5% CO₂ and 95% humidified air.

The suspension cell line was counted with an automated Millipore Scepter™ 2.0 (Millipore Corporation, Billerica, USA) with 60 μm sensors (#PHCC60050, Sensors, Merck, USA). A 1:10 dilution of the cell suspension was prepared with PBS, and the cell count/ml determined with the Scepter™ 2.0, followed by adjusting for the dilution factor. Cells were subsequently seeded in V-bottom 96-well plates.
Cells were seeded in 96-well plates at the following cell densities: H69V at 7 000 cells/well, H69AR at 16 000 cells/well, LLC-PK1 at 7 000 cells/well and NCI-H69/LX4 at 30 000 cells/well.

4.7. Preparation of plant solutions for cytotoxicity assays

The medicinal plant solutions were freshly prepared daily and preheated to 37ºC before adding to the cells at experimentally selected concentrations.

4.7.1. Aloe vera (gel material and precipitated polysaccharides)

A 1 mg/ml A. vera gel material and polysaccharide stock solution was prepared in the various cell culture mediums, using a volumetric flask. The solutions were vortexed using a Lasec vortex mixer (Benchmark Scientific Inc, Edison, New Jersey, USA) and placed in a water bath (Grant Instruments Ltd, Cambridge, UK) to form a homogeneous solution. The 1 mg/ml stock solutions of both the gel material and polysaccharides were pasteurised before preparing the final concentrations in the relevant culture mediums, and these concentrations ranged between 0.008 and 1 mg/ml. The pasteurisation was done by heating the stock solution for 15 sec. at 73ºC, followed by immediate cooling to 9ºC in an ice bath (monitoring the temperature with a Digitron thermometer (Digitron, 2088T, Sifam Instruments Limited Torquay, England)).

4.7.2. Sutherlandia frutescens

S. frutescens stock solutions of 8 mg/ml was prepared with the various cell culture mediums in volumetric flasks. The final stock solution was vortexed and filter sterilised using a 0.22 µm syringe filter. The final concentrations were prepared with the various culture mediums, and ranged between 0.05 - 8 mg/ml.

4.7.3. Xysmalobium undulatum

The stock solutions of 3.5 mg/ml X. undulatum were prepared in the various growth mediums in volumetric flasks. The stock solution was vortexed, followed by filtration through a 0.22 µm syringe filter. The final concentrations were prepared with the various culture mediums, and ranged between 0.008 - 3.5 mg/ml.

4.8. MTT cytotoxicity assay

The MTT assay method to determine the relative percentage cell viability was adapted from Wentzel et al. (2017). After seeding in the 96-well plates, a 24 h incubation period ensured the full recovery of the cells before initiation of the treatments. The 3 adherent cell lines were treated by removing the culture medium from the plates, and then adding the selected crude extract concentrations to each treatment well as 200 µl aliquots (0 h). Culture medium containing the various treatments were replaced daily (24, 48 and 72 h). The untreated control wells (cells not treated with extracts) received fresh supplemented culture medium at the abovementioned time points. The DMSO background
control wells (cells treated only with DMSO to eliminate the background interference) and the dead cell control (cells treated with Triton X-100 after 96 h culture) also received fresh supplemented culture medium at the abovementioned time points. A culture medium background control (non-additive media only) and highest plant concentration control (highest plant extract concentration dissolved in non-additive media) were also included to screen for interference of the extracts with the MTT assay.

After the 96 h period, the dead cell control wells were treated for 15 min with 200 µl of 0.2% Triton X-100 (dissolved in PBS), and then carefully rinsing the wells twice with 100 µl PBS. This was followed by the addition of 180 µl non-additive medium (specific for each line). The rest of the wells containing cells (excluding the DMSO background controls) were rinsed twice with 100 µl PBS, followed by the addition of non-additive medium. Fresh MTT stock solution (5 mg/ml) was prepared in PBS and covered with aluminium foil to prevent light exposure. A volume of 20 µl of MTT stock solution was added to each well (final concentration of 0.5 mg/ml), excluding the DMSO background control wells (Shandiz et al., 2017). The plate was wrapped in aluminium foil and placed onto a compact rocker for 5 min, followed by further incubation at 37°C for 4 h. The medium of each well (except the culture medium background controls and the highest plant concentration controls) was replaced with 200 µl DMSO, followed by shaking for 1 h on the compact rocker. Absorbance was read at 560 and 630 nm using a SpectraMax® plate reader (Paradigm® Multi-Mode Detection Platform, Molecular Devices®, Separations, Gauteng, South Africa).

The suspension line NCI-H69/LX4 in the V-bottom plates were centrifuged at 250 x g for 5 min at 23°C, before replacing the contents of each well as stated above. All the treatment and control wells received DOX-free culture medium to ensure that no herb-drug interactions occurred. Furthermore, after the 96 h exposure period, the plate was centrifuged at 250 x g for 5 min at 23°C. The dead cell control was treated with Triton X-100 for 15 min. All the remaining wells, except the DMSO background control, was rinsed with 100 µl non-additive RPMI 1640 medium, followed by centrifugation at the same conditions as stated above. Subsequently, the 100 µl in each well (excluding the DMSO background control) was replaced with 90 µl non-additive RPMI 1640 medium and 10 µl MTT stock suspension (5 mg/ml). The same incubation period as used for the adherent cell lines was applied. After the 4 h incubation period, the plate was centrifuged at 1 218 x g for 5 min at 23°C, followed by removal of 150 µl of the media in the DMSO background control wells with 150 µl DMSO. In all the remaining wells containing the MTT solution, 50 µl/well was replaced with 150 µl DMSO, and each well was agitated by pipetting. The plate was covered in aluminium foil and incubated for 1 h on a compact rocker. Absorbance was measured at 560 and 630 nm, as described previously.
4.9. Sample quantification

The SpectraMax® plate reader was set to measure the absorbance of the 96-well plates at a wavelength of 560 nm for the sample values, and 630 nm for the background of each well. Each extract’s highest concentration was tested to eliminate the possible interference of the plant material with the measurements of the MTT assay. The cell viability of the untreated control was expected to be 100%, and each sample was expressed as a percentage relative to the untreated control. The DMSO control was used as the blank. Cells treated with Triton X-100 represented a dead control. The percentage cell viability was determined using Equation 1,

\[
\text{Cell viability} \% = \left(\frac{\Delta \text{Sample} - \Delta \text{Blank}}{\Delta \text{Control} - \Delta \text{Blank}} \right) \times 100
\]

Equation 1

where \(\Delta \text{Sample} \) refers to the absorbance of the treated cells at 560 nm with the absorbance of treated cells as 630 nm subtracted. \(\Delta \text{Blank} \) represents the absorbance of the DMSO background control at 560 nm with the absorbance of the DMSO background control at 630 nm subtracted. \(\Delta \text{Control} \) refers to the absorbance of the untreated control at 560 nm after subtraction of the absorbance of the untreated control at 630 nm. The percentage cell inhibition was subsequently calculated with Equation 2.

\[
\text{Cell inhibition} \% = 100 - \text{cell viability} \%
\]

Equation 2

4.10. Statistical analysis

All experiments were performed in triplicate. SPSS statistical analysis software (IBM Analytics, Version 25), in conjunction with the Probit Analysis Method, were used to generate IC\(_{50}\) values and 95% confidence limit ranges for each plant extract on the various cell lines, using the data from the MTT analyses.

4.11. Results and discussion

4.11.1. Chemical characterisation of the plant extracts

4.11.1.1. Aloe vera (gel material and precipitated polysaccharides)

The H-NMR spectra of \(A. \ vera \) gel material is presented in Figure 4.1. As indicated, several marker molecules were detected and identified in the Dalton Max 700\(^{\circledR} \) \(A. \ vera \) gel in varying quantities. A quantitative H-NMR spectroscopy analysis of the \(A. \ vera \) polysaccharides detected 47.1% Aloverose (known polysaccharide) in the sample (Figure 4.2).
Figure 4.1: The H-NMR spectra of *Aloe vera* gel material indicating the presence of several marker molecules according to marker molecule peaks identified by Jiao *et al.*, 2010.

Figure 4.2: The H-NMR spectra of *Aloe vera* precipitated polysaccharides.

4.11.1.2. *Sutherlandia frutescens*

The liquid chromatography-mass spectrometry (LC-MS) chromatogram of the *S. frutescens* crude aqueous extract is shown in Figure 4.3. The presence of the known marker molecule SU1 was confirmed and quantified as 10.1 µg/mg (*n* = 2).
4.11.1.3. *Xysmalobium undulatum*

The chemical characterisation of the *X. undulatum* crude aqueous extract via UPLC analysis is presented in Figure 4.4. The marker molecule, Uzarin, was also identified to be present in the extract.

Figure 4.3: The LC-MS chromatogram of the *Sutherlandia frutescens* crude aqueous extract.

Figure 4.4: The UPLC chromatogram of the *Xysmalobium undulatum* crude aqueous extract.
4.11.2. Cytotoxicity evaluation

4.11.2.1. Aloe vera gel material

4.11.2.1.1. LLC-PK1 - non-cancerous cell line

The relative inhibition of cell viability compared to an untreated control, following treatment of the LLC-PK1 pig embryonic kidney cell line with a concentration series of A. vera gel material, is shown in Figure 4.5.

![Figure 4.5: Inhibition of cell viability relative to an untreated control, following treatment of the LLC-PK1 cell line with a concentration series of A. vera gel material for 96 h (n = 3; error bars = standard deviation). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.](image)

An increase in the viability inhibition of the embryonic kidney cell line, relative to the untreated control, could be observed following treatment with A. vera gel for 96 h in a concentration dependent manner. Treatment with 1.000 mg/ml resulted in complete reduction of viability, comparable to the dead cell control, with almost no viable cells left after 96 h. From results displayed in Figure 4.5, an IC\(_{50}\) value between 0.250 and 0.500 mg/ml was estimated. The MTT results suggested that the maximum non-cytotoxic concentration of A. vera gel against the non-cancerous cells was 0.125 mg/ml (approximately 10% reduction in viability).

It is important, however, to note that the A. vera gel material was administered as a suspension which could have contributed to the increased reduction of cell viability due to an occlusive effect. However, this will need to be clarified through further studies.

4.11.2.1.2. H69V - chemosensitive SCLC cell line

The relative cell viability inhibition of the chemosensitive H69V SCLC cell line following treatment with A. vera gel for 96 h is shown in Figure 4.6. Treatment of this chemosensitive cancerous line
with A. vera gel indicated that concentrations as low as 0.008 mg/ml had a marked inhibitory effect of approximately 25% on cell viability, while complete viability reduction could be observed above 0.500 mg/ml (>95%).

Figure 4.6: Inhibition of cell viability relative to an untreated control, following treatment of the H69V cell line with a concentration series of A. vera gel material for 96 h ($n = 3$; error bars = standard deviation). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.

The cell viability inhibitory effect of A. vera gel material on the H69V cell line appears to follow a typical sigmoidal trend, with the tumoricidal outcome between 0.008 and 0.016 mg/ml forming a plateau. This is followed by a linear, dose-dependent viability reduction (between 0.016 and 0.250 mg/ml) and, finally, another plateau of maximum cell viability reduction beyond 0.250 mg/ml. Comparing the viability inhibition results obtained in this chemosensitive SCLC cell line with the values measured in the non-cancerous LLC-PK1 line, it appears that A. vera gel not only has anticancer potential, but that this potential can possibly be obtained at concentrations which do not appear to have cytotoxic effects towards non-cancerous cells. A study by Im et al. (2016) showed a suppressive effect of A. vera gel towards colitis-associated colon carcinogenesis, which supports the tumoricidal effects of A. vera gel material observed in this study.

4.11.2.1.3. H69AR - multidrug resistant SCLC cell line (MRP1 hyperexpressive)

Aloe vera gel reduced cell viability in the drug resistant H69AR SCLC cell line in a concentration-dependent manner, as determined with the MTT assay (Figure 4.7). A relative viability inhibition of approximately 15% could be observed at a concentration of 0.030 mg/ml, reaching more than 90% after exposure to 1 mg/ml A. vera gel for 96 h.
Figure 4.7: Inhibition of cell viability relative to an untreated control, following treatment of the H69AR cell line with a concentration series of A. vera gel material for 96 h (n = 3; error bars = standard deviation). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.

The IC$_{50}$ value for A. vera gel in the H69AR cell line was estimated between 0.125 and 0.250 mg/ml. These values suggest that although there is still anticancer efficacy in comparison to the LLC-PK1 cells, these effects were considerably lower in the MRP1 hyperexpressive H69AR line than in the chemosensitive cell line. As shown in Figure 4.7, at 0.125 mg/ml the A. vera gel resulted in 44.71% relative inhibition in the H69AR cells, compared to 87.48% in the H69V line.

Firstly, this highlights the resistant nature of this cell line compared to the chemosensitive line. Secondly, it could signify that the constituents in the A. vera gel resulting in the anticancer effects may potentially be MRP1 substrates, since the hyperexpression of the MRP1 transporters decreased the anticancer effects of the A. vera gel.

4.11.2.1.4. NCI-H69/LX4 - multidrug resistant SCLC cell line (P-gp hyperexpressive)

Following treatment of the NCI-H69/LX4 cell line for 96 h with a concentration series of A. vera gel material, a decrease in relative cell viability could once again be observed (Figure 4.8). The anticancer potential of A. vera gel in the NCI-H69/LX4 cell line was achieved in a similar dose-dependent manner as in the H69V and the H69AR cell lines. The estimated IC$_{50}$ value in the NCI-H69/LX4 cell line was between 0.125 - 0.250 mg/ml, similar to that of the MRP1 hyperexpressive cell line. This suggests that some of the active constituents of the A. vera gel may also be P-gp substrates. The A. vera gel fraction has previously been shown to alter the P-gp mediated efflux of cimetidine, suggesting possible P-gp inhibition (Beneke et al., 2013). This may, therefore, have been a result of competitive inhibition, but further studies are needed to evaluate this. The NCI-H69/LX4 cell model shows high standard deviations, which may be attributed to the suspended
growth characteristic of the cell line. The cells may cluster in different densities, resulting in inconsistent drug exposure and large standard deviations.

Figure 4.8: Inhibition of cell viability relative to an untreated control, following treatment of the NCI-H69/LX4 cell line with a concentration series of A. vera gel material for 96 h (n = 3; error bars = standard deviation). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.

4.11.2.1.5. Summary of the A. vera gel material MTT results

The MTT data indicated concentration dependent anticancer efficacy and cytotoxicity of A. vera gel material in the cell lines used for this study. The A. vera gel material demonstrated moderate cytotoxicity in the pig embryonic kidney cell line between 0.025 – 0.500 mg/ml, and therefore limits the use of A. vera against cancer above these concentrations. The resistance of the multidrug resistant efflux transporter hyperexpressive cancer cells towards A. vera was observed through increased IC$_{50}$ ranges, in comparison to that of the chemosensitive cell line. It is evident that the active phytochemicals in the A. vera gel are probable MRP1 and P-gp substrates.

4.11.2.2. Aloe vera precipitated polysaccharides

4.11.2.2.1. LLC-PK1 - non-cancerous cell line

The polysaccharide fraction of A. vera gel material at concentrations between 0.008 and 0.500 mg/ml showed no notable cytotoxic effect with the MTT assay after 96 h on the LLC-PK1 cell line (Figure 4.9). A moderate cell viability reduction of 33.15% did occur at 1.000 mg/ml, however, future studies can be considered to investigate the possibility of an occlusive effect on the cells. The MTT data illustrated in Figure 4.9 did not result in significant cell viability reduction at the tested concentrations for the A. vera polysaccharides on the non-cancerous cell line. Although, statistically, an IC$_{50}$ range between 1.113 and 1.351 mg/ml was predicted (Table 4.3, to be discussed in Section 4.14).
Figure 4.9: Inhibition of cell viability relative to an untreated control, following treatment of the LLC-PK1 cell line with a concentration series of A. vera precipitated polysaccharides for 96 h ($n=3$; error bars = standard deviation). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.

4.11.2.2. H69V - chemosensitive SCLC cell line

The relative cell viability of the H69V line decreased in a concentration dependent manner following treatment with A. vera polysaccharides (between 0.008 and 1.000 mg/ml) after 96 h (Figure 4.10). The anticancer efficacy of the A. vera polysaccharides against the chemosensitive SCLC cell line presented as a typical sigmoidal curve, suggesting an IC$_{50}$ value around 0.200 mg/ml. By comparing the efficacy of A. vera polysaccharides at concentrations between 0.008 and 0.500 mg/ml on both the LLC-PK1 and the H69V cell lines, the A. vera polysaccharides can be suggested to be tumoricidal.

The A. vera polysaccharides at 0.500 mg/ml reduced the cell viability of the H69V cell line up to 81.5%, yet, only 3.0% cell viability reduction occurred at the same concentration in the LLC-PK1 cell line. This supports the possible use of A. vera polysaccharides for cancer management. Acemannan, a polysaccharide previously isolated from A. vera, was reviewed and found to have been used for the treatment of fibrosarcoma in domesticated animals (Sierra-Garcia et al., 2014).
Figure 4.10: Inhibition of cell viability relative to an untreated control, following treatment of the H69V cell line with a concentration series of \textit{A. vera} precipitated polysaccharides for 96 h \((n = 3; \text{ error bars = standard deviation})\). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.

4.11.2.2.3. H69AR - multidrug resistant SCLC cell line (MRP1 hyperexpressive)

The hyperexpression of MRP1 in the H69AR cell line altered the anticancer potency of the \textit{A. vera} polysaccharide fraction. Nevertheless, the anticancer effects observed occurred in a dose-dependent manner (Figure 4.11). The IC\textsubscript{50} value was estimated between 0.500 – 1.000 mg/ml, however, as previously indicated the likelihood of an occlusive effect at concentrations above...

Figure 4.11: Inhibition of cell viability relative to an untreated control, following treatment of the H69AR cell line with a concentration series of \textit{A. vera} precipitated polysaccharides for 96 h \((n = 3; \text{ error bars = standard deviation})\). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.
0.5 mg/ml in the LLC-PK1 cell line can be studied in the future. The *A. vera* precipitated polysaccharides showed anticancer efficacy against MRP1 hyperexpressive cells at concentrations not cytotoxic when tested on the non-cancerous cell line. It is, however, evident that the polysaccharide fraction from *A. vera* may be MRP1 substrates when comparing the cell viability reduction at 0.500 mg/ml in both the chemosensitive and the MRP1 hyperexpressive cell lines.

4.11.2.2.4. NCI-H69/LX4 - multidrug resistant SCLC cell line (P-gp hyperexpressive)

A non-linear proliferation effect was measured between 0.008 and 1.000 mg/ml after treatment of the NCI-H69/LX4 cells with *A. vera* polysaccharides for 96 h (Figure 4.12). The MTT data purported that *A. vera* polysaccharides do not have any anticancer effects towards P-gp hyperexpressive lung cancer cells at concentrations between 0.008 - 1.000 mg/ml. The proliferation effect of the polysaccharides decreased in a concentration dependent manner between 0.008 and 0.064 mg/ml. It is suggested that the P-gp efflux pumps may be saturated at concentrations higher than 0.064 mg/ml, due to the moderate plateau of the proliferation effect observed in Figure 4.12. The proliferation effect of *A. vera* polysaccharides occurred to a larger extent in the NCI-H69/LX4 cell line than in the LLC-PK1 cells, where a 0.34% cell proliferation at 0.008 mg/ml was detected. Thus, the hyperexpression of P-gp transporters may influence the intracellular concentration of the proliferative polysaccharides.

![Figure 4.12](image)

Figure 4.12: Inhibition of cell viability relative to an untreated control, following treatment of the NCI-H69/LX4 cell line with a concentration series of *A. vera* precipitated polysaccharides for 96 h (*n* = 3; error bars = standard deviation). The positive control consisted of cells treated with Triton X-100 (DEAD), while the untreated cells are indicated as UN.

The efflux of cimetidine, a substrate for P-gp transporter, was previously shown to be inhibited by the co-administration of *A. vera* polysaccharides (Beneke *et al.*, 2013). By comparing the relative cell viability reduction of the MRP1 hyperexpressive H69AR cells to the cell proliferation seen in the
P-gp hyperexpressive cell line, the anticancer compounds in A. vera polysaccharides are suggested to be substrates for P-gp. In theory, if the A. vera polysaccharide active components are P-gp substrates, the possibility arises for its co-administration with known cancer drugs to increase the intracellular concentration of the cancer drug, possibly resulting in increased cell viability reduction. Especially if the cancer drug is susceptible to P-gp efflux.

4.11.2.2.5. Summary of the A. vera precipitated polysaccharide MTT results

It is purported that the polysaccharide fraction of A. vera gel material can cause cytotoxicity at concentrations higher than 0.500 mg/ml, although concentrations between 0.008 and 1.000 mg/ml did not inhibit viability significantly in either the LLC-PK1 or the NCI-H69/LX4 cell line. This suggests both a low level of cytotoxicity and insufficient anticancer efficacy towards P-gp hyperexpressive cancer cells. Nevertheless, cell viability reduction was detected in both the chemosensitive and MRP1 hyperexpressive cell lines. The A. vera polysaccharides are, therefore, suggested to be P-gp substrates rather than MRP1 substrates.

4.11.2.3. Sutherlandia frutescens

4.11.2.3.1. LLC-PK1 - non-cancerous cell line

The cytotoxic potential of the S. frutescens crude aqueous extract was evaluated after a 96 h period of exposure to a concentration range of 0.200 – 8.000 mg/ml in the LLC-PK1 cell line (Figure 4.13). The relative cell inhibition graph displays a non-cytotoxic plateau effect between 0.200 and 6.000 mg/ml, indicating no cellular viability inhibition. However, an IC₅₀ value was estimated at concentrations greater than 8.000 mg/ml. The cytotoxic effects of S. frutescens occurred in a dose dependent manner at concentrations above 6.000 mg/ml. These findings of the MTT data are in accordance with a study conducted by Stander et al. (2009), where a 10.000 mg/ml aqueous S. frutescens extract (obtained from the Karoo regain in South Africa) inhibited 54% cell growth of a normal mammary gland cell line (MCF-12A). The difference in concentrations resulting in a 50% cell viability reduction is most probably a result of the different target tissue, or demographical differences in the collection sites of the plant material. These differences are highlighted by another study, where the cell viability of the MCF-12A cell line was estimated at 93.22% after 48 h of treatment with a 1 mg/ml aqueous S. frutescens extract (Vorster et al., 2012).
Figure 4.13: Inhibition of cell viability relative to an untreated control, following treatment of the LLC-PK1 cell line with a concentration series of *S. frutescens* for 96 h (n = 3; Error bars = standard deviation). The positive control consisted of cells treated with TritonX (DEAD), while the untreated cells are indicated as UN.

4.11.2.3.2. H69V - chemosensitive SCLC cell line

The anticancer potential of *S. frutescens* extract was screened in the chemosensitive cell line at concentrations between 0.100 – 5.000 mg/ml (Figure 4.14). *S. frutescens* demonstrated anticancer efficacy in a concentration dependent manner between 0.250 and 3.500 mg/ml, although, a plateau effect was observed at concentrations higher than 2.500 mg/ml. The chemosensitive cell line appeared much more susceptible towards *S. frutescens* in comparison with the LLC-PK1 cell line, since concentrations between 0.250 and 3.500 mg/ml did not decrease the cell viability of the LLC-PK1 cell line in a considerable manner. In a study conducted by Vorster *et al.* (2012), a 1.000 mg/ml aqueous *S. frutescens* extract resulted in 51.9% cell growth inhibition in a breast cancer cell line (MCF-7) after 48 h. In the current study, 1.000 mg/ml extract resulted in approximately 80% cell viability reduction in the chemosensitive cell line after 96 h treatment. It is suggested that the anticancer efficacy of *S. frutescens* may therefore be determined by both the exposure time of the extract to the cells, and the tumour type.

4.11.2.3.3. H69AR - multidrug resistant SCLC cell line (MRP1 hyperexpressive)

A concentration dependent anticancer effect of *S. frutescens* extract was observed between 0.250 and 5.000 mg/ml after 96 h treatment in the H69AR cell line, as illustrated in Figure 4.15. In this sigmoidal shaped graph, a plateau effect was observed from 3.500 mg/ml at the maximum level of cell viability reduction as established in the dead cell control. The concentrations screened against the H69AR cell line indicated no significant cytotoxicity in the non-cancerous cell line, while demonstrated a higher level of resistance towards *S. frutescens* than the H69V cell line. The increased IC$_{50}$ range in comparison to the H69V cell line, suggests the active phytochemicals in the
crude *S. frutescens* extract to be MRP1 substrates. A triterpenoid glycoside namely Sutherlandioside B, present in the *S. frutescens* plant, was previously also found to possibly be both a P-gp and MRP substrate (Madgula *et al*., 2008).

