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Abstract

In South Africa, the telecommunications regulator, ICASA, follows a fixed spectrum

allocation approach. The radio spectrum is assigned to incumbents (primary users) on

a long-term basis. This practice follows a wholesale approach auctioning spectrum to

the highest bidder. This approach leads to under-utilised spectrum which causes an

artificial spectrum scarcity. Two spectrum allocation processes have been proposed in

literature: dynamic spectrum market model, and a spectrum commons model. Cogni-

tive radio (CR) is an enabling technology for either of these models.

Spectrum sensing is a key element and should be performed first before allowing sec-

ondary user access. Energy detection, cyclostationary feature detection, matched fil-

tering and cooperative sensing has been proposed as spectrum sensing techniques.

An Automatic Modulation Classification (AMC) system detects the unknown modu-

lation type of a received signal in preparation to demodulate the signal and retrieve

its information content. AMC plays an important role in military and civilian applica-

tions such as signal confirmation, interference identification, surveillance, monitoring,

spectrum management, counter channel jamming and signal intelligence.

Future Software-defined Radio (SDR) and CR systems must be able to sense the spec-

trum for signals present in the pursuit of enabling Dynamic Spectrum Access (DSA).

This interest in increasing spectrum access and improving spectrum efficiency, com-

bined with SDR and new realisations that machine learning can be applied to radios,

have created interesting possibilities, such as CR.

The International Telecommunications Union for radio communications (ITU-R) gives

guidelines for the technical identification of digital signals. The signal's spectral form,

frequency, bandwidth, instantaneous amplitude and phase can be used for this pur-

pose. For any regulator, it is important to monitor signals of interest and to identify

them accordingly. Doing this involves traditional software packages which follow a

brute-force approach in demodulating the signals. Each demodulation approach gets
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tested against the signal of interest until a match is found. Modern digital signals are

modulated using a variety of modulation techniques.

In this dissertation, an investigative study is presented towards finding a simple

approach to identifying and classifying M-PSK and M-QAM signals in the UHF fre-

quency band. Two approaches can be followed when deciding on a classification ap-

proach: Likelihood-based (LB) approach or a Feature-based (FB) approach. A FB (also

known as a pattern-recognition) classification approach is followed in the dissertation.

A combination of instantaneous time-domain and higher-order statistical features are

extracted from the signal's instantaneous amplitude and phase. A Support Vector Ma-

chine (SVM) is used to solve the classification problem.

The performance of the AMC is tested in an Additive White Gaussian Noise (AWGN)

and multipath fading channel. Two use-cases for evaluating the performance of the

classifier is presented: with and without Signal-to-Noise Ratio (SNR) estimation. In-

troducing SNR estimation as part of the feature set increased the classification accu-

racy for Quadrature Phase Shift Keying (QPSK) and 8-Phase Shift Keying (PSK) sig-

nals at low SNR. A 2% classification accuracy improvement was obtained at 4 dB for

QPSK signals, while a 12% classification accuracy improvement for 8-PSK signals was

obtained for an SNR of 1 dB.

Furthermore, the performance of the proposed classifier was assessed for two multi-

path channel conditions: for a stationary transmitter and receiver, and secondly for a

moving receiver. Four randomly selected Doppler shifts were chosen and evaluated.

An overall classification accuracy of 90% was reported for the stationary case, while the

accuracy of the different Doppler shifts were 85%, 86%, 77.5% and 78% respectively.

Finally, the performance of the classifier was evaluated using recorded In-phase and

quadrature (I/Q) data of a TETRA signal. The proposed classifier correctly identified

the TETRA signal to be part of the PSK modulation group. However, the classifier was

not able to determine the modulation order.

The research done in the dissertation showed that following a simple FB classification
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approach to classifying digital signals is possible. The work showed that higher-order

statistics extracted form the instantaneous amplitude and phase of the received signal

can be used as features.

Keywords: Automatic Modulation Classification, Higher-order statistics, Feature-based

classification, Support Vector Machine, multipath fading.
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Chapter 1

Introduction

This chapter provides the essential background of the thesis. It presents an introduction to spec-

trum management, Dynamic Spectrum Access (DSA) and the need for better spectrum usage

technologies. It also provides guidelines set out by Radiocommunications sector of the ITU

(ITU-R) for identifying digital signals and the need for automatic modulation classification.

The research problem, objectives, deliverables and research methodology are also presented.

1.1 Introduction

Since the beginning of time man needed to convey thoughts, feelings, and ideas. Whether

verbal, non-verbal or through pictures and carvings. Effective communication is essen-

tial. Just as humankind has evolved, our means of communication has also evolved.

With what began with paintings in a cave, have changed into a variety of endless ways

to express oneself. Through the development of written documentation and books to

the revolution of the printing press, telegraph and radio, photography and the internet.

Mankind has a tendancy to communicate further, faster and more efficient.
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Chapter 1 Introduction

Communicating over long distances were limited to face-to-face encounters. Long-

distance communication was first accomplished through the sound of a beating drum,

horn blasts, smoke signals and waving flags. A piece of paper extended the dis-

tance over which messages could be sent, and long distance communication could be

achieved through a runner on horseback, by ship or train. The discovery of electricity

in the nineteenth century changed the way we communicate forever [7].

With work done by Faraday and Ampere, they managed to show that a time-varying

magnetic field induces an electric field and that a time-varying electric field induces

a magnetic field. This phenomenon had the properties of a wave and is referred to

as an electromagnetic wave. Maxwell studied electromagnetic waves analytically and

developed a set of equations that could describe this interrelationship between an elec-

tric and magnetic field. Maxwell proved that these waves propagate at the speed of

light through space. Maxwell laid the foundation on which researchers could work to

develop methods of converting signals into high-frequency oscillating currents to be

transmitted over long distances. In radio communication, radio spectrum is the most

valuable resource mankind has. Radio spectrum is a natural resource, but it is not used

the same as coal, water, gold, oil, or any other resource, in the sense that radio spectrum

cannot be accumulated over time for later usage. Spectrum must be managed.

Around the world, each country has its own regulatory body for managing and assign-

ing spectrum to users, some of which include Independent Communications Authority

of South Africa (ICASA) in South-Africa, Federal Communications Commission (FCC)

in the United States and The Office of Communications (Ofcom) in the United King-

dom. In South Africa, ICASA follows a fixed spectrum allocation approach. The ra-

dio spectrum is assigned to incumbents (primary users) on a long-term basis. This

practice follows a quantitative approach auctioning spectrum to the highest bidder.

This approach leads to under-utilised spectrum which causes an artificial spectrum

scarcity [8], [9]. The geographic nature of the under-utilisation of spectrum results in

spectrum holes or white spaces.
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Two alternative spectrum allocation processes have been proposed in the literature:

dynamic spectrum market model, and a spectrum commons model. The dynamic

spectrum market model allows incumbents to resell unused spectrum. The spectrum

commons model employs open sharing of spectrum among peers with an equal right

to access. Extensive research has been done towards enabling Cognitive Radio (CR)

technologies [8], [10] to help overcome this problem of spectrum scarcity. CR senses

the spectrum according to pre-defined criteria before allowing secondary access.

The radio spectrum has different properties at different frequencies, which makes spe-

cific frequencies more preferable than others. Each frequency band has different prop-

agation properties which enables the use for different technologies. The radio spec-

trum, as mentioned in [2], ranges from 3 kHz to 300 GHz . Table 1.1 shows the most

commonly used radio frequency bands and their respective applications as adapted

from [5] and [6].

As mentioned, CR has been proposed as a prime enabler for spectrum reuse. Spectrum

sensing is a crucial element and should be performed first before allowing secondary

user (SU) access. Energy detection, cyclostationary feature detection, matched filtering,

and cooperative sensing have been proposed as spectrum sensing techniques [10], [11].

A new approach has been proposed in [12] and [13] which includes automatically iden-

tifying and classifying digital signals based on their modulation type to determine

spectrum availability.

The focus of this dissertation is to find a simple method towards identifying and classi-

fying digital signals based on their modulation type (with the assumption that the dig-

ital signals have been separated from the analog signals). The proposed approach must

be computationally efficient, with the ultimate aim of being implemented on commod-

ity hardware for future research. The ITU-R made some proposals in [14] which can be

used as a point of departure to solve the classification problem.
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Table 1.1: Radio frequency bands and applications, adapted from [5] and [6].
Frequency Band Range Application

Very low frequency (VLF) 9 kHz - 30 kHz Radio navigation
and maritime mobile

Low frequency (LF) 30 kHz - 300 kHz Radio navigation
and maritime mobile

Medium frequency (MF) 300 kHz - 3 MHz AM radio broadcasting,
aeronautical mobile and
maritime mobile

High frequency (HF) 3 MHz - 30 MHz Broadcasting, aeronautical mobile,
maritime mobile and amateur

Very high frequency (VHF) 30 MHz - 300 MHz FM and TV broadcasting, land
and aeronautical mobile,
navigation, public trunking, mobile

Ultra high frequency (UHF) 300 MHz - 1 GHz TV broadcast, mobile, cellular,
RFID, trunked radio, satellite,
radio astronomy

L-band 1 GHz - 2 GHz GPS, GLONASS, air traffic control,
radar, satellite broadcasting
fixed broadband data, mobile-satellite

S-band 2 GHz - 4 GHz Wireless LAN, Bluetooth PAN,
mobile, satellite broadcasting, IMT
video surveillance, RFID, space
research

Super high frequency (SHF) 3 GHz - 30 GHz Fixed satellite, Wireless LAN, aircraft
radar altimeters, weather and
maritime radar, space research

1.2 ITU-R Digital Signal Identification Recommendation

The International Telecommunications Union (ITU) is the United Nations (UN) spe-

cialised agency for information and communication technologies. The ITU-R ensures

the rational, equitable, efficient and economical use of the radio-frequency spectrum by
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all radiocommunications services. The ITU-R has recommendations for spectrum man-

agement (SM), which addresses the technical identification of digital signals (SM.1600-

2) [14].

This recommendation describes the process, methods, and tools for technical identifi-

cation of digital signals:

• identification based on signal external characteristics,

• identification based on signal internal characteristics (low or partial apriori knowl-

edge available about the signal),

• identification based on correlation with a known waveform (strong apriori knowl-

edge available about the signal),

• identification is confirmed through signal demodulation, decoding, and compar-

ison with know waveform characteristics.

By preserving the provided or captured In-phase and quadrature (I/Q) signal data,

more advanced analysis of the signal internal characteristics can be done. According to

SM.1600-2, standard modern digital signals typically include the following modulation

schemes and multiple access formats [14]:

• Amplitude-, frequency- and phase shift keyed (ASK, FSK, PSK).

• Quadrature amplitude modulation (QAM).

• Orthogonal frequency division multiplexed (OFDM).

• Time division multiple access (TDMA).

• Code division multiple access (CDMA).

• (Coded) Orthogonal frequency division multiplexed (Access) (C)OFDM(A).

• Single carrier frequency division multiple access (SC-FDMA).

• Single carrier frequency domain equalisation (SC-FDE).
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Current signal identification systems and software can provide positive signal identifi-

cation of modern digital signals. The software correlates the signal’s waveform to a li-

brary of predefined known patterns (signatures) (pre-amble, mid-amble, guard times,

synchronisation words and tones, training sequences, pilot-symbols and codes, and

scrambling codes).

If the I/Q signal data is accessible, it allows all of the amplitude, frequency and phase

information contained in the signal to be preserved. The I/Q data can then be used

to analyse and demodulate the signal accurately and to extract the advanced signal

internal characteristics for classification.

Modulation recognition software operates on the raw I/Q data and estimated signal

characteristics. These characteristics include center frequency, frequency distance be-

tween carriers, signal bandwidth, signal duration, modulation class (single or multiple

carriers, linear or non-linear), symbol rate, Signal-to-Noise Ratio (SNR) and signal-

specific patterns such as pilot tones, guard times, guard intervals and frame structure.

Furthermore, vector signal analysers, monitoring receivers and error vector magnitude

systems are used for advanced time-domain and spectrum-time-domain analysis and

are useful for providing the ability to collect the raw I/Q data on the signals of interest.

1.2.1 Identifying Digital Signals

As mentioned earlier, ITU-R recommends that signal identification takes place by eval-

uating the signal external and internal characteristics, using signal analysis software

to gain additional insight, I/Q data processing, and other advanced methods such

as correlation, auto-correlation, wavelet transforms [15] or the use of artificial intelli-

gence [16].
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1.2.2 Signal External Characteristics

In each country, a spectrum regulator has a prescribed frequency plan and licensed

signal database. Evaluating this database and frequency plan is the first approach in

evaluating the external characteristics of a digital signal. Each licensed signal must

comply with this frequency plan and database which usually include external param-

eters such as:

• centre frequency and frequency distance between carriers (ensuring the signal is

centered on an allocated channel),

• signal bandwidth (checked for compliance with standards of channelisation),

• spectral shape,

• signal duration when impulsive or intermittent,

• frequency shift.

Through visual inspection of the signal of interest, and comparing it to the regulator’s

database and frequency-plan, is a good point of departure when identifying andclassifying

signals.

1.2.3 Signal Internal Characteristics

To evaluate the internal characteristics of a signal, a recording of the signal’s I/Q data

must be available. The I/Q data will give further insight into the amplitude, frequency,

and phase of the signal of interest. The internal parameters according to [14] include:

• modulation format (this includes parameters such as instantaneous amplitude,

phase, frequency, and spectrum of the signal).

• baud rate.
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Furthermore, SM.1600-2 recommends how to make I/Q recordings using a vector spec-

trum analyser (VSA) or a monitoring receiver. The process of making I/Q recordings

is not relevant at this stage of the discussion.

The I/Q data can be played back through software packages to gain insight into the

signal internal characteristics. These software packages must be set-up properly to

perform modulation classification. The operator must set the parameters for the soft-

ware package to analyse the I/Q data. Parameters such as center frequency, sample

rate,adjacent channel filtering, burst detection and data block sizes must be set. Math-

ematical and statistical estimators can be extracted from the recorded I/Q data which

includes analysing the signal’s statistical moments, power spectral density, linear/non-

linear transforms, instantaneous amplitude, frequency, phase and other parameters.

Other advanced methods used for classifying and identifying the signals include cor-

relation methods such as cross-correlation and auto-correction. Cross-correlation is a

way of determining the similarity of two waveforms as a function of a time-lag ap-

plied to one of the signals [17]. Also, know as the sliding dot product or the sliding

inner-product. Auto-correlation is the cross-correlation of a signal with itself. The

auto-correlation is used to find repeating patterns, such as the presence of a periodic

signal buried under noise or for missing fundamental frequencies in a signal implied

by its harmonic frequencies.

1.3 Automatic Modulation Classification

Automatic Modulation Classification (AMC) was firstly motivated [12] by its applica-

tion in the military, for electronic warfare, gathering signal intelligence [13], surveil-

lance and threat analysis [18], preparing jamming signals [19] and to recover the in-

tercepted signals [20]. AMC was later implemented in civilian applications which in-

cludes spectrum management, interference identification and signal confirmation [20].
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With the current increase in spectrum usage, the need arises to use the available

spectrum more efficiently. Therefore Link Adaptation (LA), also known as adaptive

modulation and coding (AM& C) creates an adaptive modulation scheme, from which

a pool of modulations are employed in the same system, to enable the optimisation of

the reliability of transmission and data rate through the adaptive selection of modula-

tion schemes depending on the channel conditions. In current communication systems,

the receiver must be aware of the transmitted signal’s modulation scheme to demodu-

late the signal for information extraction.

Demodulation is accomplished through including extra information about the modu-

lation type in the transmitted signal frame to let the receiver know of the modulation

type and whether any changes occurred. Transmitting this extra information requires

more channel bandwidth, which results in the inefficient use of the available spec-

trum, AMC is a solution for that problem. AMC automatically detects and classifies

the receiving signal’s modulation type, AMC is the intermediate step between signal

detection and demodulation. By automatically identifying the modulation type of the

received signal, the receiver does not need to know about the modulation type, and

demodulation can be done successfully, and spectrum efficiency is improved.

Furthermore, with recent developments in Software-defined Radio (SDR) and CR, AMC

has become an integral part of this intelligent radio environment. The realisations that

Machine learning (ML) can be applied to CR and SDR, have created exciting possibili-

ties which AMC is one of.

CR is an emerging technology for dynamic spectrum access. The idea in a cogni-

tive radio is to enable secondary spectrum access to a user to share the underutilised

spectrum allocated to the primary user (PU) user. The SU must be fully aware of the

spectrum and the signal transmitted by the PU to avoid interference. AMC enhances

the performance of a cognitive radio by identifying the modulation type of the signal

present as part of spectrum sensing.
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1.4 Research Problem

Commercially available software packages used in classifying digital signals’ modula-

tions are in the order of a few hundred thousand rands, and these packages use a brute

force approach for demodulating digital signals. The problem that needs investigating

is to find a simple approach towards automatically identifying and classifying digital

modulations as part of spectrum sensing.

1.5 Objectives

The main objectives of this dissertation are to find a simple approach towards classifying

digital signal modulations as part of spectrum sensing. The objectives include:

• selecting the type of classification approach (Likelihood-based (LB) or Feature-

based (FB)),

• comparing the performance of the classifier in different communication channels,

• and testing the performance of the classifier on recorded I/Q data.

The focus of the study will be on single-carrier signals, with the assumption that digital

signals have been separated from analog signals in the frequency band.

The following problems are not addressed in this dissertation, however, the model and

simulations include residual baseband effects:

• carrier frequency and bandwidth estimates,

• baud rate estimation,

• and signal equalisation and the use of pulse-shaping filters in the transmitter and

receiver chain.
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Other constraints include:

• selecting the frequency band,

• and selecting the modulation classes.

1.6 Dissertation Overview

The remainder of the dissertation is organised as follows. In Chapter 2 a literature

study is presented. This chapter will introduce basic digital communication concepts

such as digital-to-analog conversion, digital modulation, and communication channels.

Chapter 3 provides an in-depth study of FB classifiers, feature selection and related

work, followed by a general system model and implementation of a FB classifier.

Chapter 4 gives an overview of the verification and validation of the proposed FB clas-

sifier. Chapter 5 and 6 presents the implemented AMC in an Additive White Gaussian

Noise (AWGN) channel and in a multipath fading channel respectively.

Finally, Chapter 7 concludes the dissertation with revisiting the research goal and

giving recommendations for future work.
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Chapter 2

Literature Study

This chapter presents an overview of some of the basic concepts of data- and telecommunica-

tion. Concepts such as digital-to-analog conversion, digital modulation, signal space models

and communication channel models are presented. It is important to understand these concepts

before continuing with the literature on AMC, which is presented in chapter 3.

2.1 Digital-to-Analog Conversion

Digital-to-Analog conversion involves the process of changing the characteristics of an

analog signal based on information in the digital data. Before the message signal is

transmitted through a communication channel or medium (more about communica-

tion channels in Section 2.4), a modulation scheme is employed to make the informa-

tion signal more compatible with the medium [7], [2]. The information signal is also

known as a baseband signal. Transmitting the original audio, video or data (baseband

signal) without modulation is known as baseband transmission. In many instances,

baseband signals are incompatible with the medium.
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Transmitting a baseband signal directly by radio is theoretically possible, but realisti-

cally impractical. The baseband signal is used to modulate a higher-frequency signal,

also know as a carrier signal. The higher-frequency carrier signal radiate more effi-

ciently than the baseband signals themselves [7].

The modulated carrier signal is a continuous, non-negative sine wave. This sine wave

is characterised by its amplitude, frequency, and phase. By changing either of these

three characteristics, a different version of the same analog signal can be constructed.

These differences are used to represent the digital data [1].

Changing the amplitude, frequency and phase gives three mechanisms by which to

modulate digital data onto an analog signal: Amplitude Shift Keying (ASK), Frequency

Shift Keying (FSK), and Phase Shift Keying (PSK). In addition to these three, a fourth

mechanism exists that combines both amplitude and phase changes, known as Quadrature

Amplitude Modulation (QAM). QAM is the most efficient of the three options when

favourable channel conditions (channels with a high SNR) are availble. QAM is the

most used mechanism in today’s digital communication systems [1].

Before getting into the specifics on digital-to-analog conversion, two issues need to be

addressed that make a modulation scheme more preferable than another: data rate (bit

rate) and signal rate (baud rate). Data rate (bit rate) is the number of data elements

(bits) sent in 1s, measured as bits per second (bps). The signal rate (baud rate) is the

number of signal elements sent in 1s, measured as baud. The goal in any communi-

cation system is to increase the data rate while decreasing the signal rate. An increase

in the data rate increases the speed of data transmission. Decreasing the signal rate,

reduces the bandwidth requirement, and increases the spectrum-usage efficiency.

Figure 2.1 shows the relationship between data elements and signal elements. The

relationship between data elements and signal elements is defined as the ratio r, which

is the number of data elements carried by each signal element. In Figure 2.1 (a) one

data element is carried by two signal elements (r = 1/2), In Figure 2.1 (b) two data

elements are carried by 1 signal element (r = 2). In Figure 2.1 (c) one data element is
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11 01 101 0 1

1 0 1 1011

1 signal 
element

3 signal 
elements

1 signal 
element

2 signal 
elements

1 data element 2 data elements

1 data element 4 data element

(a) One data element for two signal 
elements (r = 1/2)

(b) Two data element for one 
signal elements (r = 2)

(d) Four data element for three 
signal elements (r = 4/3)

(c) One data element for one signal 
elements (r = 1)

Figure 2.1: Data elements vs signal elements [1]

carried by one signal element (r = 1), and Figure 2.1 (d) four data elements are carried

by three signal elements (r = 4/3).

Given the data rate N (bps), the signal rate S is given as,

S = N/r, (2.1)

where r previously defined as the ratio between data and signal elements. The value

of r in analog transmission is r = log2L (bits/baud), where L is the number of different

signal elements. Either the required bit rate must be specified and rely on the choice

of quantisation levels to represent the different amplitude levels, or L is chosen to be

large enough to represent the sampled signal accordingly.
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The appropriate modulation scheme is chosen according to these specifications. The

available bandwidth is another important constraint. The bandwidth (BW) of the dig-

ital data is proportional to the signal rate, except for FSK [1].

2.2 Digital Modulation

Advances in hardware and digital signal processing over the past years have made

digital transceivers more powerful, faster, power-efficient and cheaper than analog

transceivers. As a result digital modulations have also improved resulting in higher

data rates, powerful error correction, resistance against channel impairments, more ef-

ficient multiplexing techniques, better security and improved privacy [2]. This makes

digital modulations more attractive than analog modulations.

Referring to Section 2.1 and [2], the main considerations for choosing a particular dig-

ital modulation scheme are:

1. high data rates (N),

2. high spectral efficiency (minimal BW),

3. high power efficiency (low transmit power),

4. robustness to channel impairments,

5. and low cost implementation.

The technique that achieves the best tradeoff between these requirements is selected.

Digital modulations are grouped into two main categories: amplitude/phase modula-

tions and frequency modulation. Frequency modulation is generated using non-linear

techniques [2]. This type of modulation is also known as a constant envelope modu-

lation. The data is embedded in the frequency information of the transmitted signal.

Non-linear modulation leans itself towards spectral broadening, which increases the

bandwidth requirement of the signal [2].
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Amplitude/phase modulations are known as linear modulations. Linear modulated

signals have better spectral properties. Linear modulation embeds the data in the am-

plitude and phase of the signal. Linear modulations are more susceptible to interfer-

ence and fading. Linear modulations require the use of linear amplifiers, which makes

it a more expensive and less power efficient option. The tradeoff between linear and

non-linear modulations are those of high spectral efficiency versus power efficiency

versus resistance to channel impairments [2].

