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ABSTRACT

In this paper, we describe the “Spoken Web Search” Task, which
was held as part of the 2011 MediaEval benchmark campaign. The
purpose of this task was to perform audio search with audio input
in five languages, with very little resources being available in each
language. The data was taken from “spoken web” material collected
over a mobile phone connection by IBM India. We present results
from several independent systems, developed by five teams and us-
ing different approaches, compare and fuse the results, and provide
analysis and directions for future research.

Index Terms— low-resource speech recognition, evaluation,
spoken web, audio search, spoken term detection

1. INTRODUCTION

The “Spoken Web Search” task of MediaEval 2011 involves search-
ing for audio content, within audio content, using an audio content
query. By design, the data consisted of only 700 utterances in Tele-
phony quality from four Indian languages (English, Gujarati, Hindi,
Telugu), without language labels. The task therefore required re-
searchers to build a language-independent audio search system so
that, given an audio query, it should be able to find the appropri-
ate audio file(s) and the (approximate) location of query term within
the audio file(s). Evaluation was performed using standard NIST
metrics for spoken term detection [1]. For comparison, participants
could also search using the lexical form of the query, but dictionary
entries for the search terms were not provided, and no such results
have been reported yet. The evaluation setup therefore even encom-
passes languages or dialects with no written form.

This task has been suggested by IBM Research India, and is us-
ing data provided by this group, see [2]. Previous attempts at spoken
web search have mostly focused on searching through the meta-data
related to the audio content [3].

Recently, there has been a great interest in algorithms that al-
low rapid and robust development of speech technology for any lan-
guage, particularly with respect to search, see for example [4]. To-
day’s technology was mostly developed for transcription of English,

with markedly lower performance on non-English languages. Even
then, systems available today cover only a small subset of the lan-
guages of the world.

This evaluation attempts to provide an evaluation corpus and
baseline for research on language-independent search and transcrip-
tion of real-world speech data, with a special focus on low-resource
languages, in order to provide a forum for original research ideas.

In this paper, we will give an overview of the different ap-
proaches submitted to the evaluation, analyze the results, and sum-
marize the findings of the evaluation workshop [5]. [6, 7, 8, 9, 10].

2. DESCRIPTION OF TASK AND DATA

Participants were provided with a data set that has been kindly made
available by the Spoken Web team at IBM Research, India [2]. The
audio content is spontaneous speech that has been recorded using
commonly available land-line and mobile phone equipment in a live
setting by low-literate users. While most of the audio content is re-
lated to farming practices, there are other domains as well. Data was
collected from the following domains: (1) Sugarcane information by
farmers (North India, Hindi language, 3000 users), (2) Village portal
by villagers (South India, Telugu language, 6500 users), (3) Farm-
ing knowledge portal (West India, Gujarati language, 175 users), (4)
Mixed content, e.g. job portal, event agenda (South and North India,
English language, 80 users).

Table 1 provides details of the selected data. The language la-
bels were intentionally not provided either in the development or the
evaluation data set.

The development set contains 400 utterances (100 per language)
or “documents”, and 64 queries (16 per language), all provided as
WAV files recorded in 8kHz/ 16bit. For each query (and document
on the development data), Romanized lexical transcriptions in UTF8
encoding were also provided. The transcriptions had been generated
by native speakers. For each development document, up to n match-
ing queries were provided to participants, but not the exact location
of the match within the document. A “match” is defined by the word
transcription of the query appearing identically in the document. Se-
quences of one to three words were included.



Category # Utts Total (h) Average (sec)
Dev Documents 400 2:02:22 18.3
Dev Queries 64 0:01:19 1.2
Eval Documents 200 0:47:04 14.1
Eval Queries 36 0:00:58 1.6
Total 700 2:51:42 14.7

Table 1. Development and evaluation data used for the “Spoken Web
Search Task” at MediaEval 2011.

Evaluation data consists of 200 utterances (50 per language),
and 36 queries (9 per language), selected using the same criteria.
Participants were allowed to use any additional resources they might
have available, as long as their use is documented in the working
notes papers [6, 7, 8, 9, 10].

