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ABSTRACT 

The general binary linear programming (BLP) problem is known to be NP 

Complete. The lecture presents a new approach of transforming any BLP into a 

convex quadratic programming (CQP) problem. It is known that the CQPs can 

be solved by interior point algorithms in polynomial time (P). This implies that 

NP=P and settles one of the controversial millennium open problems.  
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1. INTRODUCTION 

 

Background 

Binary linear programming (BLP) is NP-complete and up to now we have not been 

aware of any other polynomial algorithm for this problem other than the one 

proposed by Munapo in 2016 [9]. See for example Fortnow [4,5,6] for more on 

complexity. In this paper, we present a technique for transforming the BLP model 

into a convex quadratic programming (CQP) problem [3,8]. The optimal solution 

of the resultant convex QP is also the optimal solution of the original problem BLP. 

Interior point algorithms can solve CQPS in polynomial time [7]. This solves one 

of the most famous controversial millennium open problems, which is P=NP or 

not?   

 
Millennium problems 

There are seven Millennium Prize Problems that were set by the Clay Mathematics 
Institute (CMI) in 2000 [2]. Of these seven, only one has been solved and six are 
yet to be solved, as of 31 March 2019. The seven Millennium problems are: 

 

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://en.wikipedia.org/wiki/Clay_Mathematics_Institute
https://en.wikipedia.org/wiki/Clay_Mathematics_Institute


(i) P versus NP, 

(ii) Hodge conjecture, 

(iii) Riemann hypothesis, 

(iv) Yang-Mills existence and mass gap, 

(v) Navier-Stokes existence and smoothness, 

(vi) Birch and Swinnerton-Dyer conjecture and 

(vii) Poincaré conjecture. 

 
Each problem is worth $1 000 000 and CMI is ready to give the prize money for 

anyone who can solve these difficult problems.  Of the seven millennium problems, 

only one has been solved.  The last one (Pointcare conjecture) was solved in 2003 

by a Russian mathematician Grigori Perelman. He declined the award and the prize 

money that were officially given to him in 2010. 

 

2. THE BLP MODEL 

Let any BLP model be represented by  
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Any minimisation BLP can be converted into maximisation form and vice versa. 

There are several strategies for solving mixed 0-1 integer problems that are 

presented in Adams and Sherali [1]. 

3. CONVEX QUADRATIC PROGRAMMING MODEL 

Let a quadratic programming problem be represented by (2). 
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We assume that:  

(i) matrix Q is symmetric and positive definite, 

(ii) function ( )f X  is strictly convex, 

(iii) since constraints are linear, the solution space is convex, 
(iv) any maximisation quadratic problem can be changed into a 

minimisation and vice versa. 

 

When the function ( )f X  is strictly convex for all points in the convex region, then 

the quadratic problem has a unique local minimum that is also the global minimum 

[3,8,11]. 

 

4. TRANSFORMING BLP INTO A CONVEX/CONCAVE QUADRATIC 

PROGRAMMING PROBLEM 

 

Our problem is to transform problem (1) into (2), and once that is done, then (2), 

which can be solved in polynomial time, implying P=NP. Interior point algorithms 

can solve the convex/concave QP problem in polynomial time. 

 



4.1 Rules with binary variables 

Binary variables have certain special features that we can capitalise on when 

solving. These features are given as rules 1 and 2. 

4.1.1 Rule 1 

Given any binary variable jx , which in this case is supposed to be integer, then its 

slack js  is also binary in the optimal solution. 

Proof 

                                                           .1 jj sx                                                       (3) 

Case 1: When 1jx  then .0js  

Case 2: When 0jx then .1js  

4.1.2 Rule 2 

For any binary variable jx and slack variable js , the following must hold at 

optimality for BLPs.  

                                           .122  jj sx                                                                   (4) 

The proof is similar to the one in rule 1. Note that it is only a binary variable jx  that 

can satisfy (4).  

Case 1: When 1jx  then .0js  This case satisfies (4). 

Case 2: When 0jx then .1js  Equation (4) is also satisfied. 

Case 3: When jx  is not integer.  



This implies 0 1jx  and 0 1.js   

All fractions between 0 and 1 become smaller when they are squared. 

i.e.  
2

j jx x  and 
2

j js s for example 
2(0.3) 0.09 0.3.   

Suppose 1,j jx s  0 1jx  and 0 1.js    

If 
2 2( ) ( )j j j jx x s s   then 

                                              
2 2( ) ( ).j j j jx s x s                                                          (5) 

Also  

                                                    
2 2( ) 1.j jx s                                                             (6) 

In other words, there are no non-integer values that can satisfy (4). Even though 

there are some non-binary values that can satisfy (3), such values as cannot satisfy 

(4). For example, if 9.0jx , then automatically 1.0js  and this can satisfy (3). 

The same values cannot satisfy (4), i.e. .182.01.09.0 22   The binary 

variable and slack variable relationship given in (4) forms the pillar or backbone of 

this lecturer. 

4.2 Forcing variables to assume binary variables 

The main weakness of the objective function given in (1) is that it does not force 

variables to assume binary values. In this paper, we alleviate this challenge by 

adding a nonlinear extension to the objective function as given in (7). 