4.11.2.3.4. NCI-H69/LX4 - multidrug resistant SCLC cell line (P-gp hyperexpressive)

The anticancer potential of *S. frutescens* crude aqueous extract was screened in the NCI-H69/LX4 cell line between 0.050 and 5.000 mg/ml after 96 h treatment, as shown in Figure 4.16. The MTT data suggest that the anticancer effects of *S. frutescens* occur in a concentration dependent manner against the P-gp hyperexpressive cell line. The influence of P-gp hyperexpression on the *S. frutescens* extract efficacy is demonstrated by the increased IC$_{50}$ range in the NCI-H69/LX4 cell line, compared to a lower IC$_{50}$ range detected in the chemosensitive cell line. The differences between detected IC$_{50}$ ranges of the H69AR and NCI-H69/LX4 lines also suggest the active phytochemicals in the *S. frutescens* extract to have a lower affinity for the P-gp efflux transporter. However, *S. frutescens* was previously shown to inhibit intestinal P-gp efflux (Ondieki *et al*., 2017). The overall findings indicated the NCI-H69/LX4 cell line to be less resistant to *S. frutescens* than the H69AR cell line. The NCI-H69/LX4 cell model showed moderate variation, with high standard deviations between 0.050 and 0.090 mg/ml, which may be a result of the non-uniform cell clusters.
Figure 4.14: Inhibition of cell viability relative to an untreated control, following treatment of the H69V cell line with a concentration series of *S. frutescens* for 96 h (n = 3; Error bars = standard deviation). The positive control consisted of cells treated with Triton X (DEAD), while the untreated cells are indicated as UN.
Figure 4.15: Inhibition of cell viability relative to an untreated control, following treatment of the H69AR cell line with a concentration series of *S. frutescens* for 96 h ($n = 3$; Error bars = standard deviation). The positive control consisted of cells being treated with Triton X (DEAD), while the untreated cells are indicated as UN.
Figure 4.16: Inhibition of cell viability relative to an untreated control, following treatment of the NCI-H69/LX4 cell line with a concentration series of S. frutescens for 96 hours (n = 3; Error bars = standard deviation). The positive control consisted of cells treated with Triton X (DEAD), while the untreated cells are indicated as UN.
4.11.2.3.5. Summary of the *S. frutescens* MTT results

The non-cancerous cell line demonstrated reduced cell viability at *S. frutescens* concentrations greater than 6.000 mg/ml. This potential anticancer efficacy of *S. frutescens* crude aqueous extract followed a typical sigmoidal trend when screened in the three SCLC cell lines. The anticancer efficacy of the crude *S. frutescens* extract is suggested to be influenced by the exposure period and the cancer tissue characteristics. The phytochemicals in the aqueous *S. frutescens* extract are proposed to be MRP1 substrates, rather than P-gp substrates.

4.11.2.4. *Xysmalobium undulatum*

4.11.2.4.1. LLC-PK1 – non-cancerous cell line

The cytotoxic potential of the *X. undulatum* crude aqueous extract after 96 h exposure was investigated in the non-cancerous control cell line, as indicated in Figure 4.17. The decreased relative cell viability observed was dose dependent between 0.006 – 0.500 mg/ml. A plateau at maximum cytotoxic effect was observed above 0.300 mg/ml *X. undulatum*. An IC\textsubscript{50} value was estimated to be approximately 0.008 mg/ml.

4.11.2.4.2. H69V – chemosensitive SCLC cell line

In Figure 4.18, the anticancer effect of *X. undulatum* on the chemosensitive SCLC cell line was illustrated in a dose dependent manner between 0.0004 and 0.1000 mg/ml after 96 h exposure. The graph shows a plateau of maximum cell viability reduction at concentrations above 0.0500 mg/ml. The anticancer effect of *X. undulatum* occurred at concentrations suggested to be cytotoxic for the non-cancerous LLC-PK1 cell line. Yet, a lower IC\textsubscript{50} range between 0.004 - 0.007 mg/ml was estimated for the H69V cell line in comparison to the IC\textsubscript{50} range of the LLC-PK1 cell line. Thus, the chemosensitive SCLC cell line was more susceptible to *X. undulatum* toxicity than the LLC-PK1 cell line.

4.11.2.4.3. H69AR - multidrug resistant SCLC cell line (MRP1 hyperexpressive)

The ability of *X. undulatum* to reduce the relative cell viability of the H69AR cell line was evaluated at concentrations between 0.008 – 0.500 mg/ml over 96 h (Figure 4.19). The reduction in cell viability of this MRP1 hyperexpressive cell line was concentration dependent, with a plateau effect approaching maximal inhibition at concentrations higher than 0.090 mg/ml. The MTT data indicated the IC\textsubscript{50} value as approximately 0.020 mg/ml, which demonstrates the resistance of the H69AR cell line towards *X. undulatum*. By comparing the IC\textsubscript{50} values of the H69AR and LLC-PK1 cell lines, it is evident that this concentration range may cause moderate cytotoxicity. Furthermore, the inhibitory effect of the *X. undulatum* extract occur at higher concentrations in the H69AR cell line than the H69V cell line, demonstrating the possibility of the active *X. undulatum* phytochemicals to be MRP1 substrates.
Figure 4.17: Inhibition of cell viability relative to the untreated control, following treatment of the LLC-KP1 cell line with a concentration series of *X. undulatum* for 96 h (*n* = 3; Error bars = standard deviation). The positive control consisted of cells treated with Triton X (DEAD), while the untreated cells are indicated as UN.
Figure 4.18: Inhibition of cell viability relative to an untreated control, following treatment of the H69V cell line with a concentration series of *X. undulatum* for 96 h (*n* = 3; Error bars = standard deviation). The positive control consisted of cells treated with Triton X (DEAD), while the untreated cells are indicated as UN.
Figure 4.19: Inhibition of cell viability relative to an untreated control, following treatment of the H69AR cell line with a concentration series of *X. undulatum* for 96 h (*n* = 3; Error bars = standard deviation). The positive control consisted of cells treated with Triton X (DEAD), while the untreated cells are indicated as UN.
4.11.2.4.4. NCI-H69/LX4 - multidrug resistant SCLC cell line (P-gp hyperexpressive)

The anticancer properties of *X. undulatum* were screened between 0.010 and 0.080 mg/ml in the NCI-H69/LX4 cell line (Figure 4.20). The relative cell viability of the P-gp hyperexpressive cell line was reduced in a dose dependent manner by the crude aqueous *X. undulatum* extract, indicating the possible use in MDR cancer treatment. However, the IC$_{50}$ value between 0.015 - 0.018 mg/ml observed for the NCI-H69/LX4 cell line have been shown to be cytotoxic in the LLC-PK1 cell line. Further consideration of the IC$_{50}$ value revealed the possibility of the active *X. undulatum* phytochemicals to be P-gp substrates when compared to the H69V IC$_{50}$ value. Thus, the transport of *X. undulatum* (containing Uzarin, a cardenolide) can potentially be influenced by P-gp efflux. Cardenolides in general have been suggested to modify MDR in cancer by inhibiting P-gp (Krishna *et al.*, 2015). Further studies are needed to determine whether this specific plant containing cardenolides can cause P-gp inhibition in the NCI-H69/LX4 cell line.

4.11.2.4.5. Summary of the *X. undulatum* MTT results

The *X. undulatum* crude aqueous extract showed *in vitro* anticancer potential in both the chemosensitive and multidrug resistant SCLC cell lines. The MTT data suggest the possible use of *X. undulatum* for treatment of chemosensitive SCLC, given that the estimated IC$_{50}$ value of the H69V cell line was lower than the IC$_{50}$ value for the LLC-PK1 cell line. However, the cytotoxic effects of *X. undulatum* at IC$_{50}$ concentrations needed for both the multidrug resistant SCLC lines negates its use in MDR cancer management. A higher concentration is needed to inhibit 50% of the H69AR cells compared to the chemosensitive cell line, demonstrating the possibility of the active phytochemicals in the *X. undulatum* extract to be MRP1 substrates, while the IC$_{50}$ values determined for the P-gp hyperexpressive cells suggest the intracellular accumulation of the active components to be influenced to a greater extent by the MRP1 transporters than the P-gp transporters.

Preliminary screening of the anticancer potential of three selected medicinal plants, namely *A. vera* (gel material and polysaccharides), *S. frutescens* and *X. undulatum*, was done by means of the MTT assay. The influence of the plant material on the relative cell viability of the various selected cell lines was defined through an estimated IC$_{50}$ value. The MTT data was, however, also analysed through statistical modelling.
Figure 4.20: Inhibition of cell viability relative to an untreated control, following treatment of the NCI-H69/LX4 cell line with a concentration series of *X. undulatum* for 96 h (*n* = 3; Error bars = standard deviation). The positive control consisted of cells treated with Triton X (DEAD), while the untreated cells are indicated as UN.
The MTT data were analysed by means of a Probit Analysis Method, using SPSS statistical analysis software. The statistically determined IC\(_{50}\) values for the various plant extracts in the selected mammalian cell lines are summarised in Table 4.3, and correlates well with the experimental MTT findings. The impact of the hyperexpressed efflux transporters on the efficacy of the different plant extracts was further evaluated by calculating the cancer selectivity and resistance ratios. To indicate the level of resistance, the efficacy in the hyperexpressive cell lines are compared to the efficacy in the chemosensitive cell line (Hall et al., 2009). A resistance ratio greater than 1.000 indicates a reduced efficacy of the extract towards the hyperexpressive cell line, whereas a value lower than 1.000 signifies higher anticancer efficacy against the hyperexpressive cell line. The \textit{S. frutescens} (resistance ratio: 2.613) were the most effective anticancer agent against the MRP1 hyperexpressive SCLC cell line. The P-gp hyperexpressive cell line was found to be more susceptible to \textit{S. frutescens} (known for traditional cancer management) as indicated by a resistance ratio of 0.918. Furthermore, \textit{S. frutescens} showed the highest cancer selectivity (14.901) characteristics, when comparing efficacy against the chemosensitive SCLC cells to the non-cancerous cell line.

The \textit{A. vera} gel material displayed both cytotoxic and anticancer effects, however, the cytotoxicity only occurred at higher concentrations than needed to achieve IC\(_{50}\) values in the three SCLC cell lines. The \textit{A. vera} gel did inhibit the cell viability of the MRP1 and P-gp hyperexpressive cell lines. The cytotoxicity of the precipitated polysaccharides occurred at 1.201 mg/ml compared to the gel fragment resulting in cytotoxicity at 0.374 mg/ml, hence, the gel fragment has demonstrated cytotoxicity at a much lower dosage than the polysaccharides.

The precipitated polysaccharides, compared to the gel material, showed lower anticancer efficacy when tested on the chemosensitive cells, which is shown by the polysaccharide IC\(_{50}\) value of 0.179 mg/ml compared to 0.027 mg/ml for the gel. Thus, the possibility occurs of additional bioactive phytochemical present in the gel fraction, which are not in the polysaccharide fraction. The increased IC\(_{50}\) concentrations for the MDR SCLC cell lines, for both the gel and polysaccharide fractions, suggest the phytochemicals in these extracts to be substrates for both MRP1 and P-gp transporters.

The \textit{S. frutescens} extract is purported to be both cytotoxic and tumoricidal. A 50% cell viability reduction of the LLC-PK1 cell line was detected at 8.017 mg/ml, while anticancer activities occurred at lower concentrations (such as 0.494 and 1.406 mg/ml). The cytotoxic effects observed for the \textit{S. frutescens} extract occurred at concentrations greater than needed for possible anticancer efficacy. The phytochemicals in the \textit{S. frutescens} extract can be considered possible P-gp (0.494 mg/ml), and to a higher extent MRP1 substrates due to the increased IC\(_{50}\) of 1.406 mg/ml detected with the MRP1 hyperexpressive cell line.
<table>
<thead>
<tr>
<th>Medicinal plant</th>
<th>Parameters</th>
<th>LLC-PK1</th>
<th>H69V</th>
<th>H69AR</th>
<th>NCI-H69/LX4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. vera (gel)</td>
<td>IC<sub>50</sub> (mg/ml)</td>
<td>0.374</td>
<td>0.027</td>
<td>0.227</td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td>IC<sub>50</sub> range (mg/ml)<sup>$</sup></td>
<td>0.349-0.400</td>
<td>0.023-0.031</td>
<td>0.203-0.253</td>
<td>0.166-0.237</td>
</tr>
<tr>
<td></td>
<td>Cancer Selectivity*</td>
<td>–</td>
<td>13.830</td>
<td>1.649</td>
<td>1.860</td>
</tr>
<tr>
<td></td>
<td>Resistance Ratio#</td>
<td>–</td>
<td>–</td>
<td>8.387</td>
<td>7.435</td>
</tr>
<tr>
<td>A. vera (polysaccharides)</td>
<td>IC<sub>50</sub> (mg/ml)</td>
<td>1.201</td>
<td>0.179</td>
<td>0.719</td>
<td>1.346</td>
</tr>
<tr>
<td></td>
<td>IC<sub>50</sub> range (mg/ml)<sup>$</sup></td>
<td>1.113-1.351</td>
<td>0.152-0.208</td>
<td>0.640-0.807</td>
<td>0.961-2.218</td>
</tr>
<tr>
<td></td>
<td>Cancer Selectivity*</td>
<td>–</td>
<td>6.702</td>
<td>1.670</td>
<td>0.893</td>
</tr>
<tr>
<td></td>
<td>Resistance Ratio#</td>
<td>–</td>
<td>–</td>
<td>4.017</td>
<td>6.702</td>
</tr>
<tr>
<td>S. frutescens</td>
<td>IC<sub>50</sub> (mg/ml)</td>
<td>8.017</td>
<td>0.538</td>
<td>1.406</td>
<td>0.494</td>
</tr>
<tr>
<td></td>
<td>IC<sub>50</sub> range (mg/ml)<sup>$</sup></td>
<td>7.90-8.168</td>
<td>0.486-0.588</td>
<td>1.318-1.485</td>
<td>0.418-0.567</td>
</tr>
<tr>
<td></td>
<td>Cancer Selectivity*</td>
<td>–</td>
<td>14.901</td>
<td>5.704</td>
<td>16.235</td>
</tr>
<tr>
<td></td>
<td>Resistance Ratio#</td>
<td>–</td>
<td>–</td>
<td>2.613</td>
<td>0.918</td>
</tr>
<tr>
<td>X. undulatum</td>
<td>IC<sub>50</sub> (mg/ml)</td>
<td>0.010</td>
<td>0.004</td>
<td>0.0199</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>IC<sub>50</sub> range (mg/ml)<sup>$</sup></td>
<td>0.006-0.014</td>
<td>0.003-0.005</td>
<td>0.017-0.023</td>
<td>0.012-0.016</td>
</tr>
<tr>
<td></td>
<td>Cancer Selectivity*</td>
<td>–</td>
<td>2.322</td>
<td>0.483</td>
<td>0.660</td>
</tr>
<tr>
<td></td>
<td>Resistance Ratio#</td>
<td>–</td>
<td>–</td>
<td>4.810</td>
<td>3.518</td>
</tr>
</tbody>
</table>

*Cancer selectivity was determined as the ratio of the IC₅₀ of LLC-PK1 cells divided by the IC₅₀ of the SCLC cell line.

#The resistance ratio of the cell lines was determined by the ratio of the IC₅₀ of the hyperexpressive cell lines divided by the IC₅₀ of the H69V chemosensitive cell line.

$The IC₅₀ ranges are indicative of a 95% confidence interval (n = 3).
The anticancer efficacy of the *X. undulatum* extract was screened at lower concentrations compared to the *A. vera* (gel and polysaccharides) and *S. frutescens* extracts. However, it is evident that the cytotoxicity potential of *X. undulatum* negates its use in cancer management. The phytochemical constituents of *X. undulatum* are considered to be substrates for P-gp and MRP1.

The overall observation indicated the four medicinal plant extracts used in this study to reduce the cell viability of the tested SCLC cell lines, and their phytochemical components, are possible substrates for MRP1 and P-gp transport proteins.

4.13. Conclusion

In Chapter 4 the preliminary anticancer screening of selected medicinal plants resulted in the estimation of *in vitro* IC₅₀ values. The observations made in Chapter 4 were, subsequently, further investigated by conducting an additional evaluation of the intracellular adenosine triphosphate (ATP) and extracellular adenylate kinase (AK) levels of the studied cell lines following treatment with the statistically determined IC₅₀ values (Chapter 5).

4.14. References

Chapter 5

Advanced anticancer efficacy evaluation

Chapter 5 consists of a research article prepared for submission to the *Journal of Ethnopharmacology*. The manuscript was prepared according to the specific author guidelines as shown in Appendix B.
In vitro screening of selected medicinal plants as treatment for drug resistant small cell lung cancer

Swanepoel, RA.¹, Willers, C.¹*, Calitz, C.¹, Viljoen, AM.², Hamman, JH.¹ & Gouws, C.¹

¹Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.

²Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.

Abstract

Ethnopharmacological relevance

Traditional medicinal plants such as Aloe vera, Sutherlandia frutescens and Xysmalobium undulatum have been used to treat several illnesses, including cancer. It is important to gain further information on the efficacy of these traditional medicinal plants against specific cancers, including chemosensitive and chemoresistant small cell lung cancer (SCLC) cells.

Aim of the study

SCLC is a high grade neuroendocrine malignancy, which is responsible for high mortality rates worldwide. The hyperexpression of several adenosine triphosphates (ATP)-binding cassette (ABC) efflux transporters in SCLC tissues is often responsible for occurrence of multidrug resistance (MDR) in these tumours. MDR reduces the chances of a positive outcome of SCLC chemotherapeutic treatment. The aim of this study is to investigate an ethno-medicinal approach to combat cancer through evaluation of the selected traditionally used medicinal plants against chemosensitive and chemoresistant small cell lung cancer (SCLC) cell models.

Materials and methods

The anticancer effects of crude aqueous extracts of Sutherlandia frutescens and Xysmalobium undulatum, as well as Aloe vera gel material and precipitated polysaccharides were studied on different SCLC cell lines. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay was used as a preliminary screening method to determine the relative reduction in cell viability (IC) of each selected SCLC cell line, after a 96 h exposure to the various plant materials. Subsequently, the effect of the selected plant materials on intracellular ATP and extracellular adenylate kinase (AK) levels of the different SCLC and LLC-PK1 cells were measured to establish their anticancer efficacy and cytotoxic potential more accurately.
Results

All the selected plant materials investigated in this study resulted in a statistically significant reduction in cell viability for all of the SCLC cell lines (p<0.05), although a measure of resistance was observed in the chemoresistant cell lines. The anticancer phytochemicals in the crude extracts are therefore most probably subjected to MRP1 and P-gp related efflux. The aqueous S. frutescens extract was found to possibly induce necrosis in the multidrug resistance-associated protein 1 (MRP1) hyperexpressive SCLC cell line at 1.406 mg/ml, while the MTT data suggested that S. frutescens extract had the highest cancer selectivity ratio in P-glycoprotein (P-gp) hyperexpressive SCLC management of all the materials investigated. The cytotoxic effect of the X. undulatum extract on non-cancerous cells (LLC-PK1 cell line) contradicts its use in SCLC management.

Conclusions

The selected medicinal plant materials significantly altered both the intracellular ATP and extracellular AK levels of the chemoresistant and chemoresistant SCLC cell lines, indicating anticancer effects against SCLC cells. However, indications of cytotoxicity to some extent were also detected in a non-cancerous LLC-PK1 cell line for all of the plant materials.

Keywords: Aloe vera, crude aqueous extracts, multidrug resistance, Small cell lung carcinoma, Sutherlandia frutescens, Xysmalobium undulatum.

1. Introduction

Lung cancer is one of the leading causes of cancer deaths worldwide, with 2.09 million deaths reported in 2018 (World Health Organization, 2018). Small cell lung carcinoma (SCLC), a high grade neuroendocrine malignancy, accounts for an estimated 15% of all lung cancer diagnoses (Tanaka et al., 2018). The systemic treatment option for managing SCLC has remained relatively unchanged for the last 40 years, as platinum-based chemotherapy in combination with etoposide is still commonly used without long-term success. Inconsistent chemotherapeutic outcomes are caused by obstacles such as platinum resistance and cross-resistance against several anticancer drugs (Mollaoglu et al., 2017; Peng et al., 2018). The term multidrug resistance (MDR) is used to define cancer cells with an insensitivity or resistance to a variety of structurally unrelated anticancer drugs (Sivak et al., 2017). Up-regulation of several ABC efflux transporter proteins is a frequent contributing factor to the occurrence of MDR in cancer cells (Kathawala et al., 2015). The three major efflux transporters responsible for MDR in cancer cells are P-glycoprotein (P-gp; ABCB1), multidrug resistance-associated protein 1 (MRP1; ABCC1) and breast cancer resistance protein (BCRP; ABCG2) (Sharom, 2008). The possibility arise that by reducing the efflux of anticancer drugs
from the intra-to-extracellular environment, the impact of MDR in cancer cells can be reduced (Wu et al., 2014).

The ethno-botanical use of several medicinal plant extracts and phytochemicals have drawn considerable attention as an alternative treatment option in overcoming cancer MDR, potentially through modulation (i.e. inhibition) of xenobiotic efflux (Ferreira et al., 2014; Yuan & Li, 2014; Ochwang‘i et al., 2018).

Aloe vera (*Aloe Barbadensis* Miller), grouped under the *Asphodelaceae* botanical family, is a succulent known for lance-spear shaped leaves with jagged edges (Gupta et al., 2018). The mucilage (gel-like consistence) within the leaves is considered to be beneficial and is traditionally harvested by means of a hand filleted method, using a sharp knife to expose the pulp from which the mucilage or gel can be extracted (Ramachandra & Rao, 2008). The pulp of the leaves is composed of various chemical constituents, including anthraquinones, carbohydrates, chromones, enzymes, inorganic compounds, non-essential and essential amino acids, saccharides, proteins and vitamins (Hamman, 2008). *A. vera*, commonly referred to as the first aid plant or burn plant, is purported to be beneficial in the treatment of several health conditions such as cardiovascular diseases, arthritis, diabetes and cancer, but also has antimicrobial and immunomodulatory efficacy (Nazir & Ahsan, 2017). It has been proposed that the active polysaccharides and glycoproteins in *A. vera* contribute to the chemo-preventive properties of this plant (Singh et al., 2000).

Sutherlandia frutescens (tribe *Galegeae*, family *Fabaceae*) is a shrub indigenous to the southern Africa region (including South Africa, southern Botswana, southern Namibia and Lesotho). This shrub, reaching heights of up to 2.5 m, has characteristic red boat-like keel petal flowers (Van Wyk & Albrecht, 2008). In South Africa, traditional healers prepare *S. frutescens*, also known as cancer bush, by making an infusion of the stem and leaves to treat cancer. The Khoi-San and Nama populations also treated fever and rinsed wounds with decoctions of *S. frutescens* (Aboyade et al., 2014). Pharmacologically, the cycloartane-type triterpenoids in *S. frutescens* have been found to act in a cancer chemo-preventive manner, supporting the traditional use of this medicinal plant in cancer treatment (Van Wyk et al., 2009). An aqueous extract was also found to alter the proliferation of an MCF-7 breast cancer cell line, further supporting the beneficial anticancer properties of this medicinal plant (Vorster et al., 2012).

Xysmalobium undulatum (family *Apocynaceae*), referred to as Uzara, milkwort or wild cotton, is widely distributed across the southern African landscape and is traditionally used for a variety of health conditions, including diarrhoea, afterbirth cramps and headaches (Balogun et al., 2016). The following phytochemicals of *X. undulatum* are all grouped as cardenolides, considered to have P-gp inhibitory activity that can potentially target cancer MDR: uzarin, urezin, ascleposide xysmalorin, xysmalobin, uzaroside and glucoascleposide (Krishna et al., 2015).
In this study, the anticancer efficacy of crude aqueous extracts and inner leaf materials from three selected medicinal plants frequently used in South Africa were investigated using in vitro cell culture models. These plants included *A. vera* (gel material and a precipitated polysaccharide fraction), *S. frutescens* and *X. undulatum* (aqueous extracts). A panel of three chemosensitive and chemoresistant SCLC cell lines and one non-cancerous cell line were used to determine the potential anticancer properties of the selected plant materials. Secondly, the potential of each plant to overcome MDR induced by hyperexpressed efflux transporters were investigated. This was done through pre-screening of a range of concentrations of each plant extract by means of the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. Subsequently, the effect of selected concentrations of each plant extract on cell viability was further assessed with the intracellular adenosine triphosphate (ATP) and extracellular adenylate kinase (AK) assays.

