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Summary

In 2014, the WHO declared tuberculosis (TB) an epidemic, as an estimated 9 million people
suffered from Mtb infection. Today, millions of mortalities are still reported worldwide as a result
of this disease. This growing TB incidence may be ascribed to a variety of reasons, including,

treatment failure, poor patient adherence, lack of new anti-TB drugs, and long treatment duration.

Despite the wide research on anti-TB drugs to date, the mechanisms of these drugs remain poorly
understood. Colistin sulfate (CS) and colistin methanesulfonate (CMS) provide hope for a
promising outcome as a new anti-TB drug, however its exact mechanism of action has not been
explored. It is also unclear how colistin could provide the necessary treatment advances to the
current six-month “directly observed treatment short-course” (DOTS) regimen. Thus, there is a
need for new, sensitive and specific analytical techniques to elucidate the anti-bacterial effect of

colistin on TB.

Considering this, we used GCxGC-TOFMS metabolomics and identified new metabolite markers
for the purpose of confirming or elucidating both forms of colistin’s mechanisms of action against
Mycobacterium tuberculosis (Mtb). The most significant observations were the unanimous flux in
the metabolism of the colistin treated Mtb towards fatty acid synthesis and cell wall repair,
confirming previous reports that colistin acts by disrupting the cell wall of mycobacteria.
Accompanying this, is a subsequently elevated glucose uptake, since it serves as the primary
energy substrate for the upregulated glyoxylate cycle, and additionally as a precursor for further

fatty acid synthesis via the glycerolipid metabolic pathway.

In addition to the proposal of a number of new hypotheses, explaining various mechanisms of
colistin, the mapping of the newly identified metabolite markers led to the confirmation of various
previously suggested metabolic pathways and alterations thereof due to an assortment of
perturbations. Therefore, this study significantly contributes to the characterisation of colistin,
which may in the future lead to a new treatment protocol for TB, pertaining to the global TB

epidemic.

Key words: Metabolomics; Mycobacterium tuberculosis; Colistin; Tuberculosis



Opsomming

Afrikaanse titel:

Toeligting van die antimikrobiese meganismes van colistien op Mycobacterium

tuberkulose met behulp van metabolomika.

In 2014 het die WGO tuberkulose (TB) 'n epidemie verklaar, aangesien 'n beraamde 9 miljoen
mense aan Mtb-infeksie gely het. Vandag word miljoene sterftes steeds wéreldwyd gerapporteer
as gevolg van hierdie siekte. Hierdie groeiende TB-voorkoms kan toegeskryf word aan verskeie
redes, insluitende behandelingsversaking, swak pasiéntafhanklikheid, gebrek aan nuwe anti-TB-

middels en lang behandelingstydperk.

Ten spyte van die verskillende navorsing oor anti-TB medisyne tot op datum, bly die meganismes
van hierdie middels swak verstaan. Colistiensulfaat (CS) en colistienmetansulfonaat gee
aanleiding tot 'n belowende uitkoms as 'n nuwe anti-TB middel, maar die presiese meganisme
van werking is nog nie ondersoek nie. Dit is ook onduidelik hoe colistien die nodige
behandelingsvorderings kan bied aan die huidige 6 maande "regstreeks waargeneemde
behandeling kort kursus" (DOTS) regime. Daar is dus 'n behoefte aan nuwe, sensitiewe en

spesifieke analitiese tegnieke om die anti-bakteriese effek van colistien op TB te verhelder.

In die lig hiervan het ons GCxGC-TOFMS metabolomika gebruik en nuwe metaboliese merkers
geidentifiseer vir die bevestiging of beklemtoning van beide vorme van colistien se meganismes
van werking teen Mtb. Die belangrikste waarnemings was die eenparige vioei in die metabolisme
van die colistien behandelde Mtb na vetsuur sintese en selwand herstel, wat vorige verslae
bevestig dat colistien die selwand van mycobacteria ontwrig. Gevolglik kom 'n verhoogde glukose
opname voor, aangesien dit as die primére energie substraat dien vir die opgereguleerde
glyoksilaat siklus, en addisioneel as 'n voorloper vir verdere vetsuur sintese via die gliserolipied

metaboliese weé.