After selecting the modulation technique, the next step is to determine the constellation

size. The constellation size depends on the data rate required by the application at

hand. Modulations with a vast constellation have higher data rates (bps), but they are

more susceptible to noise, fading and other system imperfections.

2.2.1 Amplitude Shift Keying

ASK varies the amplitude of the carrier signal to create the signal elements. The fre-

quency and the phase of signal stay constant. ASK is usually implemented using only

two signal levels, known as binary ASK or On-Off Keying (OOK). The peak ampli-

tudes are either 0 or the same as the carrier signal.

ASK(t) = s(t)sin(2p f t) (2.2)

Figure 2.2 shows an example of ASK, and how the amplitude changes with a change

in data element. For a bit = 1 the amplitude of the modulated signal is the same as the

amplitude of the carrier signal. For a bit = 0, the amplitude of the modulated signal

changes to zero.
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0 0 1 1 01

Modulated signal

Carrier signal

Figure 2.2: ASK modulated signal [1]

2.2.2 Frequency Shift Keying

In FSK the frequency of the carrier signal changes depending on the data elements.

Both the amplitude and phase of the carrier signal remain the same. Figure 2.3 gives

an example of a binary FSK (2-FSK) modulated signal. For a bit = 1 the frequency of

the carrier signal is low, and for bit = 0 the frequency of the carrier signal is higher, or

vice versa.

The frequency of the modulated signal is a combination of these two frequencies re-

sulting in the modulated signal.

FSK(t) =

8
><

>:

sin(2p f1t) for bit 1

sin(2p f2t) for bit 0
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0 0 1 1 01

Modulated signal

Carrier signal

Figure 2.3: FSK modulated signal [1]

2.2.3 Phase Shift Keying

In PSK the phase of the carrier signal in an indication of the data elements. The phase

of the carrier signal is measured concerning the starting angle of the sinusoid. Figure

2.4 is an example of a binary PSK (BPSK or 2-PSK) modulated signal. The phase of

the carrier signal changes with each data element with p rad (2p/M where M = 2) or

with 180o.

PSK(t) =

8
><

>:

sin(2p f t) for bit 1

sin(2p f t + p) for bit 0

In PSK, both the amplitude and the frequency of the carrier signal stay constant.
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0 0 1 1 01

Modulated signal

Carrier signal

Figure 2.4: PSK modulated signal [1]

2.2.4 Quadrature Amplitude Modulation

QAM is a combination of amplitude and phase shift keying. PSK is limited by the

sensitivity of the receiver to distinguish between the phase changes. With an increase

in modulation order (constellation size), the phase difference decreases, and it becomes

increasingly more difficult to detect the phase changes. Any channel interference or

fading may result in total data recovery failure. QAM combines two carrier signals

with different amplitudes. This is referred to as the in-phase (I) and quadrature (Q)

signals. The in-phase and quadrature components can be reduced to two sinusoids

with a 90o or p/2 rad phase offset concerning each other.
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2.3 Signal Space

In digital communication and modulation, the receiver must minimise the probability

of detection error when decoding the received signal. The received signal symbols are

mapped to a set of possible transmitted symbols that are the closest to those symbols

transmitted. Therefore a metric to determine the distance between the received and

transmitted symbols is required.

The transmitted symbols are mapped to a set of basis functions to obtain a one-to-one

correspondence between the set of transmitted symbols and their equivalent vector

representations [2]. The symbols are then analysed in vector space instead of function

space. A signal is demodulated by analysing the signal in the vector space.

Each modulation scheme is expressed mathematically regarding their vector represen-

tation. The following sections show how this can be accomplished and how the vector

representation contributes to the detection, and finally to the classification, of different

modulations.

2.3.1 Signal Model Syntax

Table 2.1 clarifies the syntax and variables used throughout the section. Let [square

brackets] denote the values included and (rounded brackets) be the values excluded

from a set.

2.3.2 Signal Model

The signal model and the corresponding vector representation are adapted from [2].

Let us consider Figure 2.5. The transmitter sends K = log2M bits of information

through the communication channel every T seconds at a data rate of N = K/T bps,

where M = 2K possible sequences of K bits.
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Table 2.1: Signal model syntax description
Variable Description

M modulation order
K bits per symbol
mi message to be transmitted
m̂i estimate of message mi

M set of all messages
bi vector denoting bit sequence of length K

for message mi

b̂i vector denoting the estimated bit sequence of length K

for message m̂i

S vector denoting a set of analog signals
si analog signal corresponding to message mi

with bit sequence bi

n(t) noise signal
r(t) received signal
n10 base 10 or decimal notation
< real part of a complex signal
= imaginary part of a complex signal

Each possible bit sequence of length K forms a message mi = {b1, b2, ..., bk} 2 M,

where M = {m1, m2, ..., mM} is the set of all the messages. Each message has equal

probability pi of being transmitted, and ÂM
i=1 pi = 1.

Let message signal mi be transmitted during the time interval [0, T). The channel is

analog in nature and the message signal needs to be converted to an analog signal for

transmission. Each message mi 2 M is mapped to an unique analog signal si(t) 2 S =

{s1(t), s2(t), ..., si(t)}, where si(t) is defined on time interval [0, T).

Because each message signal represents a bit sequence, each signal si(t) 2 S also repre-

sents a bit sequence. The detection of the transmitted signal si(t) at the receiver is the

same as detecting the transmitted bit sequence, as each signal can be traced back to its

specific bit sequence representation.

When sent sequentially, the transmitted signal becomes a sequence of the analog sig-

nals over the time interval [kT, (k + 1)T) : s(t) = Âk si(t � kT), where si(t) are analog

signals which corresponds to the message signal mi designated to be transmitted. Let’s

view the mathematics in context of the following example.
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Figure 2.5: Transceiver communication flow [2]

Example 2.1

Consider two messages being transmitted using Quadrature Phase Shift Keying (QPSK)

modulation (modulation order M = 4). The system transmits K = log2(4) = 2 bits

through the channel every T = 1µs, with a data rate of N = 2/1µs = 2 Mbps. Four

possible sequences of sending two bits per time interval are available. The four pos-

sible sequences are [00 01 10 11]. Lets assume that M = {m1, m2}. Each message

mi 2 M has a bit length which can be divided into smaller bit sequences of length K.

Therefore let m1 = 18010, with its equivalent byte of [10110100], m2 = 2710 with its byte

of [00011011].

Each message mi = {m1, m2} 2 M 8 i 2 [1, 2] is divided into m1 = {10, 11, 01, 00},

with b1 = 10, b2,= 11, ..., etc. Following the same procedure for m2 will result in

m2 = {00, 01, 10, 11}.

As a result of QPSK being the chosen modulation, four different analog signals are

needed to represent the four different bit sequences. PSK makes use of phase differ-

ences between the signals to represent the data. Four phases are required, with 2p/M

phase increments, which results in qi = {0, p/2, p, 3p/2}.

For m1 an s(t) 2 S exists with S = {s1(t), s2(t), s3(t), s4(t)}, and si(t) = Acos(2p f t +

qi) and i = [1, 4], with A being the constant amplitude of the signal. The transmitted
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signal s(t) for m1 is then s(t) = Â4
i=1 si(t), 8 i 2 [1, 4]. Same applies for m2.

Figure 2.5 shows the transmitted signal sent through an AWGN channel. The AWGN

channel adds noise (see section 2.4) n(t) to the transmitted symbols which corrupts the

transmitted signal. Given the received signal r(t) = s(t) + n(t), the receiver must es-

timate si(t), and map the estimated signals to the corresponding message bit sequence

m̂.

The best possible estimate (based on minimising the probability of message error) for

si(t) is mapped to the best estimate of the message mi 2 M and the receiver then needs

to output the best estimate m̂ = {b̂1, ..., b̂k} 2 M of the transmitted bit sequence. The

received message is corrupted by noise. The receiver is tasked with deciding, based

on a decision rule, whether the received message falls within a certain decision region.

The receiver tries to minimise the probability of error by selecting the appropriate out-

put.

As mentioned before, the basic principle behind a vector representation of the signals

is the concept of a basis set. It can be shown [2] that any set M real energy signals

S = {s1(t), ..., sM(t)} defined on [0, T) can be expressed as a linear combination of

N  M real orthogonal basis functions {f1(t), ...fN(t)}. Therefore si(t) 2 S can be

expressed in terms of their basis function [2] as

si(t) =
N

Â
j=1

sijfj(t), 0  t < T, (2.5)

where

sij =
Z

T

0
si(t)fj(t)dt (2.6)

is a real coefficient representing the projection of si(t) onto the basis function fj(t) and

Z
T

0
fi(t)fj(t)dt =

8
><

>:

1 i = j

0 i 6= j

(2.7)
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If the signals {si(t)} are linearly independent then N = M, otherwise N < M. For

linear passband modulation techniques, the basis set consists of sine and cosine func-

tions:

f1(t) =

r
2
T

cos(2p fct) (2.8)

and

f2(t) =

r
2
T

sin(2p fct), (2.9)

where
p

2/T is needed for normalisation so that
R

T

0 f2
i
(t)dt = 1, i = 1, 2. These basis

functions are only an approximation to equation (2.7), since

Z
T

0
f2

1(t)dt =
2
T

Z
T

0
0.5[1 + cos(4p fct)]dt = 1 +

sin(4p fcT)
4p fcT

(2.10)

The numerator in equation (2.10) is bounded by one and for fcT >> 1 the denominator

of this term is very large. Thus, this second term can be neglected. And similarly

Z
T

0
f1(t)f2(t)dt =

2
T

Z
T

0
0.5[sin(4p fct)]dt =

� cos(4p fcT)
4p fcT

⇡ 0, (2.11)

where the approximation is taken as an equality for fcT >> 1. With the basis set

f1(t) =
p

2/T cos(2p fc(t)) and f2(t) =
p

2/T sin(2p fc(t)) the basis function repre-

sentation in equation (2.5) corresponds to the complex baseband representation of si(t)

in terms of its in-phase and quadrature components with an extra factor of
p

2/T:

si(t) = si1

r
2
T

cos(2p fct) + si2

r
2
T

sin(2p fct) (2.12)
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2.3.3 Constellation Mapping and I/Q Channels

The coefficients {sij} are denoted as a vector si = (si1, ..., siN) 2 RN, which is called

the signal constellation point corresponding to the signal si(t). The signal constella-

tion consists of all the constellation points {s1, ..., sM}. With the given basis functions

{f1(t), ..., fN(t)} there is a one-to-one correspondence between the transmitted signal

si(t) and its constellation point si. The representation of si(t) in terms of its constella-

tion points is called the signal space representation and the vector space containing the

constellation is called the signal space.

ϕ(t)
2

ϕ(t)
1

s1

s2

s3

s4

Figure 2.6: Signal space representation [2]

Figure 2.6 illustrates a two-dimensional signal space, which corresponds to the basis

functions fi(t), i = 1, 2, where si 2 R2 with the ith axis of R2 corresponding to the

basis functions. Common modulation techniques like M-PSK and M-QAM are two-

dimensional, with the in-phase and quadrature-phase basis functions on the time axis.

The principle of digital modulation, as mentioned earlier, is to encode information into

a carrier signal which is then transmitted over a communication channel. The goal is

to send the information at a high data rate while minimising the bandwidth used and
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keeping the probability of making an estimation error of the received data low.

The modulated signal can be expressed as

s(t) = a(t) cos[2p( fc + f (t))t + q(t) + f0] = a(t) cos(2p fct + f(t) + f0) (2.13)

with information being encoded in the amplitude a(t), frequency f (t) or phase q(t) of

the carrier signal. In equation (2.13) f(t) = 2p f (t) + q(t) and f0 is the phase offset of

the carrier. This combines the phase and frequency modulation part of the signal into

angle modulation. Equation (2.13) can be rewritten in terms of the previously men-

tioned in-phase and quadrature components (I/Q), using the trigonometric identity

that

cos(x ± y) = cos x cos y ⌥ sin x sin y (2.14)

and setting the phase offset f0 of the carrier to zero,

s(t) = a(t) cos f(t) cos(2p fct)� a(t) sin f(t) sin(2p fct)

= sI(t) cos(2p fct)� sQ(t) sin(2p fct),
(2.15)

where sI(t) = a(t) cos f(t) is the in-phase component of s(t) and sQ(t) = a(t) sin f(t)

is the quadrature component. Lets define the complex signal

u(t) = sI(t) + jsQ(t), (2.16)

so that sI(t) = <{u(t)} and sQ(t) = ={u(t)}. Then with u(t) in mind, equation (2.15)

can be rewritten in its complex baseband form as

s(t) = <{u(t)} cos(2p fct)�={u(t)} sin(2p fct)

= <{u(t)ej(2p fct)},
(2.17)

Alternatively, this expression can be written as

u(t) = a(t)ejf(t) (2.18)
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with the complex envelope

a(t) =
q

s2
I
(t) + s2

Q
(t) (2.19)

and the phase

f(t) = tan�1
✓

sQ(t)

sI(t)

◆
. (2.20)

With this representation equation 2.17 becomes

s(t) = <
n

a(t)ejf(t)
e

j2p fct

o
= a(t) cos(2p fct + f(t)), (2.21)

the expression a(t) is known as the instantaneous amplitude of the received signal

sample and f(t) is the instantaneous phase [21].

2.3.4 M-PSK in Terms of I/Q

In Section 2.2 the general formulation for M-ary phase shift keying (M-PSK) modu-

lation has been covered. To recap, M-PSK modulation encodes the information that

needs to be transmitted in the phase of the signal.

Each transmitted M-PSK signal element, si(t) 2 S, is expressed in terms of its respec-

tive in-phase and quadrature-phase components, which is given by [2]:

si(t) = <{Ag(t)ej2p(i�1)/M
e

j2p fct}, 0  t  Ts

= Ag(t) cos


2p fct +
2p(i � 1)

M

�

= Ag(t) cos


2p(i � 1)
M

�
cos 2p fct � Ag(t) sin


2p(i � 1)

M

�
sin 2p fct.

(2.22)

In a two-dimensional signal space, the signal constellation points (si1, si2) 2 si , are

given by si1 = A cos[ 2p(i�1)
M

] and si2 = A sin[ 2p(i�1)
M

] for i = 1, ..., M, where M is the

modulation order. g(t) forms part of the pulse shaping filter.
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Figure 2.7: A general representation of an M-PSK modulation in the signal space. [2]

The different phases used to convey the information bits for representing the symbols

are qi =
2p(i�1)

M
, i = 1, 2, ..., M = 2K. Figure 2.7 shows the general signal space repre-

sentation for a QPSK modulated signal (M = 4, K = 2, with q = [0, p/2, p, 3p/2]),

and for 8-PSK modulated signal (M = 8, K = 3, with q = [0, p/4, p/2, 3p/4, p,

5p/4, 3p/2, 7p/4]).

2.3.5 M-QAM in Terms of I/Q

In Section 2.2 the general formulation for an M-ary quadrature amplitude modula-

tion (M-QAM) has been covered. The M-QAM modulated signal conveys the informa-

tion bits in both the amplitude and the phase of the transmitted signal (two degrees of

freedom). As a result, M-QAM is more spectrally-efficient [2], as it can encode more

bits per symbol for any given message signal. The expression for an M-QAM modu-

lated signal in terms of its in-phase and quadrature components are

si(t) = <{Aie
jqi g(t)ej2p fct}

= Ai cos(qi)g(t) cos(2p fct)� Ai sin(qi)g(t) sin(2p fct), 0  t  Ts.
(2.23)
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Figure 2.8: A general represenation of an M-QAM modulation in the signal space. [2]

For a squared signal constellation, si1 and si2 take values on (2i� 1� L)d, i = 1, 2, ..., L =

2l where d is the distance between any pair of symbols in the signal constellation given

by

dij = ||si � sj|| =
q
(si1 � sj1)2 + (si2 � sj2)2. (2.24)

These square constellations have M = 22l = L
2 constellation points, used to transmit

2l bits per symbol, or l bits per dimension. Figure 2.8 shows the general signal space

representation for an 8-QAM (M = 8, L = 2
p

2) and 16-QAM modulated signal (M =

16, L = 4).

2.4 Communication Channel Models

The communication channel is the medium through which electromagnetic signals are

sent from one place to another. This is usually accomplished through three mediums
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[7]; electrical conductors (twisted-pair cable used for Local Area Networks (LAN)),

optical media (fiber-optic cable) and free space, also known as wireless or radio.

In wireless communication, radio propagation refers to the behaviour of radio waves

(3 kHz - 1 GHz range of the electromagnetic spectrum). The propagation of these

radio waves are affected by three physical phenomena [3]: reflections, diffractions and

scattering.

Reflections occur when the propagating electromagnetic wave impacts a large object.

The large object's dimensions are more significant compared to the wavelength of the

signal, and reflects back to the source, instead of propagating to the receiver.

Diffractions occur when objects obstruct the path between the transmitter and receiver

with irregularities and small openings, which causes the signal to spread or bend

around the objects and openings. The waves generated by the diffractions are useful

for reaching the receiver when no Line-of-Sight (LOS) path is available.

Scattering is the phenomena that cause the radio wave to deviate from the straight

path to the receiver by obstacles smaller in dimension compared to the wavelength of

the signal. Scattering occurs from objects such as street lights, signs, lamp posts, and

foliage.

Another phenomenon that occurs in radio wave propagation is fading, which is a

degradation of the signal, characterised as a non-additive disturbance which causes

variations in the signal amplitude over time and frequency. Fading can be classified

into two types [3]: large-scale fading and small-scale fading. Large-scale fading is char-

acterised by an average path loss (movement of the receiver over vast distances) and

shadowing.

Small-scale fading is described as the rapid variations of signal levels due to construc-

tive and destructive interference of multiple signal paths due to movements over short

distances and time variations in the channel as a result of the movement speed of the

receiver (characterised by a Doppler spread). Figure 2.9 and 2.10 gives a visual break-
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Figure 2.9: Fading channel classification [3]

down of different categories of fading channels.

2.4.1 AWGN Channel

Two of the commonly used communication channel models used to model communi-

cation systems in general are the AWGN channel and the Rayleigh- and Rician mul-

tipath fading channels. AWGN is added noise that might be intrinsic to the infor-

mation systems [3], [7]. This type of noise is caused by external sources such as at-

mospheric conditions, extraterrestrial sources (solar, cosmic), and internal noise at the

receiver. Internal noise includes thermal noise, and reflections caused by transmis-

sion line impedance mismatching, and quantisation noise introduced by the analog-to-

digital converter. The term white refers to the idea that the noise has uniform power

across the frequency band (constant spectral density) and a Gaussian distribution of

amplitude.
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2.4.2 Rician and Rayleigh Channel Model

Rayleigh- and Rician channels [3] fall within the class of small-scale fading. Fading in

the broad sense causes variations of the signal amplitude over time and frequency. In

general, any wireless channel is subject to LOS and non line-of-sight (NLOS) propaga-

tion. The probability density function (PDF) of a signal envelope in a LOS environment

follows a Rician distribution, while that in a NLOS environment follows a Rayleigh

distribution [3].

The strongest scattering component usually corresponds to the LOS component (spec-

ular component). All the other components are NLOS components. In equation (2.25)

the PDF of a Rician channel is expressed, where ep(q) denotes the PDF of angle of ar-

rival (AoA) for the scattering components and q0 denotes the AoA for the specular

component [3].

p(q) =
1

K + 1
ep(q) + K

K + 1
d(q � q0) (2.25)

32



Chapter 2 Communication Channel Models

0 0.5 1 1.5 2 2.5 3 3.5 4
x

0

2

4

6

8

10

12

14
O

cc
ur

an
ce

10
4

Rayleigh
Rician, K=-40dB
Rician, K=-20dB
Rician, K=-10dB
Rician, K=0dB
Rician, K=5dB
Rician, K=15dB

Figure 2.11: Comparison of Rician channel model at different K-factors [3].

K is defined as the Rician factor, which denotes the strength of the LOS component.

K =
c

2

2s2 , (2.26)

where c
2 is the power of the LOS component and 2s2 is the power of the scattering

component. A Rician channel approaches an AWGN channel as K >> 0dB and a

Rayleigh channel as K < 0dB. Figure 2.11 shows how the Rician distribution would

change when K changes. The value for K is in dB. This can be converted to s2 through

10(Kdb/10). From Figure 2.11 can be seen how the LOS component impacts the channel

distribution.

2.4.3 Tapped Delay Line Model for Representing Fading Channels

Simulating fading channels fall within one of the following categories [2], [22]:
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1. Transfer function models for time-invariant channels. This type of channel is

assumed to be static (the channel has a time-invariant impulse response). This

provides a particular frequency response due to its fixed delays within the chan-

nel. The transfer function is said to be flat when the bandwidth of the message

source has a constant gain response. The channel is said to be frequency-selective

if the message source has a bandwidth over which the channel has a significant

gain variation.

2. Tapped delay line (TDL) for time-varying channels. The channel is said to be fast

fading when the time interval over which the signal that is applied changes dur-

ing the smallest of time intervals. A channel is treated as a slow fading channel

when the channel remains static for a large number of consecutive symbols.

Since different paths are of different lengths, a single impulse transmitted will result

in multiple copies being received at different times. The maximum delay after which

the received signal becomes negligible is called maximum delay spread. A large delay

spread indicates a highly dispersive channel [4]. Figure 2.12 is an illustration of the

received power delay profile for a multipath channel.

The impulse response of a multipath channel can be represented by a discrete number

of impulses:

h(t, t) =
N

Â
i=1

ci(t)d(t � ti), (2.27)

where the impulse response changes with time and N is the number of coefficients,

and the coefficients ci(t) vary with time. The power delay profile in Figure 2.12 can be

represented by a 4-tap model (TDL model). Any movement between the transmitter

and receiver will result in a change of channel characteristics.

The time for which the channel remains constant is called coherence time. The fre-

quency bandwidth for which the channel remains the same is called the coherence

bandwidth. The larger the delay spread, the less the coherence bandwidth, and the

channel is said to be more frequency selective.
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Figure 2.13: Tapped delay line model [4]

The delay profile gives a statistical power distribution (Rayleigh or Rician distribution)

of the channel over time for a signal transmitted for just an instant. The Doppler power

spectrum gives the statistical power distribution of the channel for a signal transmitted

at just one frequency. Therefore, a power delay profile is a result of multipath, while

the Doppler spectrum is caused by motion of objects in the channel [4]. When objects

move very fast, the Doppler spread is large, and the coherence time is small, and the

channel changes fast.
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Different fading channel models have been proposed. ITU-R M.1225 [23] proposed

three tapped-delay line parameters for different wireless environments: indoor office

test environment, outdoor to indoor and pedestrian test environment and a vehicular

test environment. For each terrestrial test environment, a channel impulse response

model based on a tapped-delay line model is given.

Another well known and widely adopted fading channel model is the COST 207 chan-

nel model for multipath fading channels published by the Commission of the Euro-

pean Communities [24]. The COST 207 project channel model is used for GSM and

DVB-T [25] standards. Radio propagation in the mobile radio environment is described

by highly dispersive multipath caused by reflections and scattering.

Chapter 3 gives a more detailed look at these two fading channel models.