2. Materials and methods

2.1. Study design

The anticancer efficacy and cytotoxicity of four plant materials, namely *A. vera* gel material, *A. vera* polysaccharides precipitated from the gel, aqueous extract of *S. frutescens* and aqueous extract of *X. undulatum* were determined on different SCLC cell lines and a non-cancerous pig embryonic kidney (LLC-PK1) cell line. The SCLC cell lines consisted of a chemosensitive (H69V), chemoresistant MRP1 hyperexpressive (H69AR) and a chemoresistant P-gp hyperexpressive (NCI-H69/LX4) cell line.

The preliminary anticancer potential of a series of plant material concentrations was evaluated by means of an MTT assay, following 96 h of exposure with daily application of fresh solutions. The data were subsequently statistically evaluated to determine the concentrations where 50% and 75% reduction in cell viability relative to an untreated control (IC$_{50}$ and IC$_{75}$, respectively) occurred.

These values were then used to choose concentrations for further evaluation of the anticancer and cytotoxic potential of the plant materials. After seeding, the cells were allowed to recover from trypsinisation for 24 h before the various cell lines were treated daily with plant material solutions according to their wet biomass, to mimic *in vivo* dosing more closely. After a period of 96 h, intracellular ATP, indicative of cell viability, and extracellular AK, marker of cell death, levels were determined.

2.2. Plant materials

The raw powdered plant material of *S. frutescens* (#SFFW) and *X. undulatum* (#XU174) were purchased from Afrinatural holdings (Prestige Laboratory Supplies CC, KwaZulu-Natal, South Africa). The *A. vera* gel material was supplied by Improve, USA, Inc (Texas, USA), and
polysaccharides were precipitated from this gel material as previously described (Beneke et al., 2013).

2.3. Preparation of the crude aqueous extracts

Crude aqueous extracts of *S. frutescens* and *X. undulatum* were prepared as previously described (Calitz et al., 2018). Briefly, an aqueous suspension of the raw plant material was prepared in a 1:10 w/v ratio. The plant suspensions were sonicated using a Eumax® ultrasonic bath (Labotec, Midrand, South Africa) at 45°C for 45 min, followed by centrifugation (Sigma 3-16 KL Laborzentrifugen, Germany) at 5000 x g for 10 min. The supernatant was transferred to a new tube and the pellet re-suspended in 10 ml water, followed by the same sonication and centrifugation conditions as above. The respective pooled supernatants collected, from both the *S. frutescens* and *X. undulatum* suspensions, were filtered through 125 mm Whatman filtration paper (Whatman™, China). The filtrates were frozen at -80°C and lyophilised with a Virtis freeze dryer (SP Scientific, Gardiner, New York). The lyophilised extract powders were pulverised with a mortar and pestle, and stored in a desiccator until further use. The *A. vera* polysaccharides were precipitated from an aqueous *A. vera* gel solution as described by Beneke et al. (2013), using 80% ethanol v/v in a 1:4 ratio. The precipitated polysaccharides were allowed to segregate under gravity to the bottom of the beaker and separated by centrifugation, after which it was frozen and lyophilised.

2.4. Chemical characterisation

2.4.1. *A. vera* gel material and precipitated polysaccharides

Both the Daltonmax 700® *A. vera* gel material and precipitated polysaccharide materials used in this study were characterised by means of quantitative nuclear magnetic resonance (1H-NMR) analysis for marker molecules indicative of *A. vera* gel material. These marker molecules included aloverose (or acetylated polymannose), glucose, malic acid and citric acid (Jiao et al., 2010).

2.4.2. *Sutherlandia frutescens*

Samples were prepared for Ultra-high performance liquid chromatography mass spectrometry (UPLC-MS) by adding 2 ml methanol to 2 mg of *S. frutescens* dried plant material. The methanolic extract was sonicated for 10 min and then filtered (0.2 μm syringe filter). The marker molecule for *S. frutescens* was a cycloartane-like triterpene glycoside, named SU1.

UPLC analysis of *S. frutescens* was performed on a Waters Acquity UPLC system, equipped with a photodiode array (PDA) detector (Waters, Milford, MA, USA) and an Acquity UPLC BEH C18 column (150 mm × 2.1 mm, i.d., 1.7 μm particle size, Waters) maintained at 40°C. The mobile phase consisted of (A) 0.1% formic acid in water and (B) acetonitrile, at a flow rate of 0.35 ml/min and an injection volume of 5.0 μl (full-loop injection). A gradient elution was used at 80% (A): 20% (B) for the first 0.5 min, changing to 40% (A): 60% (B) in 13 min, adjusting to 100% (B) in
2.5 min, holding for 1 min and back to the initial ratio in 1 min. Mass spectrometry was operated in negative ion electrospray mode. The desolvation gas used was \(\text{N}_2 \), at a temperature of 350°C, a flow rate of 500 l/h and the source temperature was set to 100°C. The capillary and cone voltages were set to 2500 and 45 V, respectively. Scans were collected throughout the run between 100 and 1500 m/z.

2.4.3. Xysmalobium undulatum

The marker molecule used to characterize the \(X. \) undulatum extract was uzarin. Briefly, 2 mg of the \(X. \) undulatum dried plant material was dissolved in 2 ml methanol, and sonicated for 10 min. The methanolic extract was syringe filtered through a 0.2 μm filter, resulting in the sample used for the UPLC analysis performed on a Waters Acquity UPLC system, with a PDA detector as described for \(S. \) frutescens, with the following variations: The mobile phase consisted of 0.1% formic acid in water (solvent A) and acetonitrile (solvent B) at a flow rate of 0.3 ml/min. The gradient elution was as follows: 85% A: 15% B to 65% A: 35% B in 10 min, changed to 50% A: 50% B in 0.5 min, keeping for 1 min and back to initial ratio in 0.5 min. The running time was 12 min. The samples were injected in the mobile phase with an injection volume of 2.0 μl (full-loop injection). Mass spectrometry operated in positive ion electrospray mode, and the desolvation temperature was set to 250 °C at a flow rate of 600 l/h. The capillary and cone voltages were set to 3000 and 40 V, respectively. Data were collected between 100 and 1000 m/z.

2.5. Preparation of the test solutions

A 1.000 mg/ml stock solution was prepared for both the \(A. \) vera gel material and precipitated polysaccharides in the designated supplemented cell culture growth medium, and then pasteurised. The pasteurisation entailed heating of the solution to 73°C for 15 sec, and then cooling to 9°C in an ice bath. The temperature was monitored with a Digitron thermometer (Digitron, 2088T, Sifam Instruments Limited Torquay, England). After pasteurisation, the final \(A. \) vera gel material and precipitated polysaccharide suspensions, ranging between 0.008 and 1.000 mg/ml, were prepared by means of dilution in the various supplemented mediums.

The \(S. \) frutescens and \(X. \) undulatum stock solutions were prepared in the designated supplemented mediums, vortexed and filtered through a 0.22 μm syringe filter (Anatech Instruments (Pty) Ltd, Johannesburg, South Africa). The final test solutions were diluted in the various supplemented mediums to concentration ranges 0.050 - 8.000 mg/ml for \(S. \) frutescens, and 0.008 - 3.500 mg/ml for \(X. \) undulatum. The concentrations prepared for each stock solution for all the plant material were determined experimentally.
2.6. Selected cell culture models

2.6.1. Culturing of the cell lines

The SCLC and non-tumorigenic cell lines used in this study were purchased from the European Collection of Authenticated Cell Cultures (ECACC) and the American Tissue Culture Collection (ATCC). These included the NCI-H69/LX4 (ECACC 96042329) cell line known to overexpress P-gp, a chemosensitive H69V (ECACC 91091803) cell line, H69AR (ATCC® CRL-11351™) cell line (hyperexpressing MRP1) and a porcine embryonic kidney LLC-PK1 (ATCC® CL-101™) cell line.

The NCI-H69/LX4 cell line was cultured in Roswell Park Memorial Institute (RPMI) 1640 growth medium (Gibco, Thermo Fisher Scientific, Johannesburg, South Africa), supplemented with 10% foetal bovine serum (FBS) (Gibco, #10270-106; Thermo Fisher Scientific), 1% non-essential amino acids (NEAA) (Lonza, 100X, Whitehead Scientific, Cape Town, South Africa), 1% of 10 000 Penicillin U/ml/10 000 Streptomycin U/ml (Pen/Strep) (Lonza, Whitehead Scientific), 2 mM L-glutamine (Lonza, Whitehead Scientific) and 0.4 µg/ml doxorubicin hydrochloride (DOX) (Sigma-Aldrich (Pty) Ltd, Gauteng, South Africa). This will be referred to as supplemented media.

The H69V cell line was also cultured in supplemented RPMI 1640 medium as prepared for the NCI-H69/LX4 line, but without the DOX. The H69AR cell line was cultured in RPMI 1640 (ATCC modification, Gibco) growth medium, supplemented with 20% FBS, 1% NEAA, 2 mM L-glutamine and 1% Pen/Strep. The LLC-PK1 cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) high glucose (4.5 mg/l) growth medium (HyClone, Separations, Gauteng, South Africa), with the following additives: 2 mM L-glutamine, 1% NEAA, 10% FBS and 1% Pen/Strep.

All cultures were maintained in an ESCO CelCulture CO₂ incubator (ESCO Micro Pte Ltd, Singapore) at 37°C, in 5% CO₂ and 95% humidified air. Cells were sub-cultured at 80% confluence, and medium was exchanged every two days for the H69AR, NCI-H69/LX4, LLC-PK1 cell lines and every third day for the H69V cell line.

2.6.2. Seeding and treatment of cultured cells

All three adherent cell lines (H69V, H69AR and LLC-PK1) were trypsinised prior to seeding into 96-well plates. The non-adherent NCI-H69/LX4 cell line was prepared as a cell suspension. The optimal seeding density of each cell line was determined beforehand, which resulted in 80% confluence after 120 h. A recovery period (24 h) was allowed after seeding, before the treatment commenced. Thereafter, the cells were treated at 24 h time intervals (i.e. 0, 24, 48 and 72 h) with the experimental plant material solutions for a period of 96 h.
2.7. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay

The metabolic activity of the cultured cells was determined with the MTT assay (Sigma-Aldrich). Briefly, the adherent cell lines were seeded in 96-well flat bottom plates (Costar®, Corning Incorporated, New York, United States of America) in a volume of 200 µl/well at the following concentrations: 7000 cells/well for the H69V cell line; 16,000 cells/well for the H69AR cell line and 7000 cells/well for the LLC-PK1 cell line. The NCI-H69/LX4 suspension cell line was seeded in 96-well V-bottom plates (Costar®, Corning Incorporated) at 200 µl/well containing 30,000 cells/well.

After the 24 h recovery period, the test solutions containing the plant materials were added. Each cell line was treated every 24 h for a duration of 96 h, with a concentration series of each plant material solution in supplemented growth media. The adherent cell lines were then rinsed twice with 100 µl/well PBS and incubated with a 0.5 mg/ml MTT in PBS solution for 4 h at 37°C. The MTT solution was removed and 200 µl dimethyl sulfoxide (DMSO; Sigma-Aldrich) was added to each well. The plate was incubated for 1 h on a shaker at room temperature, and the absorbance was then measured at 560 nm and 630 nm with a SpectraMax® plate reader (Paradigm® Multi-Mode Detection Platform, Molecular Devices®, Separations). An untreated control group was included as an indicator of 100% cell viability. Wells containing DMSO were included as background controls, and cells treated with 200 µl of 0.2% Triton X-100 for 15 min generated a dead cell control.

The same method was followed with the non-adherent (or suspension) cell line (i.e., NCI-H69/LX4 cell line), but with an additional step. The 96-well V-bottom plates were centrifuged at 250 x g for 5 min at 23°C during rinsing, before adding the test solutions or the MTT solution and the DMSO.

Following the MTT assays, the data were statistically analysed to determine the specific IC_{50} and IC_{75} concentrations of each crude aqueous extract and inner leaf material, for each cell line.

2.8. Advanced cell viability investigation

2.8.1. Treatment of the cell models

Each cell line was seeded in 96-well clear, flat bottom plates and 96-well clear bottomed black plates (Costar®, Corning Incorporated), as described above. Total soluble protein per well was determined every 24 h after seeding, which was used to determine the wet biomass in each well as an indicator of cell growth. It also enabled calculation of a treatment dose per mass of cells in each well, for the advanced cell viability study. This allowed similar dosing practices as those used with in vivo treatment regimens, where dosages are administered according to animal weight (mg/kg) (Fey & Wrzesinski, 2012).

For the ATP and AK studies, each cell line was treated with the respective H69V IC_{50} concentrations, and the specific IC_{75} concentrations of each selected plant material solution as determined for each cell line. All treatments were adjusted for wet biomass changes that occurred during cell growth.
LLC-PK1 cell line as a non-cancerous reference, while all the cell lines receiving no treatment acted as their own untreated controls. The H69V cell line served as a chemo-sensitive control for the chemoresistant cell lines.

2.8.2. Soluble protein quantification

The total soluble protein content per well was determined every 24 h in clear 96-well plates, using the Bradford protein assay as previously published (Calitz et al., 2018). Briefly, the supplemented medium was removed and 158 µl distilled water was added to each well, followed by the addition of 2 µl lysis buffer B (Wrzesinski & Fey, 2013) and 40 µl colour dye reagent (Bio-Rad Laboratories Ltd., Johannesburg, South Africa). The plate was incubated for 5 min at room temperature, and the absorbance was then measured at 595 nm. The soluble protein content was quantified relative to a bovine serum albumin standard (Bio-Rad Laboratories Ltd.).

2.8.3. Intracellular adenosine triphosphate (ATP)

The intracellular production of ATP is an indicator of cell viability, which was quantified using the Promega CellTiter-Glo assay (Whitehead Scientific), relative to an ATP standard (Sigma). After 96 h treatment in black 96-well plates, all supplemented medium was removed from the wells and replaced with 100 µl PBS. An equal volume of CellTiter-Glo reagent was added to each well and mixed thoroughly. The 96-well plate was covered and placed on a Bio-Rad compact rocker for 40 min before luminescence was measured, using a SpectraMax® plate reader. ATP was quantified relative to an ATP standard, and data were normalised relative to the untreated controls.

2.8.4. Extracellular adenylate kinase (AK)

Extracellular AK is a marker of cell death, and was detected through a non-destructive cytolysis and bioluminescent BioAssay Kit (ToxiLight™, Lonza). After the 96 h treatment of the cells, the spent medium (200 µl per well) of the 6 wells per tested concentration was removed (the spent medium of two well were pooled together, resulting in 400 µl spent medium per microcentrifuge tube), prior to the ATP assay. The spent medium samples were centrifuged at 140 x g for 5 min to remove any cells in suspension, followed by transfer of 350 µl supernatant to a new microcentrifuge tube. The second supernatant sample was centrifuged again for 15 min at 15 000 x g, and 20 µl of the subsequent supernatant was transferred into a black 96-well plate. The AK detection reagent (100 µl) was added to each well, and after a 20 min incubation period luminescence was detected with a SpectraMax® plate reader. The data was quantified relative to a known dead cell standard (H69V - 3.780 x 10⁵ cells/ml, H69AR - 1.398 x 10⁶ cells/ml, NCI-H69/LX4 - 3.274 x 10⁶ cells/ml and LLC-PK1 - 1.654 x 10⁵ cells/ml), and normalised to the untreated controls.
2.9. Statistical analysis and calculations

Following the MTT assays, the IC\(_{50}\) and IC\(_{75}\) values (with a 95% confidence interval) were determined for each crude aqueous extract in each cell model, using a Probit Analysis Method and SPSS statistical analysis software (IBM Analytics) \((n = 3)\). The Probit Analysis calculates the confidence intervals of each dose-response, and further quantifies the response as an IC-value. The cancer selectivity of each extract was determined by dividing the calculated IC\(_{50}\) for the non-cancerous cell line by the IC\(_{50}\) of the different SCLC cell lines. The resistance ratio was calculated by dividing the IC\(_{50}\) values of the hyperexpressive cell lines by the IC\(_{50}\) value of the chemosensitive cell line.

Statistical analyses of the advanced cell viability study data were conducted using STATISTICA 13.3 (Statsoft, Tulsa, OK, USA). A two-way analysis of variance (ANOVA) was used, followed by the Tukey’s HSD and Kruskal-Wallis tests to determine statistically significant differences \((p < 0.05)\) between each treatment and its untreated control, as well as between the treatment concentrations. The error bars represent the standard deviations of the mean, and all assays were conducted in six biological replicates.

3. Results and discussion

3.1. Chemical characterisation of the plant materials

The \(^1\text{H-}\)NMR analysis of the Daltonmax 700® A. vera gel material confirmed the presence of aloverose (15.2%), glucose (9.8%), malic acid (20.7%) and citric acid (2%) (Figure 1A). The \(^1\text{H-}\)NMR analysis of the A. vera precipitated polysaccharide fraction also indicated the presence of aloverose (47.1%), glucose (0.5%), malic acid (3.5%) and citric acid (3.5%) (Figure 1B).

The S. frutescens marker molecule, SU1, was quantified in the crude aqueous extract as 10.1 μg/mg dried plant material (Figure 1C), while the presence of Uzarin was confirmed in the X. undulatum extract (Figure 1D).

3.2. Preliminary efficacy and cytotoxicity screening

3.2.1. Aloe vera gel material

The reduction in cell viability, relative to the untreated controls, obtained with the MTT assay following treatment for 96 h, was expressed as IC\(_{50}\) values, which are shown in Table 1.
Figure 1: Chemical characterisation of the plant materials indicating the presence of marker molecules, with (A) *A. vera* gel material 1H NMR spectrum, (B) *A. vera* precipitated polysaccharide 1H NMR spectrum, (C) *S. frutescens* (LC-MS chromatogram) and (D) *X. undulatum* (UPLC chromatogram).

The *A. vera* gel material exhibited IC$_{50}$ values of 0.027 mg/ml in the chemosensitive H69V cell line, 0.227 mg/ml in the MRP1 overexpressing H69AR cell line and 0.201 mg/ml in the NCI-H69/LX4 cell line (hyperexpressing P-gp). This indicated some anticancer efficacy of the *A. vera* gel material against the chemosensitive cell line, but it showed a lower effect against the chemoresistant cell lines. Furthermore, an IC$_{50}$ value of 0.374 mg/ml in the non-cancerous LLC-PK1 cell line showed that the efficacy against the chemoresistant lines was mediocre. The IC$_{50}$ values of *A. vera* gel material determined in B16F10 murine melanoma (skin cancer cell line) and NIH3T3 mouse embryonic fibroblast cell lines (non-cancerous cell line) were previously found to be 0.260 and 0.286 mg/ml, respectively (Çandöken et al., 2017). The anticancer efficacy of the *A. vera* gel material was, therefore, very similar in this study to the previous study, although the non-cancerous cell line (LLC-PK1) was affected slightly less.
3.2.2. Aloe vera precipitated polysaccharide fraction

The A. vera precipitated polysaccharide fraction demonstrated a IC$_{50}$ value of 1.201 mg/ml in the non-cancerous LLC-PK1 cell line, after 96 h exposure. This is also similar to previous findings of IC$_{50}$ values in different non-cancerous cell lines after a 72 h exposure period (1.232 mg/ml in embryo kidney cells and 1.782 mg/ml in ECV304 umbilicus vein endothelium cells) (Wang et al., 2004). The IC$_{50}$ of the polysaccharides in the LLC-PK1 cell line was higher than that of the chemosensitive H69V cell line (0.179 mg/ml), demonstrating anticancer efficacy at potentially non-cytotoxic concentrations. This was also true for the MRP1 overexpressing, chemoresistant H69AR cell line (IC$_{50}$ = 0.719 mg/ml), but it was not the case for the other chemoresistant cell line (NCI-H69/LX4, P-gp hyperexpressive) which had an IC$_{50}$ of 1.346 mg/ml.

3.2.3. Sutherlandia frutescens

In a study conducted by Stander et al. (2009), an S. frutescens aqueous extract reduced the cell viability of a human breast adenocarcinoma (MCF-7) cell line to 26% and a human non-tumorigenic epithelial mammary gland (MCF-12A) cell line to 49%, after 72 h treatment with 10 mg/ml. The current study indicated a 50% cell viability reduction of the non-cancerous LLC-PK1 cell line after 96 h exposure to 8.017 mg/ml S. frutescens crude aqueous extract solution, which corresponds well with the MCF-12A findings. The anticancer effects of the S. frutescens extract on the panel of SCLC cell lines were apparent at concentrations much lower than the concentration found to be cytotoxic, with IC$_{50}$ values of 0.358 mg/ml (H69V) 0.494 mg/ml (NCI-H69/LX4) and 1.406 mg/ml (H69AR). This indicated severe resistance of the MRP1 hyperexpressing H69AR cell line to the S. frutescens aqueous extract solution.

3.2.4. Xysmalobium undulatum

The plant extract with the highest anticancer potential in this study was X. undulatum, with the lowest IC$_{50}$ value in the LLC-PK1 cell line (0.010 mg/ml). This suggested significant cytotoxicity. However, it had relatively good chemotherapeutic effects on the drug sensitive SCLC cell line (H69V), with an IC$_{50}$ value of 0.004 mg/ml. The hyperexpressed efflux transporters in the H69AR and NCI-H69/LX4 lines, however, inferred high levels of resistance to the effects of the X. undulatum extract, and IC$_{50}$ values (0.020 mg/ml for H69AR and 0.015 mg/ml for NCI-H69/LX4) would probably be cytotoxic to non-cancerous cells. These results may negate the use of this plant extract in MDR cancer.

Roy et al. (2005) evaluated the cytotoxicity of several phytochemicals isolated from Asclepias curassavica, belonging to the Asclepiadaceae botanical family. The IC$_{50}$ values (mg/ml) for one of the isolated compounds, uzarigenin, on different cancer cell lines were found to be 0.00024 (A549), 0.0019 (MDA-MB-231), 0.00169 (MCF-7) and 0.00012 (HepG2). Uzarigenin is also a known constituent of X. undulatum (Vermaak et al., 2014). This data supports the conclusion that
X. undulatum could potentially have anticancer effects, in spite of the risk of cytotoxicity for normal tissues when used at higher concentrations.

Table 1: The IC$_{50}$ values determined for the selected medicinal plant materials after 96 h treatment in each selected cell line obtained from the MTT assay

<table>
<thead>
<tr>
<th>Medicinal plant</th>
<th>Parameters</th>
<th>Cell models</th>
<th>LLC-PK1</th>
<th>H69V</th>
<th>H69AR</th>
<th>NCI-H69/LX4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. vera (gel material)</td>
<td>IC$_{50}$ (mg/ml)*</td>
<td>0.374</td>
<td>0.027</td>
<td>0.227</td>
<td>0.201</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95% confidence interval (mg/ml)#</td>
<td>0.349 - 0.400</td>
<td>0.023 - 0.031</td>
<td>0.203 - 0.253</td>
<td>0.166 - 0.237</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer Selectivity</td>
<td>13.830</td>
<td>1.649</td>
<td>1.860</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resistance Ratio</td>
<td>8.387</td>
<td>7.435</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. vera (precipitated polysaccharides)</td>
<td>IC$_{50}$ (mg/ml)*</td>
<td>1.201</td>
<td>0.179</td>
<td>0.719</td>
<td>1.346</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95% confidence interval (mg/ml)#</td>
<td>1.113 - 1.351</td>
<td>0.152 - 0.208</td>
<td>0.640 - 0.807</td>
<td>0.961 - 2.218</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer Selectivity</td>
<td>6.702</td>
<td>1.670</td>
<td>0.893</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resistance Ratio</td>
<td>4.017</td>
<td>6.702</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. frutescens</td>
<td>IC$_{50}$ (mg/ml)*</td>
<td>8.017</td>
<td>0.538</td>
<td>1.406</td>
<td>0.494</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95% confidence interval (mg/ml)#</td>
<td>7.900 - 8.168</td>
<td>0.486 - 0.588</td>
<td>1.318 - 1.485</td>
<td>0.418 - 0.567</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer Selectivity</td>
<td>14.901</td>
<td>5.704</td>
<td>16.235</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resistance Ratio</td>
<td>2.613</td>
<td>0.918</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X. undulatum</td>
<td>IC$_{50}$ (mg/ml)*</td>
<td>0.010</td>
<td>0.004</td>
<td>0.020</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95% confidence interval (mg/ml)#</td>
<td>0.006 - 0.014</td>
<td>0.003 - 0.005</td>
<td>0.017 - 0.023</td>
<td>0.012 - 0.016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer Selectivity</td>
<td>2.322</td>
<td>0.483</td>
<td>0.660</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resistance Ratio</td>
<td>4.810</td>
<td>3.518</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*IC$_{50}$ is the concentration which results in a cell viability reduction of 50% relative to an untreated control (n = 3).