Benewens die voorstel van 'n aantal nuwe hipoteses, wat verskeie meganismes van colistien
uiteensit, het die kartering van die nuut geidentifiseerde metaboliese merkers die verskeie

voorheen voorgestelde metaboliese weé, en veranderinge daarvan as gevolg van 'n



verskeidenheid perturbasies, bevestig. Daarom dra hierdie studie aansienlik by tot die
karakterisering van kolistien, wat in die toekoms tot 'n nuwe behandelingsprotokol vir TB kan lei,

wat verband hou met die globale TB-epidemie.

Sleutelwoorde: Metabolomika; Mycobacterium tuberkulose; Colistien; tuberkulose



List of tables and figures

Table 1:1 the r€SCaAICH 1AM, ....v e 16

Table 3:1 The 21 metabolite markers that best explain the variance between the individually

cultured Mtb samples in the absence (Mtb-Controls) and presence (Mtb-CS) of colistin sulfate.

Table 4:1 The 22 metabolite markers best explaining the variance between the individually
cultured Mtb samples in the absence (Mtb-Controls) and presence (Mtb-CMS) of colistin

NN AN E S U ONATE. .. eeieie e e e et eaaeaes 85

Figure 1-1 Global trends in the estimated number of incident TB cases and the number of TB

deaths (in millions), 2000—2016. Shaded areas represent uncertainty intervals.......... 12
Figure 3-1 PCA differentiation using the GCxGC-TOFMS whole metabolome analysed data of the
individually cultured Mtb in the absence (Mtb-Control) and presence (Mtb-CS) of colistin sulfate

(32 mg/mL). The variances accounted for are indicated in parenthesis. ....................... 63

Figure 3-2 Venn diagram illustrating a multi-statistical approach for selecting the 21 metabolite
markers best describing the variation detected between the individually cultured Mtb samples in

the presence and absence of colistin sulfate. ... 64

Figure 3-3 Altered Mtb metabolome induced by treatment with colistin sulfate. The schematic
representation indicates the 21 metabolite markers in bold and the confirmatory metabolites which
were also elevated, but not necessarily significantly so, indicated in italics. Increase and decrease

in the metabolite markers are indicated by 1| respectively. .........ccccccvviiiiiiiiiiiiiiiiiinnns 68

10



Figure 4-1 PCA differentiation of individually cultured Mtb in the absence (Mtb-control) and
presence (Mtb-CMS) of colistin methanesulfonate (32 pg/mL) and analysed via GCxGC-TOFMS.

The variances accounted for are indicated in parenthesis. .............cccccevvviiiiiiiiieeeeeeenn, 81

Figure 4-2 Venn diagram illustrating the multi-statistical selection criteria of the 22 metabolite
markers best describing the variation between the individually cultured Mtb sample groups in the

presence and absSence Of CIMS. ... ... . i i i 82

Figure 4-3 Metabolite markers best describing the variation in the metabolome of the CMS treated
Mtb compared to that of Mtb cultured without CMS, are schematically represented in bold and
those metabolites which were not necessarily significantly elevated using the statistical procedure
selected, but still showed significance via considering their P-values, indicated in italics. Elevated

and reduced concentrations of each metabolite marker indicated by either 1 or | respectively.