2.5 Conclusion

In this chapter, basic data- and telecommunication concepts such as digital-to-analog

conversion, digital modulation, signal space representation of digital modulations and

I/Q modulation were presented. Different communication channel models were also

discussed. The next chapter proceeds to describe AMC in general with the main focus

on FB classification.
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Feature-based Classification Approach

This chapter discusses AMC in general with the main focus on a feature-based classification

approach. Feature-based classification consists of three main parts; pre-processing of the signal,

feature extraction, and the classification algorithm. Related work regarding FB classification

is discussed together with the feature-selection process for classifying digital modulations. The

procedure for selecting the classification algorithm is also investigated. The general system

model and implementation of a FB classifier is also developed and described.

3.1 Introduction

Chapter 2 introduced the discussion on AMC by mentioning the mechanics behind

digital-to-analog conversion and the relationship between going from digital data to an

analog signal through modulation. Different modulation techniques like ASK, FSK and

PSK have been introduced, and a more advanced signal model concerning complex

I/Q modulation has been introduced.
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3.2 Automatic Modulation Classification Approaches

Chapter 1 introduced AMC as an alternative approach towards spectrum monitor-

ing and spectrum sensing. Two steps are involved when developing an AMC sys-

tem [12], [26]: pre-processing of the received signal and the selection of the classifi-

cation algorithm. Two main classification approaches have been studied in this re-

gard [13], [12], [18], [27], [28]: a decision-theoretic approach and a pattern recognition

approach. The decision theoretic approach is also known as a LB classifier [29] and the

pattern recognition approach is known as a FB classifier [30].

In an ideal AMC system, a trade-off must be made between:

• classification accuracy [12],

• robustness against unpredictable channel conditions [12],

• computational efficiency [12],

• and versatility in terms of modulation types [12].

LB classifiers are by far the most popular approach, which is motivated by the optimal-

ity of its classification accuracy [12] when channel model and parameters are entirely

known. The typical approach of a LB classifier consists of two steps. LB classifiers treat

the classification problem as a hypothesis testing problem, so firstly the likelihood is

evaluated for each modulation hypothesis with observed signal samples. The likeli-

hood function is derived from the selected signal model and can be modified to fulfil

the need of reduced computational complexity. Secondly, the likelihood of the differ-

ent modulation hypothesis is compared to conclude the decision. The decision making

is accomplished with a ratio test between the two hypothesis. The requirement of a

threshold adds another layer of performance improvement, but more attentive efforts

must be made to select the thresholds.

LB classifiers suffer from computational complexity and is difficult to implement as

complete knowledge of the received signal’s probability density function must be known
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to derive the likelihood function of the received signal. Some of the LB classifiers stud-

ied in literature [13], [12] include maximum likelihood (ML), Average Likelihood Ratio

Test (ALRT), Generalized Likelihood Ratio Test (GLRT), and Hybrid Likelihood Ratio

Test (HLRT).

The FB classification approach is easier to implement and is not as computationally

sophisticated as the LB approach. The selection of suitable features and classification

algorithm is the challenge. FB classifiers are divided into two subsystems: the feature

extraction subsystem and the classifier subsystem (shown conceptually in Figure. 3.1).

Several features are extracted from the received signal and a decision is made based on

the values of those features.

Input (I/Q stream) Feature extraction Classification Output 
(Modulation type)

2.0 3.0 4.0

Input (I/Q stream) Feature extraction Classification Output 
(Modulation type)

2.0 3.0 4.01.0

1.0

Input data (I/Q)

1.0

Input data (I/Q)

1.1

Generate message 
signal

1.1

Generate message 
signal

1.2

Modulate 
message signal

1.2

Modulate 
message signal

1.3

Introduce channel 
effects

1.3

Introduce channel 
effects Feature extraction

2.01.0

Input data (I/Q)

1.1

Generate message 
signal

1.2

Modulate 
message signal

1.3

Introduce channel 
effects Feature extraction

2.0

Feature extraction

2.0

Process received 
signal samples

1.0

Extract 
instantaneous 

amplitude and phase

Extract HOS features 
from instant. 

amplitude and phase

Figure 3.1: Conceptual diagram for a feature-based classification approach

The features extracted must be able to represent the difference between signal classes.

The features are either instantaneous amplitude, frequency and phase, Fourier and

Wavelet transform based or higher-order statistic (moments and cumulants) based.

Similarly, Hazza et al. [18] showed that many combinations of classification algorithms

and features had been used to solve the classification problem.

In this chapter, a closer look into the pattern-recognition or FB modulation classifica-

tion approach will be taken. From this moment onward, the discussion will focus on

the FB approach, as this will aid in solving the research problem in finding a simple

approach to classify digital modulations.

Figure 3.1 shows a conceptual diagram for a general FB classifier. The two most impor-

tant components in FB classification are the feature extraction process and the classi-
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fication algorithm. The selection of suitable features and an appropriate classification

algorithm is the challenge. Various combinations of features and pattern-recognition

algorithms are possible, and many have been studied. The features are categorised

into five types [18]:

1. instantaneous time-domain features,

2. transform domain features,

3. statistical features,

4. constellation shape,

5. and zero-crossing features.

Similarly, several types of classification algorthms have been employed in AMC. Some

methods include Artificial Neural Network (ANN), Support Vector Machine (SVM),

decision trees and clustering [12], [18], [27]. Other ML algorithms such as K-nearest

neighbour (KNN), Logic regression and Genetic Algorithm has also been employed

[12], [20], [26].

It is not easy to compare the performance of these approaches as each approach con-

siders different modulation sets, and is based on different assumptions. Some of the

assumptions include the channel model (AWGN or fading), the presence or lack of fre-

quency and carrier offsets, the presence of shaping filters, equalisers and the sample

size. The following section proceeds to discuss related work and research trends on FB

classifiers which will aid in motivating the design and implementation of a simple FB

classification approach.
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3.3 Related Work

Numerous modulation recognition methods have been proposed. E.E. Azzouz and

A.K. Nandi have made a significant contribution to the field, who have proposed an

analog modulation recognition algorithm [31], digital modulation recognition algo-

rithm [31], and a combination thereof [31]. Nandi et al. [31] classified (2, 4)-ASK, (2,

4)-PSK, (2, 4)-FSK and 16-QAM modulations in AWGN, using four instantaneous time

domain features extracted from the instantaneous amplitude, phase and frequency of

the received signal.

Popoola et al. in [27] and [30] proposed a combined analog and digital classifier in

AWGN with an ANN as their classifier. The proposed combined analog and digital

AMC system is capable of recognising nine mixed analog and digitally modulated sig-

nals. The modulations classified include (2, 4)-ASK, 2-FSK, BPSK, QPSK, AM, DSB,

SSB and FM. Their overall result indicated a 99.0% success rate at low SNR ratios (SNR

between 0 and 5 dB), using an ANN for classification. The feature set included a total

of five features, which is the same set proposed by Nandi and Azzouz in [32]. The

features are derived from the instantaneous amplitude, phase and frequency of the

received signal. However, a new feature, the signal power key b, is introduced to dis-

criminate between a signal with complex and real signal components. In [27] Popoola

et al. demonstrated the effect training algorithms have on the performance of an ANN

in the developed AMC system.

Pambudi et al. [33] proposed a classification approach for classifying an Orthogonal

frequency division multiplexing (OFDM) signal with QPSK, 16-QAM and 64-QAM as

sub-carrier modulation, a cyclic prefix of 1/4, 1/8 and 1/16, in a 6-tap Rayleigh fading

channel. They followed a statistical approach using the received signal’s magnitude

component to extract the mean, variance, skewness and kurtosis. They demonstrated

that higher-order moments (10, 14, 18, 20) could be used to distinguish between these

sub-carrier modulations.

Prakasam et al. [15] considered using both wavelet transform as well as statistical

41



Chapter 3 Related Work

moments to classify (2, 4, 8, 16)-PSK, (2, 4, 8, 16)-QAM, GMSK and MFSK modulation

schemes under low SNR in an AWGN channel. They achieved a classification accuracy

of 96.8% under noisy channel conditions using a decision tree approach. Features such

as higher-order moments and the mean are calculated from the normalised histogram

generated from the wavelet transform coefficients.

In [34] Gang et al. proposed a new SVM classification algorithm based on higher-order

cumulant features (fourth- and sixth-order cumulant) extracted from the received sig-

nal in AWGN channel. They reported a classification accuracy of 96% at an SNR of 6

dB with 200 samples, and 98% at an SNR of 4 dB with 500 samples. They proposed

classifying (2, 4)-ASK, (2, 4, 8)-PSK and 16-QAM modulations schemes. Gang et al.

transmitted the signal through a raised-cosine filter with a roll-off factor of a = 0.5.

Gang et al. reported that the longer the data length and the higher the SNR, the closer

the cumulants are to the theoretical value, and thus the better the classification perfor-

mance.

Ebrahimzadeh et al. [35] proposed classifying (2, 4)-ASK, (2, 4, 8)-PSK, (8, 16, 32, 64,

128)-QAM, and V29, V32 modulation schemes using the second, fourth, sixth and eigth

order moment and cumulant as features. They achieved a classification accuracy of

83.23%, 88.23%, 93.62%, 96.14%, and 97.82% at -3, 0, 3, 6 and 9 dB SNR respectively in

an AWGN channel, through a particle swarm optimisation algorithm, to enhance the

classification performance of a radial-basis function neural network.

In [28] Shih et al. used a decision tree classification approach to classify BPSK, QPSK, 8-

PSK, 16-QAM and 64-QAM modulations using fourth-order cumulants, which achieved

a classification accuracy of 95% for a SNR lower than 10 dB, and 100% for a SNR over

15 dB.

Aslam et al. [26] introduced a Genetic Programming (GP) and KNN classification ap-

proach to classify Binary Phase Shift Keying (BPSK), QPSK, 16-QAM and 64-QAM. A

classification accuracy of 81% at a SNR of 5 dB with a sample size of 1024 using a KNN

classifier was advised. Combining KNN with GP a performance increase of 7% was
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achieved. At a SNR of 15 dB, an accuracy of 97% with 1024 samples was achieved.

Additionally [28], [36], [37], and [38] proposed an AMC technique using higher-order

cumulants to classify M-PSK and M-QAM signals for multipath fading channel. The

authors estimated the cumulants through taking the channel effect into consideration.

In [13] and [18] an extensive survey is done on FB classifiers, in which Fourier trans-

form based and more wavelet transform based features are discussed. The authors

also used these features to classify ASK, PSK, FSK, QAM and AM/FM modulation.

Transform domain feature, especially Fourier transform based features are used to dis-

tinguish between FSK/PSK and ASK/QAM modulations.

In [39] Muller et al. proposed a new method for AMC based on discriminative learning.

The features are the ordered magnitude and phase of the received symbols at the out-

put of a matched filter. Muller et al. used a discriminative learning approach instead

of using features obtained from higher-order cumulants or cyclostationary analysis to

classify modulations. They used a SVM with the new concatenated sorted symbols

approach. Muller mentioned that SVMs are used due to their ability to deal with rela-

tively large feature vectors.

Table 3.1 gives a summary of related feature-based classifiers with their respective fea-

tures, modulation schemes and communication channel implemented. From the liter-

ature, it is clear that the authors proposed many combinations of features, classifica-

tion algorithms, communication channel models and modulation types. Each author

reported good classification accuracy under different channel models. In the end,

choosing the best approach for a specific problem comes down to selecting the best

trade-off between classification accuracy, robustness against channel conditions, com-

putational efficiency and versatility regarding modulation types.

The related work highlighted the fact that a FB classification approach using statis-

tical features extracted from the time-domain signal is a good approach. When the

AMC system needs to be simple and computationally efficient without the need for

domain transforms, it can be achieved. From the literature review, none of the authors
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Table 3.1: A Summary of related FB classfiers
Author(s) Features Modulations Channel
Nandi [31] Variance of [2, 4]-ASK, AWGN

et al. instantaneous [2, 4]-PSK,
signal parameters [2, 4]-FSK,

16-QAM

Popoola [27], [30] Variance of [2, 4]-ASK, AWGN
et al. instantaneous [2, 4]-PSK,

signal parameters, 2-FSK, FM
signal power key AM, DSB, SSB

Pambudi et al. [33] Mean, variance, QPSK, Rayleigh
skewness, [16, 64] -QAM,

kurtosis, HOM OFDM

Prakasam et al. [15] Wavelet transform, M-PSK, AWGN
mean, variance M-QAM,

GMSK,
M-ary FSK

Gang et al. [34] Wavelet transform, [2, 4]-ASK, AWGN
mean, variance [2, 4, 8]-PSK,

16-QAM

Ebrahimzadeh [35] HOS (moments, [2, 4]-ASK, AWGN
et al. cumulants [2, 4, 8]-PSK

up to order eight) [8, 16, 32, 64,
128]-QAM

Shih et al. [28] Fourth-order BPSK, QPSK, AWGN,
cumulants 8PSK, 16QAM, Rayleigh

64-QAM

Aslam et al. [26] Fourth- and sixth BPSK, QPSK, AWGN
order cumulants 16QAM, 64QAM

mentioned that they tested the performance of the classifier with recorded I/Q. The

authors only tested the performance of their respective classifiers through intensive

simulations.

From the problem identified in Chapter 1, a simple approach for classifying digital

modulation in an a AWGN and fading channel is needed. From evaluating the clas-
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sifiers proposed in the literature and related work, a need to test the performance on

recorded I/Q exists. Using recorded I/Q will give further insight into how much work

still needs to be done to make the classifier more robust against channel impairments.

Chapter 1 mentioned that the proposed solution needs to be computationally efficient,

simple to implement and should be able to classify digital modulations. The next sec-

tion will give an overview of the most used features in AMC.

3.4 Feature Discussion

Many features have been proposed throughout literature. Feature extraction tries to

describe the modulation classes using a minimum number of features or attributes [30]

in discriminating amongst modulation classes. This section will build on the related

work in Section 3.3 and on the five classes of features identified in Section 3.1, which

will motivate the choice of features for this work.

Instantaneous time-domain features are related to the instantaneous amplitude, phase

and frequency of the received signal [13], [12], [18], [27], [30], [40], [41]. Transform do-

main features are extracted from the Fourier, wavelet and cosine transforms of the sig-

nal [13], [15], [18]. Statistical features are derived from higher-order statistics (higher-

order moments and cumulants, and cyclo-stationary) [13], [12], [19], [35], [36], [42],

[43], [44]. Signal constellation features include comparing the received signal’s constel-

lation points to reference points. Zero-crossing features involve counting the number

of zero-crossings of an intercepted signal. These features are used in likelihood tests

for decision making. The rate of zero-crossings for a PSK signal is fixed for all signal

symbols, while it varies in FSK.
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3.4.1 Instantaneous Time-Domain Features

The following features have been proposed which exploits the instantaneous ampli-

tude and phase of the received signal:

1. The standard deviation of the absolute value of the normalised-centred instanta-

neous amplitude of the signal [13], [12], [18], [32], [41].
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where acn(i) = a(i)/ma � 1, and ma is the sample mean of a(i). The feature saa is

dimensionless and measures the amount of information in the signal’s instanta-

neous amplitude.

2. The standard deviation of the centred non-linear component of the absolute in-

stantaneous phase (in radians) [13], [12], [18], [32], [41].
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where fNL(i) is the value of the non-linear component of the instantaneous phase

at time instant t = i/ fs, C is the number of samples in fNL(i), and at is the

threshold. The feature measures the variance in the absolute instantaneous phase

in modulations with information in their phase. Modulations with order M  2

does not have information in their absolute instantaneous phase because there

are only two states, and therefore their values will be the same.

3. The standard deviation of the non-linear component of the direct instantaneous

phase [13], [12], [18], [32], [41].
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This feature is similar to sap, in the sense that sdp measures the variance in the ab-

solute instantaneous phase which provides the ability to distinguish BPSK from

other modulations.

4. The maximum value of the power spectal density for the normalised centre in-

stantaneous amplitude [13], [12], [18], [32], [41].

gmax =
max|DFT(acn)|2

N
, (3.4)

where Discrete Fourier Transform (DFT) is the discrete Fourier transform, N is

the number of samples, acn(i) is the value of the normalised-centred instanta-

neous amplitude defined as

acn(i) = an(i)� 1; an(i) =
a(i)
µa

, (3.5)

where µa is the mean of the instantaneous amplitude

µa =
1
N

N

Â
n=1

a(i). (3.6)

The normalisation of the signal amplitude is to compensate the unknown channel

conditions. The feature would generally be classified under the transformation

domain feature group, however, it makes use of the instantaneous amplitude.

This feature measures the variance in the signal's instantaneous amplitude. For

modulations where information is conveyed in the amplitude, this value should

be non-zero. For modulations with constant amplitude, this value should be zero.

5. Another unique feature proposed is the signal power key denoted by b [27]. This

feature was used to discriminate between signals with complex and real signal

components.

b =

R •
• r

2
Q
(t)dt

R •
• r2

I
(t)dt

, (3.7)
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where rQ(t) and rI(t) are the in-phase quadrature components respectively. Equa-

tion (3.7) can be rewritten for the discrete case as,

b =
ÂN

n=0 rQ[n]2

ÂN

n=0 rI [n]2
, (3.8)

where rQ[n] and rI [n] are the quadrature and in-phase components of the signal

respectively [27].

Instantaneous features are easy to extract [18], but they are sensitive to noise and have

estimation errors. These features are often used with pattern recognition techniques

to improve classification rates at low SNR. These features are also combined with

statistical and transformation based features.

3.4.2 Transformation Based Features

There are mostly two transformation based approaches followed in literature: Fourier

transform based or Wavelet transform based features.

1. gmax is an example of the DFT based feature. This feature is used to discriminate

between both analog and digital amplitude modulations. gmax is also employed

with various ANNs and SVMs [18].

2. The maximum value of DFT magnitude of the k
th power of the analytic form of

the received signal,

Gk =
max|DFT(a(i)k)|2

N
, (3.9)

with k = 2, and k = 4 is used to classification of PSK signals. This feature is

robust against both carrier frequency offset and time offset.

3. The signal spectrogram shows the spectral density variation with time. Two fea-

tures have been extracted from the spectrogram: moments-like features and prin-

ciple component analysis (PCA) for classification of PSK/QAM, (2, 4)-FSK, ASK
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and OFDM. Spectrogram feature classification has shown to be robust against

carrier frequency offset [18].

4. Wavelet transform is another technique used for feature extraction. The features

extracted from wavelet transforms contain time and frequency domain informa-

tion about the signal. Wavelet transform has the advantage of being able to re-

duce the effect of noise [18]. Using continuous wavelet transform (CWT) features

require more intensive pre and post-processing steps to extract features, such as

median filtering to remove any outliers. The mean, variance, and kurtosis of the

coefficient are then used as features. Digital wavelet transform (DWT) divides

the signal into different decompositions before extracting features.

3.4.3 Statistical Features

Higher-order statistical features are found throughout literature, especially when mod-

elling an AMC system in a fading channel. Higher-order statistics are divided into

higher-order moments and higher-order cumulants. These features have three advan-

tages [12], [18]:

1. suppression of the effect of noise,

2. robustness against phase rotation,

3. reflects the higher-order statistical characteristics of the signal.

A signal’s amplitude and phase distribution can be characterised by its respective PDF.

Without knowing beforehand the type of distribution, using order-statistics help to

characterise the amplitude and phase distributions. When the signal shows Gaus-

sian characteristics, it can be fully described using the first and second order moments

(mean and variance). A non-Gaussian signal needs higher-order statistics to charac-

terise it fully.

The first feature is mean of the received signal components, also know as the first order
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moment, denoted as

µ(x) =
1
N

N�1

Â
i=0

xi (3.10)

where N is the total number of samples and xi is the sample value at i. The second

feature is the variance of the received signal components, which is the second order

moment.

s2(x) =
1

N � 1

N�1

Â
i=0

(xi � µ)2 (3.11)

The third feature is the called the skewness, which is the third order moment, and

expressed mathematically as

s(x) =
1
s3

ÂN�1
i=0 (xi � µ)3

N
. (3.12)

The skewness gives a measure of asymmetry of the data around the sample mean. A

skewness < 0 is an indication that the data is spread out more to the left of the mean,

and a skewness > 0 indicates that the data is spread out more to the right. For a normal

distribution, with perfect symmetry, the skewness is zero.

The fourth feature is the kurtosis or the fourth-order moment of the received signal’s

components,

k(x) =
1
s4

ÂN�1
i=0 (xi � µ)4

N
. (3.13)

The kurtosis is a measure of how outlier-prone a distribution is. A normal distribution

has a kurtosis of 3. Some algorithms calculate the excess kurtosis. Kurtosis measures

the ”fatness” of the tails of the distribution. Positive excess kurtosis means that the

distribution has fatter tails than a normal distribution. Fatter tails mean there is a

higher normal probability of significant positive and negative returns realisations. A

kurtosis of +3 indicates the absence of kurtosis. Some algorithms adjust the result to

zero (kurtosis minus 3), and then any reading other than zero is referred to as excess

kurtosis [45].

The fifth feature extracted is the higher order-moment

sm(x) =
1
N

N�1

Â
i=0

(xi � µ)m (3.14)

where m is the moment order.
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Moments

Higher-order modulations have higher moment values, which makes then useful for

classifying different order PSK signals for example. Calculating the kth order moment

of the signal’s phase fk(n) [12] is defined as

µk(r) =
1
N

N

Â
n=1

fk(n). (3.15)

Higher-order moments of a complex valued signal r = r[1], r[2], ..., r[N] is defined as

µxy(r) =
1
N

N

Â
n=1

r
x[n]r⇤y[n], (3.16)

where x + y = k and r
⇤[n] is the complex conjugate of r[n]. Equation (3.16) is also

written as

Mpq = E[rp�q(r⇤)q], (3.17)

where p is the moment order and r
⇤ is the complex conjugate of r, and r = a+ jb with a

zero-mean discrete signal sequence, Mpq is the moment of a complex random variable,

and E is the expected value, or the long run average. Equation (3.16) is also know as

the joint moment-to-cumulant generating function. Moments are used to describe the

PDF for a distribution [17]. A Gaussian PDF can be completely characterised by its

first two moments (mean and variance). When signals are non-Gaussian, higher-order

statistics (order greater than two) are needed to define their PDF, which are then able

to reveal other information about the distribution.

Normally, a random variable’s distribution is not known, but the PDF may be charac-

terised by its moments. Not all distributions have a finite set of moments of all orders.

In [17] is mentioned that, even when moments exist for all orders, they do not neces-

sarily determine the PDF completely.
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Cumulants

Another useful feature is the cumulant of a random variable. The advantage of cumu-

lants over moments is its benefit to recognise Gaussian and non-gaussian signals [17].

When signals are non-gaussian, the first two moments do not define their PDF, and

therefore higher-order statistics (order higher than two) can reveal other information

about the signal that second-order statistics cannot. Ideally, the entire PDF is needed

to characterise a non-Gaussian signal.

According to [17], the cumulative distribution function (CDF) of a random variable x,

is denoted by F(x). The central moment about the mean of order v of x is

µv =
Z •

�•
(x � m)v

dF, (3.18)

where v = 1, 2, 3, 4, ... and m is the mean of x. In the following it is assumed that distri-

butions are zero-mean. One can introduce the characteristic function for real values of

t,

f(t) =
Z •

�•
exp(jtx)dF =

•

Â
v=0

µv(jt)v/v!, 8R 2 t (3.19)

where j =
p
�1, exp(x) is the exponential function, and µv is the moment of order v

about the origin. The coefficients of (jt)v/v! is the power series Taylor expansion of

the characteristic function f(t), which is the moments of a random variable. Equation

(3.19) is one of many other descriptive constants for a distribution [17]. Moments are

not always capable to completely determine a distribution, even when the moment

of all orders exist. Cumulants make up another set of constants used to describe a

distribution. In [17] cumulants are expressed as,

f(t) =
Z •

�•
exp(jtx)dF = exp

(
•

Â
v=1

Cv(jt)v/v!