#n = 3
3.2.5. Selectivity and resistance ratios

The IC$_{50}$ values were also used to determine the selectivity for cancer of the plant extracts, as well as the level of resistance to each extract (Table 1). The *S. frutescens* extract resulted in the highest cancer selectivity ratio, whereas *X. undulatum* had the lowest cancer selectivity ratio towards the panel of cells. This suggests the crude *S. frutescens* extract to be more selective for cancerous tissue compared to the *X. undulatum* extract. The *A. vera* gel demonstrated higher cancer selectivity against the H69V and NCI-H69/LX4 cell lines than the *A. vera* polysaccharides, suggesting that additional active phytochemicals are present in the gel which are not found in the precipitated polysaccharides.

If the resistance ratio is > 1, it is an indication that the plant material is less effective against the drug resistant cell lines. On the other hand, if a ratio is < 1, the extract could potentially be considered as treatment in MDR cancer (Hall et al., 2009). Overall, the *S. frutescens* extract demonstrated promising anticancer efficacy against the P-gp hyperexpressive cell line (NCI-H69/LX4), considering a resistance ratio of only 0.918, while the *A. vera* gel was least effective (8.387 for H69AR and 7.435 for NCI-H69/LX4) against chemoresistant cell lines. The *A. vera* gel was also less effective against the efflux transporter hyperexpressive cell lines than the *A. vera* precipitated polysaccharides, suggesting that some of the active phytochemicals in the gel extract could be substrates for both P-gp and MRP1 efflux transporters.

Higher IC$_{50}$ values for an extract in the hyperexpressive cell lines, compared to a lower IC$_{50}$ value for the chemosensitive cell line may indicate some of the active components in an extract to be substrates for the associated transporter. This was observed for all of the plant extracts to some degree, except for the *S. frutescens* extract in the P-gp hyperexpressing cell line, NCI-H69/LX4, suggesting that several active components in the extracts are substrates for P-gp and MRP1 efflux transporters.

3.3. Advanced anticancer efficacy evaluation

All cell models were treated with the IC$_{50}$ concentrations of each plant material determined for the chemosensitive H69V cell line. The H69V cell line was also treated with the respective plant materials' IC$_{75}$ concentrations, while the two resistant SCLC cell lines were also treated with their respective IC$_{50}$ concentrations for each plant extract. The intracellular ATP and extracellular AK content of the various cell models were measured following treatment for 96 h with the plant materials, at the selected concentrations relative to the daily wet biomass. Intracellular ATP levels are directly linked to mitochondrial activity, and is therefore an indicator of cell viability. Conversely, the presence of extracellular AK serves as a marker of cell death (Single et al., 1998; Leist et al., 1999).
3.3.1. *Aloe vera* gel material

The outcomes following administration of the *A. vera* gel material to the various SCLC, as well as the non-cancerous LLC-PK1, cell lines are graphically depicted in Figure 2. A significant reduction in the intracellular ATP content was found, as well as a significant increase in the extracellular AK released from the non-cancerous LLC-PK1 cell line (Figure 2A) following treatment with 0.027 mg/ml gel (H69V IC\(_{50}\)) when compared to the untreated control group.

![Image](image_url)

Figure 2: Normalised intracellular adenosine triphosphate (ATP) per protein content and extracellular adenylate kinase (AK) per protein content of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after treatment with *A. vera* gel material for 96 h (* indicates statistical significance between the samples and the untreated control \((p < 0.05)\), and ∆ indicates significant differences between the samples, \(n = 6\); error bars = standard deviation (SD)).

These findings suggest a higher loss in cell viability of the non-cancerous cell line at the specified concentration than was suggested by the MTT assay. Treatment of the chemosensitive H69V line with 0.027 (H69V C\(_{50}\)) and 0.069 mg/ml (H69V C\(_{75}\)) *A. vera* gel material, is presented in Figure 2B, showing a statistically significant concentration dependent decrease in intracellular ATP levels.
(0.550 and 0.116 respectively) when compared to the untreated control group (ratio of 1.000, normalised ATP per protein content). In contrast to the LLC-PK1 cell line (ratio of 1.000, normalised AK per protein content), the AK release in the H69V cells were also significantly decreased for both concentrations (0.803 and 0.835, respectively). This suggested that apoptosis already occurred prior to the time point of the assay. This is expected, since the chemosensitive H69V cell line was more sensitive to the A. vera gel than the LLC-PK1 non-cancerous control, as shown by the MTT data.

In Figure 2C, a significant concentration dependent loss of intracellular ATP levels in the MRP1 hyperexpressive H69AR cell line was noticed for both concentrations of A. vera gel, to 0.862 and 0.317 normalised ATP per protein content, respectively. Treatment with the IC50 value of A. vera gel for the chemosensitive cell line (H69V; 0.027 mg/ml) resulted in a significant (p < 0.05) increase in extracellular normalised AK per protein content (2.223), suggesting cell stress and apoptosis. However, the higher H69AR IC50 concentration of 0.227 mg/ml caused the normalised AK per protein content levels to decrease significantly (0.360) compared to the untreated control (1.000), suggesting apoptosis had occurred at an earlier time point. The results suggested a decreased toxicity response in the resistant H69AR cell line, which could indicate that the active phytochemicals in the gel are MRP1 substrates. This is further supported by the faster cell death observed in the resistant cell line at a 10-fold higher concentration of A. vera gel (0.227 mg/ml), possibly due to saturation of the MRP1 efflux transporters.

Statistically significant reductions in both the intracellular ATP and extracellular AK levels were observed in the resistant NCI-H69/LX4 cell line, relative to the untreated control (Figure 2D). This, once again, suggested that apoptosis already occurred earlier and that possible necrosis started to occur. However, no marked differences were seen between the two experimental groups (represented by H69V IC50 of 0.027 mg/ml and NCI-H69/LX4 IC50 0.201 mg/ml), suggesting a plateau of the anticancer effect of the gel. The results did not indicate any resistance to the A. vera gel anticancer effects in the NCI-H69/LX4 P-gp hyperexpressed cell line, suggesting that the anticancer components in A. vera gel are probably not P-gp efflux transporter substrates.

The advanced screening of the anticancer potential of A. vera gel supported the MTT findings of efficacy against the chemosensitive SCLC cell model. However, it appeared that the MTT assay may have underestimated the cytotoxic potential of the A. vera gel on the non-cancerous cell line. Similar to the MTT data, A. vera gel anticancer efficacy was found to be influenced by MRP1 hyperexpression, but not as significantly by P-gp hyperexpression as was suggested by the MTT assay.
3.3.2. *Aloe vera* precipitated polysaccharides

Figure 3 presents the normalised intracellular ATP per protein content and extracellular AK per protein content of the different cell lines after treatment with *A. vera* precipitated polysaccharides for 96 h. The H69V IC$_{50}$ concentration of 0.179 mg/ml *A. vera* polysaccharides resulted in a statistically significant decrease in intracellular ATP levels (0.654 ratio normalised ATP per protein content) and increase in extracellular AK levels (5.516 normalised AK per protein content) in the non-cancerous LLC-PK1 cell line after 96 h treatment, as seen in Figure 3A. This is typical of apoptosis, and is more extensive than indicated by the MTT data. In Figure 3B, the *A. vera* polysaccharides also demonstrated a statistically significant concentration dependent depletion of the intracellular ATP levels (0.338 and 0.203 normalised ATP per protein content, respectively) in the chemosensitive H69V cell line, when treated with the H69V IC$_{50}$ and IC$_{75}$ concentrations of 0.179 mg/ml and 0.428 mg/ml. Although no marked effect could be seen at 0.179 mg/ml, the AK levels of the chemosensitive cell line was reduced significantly at 0.428 mg/ml (0.356) compared to the untreated control (1.000 normalised AK per protein content). The results indicated possible necrosis, with apoptosis probably occurring earlier than the 96 h. This supports the cancer selectivity of *A. vera* precipitated polysaccharides determined with the MTT assay.

The polysaccharides resulted in a significant loss of cell viability in the MRP1 hyperexpressive H69AR cell line (Figure 3C). This was evident from the concentration dependent decline in intracellular ATP levels. The normalised AK levels were also found to differ statistically from the untreated control (1.000 normalised AK per protein content), although it was increased following treatment with 0.179 mg/ml (1.457), but decreased with 0.791 mg/ml (0.187). The metabolic activity (ATP levels) of the H69V cell line (0.338 normalised ATP per protein content) was reduced to a greater extent than in the H69AR cell line at the H69V IC$_{50}$ dosage of 0.179 mg/ml. This supports the conclusions from the MTT data, suggesting slight resistance of the H69AR cell model which could indicate that some of the active phytochemicals in the polysaccharide fraction may be subject to MRP1 efflux.

Similar results as observed in the H69AR cell line were obtained following treatment of the resistant NCI-H69/LX4 cell line with *A. vera* precipitated polysaccharides. It was also comparable with the results obtained after treatment of the NCI-H69/LX4 cell line with the *A. vera* gel material. The statistically significant reduction in both the ATP and AK levels were concentration dependent (Figure 3D), signifying loss in cell viability.

Overall, the *A. vera* precipitated polysaccharides seemed to have good anticancer efficacy against both the chemosensitive, and the resistant cell lines. However, the cytotoxicity of the polysaccharides in non-cancerous cells could be a cause for concern due to reduced cell viability of the LLC-PK1 cells detected at 0.179 mg/ml.
Figure 3: Normalised intracellular adenosine triphosphate, extracellular adenylate kinase and protein levels of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after administration of A. vera presipitated polysaccharide concentrations. (* indicates statistical significance between the samples and the untreated control (p < 0.05), and ∆ indicates significant differences between the samples, n = 6; error bars = standard deviation (SD)).

3.3.3. Sutherlandia frutescens crude aqueous extract

Results from the treatment of the various cell lines with crude aqueous S. frutescens extract are depicted in Figure 4. In the non-cancerous LLC-PK1 cell line, a cytotoxic effect was indicated by the significant reduction in the ATP (0.567 normalised ATP per protein content, compared to untreated control normalised to 1.000) and increase in the AK (2.147 normalised AK per protein content, compared to untreated control normalised to 1) levels following treatment with the H69V IC₅₀ concentration of 0.538 mg/ml (Figure 4A).

When administered to the chemosensitive H69V cell line, S. frutescens (H69V IC₅₀ concentration of 0.538 and H69V IC₇₅ concentration of 0.874 mg/ml) resulted in a statistically significant concentration dependent reduction of both the ATP and AK levels when compared to the untreated control (Figure 4B). However, no significant ATP and AK level differences were observed between the two tested concentrations.

In Figure 4C, significant and concentration dependant decrease in intracellular ATP levels was apparent in the experimental groups (H69V IC₅₀ concentration of 0.538 mg/ml and H69AR IC₅₀
concentration of 1.406 mg/ml), compared to the untreated H69AR cell line. Data from the extracellular AK quantification showed a statistically significant increase (1.327 normalised AK per protein content, compared to untreated control normalised to 1.000) when 0.538 mg/ml *S. frutescens* was administered to the MRP1 hyperexpressive cell line. However, at 1.406 mg/ml *S. frutescens* decreased the extracellular AK significantly (0.676 normalised AK per protein content). This observation could be a result of two different modes of cell death, namely apoptosis at 0.538 mg/ml, and possible necrosis at 1.406 mg/ml *S. frutescens* in the resistant H69AR cell line. Furthermore, a lower effect was observed at 0.538 mg/ml *S. frutescens* in the MRP1 hyperexpressive cell line, than at the same concentration in the chemosensitive H69V cell line. This supports the MRP1-mediated resistance seen in the MTT data, and also suggests the active components in the *S. frutescens* crude aqueous extract to be substrates for the MRP1 efflux transporter.

![Figure 4](image)

Figure 4: Normalised intracellular adenosine triphosphate, extracellular adenylate kinase and protein levels of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after administration of *S. frutescens*. (* indicates statistical significance between the samples and the untreated control ($p < 0.05$), and ∆ indicates significant differences between the samples, $n = 6$; error bars = standard deviation (SD)).

Possible necrosis was also seen following treatment of the resistant NCI-H69/LX4 cell line with 0.494 mg/ml and 0.538 mg/ml *S. frutescens* (H69V IC$_{50}$ concentration and NCI-H69/LX4 IC$_{50}$
concentration, respectively), as indicated in Figure 4D. A statistically significant decrease in intracellular ATP compared to the untreated control, was present in a concentration dependent manner. There was also a significant decrease in the AK levels at 0.538 mg/ml.

The data indicated that the *S. frutescens* extract reduced the general production of ATP in both the non-tumorigenic and the SCLC panel of cells, suggesting both cytotoxic effects and anticancer efficacy. However, the extent of viability reduction in the SCLC cells appeared higher than for the LLC-PK1 line, suggesting that anticancer activity may be possible at non-cytotoxic concentrations of *S. frutescens*.

3.3.4. *Xysmalobium undulatum* crude aqueous extract

In Figure 5 the results are depicted for the various SCLC cell lines, as well as the non-cancerous LLC-PK1 cell line, after treatment with *X. undulatum* aqueous extract. Data from the non-cancerous cell line (H69V IC\textsubscript{50} of 0.004 mg/ml *X. undulatum*), showed significantly reduced ATP (0.786) and increased AK levels (2.252 normalised ATP per protein content) compared to the untreated control (normalised to 1.000) (Figure 5A). An overall loss in cell viability was detected with indications of apoptosis, and this is indicative of cytotoxicity. Data in Figure 5B, however, also indicate some anticancer efficacy for *X. undulatum* in the chemosensitive H69V cell model, since there was a significant and concentration dependent decrease in ATP (0.522 and 0.308, respectively) combined with an increase in AK levels (1.657 and 2.327, respectively) relative to the untreated control (1.000), at 0.004 mg/ml and 0.017 mg/ml (H69V IC\textsubscript{75} concentrations). These results showed that, in spite of the cytotoxic effects of the *X. undulatum* crude extract, some active components did alter the cell viability of the SCLC cell lines.

Similarly, the crude *X. undulatum* extract also resulted in the statistically significant decrease of ATP and increase of AK levels when administered to the MRP1 hyperexpressive H69AR cell line, as shown in Figure 5C. The loss of cell viability in the resistant cell line, compared to the untreated control and the chemosensitive H69V cell lines, did not support the MRP1-related resistance seen in the MTT data. The same loss in cell viability was seen when *X. undulatum* was administered to the NCI-H69/LX4 cell line at 0.004 mg/ml and 0.015 mg/ml (H69V IC\textsubscript{50} and H69 NCI-H69/LX4 IC\textsubscript{50} concentrations, respectively). In Figure 5D, a similar decrease in ATP levels was indicated (0.709 and 0.529 normalised ATP per protein content, compared to untreated control normalised to 1.000) following treatment of the P-gp hyperexpressive cell line, again in a concentration-dependent manner. The AK levels, however, were also decreased significantly (0.733 and 0.645 normalised AK per protein content, compared to untreated control normalised to 1.000). The reduction in ATP levels also proved to be statistically significant when the two experimental groups were compared. The 0.004 mg/ml *X. undulatum* did not decrease the ATP content of the NCI-H69/LX4 cell line to a greater extent than in the chemosensitive H69V cell line, suggesting some resistance by the P-gp hyperexpressing cell line as indicated by the MTT data as well.
The *X. undulatum* crude aqueous extract showed potential as a treatment source for SCLC, even in cancer resistance due to MRP1 hyperexpression. However, the cytotoxic properties of the extract are a concern, as well as the possible P-gp mediated resistance.

4. Conclusion

In summary, all four plant materials altered the cell viability of the selected SCLC cell lines to some extent, although they also had some indications of cytotoxicity in a non-cancerous cell line. The data obtained with the *A. vera* gel material suggested the presence of additional bioactive phytochemicals, not present in the precipitated polysaccharides, and the precipitated polysaccharides seemed to alter the intracellular ATP levels of the non-cancerous LLC-PK1 cell line to a greater extent than the *A. vera* gel. The gel also reduced viability of the chemosensitive H69V model to a larger extent at a lower concentration than the polysaccharides. Therefore, it is suggested...
that the cytotoxic components in *A. vera* are concentrated in the polysaccharide fraction, and some active anticancer components are located in the gel and not in the polysaccharides. It is also suggested that some active anticancer components in *A. vera* are substrates for MRP1 mediated efflux.

The *S. frutescens* extract demonstrated the highest calculated cancer selectivity ratio of all the tested plant material on all three SCLC cell models, which supports the traditional use of this plant in cancer management. The active components in *S. frutescens* may, however, be substrates for MRP1 mediated efflux and could therefore be subjected to resistance by this mechanism. The *X. undulatum* extract reduced the cell viability of the SCLC cells, however, cytotoxicity could negate its use in cancer management. The anticancer efficacy of this crude extract was also altered by the hyperexpression of MRP1 and P-gp efflux transporters.

Although some findings of the preliminary screening with the MTT assay did not correspond exactly with the more sensitive ATP and AK cell viability evaluation, most effects were consistent between these two assay methods. In general, the MTT assay appeared to underestimate the cytotoxic potential of the plant materials. All of the plant extracts evaluated in this study had very good efficacy against the chemosensitive SCLC cell line, although the cytotoxic effects of some could be detrimental to its use as a treatment option. However, the active components may be isolated in an effort to increase efficacy, while decreasing cytotoxicity. The anticancer phytochemicals present in most of the selected plant materials investigated exhibited signs of being substrates for the MRP1 and P-gp efflux transporters. This may potentially also be exploited as efflux transporter inhibitors through competitive inhibition, to be prescribed in combination with allopathic chemotherapeutics to reduce resistance. These therapies may work in a synergistic manner and thereby increase activity against MDR cancer, but this needs to be confirmed in future studies.

5. Acknowledgements

The financial assistance of the National Research Foundation (NRF) and the Medical Research Council (MRC) of South Africa are hereby acknowledged. The views, opinions and findings expressed in this manuscript are those of the authors only, and not necessarily linked to the NRF or the MRC.

Author contributions: C. Gouws, C. Willers, C. Calitz, JH. Hamman designed the experiments; RA. Swanepoel, JH. Hamman prepared the plant extracts; RA. Swanepoel, C. Willers maintained and seeded the cells; RA. Swanepoel performed the in vitro assays; RA. Swanepoel, C. Willers, C. Gouws, C. Calitz processed and analysed the data; RA. Swanepoel, C. Gouws, C. Willers wrote the first draft of the paper; C. Gouws, C. Willers, C. Calitz, JH. Hamman revised and prepared the paper for publishing. AM. Viljoen assisted in characterising the *S. frutescens* and *X. undulatum* extracts.
6. Conflict of interest

The authors of this article declare no conflict of interest, financial or otherwise.

7. References

Wrzesinski, K., Fey, S.J., 2013. After trypsinisation, 3D spheroids of C3A hepatocytes need 18 days to re-establish similar levels of key physiological functions to those seen in the liver. Toxicology Research 2, 123-135.

Chapter 6
Concluding remarks and future recommendations

6.1. Introduction

Multidrug resistant (MDR) small cell lung cancer cells (SCLC) demonstrate resistance to a wide spectrum of anticancer drugs. This leads to reduced therapeutic efficacy and insufficient cancer management, contributing to the high mortality rate in lung cancer patients. The adenosine triphosphate (ATP)-binding cassette (ABC) efflux transporters frequently associated with MDR are promising treatment target to overcome resistance, since inhibition of these transporters may increase the intracellular accumulation of anticancer drugs and thereby increase treatment efficacy.

South Africa has a vast ethnobotanical heritage, and can potentially form a cornerstone in the search for alternative anticancer drugs. Three medicinal plants traditionally used in the treatment of cancer, namely Aloe vera, Sutherlandia frutescens and Xysmalobium undulatum, were included in this study. The anticancer treatment efficacy of A. vera gel material, precipitated polysaccharides of the A. vera gel material and the aqueous extracts of S. frutescens and X. undulatum dried plant material was screened in a panel of SCLC cell lines (chemosensitive and chemoresistant) and a non-cancerous cell line. Furthermore, the potential of these plant material suspensions to overcome MDR in SCLC were investigated. This efficacy evaluation included a preliminary screening of a series of concentrations of each solution with the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, followed by statistical evaluation to determine the IC_{50} and IC_{75} values for each plant material on each cell line. Subsequently, these concentrations were used to treat the cell models for 96 h, followed by a more sensitive anticancer efficacy evaluation.

6.2. Chemical characterisation of the plant material

Since the chemical composition of a plant can differ significantly due to factors such as time of harvest, region of growth, rainfall and time since harvest, it is important to not only confirm the identity of the plant material, but to also obtain a chemical profile of the phytoconstituents in the prepared material. The marker molecules in the A. vera gel material, as well as the precipitated polysaccharides, were identified by means of nuclear magnetic resonance (H-NMR) spectroscopy, shown in Figures 4.1 and 4.2. These molecules and their abundance in the A. vera material are also summarised in Tables 4.1 and 4.2. The SU1 marker molecule in the S. frutescens aqueous extract, a cycloartane-like triterpene glycoside, was quantified as 10.1 μg/mg dried plant material, and the liquid chromatography-mass spectrometry chromatogram is presented in Figure 4.3. The ultra-
performance liquid chromatography analysis of the *X. undulatum* aqueous extract confirmed the presence of the marker molecule, uzarin (Figure 4.4).

6.3. Preliminary anticancer efficacy screening

The MTT assay was employed as a preliminary screening tool to identify the concentration for each plant material extract resulting in 50% viability reduction (IC\textsubscript{50}), relative to an untreated control following treatment for 96 h (Table 4.3). From these values, cancer selectivity and resistance ratio were calculated for each phytomedicine on each cell line.

The *A. vera* gel material and precipitated polysaccharide fraction both showed anticancer efficacy towards the panel of chemosensitive and chemoresistant SCLC cells. The *A. vera* gel material demonstrated a higher cancer selectivity ratio of 13.830 for the chemosensitive H69V cell line, compared to the 6.702 ratio of the *A. vera* precipitated polysaccharides. The efficacy of the precipitated polysaccharides, however, was less influenced by MRP1 hyperexpression than P-gp expression, as indicated by the 1.177 resistance ratio determined for the H69AR (MRP1 hyperexpressive) cell line compared to the 6.702 resistance ratio for the NCI-H69/LX4 (P-gp hyperexpressive) cell line (Figure 4.11. and 4.12.). Overall, the MTT data suggested the possible use of the *A. vera* gel material to treat chemosensitive SCLC, while the *A. vera* precipitated polysaccharides are suggested to be more useful as MDR SCLC treatment.

The *S. frutescens* aqueous extract induced the highest cancer selectivity ratio of 14.901 on the chemosensitive cell line, whereas the *X. undulatum* aqueous extract resulted in the lowest ratio (2.322). It was evident that the *S. frutescens* extract could potentially be useful as a SCLC treatment, especially to overcome resistance due to P-gp hyperexpression (resistance ratio of 0.918 in the NCI-H69/LX4 cell line). Although the *X. undulatum* extract demonstrated anticancer efficacy towards both resistant SCLC cell lines (Figure 4.19 and 4.20), the IC\textsubscript{50} values in these lines (0.0199 for H69AR and 0.015 for NCI-H69/LX4) were similar to the IC\textsubscript{50} concentration in the LLC-PK1 cell line (0.010 mg/ml) suggesting possible cytotoxicity in non-cancerous cells.