Participants received development audio data (documents and
queries) as well as matches between queries and documents, and had
five weeks to develop systems, before they also received the evalu-
ation audio data. Results were due another five weeks later. There
was no overlap between development and evaluation data, even on
the lexical level. Participants also attempted to detect occurrences of
development queries on evaluation data, as well as evaluation queries
on development data. The purpose of requiring these three condi-
tions is to see how critical tuning is for the different approaches,
i.e., we assume that participants already know their performance for
“dev queries” on “dev documents”, so for evaluation we will evaluate
the performance of unseen “eval queries” on previously known “dev
documents” (which could have been used for unsupervised adapta-
tion, etc.), known queries (for which good classifiers could have been
developed) on unseen data, and unseen queries on unseen utterances.
No group however achieved reasonable performance on the dev-eval
and eval-dev conditions, and we assume this is due to the difficulty
in choosing good parameters for an overall low number of positive
events, and acoustic mismatch, so we will not discuss these results
in the following.

Data was provided as a ”term-list” XML file, in which the ”term-
id” corresponds to the file-name of the audio query. This information
was distributed along with a modified version of the NIST 2006 Spo-
ken Term Detection (STD) evaluation scoring software [1]. The pri-
mary evaluation metric was ATWV (Average Term Weighted Value),
computed with the default values for the 2006 STD evaluation with
respect to density of search terms, etc., but with “similarity” and
“find” thresholds of 20 s.

3. SYSTEM DESCRIPTIONS

In the following, we describe a selection of systems submitted to the
evaluation. More systems were submitted, but the following ones
provide the greatest insight and variety of approaches.

Broadly speaking, IRISA and TID submitted “zero-knowledge”
approaches trained only on the available data, while BUT-HCTLabs
and MUST submitted phone-based systems, which leveraged addi-
tional information. IIIT submitted an articulatory-feature-based ap-
proach, which also leveraged additional audio data.

3.1. GMM/HMM Term Modeling – BUT-HCTLabs

This approach is inspired by filler model-based acoustic keyword
spotting, with a standard Viterbi-based decoder slightly modified to
compute a likelihood ratio [11]. However, instead of the typical
representation of both query model consisting of the corresponding

phone transcription of the query term and filler/background model
consisting of a free phone loop, we stuck with an acoustic representa-
tion of both the query term and the filler/background model, to main-
tain the language-independency, as follows: (1) the query model is
represented with a Gaussian Mixture Model/Hidden Markov Model
(GMM/HMM) whose number of states is 3 times the number of
phones according to the phone recognition with 1 GMM component
each, (2) the background model is a GMM/HMM with 1-state mod-
eled with 10-GMM components. Queries represented by a single
phone have been modeled with 6 states as if the query contained 2
phones to prevent the system from generating many false alarms for
those queries. We used the number of phones output by a Slovak rec-
ognizer to derive the number of states of each query model due to its
best performance in terms of the Upper-bound Term Weighted Value
metric (UBTWV) [12] among Czech, English, Hungarian, Levan-
tine, Polish, Russian, and Slovak. The score assigned by the acoustic
keyword spotter to each detection is the likelihood ratio divided by
the length of the detection. To deal with the score calibration and
some problematic query length, detections were post-processed by
‘Filtering” according to a length difference from “average length”
criterion. Average length of a query is calculated as the average
length of speech (phones) across all the phone recognizers, except
the Polish one due to its worse performance in the development data.
Next, each detection det is re-scored: the detection score remains
the same if the detection length is longer than 80% and shorter than
140% of the average query length. Otherwise the score is lowered
the shorter/longer the detection is according to the original query.