)
(3.20)

where Cv is the cumulants of x. Cv is the coefficients of (jt)v/v! in the power series Tay-
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lor expansion of the natural logarithm of the characteristic function f(t), or ln(f(t)).

According to [17], cumulants (except for C1) are invariant under the shift of the ori-

gin. This property is not shared by moments. It is not possible to estimate cumulants

through summation or integrative processes. Cumulants must be derived from the

characteristic function or the moments.

The cumulants of a distribution are expressed in the general form as

Cum[s1, ..., sn] = Â
8v

(�1)q�1!E

(

’
j2v1

sj

)
..!E

8
<

:’
j2vq

sj

9
=

; (3.21)

According to [26], and from equation (3.17) and (3.20) the fourth-order cumulants of a

received signal y(n) can be expressed in one of three possible ways,

C40 = cum(y(n), y(n), y(n), y(n))

= M40 � 3M
2
20

C41 = cum(y(n), y(n), y(n), y(n)⇤)

= M40 � 3M20M21

C42 = cum(y(n), y(n), y(n)⇤, y(n)⇤)

= M42 � |M20|2 � 2M
2
21

(3.22)

In [42], [44], [46], [26], [19] cumulants are used as features. Cumulants have also been

used to successfully classify modulations in fading channels [37], [36], [38], [34].

3.4.4 Constellation Shape and Zero-crossing Features

Throughout the related work, studies which motivates using constellation shape and

zero-crossing features are minimal [13], [18]. However, this section will have a quick

discussion on these two feature types.

Constellation shape features make use of Euclidean distances between the received

signal points and comparing them to a reference constellation. Zero-crossing consists
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of counting the number of zero-crossings of the signal symbols. For PSK modulations

the zero-crossing intervals is constant, but it changes for FSK modulations.

3.5 Feature Selection

Section 3.3 and 3.4 introduced many features which have been studied in regards to

FB classification. From Section 3.4 it is clear that following a combined instantaneous

time-domain feature extraction and statistical feature extraction approach would aid

in answering the research question.

Instantaneous time-domain features are easy to extract, combined with the compu-

tational efficiency of calculating higher-order statistical properties from the instanta-

neous amplitude and phase of a signal makes for efficient feature selection. From Sec-

tion 3.3 it is clear that these features are able to distinguish digital modulations (M-PSK

and M-QAM) from each other.

Transformation-based features are more computationally intensive (Fourier and wavelets

transform) compared to statistical parameters. FSK modulations are not included in

the modulation set established in Section 3.6. Extracting frequency domain informa-

tion from a signal with information encoded in the phase and amplitude is unneces-

sary.

Extracting the first up to the fourth-order moment of the instantaneous amplitude and

phase, the fourth-order cumulant, the high-order moment (moment greater that 10),

and the signal power key will be investigated to determine an appropriate feature set

for classifying M-PSK and M-QAM modulations in an AWGN channel and multipath

fading channel.
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3.6 Modulation Selection

In the South-African context most of the digital wireless technologies are implemented

in the UHF frequency band. In Chapter 1 Table 1.1 showed that the UHF band range

from 300 MHz - 1 GHz, which can also include technologies in the L- and S-band (1

GHz - 4 GHz).

The technologies found in these bands range from digital television (DVB-T), cellular

(GSM, EDGE, UMTS and LTE), navigation (GPS, GLONASS, TETRA), traffic control,

wireless LAN, Bluetooth, and satellite broadcasting as mentioned in ICASA National

Frequency Plan (NFP) [5]. The mostly used modulations for these technologies include

M-PSK and M-QAM modulations.

According to [47] the DVB-T standard for digital television makes use of QPSK, 16-

QAM and 64-QAM, while DVB-T2 includes 256-QAM for the sub-carrier modulations

in the OFDM signal.

According to 3GPP TS 45.005 [48], GSM and EDGE use a Gaussian Minimum Shift

Keying (GMSK) and 8-PSK modulation respectively. LTE and LTE-A make use of link

adaptation technology, which implements higher-order modulations up to 64-QAM.

[49]. GPS, GLONASS and TETRA signals make use of modulation schemes BPSK, and

QPSK [50]. Based on the details mentioned above, the proposed classifier will include

(2, 4, 8)-PSK and (16, 32, 64)-QAM.

The modulation class for the proposed classifier will include M-PSK and M-QAM. The

modulation order is selected based on the modulation orders used for modulating the

digital signal in each of the technologies. Classifying (2, 4, 8)-PSK and (16, 32, 64)-QAM

would include most of the technologies found in the UHF band.
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3.7 Classification Algorithms

A CR is defined in [51] to be an intelligent wireless communication system that is aware

of its environment and uses a methodology to understand-by-building to learn from

the environment and to adapt to statistical variations in the input stimuli.

According to [51], there are three conditions for intelligence:

1. perception (the ability to sense the surrounding environment and internal states

to acquire information),

2. learning (the ability to transform information to knowledge through classifica-

tion and generalisation of hypotheses),

3. and reasoning (the ability to achieve goals through using the knowledge).

Learning is at the core of any CR, to gather knowledge from observed data. The learn-

ing outcomes are used to update the sensing and channel access policies in DSA appli-

cations. According to [51], three characteristics need to be considered when an efficient

learning algorithm for CR is designed:

1. learning in partially observable environments,

2. multi-agent learning in distributed CR networks,

3. and autonomous learning in unknown RF environments.

Any CR that makes use of these characteristics will be able to work effectively in any

RF environment. There are two learning paradigms when it comes to ML: supervised

and unsupervised learning [51]. Unsupervised learning is suitable for alien RF envi-

ronments. Autonomous unsupervised learning explores the environment and makes

use of self-adapting actions without any prior information about the radio environ-

ment.
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Supervised learning makes use of available information, such as signal waveforms

characteristics that are known to the CR, and training algorithms may help the CR to

detect signals with those characteristics better.

Different learning algorithms are used for different CR problems. Two main CR prob-

lems identified include [51]: decision-making and classification. Decision-making prob-

lems deal with spectrum sensing policy, power control or adaptive modulation, while

classification deals with spectrum sensing. AMC forms part of spectrum sensing and

adaptive modulation applications.

3.7.1 Artificial Neural Networks

The classification algorithms fall into the categories of supervised and unsupervised

learning. Supervised algorithms require training with labeled data. ANN and SVM al-

gorithms fall into the category of supervised learning [51]. ANN is based on empirical

risk minimisation and require prior knowledge of the observed process distribution,

as opposed to structural models. ANN are a computational approach which tries to

mimic the way a biological brain solves problems. Neural networks are characterised

by its pattern of connections between neurons [52].

ANN is an entirely different approach compared to conventional methods. A neural

network is a massively parallel distributed processor made up of smaller simple pro-

cessing units, which has a natural ability to store experiential knowledge and making

that information available for use [51].

An ANN mimics the brain in two ways: knowledge is acquired through learning,

and adjusting inter-neuron connection strengths (synaptic weights) to store the ac-

quired knowledge. ANNs have the beneficial property of being able to adapt to minor

changes in surroundings and to provide information about the confidence of the deci-

sion made [51]. However, they do have the disadvantage of requiring training under

many different environmental conditions, and their training outcomes may depend

crucially on the choice of initial parameters.
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3.7.2 Support Vector Machine

A SVM is based on a structural risk minimisation algorithm and has shown to have

superior performance, particularly for small training samples. SVM avoid the prob-

lem of overfitting [51]. SVM has been used for many pattern recognition and object

classification tasks [51].

A SVM is characterised by the absence of local minima, the sparseness of the solution

and the capacity control obtained by acting on the margin or other dimension inde-

pendent quantities. According to [51], SVM based techniques have achieved superior

performances in a wide variety of real-world problems compared to ANN, due to their

generalisation ability and their robustness against noise and outliers.

A SVM maps input vectors into a higher-dimensional feature space. This higher-

dimensional feature space ensures that the features are linearly separable. This process

of mapping the input vector is non-linear, which is achieved by kernel functions.

Classification in a SVM is achieved through a hyperplane which allows for the largest

generalisation in the higher-dimensional space to be found, also known as a maximal

margin classifier [51]. The margin is defined as the distance from a separating hy-

perplane to the closest data points. The corresponding closest data points are named

support vectors, and the hyperplane allowing for maximum margin is the optimal sep-

arating hyperplane.

3.7.3 Performance Metrics

A classifier is evaluated based on performance metrics computed after the model-

training stage. There is no general consensus regarding which performance metrics

to use for evaluating a classifier’s performance [53]. It is not uncommon that a clas-

sifier performs well when a certain performance metric is evaluated while the same

classifier performs poorly compared to another metric. It depends on what the user

needs to know from the model.
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For every sample in a testing process, the sample has two labels: the real label and the

predicted label. The real label is an indication of the class the testing samples belongs

to, and the predicated label is the output of the predictor [54]. A classifier should be

evaluated with respect to a set of performance metrics that can capture the unique

aspect of the classifier performance space. Most performance metrics are based on the

four values of the confusion matrix: true positives (TP), number of true negatives (TN),

number of false positives (FP), and number of false negatives (FN) [53].

According to these definitions, if both the real and predicted labels are positive, the

sample is a TP. If both the real and predicted label is negative, the sample is TN. If the

real label is positive while the predicated label is negative, the sample is FN. So finally

if the real label is negative while the predicted label is positive, the sample is FP. The

matrix which contains TP, TN, FP and FN can be called a confusion matrix.

The following relationships exist [54]

TP + FP = PP, (3.23)

TP + FN = RP, (3.24)

TN + FN = PN, (3.25)

TN + FP = RN, (3.26)

where PP is the predictive positives, RP the real positives, PN the predictive negatives

and RN the real negatives. Because of these relationships, the performance measures

are not always represented by these commonly used four counts: TP, TN, FP and FN.

According to [54], three basic performance measures, which are the sensitivity (Sen),

specificity (Spe) and accuracy (Acc) can be defined as:

Sen =
TP

TP + FN
=

TP

RP
, (3.27)

where sensitivity is the frequency of correctly predicting positive samples among all

real positive samples.
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Spe =
TN

TN + FP
=

TN

RN
, (3.28)

where specificity measures the ability of a predictor in identifying negative samples.

Acc =
TN + TP

TN + FN + TP + FP
=

1
n
(TN + TP) . (3.29)

where accuracy measures the ability of a predictor in correctly identifying all the

samples, no matter whether it is positive or negative, and n is the number of samples.

Another performance measure includes the receiver operating characteristic (ROC)

curve, which describes the relationship between sensitivity and false positive rate (FPR).

The FPR can be defined as

FPR = 1 � Spe =
FP

FP + TN
. (3.30)

From the plotted ROC curve, the area under curve (AUC) is used to measure the per-

formance of the predictor. The AUC of a ROC curve equals to the probability a ran-

domly selected positive sample gets higher scores than a randomly selected negative

sample. However, the shape of an ROC curve may be misleading [54] when the dataset

is highly imbalanced.

Finally, the accuracy reflects the average rate of correctly predicted labels among labels

that are either the real label or prediction results.

3.8 General System Model

From Section 3.3 and 3.4 it is clear that the authors followed the same general system

model. Choosing initial parameters, transmitting the signal through a communication

channel, processing the received signal, extracting the feature set, and finally choosing

the classification algorithm which best suits their feature set. Figure 3.2 shows the
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general system model. The system model describes the flow of data from initialising

starting parameters to finally giving the modulation type as output.

Each block is numbered in a hierarchy of levels, with level 1 denoted by {x.0}, level

2 {x.x}, level 3 {x.x.x} and so forth. References to the logical blocks in the text are

indicated with curly brackets.
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Figure 3.2: General system model

From block {1.0} initial parameters are set. These parameters include the selection

of modulation classes, modulation order, signal length, number of frames to view the

signal and selecting the channel model(s). Selecting the channel model depends on

whether an AWGN channel or a fading channel classification problem are considered.

Another essential block is the feature extraction block {8.0}. Many features have been

proposed and implemented. Feature extraction tries to describe the modulation classes
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employing a minimum number of features or attributes [30] that are effective in dis-

criminating amongst modulation classes. Therefore, selecting the minimum number

of features are key.

The classification block {10.0} consist out of selecting the classification algorithm. In

Section 3.7 a brief overview of the three mostly adopted algorithms are mentioned.

During the training stage, selecting the training and testing set size is essential to avoid

over-fitting of the data points [27].

3.9 System Model Breakdown

In Figure 3.2 a flow diagram for the general system model are shown. From the liter-

ature is established that following a combined instantaneous time-domain and statis-

tical feature FB classification approach would aid in solving the research problem of

finding a simple approach towards classifying digital modulations.

Table 3.2: Level 2 logical flow: Initialize parameters
Block Description Values
{1.1} Set modulation class M-PSK, M-QAM
{1.2} Set modulation order (2, 4, 8)-PSK, (16, 32, 64)-QAM
{1.3} Set message length See Chapter 5
{1.4} Set frame length See Chapter 5
{1.5} Set channel model AWGN, Fading channel

A message signal is generated (Figure 3.3), which is modulated before transmission.

Each message signal is randomly generated to ensure that the classifier is message

independent. For a given modulation technique, two ways to simulate the modula-

tion technique exist: baseband and passband modulation. Baseband modulation, also

known as the lowpass equivalent, requires less computation. Baseband modulation

produces a complex envelope of the signal by excluding the carrier frequency compo-

nent of the signal. Passband modulation tends to be more computationally intensive

because the carrier signal typically needs to be sampled at a higher rate. Baseband

modulation produces the complex envelope y[n] of the message signal x[n], and y[n] is
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Figure 3.3: Logical flow: Generate message signal
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Figure 3.4: Logical flow: Modulate message signal

a complex-valued signal that is related to the output of a passband modulator,

Y1(t)cos(2p fct + q)� Y2(t)sin(2p fct + q), (3.31)

where fc is the carrier frequency, q is the carrier signal’s initial phase. The baseband

signal is equal to the real part of

[(Y1(t) + jY2(t))e
jq]exp(j2p fct) (3.32)

which is

[(Y1(t) + jY2(t))e
jq], (3.33)

and the complex vector y[n] is a sampling vector of the complex signal.

Figure 3.4 shows the logical flow for constructing the modulation block of the sys-

tem model. Firstly the message signal is modulated using M-PSK, after that M-QAM
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modulated signal is generated. The modulated signal is referred to as the transmitted

signal. The transmitted signal is sent through the communication channel that corrupts

the transmitted signal to produce the noisy received signal.

Communication channel modelling consists of two parts: an AWGN model and a fad-

ing channel model. The AWGN channel is the mostly adopted channel model used

to introduce random noise into the system. To make the classifier more robust, espe-

cially when using recorded I/Q data, a fading channel model will also be included in

the analysis. Chapter 6 will expand on fading channel models and implementation

(Figure 3.5 and 3.6).
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Figure 3.5: Logical flow: Communication channel modelling

Instantaneous time-domain features combined with a Higher-order Statistics (HOS)

based approach are followed. The instantaneous amplitude and phase are extracted

from the received signal symbols, after which the HOS features are extracted. Chapter

5 will elaborate on the feature selection, extraction and finalising the feature set.

Figure 3.6 shows the process followed to set up the COST 207 channel model for sim-

ulating a multipath channel. The multipath channel requires a Doppler object, a path

gain and path delay vector, followed by a Rayleigh channel object. Figure 3.7 shows
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Figure 3.7: Logical flow: Prepare for feature extraction

the process of converting from complex signal samples to the instantaneous amplitude

and phase of the received signal components.
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3.10 System Implementation

The system model is implemented in the MATLAB simulation package. The functional

blocks that deal with decision making, which are self-explanatory, are not included in

the implementation discussion.

3.10.1 Generating The Message Signal {2.0}

The message signal is generated using a random-number generator. The random-

number generator draws a vector of size N from a uniformly distributed pseudoran-

dom set of integers with a predefined seed value. The pseudorandom number genera-

tion is based on the Mersenne Twister algorithm [55]. The message signal is generated

for a number of frames. Each frame is different from one another to ensure that the

classifier is message independent, but that the experiment is repeatable.

The message vector is stored in an m ⇥ n size matrix, where m = N and n is the frame-

size. Each column in the message vector is modulated, and transmitted on a frame-by-

frame base. The random integers are between 0 and M � 1, where M represents the M-

ary number for the modulation order. Each integer value corresponds to a bit sequence

which is a direct signal space representation of the signal symbols being transmitted.

3.10.2 Baseband Modulation {3.0}

The message vector is passed to the modulator block. The modulator block takes each

frame from the message signal and applies either the PSK or QAM modulation to the

message signal. A complex-valued vector (of size m⇥ n) is output. The complex vector

in the form of a + jb corresponds to the in-phase and quadrature component of the

signal, which is mapped to the constellation diagram. Equation (3.33) mentioned in

Section 3.9 for block {3.0} is used.
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3.10.3 Communication Channel {5.1} and {5.2}

The communication block consists of two channel models: an AWGN channel and the

fading channel model. The AWGN channel is implemented by adding white Gaus-

sian noise to the signal vector. The added noise is drawn from a zero-mean Gaussian

(normal) distribution with variance of s2.

The variance of the added noise can also be changed by setting an appropriate SNR

for the signal. The variance of the noise signal can also be derived from the SNR value

through

s2 = 10�SNR/10 (3.34)

Different fading channel models have been proposed. ITU-R M.1225 [23] proposed

three tapped-delay line parameters for different wireless environments: indoor office

test environment, outdoor to indoor and pedestrian test environment and a vehicular

test environment. For each terrestrial test environment, a channel impulse response

model based on a tapped-delay line model is given.

The model is characterised by the number of taps, time delay relative to the first tap,

average power relative to the strongest tap, and the Doppler spectrum for each tap.

The channels are modelled more accurately through variable delay spreads, therefore

up to two multipath channels are usually defined. Channels A is a low delay spread

case, and channel B is the median delay spread. The channel conditions are constant

for a certain amount of time, and thereafter changes from channel A parameters to

channel B parameters.

Table 3.3 shows the outdoor to indoor and pedestrian test environment as an example

to illustrate how the channel is modelled.

Another well known and widely adopted fading channel model is the COST 207 chan-

nel model for multipath fading channels published by the Commission of the Euro-

pean Communities [24]. The COST 207 project channel model is used for GSM and

DVB-T [25] standards. Radio propagation in the mobile radio environment is described
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Table 3.3: Outdoor to indoor and pedestrain tapped-delay-line parameters

Tap
Channel A Channel B

DopplerRelative delay Average power Relative delay Average power
(ns) (dB) (ns) (dB)

1 0 0 0 0 Classic
2 110 -9.7 200 -0.9 Classic
3 190 -19.2 800 -4.9 Classic
4 410 -22.8 1200 -8.0 Classic
5 - - 2300 -7.8 Classic
6 - - 3700 -23.9 Classic

by highly dispersive multipath caused by reflections and scattering. The path between

the transmitter and receiver is considered to consist of large reflections and scattering

some distance to the receiver. This gives rise to a number of electromagnetic waves

that arrive at the receiver with random amplitudes at different delays.

Four Doppler spectrum types are used for modelling the channels. Some of which

include the Jakes or the classic Doppler spectrum, Gaussian 1 for delays in the range

of 500 ns to 2 µs, Gaussian 2 for delays greater than 2 µs, and the Rice which is the sum

of a classical Doppler spectrum and one direct LOS path to the receiver.

The COST 207 project [24] proposed a typical fading case for

1. rural (non-hilly) area (RA),

2. urban (non-hilly) area (TU) with a 12 and 6-tap model,

3. bad case for hilly urban area (BU) with a 12 and 6-tap model,

4. hilly terrain (HT) with a 12 and 6-tap model.

Table 3.4 shows an example of the 6-tap TU delay profile.

For practical simulation, the propagation models are implemented in terms of a dis-

crete number of taps, each determined by their respective time delays and powers,

and the Rayleigh distributed amplitudes of each tap, which are varied according to a

Doppler spectrum [48].
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Table 3.4: 6-tap TU area tapped-delay profile
Tap Delay Power Doppler

(µs) (dB)
1 0 -3 Classic
2 0.2 0 Classic
3 0.6 -2 Gauss1
4 1.6 -6 Gauss1
5 2.4 -8 Gauss2
6 5.0 -10 Gauss2

When evaluating the performance of the modulation classifier in a fading channel, the

maximum Doppler shift plays an important role. The maximum Doppler shift is an

indication of how static or dynamic a channel is (whether the channel is slow or fast

fading in nature). The maximum Doppler shift is a function of the carrier frequency of

the signal and the speed at which either the transmitter, receiver or both move relative

to each other.

The GSM standard prefers to specify Doppler shifts concerning the speed of the mobile:

fd =
v fc

c
, (3.35)

where v is the speed of the mobile, and fc is the carrier frequency of the transmission,

and c is the speed of light. For a pedestrian walking might experience a maximum

Doppler shift of about 4 Hz at a frequency of 900 MHz. A maximum Doppler shift

of 0 corresponds to a static channel that comes from a Rayleigh or Rician distribution.

Equation (3.35) can be expanded to include an angular component (direction of move-

ment of the receiver):

fd =
v fc

c
cos(f), (3.36)

where f is the angle between the direction of motion and line of sight to the transmitter.

For simulation purposes equation (3.35) will be implemented when determining the

maximum Doppler shift. The angle of movement will be neglected.
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3.10.4 Extracting Instantaneous Time-Domain Features {8.0}

The output signal, received from the communication channel block, is a complex vector

of the same size as the message signals. Each received value in the form of a + jb. The

complex values are separated into their respective real and imaginary components,

which are then converted into a magnitude and phase component.

The magnitude component corresponds to the signals instantaneous amplitude and

the phase to the instantaneous phase of the signal. After separating the received signal

into these components, HOS are extracted from the instantaneous amplitude and phase

to use as features.

The theoretical noise-free cumulant values for some M-PSK and M-QAM modulation

are presented in Table 3.5. In [12] and [19] the cumulant values for (2, 4, 8)-PSK and (4,

16, 64)-QAM are shown. These theoretical values help to verify the implementation of

equation (3.21).

Table 3.5: Theoretical second and fourth-order cumulant values
C20 C21 C40 C41 C42

BPSK 1.0 1.0 -2.0 -2.0 -2.0
QPSK 0.0 1.0 1.0 0.0 -1.0
8-PSK 0.0 1.0 0.0 0.0 -1.0
4-QAM 0.0 1.0 1.0 0.0 -1.0
16-QAM 0.0 1.0 -0.68 0.0 -0.68
64-QAM 0.0 1.0 -0.6191 0.0 -0.6191

3.10.5 Classification Algorithm {11.0}

In Section 3.7 a quick overview of some of the more popular classification algorithms

used in AMC are presented. Each of these algorithms have their respective advantages

and disadvantages. AMC forms part of spectrum sensing and therefore part of a clas-

sification problem in CR. The classification algorithm for the disseration will follow a

supervised classification approach. For the reasons mentioned in Section 3.7, a linear

SVM is adopted in this work [39].
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In [12] Zhu et al. stated that a SVM only needs the training data when establishing

the separating hyperplane. The training signal is not involved in any further calcula-

tion after training. Therefore the testing stage is relatively inexpensive with regards to

computations.