6.4. Advanced anticancer efficacy evaluation

The IC values determined following the MTT assays were further investigated for their effects on cell viability in the SCLC and LLC-PK1 cell lines. The calculated IC\textsubscript{50} concentration of each extract on the chemosensitive H69V cell line was applied on all the cell lines, to clarify the overall anticancer efficacy of each medicinal plant. The effects of treatment of each resistant cell line with its own IC\textsubscript{50} concentration, on the intracellular ATP and extracellular AK levels were compared to the response after treatment with the chemosensitive H69V cell line’s IC\textsubscript{50} concentration. This comparison indicated the impact of the hyperexpressed efflux transporters on the efficacy of the extracts. The selected cell lines were treated daily with the calculated IC concentrations relative to the wet biomass, for a 96 h period.
6.4.1. Anticancer efficacy of Aloe vera gel material

The A. vera plant has a complex phytochemical composition (e.g. anthraquinones, carbohydrates, inorganic compounds), of which a combination of bioactive constituents are responsible for the observed health benefits (Hamman, 2008). The A. vera gel material used in the current study included phytochemicals such as aloverose, glucose and malic acid (Table 4.1). The A. vera gel material induced apoptosis in the H69V cell line (Chapter 5: Figure 2B), and the metabolic activity (normalised ATP per protein content) of this chemosensitive cell line was reduced to a greater extent than in the non-cancerous LLC-PK1 cell line (Chapter 5: Figure 2A). This suggests the gel material to be relatively cancer selective at 0.027 mg/ml.

The hyperexpressed MRP1 efflux transporters in the H69AR cell line may have contributed to a reduction of the anticancer efficacy of the A. vera gel material, since the H69V IC$_{50}$ concentration (0.027 mg/ml) reduced the normalised ATP per protein content in the H69V cell line to a greater extent than in the MRP1 hyperexpressing H69AR cell line (Chapter 5: Figure 2). The normalised ATP per protein content levels in the NCI-H69/LX4 were reduced more than in the H69AR cell line, suggesting the phytochemicals in the A. vera gel material may be possible P-gp substrates, but may have a higher affinity for the MRP1 efflux protein.

6.4.2. Anticancer efficacy of Aloe vera precipitated polysaccharides

The bioactivity of acemannan, a polysaccharide present in A. vera, includes inhibition of tumour growth through immunomodulation (Xie et al., 2016). Polysaccharides have been suggested to have anticancer efficacy between 400 and 5 KDa (Im et al., 2005). The precipitated polysaccharides used in this study demonstrated anticancer efficacy in the SCLC cell lines at different concentrations (Chapter 5: Figure 3). The increased normalised AK per protein content levels seen in the LLC-PK1 cell line when compared to the untreated control, suggested the presence of apoptosis in the non-cancerous cell line. The normalised ATP per protein content in the H69AR and NCI-H69/LX4 cell lines showed significant reduction compared to the untreated control (Chapter 5: Figures 3C and 3D), indicating an alteration in the metabolic activity of the MDR SCLC cell lines and possible apoptosis. The A. vera polysaccharide fraction, therefore, showed not only anticancer efficacy but also possible cytotoxicity. The phytochemicals in the precipitated polysaccharides of the A. vera gel material are suggested to be possible MRP1 substrates. This observation is supported by comparing the alteration in metabolic activity (ATP levels) of 0.179 mg/ml on both the H69V (0.338) and H69AR (0.824) cell line.
6.4.3. Anticancer efficacy of *Sutherlandia frutescens* crude aqueous extract

One of the major phytochemicals in *S. frutescens* is a cycloartane-like triterpene glycoside, named SU1, which was quantified as 10.1 μg/mg dried plant material in the extract prepared. Some of the triterpenoids in *S. frutescens* have demonstrated structurally related features similar to cycloartane-like triterpenoids, which have been found to act in a cancer chemopreventative manner (Van Wyk & Albrecht, 2008). Aqueous *S. frutescens* extracts have previously been illustrated to have anticancer efficacy by inducing autophagy and apoptosis (Stander *et al.*, 2009; Vorster *et al.*, 2012). A possible apoptotic mechanism suggested is the occurrence of a flip-flop trans-locating effect of phosphotidyl serine (Chinkwo, 2005).

The data presented in this study indicated the *S. frutescens* aqueous extract altered the normalised ATP and AK per protein content levels of the various SCLC cells compared to each untreated control (Chapter 5: Figures 4B, 4C and 4D), suggesting anticancer efficacy. The metabolic activity of the chemosensitive H69V cell line, as suggested by the intracellular ATP levels, was reduced more than in the MRP1 hyperexpressive H69AR cell line, suggesting some efflux of the active components of the *S. frutescens* extract by the MRP1 transporters. However, the H69AR cell line still underwent possible apoptosis at 0.538 mg/ml, while possible necrosis of the cells occurred at 1.406 mg/ml (Chapter 5: Figure 4C). The H69V IC$_{50}$ concentration of 0.538 mg/ml reduced both the ATP and AK levels of the P-gp hyperexpressing NCI-H69/LX4 cell line more than for the MRP1 hyperexpressing H69AR cell line (Chapter 5: Figures 4C and 4D). This supports the conclusion that the anticancer phytochemicals in the *S. frutescens* extract are MRP1 substrates, yet, the influence of P-gp on the anticancer efficacy cannot be excluded. Possible cytotoxicity was also seen following treatment with 0.538 mg/ml *S. frutescens* extract, since normalised AK levels increased and normalised ATP levels decreased in the LLC-PK1 cell line compared to the untreated control (Chapter 5: Figure 4A).

6.4.4. Anticancer efficacy of *Xysmalobium undulatum* crude aqueous extract

Some cardenolides (e.g. uzarin, xysmalobin) in *X. undulatum* are suggested as P-gp efflux transport inhibitors, contributing to the anticancer effects of plant material containing such cardenolides (Krishna *et al.*, 2015). In another study (Calitz *et al.*, 2018), an aqueous *X. undulatum* extract demonstrated antiproliferating effects on a hepatocellular carcinoma cell line (HepG2/C3A). The data presented in the current study showed the *X. undulatum* extract to alter the normalised ATP and AK levels of both the SCLC and the LLC-PK1 cell lines, when compared to the untreated controls (Chapter 5: Figure 5). The possible non-tumorigenic cell cytotoxicity was demonstrated by a reduction in normalised ATP per protein and increased normalised AK per protein levels following treatment of the LLC-PK1 cell line with 0.004 mg/ml, suggesting apoptosis. The *X. undulatum* extract also induced apoptosis in the H69V and H69AR cell lines as indicated by decreased normalised ATP and increased normalised AK levels, relative to the untreated controls.
The *X. undulatum* extract did not appear to reduce the cell viability of the resistant NCI-H69/LX4 cell line as much, compared to the chemosensitive cell line. This is supported by comparing the normalised ATP levels (0.522) on the chemosensitive cell line with the ATP levels (0.709) of the P-gp hyperexpressed cell line after a 96 h treatment with the 0.004 mg/ml (H69V IC$_{50}$) concentration. Therefore the cytotoxic phytochemicals in the crude aqueous *X. undulatum* extract are suggested to be P-gp efflux transporter substrates.

6.5. Final conclusion

The different plant materials evaluated in this study have demonstrated varying degrees of anticancer efficacy against the various SCLC cell lines, although cytotoxicity was also indicated to some extent in the non-cancerous cell line. The anticancer effects observed were for the most part dose dependent, and frequently influenced by the hyperexpression of MRP1 and P-gp efflux transporters (as described in Chapter 4). The *S. frutescens* and *X. undulatum* aqueous extracts and the *A. vera* gel material and precipitated polysaccharides consists of a complex mix of phytochemicals, other than the reported marker molecules, which could contribute to the anticancer efficacy demonstrated. The anticancer phytochemicals in the crude plant material may also be MRP1 or P-gp substrates.

The results of this study validates the traditional use of the selected plant material to treat cancer. However, the study also indicated potential risk with prolonged or high-dosage use of the plant material due to potential cytotoxicity. It is, therefore, imperative that further studies should be performed to find suitable concentrations of the various plant materials, where beneficial anticancer effects are attained, with minimal cytotoxic adverse events.

6.6. Future recommendations

The current data demonstrated the anticancer potential of the three selected medicinal plants. These findings can be further investigated through various approaches.

One approach involves combining the plant material (containing of possible substrates for MDR transporters) with allopathic chemotherapeutic drugs, to evaluate possible synergism or antagonism. These transporter substrates may potentially increase intracellular drug accumulation through competing for the specific binding areas of the efflux transporters. Furthermore, demographically different sources of plant material from different provinces in southern Africa may be included to determine the influence of harvesting and seasonal changes on the anticancer efficacy. The current study focused on SCLC and LLC-PK1 cell lines. In future, this panel of models can be expanded to include a non-small cell lung cancer cell line (NCSLC) and other non-cancerous cell lines to further evaluate the possible cytotoxicity and anticancer efficacy of the selected plants.
Another approach involves isolation of the specific bioactive phytochemicals responsible for the anticancer effects. The precipitated polysaccharides can also be separated into different molecular weight fractions by means of a Sephacryl S400 HR column. The fractions can then be used for in vitro anticancer screening. Changing the extraction liquid used for the S. frutescens and X. undulatum extracts from water to organic solvents may result in the extraction of different phytochemicals which are not present in an aqueous extract.

The two-dimensional (2D) in vitro study demonstrated anticancer potential of these plants. It would be advisable to develop three-dimensional (3D) in vitro models of the panel of SCLC cells, since it may provide more physiologically relevant results. A 3D cell model in vitro study could be applied to confirm the findings from the 2D screening, or to identify possible mechanisms of action. The inclusion of proteomics analysis, as well as caspase-3 and reactive oxygen species (ROS) detection can also contribute to the elucidation of a possible anticancer mechanism.

6.7. References

Appendix A

The author guidelines of Current Cancer Drug Targets

Current Cancer Drug Targets

Instructions for authors

Online manuscript submission

An online submission and tracking service via Internet facilitates a speedy and cost-effective submission of manuscripts. The full manuscript has to be submitted online via Bentham’s Journal Management System (JMS) at http://jms.eurekaselect.com/journals/ccdt / View Submission Instructions

Manuscripts must be submitted by one of the authors of the manuscript, and should not be submitted by anyone on their behalf. The principal/corresponding author will be required to submit a Copyright Letter along with the manuscript, on behalf of all the co-authors (if any). The author(s) will confirm that the manuscript (or any part of it) has not been published previously or is not under consideration for publication elsewhere. Furthermore, any illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained.

For all online submissions, please provide soft copies of all the materials (main text in MS Word or Tex/LaTeX), figures / illustrations in TIFF, PDF or JPEG, and chemical structures drawn in ChemDraw (CDX)/ISISDraw (TGF) as separate files, while a PDF version of the entire manuscript must also be included, embedded with all the figures/illustrations/tables/chemical structures etc. It is advisable that the document files related to a manuscript submission should always have the name of the corresponding author as part of the file name, i.e., “Cilli MS text.doc, Cilli MS Figure 1, etc.

It is imperative that before submission, authors should carefully proofread the files for special characters, mathematical symbols, Greek letters, equations, tables, references and images, to ensure that they appear in proper format.

References, figures, tables, chemical structures etc. should be referred to in the text at the appropriate place where they have been first discussed. Figure legends/captions should also be provided.

A successful electronic submission of a manuscript will be followed by a system-generated acknowledgement to the principal/corresponding author. Any queries therein should be addressed to info@benthamscience.org

Editorial policies

For journals and eBooks, the following publication policies are applied by Bentham Science.

Peer review

Bentham Science Publishers follows the single blind peer-review procedure for submissions of all manuscripts to its journals, except for a selected number of patent journals where double blind review is followed.

All submitted articles/eBook chapters are subjected to an extensive peer review in consultation with members of the journal’s editorial board and independent external referees (usually three reviewers). All manuscripts/chapters are assessed rapidly and the decision based on all the peer reviewers’ comments, taken by the journal’s Editor-in-Chief/eBook Editor, is then conveyed to the author(s).

Submissions from the Editor-in-Chief will undergo independent peer-review and will be submitted to another Editor for his decision on acceptance.

Copyediting and proofs

Articles and eBook chapters must be written in good English in a clear and correct style in order to maintain uniformity throughout the text. Articles/chapters submitted are copyedited before they are published.
Reprints

High-quality, bound/unbound, print/e-prints can be purchased for all published articles and book chapters.

Editorial policies

Articles/chapters must be submitted by one of the authors of the manuscript, and should not be submitted by anyone on their behalf. The principal/corresponding author will be required to submit a Copyright Letter along with the manuscript, on behalf of all the co-authors (if any). The author(s) will confirm that the manuscript (or any part of it) has not been published previously or is not under consideration for publication elsewhere. Furthermore, any illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained.

Appeals and complaints

Generally, the editorial decisions are not reverted. However, authors who think that their manuscript was rejected due to a misunderstanding or mistake may seek an explanation for the decision. Appeals must give sound reasoning and compelling evidence against the criticism raised in the rejection letter. A difference of opinion as to the interest, novelty, or suitability of the manuscript for the journal will not be considered as an appeal. The EIC and other relevant editors will consider the appeal and the decision thereafter taken by the journal will be deemed final. Acceptance of the manuscript is not guaranteed even if the journal agrees to reconsider the manuscript, and the reconsideration process may involve previous or new reviewers or editors and substantive revision.

Authors who wish to make a complaint should refer them to the Editor-in-Chief of the journal concerned. Complaints to the Publisher may be emailed to info@benthamscience.org

Conflict of interest

Financial contributions to the work being reported should be clearly acknowledged, as should any potential conflict of interest.

Plagiarism prevention

Bentham Science uses the iThenticate software to detect instances of overlapping and similar text in submitted manuscripts. iThenticate software checks content against a database of periodicals, the Internet, and a comprehensive article database. It generates a similarity report, highlighting the percentage of overlap between the uploaded article and the published material. Any instance of content overlap is further scrutinized for suspected plagiarism according to the publishers Editorial Policies. Bentham Science allows an overall similarity of 20% for a manuscript to be considered for publication. The similarity percentage is further checked keeping the following important points in view

Low text similarity

The text of every submitted manuscript is checked using the Content Tracking mode in iThenticate. The Content Tracking mode ensures that manuscripts with an overall low percentage similarity (but may have a higher similarity from a single source) are not overlooked. The acceptable limit for similarity of text from a single source is 5%. If the similarity level is above 5%, the manuscript is returned to the author for paraphrasing the text and citing the original source of the copied material.

It is important to mention that the text taken from different sources with an overall low similarity percentage will be considered as plagiarized content if the majority of the article is a combination of copied material.

High text similarity

There may be some manuscripts with an overall low similarity percentage, but a higher percentage from a single source. A manuscript may have less than 20% overall similarity but there may be 15% similar text taken from a single article. The similarity index in such cases is higher than the approved limit for a single source. Authors are advised to thoroughly rephrase the similar text and properly cite the original source to avoid plagiarism and copyright violation.

Types of plagiarism

We all know that scholarly manuscripts are written after thorough review of previously published articles. It is therefore not easy to draw a clear boundary between legitimate representation and plagiarism. However, the following important features can assist in identifying different kinds of plagiarized content. These are:

- Reproduction of others words, sentences, ideas or findings as one’s own without proper acknowledgement.
- Text recycling, also known as self-plagiarism. It is an author’s use of a previous publication in another paper without proper citation and acknowledgement of the original source.
• Poor paraphrasing: Copying complete paragraphs and modifying a few words without changing the structure of original sentences or changing the sentence structure but not the words.
• Verbatim copying of text without putting quotation marks and not acknowledging the work of the original author.
• Properly citing a work but poorly paraphrasing the original text is considered as unintentional plagiarism. Similarly, manuscripts with language somewhere between paraphrasing and quoting are not acceptable. Authors should either paraphrase properly or quote and in both cases, cite the original source.
• Higher similarity in the abstract, introduction, materials and methods, and discussion and conclusion sections indicates that the manuscript may contain plagiarized text. Authors can easily explain these parts of the manuscript in many ways. However, technical terms and sometimes standard procedures cannot be rephrased; therefore Editors must review these sections carefully before making a decision.

Plagiarism in published manuscripts

Published manuscripts which are found to contain plagiarized text are retracted from the journal’s website after careful investigation and approval by the Editor-in-Chief of the journal. A Retraction Note as well as a link to the original article is published on the electronic version of the plagiarized manuscript and an addendum with retraction notification in the particular journal.

Copyright and license

Open access plus (subscription journals and eBooks)
Accepted articles can be published online for free open access. Open access publishing provides maximum dissemination of the article to the largest audience. All authors will be asked to indicate whether or not they wish to pay to have their paper made freely available on publication. If authors do not select the 'Open Access Plus' option, then their article will be published with standard subscription-based access.

copyright (subscription journals and eBooks)

Editors/Authors who contribute in a Bentham's Journal/eBook will transfer copyright to their work to Bentham Science Publishers. Submission of a manuscript to the respective journals implies that all editors/authors have read and agreed to the content of the copyright letter.

Ethical approval of studies and informed consent

For human or animal experimental investigations, it is a prerequisite to provide a formal review and approval, or review and waiver, by an appropriate institutional review board or ethics committee, which should be documented in the paper. For investigations undertaken on human subjects, the manner in which the informed consent was obtained from the study participants (i.e., oral or written) should be stated in the Methods section.

Authors are encouraged to obtain patient consent when they use confidential case material. Consent is not necessary in the case of very brief case vignettes which do not contain identifying information or if the case material is disguised sufficiently to prevent identification of the patient.

In obtaining consent, the author(s) should discuss the purpose(s) of publication, the possible risks and benefits to the patient and the patient's right to withhold or withdraw consent. In the case of a minor patient, consent should be obtained from the parent(s) or guardian(s).

Standard protocol on approvals, registrations, patient's consents & animal protection

All clinical investigations must be conducted according to the Declaration of Helsinki principles. Authors must comply with the guidelines of the International Committee of Medical Journal Editors (www.icmje.org) with regard to the patient's consent for research or participation in a study. Patients' names, initials, or hospital numbers must not be mentioned anywhere in the manuscript (including figures). Editors may request that authors provide documentation of the formal review and recommendation from the institutional review board or ethics committee responsible for oversight of the study.

Errata and corrections in published articles

Authors and readers are encouraged to notify the Editor-in-Chief if they find errors in published content, authors names and affiliations or if they have reasons for concern over the legitimacy of a publication. In such cases the journal will publish an ERRATUM in consultation with Editor-in-Chief and authors of the article, and/or replace or retract the article.
Article withdrawal

Articles in Press (articles that have been accepted for publication or published as E-pub Ahead of Schedule but which have not been formally published with volume/issue/page information) that include errors, or are determined to violate the publishing ethics guidelines such as multiple submission, fake claims of authorship, plagiarism, fraudulent use of data or the like, may be Withdrawn from the journal. Withdrawal means that the article files are removed and replaced with a PDF stating that the article has been withdrawn from the journal in accordance with BSP Editorial Policies.

Article retraction

Published articles (with volume/issue/page information) which may contain infringements of professional ethical codes, such as multiple submissions, bogus claims of authorship, plagiarism, fraudulent use of data or the like are retracted.

- A retraction note titled Retraction: [article title] signed by the authors and/or the Editor-in-Chief is published in the paginated part of a subsequent issue of the journal and listed in the contents list.
- In the electronic version, a link is made to the original article.
- The online article is preceded by a screen containing the retraction note. It is to this screen that the link resolves; the reader can then proceed to the article itself.
- The original article is retained unchanged with a watermark on the PDF indicating on each page that it is retracted.
- The HTML version of the document is removed.

Redundant (multiple) publication/ re-publication

Abstracts and posters of conferences, results presented at meetings (for example, to inform investigators or participants about findings), results databases (data without interpretation, discussion, context or conclusions in the form of tables and text to describe data/information where this is not easily presented in tabular form) are not considered prior publication.

Authors who wish to publish translations of the articles that have been published elsewhere should ensure that they have appropriate permission(s), indicate clearly that the material has been translated and re-published, and indicate clearly the original source of the material. The Editor-in-Chief may request copies of related publications if he/she is concerned about overlap and possible redundancy.

Permission for reproduction

Bentham Science has collaborated with the Copyright Clearance Center to meet its customer’s licensing, besides rights & permission needs.

The Copyright Clearance Center’s RightsLink® service makes it faster and easier to secure permission from Bentham Science journal titles. Simply visit Journals by Title and locate the desired content. Then go to the article’s abstract and click on Rights and Permissions to open the RightsLink’s page. If you are unable to locate the content you wish to use or are unable to secure the rights you are seeking, please e-mail us at permissions@benthamscience.org

Published/reproduced material should not be included unless written permission has been obtained from the copyright holder, which should be forwarded to the Editorial Office in case of acceptance of the article for publication.

Disclaimer

Responsibility for the content published by Bentham Science Publishers in any of its journals, including any opinions expressed therein, rests exclusively with the author(s) of such content. To the maximum extent permitted by applicable law, BSP (on its own behalf, and on behalf of its staff and members of its editorial board) disclaims responsibility for any and all injury and/or damage (whether financial or otherwise) to persons or property, resulting directly or indirectly from any ideas, methods, instructions or products (including errors in the same) referred to in the content of any of BSP’s journals. Any dispute arising, including any claim shall be governed exclusively by the laws of the United Arab Emirates, as applied in the Emirate of Sharjah.

Copyright / self-archiving policy

Copyright

Authors who publish in Bentham Science Publishers print & online journals will transfer copyright of their work to Bentham Science Publishers. Submission of a manuscript to the respective journals implies that all authors have read and agreed to the content of the Copyright Letter or the Terms and Conditions. It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Plagiarism is strictly forbidden; and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting
a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication. Once submitted to the journal, the authors will not withdraw their manuscript at any stage prior to publication.

Copyright letter

It is mandatory that a signed copyright letter also be submitted along with the manuscript by the author to whom correspondence is to be addressed, delineating the scope of the submitted article, declaring the potential competing interests, acknowledging contributions from authors and funding agencies, and certifying that the paper is prepared according to the 'Instructions for Authors'. All inconsistencies in the text and in the reference section, and any typographical errors must be carefully checked and corrected before the submission of the manuscript. The article should not contain any such material or information that may be unlawful, defamatory, fabricated, plagiarized, or which would, if published, in any way whatsoever, violate the terms and conditions as laid down in the copyright agreement. The authors should acknowledge that the publishers have the legal right to take appropriate action against the authors for any such violation of the terms and conditions as laid down in the copyright agreement. Download the Copyright letter

Permission for reproduction

Bentham Science has collaborated with the Copyright Clearance Center to meet our customer’s licensing, besides rights & permission needs.

The Copyright Clearance Center’s RightsLink® service makes it faster and easier to secure permission from Bentham Science’s journal titles. Simply visit Journals by Title and locate the desired content. Then go to the article’s abstract and click on “Rights and Permissions” to open the RightsLink’s page. If you are unable to locate the content you wish to use or you are unable to secure the rights you are seeking, please e-mail us at permissions@benthamscience.org

Published/reproduced material should not be included unless written permission has been obtained from the copyright holder, which should be forwarded to the Editorial Office in case of acceptance of the article for publication.

Self-archiving

By signing the Copyright Letter the authors retain the rights of self-archiving. Following are the important features of self-archiving policy of Bentham Science journals

1. Authors can deposit the first draft of a submitted article on their personal websites, their institution’s repositories or any non-commercial repository for personal use, internal institutional use or for permitted scholarly posting.
2. Authors may deposit the ACCEPTED VERSION of the peer-reviewed article on their personal websites, their institution’s repository or any non-commercial repository such as PMC, arXiv after 12 months of publication on the journal website. In addition, an acknowledgement must be given to the original source of publication and a link should be inserted to the published article on the journal’s/publisher’s website.
3. If the research is funded by NIH, Wellcome Trust or any other Open Access Mandate, authors are allowed the archiving of published version of manuscripts in an institutional repository after the mandatory embargo period. Authors should first contact the Editorial Office of the journal for information about depositing a copy of the manuscript to a repository. Consistent with the copyright agreement, Bentham Science does not allow archiving of FINAL PUBLISHED VERSION of manuscripts.
4. The link to the original source of publication should be provided by inserting the DOI number of the article in the following sentence: “The published manuscript is available at EurekaSelect via http://www.eurekaselect.com/openurl/content.php?genre=article&doi= [insert DOI]
5. There is no embargo on the archiving of articles published under the OPEN ACCESS PLUS category. Authors are allowed deposition of such articles on institutional, non-commercial repositories and personal websites immediately after publication on the journal website.