Figure 4-4 Pentose phosphate pathway indicating an elevated flux in the CMS treated Mtb towards
glyceraldehyde-3-phosphate and fructose-6-phosphate, via the elevated erythrose and reduced

ATADINOSE CONCENITALIONS. .. .eee e e 88

11



Chapter 1: Preface

1.1 Background and motivation

According to the World Health Organization (WHO) (2015), one of the world’s deadliest
communicable diseases is tuberculosis (TB). TB is an airborne, infectious bacterial disease
caused by Mtb and it usually affects the lungs (Floyd, 2014). In 2013, an estimated 9 million
people developed TB, with an estimated 1.6 million mortalities that were reported. According to
the WHO surveillance system report, 5% of all TB cases were multidrug-resistant TB (MDR-TB)
in 2014 (WHO, 2016). The 2017 WHO TB report indicated the TB incidences and deaths among
people with and without human immunodeficiency virus (HIV) as seen in Figure 1-1 (WHO, 2017).
These statistics are rather disturbing considering the fact that TB can be prevented and is, in most

instances, a curable disease.

TB incidence TE deaths
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Figure 1-1 Global trends in the estimated number of incident TB cases and the number of
TB deaths (in millions), 2000-2016. Shaded areas represent uncertainty intervals (WHO,
2017).

Patients with drug-susceptible TB can successfully be cured with a 6-month regimen (the DOTS
programme), consisting of four first-line drugs, namely rifampicin, isoniazid, ethambutol and
pyrazinamide (Kamfer, 2013). Although the success rate of the current drug-susceptible TB is
85%, it is far lower for MDR-TB (Raviglione, 2014). Therefore, a new, less toxic, faster-acting TB

treatment approach is urgently needed to eradicate this disease.
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Recently-introduced bedaquiline was the first new anti-TB drug in 45 years, targeted at treating
MDR-TB. The lack of new anti-TB drugs over the years may be due to the poorly understood
mechanisms of Mtb, but more likely the fact that interest in new TB drug development waned after
the discovery of the frontline drugs, which were considered sufficient. (de Villiers & Loots, 2013).
Colistin was one of the first antibiotics showing significant activity against gram-negative bacteria,
hence making it a feasible candidate for investigation. Although colistin was discovered in the
1940s, it was only used for a short period due to its nephron- and neurotoxicity. Colistin
methanesulfonate, however, can be inhaled which may serve as a means for getting around its
toxicity to humans (Falagas et al., 2005). Considering the lack of second-line drugs for treating
TB, and the need for shorter treatment protocols for drug susceptible TB, it is worth investigating

colistin as a treatment option.

According to the literature, colistin interacts electrostatically with the gram-negative outer
membrane of bacteria and competitively displaces divalent cations from the negatively charged
phosphate groups of membrane lipids (Peterson et al., 1985). Insertion of colistin disrupts the
outer membrane and lipopolysaccharides are released (Chen & Feingold, 1972). Additionally,
electron microscopic results have demonstrated that membrane vesicles emerge from the surface
of gram-negative bacteria in the presence of colistin (Lopes & Inniss, 1969). Colistin is likely to
have the same effect on Mtb, allowing for a possible promising outcome (de Knegt , et al., 2017,
Bax, et al., 2015; van Breda, et al., 2015, Cassir, et al., 2014; Rastogi, et al., 1986).

Considering this, a characterisation perspective is needed of colistin and its anti-TB mechanism.
Hence, metabolomics, the relatively new research field, uses highly sensitive analytical techniques
that identify and quantify all metabolites in a biological system (Dunn et al., 2005). For the past
years, a variety of diseases have been characterized with the use of metabolomics, including TB
(Schoeman et al., 2011). Considering the above-mentioned, metabolomics would serve an
excellent characterisation perspective (de Villiers & Loots, 2013) on the drug mechanism of
colistin. The investigation will contribute to existing scientific knowledge on colistin’s drug
mechanism, by clarifying the Mtb’s metabolomic profile when treated with colistin. According to
Al-Khayyat A.A. & Aronson A.L. (1973) CS and CMS have different antibacterial activities,
pharmacokinetics, and pharmacodynamics. Thus an understanding of the mechanisms of CS and
CMS on Mtb is very important for interpreting results from metabolomic studies.