The SVM is verified and tested using a five-fold cross-validation approach. This pro-

cess contains five steps [54]:

• The dataset is obtained.

• The whole dataset is randomly partitioned into five parts.

• Collectively five training and testing rounds are carried out. 20% of the dataset is

used for testing, while the remaining 80% are used for training.

• The testing results are collected from the five rounds of training and testing.

• The testing results are pooled together to estimate the predictive performances.

3.11 Conclusion

In this chapter, AMC and FB classification were discussed in detail. The selection of

appropriate features were presented, together with a discussion on different feature

categories. Related work regarding FB classification was investigated to determine a

good approach to solving the research problem. The reason for following a combined

instantaneous time-domain and statistical feature extraction process was presented.

The selection of using (2, 4, 8)-PSK and (16, 32, 64)-QAM modulation classes were

also motivated. A quick discussion on machine learning algorithms for CR was pre-

sented with a section on supervised and unsupervised learning algorithms. A general

system model representing FB classification was described together with a guide to

implementing the system model. The next chapter proceeds with the verification and

validation of the proposed system model.
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Verification and Validation

In this chapter, the verification and validation of the proposed AMC system model are discussed.

The methodology followed to verify the integral elements of the system model is discussed. The

overall operational validation of the system model is also discussed.

4.1 Verification Methodology

According to [56], model verification is defined as ensuring that the computer pro-

gram of the system model, described in Chapter 3, and its implementation are correct.

Computerised model verification ensures that the computer programming and imple-

mentation of the conceptual model are correct. Two significant factors which influence

verification is whether a simulation language (MATLAB) or a higher level program-

ming language (C, C++) is used [56]. According to [56], using a special-purpose simu-

lation language will result in fewer errors than a general purpose simulation language,

and using a general purpose simulation language will result in fewer errors than a

general purpose higher level programming language.
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In [56] Sargent describes the methodology and techniques used for verification and

validation of a simulation model. In [56] two basic approaches for testing simulation

software are proposed: a static testing and a dynamic testing approach. Static testing

involves:

• structured walkthroughs,

• correctness proofs,

• and examining the structural properties of the program.

The dynamic testing approach involves:

• traces,

• investigation of the input-output relations,

• internal consistency checks,

• and reprogramming critical components to determine if the same results are ob-

tained.

The methodology and techniques described for verification and validation are also

advocated by [57].

4.2 System Model Verification

4.2.1 General Verification Methodology

A combination of the static and dynamic testing approaches was followed. The gen-

eral guidelines for good programming practice have been observed [58]. Chapter 3

described the logical flow for each functional block in detail. The functional blocks

were verified per block. Each functional block takes a series of input parameters, and

each input parameter is chosen to verify the flow through each functional block.
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The output from each functional block is compared to the respective theoretical deter-

mined results. After verifying that all the essential functional blocks are implemented

correctly, the output of a full system implementation is validated based on a black-box

approach.

A more detailed verification procedure for blocks {2.x}, {3.x}, {5.x}, and {8.0} are

presented in section 4.2.2.

4.2.2 Verification of Blocks 2.x, 3.x, 5.x, and 8.0

The verification for blocks {2.0}, {3.0}, {5.1}, {5.2}, and {8.0} are now described in

more detail.

Block {2.1} - Message signal generation

The procedure described for generating the message signal in Chapter 3 is followed.

The random integers generated must be between 0 and M � 1, where M represents the

modulation order. Each integer corresponds to a bit sequence which maps directly to

the transmitted signal symbols. The integers are drawn from independent and iden-

tically distributed (i.i.d.) subset with an equal probability of being drawn. Through

visual inspection, the message signal is verified. The rand function within MATLAB is

used for the generation, which is verified by MATLAB’s internal verification process.

Block {3.x} - Modulation of the message signal

In Chapter 2 different digital modulations are discussed. Each modulation is expressed

regarding its basis function representation in the vector space, also known as the con-

stellation diagram. Each modulation has a unique constellation diagram representa-

tion. The implementation for modulating the message signals is verified through vi-

sual inspection. By taking the modulated output from the message signal block {2.1},
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and plotting the constellation diagram, the generated constellation diagram is com-

pared to the expected constellation diagram for that specific modulation.
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Figure 4.1: Constellation diagram for a QPSK and 16-QAM signal.

In Chapter 3, two ways are mentioned to simulated the modulation techniques: base-

band and passband modulation. A baseband modulation implementation is followed.

Figure 2.7 and 2.8 in Chapter 2 show the expected constellation diagram for a QPSK

and 16-QAM modulated signal. Figure 4.1(a) and (b) show the implemented modula-

tion block’s output for a QPSK and 16-QAM modulated signal. Figure 4.1(a) and (b)

show the same output as that presented in Figure 2.7 and 2.8.

Block {5.x} Implementation of the communication channels

Block {5.0} is divided into two individual functional blocks: {5.1} and {5.2}. Func-

tional block {5.1} is the implementation of an AWGN channel. The AWGN channel is

modelled by a Gaussian distribution with a mean µ and variance s2. The variance is

determined by the SNR. By adding the range of values from the Gaussian distribution

to the transmitted signal will result in the amplitude of the signal being distributed in
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the same manner. So it can be expected that when plotting the histogram of the re-

ceived signal magnitude component (also know as the instantaneous amplitude) will

resemble a Gaussian distribution. Figure 4.2 shows the histogram for the magnitude

component of an 8-PSK signal transmitted through an AWGN channel with a noise

variance of 0.1, which corresponds to an SNR of 10 dB.

Figure 4.2: Histogram of a received 8-PSK signal’s instantaneous amplitude in AWGN.

Functional block {5.2} is the implementation of a multipath fading channel. The chan-

nel model is constructed according to Table 3.4, with the relative delay and power

for each path, with their respective Doppler spectrum. A special-purpose simulation

language results in fewer errors, therefore, MATLAB has a built-in function for con-

structing a COST 207 Typical Urban (TU) 6-tap model. The Communication Toolbox

includes a step-wise guide to implementing the COST 207 channel model. The Com-

munication Toolbox’s implementation is compared to the 3GPP standard in [49] to

ensure correct implementation.

Firstly the Doppler spectrum objects relevant to the given COST 207 model are con-

structed. Then a Rayleigh or Rician multipath fading channel object is constructed,

and the properties are initialised accordingly to produce the desired channel model,

such as TU.
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Block {8.0} Feature Extraction

The verification of block {8.0} is done in two steps. Firstly the noise-free normalised

fourth-order cumulant values for different modulation are shown in Table 3.5, which

acts as our reference values, while the output of the functional block will be regarded

as the estimated values.

The results obtained from estimating the noise-free normalised fourth-order cumulants

are summarised in Table 4.1. The predicted results compare well with the ideal fourth-

order cumulants in Table 3.5. From the literature reviewed in Chapter 3, no theoretical

normalised fourth-order cumulant value for 32-QAM could be found. However, in [59]

Mathis provides a way to determine the theoretical normalised fourth-order cumulant

for a 32-QAM digitally modulated signal. According to [59] this is also called the kurto-

sis of the signal calculated in the closed form when sampled at the ideal sampling time

(once per symbol interval). In [59] the theoretical normalised fourth-order cumulant

for a 32-QAM signal is:

k04 = �12
5

.
259M

2 � 64
(31M � 32)2 . (4.1)

When evaluating equation (4.1), the theoretical normalised fourth-order cumulant amounts

to �0.6905. Comparing the estimated results from Table 4.1, we find that the estimated

normalised fourth-order cumulant for a 32-QAM signal has a 0.04% error compared to

the theoretical value.

Table 4.1: % Error between estimated normalised fourth-order cumulants and their
respective theoretical values.

Modulation Estimated Theoretical % Error
BPSK -2.0 -2.0 0%
QPSK -1.0008 -1.0 0.08%
8-PSK -1.0010 -1.0 0.1%
16-QAM -0.6799 -0.68 0.014%
32-QAM -0.6902 -0.6905 0.04%
64-QAM -0.6189 -0.6191 0.032%
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Secondly, the extraction of the third and fourth-order moments are verified. We only

need to verify this for a modulation’s instantaneous amplitude to determine correct

implementation. So for verification purposes, the received signal’s instantaneous am-

plitude is extracted. When the signal is transmitted through an AWGN channel, the

received signal’s instantaneous amplitude will resemble a Gaussian distribution.

For any Gaussian distribution, the skewness (third order moment) has a theoretical

value of zero, and a kurtosis (fourth-order moment) of three. When evaluating the

excess kurtosis the value should be zero. The output from two independent imple-

mentations (Excel and MATLAB) are compared. The output from Excel is regarded

as our reference values, while the output from MATLAB is the estimated values. A

sample size of 5000 is selected.

Excel defines kurtosis mathematically as:

k =

⇢
n(n + 1)

(n � 1)(n � 2)(n � 3) Â
✓

xi � µ

s

◆�4
� 3(n � 1)2

(n � 2)(n � 3)
, (4.2)

where s is the sample standard deviation and µ is the sample average.

MATLAB defines kurtosis mathematically as:

k1 =
1
n

Ân

i=1(xi � µ)4

⇣
1
n

Ân

i=1(xi � x̄)2
⌘2 , (4.3)

and

k0 =
n � 1

(n � 2)(n � 3)
((n + 1)k1 � 3(n � 1)) + 3 (4.4)

Table 4.2: Verification of the skewness and kurtosis for a BPSK signal’s instantaneous
amplitude.

Statistical moment Reference Estimated
Skewness -0.0430 -0.0431
Kurtosis -0.0200 -0.0212

The results obtained from verifying the third and fourth-order moment of the received

signal’s instantaneous amplitude at 30 dB is shown in Table 4.2. For a Gaussian distri-

bution a skewness of zero, and an excess kurtosis of zero is expected. MATLAB and
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Excel have its implementation for calculating the skewness and kurtosis, and the dif-

ference between the reference and estimated values can be ascribed to this. However,

the results obtained compare well, and the skewness and kurtosis are as expected. As

the sample size increase, the kurtosis and skewness will approach zero as expected.

4.3 Validation Methodology

According to [56], model validation is defined as confirming that the computerised

model, within its domain of applicability, presents a satisfactory range of accuracy

consistent with the intended application of the model, and to develop the confidence

in potential users they require to use the model and the information derived from the

model.

In [56] Sargent describes a list of validation techniques and tests commonly used in

model validation. Sargent proposed a method of comparison to other models as a valida-

tion approach. The various results (outputs) of the simulation model being validated

are compared to the results for other valid models. This includes an approach to com-

pare the simulation model to known results from analytical models, and the simulation

model is compared to other simulation models that have been validated.

From [56] a subjective non-observable system validation approach is followed. Non-

observable is defined as not being able to collect data on the operational behaviour of

the problem entity. However, when vector signal generators and analysers are avail-

able, test data can be generated to use for validation. In this chapter, a non-observable

approach is assumed.

A subjective non-observable approach includes exploring model behaviour and com-

paring to other models. Usually, several different experiments are conducted with

different conditions to obtain a high degree of confidence in a simulation model and

the results obtained. For a non-observable system, which is the case, it is not possible

to obtain a high degree of confidence. Therefore the model output behaviours should
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be explored as thoroughly as possible, and comparison should be made to other valid

models. Other validation tests include a face validity test [56]. Individuals knowledge-

able about the system are asked whether the model and its behaviour are reasonable.

Take for example whether the logic in the conceptual model is correct and whether the

model’s input-output relationships are reasonable.

4.3.1 System Model Validation

The validation for the proposed statistical FB AMC system in an AWGN channel is

validated in this section. Most of the related work presented in Chapter 3.3 for an AMC

system in an AWGN channel has been validated. For the purpose of validation, a step

wise combination between following the comparison to other models and face validity is

followed.

From the related work reviewed it is clear that several methods are implemented for

identifying modulation schemes and signal parameters, and the focus on extracting

signal characteristics under different conditions vary. This makes it difficult to compare

the performance of AMC with each other.

A study presented by Kim et al. [60] is used as the reference study for validation. They

presented a deep neural network (DNN)-based AMC technique for classifying BPSK,

QPSK, 8-PSK, 16-QAM and 64-QAM modulated signals. They extracted a total of 21

features from the received signal samples. The feature set is generated by simulation

under both an AWGN channel and Rician fading channel. Table 4.3 summarises the

reference study parameters used for classification.

DNN is a supervised learning approach used for classification purposes. The SVM

used in the proposed classifier is also a supervised learning classifier. Both the DNN

and the SVM fall within the same category. The proposed classifier is set-up using the

following parameters to validate the system model. A set of six features are selected.

Table 4.4 summarises the proposed classifier input parameters for validation purposes.

The output is compared to the reference study.
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Table 4.3: Reference classifier input parameters
Parameter Description
Modulations (2, 4, 8)-PSK,

(16, 64)-QAM
Classifier DNN with 3 hidden layers
Number of samples 200 000
Training set size 25 000 samples
SNR -5:15 dB (5 dB increments)
Fading channel Rician
Rician factor 0.5
Doppler shift 100, 300 Hz
Features b, sdp, sap, saa, sa f , sv, v20

X, X2, gmax, C20, C21, C40,
C41, C42, C63, C80, k, s, PR, PA

Table 4.4: Proposed classifier input parameters
Parameter Description
Modulations (2, 4, 8)-PSK,

(16, 64)-QAM
Classifier Linear SVM
Number of samples 1000 sample per frame
Number of frames 1000 frames per modulation
Training set size 25 000 samples
SNR -5:15 dB (5 dB increments)
Channel AWGN only
Features s2

q , b, C42, k, s, s12

s2
q is the variance of the instantaneous phase of the received signal, b is the signal

power key, C42 is the normalised fourth-order cumulant, k is the kurtosis, s is the skew-

ness, and s12 is the moment-order 12. Table 4.5 shows the verification results from the

reference study compared to the proposed implementation.

From the validation results, the proposed classifier performs overall well compared

to the reference classifier. The reference classifier makes use of a DNN with 21 fea-

tures, while the proposed classifier used a SVM with only five features. Both classifiers

performed well at an SNR of 5 dB and above.

The reference classifier outperforms the proposed classifier for SNR under 5 dB. The

difference in using different machine learning algorithms is acceptable when follow-
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ing a black box approach for validation. Both DNN, which is an extension of ANN

and SVM lies within the same category of supervised learning algorithms for pattern

recognition and classification.

Table 4.5: Overall classification accuracy.
Study -5 dB 0 dB 5 dB 10 dB 15 dB
Reference [60] 99.95 % 99.99% 100% 100% 100%
Proposed 80 % 86.40% 97.60% 100% 100%

4.4 Conclusion

In this chapter the verification and validation methodology followed was presented.

Specific system model blocks were verified and proven to be correctly implemented.

The system validation was confirmed through following a compare to other models ap-

proach. The output produced by the validation is shown to be acceptable. The next

chapter presents an implemented FB automatic modulation classifier in an AWGN

channel.
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Feature-based AMC in an AWGN

Channel

This chapter presents the methodology followed to evaluate and to select the feature set to clas-

sify M-PSK and M-QAM modulated signals in an AWGN channel. Different statistical fea-

tures are extracted from the instantaneous amplitude and phase of the received signal. These

features are then compared to each other to determine which of them have any significance in

classifying the modulations. The cumulants of an i.i.d. set of random values are calculated by

evaluating the moment generating function. Determining the cumulants are based on a long

run average or the expected value parameters, therefore selecting an appropriate sample size

will influence the estimated cumulant values.

5.1 Introduction

Chapter 1 began the discussion on the importance of AMC as part of CR, in enabling

DSA. ITU-R recommended an approach to use a signal’s internal and external char-
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acteristics for classifying digital signals. Chapter 2 continued with the discussion on

the analysis of a signal’s internal characteristics by examining the physical layer of the

communication chain (data elements versus signals elements). The discussion contin-

ued by showing how to map signal elements to a signal space, also known as the vector

space.
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Figure 5.1: QPSK signal at different SNR

Chapter 3 introduced FB classification through an in-depth look at related work on the

topic of FB classification, and different features and classification algorithms proposed

to solve this problem. A general system model was presented from literature, and

a complete system model breakdown is shown. The decision to classify M-PSK and

M-QAM modulated signals were motivated together with a discussion on the different

classification algorithms.

This chapter will focus on extracting the feature set and to evaluate the performance of

the statistical features to determine their ability to distinguish between these modula-

tions in the presence of AWGN.

Figure 5.1(a) and (b) shows the effect of AWGN on a QPSK signal for an SNR of 10
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dB and 20 dB respectively. In an ideal transmission, the signal symbols should be

grouped as closely as possible. More errors are introduced during the demodulation

phase when the decision regions cannot estimate the transmitted symbols from the

received signal symbols during demodulation. Keeping the received symbols between

the appropriate decision regions is important for demodulation, and it enhances the

classification accuracy.

5.2 Determining Sample Size

Cumulants are useful features to help determine a proper sample size. Calculating the

cumulant requires the use of equation (3.17). Equation (3.17) makes use of the long

run average or the expected value of a set. Therefore, with a sample size of adequate

length, the cumulant will converge towards the theoretical values.

Table 5.1 gives a summary of the experimental parameters for determining a suitable

sample size. Four tests were carried out. For each test, the modulations, SNR, and

number of frames were the same. Four different sample sizes were used to estimate the

normalised fourth-order cumulant. Normalisation of the signal symbols are needed to

eliminate the effect of high signal energy. The results obtained from the tests were

recorded in Table 5.2 - 5.5.

Table 5.1: Determining sample size experimental parameters
Parameter Value
Modulations BPSK, QPSK, 8PSK,

16QAM, 32QAM, 64QAM
Number of runs 4
Number of signal symbols 1000, 10e

3, 100e
3, 1e

6 symbols
SNR 0:50 dB in 1 dB increments
Cumulant Normalised C42

Figures 5.2(a) - (d) show the results obtained from calculating the cumulant at the dif-

ferent sample sizes at a range of SNR values. From the plots, the effect of SNR on the

cumulant value is seen clearly. However it may be, at low SNR, the different modula-
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Figure 5.2: Normalised fourth-order cumulant values at different SNR for different
sample sizes

tions can still be distinguished. The estimated cumulant value starts to converge to the

theoretical value from around 20 dB. In Chapter 3.3 Gang et al. [34] also reported that

the longer the data length and the higher the SNR, the closer the cumulants are to the

theoretical value, and thus the better the classification performance. The maximum,

minimum, mean, and variance were recorded for each modulation’s corresponding

normalised fourth-order cumulant from 20 dB onwards.
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Table 5.2: Normalised fourth-order cumulants for n = 1000
Parameter BPSK QPSK 8-PSK 16-QAM 32-QAM 64-QAM
Min -2.0083 -1.0056 -1.0048 -0.6861 -0.6950 -0.6464
Max -0.4837 -0.2609 -0.2581 -0.1721 -0.1821 -0.1662
Mean -1.7839 -0.8906 -0.8901 -0.6071 -0.6189 -0.5735
Variance 0.1556 0.0401 0.0398 0.0180 0.0180 0.0157

Table 5.3: n = 10 000
Parameter BPSK QPSK 8-PSK 16-QAM 32-QAM 64-QAM
Min -1.9999 -1.001 -1.0002 -0.6869 -0.6996 -0.6273
Max -1.9587 -0.9803 -0.9803 -0.6648 -0.6756 -0.6082
Mean -1.9932 -0.9967 -0.9969 -0.6771 -0.6885 -0.6186
Variance 1.1155e-04 2.5500e-05 2.4997e-05 2.6631e-05 2.6474e-05 2.5295e-05

Table 5.4: n = 100 000
Parameter BPSK QPSK 8-PSK 16-QAM 32-QAM 64-QAM
Min -1.9999 -1.0000 -1.0000 -0.6834 -0.6928 -06221
Max -1.9608 -0.9803 -0.9803 -0.6668 -0.6776 -0.6059
Mean -1.9938 -0.9969 -0.9969 -0.6780 0.6877 -0.6168
Variance 1.0088e-04 2.5618e-05 2.5217e-05 1.5313e-05 1.3341e-05 1.2274e-05

Table 5.5: n = 1 000 000
Parameter BPSK QPSK 8-PSK 16-QAM 32-QAM 64-QAM
Min -2.0000 -1.0000 -1.0000 -0.6807 -0.6906 -0.6202
Max -1.9606 -0.9803 -0.9803 -0.6665 -0.6766 -0.6067
Mean -1.9938 -0.9969 -0.9969 -0.6779 -0.6879 -0.6173
Variance 1.0145e-04 2.5353e-05 2.5380e-05 1.2468e-05 1.1866e-05 9.7262e-06

Table 5.6 summarises the effect of the sample size on the estimated cumulant value.

For a sample size of n = 1000, the difference between the calculated and theoretical

value differ by an estimate of 10%. From n = 10000 onward, the error is less than

1%. Therefore a sample size of (1000 < n  10000) is effective for estimating the

cumulants. Anything greater then n > 10000 is redundant.
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Table 5.6: Error between mean calculated fourth-order cumulant and the theoretical
value

Sample Size Modulation Estimated Theoretical % Error

n = 1000

BPSK -1.7839 -2.0 10.81%
QPSK -0.8906 -1.0 10.94%
8-PSK -0.8901 -1.0 10.99%

16-QAM -0.6071 -0.68 10.72%
32-QAM -0.6189 -0.6905 10.37%
64-QAM -0.5735 -0.6191 7.35%

n = 10 000

BPSK -1.9932 -2.0 0.315%
QPSK -0.9967 -1.0 0.33%
8-PSK -0.9969 -1.0 0.31%

16-QAM -0.6771 -0.68 0.42%
32-QAM -0.6885 -0.6905 0.29%
64-QAM -0.6186 -0.6191 0.064%

n = 100 000

BPSK -1.9938 -2.0 0.31%
QPSK -0.9969 -1.0 0.31%
8-PSK -0.9969 -1.0 0.31%

16-QAM -0.6780 -0.68 0.29%
32-QAM -0.6877 -0.6905 0.26%
64-QAM -0.6168 -0.6191 0.35%

n = 1 000 000

BPSK -1.9938 -2.0 0.31%
QPSK -0.9969 -1.0 0.31%
8-PSK -0.9969 -1.0 0.31%

16-QAM -0.6779 -0.68 0.30%
32-QAM -0.6879 -0.6905 0.38%
64-QAM -0.6173 -0.6191 0.27%

5.3 Determining Frame size

For any received signal of length n samples, there exists a message matrix rxSig =

[l ⇥ m], where l is the number of rows in the message matrix and m is the number of

columns in the message matrix. We can divide the received signal of length n samples

into m columns of length l = n/m. In the message matrix, m is called the frame size.

When recording a signal, the sample rate of the analog-to-digital converter (ADC) de-

termines the number of samples the radio front-end can capture and process per sec-

ond. The received signal symbols are split into frames, which simplifies the feature

extraction process. For a 1 s recording of a signal of interest, a frame size of 100 will

result in a 100 ms resolution to view and process the signal, and then extracting the
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features on a frame-by-frame basis, and averaging over the frames. The number of

samples per frame, l is dependant on the sample rate of the front-end device.

For a front-end device with a sample rate of 2 MHz, it will capture 2 M samples per sec-

ond. Selecting an arbitrary frame size of 100, each frame will have 20 000 samples for

feature extraction. Therefore, selecting an appropriate frame size is another important

factor which influences the computational efficiency of the classifier.

A time analysis is done to determine how long it would take to extract the feature set

for a given sample size n and a frame size m. Each received signal is analysed on a

frame-by-frame basis. The elapsed time from extracting the feature set for frame one

to frame m is recorded.