Manuscripts published

The Journal publishes peer-reviewed mini- and full-length Review Articles, research papers, letters and drug clinical trial studies written in English. Single topic/thermic issues may also be considered for publication.

Single topic issues

These special issues are peer-reviewed and may contain invited or uninvited review/mini-review articles. A Single Topic Issue Editor will offer a short perspective and co-ordinate the solicitation of manuscripts between 3-5 (for a mini-thermic Issue) to 6-10 (for full-length thematic Issue) from leading scientists. Authors interested in editing a single topic issue in an emerging topic of cancer drug targets may submit their proposal to the Editor-in-Chief at thematicissue@benthamscience.org for consideration.
Conference proceedings

For proposals to publish conference proceedings in this journal, please contact us at email: proceedings@benthamscience.org.

Manuscripts length

Review articles

The length of a published comprehensive review article is from 35000 to 40000 words with 100 or more references excluding figures, structures, photographs, schemes, tables, etc.

Mini-reviews

Mini-reviews should be 6000-10000 words with 75 or more references excluding figures, structures, photographs, schemes, tables etc.

Systematic reviews

Systematic Reviews include systematic updates on review protocols, methods, research, and results from all relevant fields for any studies and updates on already published issues. The total number of words for a published systematic review is from 35000 to 40000 words with 100 or more references excluding figures, structures, photographs, schemes, tables etc.

Registration of systematic reviews

Bentham Science Publishers supports retrospective registration of systematic reviews, in a suitable registry (such as PROSPERO). The registered systematic review must include the registration number as the last line of the manuscript abstract.

Research articles

Research articles should be of 4000-6000 words with 75 or more references excluding figures, structures, photographs, schemes, tables, etc.

Letters

Letters should be 3000-6000 words with 40 or more references excluding figures, structures, photographs, schemes, tables, etc.

Book reviews

The journal publishes book reviews on recently published books (both print and electronic) relevant to the journal. Proposals for publishing book reviews should first contact the editor at ccdt@benthamscience.org stating the title of the book, publisher, year of publication and book summary. No books must be sent to Bentham Science prior to their confirmation to the publisher concerned.

Randomized drug clinical trial studies

Trial studies should be 1500 to 4000 words with 50 or more references excluding figures, structures, photographs, schemes, tables etc.

Case reports

Case reports should describe new observations of findings or novel/unique outcomes relevant to the field. The total number of words for a published case report is 1500 to 2000 words with 40 or more references excluding figures, structures, photographs, schemes, tables etc.

There is no restriction on the number of figures, tables or additional files e.g. video clips, animation and datasets, that can be included with each article online. Authors should include all relevant supporting data with each article (Refer to Supplementary Material section).

Manuscript preparation

The manuscript should be written in English in a clear, direct and active style. All pages must be numbered sequentially, facilitating in the reviewing and editing of the manuscript.

Microsoft word template

It is advisable that authors prepare their manuscript using the template available on the Web, which will assist in preparation of the manuscript according to Journal’s Format. Download the Template.
Professional editing services may be availed by the team available at Bentham Science, for the correction of grammatical, scientific and typographical errors.

Sections in manuscripts

Manuscripts submitted for research and review articles in the journal should be divided into the following sections:

- Title
- Title page
- Structured Abstract
- Graphical Abstract
- Keywords
- Text Organization
- Conclusion
- List of Abbreviations
- Consent for Publication
- Conflict of Interest
- Acknowledgements
- References
- Appendices
- Figures/Illustrations (if any)
- Chemical Structures (if any)
- Tables (if any)
- Supportive/Supplementary Material (if any)

Title

The title of the article should be precise and brief and must not be more than 120 characters. Authors should avoid the use of non-standard abbreviations and question marks in titles. The first letter of each word should be in capital letters except for articles, conjunctions and prepositions.

Authors should also provide a short ‘running title’. Title, running title, byline, correspondent footnote and keywords should be written as presented in original manuscripts.

Title page

Title page should include paper title, author(s) full name and affiliation, corresponding author(s) names complete affiliation/address, along with phone, fax and email.

Structured abstract

The abstract of an article should be its clear, concise and accurate summary, having no more than 250 words, and including the explicit sub-headings (as in-line or run-in headings in bold). Use of abbreviations should be avoided and the references should not be cited in the abstract. Ideally, each abstract should include the following sub-headings, but these may vary according to requirements of the article.

- Background
- Objective
- Method
- Results
- Conclusion

Graphical abstract

A graphic must be included with each manuscript for use in the Table of Contents (TOC). This must be submitted separately as an electronic file (preferred file types are EPS, PDF, TIFF, Microsoft Word, PowerPoint and CDX etc.). A graphical abstract, not exceeding 30 words along with the illustration, helps to summarize the contents of the manuscript in a concise pictorial form. It is meant as an aid for the rapid viewing of the journals’ contents and to help capture the readers’ attention. The graphical abstract may feature a key structure, reaction, equation, etc. that the manuscript...
elucidates upon. It will be listed along with the manuscript title, authors’ names and affiliations in the contents page, typeset within an area of 5 cm by 17 cm, but it will not appear in the article PDF file or in print.

Graphical Abstracts should be submitted as a separate file (must clearly mention graphical abstract within the file) online via Bentham's Content Management System by selecting the option “supplementary material”.

Keywords

6 to 8 keywords must be provided. Choose important and relevant keywords that researchers in your field will be searching for so that your paper will appear in a database search. In biomedical fields, MeSH terms are a good ‘common vocabulary’ source to draw keywords from https://www.nlm.nih.gov/mesh/meshhome.html.

Text organization

The main text should begin on a separate page and should be divided into Title page, Abstract and the main text. For Research Articles/Letters the manuscript should begin with the Title page and Abstract followed by the main text, which must be structured into separate sections as Introduction, Materials and Methods, Results, Discussion, and Conclusion, List of Abbreviations, Conflict of Interest, Acknowledgements and References. For Review, the manuscript should be divided into title page, abstract and the main text. The text may be subdivided further according to the areas to be discussed, which should be followed by the List of Abbreviations (if any), Conflict of Interest, Acknowledgements and Reference sections. The review article should mention any previous important reviews in the field and contain a comprehensive discussion starting with the general background of the field. It should then go on to discuss the salient features of recent developments. The authors should avoid presenting material which has already been published in a previous review.

The authors are advised to present and discuss their observations in brief. The manuscript style must be uniform throughout the text and 10 pt Times New Roman font should be used. The full term for an abbreviation should precede its first appearance in the text unless it is a standard unit of measurement. The reference numbers should be given in square brackets in the text. Italics should be used for Binomial names of organisms (Genus and Species) for emphasis and for unfamiliar words or phrases. Non-assimilated words from Latin or other languages should also be italicized e.g. *in vivo, in vitro, per se, et al.* etc.

Section headings

Section headings should be numbered sequentially, left aligned and have the first letter capitalized, starting with the introduction. Sub-section headings however, should be in lower-case and italicized with their initials capitalized. They should be numbered as 1.1, 1.2, etc.

Introduction

The Introduction section should include the background and aims of the research in a comprehensive manner.

Materials and methods

This section provides details of the methodology used along with information on any previous efforts with corresponding references. Any details for further modifications and research should be included.

Experimental

Repeated information should not be reported in the text of an article. A calculation section must include experimental data, facts and practical development from a theoretical perspective.

Results

Results should be precise.

Discussion

This should explore the significance of the results of the work, present a reproducible procedure and emphasis the importance of the article in the light of recent developments in the field. Extensive citations and discussion of published literature should be avoided.

The Results and Discussion may be presented together under one heading of “Results and Discussion”. Alternatively, they may be presented under two separate sections (“Results” section and “Discussion” Sections). Short sub- headings may be added in each section if required.

Conclusion

A small paragraph summarizing the contents of the article, presenting the final outcome of the research or proposing further study on the subject, may be given at the end of the article under the Conclusion section.

Greek symbols and special characters
Greek symbols and special characters often undergo formatting changes and get corrupted or lost during preparation of manuscript for publication. To ensure that all special characters used are embedded in the text, these special characters should be inserted as a symbol but should not be a result of any format styling (Symbol font face) otherwise they will be lost during conversion to PDF/XML.

Authors are encouraged to consult reporting guidelines. These guidelines provide a set of recommendations comprising a list of items relevant to their specific research design. Chemical equations, chemical names, mathematical usage, unit of measurements, chemical and physical quantity & units must conform to SI and Chemical Abstracts or IUPAC.

All kinds of measurements should be reported only in International System of Units (SI).

Appendices
In case there is a need to present lengthy, but essential methodological details, use appendices, which can be part of the article. An appendix must not exceed three pages (Times New Roman, “10 point font”, 900 max. words per page). The information should be provided in a condensed form, ruling out the need of full sentences. A single appendix should be titled APPENDIX, while more than one can be titled APPENDIX A, APPENDIX B, and so on.

Supportive/supplementary material
We do encourage to append supportive material, for example a PowerPoint file containing a talk about the study, a PowerPoint file containing additional screenshots, a Word, RTF, or PDF document showing the original instrument(s) used, a video, or the original data (SAS/SPSS files, Excel files, Access Db files etc.) provided it is inevitable or endorsed by the journal's Editor.

Supportive/Supplementary material intended for publication must be numbered and referred to in the manuscript but should not be a part of the submitted paper. In-text citations as well as a section with the heading "Supportive/Supplementary Material" before the "References" section should be provided. Here, list all Supportive/Supplementary Material and include a brief caption line for each file describing its contents.

Any additional files will be linked into the final published article in the form supplied by the author, but will not be displayed within the paper. They will be made available in exactly the same form as originally provided only on our Web site. Please also make sure that each additional file is a single table, figure or movie (please do not upload linked worksheets or PDF files larger than one sheet). Supportive/Supplementary material must be provided in a single zipped file not larger than 4 MB.

Authors must clearly indicate if these files are not for publication but meant for the reviewers’editors’ perusal only.

List of abbreviations
If abbreviations are used in the text either they should be defined in the text where first used, or a list of abbreviations can be provided.

Availability of materials
The NIH acknowledges the misidentification and/or cross-contamination of cell cultures e.g. HeLa cells being used in a research study as a serious problem. In order to ensure the validation of the work and proper utilization of resources, it is a prerequisite that correct reagents be used in studies dealing with established human (tumor) cell lines that have been cultured for more than 4 years up to the date of submission of the manuscript. Cell lines such as short-term cultures of human tumors, murine cell lines (as a catalog of DNA profiles is not yet available) and tumor cell lines established in the course of the study that is being submitted, are presently exempt from this rule. To minimize the risk of working with misidentified and/or contaminated cell lines, tests such as isoenzyme analysis, karyotyping/cytogenetic analysis and, more recently, molecular techniques of DNA profiling may be carried out to authenticate cell cultures. These tests may help confirm or establish the identity profile for a cell line. Bentham Science recommends that all cell lines be authenticated prior to submitting a paper for review. Authors are therefore required to provide authentication of the origin and identity of the cells by performing cell profiling either in their own laboratory or by outsourcing an approved laboratory or cell bank. Authentication is required when a new line is established or acquired, before freezing a cell line, if the performance of the line is not consistent or results are unexpected, if using more than one cell line, and before publication of the study.

The cell lines profile should be cross-checked with the profile of the donor tissue of other continuous cell lines such as provided by the authentic data bank such as www.dsmz.de/fp/cgi-bin/str.html, ATCC® etc.

Declaration of interest/funding sources
Conflict of interest

Financial contributions and any potential conflict of interest must be clearly acknowledged under the heading ‘Conflict of Interest’. Authors must list the source(s) of funding for the study. This should be done for each author.

Acknowledgements

All individuals listed as authors must have contributed substantially to the design, performance, analysis, or reporting of the work and are required to indicate their specific contribution. Anyone (individual/company/institution) who has substantially contributed to the study for important intellectual content, or who was involved in the article’s drafting the manuscript or revising must also be acknowledged.

Guest or honorary authorship based solely on position (e.g. research supervisor, departmental head) is discouraged.

The specific requirements for authorship have been defined by the International Committee of Medical Journal Editors (ICMJE; www.icmje.org). Examples of authors’ contributions are: ‘designed research/study’, ‘performed research/study’, ‘contributed important reagents’, ‘collected data’, ‘analyzed data’, ‘wrote paper’ etc. This information must be included in the submitted manuscript as a separate paragraph under the heading ‘Acknowledgements’. The corresponding author is responsible for obtaining permission from all co-authors for the submission of any version of the manuscript and for any changes in the authorship.

Standard protocol on approvals, registrations, patient consents & animal protection

All clinical investigations must be conducted according to the Declaration of Helsinki principles. For all manuscripts reporting data from studies involving human participants, formal review and approval by an appropriate institutional review board or ethics committee is required. For research involving animals, the authors should indicate whether the procedures followed were in accordance with the standards set forth in the eighth edition of Guide for the Care and Use of Laboratory Animals (grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory-animals_prepub.pdf; published by the National Academy of Sciences, The National Academies Press, Washington, D.C.).

Research involving animals

Research work on animals should be carried out in accordance with the NC3Rs ARRIVE Guidelines. For In Vivo Experiments, visit https://www.nc3rs.org.uk/arrive-guidelines

Authors must clearly state the name of the approval committee, highlighting that legal and ethical approval was obtained prior to initiation of the research work carried out on animals, and that the experiments were performed in accordance with the relevant guidelines and regulations stated below.

- US authors should cite compliance with the US National Research Council’s "Guide for the Care and Use of Laboratory Animals"
- The US Public Health Service’s “Policy on Humane Care and Use of Laboratory Animals” and "Guide for the Care and Use of Laboratory Animals"
- UK authors should conform to UK legislation under the Animals (Scientific Procedures) Act 1986 Amendment Regulations (SI 2012/3039).
- European authors outside the UK should conform to Directive 2010/63/EU.
- Research in animals must adhere to ethical guidelines of The Basel Declaration and the International Council for Laboratory Animal Science (ICLAS) has also published ethical guidelines.
- The manuscript must clearly include a declaration of compliance with relevant guidelines (e.g. the revised Animals (Scientific Procedures) Act 1986 in the UK and Directive 2010/63/EU in Europe) and/or relevant permissions or licences obtained by the IUCN Policy Statement on Research Involving Species at Risk of Extinction and the Convention on the Trade in Endangered Species of Wild Fauna and Flora.

Research involving plants

All experimental research on plants (either cultivated or wild), must comply with international guidelines. The manuscript must clearly include a declaration of compliance of field studies with relevant guidelines and/or relevant permissions or licences obtained by the IUCN Policy Statement on Research Involving Species at Risk of Extinction and the Convention on the Trade in Endangered Species of Wild Fauna and Flora.

Consent for publication
If the manuscript has an individuals’ data, such as personal detail, audio-video material etc., consent should be obtained from that individual. In case of children, consent should be obtained from the parent or the legal guardian.

A specific declaration of such approval and consent-to-disclose form must be made in the copyright letter and in a stand-alone paragraph at the end of the article especially in the case of human studies where inclusion of a statement regarding obtaining the written informed consent from each subject or subject's guardian is a must. The original should be retained by the guarantor or corresponding author. Editors may request to provide the original forms by fax or email.

All such case reports should be followed by a proper consent prior to publishing.

Randomized drug clinical trial studies

Randomized drug clinical trial studies are biomedical or health-related interventional and/or observational research studies conducted in phases in human beings who are randomly allocated to receive or not receive a preventive, therapeutic, or diagnostic intervention that follows a pre-defined protocol. The study is intended to determine the safety and efficacy of approaches to disease prevention, diagnosis and treatment.

Authors of randomized controlled trials are encouraged to submit trial protocols along with their manuscripts. All clinical trials must be registered (before recruitment of the first participant) at an appropriate online public trial registry that must be independent of for-profit interest (e.g., www.clinicaltrials.gov). If you wish the editor(s) to consider an unregistered trial, please explain briefly why the trial has not been registered.

- All randomized clinical trials should include a flow diagram and authors should provide a completed randomized trial checklist (see CONSORT Flow Diagram and Checklist; www.consort-statement.org) and a trial protocol.
- Studies of diagnostic accuracy must be reported according to STARD guidelines; (www.stard-statement.org).
- Observational studies (cohort, case-control, or cross-sectional designs) must be reported according to the STROBE statement, and should be submitted with their protocols; (www.strobe-statement.org).
- Genetic association studies must be reported according to STREGA guidelines; (www.medicine.uottawa.ca).
- Systematic reviews and meta-analyses must be reported according to PRISMA guidelines; (www.prisma-statement.org).
- To find the reporting guidelines see (www.equator-network.org).

Important points to remember while submitting clinical trials:

- Each manuscript should clearly state an objective or hypothesis; the design and methods (including the study setting and dates, patients or participants with inclusion and exclusion criteria, or data sources, and how these were selected for the study); the essential features of any interventions; the main outcome measures; the main results of the study; a comment section placing the results in context with the published literature and addressing study limitations; and the conclusions. Data included in research reports must be original.
- Trial registry name, registration identification number, and the URL for the registry should be included at the end of the abstract and also in the space provided on the online manuscript submission form. If your research article reports the results of a controlled health care intervention, list the trial registry, along with the unique identifying number (Please note that there should be no space between the letters and numbers of your trial registration number). Studies designed for other purposes, such as to study pharmacokinetics or major toxicity (e.g., phase 1 trials), are exempted.
- All reports of randomized trials should include a section entitled “Randomization and Masking”, within the Methods section.
- The manuscript must include a statement identifying the institutional and/or licensing committee that has approved the experiments, including any relevant details.
- The SI system of units and the recommended international non-proprietary name (rINN) for drug names must be used. Kindly ensure that the dose, route, and frequency of administration of any drug you mention are correct.
- Please ensure that the clinical trials sponsored by pharmaceutical companies follow the guidelines on good publication practice: (www.gpp-guidelines.org).

The editors reserve the right to reject manuscripts that do not comply with the above-mentioned requirements. The author will be held responsible for false statements or failure to fulfill the above-mentioned requirements.

References
References must be listed in the ACS Style only. All references should be numbered sequentially [in square brackets] in the text and listed in the same numerical order in the reference section. The reference numbers must be finalized and the bibliography must be fully formatted before submission.

See below few examples of references listed in the ACS Style

Journal reference

Book reference

Book chapter reference

Conference proceedings

URL(WebPage)

Patent

Thesis

E-citations

- Citations for articles/material published exclusively online or in open access (free-to-view), must contain the accurate Web addresses (URLs) at the end of the reference(s), except those posted on an author's Web site (unless editorially essential), e.g. 'Reference: Available from: URL'.

Some important points to remember:

- All references must be complete and accurate.
- All authors must be cited and there should be no use of the phrase *et al.*
- Date of access should be provided for online citations.
- Journal names should be abbreviated according to the Index Medicus/MEDLINE.
- Punctuation should be properly applied as mentioned in the examples given above.
- Superscript in the in-text citations and reference section should be avoided.
- Abstracts, unpublished data and personal communications (which can only be included if prior permission has been obtained) should not be given in the references section. The details may however appear in the footnotes.
- The authors are encouraged to use a recent version of EndNote (version 5 and above) or Reference Manager (version 10) when formatting their reference list, as this allows references to be automatically extracted.

Figures / tables
Figures/illustrations

All authors must strictly follow the guidelines below for preparing illustrations for publication in Current Cancer Drug Targets. If the figures are found to be sub-standard, then the manuscripts will be rejected.

The authors are expected to submit good quality figure(s) in PDF, PPT, MS Word, TIFF or JPEG versions, which, if required, should be improved yourself or by professional graphic designers of your organization' country. You may even consider approaching our contracted service providers Eureka Science for Graphics Enhancement Services.

The Graphics Designing team at Eureka Science can assist in improving the quality of your images at affordable rates. Eureka Science has contracted special rates with us of US $125 for the improvement of up to five figures, with any additional figures being charged at US $20 each.

The quality of Graphic Enhancement Services offered by Eureka Science can be viewed at http://www.eureka-science.com/images/Binder1.pdf, along with valuable feedback on their services at http://www.eureka-science.com/testimonials.php. You may contact Eureka Science at info@eureka-science.com

Note: Availing Graphics Enhancement Services do not guarantee acceptance of the manuscript for publication. The final acceptance/decision on the manuscript is taken by the EiC.

Guideline for figures/illustrations

Illustrations must be provided according to the following guideline:

- Illustrations should be embedded in the text file, and must be numbered consecutively in the order of their appearance. Each figure should include only a single illustration which should be cropped to minimize the amount of space occupied by the illustration.
- If a figure is in separate parts, all parts of the figure must be provided in a single composite illustration file.
- Photographs should be provided with a scale bar if appropriate, as well as high-resolution component files.

Scaling/resolution

Line Art image type is normally an image based on lines and text. It does not contain tonal or shaded areas. The preferred file format should be TIFF or EPS, with the color mode being Monochrome 1-bit or RGB, in a resolution of 900-1200 dpi.

Halftone image type is a continuous tone photograph containing no text. It should have the preferred file format TIFF, with color mode being RGB or Grayscale, in a resolution of 300 dpi.

Combination image type is an image containing halftone, text or line art elements. It should have the preferred file format TIFF, with color mode being RGB or Grayscale, in a resolution of 500-900 dpi.

Formats

Illustrations may be submitted in the following file formats

- Illustrator
- EPS (preferred format for diagrams)
- PDF (also especially suitable for diagrams)
- PNG (preferred format for photos or images)
- Microsoft Word (version 5 and above; figures must be a single page)
- PowerPoint (figures must be a single page)
- TIFF
- JPEG (conversion should be done using the original file)
- BMP
- CDX (ChemDraw)
- TGF (ISISDraw)

Bentham Science Publishers does not process figures submitted in GIF format.

For TIFF or EPS figures with considerably large file size restricting the file size in online submissions is advisable. Authors may therefore convert to JPEG format before submission as this results in significantly reduced file size and upload time, while retaining acceptable quality. JPEG is a ‘lossy’ format, however. In order to maintain acceptable image quality, it is recommended that JPEG files are saved at High or Maximum quality.

Zipit or Stuffit tools should not be used to compress files prior to submission as the resulting compression through these tools is always negligible.
Please refrain from supplying:

2. Optimized files optimized for screen use (like GIF, BMP, PICT, WPG) because of the low resolution.
3. Files with too low a resolution.
4. Graphics that are disproportionately large for the content.

Technical requirements for graphic/figure submissions.

Requirement

Width = 8.5 inches (In-between the required size)
Height = 11 inches (In-between the required size)
Pixels/Inches = 300 (minimum dpi)

All figures should be in vector scale (except half tone, photograph.)

Image conversion tools

There are many software packages, many of them freeware or shareware, capable of converting to and from different graphics formats, including PNG.

General tools for image conversion include Graphic Converter on the Macintosh, Paint Shop Pro, for Windows, and ImageMagick, available on Macintosh, Windows and UNIX platforms.

Bitmap images (e.g. screenshots) should not be converted to EPS as they result in a much larger file size than the equivalent JPEG, TIFF, PNG or BMP, and poor quality. EPS should only be used for images produced by vector-drawing applications such as Adobe Illustrator or CorelDraw. Most vector-drawing applications can be saved in, or exported as, EPS format. If the images were originally prepared in an Office application, such as Word or PowerPoint, original Office files should be directly uploaded to the site, instead of being converted to JPEG or another format of low quality.

Color figures/illustrations

- The cost for each individual page of color figures/plates/illustrations is US$ 997.
- Color figures should be supplied in CMYK and not RGB colors.

Note for authors

To maintain publication quality, figures submitted in colour will be published in colour only.

Chemical structures

Chemical structures must be prepared in ChemDraw/CDX and provided as separate file.