Features used for background and query modeling were got as
follows: (1) the 3-state log-phone posteriors obtained by concate-
nating all the 3-state phone posteriors according to each feature ex-
tractor are applied a Karhunen-Loeve transform (KLT) for each in-
dividual language, (2) we keep the features that explain up to 95%
of the variance after KLT for each individual language, (3) we build
a 152-dimensional feature super-vector, from them. The KLT statis-
tics have been computed from the development data provided by the
task organizers and next applied on the evaluation data. The 3-state
phone posterior estimator [13] contains a Neural Network (NN) clas-
sifier with a hierarchical structure called bottle-neck universal con-
text network. It consists of a context network, trained as a 5-layer
NN, and a merger which employs 5 context net outputs. The nets
use ≈ 40 phones, ≈ 1300 nodes in the hidden layer, ≈ 480 nodes
of the hidden layer in the merger net, ≈ 120 nodes in the posterior
output layer, see [13].

3.2. Articulatory Features and Sliding DTW – IIIT

The primary motivation for this approach is to have speech spe-
cific features rather than language specific features like phone mod-
els. Advantage is that the articulatory phonetic units (selected well)
could represent a broader set of languages. This would enable us to
build articulatory units from one language and use it for other lan-
guages. We used 15 articulatory categories.

Audio content is decoded into their corresponding articulatory
units using HMM models with 64 Gaussian mixture models using
HTk. The models were built using 15 hours of telephone Telugu
data, consisting of 200 speakers. Using the decoded articulatory
phonetic output, tri-grams were used for indexing. The audio query
was also decoded and the audio segments were selected, if there
was a match in any of the tri-grams. Let tstart and tend be the
start and the end time-stamps for the tri-gram in the audio con-
tent which matches with one of the tri-grams from the audio query.
Then the likely segment from the audio content would be between



(tstart − audio query length) and (tend + audio query length).
These time stamps would provide the audio segments that are

likely to contain the audio query. Sliding DTW search was applied
on these audio segments to obtain the appropriate time stamps for
the query.We propose an approach where we consider an audio con-
tent segment of length twice the length of the audio query, and a
DTW is performed. After a segment has been compared the window
is moved by one feature shift and DTW search is computed again.
MFCC features, with window length 20 msec and 10 msec window
shift have been used to represent the speech signal. Consider an
audio content segment S and an audio query Q. Construct a substi-
tution matrix M of size qxsq where q is the size of Q and sq = 2q.
We also define M [i, j] as the node measuring the optimal alignment
of the segments Q[1 : i] and S[1 : j].

During DTW search, at some instants M [q, j](j <= sq) will
be reached. Then the time instants from column j to column sq are
the possible end points for the audio segment. Euclidean distance
measure have been used to calculate the costs for the matrix M . The
scores corresponding to all the possible end points are considered for
k-means clustering. For k = 3, mean scores are calculated. Mini-
mum score is used as a threshold to select segments. The segment
with the lowest score among the overlapping segments (overlap of
70%) is considered.

3.3. Template Matching – IRISA

This system purely relies on pattern matching, exploiting different
pattern comparison approaches to deal with variability in speech.
The system operates at the acoustic level, with limited prior knowl-
edge eventually embedded in posteriorgrams. As in most (if not all)
pattern matching approaches, a segmental variant of DTW is used
to efficiently search for the query in each document. Candidate hits
are further evaluated with self-similarity matrix comparison. Details
can be found in [14].

3.4. Pattern Matching with DGMM Posteriorgrams – TID

This system is based exclusively on a pattern-matching approach,
which is able to perform a query-by-example search with no prior
knowledge of the acoustics or language being spoken, computed
on the non-silence part of the data. For the main submission we
construct a Discriminative Gaussian Mixture Model (DGMM) [15]
and store the Gaussian posterior probabilities (normalized to sum 1)
as features. Differently from standard GMM-posteriors, in DGMM
modeling after the standard EMML GMM training step we perform
a hard assignment of each frame to their most likely Gaussian and
retrain the Gaussians mean and variance to optimally model these
frames. This last step tries to solve a problem that EMML training
has, which focuses on optimizing the Gaussian parameters to maxi-
mize the overall likelihood of the model on the input data, but not on
discriminating between the different sounds in it. By performing the
last assignment and retraining step we push Gaussians apart from
each other to better model individual groups of frames depending
on their location and density. This results in Gaussians with much
less overlap, thus obtaining more discriminative posterior probabil-
ity feature vectors. For this evaluation, only the development data
from the SWS task was used for training.