The complexity of an algorithm is a function describing the efficiency of the algorithm

in terms of the data that the algorithm must process. Time complexity is a function

the describes the time an algorithm takes regarding the amount of input to the algo-

rithm. The time can be an indication of the number of comparisons between integers,

the number of times an inner loop is executed, or the time related to the amount of

real-time the algorithm takes. Many factors unrelated to the algorithm itself can af-

fect the real-time measurement. Factors such as the programming language, computer

hardware and optimisation of the compiler. However, extracting the features are not

so much an analysis of the efficiency of the features extraction algorithms themselves,

rather a hardware architectural test.

Table 5.7 shows the test parameters for the time analysis. The time analysis is only an

estimate to indicate the expected duration of the operation. Table 5.8 summarises the

hardware specifications for the test computer.

Table 5.7: Test parameters
Parameter Value
Frames 1, 10, 100
Number of samples [1:100 000]
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Figure 5.3 shows the results obtained from the time analysis. For a sample size n =

10000, and a frame size of 1 � m  10, (total message length of 10 000 ⇥m) the time it

takes to extract the features are less than 0.05 seconds. For a frame size of 100, extract-

ing the features for the same sample size n = 10000 per frame (total of 1 M samples) is

0.2 seconds. The time it takes increase linearly for each frame size tested as the sample

size increases. Selecting more frames will result in better statistical feature estimates,

therefore a frame size of 100 is selected for further evaluations.

A frame size of m = 100 and l = 10000, will allow us to analyse and extract our feature

set of a recorded signal with 1 M samples within 0.2 seconds.

Table 5.8: Testing computer hardware specifications
Hardware Component
CPU Intel i7-6700
CPU Clock 3.6 GHz
CPU Cores 4
Memory 8 GB
Storage 500 GB HDD 7200 RPM
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Figure 5.3: Time complexity analysis for running the feature extraction block.
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5.4 Feature Evaluation

Refer to Figure 3.2. The output signal from the communication block {5.0} is a com-

plex signal in the form of a + jb. The complex samples are processed and from the

complex samples its respective magnitude and phase components are derived (block

{7.0}) according to equation (2.19) and (2.20). The magnitude and phase component is

also known as the instantaneous amplitude and phase of the signal. From the instan-

taneous amplitude and phase, the mean (µ), variance (s2), skewness (s), kurtosis (k),

higher order-moments (sm), and cumulants (Cpq) are evaluated. The signal power key

b is also evaluated.

5.5 Simulation Results

5.5.1 Methodology

Two simulation experiments are conducted in this section. The first experiment eval-

uates the statistical features to determine the core features needed to distinguish the

modulation from each other. The second experiment evaluates the performance of a

SVM in an AWGN channel. The feature extraction and classification is implemented

in MATLAB. The implementation procedure explained in Chapter 3 and the verifica-

tion steps described in Chapter 4 are followed to ensure that the correct outputs are

obtained.

For the first experiment, the mean, variance, skewness, kurtosis, 12th-order moment

of the instantaneous amplitude and phase are extracted and compared to each other

at SNR levels of 0 dB to 20 dB. The normalised fourth-order cumulant of the received

signal and the signal power key is also evaluated.

Figure 5.4 - 5.5 present the results obtained. The modulations considered include

BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, and 64-QAM (from Chapter 3.6). A total of
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100 frames are evaluated, with a sample size of 1000 samples per frame. The experi-

mental parameters are summarised in Table 5.9.

Table 5.9: Experimental Parameters
Parameter Value
Modulations BPSK, QPSK, 8-PSK,

16-QAM, 32-QAM, 64-QAM
Phase-offset 0 rad
Number of signal symbols 1000 symbols
Number of frames 100
Training dataset size 12 000 entries (2000 per modulation)
SNR 0:20 dB

For the second experiment, a SVM is the chosen classifier (from Chapter 3.10.5) to

evaluate the performance of these features in AWGN noise. The SVM can separate the

modulations from each other through a higher-dimensional hyperplane.

Five input features and six possible outputs, a total of 12 000 data elements were used

to train the classifiers. The training data were randomly sorted and loaded. Fifty per-

cent of the generated data were used for training, 25% were used for validation and

the last 25% for testing.

5.5.2 Feature Evaluation

From the results obtained, it is clear that the mean of the normalised instantaneous

amplitude and phase in Figure 5.4(a) and 5.4(b) do not contribute to discriminating

the modulations. Even at higher SNR, the mean values cannot be used to discriminate

between any modulations. The variance of the normalised instantaneous amplitude

in Figure 5.4(c) makes a clear distinction between M-PSK and M-QAM signals. The

variance of the instantaneous phase in Figure 5.4(d) shows that it is able to discriminate

BPSK, QPSK and 8-PSK from the QAM modulations.

From Figure 5.4(e) the skewness of the normalised instantaneous amplitude is again

able to separate M-PSK and M-QAM modulation from each other.
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Figure 5.4: HOS features vs SNR

From Figure 5.4(f) can be seen that the skewness of the instantaneous phase does not

make any contribution to distinguish between the modulations.
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Figure 5.5: HOS features vs SNR (continued)
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In Figure 5.5(a) the kurtosis of the instantaneous phase can be used to discriminate

BPSK, QPSK and 8-PSK from the other modulations at low SNR.

Table 5.10: Feature set used for classification
Features

1 s2 of the instantaneous phase
2 k of the instantaneous phase
3 M12 of the instantaneous phase
4 b
5 Normalised C42

Furthermore, the 12th-order moment of the instantaneous phase, b and normalised C42

(Figure 5.5(d) - (f)) can be used to identify 16-QAM, 32-QAM and 64-QAM from the

rest. The selected features showed a good amount of separation between each other.

Therefore the use of a SVM is a suitable choice. Table 5.10 summarises the proposed

feature set used for the proposed classifier.

5.5.3 Classifier Performance

From the results obtained in the previous experiment (experiment in Section 5.5.2), the

final feature set are shown in Table 5.10, which is chosen as input for the SVM classifier.

A linear SVM is selected for classification (SVM with a linear kernel function). A total

of 12 000 training samples are used as input to the classifier. 6000 samples are used for

training, while the other 6000 samples are held out for verification and validation of the

classification algorithm. The SVM is implemented in MATLAB using the Classification

Learner Toolbox.

The performance of the classifier is tested for two use cases:

1. SNR known to the classifier (SNR estimation included as part of the feature set).

2. SNR unknown to the classifier (SNR estimation excluded from the feature set).
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SNR Estimate Included

Figures 5.6(a) - (e) show scatter-plots for the features versus SNR. These plots try to

identify predictors that separate the modulation classes well by plotting the predictors

against each other, to create a multi-dimensional view of the features. This helps to

identify the features which contribute to class separation, and to allow for training of

the SVM with only those features. The plots only show that an increased SNR improves

the ability to separate features, and therefore an SNR feature estimation could be used

for classification.

The plots presented show how the inclusion of an SNR estimate improves the separa-

tion between the modulation classes. Figure 5.6(a) show that moment-order 12 is able

to separate the PSK signals from the QAM signals. At low SNR (SNR  8 dB) this fea-

ture is able to tell BPSK from the rest, and at SNR � 10 dB, QPSK can be separated from

the rest. Figure 5.6(e) show that the kurtosis versus SNR of the instantaneous phase do

not contribute to identifying the modulations.

The signal power key b in Figure 5.6(c) has the ability to tell 16-QAM, 32-QAM and

64-QAM from each other at any SNR value. b also has the ability to separate M-PSK

signals from M-QAM signals.

SNR Estimate Excluded

Figures 5.7(a) - (d) show scatter-plots for the features plotted against each other. Figure

5.7(a) and (b) show how the feature values group together to form separation between

the modulation classes. Figure 5.7(b) shows that BPSK and QPSK can be separated

from 8-PSK and the QAM modulation classes. The plots show the feature values over

an SNR range of 0 dB - 20 dB.

Figure 5.8 shows the fourth-order cumulant versus b for only the PSK modulations.

Because the values for b is so large for QAM signals compared to PSK, Figure 5.7(d)

does not show how separation is accomplished for the PSK modulation group.
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Figure 5.8 shows that C42 versus b can separate BPSK from QPSK/8-PSK. From eval-

uating all the possible combinations of these features, it is still difficult to find a good

enough separation between QPSK and 8-PSK modulations. However, this is where

estimating an SNR value helps to distinguish QPSK from 8-PSK.

Probability of Correct Classification

The performance of the trained classifier is tested on two data sets. The procedure

described in Chapter 3 to generate a message signal, to modulate the signal, and to

transmit through an AWGN channel is followed.

For testing the performance of the classifier, the same parameters in Table 5.9 are used.

A feature table is extracted for each modulation class, one set will include the SNR

label, and the other will not. Figure 5.9 shows the results obtained from testing the

classifier performance.

From Figure 5.9(a) it is clear that including an SNR estimate results in an overall per-

formance classification accuracy increase. The classification accuracy for 8-PSK modu-

lations increases from 55% to 67% at an SNR of 1 dB, while the classification accuracy

for QPSK modulation increases from 83% to 85% at 4 dB.

Overall, the classification accuracy for the other modulations remains the same, and

including the SNR value in the feature set does not contribute to any classification

accuracy improvement. Figure 5.9 confirms the result shown in Figures 5.6 - 5.7 which

show that the features are able to separate BPSK from QPSK/8-PSK and (16, 32, 64)-

QAM modulation classes, and that the features have trouble separating QPSK from

8-PSK at low SNR. The probability of correct classification for the other modulation

schemes (those not clearly seen in Figures 5.6 - 5.7) were 100%.
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5.6 Conclusion

This chapter presented an FB classification approach in an AWGN channel. Statistical

features derived from the instantaneous amplitude and phase of the received signal

were used to classify M-PSK and M-QAM signals. Two experimental procedure were

discussed to motivate the selection of an appropriate sample and frame size. The fea-

tures were evaluated over a range of SNR values. The final features used to classify the

M-PSK and M-QAM signals are presented in Table 5.10. A SVM was used to classify

the modulations based on the extracted features. The performance of the SVM was

evaluated for two use-cases: with and without SNR estimation.

The result showed that including an SNR estimate in the feature set improves perfor-

mance. The results also showed that without the SNR estimation good classification

performance could be achieved. The next chapter will continue to evaluate the perfor-

mance of the FB classifier in a multipath fading channel.
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Figure 5.6: Scatterplot: Training feature set for SVM (SNR estimation included)
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Figure 5.7: Scatterplot: Training feature set for SVM (SNR estimation excluded)
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Figure 5.9: Probability of correct classification vs SNR
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Chapter 6

Feature-based AMC in a Multipath

Fading Channel

This chapter presents the methodology followed to evaluate the performance of the statistical

feature-based AMC system in the presence of a multipath fading channel. The feature set

proposed in Chapter 5 is used for classifying modulations in a multipath channel. Mitigate

inter-symbol interference (ISI) through channel equalisation and carrier synchronisation is dis-

cussed. The performance of the classifier is evaluated for two use cases: stationary transmitter

and receiver, and for a moving receiver.

6.1 Introduction

Higher-order cumulants have been proposed as main features for classification of mod-

ulations in a multipath fading channel [28], [36], [37], and [38]. Cumulants can charac-

terise the shape of the distribution, which make them simple and effective to use.

Transmitting a signal through a multipath channel causes ISI. ISI is a form of distor-
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tion that causes symbols to overlap and become indistinguishable from the transmitted

symbols. A multipath scattering environment causes the receiver to see delayed ver-

sions of the transmitted symbols, which cause interference with other symbol trans-

missions. Figure 6.1 illustrates how reflections from objects result in multiple copies of

the same signal to arrive at the receiver.

The ISI degrades the performance of the classifier. One of either two approaches can be

followed to alleviate the influence of multipath effect: channel equalisation and chan-

nel estimation. An equaliser attempts to mitigate ISI and improve the receiver perfor-

mance. In a narrowband signal, a one-tap equaliser can compensate for a frequency-

flat fading channel, and for wideband signals, an equaliser with multiple taps helps

compensate for a frequency-selective fading channel [2].

Three general equalizers have been proposed [2]:

1. Linear equalizers (symbol-spaced and fractionally spaced),

2. Decision-feedback equalizers,

3. and Maximum-Likelihood Sequence Estimation (MLSE).

Furthermore, linear and decision-feedback equalisers are adaptive equalisers that make

use of adaptive algorithms. Some of the adaptive algorithms include:

1. Least Mean Square (LMS),

2. Signed LMS,

3. Normalized LMS,

4. Variable-step-size LMS,

5. Recursive least squares (RLS),

6. and Constant modulus algorithm (CMA).

The CMA is a linear equaliser and makes use of the constant modulus algorithm to

equalise a linearly modulated baseband signal through a dispersive channel [43]. The
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Figure 6.1: Direct and reflected paths between a stationary transmitter and moving
receiver.

CMA can achieve good performance for M-PSK signals since M-PSK signal’s constel-

lation has a character of a constant modulus. M-QAM signals for modulation order M

greater than 16, the CMA fails [43]. If the modulation group (PSK or QAM) is known,

a CMA equaliser can be designed.

To structure a fitting equaliser requires apriori information about the channel, such

as the number of taps, the adaptive algorithm’s step size and the signal constella-

tion. Generally speaking, the modulation type needs to be known to design a proper

equaliser. AMC tries to identify the unknown modulation type, which is the issue.

AMC tries to identify the modulation type of a signal, and currently, no need exists

to demodulate. Therefore, if a reduction of ISI can be achieved, the result would be

satisfactory. Carrier synchronisation is another fading channel compensation approach

to mitigate ISI. Carrier synchronisation compensates for carrier frequency and phase

offsets induced by a fading channel. The carrier-synchroniser uses a Phase-Locked-

Loop (PLL)-based algorithm. The output of the carrier synchroniser is a frequency-

shifted version of the input signal.
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The received signal symbols suffering from multipath fading can be represented by:

y(n) =
L�1

Â
k=0

h(k)x(n � k) + g(n), (6.1)

where x(n) is the initial transmitted modulated symbols, h(k), k = 0, ..., L � 1 are the

fading channel coefficients, and L is the multipath fading channel length. g(n) is the

AWGN with a zero mean and a variance of s2.

In [28], [36], [37], and [38] the authors chose to follow a channel estimation approach

to make the features more robust. The authors proposed a solution to estimate the

transmitted symbol’s fourth-order cumulants form the received signals symbols. The

authors proposed finding a coefficient relevant to the channel coefficients. This pa-

rameter scales the received symbol’s fourth-order cumulants by an approximation to

recover an estimated fourth-order cumulant of the transmitted symbols. Estimating

this channel coefficient parameter is discussed in more detail in [36].

To mitigate ISI, a carrier synchronisation approach is followed in this chapter. The

feature set proposed in Chapter 5 is extracted from the compensated symbols. The

performance of the classifier is evaluated to see to what extent classification of signals

in a multipath fading channel can be achieved.

6.2 Methodology

In Chapter 2 the procedure for simulating a multipath channel is discussed. The multi-

path channel is presented by a TDL model, which is characterised by a discrete number

of impulses. The channel is realised by an finite impulse response (FIR) filter, with a

particular impulse response. In Chapter 3 two fading channel models are exhibited:

the ITU-R M.1225 models and the COST 207 channel model.

3GPP suggested the COST 207 TU model for simulating GSM/EDGE signals [49], and

according to Rohde-Schwarz [61], the COST 207 model is sufficient to simulate fading
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conditions for DVB-T. The 6-tap TU model is the proposed channel model for analyses.

The TU model is characterised by 6-taps, with its relative delay and power profile. The

power amplitudes are characterised by a Rayleigh distribution, which varies according

to its respective Doppler spectrum.

The UHF frequency band supports a host of different communication services, and

each operating at different frequencies, with different channel bandwidths. Table 6.1

shows a summary of typical digital signals in the UHF band (courtesy of GEW Tech-

nologies):

Table 6.1: Examples of common digital signals in the UHF band.
Signal Frequency Typical Bandwidth
TETRA 420.4625 MHz 25 kHz
GSM 954.2025 MHz 200 kHz
UMTS 2112.5 MHz 5 MHz
DVB-T 530 MHz 8 MHz
AIS 161.975 MHz and 162.025 MHz 25 kHz
Wi-Fi 2462 MHz 20 MHz

The performance of the classifier is assessed for two use-cases: a stationary transmitter

and receiver, and secondly for a stationary transmitter and moving receiver. The test

set-up will assume to have no LOS path between the transmitter and receiver. The use

of a pulse-shaping filter is ignored. The classifier will rely on carrier synchronisation

to compensate for ISI. The channel is evaluated in the absence of AWGN.

The implementation procedure explained in Chapter 3 is followed likewise. Table 6.2

summarises the test parameters for the multipath channel. The same set of modu-

lations are classified. A SVM is trained with a training set which consists of 12 000

samples (2000 per modulation).

6.2.1 Stationary Transmitter and Receiver

For the first test, a stationary transmitter and receiver are evaluated. For a stationary

set-up, the maximum Doppler shift is 0 Hz, according to equation (3.35). The ampli-
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Table 6.2: Experimental Parameters
Parameter Symbol Value
Modulations M BPSK, QPSK, 8PSK,

16QAM, 32QAM, 64QAM
Number of signal symbols N 1000 symbols
Symbol rate S 9600 baud
Bit rate B S ⇥ log2M

Oversample rate Ns 4
Training dataset Size 12 000 entries (2000 per modulation)
Mobile speed v Varied per iteration
Carrier frequency fc Varied per iteration
Speed of light in free space c 3 ⇥ 108 m/s
Max Doppler shift fd v ⇥ fc/c

tude variation of the received signal components will correspond to a Rayleigh distri-

bution. For the purpose of the simulation, varying the carrier frequency will have no

impact on the channel conditions.

Firstly, Digital Terrestrial Television (DTT) channel 42 at 642.0 MHz is selected, with

a mobile speed of 0 m/s. The experimental parameters in Table 6.2 are used, with

fc = 642.0 MHz and v = 0 m/s.

6.2.2 Moving Receiver

The second test will vary the speed of the receiver for different digital services. The

digital services include DTT and TETRA. DTT covers a range of frequencies in the

UHF. TETRA signals are single-carrier with QPSK modulation employed. This makes

TETRA signals attractive to use for evaluation purposes. Table 6.3 shows the maximum

Doppler shift for five randomly selected DTT channels, at five randomly selected mo-

bile speeds (v between 30 km/h and 120 km/h). A random number generator is used

to generate the four mobile speeds and for selecting the four DTT channels.
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Table 6.3: Moving receiver experimental parameters.
DTT Channel Carrier Frequency Mobile Speed Maximum Doppler Shift

21 474 MHz 66 km/h 28 Hz
35 586 MHz 112 km/h 60 Hz
48 690 MHz 35 km/h 22 Hz
50 706 MHz 87 km/h 57 Hz

6.3 Simulation Results

The feature set proposed in Table 5.10 is extracted from the carrier synchronised ver-

sion of the received signal. The features are plotted against each other to identify better

which features contribute to separating the modulation classes from each other. The

plots indicate the feature spread, and it shows how an increase in Doppler shift re-

sults in more ISI. The performance of the classifier is presented in a confusion matrix

corresponding to each Doppler shift.

6.3.1 Feature Evaluation

Stationary Transmitter and Receiver

Figure 6.2(a) - (d) show the scatterplots for the features plotted against each other. The

multipath channel introduces many impairments into the channel and causes severe

ISI. The feature values are scattered broadly. Figure 6.2(a) show that the variance of

the instantaneous phase creates separation between BPSK, QPSK and the rest. Figure

6.2(c) shows that the kurtosis of the instantaneous phase is able to separate BPSK from

all the other modulations.

b showed (Figure 6.2(d)) to be able to separate the QAM modulation class from the PSK

modulation class. In Section 6.1 CMA has been identified as a possible equalisation al-

gorithm to reduce ISI for modulations with a constant modulus (PSK modulations).

b is a good indication whether PSK or QAM signals are viewed. The fourth-order

cumulant value is distorted and deviates drastically from the theoretical values. Chan-
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Figure 6.2: Scatterplot: Training feature set for fading channel (0 Hz).

nel coefficient estimation [36] tries to mitigate the effect of multipath on the cumulant

value.

Moving Receiver

Figure 6.3(a) - (b) show the scatterplots for the variance of the instantaneous phase

versus the kurtosis of the instantaneous phase and the kurtosis of the instantaneous
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phase versus the fourth-order cumulant of the received signal . Compared to Figure

6.2(a) and (b) the features are spread over a larger range of values.
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Figure 6.3: Scatterplot: Training feature set for fading channel (22 Hz).

The stationary receiver use-case is a good reference to use for comparison. As the

maximum Doppler shift increases, the coherence time of the channel will reduce, and

the channel will remain constant for a smaller period, which results in more ISI.
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Figure 6.4: Scatterplot: Training feature set for fading channel (28 Hz).

Figure 6.4 - 6.6 illustrates the same scatterplots for the same two features. The results
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(b) Kurtosis q(t) vs C42 of the received signal

Figure 6.5: Scatterplot: Training feature set for fading channel (57 Hz).

demonstrate how an increase in Doppler shift increases ISI which cause continuous

degradation of the classifier’s performance.
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Figure 6.6: Scatterplot: Training feature set for fading channel (60 Hz).
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6.3.2 Classifier Performance

Stationary Transmitter and Receiver

The classifier performance is presented in the form of a confusion matrix in Table 6.4

for the stationary transmitter and receiver use-case. From the confusion matrix it is

Table 6.4: Performance of SVM at 0 Hz Doppler shift
Doppler shift Modulation BPSK QPSK 8-PSK 16-QAM 32-QAM 64-QAM

0 Hz

BPSK 99% - - - - -
QPSK - 90% 9%  1 - -
8PSK - 1% 99%  1 - -

16QAM - 1% 6% 89%  1 4%
32QAM -  1 1% 8% 90%  1
64QAM -  1  1 4% 21% 75%

clear that the SVM is capable of distinguishing BPSK modulated signals from the rest

with a 99% accuracy. This is to be expected since Figure 6.2(a) and (b) showed that the

features clustered nicely together for BPSK.

Figure 6.2(a) showed that the relationship between the variance and the kurtosis of

the instantaneous phase distinguishes QPSK from the other modulations. Table 6.4

shows that QPSK signals are correctly classified with a 90% accuracy. Figure 6.2(d)

illustrates b’s capability to distinguish the PSK modulations from the QAM signals.

The classifier accuracy for 16-QAM and 32-QAM is 89% and 90% respectively. For 64-

QAM the classifier had difficulty distinguishing it with a 75% classification accuracy.