Structure drawing preferences

[As according to the ACS style sheet]

<table>
<thead>
<tr>
<th>Drawing Settings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain angle</td>
<td>120°</td>
</tr>
<tr>
<td>Bond spacing</td>
<td>18% of width</td>
</tr>
<tr>
<td>Fixed length</td>
<td>14.4 pt (0.500cm, 0.2in)</td>
</tr>
<tr>
<td>Bold width</td>
<td>2.0 pt (0.071cm, 0.0278in)</td>
</tr>
<tr>
<td>Line width</td>
<td>0.8 pt (0.021cm, 0.0084in)</td>
</tr>
<tr>
<td>Margin width</td>
<td>1.6 pt (0.096cm)</td>
</tr>
<tr>
<td>Hash spacing</td>
<td>2.5 pt (0.088cm, 0.0347in)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text Settings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Font</td>
<td>Times New Roman / Helvetica</td>
</tr>
<tr>
<td>Size</td>
<td>10 pt</td>
</tr>
<tr>
<td>Under the Preference Choose</td>
<td></td>
</tr>
<tr>
<td>Units</td>
<td>points</td>
</tr>
<tr>
<td>Tolerances</td>
<td>3 pixels</td>
</tr>
<tr>
<td>Under Page Setup Use</td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td>US letter</td>
</tr>
<tr>
<td>Scale</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tables

- Data Tables should be submitted in Microsoft Word table format.
Each table should include a title/caption being explanatory in itself with respect to the details discussed in the table. Detailed legends may then follow.

Table number in bold font *i.e.* Table 1, should follow a title. The title should be in small case with the first letter in caps. A full stop should be placed at the end of the title.

Tables should be embedded in the text exactly according to their appropriate placement in the submitted manuscript.

Columns and rows of data should be made visibly distinct by ensuring that the borders of each cell are displayed as black lines.

Tables should be numbered in Arabic numerals sequentially in order of their citation in the body of the text.

If a reference is cited in both the table and text, please insert a lettered footnote in the table to refer to the numbered reference in the text.

Tabular data provided as additional files can be submitted as an MS Excel spreadsheet.

Authors and institutional affiliations

The names of the authors should be provided according to the previous citations or as the authors would want them to be published along with the institutional affiliations, current address, telephone, cell & fax numbers and the email address. Email address must be provided with an asterisk in front of the name of the principal author. The corresponding author(s) should be designated and their complete address, business telephone and fax numbers and e-mail address must be stated to receive correspondence and galley proofs. Also it is suggested to regularly update the profile on SCOPUS and other databases.

Changes to authorship

Authors must provide a final list of authors at the time of submission, ensuring the correct sequence of the names of authors, which will not be considered for any addition, deletion or rearrangement after final submission of the manuscript. If a change is essentially required, it can only be done on Editor's approval, for which the Editor must receive the following from the corresponding author

(a) the reason for change in the author list and the sequence

(b) written confirmation from all co-authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, confirmation from the author being added or removed is mandatory.

Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Appeals and complaints

Generally, the editorial decisions are not reverted. However, authors who think that their manuscript was rejected due to a misunderstanding or mistake may seek an explanation for the decision. Appeals must give sound reasoning and compelling evidence against the criticism raised in the rejection letter. A difference of opinion as to the interest, novelty, or suitability of the manuscript for the journal will not be considered as an appeal. The EIC and other relevant editors will consider the appeal and the decision thereafter taken by the journal will be deemed final. Acceptance of the manuscript is not guaranteed even if the journal agrees to reconsider the manuscript, and the reconsideration process may involve previous or new reviewers or editors and substantive revision.

Authors who wish to make a complaint should refer them to the Editor-in-Chief of the journal concerned. Complaints to the Publisher may be emailed to info@benthamscience.org

Page charges/quick track publication

Page charges

No page charges will be levied to authors for the publication of their Review Articles. To publish research articles, however, the publication charges are $365 US, and for a contribution of Short Communication/Letters the publication charges are $190 US.

Quick track publication
For this journal an optional fast publication fee-based service called QUICK TRACK is available to authors for their submitted manuscripts. Authors who opt for this fee-based service do not have to pay any additional page charges.

QUICK TRACK allows online publication within 2 weeks of receipt of the final approved galley proofs from the authors. Similarly, the manuscript can be published in the next forthcoming PRINT issue of the journal. The total publication time, from date of first receipt of manuscript to its online publication, is 10 weeks, subject to its acceptance by the referees and modification (if any) by the authors within one week.

Authors who have availed QUICK TRACK service in a BSP journal will be entitled for an exclusive 30% discount if they again wish to avail the same services in any Bentham journal.

For more information please contact the Editorial Office by e-mail at ccdt@benthamscience.org.

Language and editing

Manuscripts containing language inconsistencies will not be published. Authors should seek professional assistance for correction of grammatical, scientific, and typographical errors before submission of the revised version of the article for publication. Professional editing services may also be sought by the team available at Bentham Science.

Proof corrections

Authors will receive page proofs of their accepted paper before publications. To avoid delays in publication, proofs should be checked immediately for typographical errors and returned within 48 hours. Major changes are not acceptable at the proof stage. If unable to send corrections within 48 hours due to some reason, the author(s) must at least send an acknowledgement on receiving the galley proofs or the article will be published exactly as received and the publishers will not be responsible for any error occurring in the published manuscript in this regard.

The corresponding author will be solely responsible for ensuring that the revised version of the manuscript incorporating all the submitted corrections receives the approval of all the co-authors of the manuscript.

Open access plus/reprints

Open access plus

Bentham Science also offers authors the choice of “Open Access Plus” publication of articles at a fee of US$ 2,900 per article. This paid service allows for articles to be disseminated to a much wider audience, on the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) (https://creativecommons.org/licenses/by/4.0/legalcode). Authors are asked to indicate whether or not they wish to pay to have their article made more widely available on this “Open Access Plus” basis. Where an author does not opt-in to this paid service, then the author’s article will be published only on Bentham Science’s standard subscription-based access, at no additional cost to the author.

Authors who select the “Quick Track” publication option (see below) and also wish to have their article made available on an “Open Access Plus” basis will be entitled to a 50% discount on the “Open Access Plus” publication fee.

For more information please contact us at e-mail: openaccess@benthamscience.org

Reprints

Printed reprints and e-prints may be ordered from the Publisher prior to publication of the article. First named authors may also order a personal online subscription of the journal at 50% off the normal subscription rate by contacting the subscription department at e-mail: subscriptions@benthamscience.org.

Reviewing and promptness of publication

All papers submitted for publication are immediately subjected to preliminary editorial scrutiny by the Editor-in-Chief regarding their suitability. The Editor-in-Chief determines if the manuscript

(a) falls within the scope of the journal and

(b) meets the editorial criteria of Bentham Science Publishers in terms of originality and quality.

Manuscripts that appear to be suitable are then subjected to single/ double blind peer-review by, usually two, neutral eminent experts. The services of eminent international experts are sought through invitations to conduct the peer-review of a submitted manuscript, keeping in view the scope of the manuscript and the expertise of the reviewers. The identity of the reviewers is not disclosed to the authors. The anonymity of reviewers ensures objective and unbiased assessment of the manuscript by the reviewers.
Before sending the manuscripts to reviewers, Bentham Science seeks consent from potential reviewers about their availability and willingness to review. Correspondence between the editorial office of the journal and the reviewers is kept confidential. The reviewers are expected to provide their reports in a timely fashion since a prompt review leads to timely publication of a manuscript which is beneficial not only to the authors but to the scientific community as well.

The editorial process and peer-review workflow for each journal are taken care of by a team of Senior Editors, Editorial Advisory Board Members (EABMs) and dedicated Journal managers who have the requisite expertise in their specific fields.

The Editor-in-Chief may recommend the acceptance or rejection of a manuscript after considering the opinions of the independent referees, or he/she may take assistance and advice from other experts in the field, if needed.

The Editor-in-Chief and Senior Editors of a journal have the right to select reviewers for a particular manuscript considering the knowledge and experience of the reviewers.

After reviewing of the manuscript by at least two independent experts, in addition to the assessment of the Editor, the decision is relayed to the authors, which may be categorized as:

- Accept without changes
- Revisions Required
- Reject

Bentham Science requests not to have the manuscripts peer-reviewed by those experts who may have competing interest with the author(s) of a submitted manuscript. It is not possible for Editors to be aware of all competing interests; it is therefore expected that the reviewers would inform the Editor-in-Chief/Handling Editor if they notice any potential competing interest during the course of review of a manuscript. Moreover, the reviewers are expected to inform the Editors or editorial office of the journal if they have a conflict of interest in carrying out the review of a manuscript submitted by any author/contributor of the manuscript.

Papers which are delayed by the authors in revision for more than 30 days are required to be re-submitted as a new submission. Papers accepted for publication are typeset and proofs are dispatched to authors for any corrections prior to final publication.

All peer-reviewing will be conducted via the Internet to facilitate rapid reviewing of the submitted manuscripts. Every possible effort will be made to assess the manuscripts quickly with the decision being conveyed to the authors in due course.

Plagiarism prevention

Bentham Science Publishers uses the iThenticate software to detect instances of overlapping and similar text in submitted manuscripts. iThenticate software checks content against a database of periodicals, the Internet, and a comprehensive article database. It generates a similarity report, highlighting the percentage overlap between the uploaded article and the published material. Any instance of content overlap is further scrutinized for suspected plagiarism according to the publisher’s Editorial Policies. Bentham Science allows an overall similarity of 20% for a manuscript to be considered for publication. The similarity percentage is further checked keeping the following important points in view

Low text similarity

The text of every submitted manuscript is checked using the Content Tracking mode in iThenticate. The Content Tracking mode ensures that manuscripts with an overall low percentage similarity (but which may have a higher similarity from a single source) are not overlooked. The acceptable limit for similarity of text from a single source is 5%. If the similarity level is above 5%, the manuscript is returned to the author for paraphrasing the text and citing the original source of the copied material.

It is important to mention that the text taken from different sources with an overall low similarity percentage will be considered as a plagiarized content if the majority of the article is a combination of copied material.

High text similarity

There may be some manuscripts with an overall low similarity percentage, but a higher percentage from a single source. A manuscript may have less than 20% overall similarity but there may be 15% similar text taken from a single article. The similarity index in such cases is higher than the approved limit for a single source. Authors are advised to thoroughly rephrase the similar text and properly cite the original source to avoid plagiarism and copyright violation.

Types of plagiarism
We all know that scholarly manuscripts are written after thorough review of previously published articles. It is therefore not easy to draw a clear boundary between legitimate representation and plagiarism. However, the following important features can assist in identifying different kinds of plagiarized content. These are:

- Reproduction of others' words, sentences, ideas or findings as one's own without proper acknowledgement.
- Text recycling, also known as self-plagiarism. It is an author's use of a previous publication in another paper without proper citation and acknowledgement of the original source.
- Paraphrasing poorly: Copying complete paragraphs and modifying a few words without changing the structure of original sentences or changing the sentence structure but not the words.
- Verbatim copying of text without putting quotation marks and not acknowledging the work of the original author.
- Properly citing a work but poorly paraphrasing the original text is considered as unintentional plagiarism. Similarly, manuscripts with language somewhere between paraphrasing and quoting are not acceptable. Authors should either paraphrase properly or quote and in both cases, cite the original source.
- Higher similarity in the abstract, introduction, materials and methods, and discussion and conclusion sections indicates that the manuscript may contain plagiarized text. Authors can easily explain these parts of the manuscript in many ways. However, technical terms and sometimes standard procedures cannot be rephrased; therefore Editors must review these sections carefully before making a decision.

Plagiarism in published manuscripts

Published manuscripts which are found to contain plagiarized text are retracted from the journal website after careful investigation and approval by the Editor-in-Chief of the journal. A ‘Retraction Note’ as well as a link to the original article is published on the electronic version of the plagiarized manuscript and an addendum with retraction notification in the journal concerned.

E-pub ahead of schedule

Bentham Science Publishers are pleased to offer electronic publication of accepted papers prior to scheduled publication. These peer-reviewed papers can be cited using the date of access and the unique DOI number. Any final changes in manuscripts will be made at the time of print publication and will be reflected in the final electronic version of the issue. Articles ahead of schedule may be ordered by pay-per-view at the relevant links by each article stated via the E-Pub Ahead of Schedule.

Disclaimer

Articles appearing in E-Pub Ahead-of-Schedule sections have been peer-reviewed and accepted for publication in this journal and posted online before scheduled publication. Articles appearing here may contain statements, opinions, and information that have errors in facts, figures, or interpretation. Accordingly, Bentham Science Publishers, the editors and authors and their respective employees are not responsible or liable for the use of any such inaccurate or misleading data, opinion or information contained of articles in the E-Pub Ahead-of-Schedule.
Appendix B

The author guidelines of *Journal of Ethnopharmacology*

Journal of Ethnopharmacology

Author information pack

Description

The *Journal of Ethnopharmacology* is dedicated to the exchange of information and understandings about people's use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals. In recent years the preservation of local knowledge, the promotion of indigenous medical systems in primary health care, and the conservation of biodiversity have become even more of a concern to all scientists working at the interface of social and natural sciences but especially to ethnopharmacologists. Recognizing the sovereign rights of States over their natural resources, ethnopharmacologists are particularly concerned with local people's rights to further use and develop their autochthonous resources.

Accordingly, today's ethnopharmacological research embraces the multidisciplinary effort in the:

- Documentation of indigenous medical knowledge,
- Scientific study of indigenous medicines in order to contribute in the long-run to improved health care in the regions of study, as well as
- Search for pharmacologically unique principles from existing indigenous remedies.

The *Journal of Ethnopharmacology* publishes original articles concerned with the observation and experimental investigation of the biological activities of plant and animal substances used in the traditional medicine of past and present cultures. The journal will particularly welcome interdisciplinary papers with an ethnopharmacological, an ethnobotanical or an ethnochemical approach to the study of indigenous drugs. Reports of anthropological and ethnobotanical field studies fall within the journal's scope. Studies involving pharmacological and toxicological mechanisms of action are especially welcome. Clinical studies on efficacy will be considered if contributing to the understanding of specific ethnopharmacological problems. The journal welcomes review articles in the above mentioned fields especially those highlighting the multi-disciplinary nature of ethnopharmacology. Commentaries are by invitation only.

Audience

Ethnopharmacologists, Medicinal Chemists, Pharmacologists, Toxicologists, Anthropologists, Pharmacognosists, Ethnobotanists, Economic Botanists, Ethnobiologists

Impact factor

2017: 3.115 © Clarivate Analytics Journal Citation Reports 2018
Abstracting and indexing

AGRICOLA
BIOSIS
CAB Abstracts
Cambridge Scientific Abstracts
Chemical Abstracts
Current Contents/Life Sciences
EMBASE
International Pharmaceutical Abstracts
NAPRALERT (Natural Products Alert)
Science Citation Index
MEDLINE®
EMBiology
Scopus

Editorial board

Editor-in-chief:
A.M. Viljoen, Dept. of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, 0001, Pretoria, South Africa

Associate editor:

P. Dias Fernandes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
T. Efferth, Johannes Gutenberg Universität Mainz, Mainz, Germany
A.K. Jäger, University of Copenhagen, Copenhagen O, Denmark
L.D. Kong, Nanjing University, Nanjing, China
M. Leonti, Università di Cagliari, Cagliari, Italy
G. Lin, The Chinese University of Hong Kong, Hong Kong, China
P.K. Mukherjee, Jadavpur University, Kolkata, India
K. Shaari, University Putra Malaysia, Selangor, Malaysia
A. Shikov, Saint Petersburg Institute of Pharmacy, Kuzmolovo P 245, Russian Federation
M. Ye, Peking University, Beijing, China
E. Yesilada, Yeditepe University, Erenkoy-Istanbul, Turkey

Reviews editor (including Commentaries and Book Reviews):

M. Heinrich, UCL School of Pharmacy, University of London, 29-39 Brunswick Square, London, WC1N 1AX, UK

If you want to suggest a review, please provide a structured abstract and include an annotated table of contents and a short CV of the lead author(s).

Managing editor:

B. Pomahacova, De NatuurApotheek, Pijnacker, Netherlands
I. Vermaak, Tshwane University of Technology, Pretoria, South Africa
M. Sandasi, Tshwane University of Technology, Pretoria, South Africa
L.J. McGaw, University of Pretoria, Pretoria, South Africa

Editorial board:

S. Alban, Kiel, Germany
A. Andrade-Cetto, CD México, Mexico
M.J. Balick, Bronx, New York, USA
R. Bauer, Graz, Austria
G. Bourdy, Cayenne, French Guiana
T. Brendler, Collingswood, New Jersey, USA
J.B. Calixto, Florianópolis, Brazil
D. C. Chattopadhyay, Kolkata, India
C.T. Che, Hong Kong, Hong Kong
G.A. Cordell, Chicago, Illinois, USA
Founding editors:
J.G. Bruhn
L. Rivier, Lausanne, Switzerland

Previous Editors-in-Chief
R. Verpoorte, Universiteit Leiden, RA Leiden, Netherlands

Introduction

The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people's use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people, confronted with illness and disease, discovered a
wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.

Please note that figures and tables should be embedded in the text as close as possible to where they are initially cited. It is also mandatory to upload separate graphic and table files as these will be required if your manuscript is accepted for publication.

Classification of your paper

Please note that upon submitting your article you will have to select at least one classification and at least three of the given keywords. You can preview the list of classifications and keywords (here). This information is needed by the Editors to more quickly process your article. In addition to this, you can submit free keywords as described below under "Keywords".

The "rules of 5"

The Editors and Editorial Board have developed the "Rules of 5" for publishing in JEP. We have produced five clear criteria that each author needs to think about before submitting a manuscript and setting the whole process of editing and reviewing at work. Click here.

For more details on how to write a world class paper, please visit our Pharmacology Author Resources page.

Authors are encouraged to submit video material or animation sequences to support and enhance your scientific research. For more information please see the paragraph on video data below.

Types of paper

The Journal of Ethnopharmacology will accept the following contributions:

1. Original research articles - whose length is not limited and should include Title, Abstract, Methods and Materials, Results, Discussion, Conclusions, Acknowledgements and References. As a guideline, a full length paper normally occupies no more than 10 printed pages of the journal, including tables and illustrations.
2. Short Communications - whose average length is not more than 4 pages in print (approx. 2000-2300 words, including abstract and references). A maximum of 2 illustrations (figures or tables) is allowed. See paragraph below for description and format.
3. Letters to the Editors.
4. Reviews - Authors intending to write review articles should consult and send an outline to the Reviews Editor (see inside front cover for contact information) before preparing their manuscripts. The organization and subdivision of review articles can be arranged at the author's discretion. Authors should keep in mind that a good review sets the trend and direction of future research on the subject matter being reviewed. Tables, figures and references are to be arranged in the same way as research articles in the journal. Reviews on topics that address cutting-edge problems are particularly welcome. Outlines for potential reviews need to include: A detailed abstract using the structure provided in the guidelines An annotated table of contents A short CV of the lead author
5. Book reviews - Books for review should be sent to the Reviews Editor.
6. Commentaries - invited, peer-reviewed, critical discussion about crucial aspects of the field but most importantly methodological and conceptual-theoretical developments in the field and should also provide a standard, for example, for pharmacological methods to be used in papers in the Journal of Ethnopharmacology. The scientific dialogue differs greatly in the social / cultural and natural sciences, the discussions about the common foundations of the field are ongoing and the papers published should contribute to a transdisciplinary and multidisciplinary discussion. The length should be a maximum of 2-3 printed pages or 2500 words. Please contact the Reviews Editor j.ethnopharmacol@pharmacy.ac.uk with an outline.
7. Conference announcements and news.

Submission checklist

Please click here to download the Submission Checklist. This is a mandatory file during submission. Upload the completed checklist and choose the file type as "Checklist".
You can use this list to carry out a final check of your submission before you send it to the journal for review. Please check the relevant section in this Guide for Authors for more details.

Ensure that the following items are present:

One author has been designated as the corresponding author with contact details:

- E-mail address
- Full postal address

All necessary files have been uploaded:

Manuscript:

- Include keywords
- All figures (include relevant captions)
- All tables (including titles, description, footnotes)
- Ensure all figure and table citations in the text match the files provided
- Indicate clearly if color should be used for any figures in print

Graphical Abstracts / Highlights files (where applicable)

Supplemental files (where applicable)

Further considerations

- Manuscript has been ‘spell checked’ and ‘grammar checked’
- All references mentioned in the Reference List are cited in the text, and vice versa
- Permission has been obtained for use of copyrighted material from other sources (including the Internet)
- Relevant declarations of interest have been made
- Journal policies detailed in this guide have been reviewed
- Referee suggestions and contact details provided, based on journal requirements

For further information, visit our Support Center.

BEFORE YOU BEGIN

Ethics in publishing

Please see our information pages on Ethics in publishing and Ethical guidelines for journal publication.

Policy and ethics

In the covering letter, the author must also declare that the study was performed according to the international, national and institutional rules considering animal experiments, clinical studies and biodiversity rights. See below for further information. The ethnopharmacological importance of the study must also be explained in the cover letter.

Animal and clinical studies - Investigations using experimental animals must state in the Methods section that the research was conducted in accordance with the internationally accepted principles for laboratory animal use and care as found in for example the European Community guidelines (EEC Directive of 1986; 86/609/EEC) or the US guidelines (NIH publication #85-23, revised in 1985). Investigations with human subjects must state in the Methods section that the research followed guidelines of the Declaration of Helsinki and Tokyo for humans, and was approved by the institutional human experimentation committee or equivalent, and that informed consent was obtained. The Editors will reject papers if there is any doubt about the suitability of the animal or human procedures used.

Biodiversity rights - Each country has its own rights on its biodiversity. Consequently for studying plants one needs to follow the international, national and institutional rules concerning the biodiversity rights.

Author contributions

For each author the contribution to the publication should be mentioned.

Declaration of interest
All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential competing interests include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. Authors must disclose any interests in two places: 1. A summary declaration of interest statement in the title page file (if double-blind) or the manuscript file (if single-blind). If there are no interests to declare then please state this: ‘Declarations of interest: none’. This summary statement will be ultimately published if the article is accepted. 2. Detailed disclosures as part of a separate Declaration of Interest form, which forms part of the journal's official records. It is important for potential interests to be declared in both places and that the information matches. More information.

Submission declaration and verification

Submission of an article implies that the work described has not been published previously (except in the form of an abstract, a published lecture or academic thesis, see 'Multiple, redundant or concurrent publication' for more information), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright holder. To verify originality, your article may be checked by the originality detection service Crossref Similarity Check.

Preprints
Please note that preprints can be shared anywhere at any time, in line with Elsevier's sharing policy. Sharing your preprints e.g. on a preprint server will not count as prior publication (see 'Multiple, redundant or concurrent publication' for more information).

Use of inclusive language

Inclusive language acknowledges diversity, conveys respect to all people, is sensitive to differences, and promotes equal opportunities. Articles should make no assumptions about the beliefs or commitments of any reader, should contain nothing which might imply that one individual is superior to another on the grounds of race, sex, culture or any other characteristic, and should use inclusive language throughout. Authors should ensure that writing is free from bias, for instance by using 'he or she', 'his/her' instead of 'he' or 'his', and by making use of job titles that are free of stereotyping (e.g. 'chairperson' instead of 'chairman' and 'flight attendant' instead of 'stewardess').

Changes to authorship

Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Article transfer service

This journal is part of our Article Transfer Service. This means that if the Editor feels your article is more suitable in one of our other participating journals, then you may be asked to consider transferring the article to one of those. If you agree, your article will be transferred automatically on your behalf with no need to reformat. Please note that your article will be reviewed again by the new journal. More information.

Copyright

Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (see more information on this). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations. If excerpts from other copyrighted works are included, the
author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases.

For gold open access articles: Upon acceptance of an article, authors will be asked to complete an ’Exclusive License Agreement’ (more information). Permitted third party reuse of gold open access articles is determined by the author's choice of user license.

Author rights

As an author you (or your employer or institution) have certain rights to reuse your work. More information.

Elsevier supports responsible sharing

Find out how you can share your research published in Elsevier journals.

Role of the funding source

You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies

Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder’s open access policies. Some funding bodies will reimburse the author for the gold open access publication fee. Details of existing agreements are available online.

Open access

This journal offers authors a choice in publishing their research:

Subscription

- Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs.
- No open access publication fee payable by authors.
- The Author is entitled to post the accepted manuscript in their institution's repository and make this public after an embargo period (known as green Open Access). The published journal article cannot be shared publicly, for example on ResearchGate or Academia.edu, to ensure the sustainability of peer-reviewed research in journal publications. The embargo period for this journal can be found below.

Gold open access

- Articles are freely available to both subscribers and the wider public with permitted reuse.
- A gold open access publication fee is payable by authors or on their behalf, e.g. by their research funder or institution.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards.

For gold open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses:

Creative Commons Attribution (CC BY)

Lets others distribute and copy the article, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), include in a collective work (such as an anthology), text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author's honor or reputation.

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.
The gold open access publication fee for this journal is USD 3500, excluding taxes. Learn more about Elsevier’s pricing policy: https://www.elsevier.com/openaccesspricing.