                                              Maximise ( )T TCX X X                                              (7) 

Where  ....... 2121 nn sssxxxX  and  is a very large constant. 

The constant   is very large in terms of its size compared to any of the coefficients 

in the objective function. This large value can be approximated as (8). 



                                nccc  ...1000 21                                               (8) 
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Since from rule 2, ,122  jj sx then ( )T TCX X X is maximised when                 

                                ).1(),...,1(),1( 222

2

2

2

2

1

2

1  nn sxsxsx                     (11) 

In other words, ( )T TCX X X is maximised when variable jx and slack variable   

js  are integers. In this lecture, we call the nonlinear extension ( )TX X , which is 

called an enforcer. An enforcer is a function, a set of constraint(s) or combination 

of both added to a problem to force an optimal solution with desired features such 

integrality.  

4.3 Convexity of ( )T TCX X X                                                                                                                                 

A function ),...,,,,...,,()( 2121 nn sssxxxfXf  is convex if and only if it has 

second-order partial derivatives for each point 

SsssxxxX nn  ),...,,,,...,,( 2121 and for each SX '
all principal minors of 

the Hessian matrix are none negative. 

Proof 

In this case, the function ( )f X is given as (12). 
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This has continuous second order partial derivatives and the 2n by 2n Hessian 

matrix is given as (13). 
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Since all principal minors of ),...,,,,...,,( 2121 nn sssxxxH are nonnegative, then 

),...,,,,...,,( 2121 nn sssxxxf is convex. See Winston [12] for more on convex 

functions.  

4.4 Convex quadratic programming form  

The function ( )T TCX X X can be expressed in the convex quadratic 

programming form (14). 

                                            1
2

( ) (2 ),T Tf X CX XX   

                                             1
2

( ) .Tf X CX XQX                                    (14)         

Where matrix Q
~

 is of dimension 2n by 2n, symmetric and positive definite, as given 

in (15). 
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Therefore, matrix Q
~

is symmetric and positive definite. Note that 

.0,0
~

 TT XXQX  



4.5 Complexity of convex quadratic programming   

The main reason for converting a BLP into a convex quadratic programming model 

is to take advantage of the availability of interior point algorithms that can solve 

convex QPs in polynomial time [7]. If any BLP can be converted into a convex 

quadratic problem, then any BLP can be solved in polynomial time.  

4.6 Proof of optimality 

The proof can be easily shown by reducing the convex quadratic objective function 

to the original linear form given in (1). The proposed objective function of the 

convex QP is reduced as follows:  
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Since jsx jj  ,122
then,  

     Maximise nnxcxcxc  ...2211 + ),1(...)1()1((                                (16) 

                      =Maximise nn xcxcxc  ...2211 + .n                                     (17) 

In other words, )......( 32
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1 nn sssxxx  is a constant and the 

objective function is the same as just, maximise 1 1 2 2 ... n nc x c x c x   , where jx  

is binary for nj ,...,2,1 , which is the original form given in (1).  

4.6 Infeasible binary integer solution space 

In this case, the solution of the convex OP will not be integer. The objective,                                              

Maximise 
2 2 2 2 2 3

1 1 2 2 1 2 1 2... ( ... ... ),n n n nc x c x c x x x x s s s            forces 

variables to be binary or integer. If an integer point does not exist in the solution 

space, then the large constant  in the objective forces variables to assume values 



whose sums of squares are near 1 and not necessarily 1. In other words, the 

variables will assume values jx  and js  such that  

                                      ,1)()( 22 
jj sx                                                                  (18) 

                      i.e.           .1)()( 22 
jj sx                                                                  (19) 

4.7 Mixed BLP models 

In some BLP problems that occur in real life, a set of the variables may not be 

restricted to integer values. In this case, the enforcer ( )TX X is composed of only 

those variables that are supposed to be binary or integer.    

4.7 Interior point algorithm for convex QP 

Any maximisation BLP problem can be converted into a minimisation BLP and vice 

versa. This can be done by the substitution given in (20). 

                                                         .1 jj xx                                                        (20) 

Where jx  is also a binary variable. 

Suppose the primal-dual pair of the convex QP is given by (21) and (22).  

Primal: 

                   Minimise ,
2
1 TT XQXCX   

                   Such that:                                                                                              

                   ,TT BAX                                                                                       (21) 

                    ,.0TX   

 



Dual: 

                   Maximise ,
2
1 TT XQXYB   

                   Such that:                                                                                               (22) 

                  .TTT CQXYA    

WhereY is free, 0 and  is a diagonal matrix. 

The first-order optimality conditions for (21) and (22) are given by (23)                                  

                                   
TT BAX  , 

                              
TTT CQXYA   , 

                                    0eX T ,                                                                            (23) 

                                     0TX , 

                                       0 . 

Where e is a vector of ones. The primal-dual central path method can be used to 

solve the convex QP. Detailed information on this interior point algorithm and other 

variants can be obtained in Gondzio [7]. 