13



1.2 Aim and objectives of the study

1.2.1 Aim

The aim of this study is to use metabolomics to better characterize colistin sulfate and colistin

methanesulfonate as possible anti-TB drugs.

1.2.2 Objectives

The above-mentioned aim will be accomplished by completing the following objectives:

1. The development of the most optimal methodological approach for the metabolomics

investigations of cultured samples.

2. The application of the relevant developed methodology in objective 1 to identify metabolite

markers for the purpose of better characterizing colistin sulfate in treated Mtb.

3. The application of the relevant developed methodology in objective 1 to identify metabolite

markers for the purpose of better characterizing colistin methanesulfonate in treated Mtb.

1.3 Structure of article dissertation

This article dissertation is a compilation of chapters written specifically to comply with the
requirements of the North-West University, Potchefstroom Campus, South Africa, for the
completion of the degree Magister Scientiae (Biochemistry) in article dissertation format. In order
to ensure easy reading and a logical flow, all chapters contain their own introduction, materials

and methods, results, discussion, conclusions and reference sections.

Chapter 1 gives a brief background of the conducted study, focusing on the aim and objectives.
This chapter also discusses the structure of the article dissertation and the outcomes of the study,
and clarifies the contributions and roles of each co-author and co-worker towards the completion

of this study.
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Chapter 2 provides an overview of the relevant literature required as a basis for understanding
the results, discussion and conclusions in the chapters that follow. A part of this chapter has been
published in the journal Advances in Protein Chemistry and Structural Biology.

Chapter 3 describes the use of a GC/GC-TOF/MS, metabolomics methodology for characterizing
colistin sulfate (the anti-TB drug) treated Mtb specimen. The GC/GC-TOF/MS-generated data was
consequently analysed using multivariate statistical data analysis (PCA and PLS-DA), in order to
identify those metabolite markers contributing to colistin sulfate’s mechanism of action. This

chapter has been submitted to the journal Tuberculosis.

Chapter 4 describes the above-mentioned GC/GC-TOF/MS metabolomics approach, except for
the characterization of (the anti-TB drug) colistin methanesulfonate- treated Mtb sample. The
GC/GC-TOF/MS-generated data was consequently analysed using multivariate statistical data
analysis (PCA and PLS-DA), in order to identify those metabolite markers contributing to the
elucidation of colistin methanesulfonate’s mechanism of action. This chapter has been submitted

to the journal Tuberculosis, and a brief communication.

Chapter 5 is a comprehensive discussion and conclusion of the results obtained in Chapters 3
and 4. Additional recommendations and future research prospects, potentially emanating from this

research, are discussed.

1.4 Outcomes of the study

The publications which originated from this study are attached in Appendix 1-3.
Manuscripts - Appendix 1-3

Koen, N., Du Preez, |., Loots du, T., 2016. Metabolomics and personalized medicine. Adv. Protein
Chem. Struct. Biol. 102, 53-78.

Koen, N., van Breda, S., & Loots, D.T., 2018. Elucidating the antimicrobial mechanisms of colistin

sulfate on Mycobacterium tuberculosis using metabolomics. Tuberculosis. 111, 14-19.

Koen, N:; van Breda, S; Loots, D.T., 2018. Metabolomics of colistin methanesulfonate treated

Mycobacterium tuberculosis. Tuberculosis. 111, 154-160.
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1.5 Author contributions

The primary author/investigator of this dissertation in article format is Nadia Koen. The
contributions of the co-authors, co-workers and collaborators towards this work, are summarized
in Table 1-1.

The following is a statement from the primary investigator and supervisor, confirming their
individual roles in the study and giving their permission that the data generated and conclusions
made may form part of this article dissertation:

| declare that my role in this study, as indicated in Table 1-1, is a representation of my
actual contribution, and | hereby give my consent that this work may be published as part
of the M. Sc. article dissertation of Nadia Koen.

Prof. Du Toit Loots Nadia Koen

Table 1:1 the research team.