Green open access

Authors can share their research in a variety of different ways and Elsevier has a number of green open access options available. We recommend authors see our green open access page for further information. Authors can also self-archive their manuscripts immediately and enable public access from their institution's repository after an embargo period. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications. Embargo period: For subscription articles, an appropriate amount of time is needed for journals to deliver value to subscribing customers before an article becomes freely available to the public. This is the embargo period and it begins from the date the article is formally published online in its final and fully citable form. Find out more.

This journal has an embargo period of 12 months.

Elsevier Researcher Academy

Researcher Academy is a free e-learning platform designed to support early and mid-career researchers throughout their research journey. The "Learn" environment at Researcher Academy offers several interactive modules, webinars, downloadable guides and resources to guide you through the process of writing for research and going through peer review. Feel free to use these free resources to improve your submission and navigate the publication process with ease.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier's WebShop.

Submission

Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor’s decision and requests for revision, is sent by e-mail.

Additional information

Authors who want to submit a manuscript should consult and peruse carefully recent issues of the journal for format and style. Authors must include the following contact details on the title page of their submitted manuscript: full postal address; fax; e-mail. All manuscripts submitted are subject to peer review. The minimum requirements for a manuscript to qualify for peer review are that it has been prepared by strictly following the format and style of the journal as mentioned, that it is written in good English, and that it is complete. Manuscripts that have not fulfilled these requirements will be returned to the author(s).

In addition, you are recommended to adhere to the research standards described in the following articles:

Preparation

Peer review

This journal operates a single blind review process. All contributions will be initially assessed by the editor for suitability for the journal. Papers deemed suitable are then typically sent to a minimum of two independent expert reviewers to assess the scientific quality of the paper. The Editor is responsible for the final decision regarding acceptance or rejection of articles. The Editor's decision is final. More information on types of peer review.

Use of word processing software

It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork. To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.

Article structure

Subdivision - numbered sections

Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Each heading should appear on its own separate line.

Introduction

State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Material and methods

Provide sufficient details to allow the work to be reproduced by an independent researcher. Methods that are already published should be summarized, and indicated by a reference. If quoting directly from a previously published method, use quotation marks and also cite the source. Any modifications to existing methods should also be described.

Theory/calculation

A Theory section should extend, not repeat, the background to the article already dealt with in the Introduction and lay the foundation for further work. In contrast, a Calculation section represents a practical development from a theoretical basis.

Results

Results should be clear and concise.

Discussion

This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions

The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Glossary

Please supply, as a separate list, the definitions of field-specific terms used in your article.
Appendices

If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.

Essential title page information

- **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
- **Author names and affiliations.** Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. You can add your name between parentheses in your own script behind the English transliteration. Present the authors’ affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author’s name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.
- **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. This responsibility includes answering any future queries about Methodology and Materials. Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author.
- **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a ‘Present address’ (or ‘Permanent address’) may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Abstract

A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

The author should divide the abstract with the headings Ethnopharmacological relevance, Aim of the study, Materials and Methods, Results, and Conclusions. Click here to see an example.

Graphical abstract

A graphical abstract is mandatory for this journal. It should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership online. Authors must provide images that clearly represent the work described in the article. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: please provide an image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. The image should be readable at a size of 5 × 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. You can view Example Graphical Abstracts on our information site. Authors can make use of Elsevier's Illustration Services to ensure the best presentation of their images also in accordance with all technical requirements.

Keywords

After having selected a classification in the submission system, authors must in the same step select 5 keywords. These keywords will help the Editors to categorize your article accurately and process it more quickly. A list of the classifications and set keywords can be found here.

In addition, you can provide a maximum of 6 specific keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, "and", "of"). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Plant names

In the Materials and Methods section there must be a separate heading for describing the material used. That includes official name, local name, English name (if known), GPS position in case of collection in the wild or cultivation, a voucher specimen must be deposited in an official herbarium for possible future comparison. In the text it should be stated that the plant name has been checked with http://www.theplantlist.org mentioning the data of accessing that website. In case of commercially procured material should mention the source, batch number, quality control data. Data on chemical
characterization (metabolomics, chromatographic methods) should also be presented, in case of known active compounds their quantitative analysis should be presented.

Acknowledgements

Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Formatting of funding sources

List funding sources in this standard way to facilitate compliance to funder's requirements:

Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yyyy]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz]; and the United States Institutes of Peace [grant number aaaa].

It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding.

If no funding has been provided for the research, please include the following sentence:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Math formulae

Please submit math equations as editable text and not as images. Present simple formulae in line with normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).

Footnotes

Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors can build footnotes into the text, and this feature may be used. Otherwise, please indicate the position of footnotes in the text and list the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Artwork

Electronic artwork

General points

- Make sure you use uniform lettering and sizing of your original artwork.
- Embed the used fonts if the application provides that option.
- Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
- Number the illustrations according to their sequence in the text.
- Use a logical naming convention for your artwork files.
- Provide captions to illustrations separately.
- Size the illustrations close to the desired dimensions of the published version.
- Submit each illustration as a separate file.

A detailed guide on electronic artwork is available.

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats

If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format.
Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please ‘Save as’ or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

EPS (or PDF): Vector drawings, embed all used fonts.

TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi.

TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi.

TIFF (or JPEG): Combinations bitmapped line/half-tone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:

- Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
- Supply files that are too low in resolution;
- Submit graphics that are disproportionately large for the content.

Please note that figures and tables should be embedded in the text as close as possible to where they are initially cited. It is also mandatory to upload separate graphic and table files as these will be required if your manuscript is accepted for publication.

Color artwork

Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color online (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color: in print or online only. Further information on the preparation of electronic artwork.

Figure captions

Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables

Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules and shading in table cells.

References

Citation in text

Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with “Unpublished results”. "Personal communication" will not be accepted as a reference. Citation of a reference as "in press" implies that the item has been accepted for publication.

Reference links

Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are correct. Please note that incorrect surnames, journal/book titles, publication year and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is highly encouraged.
A DOI is guaranteed never to change, so you can use it as a permanent link to any electronic article. An example of a citation using DOI for an article not yet in an issue is: VanDecar J.C., Russo R.M., James D.E., Ambeh W.B., Franke M. (2003). Aseismic continuation of the Lesser Antilles slab beneath northeastern Venezuela. Journal of Geophysical Research, https://doi.org/10.1029/2001JB000884. Please note the format of such citations should be in the same style as all other references in the paper.

Data references

This journal encourages you to cite underlying or relevant datasets in your manuscript by citing them in your text and including a data reference in your Reference List. Data references should include the following elements: author name(s), dataset title, data repository, version (where available), year, and global persistent identifier. Add [dataset] immediately before the reference so we can properly identify it as a data reference. The [dataset] identifier will not appear in your published article.

Reference management software

Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles, such as Mendeley and Zotero, as well as EndNote. Using the word processor plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal’s style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide. If you use reference management software, please ensure that you remove all field codes before submitting the electronic manuscript. More information on how to remove field codes.

Users of Mendeley Desktop can easily install the reference style for this journal by clicking the following link: http://open.mendeley.com/use-citation-style/journal-of-ethnopharmacology When preparing your manuscript, you will then be able to select this style using the Mendeley plug-ins for Microsoft Word or LibreOffice.

Reference style

Text: All citations in the text should refer to:

1. Single author: the author's name (without initials, unless there is ambiguity) and the year of publication;
2. Two authors: both authors’ names and the year of publication;
3. Three or more authors: first author's name followed by ‘et al.’ and the year of publication. Citations may be made directly (or parenthetically). Groups of references can be listed either first alphabetically, then chronologically, or vice versa. Examples: ‘as demonstrated (Allan, 2000a, 2000b, 1999; Allan and Jones, 1999)…. Or, as demonstrated (Jones, 1999; Allan, 2000)… Kramer et al. (2010) have recently shown …’ List: References should be arranged first alphabetically and then further sorted chronologically if necessary. More than one reference from the same author(s) in the same year must be identified by the letters ‘a’, ‘b’, ‘c’, etc., placed after the year of publication.

Reference to a journal publication with an article number:

Reference to a book:

Reference to a chapter in an edited book:

Reference to a website:

Reference to a dataset:

Video

Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the file in one of our recommended file formats with a preferred maximum size of 150 MB per file, 1 GB in total. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Data visualization

Include interactive data visualizations in your publication and let your readers interact and engage more closely with your research. Follow the instructions here to find out about available data visualization options and how to include them with your article.

Supplementary material

Supplementary material such as applications, images and sound clips, can be published with your article to enhance it. Submitted supplementary items are published exactly as they are received (Excel or PowerPoint files will appear as such online). Please submit your material together with the article and supply a concise, descriptive caption for each supplementary file. If you wish to make changes to supplementary material during any stage of the process, please make sure to provide an updated file. Do not annotate any corrections on a previous version. Please switch off the 'Track Changes' option in Microsoft Office files as these will appear in the published version.

Research data

This journal encourages and enables you to share data that supports your research publication where appropriate, and enables you to interlink the data with your published articles. Research data refers to the results of observations or experimentation that validate research findings. To facilitate reproducibility and data reuse, this journal also encourages you to share your software, code, models, algorithms, protocols, methods and other useful materials related to the project.

Below are a number of ways in which you can associate data with your article or make a statement about the availability of your data when submitting your manuscript. If you are sharing data in one of these ways, you are encouraged to cite the data in your manuscript and reference list. Please refer to the "References" section for more information about data citation. For more information on depositing, sharing and using research data and other relevant research materials, visit the research data page.

Data linking

If you have made your research data available in a data repository, you can link your article directly to the dataset. Elsevier collaborates with a number of repositories to link articles on ScienceDirect with relevant repositories, giving readers access to underlying data that gives them a better understanding of the research described.

There are different ways to link your datasets to your article. When available, you can directly link your dataset to your article by providing the relevant information in the submission system. For more information, visit the database linking page.

For supported data repositories a repository banner will automatically appear next to your published article on ScienceDirect.
In addition, you can link to relevant data or entities through identifiers within the text of your manuscript, using the following format: Database: xxxx (e.g., TAIR: AT1G01020; CCDC: 734053; PDB: 1XFN).

Mendeley Data

This journal supports Mendeley Data, enabling you to deposit any research data (including raw and processed data, video, code, software, algorithms, protocols, and methods) associated with your manuscript in a free-to-use, open access repository. During the submission process, after uploading your manuscript, you will have the opportunity to upload your relevant datasets directly to Mendeley Data. The datasets will be listed and directly accessible to readers next to your published article online.

For more information, visit the Mendeley Data for journals page.

Data in Brief

You have the option of converting any or all parts of your supplementary or additional raw data into one or multiple data articles, a new kind of article that houses and describes your data. Data articles ensure that your data is actively reviewed, curated, formatted, indexed, given a DOI and publicly available to all upon publication. You are encouraged to submit your article for Data in Brief as an additional item directly alongside the revised version of your manuscript. If your research article is accepted, your data article will automatically be transferred over to Data in Brief where it will be editorially reviewed and published in the open access data journal, Data in Brief. Please note an open access fee of 500 USD is payable for publication in Data in Brief. Full details can be found on the Data in Brief website. Please use this template to write your Data in Brief.

Data statement

To foster transparency, we encourage you to state the availability of your data in your submission. This may be a requirement of your funding body or institution. If your data is unavailable to access or unsuitable to post, you will have the opportunity to indicate why during the submission process, for example by stating that the research data is confidential. The statement will appear with your published article on ScienceDirect. For more information, visit the Data Statement page.

After acceptance

Online proof correction

Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors. If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF. We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints

The corresponding author will, at no cost, receive a customized Share Link providing 50 days free access to the final published version of the article on ScienceDirect. The Share Link can be used for sharing the article via any communication channel, including email and social media. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier's Webshop. Corresponding authors who have published their article gold open access do not receive a Share Link as their final published version of the article is available open access on ScienceDirect and can be shared through the article DOI link.

Author inquiries
Visit the Elsevier Support Center to find the answers you need. Here you will find everything from Frequently Asked Questions to ways to get in touch. You can also check the status of your submitted article or find out when your accepted article will be published.
Certificate of analysis for *Sutherlandia frutescens* (SFFW790)

CERTIFICATE OF ANALYSIS

Sutherlandia frutescens - Milled
Herbapulv sc (400 micron)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Green</td>
<td>Yes</td>
</tr>
<tr>
<td>Odour & Taste</td>
<td>Typical</td>
<td>Yes</td>
</tr>
<tr>
<td>Moisture</td>
<td>< 12%</td>
<td>Yes</td>
</tr>
<tr>
<td>Sieve test</td>
<td>95% < 400 micron</td>
<td>Yes</td>
</tr>
<tr>
<td>Foreign matter</td>
<td>< 2%</td>
<td>Yes</td>
</tr>
<tr>
<td>TLC</td>
<td>Compare to reference</td>
<td></td>
</tr>
<tr>
<td>Heavy Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>< 3 mg/Kg</td>
<td>Not tested</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 1 mg/Kg</td>
<td>Not tested</td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.1 mg/Kg</td>
<td>Not tested</td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 3 mg/Kg</td>
<td>Not tested</td>
</tr>
<tr>
<td>Microbiological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMA</td>
<td>< 100 000 CFU’s/g</td>
<td>Not tested</td>
</tr>
<tr>
<td>Yeast & Moulds</td>
<td>< 10 000 CFU’s/g</td>
<td>Not tested</td>
</tr>
<tr>
<td>E. coli</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td>Staph. Aureus</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td>Salmonella</td>
<td>Absent</td>
<td></td>
</tr>
</tbody>
</table>

Normally not irradiated.

WA Joubert

Executives: Adolf Joubert (CEO) & Annemarie Rautenbach
Afrinatural Phytotherapy cc t/a Afrinatural • CC 2007 / 108262 / 23
Tel: +27 (0) 28 316 4550 • Email: info@afrinatural.com • Web: www.afrinatural.com
Address: 23 Protea Ave, Onrus River, Hermanus 7201 • PO Box 2121, Hermanus, 7200, South Africa
Certificate of analysis for *Xysmalobium undulatum* (XU174)

CERTIFICATE OF ANALYSIS

Xysmalobium undulatum (Uzara) - Milled:
Radix (400 micron)

Batch number: XU174
Manufacturing date: Oct 2014
Re-test date: Oct 2017

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Beige to light brown</td>
<td></td>
</tr>
<tr>
<td>Odour & Taste</td>
<td>Typical</td>
<td></td>
</tr>
<tr>
<td>Moisture</td>
<td>< 12%</td>
<td></td>
</tr>
<tr>
<td>Sieve test</td>
<td>95% < 400 micron</td>
<td></td>
</tr>
<tr>
<td>Foreign matter</td>
<td>< 2%</td>
<td></td>
</tr>
<tr>
<td>TLC</td>
<td>Compare to reference</td>
<td></td>
</tr>
<tr>
<td>Heavy Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>< 3 mg / Kg</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 1 mg / Kg</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.1 mg / Kg</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 3 mg / Kg</td>
<td></td>
</tr>
<tr>
<td>Microbiological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMA</td>
<td>< 1 000 000 CFU’s / g</td>
<td></td>
</tr>
<tr>
<td>Yeast & Moulds</td>
<td>< 10 000 CFU’s / g</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td>Staph. Aureus</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td>Salmonella</td>
<td>Absent</td>
<td></td>
</tr>
</tbody>
</table>

WA Joubert

PRESTIGE LABORATORY SUPPLIES (PTY) LTD
CK No: 2015/015210/07
9 Marshall Drive, Old Mill Industrial Park
Mt Edgecombe, 4302
Tel: 031 539 3266 Fax: 031 539 1831
Email: sales@afroselect.co.za

www.afrinatural.com
EXPERTR E NO. 20825058

USA OFFICE
AFRINATURAL USA
990 E Basse Road, Suite 140 - 182, San Antonio, TX 78209
Seeding density of the selected cell lines

Table D.1: Estimated confluency of the H69V cell line over a period of 120 h when seeded at different concentrations

<table>
<thead>
<tr>
<th>Cells/well (0.32cm²)</th>
<th>24h</th>
<th>48h</th>
<th>72h</th>
<th>96h</th>
<th>120h</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>25</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>4000</td>
<td>30</td>
<td>35</td>
<td>35</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>5000</td>
<td>30</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>6000</td>
<td>30</td>
<td>45</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>7000</td>
<td>35</td>
<td>50</td>
<td>55</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>8000</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>9000</td>
<td>50</td>
<td>60</td>
<td>65</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>10000</td>
<td>50</td>
<td>75</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>
Table D.2: Estimated confluency of the H69AR cell line over a period of 120 h when seeded at different concentrations

<table>
<thead>
<tr>
<th>Cells/well (0.32cm²)</th>
<th>24h</th>
<th>48h</th>
<th>72h</th>
<th>96h</th>
<th>120h</th>
</tr>
</thead>
<tbody>
<tr>
<td>16000</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>18000</td>
<td>25</td>
<td>40</td>
<td>50</td>
<td>65</td>
<td>85</td>
</tr>
<tr>
<td>20000</td>
<td>30</td>
<td>50</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>22500</td>
<td>35</td>
<td>55</td>
<td>70</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>25000</td>
<td>50</td>
<td>65</td>
<td>80</td>
<td>100</td>
<td>ND</td>
</tr>
<tr>
<td>27500</td>
<td>55</td>
<td>75</td>
<td>85</td>
<td>100</td>
<td>ND</td>
</tr>
<tr>
<td>30000</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>ND</td>
</tr>
<tr>
<td>32500</td>
<td>70</td>
<td>85</td>
<td>90</td>
<td>100</td>
<td>ND</td>
</tr>
</tbody>
</table>
Table D.3: Estimated confluency of the LLC-PK1 cell line over a period of 120 h when seeded at different concentrations

<table>
<thead>
<tr>
<th>Cells/well (0.32cm²)</th>
<th>24h</th>
<th>48h</th>
<th>72h</th>
<th>96h</th>
<th>120h</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>25</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>2500</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>3000</td>
<td>35</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>3500</td>
<td>40</td>
<td>45</td>
<td>45</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>4000</td>
<td>45</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>5000</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>6000</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>7000</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

NCI-H69/LX4 cell line

Seeing as this cell line forms aggregates in suspension, and doesn’t adhere to the tissue culture flask surface, the confluency determination used for adherent cell lines is not applicable. Therefore, this cell line is sub-cultured when the clusters start to become dense (darker colour) in the centre.

Usually, a T75 cm² flask of this cell line that can be cultured for 6-7 days has ± 8 x 10⁴ cells/cm² before being sub-cultured. This calculates to approximately 25 600 cells/well for a 96-well of 0.32 cm². Since an exposure period of only 96 h was used in this project, it means that at least 30 000 cells/well were required for such a short culturing period.
Table D.4: The statistically determined cell viability reduction (IC\textsubscript{75}), for the various plant extracts

<table>
<thead>
<tr>
<th>Medicinal plant</th>
<th>Parameters</th>
<th>LLC-PK1</th>
<th>H69V</th>
<th>H69AR</th>
<th>NCI-H69/LX4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. vera (gel)</td>
<td>IC\textsubscript{75} (mg/ml)</td>
<td>0.594</td>
<td>0.069</td>
<td>0.432</td>
<td>0.441</td>
</tr>
<tr>
<td></td>
<td>IC\textsubscript{75} range (mg/ml)</td>
<td>0.550-0.648</td>
<td>0.061-0.078</td>
<td>0.367-0.472</td>
<td>0.399-0.490</td>
</tr>
<tr>
<td>A. vera (polysaccharides)</td>
<td>IC\textsubscript{75} (mg/ml)</td>
<td>1.588</td>
<td>0.428</td>
<td>1.228</td>
<td>2.527</td>
</tr>
<tr>
<td></td>
<td>IC\textsubscript{75} range (mg/ml)</td>
<td>1.340-1.966</td>
<td>0.390-0.472</td>
<td>1.114-1.369</td>
<td>1.820-4.288</td>
</tr>
<tr>
<td>S. frutescens</td>
<td>IC\textsubscript{75} (mg/ml)</td>
<td>8.707</td>
<td>0.8735</td>
<td>2.026</td>
<td>1.020</td>
</tr>
<tr>
<td></td>
<td>IC\textsubscript{75} range (mg/ml)</td>
<td>8.503-8.996</td>
<td>0.811-0.939</td>
<td>1.961-2.092</td>
<td>1.017-1.180</td>
</tr>
<tr>
<td>X. undulatum</td>
<td>IC\textsubscript{75} (mg/ml)</td>
<td>0.067</td>
<td>0.017</td>
<td>0.043</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>IC\textsubscript{75} range (mg/ml)</td>
<td>0.051-0.087</td>
<td>0.014-0.020</td>
<td>0.040-0.046</td>
<td>0.018-0.024</td>
</tr>
</tbody>
</table>

* The IC\textsubscript{75} range indicates a 95% confidence interval (n = 3)
Appendix E
Supplementary data for Chapter 5

The normalised protein content of each plant extract over a 96 h period

Figure E.1: Normalised protein content of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after treatment with A. vera gel material for 96 h. (* indicates statistical significance between the samples and the untreated control ($p < 0.05$), $n = 6$, error bars = standard deviation (SD)).
Figure E.2: Normalised protein content of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after administration of *A. vera* polysaccharide concentrations. (* indicates statistical significance between the samples and the untreated control (*p* < 0.05), and ∆ indicates significant differences between the samples, *n* = 6; error bars = standard deviation (SD)).
Figure E.3: Normalised protein content of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after administration of *S. frutescens*. (* indicates statistical significance between the samples and the untreated control ($p < 0.05$), and Δ indicates significant differences between the samples, $n = 6$; error bars = standard deviation (SD)).
Figure E.4: Normalised protein content of the (A) LLC-PK1, (B) H69V, (C) H69AR and (D) NCI-H69/LX4 cell lines after administration of *X. undulatum*. (* indicates statistical significance between the samples and the untreated control (*p* < 0.05), and ∆ indicates significant differences between the samples, *n* = 6; error bars = standard deviation (SD)).
Appendix F

Proof of participation in the First Conference of Biomedical and Natural Sciences and Therapeutics (CoBNesT)

Certificate of participation

This serves to confirm that
Roan Albertus Swanepoel
attended the
First Conference of Biomedical and Natural Sciences and Therapeutics (CoBNesT) 2018 at
Spier Conference Centre, Stellenbosch, and Cape Town, South Africa

Accepted abstract which was orally presented at the conference

In vitro efficacy evaluation of selected medicinal plant extracts against multidrug resistant small cell lung cancer

Swanepoel, R.A.¹, Willers, C.¹, Hamman, J.H.¹ and Gouws, C.¹

¹Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa

Cancer is ranked as one of the leading causes of death globally. The reduced therapeutic outcome in cancer management can be ascribed to increased cancer metastasis and multidrug resistance (MDR) occurrences. Efflux transporters can decrease the intracellular accumulation of chemotherapeutic drugs in cancer tissues, which may result in sub-therapeutic levels leading to acquired MDR. There is an urgent need to identify novel treatment approaches to combat multidrug-resistance in cancer. Several traditional plants are believed to cure, prevent or manage cancer, although their anti-cancer efficacy remains to be confirmed. In this study, aqueous extracts of three
traditional plants namely *Aloe vera* (gel and polysaccharides), *Sutherlandia frutescens* and *Xysmalobium undulatum* were screened for potential *in vitro* anti-cancer efficacy against selected small cell lung cancer (SCLC) cell lines. These SCLC cell models included a drug-sensitive line (H69V), a MDR line with hyper-expressed multidrug resistance-associated protein 1 (MRP1) efflux transporters (H69AR), as well as a MDR line which hyper-expressed P-glycoprotein (P-gp) transporters (NCI-H69/LX4). A non-tumorigenic cell line (LLC-PK1) was also included to evaluate the cytotoxic effects of the selected plants on normal tissue. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay was used as preliminary screening method to determine the relative reduction in cell viability (IC) of each cell line after a 96 h exposure period to the various plant extracts. The intracellular adenosine triphosphate (ATP) and extracellular adenylate kinase (AK) levels, which are indicative of cell viability, were measured following dose related treatment according to wet biomass with the selected plant extracts. From the results obtained, it was evident that all three plant extracts reduced the cell viability of the SCLC cells in a concentration-dependent manner, signifying anti-cancer efficacy. The phytochemicals present in these plant extracts may be MRP1 and P-gp inhibitors, which can be considered for combination therapies to enhance intracellular drug accumulation.