In the comparison step, given two sequences, X and Y of poste-
rior probabilities, respectively obtained from the query and any given
phone recording, we compare them using a DTW-like algorithm.
The standard DTW algorithm returns the optimum alignment be-
tween any two sequences by finding the optimum path between their
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Fig. 1. Results (ATWV) on development data.

start (0, 0) and end (xend, yend) points. In our case we constrain the
query signal to match between start and end, but we allow the phone
recording to start its alignment at any position (0, y) and finish its
alignment in whenever the dynamic programming algorithm reaches
x = xend. Although we do not set any global constraints, the local
constraints are set so that at maximum 2-times or 1

2
-times warping is

allowed. In addition, at every matching step we normalize the scores
by the length of the optimum path up to that point, slightly favoring
diagonal matches.

3.5. Phone Recognition – MUST

Aiming at both speaker independence and robustness with respect to
recognition errors in the spoken queries, we implemented a phone-
based system. The main data set used for acoustic modeling were
60 hours of spontaneous conversations in colloquial Hindi. There
are 996 native Hindi speakers and all conversations range between 1
and 4 minutes in duration. All conversations are transcribed and a
basic pronunciation dictionary is provided.

A standard HMM-based recognizer was constructed using the
Hindi data. The list of mono-phones was reduced from 62 to 21
units in order to work with a small set of broad but reliable classes,
appropriate to the later scoring tasks. The speech data and transcrip-
tions provided as part of the task were cleaned using an aggressive
form of garbage modeling, and the resulting data used to MAP-adapt
the Hindi acoustic models to the task domain (and languages).

Unconstrained phone recognition of both the query terms and
the content audio is employed to represent these recordings as phone
strings. A dynamic-programming (DP) approach with a linguisti-
cally motivated confusion matrix then finds regions in the content
phone strings that correspond closely to one or more query strings.
The resulting DP score (normalized by phone length) is used as con-
fidence measure.

4. RESULTS AND ANALYSIS

Figure 1 shows the results of the five approaches described above on
the development data, which participants could use to develop and
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Fig. 2. Results (ATWV) on evaluation data.

tune their approaches. Using the provided metric, three approaches
achieved maximal ATWVs of 0.1 or greater, detecting about 15% of
events, with very low false alarm probabilities, as required by the
parameters chosen to compute ATWV.

Figure 2 shows the corresponding results on the unseen eval-
uation data. The same three approaches could be run successfully
on the unseen evaluation data, and the choice of decision thresholds
was remarkably stable, given the little amount of available data. The
“TID” query-by-example approach generalizes best to unseen data,
while the phone-based “MUST” approach achieves an identical per-
formance on the evaluation data as on the development data. The
“BUT-HCTLabs” HMM/GMM approach also generalizes well.

It is interesting to note that under the given conditions, the zero-
knowledge approaches could perform very similarly to the phone-
based approaches, which relied on the availability of matching data
from other languages.

5. OUTLOOK

These initial results on a very low-resource spoken term detection
task show promising results, which will be explored further and im-
proved upon in future work. It is interesting to note that very di-
verse approaches could achieve very similar results, and future work
should include more evaluation criteria, such as amount of external
data used, processing time(s), etc., which were deliberately left un-
restricted in this evaluation, to encourage participation.

With respect to amount of data available, this evaluation was
even harder than the research goals proposed by for example
IARPA’s Babel [4] program, yet results have been achieved, that
appear useful in the context of the “Spoken Web” task, which is
targeted primarily at communities that currently do not have access
to Internet. Many target users have low literacy skills, and many
speak in languages for which fully developed speech recognition
systems won’t exist even for years to come. Yet, access to highly
variable information is critical for their development.

The organizers and participants are currently working to prepare
more and varied data for future evaluations in a similar style, for
example the Lwazi corpus [16]. We will attempt to make this, and

other, future evaluation corpora available to a wider audience, in or-
der to promote insight and progress on making speech technology
available independent of the speaker’s language.
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