The confusion matrix does not tell the whole story. Any multipath scattering environ-

ment causes ISI, therefore as the constellation size increases, the more overlapping of

symbols will take place, and discriminating between QAM modulations becomes in-

creasingly more difficult, as the constellation diagram for the different order of QAM

modulations become indistinguishable from each other.
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Moving Receiver

The classifier performance is presented in the form of a confusion matrix in Table 6.5

for the different Doppler shifts. Table 6.5 shows the results for 22 Hz, 28 Hz, 57 Hz

and 60 Hz respectively. From the different Doppler shifts, it was to be expected that

Table 6.5: Performance of SVM at multiple Doppler shifts
Doppler shift Modulation BPSK QPSK 8-PSK 16-QAM 32-QAM 64-QAM

22 Hz

BPSK 90% 5% 5% - - -
QPSK - 86% 14%  1 -  1
8PSK - 3% 97% - - -

16QAM -  1 4% 80% 16%  1
32QAM - - 1% 18% 79% 2%
64QAM - - - 8% 12% 80%

28 Hz

BPSK 87% 7% 6% -  1 -
QPSK  1 86% 13%  1  1 -
8PSK  1 3% 97%  1 - -

16QAM - 3% 1% 86% 2% 8%
32QAM - 1%  1 15% 82% 2%
64QAM - - - 15% 2% 83%

57 Hz

BPSK 88% 5% 7%  1  1 -
QPSK 1% 73% 26%  1 - -
8PSK  1 7% 92%  1 - -

16QAM -  1 2% 81% 14% 2%
32QAM - -  1 16% 68% 16%
64QAM - -  1 8% 29% 63%

60 Hz

BPSK 80% 2% 17%  1 - -
QPSK 2% 90% 5% 2% 1%  1
8PSK 1%  1 98% 1% - -

16QAM - - 2% 79% 14% 4%
32QAM - -  1 18% 63% 19%
64QAM - -  1 10% 30% 60%

the performance of the SVM would degrade as the Doppler shift increases. This is

especially true for (16, 32, 64)-QAM modulations. The classification accuracy for these

modulations decreased from 80% to 79%, 79% to 63% and 80% to 60% for 16-, 32-, and

64-QAM respectively.
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6.4 Conclusion

This chapter presented an evaluation of the proposed classifier in a multipath fading

channel. The performance was evaluated for a stationary transmitter and receiver and

then for a moving receiver. The next chapter will focus on the final concluding remarks

and proposed recommendations for future work.
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Conclusions and Recommendations

In this chapter, the research work conducted is reflected on. The research goal and objectives

are reviewed, and a summary of the work presented is provided. Recommendations for further

improvement and areas which require more research are discussed.

7.1 Research Overview

Chapter 1 introduced radio spectrum as a natural resource which needs to be managed.

Around the world spectrum regulatory bodies are tasked with managing and assign-

ing spectrum to users. The spectrum is assigned to incumbents based on an auctioning

approach. This auctioning approach for managing spectrum leads to under-utilised

spectrum, which causes an artificial spectrum scarcity which is called white space.

CR has been proposed as a prime enabler for spectrum reuse in DSA. CR tries to

overcome the problem of spectrum scarcity by assigning spectrum to a SU. Spectrum

sensing is a crucial element and should be performed first before allowing SU access.

AMC has been proposed as an alternative spectrum sensing technique. The ITU-R
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proposed a recommendation for identifying digital signals based on a signal’s internal

and external properties. The internal properties of a signal can only be used when the

signal’s I/Q data is available.

Chapter 2 presented an overview of some basic data- and telecommunication concepts.

Firstly digital-to-analog conversion, digital modulation, signal space models and com-

munication channel models were presented. These concepts were important to under-

stand, as they laid the foundation for understanding AMC.

Chapter 3 introduced the two classification approaches mostly used in AMC: a LB ap-

proach and a FB approach. The FB approach received more attention in previous years

due to its simplicity regarding implementation, and performance in classification accu-

racy when paired with a good feature set. Furthermore, Chapter 3 laid the foundation

on which a statistical FB classifier were developed. Chapter 3 presented related work

on FB classifiers and motivated the selection of the modulation classes and selecting an

appropriate feature set. A discussion on machine learning algorithms was presented.

The general system model for FB classification was presented and discussed in detail.

Chapter 4 continued to the verification and validation of the proposed system model

and the implementation thereof.

Chapter 5 presented the methodology for evaluating the statistical feature set in an

AWGN channel. After feature evaluation, the final feature set which is used for clas-

sification was presented. The performance of a SVM-based classier was evaluated for

two use-cases (with and without an SNR estimate). Moreover, Chapter 6 evaluated

the performance of the proposed classier in a multipath fading channel. Chapter 6

continued towards testing the performance of the classifier in a stationary transmit-

ter/receiver fading channel.
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7.2 Revisiting the Research Question and Objectives

In Section 1.4 it was stated that the research aims to provide a simple approach towards

automatically identifying and classifying digital modulations as part of spectrum sens-

ing. The research objectives from Section 1.5 included:

• selecting the type of classification approach (LB or FB),

• comparing the performance of the classifier in different communication channels,

• and testing the performance of the classifier on recorded I/Q data.

The following sections will show how each of these objectives was addressed in the

dissertation.

7.2.1 Selecting the Classification Approach

A FB classification approach, which is also known as a pattern-recognition approach,

was selected in the dissertation. Chapter 3 presented the motivation for following a

FB classification approach instead on a LB approach. The FB approach is easier to

implement and not as computationally intensive as the LB approach.

Following a FB classification approach involved investigating two important aspects:

the feature extraction process and selecting the classification algorithm. Throughout

the literature and related work on this topic, five types of feature classes were iden-

tified. From our discussion presented in this chapter, an instantaneous time-domain

and HOS feature based approach were selected. From the related work, this presented

to be a simple and computationally inexpensive approach. A linear SVM, which is

a supervised machine learning approach, showed to be a good selection for the pro-

posed classification algorithm. A SVM has proven to be superior in performance when

it comes to a real world problem, and a SVM avoids the problem of overfitting the data

points.
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From the NFP provided by ICASA, the UHF frequency band was identified to as the

frequency band which hosts most of the civilian digital communication services in the

country. This included digital television, cellular, navigation, wireless LAN, Bluetooth,

trunked radio and satellite broadcasting. Most of these services make use of an M-PSK

or M-QAM modulation, either as a single carrier service or as part of the sub-carriers

in a multi-carrier modulation such as OFDM. The final modulations included in the

modulation set were (2, 4, 8)-PSK and (16, 32, 64)-QAM.

7.2.2 Performance Evaluation in an AWGN and Fading Channel

Chapter 5 presented an extensive investigation to determine an appropriate sample

size and frame length to help keep the computational complexity and computational

time reasonable. The number of samples proposed was based on calculating the theo-

retical noise-free normalised fourth-order cumulant of the received signal samples. A

sample size between n = 1000 and n = 10000 was proposed. The frame length of 100

was determined by comparing the time it takes to extract the features from the received

samples for a given frame and sample size combination.

Six features were evaluated to find the best feature set which can distinguish between

M-PSK and M-QAM modulations. From the instantaneous amplitude and phase, the

mean (µ), variance (s2), skewness (s), kurtosis (k), higher order-moments (sm), and

cumulants (Cpq) were evaluated. The signal power key b was also evaluated. The

final feature set included the s2 of the instantaneous phase, k of the instantaneous

phase, M12 of the instantaneous phase, normalised C42, and b. A SVM was trained,

and the classification performance was evaluated for two use-cases. It was found that

including an SNR estimate as part of the feature set results in a classification accuracy

improvement for QPSK and 8-PSK signals only. The classification accuracy for the

QPSK modulated signal improved from 83% to 85% at 4 dB. For the 8-PSK modulated

signal including an SNR estimate improved the classification accuracy for low SNR

from 55% to 67% at 1 dB. For higher SNRs (above 8 dB) the classification accuracy was

100%.
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Chapter 6 presented an evaluation of the proposed classifier in a multipath fading

channel. The COST 207 channel was implemented for two use-cases: a stationary

transmitter and receiver and secondly for a moving receiver (varying the Doppler

shift). Four randomly selected DTT channels were selected and four randomly selected

carrier frequencies (22 Hz, 28 Hz, 57 Hz and 60 Hz Doppler shift).

An overall classification accuracy of 90% was reported for the stationary case. The

overall classification accuracy for the different Doppler shifts were 85 %, 86%, 77.5%

and 78%, respectively.

7.2.3 Performance Evaluation using Recorded I/Q Data

Finally, the performance of the classifier is evaluated using raw recorded I/Q data of a

TETRA signal at 421 MHz (see future work section 7.3.1). The TETRA 1 standard uses

a p/4-DQPSK modulation. Therefore the expected modulation class is known.

The proposed classifier classified the TETRA signal as a being an 8-PSK modulation.

Even though the classification result is incorrect, the classifier was able to tell that a

PSK modulation was detected. Further implementation of equalisers to compensate

for multipath fading will improve the result as mentioned in section 7.3.1.

7.3 Recommendations for Future Work

The work presented in this dissertation laid a good foundation for future studies on

modulation classification. The focus of this research was on using the internal signal

characteristics to classify digital signals. Furthermore, the assumption was made that

the digital signals have been separated from the analog signals in the UHF frequency

band. Many analog services are still operational in the UHF band. Using a signal’s

external characteristics, such as the carrier frequency, signal bandwidth and spectral

shape would aid in discriminating between analog and digital signals in the frequency
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band under consideration.

Further improvements can include carrier frequency and bandwidth estimates which

can be obtained from an estimated power spectral density [19], baud rate estima-

tion via a tracking loop [19], and constellation independent algorithms can be used

to equalise the effect of the pulse shaping filter [19].

Single-carrier modulations were investigated in this study. The next logical step is to

incorporate a method for identifying multi-carrier waveforms such as OFDM. The im-

plementation of pulse-shaping filters in the transmitter and receiver chain will help to

develop a more robust classifier for real-world implementation. Another recommen-

dation for future work is to find a simple blind equalisation approach to mitigate the

effect of multipath fading encountered by the transmitted signal.

Moreover, the performance and robustness of the proposed classifier need to be tested

when an Unknown parameter is introduced into the set of modulation classes. Cur-

rently, the classifier will try to fit the monitored signal into either a PSK or QAM mod-

ulation group. When the SNR starts to fall below 5 dB the modulations, especially

for QAM modulations, the different modulation orders cannot be uniquely identified.

When an unknown class is included as part of the classifier prediction outputs, it will

produce a better result. The performance of the classifier needs to be tested in a con-

trolled lab environment generating test signals and modulating them before using real

world raw I/Q data.

7.3.1 Evaluating Recorded I/Q data

This section evaluates the performance of the classifier using recorded I/Q data. The

recorded I/Q data is provided by GEW Technologies. GEW Technologies provide fixed

and mobile RF monitoring and direction finding systems. The Sky-i7000 provides a

radio monitoring solution for a frequency range of 9 kHz to 3.6 GHz, with a 20 MHz

instantaneous bandwidth. The Sky-i7000 was used to record data in the Constantia

area, Cape Town.
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TErrestrial Trunked RAdio (TETRA) is a digital trunked mobile radio standard which

is developed to meet the needs of traditional Professional Mobile Radio (PMR) [62] or-

ganisations such as public safety, transportation, government and military. TETRA

supports different carrier frequencies from 380 - 420 MHz in multiples of 25 kHz.

The commonly adopted standard is specified in [63]. According to [62], four mul-

tilevel modulation schemes have been introduced in the new TETRA 2 architecture.

The modulation schemes include p/8-D8PSK, 4-QAM, 16-QAM and 64-QAM to boost

data throughput. The TETRA 1 standard used a p/4-DQPSK modulation scheme. The

channel using QAM modulations are provided with multiple sub-carriers to achieve

robust performance in frequency-selective fading channels.

TETRA 1, which is the widely adopted standard, is as single-carrier service with a

p/4-shifted DQPSK modulation with a root-raised cosine modulation filter and a roll-

off factor of 0.35 [63]. The p/4-DQPSK modulation is a QPSK modulated signal with

a p/4 phase-offset. For the above-mentioned reason (TETRA being a single carrier

signal), makes it a suitable candidate signal to use for evaluating the performance of

the proposed classifier.

The Sky-i7000 uses the PXGF streaming and file format for streaming and storing the

I/Q samples. The PXGF streaming and file format provides a framework for streaming

and storage of sampled data along with metadata. The PXGF format is loosely based

on the Microsoft RIFF file format, which is based on the concept of chunks.

7.3.2 Recorded TETRA Signal

Table 7.1 shows the recording parameters for the TETRA signal:

Table 7.1: PXGF TETRA recording metadata
Parameter Value
Carrier frequency 421.41 MHz
Sample rate 32 kHz
Recorded bandwidth 20 kHz
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Figure 7.1: PSD plot from the received PXGF samples.

Figure 7.2(a) - (b) show a screen-shot from the Sky-i7000. The Sky-i7000 is tuned to

421.41 MHz and shows the spectrum of the observed signal. A bandwidth of 20 kHz

is shown in red. From Figure 7.2(b) it is clear that the signals in view is in the TETRA

band. Figure 7.2(b) show four TETRA signals inside a 100 KHz bandwidth (4 ⇥ 25

KHz).

Figure 7.1 is the zero-centered power spectral density plot constructed in MATLAB

from the raw recorded I/Q data (without compensating for the antenna losses). The

recorded data are raw complex samples received from the ADC. These values need to

be scaled appropriately to get the full-scale values. The recording is for a time of 3

seconds, at a sample rate of 32 kHz. This results in a total of 96 000 raw I/Q samples.

The 96 000 samples are divided into 100 frames.
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(a) TETRA signal at 421.41 MHz

(b) TETRA band showing four TETRA signals.

Figure 7.2: TETRA signal from the Sky-i7000.

7.3.3 TETRA Classification

In this section, the performance of the classifier is evaluated using the recorded TETRA

signal. For the purpose of evaluating the classifier, a stationary transmitter and receiver

is assumed. The monitoring site has a fixed monitoring receiver. The received signal is

compensated for carrier frequency offset (carrier synchronisation).
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The recorded signal is recorded in a harsh environment where the effect of multipath

propagation is unavoidable, therefore a channel equaliser is needed to compensate for

the fading effects. From the TETRA standard mentioned in [63], a pulse-shaping filter

is also used for transmission. The proposed multipath classifier does not compensate

for any of these effects. However, the classifier is tested to see how it would perform

given the recorded samples.

Figure 7.3 shows the constellation diagram for the recorded signal. Through visual in-

spection, the constellation diagram shows properties of a PSK signal. The effect of the

multipath channel is seen. The received samples are scattered throughout the constel-

lation diagram.
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Figure 7.3: Constellation diagram for the recorded signal (one frame).

Figure 7.4 show the output obtained for the modulation classifier for the stationary

transmitter and receiver use-case. The classifier analysed 100 frames. From the 100

frames, the classifier classified 99 of the frames as an 8-PSK modulated signal, and

one of the frames to be a QPSK signal. From [63] is known that the TETRA 1 stan-
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QPSK  (1%)

8-PSK (99%)

Figure 7.4: Modulation classifier output for the recorded signal.

dard makes use of an p/4-DQPSK modulation. Even though the classifier could not

correctly classify the signal as QPSK, it was possible to place the signal in the PSK

modulation group, which is a good result.

From Section 6.3.1 b has shown its ability to separate PSK modulations from QAM

modulations. Since a PSK modulation is also defined as a constant modulus modula-

tion, an appropriate equaliser can be implemented to mitigate the effect of multipath

fading.

7.4 Conclusion

The research done in this dissertation showed that following a simple FB classification

approach to classify M-PSK and M-QAM signals in the UHF frequency band in an

AWGN and fading channel proved to have successful classification accuracy.

The work also showed that using HOS extracted from the instantaneous amplitude

and phase of the received signal can be used as features to classify the digital modula-
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tions. The inclusion of the signal power key b showed to have played a critical role in

separating PSK modulated signals from QAM signals. Including carrier synchronisa-

tion without channel equalisation does not contribute on its own to mitigate the effect

of multipath propagation.

The robustness of the classifier can be improved through the inclusion of equalisers,

pulse-shaping filters and multipath channel coefficient estimation, especially for real-

world testing and implementation.
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Appendix A

Research Publications

A.1 SATNAC 2016 Work-in-progress Paper

A work-in-progress paper presented on Statistical Feature Extraction for Automatic Mod-

ulation Classification which appeared in the proceedings of Southern Africa Telecom-

munication Networks and Applications Conference (SATNAC) for 2016.

A.2 SATNAC 2017 Paper

Peer reviewed article presented on Statistical Feature Evaluation for Automatic Modulation

Classification which appeared in the proceedings of SATNAC for 2017.

134



Statistical Feature Extraction for Automatic
Modulation Classification

Herman Blackie, Melvin Ferreira
TeleNet Research Group

School of Electrical, Electronic and Computer Engineering
North-West University, Potchefstroom Campus, South Africa

Email: 23377852@student.nwu.ac.za, melvin.ferreira@nwu.ac.za

Abstract—This paper presents a statistical feature extraction
based approach to Automatic Modulation Classification (AMC).
First order statistical features are extracted from two digitally
modulated signals to confirm whether these features can be
used to distinguish between the signals. Furthermore, the paper
presents an outline of our work which is done towards classifying
modulated signals, after which the performance of current
classification techniques are tested on measured In-phase and
Quadrature (I/Q) data.

Index Terms—Automatic Modulation Classification, feature-
based classification, statistical features

I. INTRODUCTION

With the current increase in bandwidth and subsequent
spectrum usage, modulation schemes employed in telecom-
munication systems have become more complex. To accom-
modate more bandwidth, the modulation schemes must make
use of the available spectrum more efficiently. This increase
in modulation scheme complexity has changed the way mod-
ulated waveforms can be reliably and accurately detected
and classified. AMC is the intermediate step between signal
detection and information recovery. An Automatic Modulation
Classifier is a system that can identify the modulation type of
a received signal. Once the modulation scheme of the received
signal has been identified, the appropriate demodulator can be
selected.

AMC plays an important role in various civilian and mili-
tary applications [1], [2], [3], [4] such as signal confirmation,
interference identification, surveillance, monitoring, spectrum
management, electronic warfare signal intelligence, counter
channel jamming, and threat analysis. Blind classification in
AMC plays an important role in Software Define Radio (SDR)
and Cognitive Radio (CR). In an ideal vision of a CR, the
future system must be able to sense signals present in the
spectrum and classify the signals automatically for efficient
usage of spectral resources.

Therefore, the bigger challenge lies in using current clas-
sifiers or new combinations of classification techniques to
classify modulated signals using practical I/Q data. The focus
of this paper is to extract first order statistical features to see
whether it is possible to distinguish between BPSK and QPSK
modulated signals as an initial result.

The remainder of this paper is organized as follows. Sec-
tion II provides the reader background followed by Section
III which provides related work in AMC followed by the
proposed research methodology in Section IV. Section V will
present our initial results in distinguishing between different

modulations. Lastly, the initial result is discussed with future
work in Section VI and VII respectively.

II. BACKGROUND

AMC can be divided into two groups [4], [3]; a
decision-theoretic approach and pattern recognition approach.
Decision-theoretic approach is known as Likelihood-based
(LB) classifiers and pattern recognition approach is known
as Feature-based (FB) classifiers. LB classifiers are more
accurate than FB classifiers, however LB classifiers are com-
putationally complex [4]. On the other hand, FB classifiers
are easier to implement with near-optimal performance when
designed properly [5].

The pattern recognition approach is composed of two sub-
systems. The first subsystem is for feature extraction, and
secondly a pattern recognizer to process the features. The
extracted feature set must be able to represent the signal
information present in the modulated signal. The extracted
features are then compared to a threshold or used as input
to train an Artificial Neural Network (ANN) to classify the
modulations [5] according to a decision rule.

According to [4], there are three FB algorithms used to
distinguish between modulations. This includes instantaneous
amplitude, phase and frequency-based algorithms, wavelet
transform-based algorithms and signal statistics-based algo-
rithms. In [6], a compressive sampling-based algorithm is
introduced. In [5], [7], [8], feature extraction comprises of two
basic steps. The received signal is captured and then converted
to the appropriate domain through transforms such as wavelet
(WT)-, discrete Fourier (DFT)-, discrete cosine (DCT)- and
discrete sine-transforms (DST) [9].

The features are extracted from the relevant domain to
distinguish between the modulation classes. These features are
then either from a higher order statistical nature (cumulants,
moments, mean, variance, skewness, kurtosis index) or first
order (instantaneous amplitude, phase and frequency) [4].

III. RELATED WORK

Wong et. al. [10] introduced AMC using ANN to classify
modulations using a feature set of higher-order statistics
(HOS). In [10] is mentioned that HOS are not affected by
Additive White Gaussian Noise (AWGN). HOS provide a
good way to obtain features to illustrate the two-dimensional
probability density function (PDF), i.e. the constellation di-
agram. Wong [10] recorded a 99% successful classification
at Signal-to-Noise Ratio (SNR) as low as 0 dB. Pambudi
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et. al. [11] used five statistical properties to classify OFDM
modulated signals in a NLOS (Non-Line-Of-Sight) scheme,
with six multipath components. In [11], an FFT is performed
on the received signal. The output of the FFT process is
extracted to get the statistical properties such as, mean,
variance, skewness, kurtosis index and moment order for
three possible different modulation schemes (64-QAM, 16-
QAM and QPSK). The mean, skewness and kurtosis index
are the first, third and fourth order moment of the received
OFDM signal magnitude. Popoola et. al. [12] derived sta-
tistical features from the instantaneous amplitude, phase, and
frequency of the simulated modulated signal and used as input
to an ANN classifier. In literature surveyed from [1] – [12]
the communication channel and transmission of modulated
signals over the channel is simulated. Therefore, a proposed
area for further research is to use measured I/Q data to test
the performance of classifiers.

IV. PROPOSED METHODOLOGY

As mentioned in Section I, current classifiers or a new
combination of classification techniques will be used to
classify different modulated signals. An intensive literature
study is done to gain an understanding of current classifi-
cation techniques. For a first iteration a simple simulation
model is created and the model complexity will gradually be
increased. The features are extracted and used as input for the
classier. An artificial intelligence approach such as ANN may
be considered to classify the modulations. After evaluating
the performance of the classifier using simulated I/Q data,
recorded I/Q data will be used as input for the classier to test
the performance of the classier against real data.

V. INITIAL RESULTS AND DISCUSSION

As an initial approach, first order statistics are used to
distinguish between BPSK and QPSK. The simulation is de-
veloped in MATLAB and simulates a AWGN communication
channel. A random bit stream is generated and modulated
using BPSK and QPSK. From the constellation diagram of
BPSK and QPSK, their complex valued samples (I/Q streams)
are separated into two vectors; the magnitude components ⇢

and the phase components ✓. If each sample can be expressed
as z = a + jb, and z represents a sample value, then
⇢ =

p
a2 + b2 and ✓ = tan�1(b/a), where a is the in-phase

(I) component and b is the quadrature component (Q) of the
signal. Fig. 1 shows the distribution (histogram) plot of the ⇢

and ✓ components.

VI. CONCLUSION AND FUTURE WORK

From Fig.1 it can be concluded that BPSK and QPSK mod-
ulated signals show no unique differences in their magnitude
distributions as expected. From the phase distribution, a clear
distinction can be made between BPSK and QPSK. BPSK
shows two groupings at 0 rad and ⇡ rad, whereas QPSK
shows four groupings at ±⇡/4 and ±3/4⇡ rad. Therefore, the
histogram of the phase distribution of the modulated signals
can be used to distinguish between BPSK and QPSK.