 

 

 

 

 

 



5. BLP AND CONVEX QP RELATIONSHIP 

Maximise 1 1 2 2 ... ,n nc x c x c x      

Subject to 

               11 1 12 2 1 1... ,n na x a x a x b     

              21 1 22 2 2 2... ,na x a x a x b                            

                                  …                                                              NP-Complete form 

              1 1 2 2 ... ,m m mn n ma x a x a x b     

                      njx j ,...,2,1,1  ,  

                        jx is integer .j  
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Subject to      

               11 1 12 2 1 1... ,n na x a x a x b     

              21 1 22 2 2 2... ,na x a x a x b     

                                  …                                                                                P form 

            1 1 2 2 ... ,m m mn n ma x a x a x b     

                  njsx jj ,...,2,1,1  , 

                nccc  ...1000 21 ,  

                              .0jx  

From the two versions of the same problem 

                                     PNP                                                                         (24) 

 

6. NUMERICAL ILLUSTRATION  

The following numerical illustration shows how a BLP problem is transformed into 

convex quadratic programming model and then solved. 

 

 

 

 



6.1 Pure binary linear programming  

Maximise  54321 483143 xxxxx  , 

Such that :  2013641210 54321  xxxxx , 

                  25188352217 54321  xxxxx ,                                                   (25)                          

                 .1861123810 54321  xxxxx                                                          

Where 0,,,, 54321 xxxxx are binary variables. 

Transforming into a convex quadratic programming problem becomes (26). 

Maximise  

2 2

1 2 3 4 5 1 2

2 2 1 2 2 2 2 2

3 4 5 1 2 3 4 5

3 14 3 8 4 32000(
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x x x x x x x
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Such that :  2013641210 54321  xxxxx , 

                25188352217 54321  xxxxx ,                                                                                     

                  ,1861123810 54321  xxxxx  

,                                                  ,111  sx                                                                                  (26) 

                                        ,122  sx  

                                        ,133  sx  

                                        ,144  sx  

                                         .155  sx                                  



Where 0,,,, 54321 sssss . 

The solution to the convex quadratic problem is given in (27). 

    153142  sssxx and .042531  ssxxx                            (27) 

6.2 Mixed binary linear programming problem   

In the case of a mixed binary linear programming problem, only the binary integer 

variables occupy the enforcer. In other words, if only the first r variables 

1 2( ... )rx x x are integer, then we use (28). 

Maximise nnxcxcxc  ...2211 + ))(...)()(( 222
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Suppose in 5.1, the variables 
1x  and 

2x are not restricted to integer, but both 

variables are less than 1. The transformation becomes as shown in (29). 

Maximise  
1 2 3 4 5

2 2 2 2 2 2

3 4 5 3 4 5

3 14 3 8 4

32000( )

x x x x x

x x x s s s
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Such that:    2013641210 54321  xxxxx , 

                    25188352217 54321  xxxxx ,                                     (29)                                            

                    1 2 3 4 510 8 23 11 6 18,x x x x x                     

                       ,133  sx ,144  sx  ,155  sx  

                                   ,11 x .12 x                                      

The solution to the convex quadratic problem is given in (30). 

      2 3 4 50.833, 1x x x s     and .04351  ssxx                               (30) 



7. FROM MIXED INTEGER PROBLEM TO BLP 

The problems that occur in real life do not have binary variables only. These 

practical problems occur as general mixed integer problems (MIPs), where 

variables assume integer values greater than 1. There are methods that can be 

used to solve these problems, but we are not aware of any method that can solve 

these mixed integer problems in polynomial time up to now. The obvious strategy 

is to expand the general mixed integer variable into binary ones.  

7.1 Converting MIP into BLP 

Any MIP variable )( g

jx can be expanded into binary variables as given in (31). 

                              .2...22 2

2

1

1

0

j

k

kjjjg

j xxxxx                                        (31) 

Where 
j

ix is a binary variable for .,...,2,1,0 ki  This procedure is explained in 

Owen and Mehrotra [1,8]. 

7.2 Numerical illustration 

Convert the following MIP into a BLP. 

Maximise  ,514106 4321 xxxx   

Such that .52157128 4321  xxxx                                                                        (32) 

Where 0,,, 4321 xxxx are integers. 

The following substitutions given in (33) change the problem into a BLP. 

 

 

 

 



                          ,42 1

2

1

1

1

01 xxxx   

                          ,42 2

2

2

1

2

02 xxxx   

                          .42 3

2

3

1

3

03 xxxx                                                                          (33) 

                          .2 4

1

4

04 xxx   

Where 
j

ix is a binary variable for 2,1,0i and .4.3,2,1j  

 

8. CONCLUSIONS 

The general BLP problem has been given so much attention by researchers all 

over the world for over half a century without a breakthrough. A difficult category of 

BLP models includes the traveling salesman, generalised assignment, quadratic 

assignment and set covering problems. We presented a technique to solve BLP 

problems by first transforming them into convex QPs and then applying interior 

point algorithms to solve in polynomial time. We also showed that the proposed 

technique works for both pure and mixed BLPs and also for the general linear 

integer model where variables are expanded into BLPs. We hope the proposed 

approach will give more clues to researchers in the hunt for efficient solutions to 

the general difficult integer programming problem.        
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