For future work, more modulation schemes will be added to
the simulation model. Different noise models will be added to
the channel model to simulate a wireless channel of increasing

0 0.5 1 1.5 2 2.5
Magnitude

0

2

4

6

8

10

Nu
mb

er 
of 

oc
ca

ran
ce

s

�104

QPSK
BPSK

-4 -3 -2 -1 0 1 2 3 4 5
Phase (rad)

0

2

4

6

8

10

12

14

Nu
mb

er 
of 

oc
cu

ran
ce

s

�104

QPSK
BPSK

Fig. 1. Magnitude and phase distribution of a BPSK and QPSK signal at an
SNR of 10 dB.

complexity. This will include fading channels and multipath
effects and not just Gaussian noise. The feature set will be
expanded to include more features, after which the automation
of the classification process will be employed. This approach
postulates to be easier to implement with a decrease in
computational complexity.
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Abstract—This paper presents an investigative study towards
a simple approach of classifying M-ary PSK and M-ary QAM
signals, in an Additive White Gaussian Noise (AWGN) channel.
Our ultimate aim is to evaluate the possibility of implementing a
modulation classifier on commodity hardware (such as a single-
board computer), to perform feature extraction or classification
on the hardware. The feature set must therefore be simple to
derive, and must not be computationally complex. A set of
statistical features are evaluated which are derived from the
received signal’s instantaneous amplitude and phase. The results
obtained are compared to each other to see which of the features
are able to distinguish the modulations from each other in a noisy
environment. A Support Vector Machine (SVM) is trained to
classify modulations with the proposed feature set. Experimental
results indicate that our approach has a high percentage of
correct classification at low Signal-to-Noise Ratio (SNR).

Index Terms—Automatic Modulation Classification, M-PSK,
M-QAM, higher-order statistics, feature based classification

I. INTRODUCTION

An Automatic Modulation Classification (AMC) system
detects the unknown modulation type of a received signal
with the purpose to demodulate the signal and retrieve its
information content. AMC plays an important role in mil-
itary and civilian applications such as signal confirmation,
interference identification, surveillance, monitoring, spectrum
management, counter channel jamming and signal intelligence
[1], [2]. Future Software Defined Radio (SDR) and Cognitive
Radio (CR) systems must be able to sense the spectrum
for signals present in the pursuit of Dynamic Spectrum
Access (DSA). This interest in increasing spectrum access and
improving spectrum efficiency, combined with SDR and new
realisations that machine learning can be applied [1] to radios,
have created interesting possibilities. Two general classes of
AMC algorithms exist: Likelihood-based (LB) and Feature-
based (FB) classifiers.

Many features have been proposed in classifying mod-
ulations, ranging from instantaneous amplitude, phase and
frequency, Fourier and Wavelet transform features, higher-
order statistics, cyclic cumulants, constellation shape recovery,
probability density function based methods and unsupervised
clustering [3], [4].

In this paper, an investigative study is presented to find
a simple approach to classifying M-ary PSK and M-ary
QAM signals by using statistical properties as features in an
AWGN channel. The mean value, variance, skewness, kurto-
sis, moment-order and higher-order cumulants of the received
signal’s instantaneous amplitude and phase are evaluated, and
the most appropriate set of statistical properties are used to
classify the modulations. The ultimate goal is to implement a
modulation classifier onto cheap commodity hardware, which

does not necessary have access to high processing power, and
without the need to perform complex domain transforms.

The remainder of the paper is organised as follows. In
Section II a brief background on AMC, machine learning
classifiers and communication channels are presented. Sec-
tion III provides related work, followed by our system model
in Section IV. Section V gives our experimental methodology,
Section VI discusses the results, and finally Section VII
concludes the paper.

II. BACKGROUND

A. Automatic Modulation Classification Approaches

In an ideal AMC system, a tradeoff must be made be-
tween classification accuracy, robustness against unpredictable
channel conditions, computational efficiency and versatility
in terms of modulation types [1]. When developing a AMC
system, two steps are involved [1], [5]: pre-processing of the
received signal and the selection of classification algorithm.
Two main classification approaches have been studied in this
regard [1], [2], [3], [4], [6]; a decision-theoretic approach and
a pattern recognition approach. Decision theoretic approach is
known as LB classifiers [7] and pattern recognition approach
is known as [8] FB classifiers.

LB classifiers are by far the most popular approach, which
is motivated by the optimality of its classification accuracy,
when channel conditions are perfectly characterised. LB clas-
sifiers treat the classification problem as a hypothesis testing
problem. The likelihood function of the received signal is
compared to a predetermined threshold for decision making.
The requirement of a threshold adds another layer of perfor-
mance improvement, but more tentative efforts must be made
to select the thresholds. Even though LB classifiers are a more
suitable solution, it suffers from computational complexity
and is difficult to implement as complete knowledge of the
recevied signal’s probability density function must be known
to derive the likelihood function of the signal. Some of the LB
classifiers studied in literature [1], [3] include machine learn-
ing (ML), Average likelihood ratio test (ALRT), Generalized
likelihood ratio test (GLRT), and Hybrid likelihood ratio test
(HLRT).

The FB classification approach is much easier to implement
and is not as computationally complex as the LB approach.
The selection of suitable features and classification algorithm
is the challenge. FB classifiers can be divided into two
subsystems; the feature extraction subsystem and the classifier
subsystem, shown conceptually in Fig. 1. Several features
are extracted from the received signal and a decision is
made based on the values of those features. The features
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Fig. 1. Conceptual feature-based classification approach

extracted must be able to represent the difference between
signal classes. The features are either instantaneous amplitude,
frequency and phase, Fourier and Wavelet transform based
or higher-order statistic (moments and cumulants) based.
Similarly, Hazza et al. [4] showed that many combinations
of classification algorithms and features have been used to
solve the classification problem.

B. Machine Learning Classifiers

Various machine learning techniques have been employed
to simplify the decision-making process and to reduce the di-
mension of the feature set, while at the same time maintaining
a classification algorithm which is computationally efficient.

1) Artificial Neural Networks: Neural networks solve what
is known as a supervised regression and classification prob-
lems. The model takes input and output data to find the
connection between them. Neural networks are a computa-
tional approach which tries to mimic the way a biological
brain solves problems. It is characterised by its pattern of
connections between neurons [9].

2) Support Vector Machines: The concept of a support
vector machine revolves around the idea of a “margin” either
side of a hyperplane that separates data classes [9]. The goal
is to maximise the margin by creating the largest possible
distance between the separating hyperplane and the instances
on either side. A higher-dimensional space, also known as the
feature space can be used to define a hyperplane in higher
dimensions to separate classes which cannot be separated
otherwise. Linear and non-linear algorithms exist to define
the hyperplane.

3) k-Nearest Neighbour: The k-Nearest Neighbour (KNN)
classification approach is based on the principle that the in-
stances within a dataset will generally exist in close proximity
to other instances with the same properties [9]. The training
dataset is vectors in a multidimensional feature space, with
its class label. An unclassified instance can be labeled by
observing the class of its nearest neighbors. k is a user-defined
constant, and the unlabelled instance is classified by assigning
the label which is most frequent among the k training samples.
KNN are sensitive to the choice of the similarity function used
to compare instances. Many algorithms exist which calculates
the best possible value for k.

In [1] Zhu et al stated that SVM only needs the training
data when establishing the separating hyperplane. The training
signal is not involved in any further calculation after training,
therefore the testing stage is relatively inexpensive, compared
with KNN, with regards to computations, which makes it
suitable for implementing on commodity hardware.

C. Communication Channels

Two of the commonly used communication channel models
used to evauluate AMC are the AWGN channel and the
Rayleigh- and Rician multipath fading channels. AWGN is
added noise that might be intrinsic to the information systems
[10], [11]. This type of noise is caused by external sources
such as atmospheric conditions, extraterrestrial sources (solar,
cosmic), and internal noise at the receiver. Internal noise
includes thermal noise, reflections caused by transmission line
impedance mismatching, etc. The term white refers to the
idea that the noise has uniform power across the frequency
band (constant spectral density) and a Gaussian distribution
of amplitude.

Rayleigh- and Rician channels [11] falls within the class
of small-scale fading (rapid variations of the signal levels due
to the constructive and destructive interference of multiple
signal paths due to shadowing, reflection, refractions). Fading
in the broad sense causes variations of the signal amplitude
over time and frequency. In general, any wireless channel is
subject to line-of-sight (LOS) and non line-of-sight (NLOS)
propagation. The probability density function (PDF) of a
signal received in a LOS environment follows a Rician
distribution, while that in a NLOS environment follows a
Rayleigh distribution [11].

The strongest scattering component usually corresponds
to the LOS component (specular component). All the other
components are NLOS components.

In (1) the PDF of a Rician channel is expressed, where
ep(✓) denotes the PDF of angle of arrival (AoA) for the scat-
tering components and ✓0 denotes the AoA for the specular
component [11] .

p(✓) =
1

K + 1
ep(✓) + K

K + 1
�(✓ � ✓0) (1)

K is defined as the Rician factor, which denotes the
strength of the LOS component.

K =
c2

2�2
(2)

where c2 is the power of the LOS component and 2�2

is the power of the scattering component. A Rician channel
approaches an AWGN channel as K >> 0dB and a Rayleigh
channel as K < 0dB.

III. RELATED WORK

Table I gives a summary of related feature based classifiers
with higher-order signal statistics as features.

In [12] Ebrahimzadeh et al. achieved a classification ac-
curacy of 83.23%, 88.23%, 93.62%, 96.14%, and 97.82% at
-3, 0, 3, 6 and 9 dB SNR respectively, through a particle
swarm optimisation algorithm, to enhance the classification
performance of a radial-basis function neural network. In [6]
Shih et al. used a decision tree classification approach, which
achieved a classification accuracy of 95% for a SNR lower
than 10 dB, and 100% for a SNR over 15 dB.

Aslam et al. [5] introduced a Genetic Programming (GP)
and KNN classification approach. A classification accuracy
of 81% at a SNR of 5 dB with a sample size of 1024 using
a KNN classifier was advised. Combining KNN with GP a
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TABLE I
A SUMMARY OF RELATED WORK

Author(s) Features Modulations Channel

Ebrahimzadeh [12] HOS (moments, ASK2, ASK4, AWGN
et al. cumulants [2, 4, 8]-PSK

up to order eight) [8, 16, 32, 64,
128]-QAM

Shih et al. [6] Fourth-order BPSK, QPSK, AWGN,
cumulants 8PSK, 16QAM, Rayleigh

64-QAM

Aslam et al. [5] Fourth- and sixth BPSK, QPSK, AWGN
order cumulants 16QAM, 64QAM

Pambudi et al. [13] Mean, variance, QPSK, 16QAM, Rayleigh
skewness, 64QAM, OFDM

kurtosis, HOS

Prakasam et al. [14] Wavelet transform, M-ary PSK, AWGN
mean, variance M-ary QAM,

GMSK,
M-ary FSK

performance increase of 7% were achieved. At a SNR of 15
dB an accuracy of 97% with 1024 samples were achieved.

Pambudi et al. [13] concluded that the variance, skewness,
and kurtosis were able to distinguish QPSK subcarriers in
an OFDM system from 16QAM and 64QAM. Higher-order
moment 10, 14, 18 and 20 were able to distinguish 16QAM
from 64QAM.

Prakasam et al. [14] used a Wavelet transform and sta-
tistical parameters A SNR lower bound of 5 dB produced
a classification accuracy of 96.8%. A decision tree approach
was followed. More related work is found in [3] and [4] gives
a survey of AMC techniques, approaches and trends, and an
overview of the different feature based methods respectively.

Our approach simplifies the feature extraction process
by combining first, second, third and fourth-order moments
(which is simple to compute) with higher-order moments
and cumulants to characterise M-ary PSK and M-ary QAM
signals. The smallest number of features are chosen, which
are able to distinguish between the modulation in low SNR.

IV. SYSTEM MODEL

A mathematical expression of the signal model and features
are presented. Fig. 2 shows a high-level implementation of the
feature extraction block shown conceptually in Fig. 1.

In Fig 2 [13] the generation of M-ary PSK and M-ary
QAM signals are shown, with the implementation of the
statistical feature extraction. The input bit stream x[n] is
modulated by PSK and QAM, which results in complex
symbols. The transmitted signal y[n] is corrupted by AWGN
channel, producing the received signal z[n].

Baseband modulation produces the complex envelope y[n]
of the message signal x[n], and y[n] is a complex-valued
signal that is related to the output of a passband modulator,

Y1(t)cos(2⇡fct+ ✓)� Y2(t)sin(2⇡fct+ ✓), (3)

where fc is the carrier frequency, ✓ is the carrier signal’s
initial phase. The baseband signal is equal to the real part of

[(Y1(t) + jY2(t))e
j✓]exp(j2⇡fct) (4)

Bit stream M-QAM

M-PSK

Comms. 
Channel

Instantaneous 
Amplitude

Instantaneous Phase

µ 

κ 

σ2

Ѕ 

σm

x[n] y[n]

z[n]

β 

Cpq

Fig. 2. M-PSK and M-QAM generation and statistical feature extraction

which is
[(Y1(t) + jY2(t))e

j✓], (5)

and the complex vector y[n] is a sampling vector of the
complex signal.

If s(t) is an analytical signal (complex valued signal) in
the polar form of

s(t) = a(t)ej✓(t), (6)

a(t) is the instantaneous amplitude of the signal and ✓(t)
is the instantaneous phase. The instantaneous amplitude is
normalised (An) to eliminate the effect of bit energy for
modulations with a higher power content such as M-ary QAM
signals.

The received signal z[n] is processed to extract the instanta-
neous amplitude and phase from the signal. The instantaneous
amplitude and phase are used to extract the statistical features
such as the mean (µ), variance (�2), skewness (s), kurtosis
(), higher order-moments (�m), signal power key (�) and
cumulants (Cpq).

These features allows characterisation of each modulations’
respective PDF. Each modulation can be classified based on
their respective distributions. When the signal shows Gaussian
characteristics, it can be fully described using the first and
second order moments (mean and variance). A non-Gaussian
signal needs higher-order statistics to fully characterise it.
Each feature is expressed mathematically as follows:

The first feature is mean of the received signal components,
also know as the first order moment, denoted as

µ(x) =
1

N

N�1X

i=0

xi (7)

where N is the total number of samples and xi is the sample
value at i. The second feature is the variance of the received
signal components, which is the second order moment.

�
2(x) =

1

N

N�1X

n=0

(xi � µ)2 (8)

Page 82 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017



The third feature is the called the skewness, which is the
third order moment, and expressed mathematically as

s(x) =
1

�3

PN�1
n=0 (xi � µ)3

N
. (9)

The fourth feature is the kurtosis or the fourth-order
moment of the received signal’s components,

(x) =
1

�4

PN�1
n=0 (xi � µ)4

N
. (10)

The fifth feature extracted is the higher order-moment

�
m(x) =

1

N

N�1X

n=0

(xi � µ)m (11)

where m is the moment order. Another usefull feature is the
cumulants of a random variable. The advantage of cumulants
over moments is its benefit to recognize Gaussian and non-
Gaussian signals [15]. When signals are non-Gaussian the
first two moments do not define their PDF and therefore
higher-order statistics (order greater than two) can reveal
other information about the signal that second-order statistics
cannot. Ideally the entire PDF is needed to characterise a
non-Gaussian signal. Cumulants of order three or higher of
Gaussian noise vanishes completely. The bispectrum of a
non-Gaussian signal will filter out the Gaussian noise part
and consequently will represent only third-order and higher
cumulants of the signal. Bispectrum is a statistic used to
search for non-linear interactions, also known as the Fourier
transform of the third-order cumulant generating function.

According to [15], the cumulative distribution function
(CDF) of a random variable x, denoted by F (x). The central
moment about the mean of order v of x is

µv =

Z 1

�1
(x�m)vdF, (12)

where v = 1, 2, 3, 4, ... and m is the mean of x. Next one can
introduce the characteristic function

�(t) =

Z 1

�1
exp(jtx)dF =

1X

v=0

µv(jt)
v/v!, 8R 2 t (13)

where j =
p
�1, exp(x) is the exponential function, and µv

is the moment of order v about the origin. The coefficients
of (jt)v/v! is the power series Taylor expansion of the char-
acteristic function �(t), which is the moments of a random
variable [15]. The moments are a set of descriptive constants
of a distribution. Under certain conditions, moments are not
capable of fully describing a distribution, where cumulants
have the ability to do so. Cumulants make up another set of
constants.

In [15] cumulants are expressed as,

�(t) =

Z 1

�1
exp(jtx)dF = exp

( 1X

v=1

Cv(jt)
v/v!

)

where Cv is the cumulants of x. Cv is the coefficients of
(jt)v/v! in the power series Taylor expansion of the natural

logarithm of the characteristic function �(t), or ln�(t). The
moments of a complex random variable (auto-moment [12])
is given as

Mpq = E[sp�q(s⇤)q] (15)

and the cumulans are expressed in the general form of

Cum[s1, ..., sn] =
X

8v
(�1)q�1!E

8
<

:
Y

j2v1

sj

9
=

; ..!E

8
<

:
Y

j2vq

sj

9
=

;
(16)

where p is the moment order and s⇤ is the complex conjugate
of s, and s = a+jb with a zero-mean discrete signal sequence.

According to [5] the higher fourth-order cumulants can be
expressed in one of three possible ways,

C40 = cum(y(n), y(n), y(n), y(n))

= M40 � 3M2
20

C41 = cum(y(n), y(n), y(n), y(n)⇤)

= M40 � 3M20M21

C42 = cum(y(n), y(n), y(n)⇤, y(n)⇤)

= M42 � |M20|2 � 2M2
21

(17)

Our sixth feature is the ratio between the absolute value of
the ratio of C40 and C42. This feature was introduced by [6]
to distinguish between 8PSK and QPSK modulated signals.
Another useful feature is the signal power key, �. This feature
is used to differentiate between a signal with complex and real
signal components.

� =

PN
n=0 rQ[n]

2

PN
n=0 rI [n]

2
(18)

where rQ[n] and rI [n] are the quadrature and in-phase com-
ponents of the signal respectively [2].

V. METHODOLOGY

Two simulation experiments are conducted in this section.
The first experiment evaluates the statistical features to de-
termine the smallest number of features needed to distinguish
the modulation schemes. The second experiment evaluates the
performance of a SVM, in an AWGN channel, in classifying
the modulations based on the final feature set determined in
the first experiment. Our feature extraction and classification
model is implemented in MATLAB. For the first experiment,
for each modulation scheme, the mean, variance, skewness,
kurtosis, 12th-order moment of the instantaneous amplitude
and phase are extracted and compared at SNR levels of 0 dB
to 15 dB. Two fourth-order cumulants of the received signal
and the signal power key is also evaluated. In Fig. 3-5 the
results achieved are presented.

The SNR levels range from 0 dB to 15 dB (1 dB incre-
ments). The modulations considered include BPSK, QPSK,
8PSK, 16QAM, 32QAM, and 64QAM, which is chosen based
on the most commonly used technologies and their respective
modulation schemes employed in the UHF frequency band
(300 MHz - 5 GHz) as set out in the National Frequency
Plan (NFP) by the Independent Communications Authority
of South Africa (ICASA) as stated in [16]. For our second
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Fig. 3. First and second order statistical features

experiment, the SVM has been chosen as our initial classifier
to evaluate the performance of these features in classifying
the modulations in AWGN noise. The SVM is chosen on
the basis of its ability to separate the modulations from
each other through a hyperplane when the selected features
show a big enough separation between them. Experimental
parameters are summarised in Table II. Refer to our system

TABLE II
EXPERIMENTAL PARAMETERS

Parameter Value
Modulations [BPSK,QPSK,8PSK,

16QAM,32QAM,64QAM]
Number of Signal Symbols 1024 symbols
Number of iterations 100
Training dataset Size 1000 entries (per modulation)
SNR 0:15 dB in 1 dB increments

model in Fig. 2, where a random symbol stream is generated
at the beginning of each experimental iteration. The generated
random symbols are based on a uniform pseudo-random
number generator while keeping the seed value constant per
modulation. This ensures that the performance of the classifier
is message independent. The random symbol stream is mod-
ulated using M-ary PSK and M-ary QAM modulation. The
baseband modulated signal is sent through the communication
channel from where the features are extracted. With five input
features and six possible outputs, a total of 6000 data elements
were used to train the classifiers. The training data were
randomly sorted and loaded. Fifty percent of the generated
data were used for training, 25% were used for validation
and the last 25% for testing.

VI. RESULTS

A. Feature Evaluation

From the results obtained, it is clear that the mean of
the normalised instantaneous amplitude and phase in Fig. 3a
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Fig. 4. Third and fourth order statistical features

and 3b does not contribute anything in discriminating the
modulations. The variance of the normalised instantaneous
amplitude (Fig. 3c) makes a clear distinction between M-
ary PSK and M-ary QAM signals. The variance of the
instantaneous phase in Fig. 3d discriminates BPSK and QPSK
from the other modulations. In Fig. 4d the kurtosis of the
instantaneous phase can be used to discriminate 8PSK from
the other modulations. Furthermore, the 12th-order moment
of the normalised instantaneous amplitude, � and |C40

C42
| (Fig.

5) can be used to identify 16QAM, 32QAM and 64QAM
from the rest. The features chosen show a good amount of
separation between them, therefore the use of a SVM is a
suitable choice.

B. Performance of Classifier

Using the results obtained in VI-A, the following features
(Table III) are chosen as input for a SVM classifier. The
performance of the classifier is presented in Table IV in the
form of a confusion matrix at different SNRs.

TABLE III
STATISTICAL FEATURES USED FOR CLASSIFICATION

Features
1 �

2 of the instantaneous phase
2  of the instantaneous phase
3 M12 of the normalised instantaneous amplitude
4 �

5 |C40/C42|

There can be seen that QPSK and 8PSK show an 85% (15%
classified as 8PSK) and 88% (12% classified as QPSK) accu-
racy at 0 dB respectively, while the results for BPSK, 16QAM,
32QAM, and 64QAM are promising at 100% accuracy. For
a SNR of 5 dB and above the performance of the classifier is
100%. Compared to related work, as discussed in section III,
the performance of classifying these M-ary PSK and M-ary
QAM modulation, given our set of features, compare well.
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Fig. 5. Higher-order statistical features

TABLE IV
PERFORMANCE OF SVM AT DIFFERENT SNRS

SNR Modulation BPSK QPSK 8PSK 16QAM 32QAM 64QAM
Type

0dB

BPSK 100%
QPSK 85% 15%
8PSK 12% 88%

16QAM 100%
32QAM 100%
64QAM 100%

5dB

BPSK 100%
QPSK 100%
8PSK 100%

16QAM 100%
32QAM 100%
64QAM 100%

10dB

BPSK 100%
QPSK 100%
8PSK 100%

16QAM 100%
32QAM 100%
64QAM 100%

In [6] BPSK, QPSK, 8PSK, 16QAM and 64QAM were
classified with a performance accuracy of 95% at SNR lower
than 10 dB.

VII. CONCLUSION

The aim of this paper was to discover which of the
statistical properties derived from the instantaneous amplitude
and phase of the received signal can be used to successfully
classify M-ary PSK and M-ary QAM signals corrupted by
an AWGN channel. The features were evaluated over a range
of SNR values. The final features used to classify the M-
ary PSK and M-ary QAM signals are presented in Table III.
A SVM was used to classify the modulations with an overall
classification accuracy of 95% at 0 dB and 100% classification
accuracy at a SNR of 5 dB and above. Compared to the related
work in [6] and [14] our approach achieved good accuracy.

VIII. FUTURE WORK

For future work, a Rician- and Rayleigh communication
channel will be added to the simulation model to test the
robustness of the features against multipath propagation. The
performance of the classifier will be evaluated using I/Q
streams from recorded signals. The feature set may adapt and
expand to accommodate the changes in the communication
channel to ensure good performance. More will done to
determine which classification algorithm (SVM, Artificial
Neural Network (ANN) and KNN) will be better suited
for our problem, given these adapted channel conditions.
The implementation of the feature extraction processes on
hardware such as a Raspberry Pi 3 single-board computer
will be investigated.
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