Co-author Co-worker Contribution

Nadia Koen Responsible, together with
(B.Sc. Hons. the study leader, for the conceptualizing,
Biochemistry) planning, execution, data analyses, and

writing of the article dissertation,
publications, and all other documentation
associated

with this study
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Prof. Du Toit Loots
(Ph.D.

Biochemistry)

Dr. Shane Vontelin

van Breda

(Ph.D.

Biochemistry)

Dr. llse du Preez
(Ph.D.
Biochemistry)

Mrs. Derylize
Beukes Maasdorp
(B.Sc.

Biochemistry)

Study leader:
Conceptualized, coordinated and
supervised all aspects of the study,
including the study design, planning,
execution, writing of the article dissertation,
publications,
and all other documentation associated with

this study

Provided and performed the culturing of cell

samples, used in Chapter 3 and 4

Co-author on two review papers and
responsible, together with the other co-
authors, for developing and conceptualizing
the review topic, working on

data acquisition and drafting the article

Assisted with sample analyses, as officially

appointed laboratory manager
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Chapter 2: Literature overview

A part of this chapter has been published in the Advances in Protein Chemistry and

Structural Biology

Koen, N., Du Preez, |., Loots du, T., 2016. Metabolomics and personalized medicine. Adv. Protein
Chem. Struct. Biol. 102, 53-78.

2. 1. Introduction

Approximately 10.4 million new cases of tuberculosis (TB), caused by the bacteria Mycobacterium
tuberculosis (Mtb), and 1.4 million deaths, are reported worldwide per annum (WHO, 2016). These
alarming statistics on TB control globally is attributed to insufficient diagnostics, inadequate
vaccination strategies, poor patient compliance to anti-TB treatment (due to accessibility to drugs,
the drug side effects, and the long treatment duration), and the rapidly increasing drug-resistant
strains of Mtb in many third world countries. In the current chapter, considering the title and aims
of this investigation, a review of relevant literature will be given which includes current knowledge
of the state of TB disease in general. Also discussed are TB treatment approaches and the drugs
used for these purposes, considering their advantages and disadvantages. Additionally, we will
specifically focus on colistin’s antimicrobial mechanisms of action and the role of metabolomics in

TB research.

2.2. Pathophysiology of tuberculosis

TB transmission occurs via the spread of aerosolized droplet nuclei, containing Mtb particles,
which are expectorated during talking, sneezing or coughing by an individual with active
pulmonary TB - and these droplets can remain suspended in the air for several hours (World
Health Organization, 2015). Infection occurs when a non-infected individual inhales these droplet
nuclei, which then traverse the respiratory passages and respiratory tract and bronchi, and finally
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reach the alveoli of the lungs (Smith, 2003). Mtb is known to develop most frequently in the
parenchyma of the lungs, yet it has been found to spread throughout the body, with the possibility
of infecting any organ system (Miranda et al., 2012). After entering the alveoli, the host
macrophages engulf these nuclei, which leads to a cascade of events that will result in either a
suppression of the infection or the progression of the disease to active TB (Villarino et al., 1992).
Once inside the macrophages, the Mtb slowly replicates and spreads via the lymphatic system to
the hilar lymph nodes, inducing an immune response after 2-8 weeks of the infection. This immune
response is characterised by activation of the T-lymphocytes and macrophages, which in turn may
lead to the formation of necrotic granuloma containing non-viable Mtb, via host cytokines
(Fremond et al., 2005), characterised by the release of interferon-y from the activated T-
lymphocytes (BoseDasgupta & Pieters, 2014). If the infected host has a high immunity, Mtb can
be maintained in these granulomas indefinitely. However, an active disease state can occur at
any time when the host’s immune system becomes compromised (because of factors such as
human immunodeficiency virus (HIV); diabetes mellitus; renal failure; extensive corticosteroid
therapy; malnutrition and vitamin D or A deficiency) (Esmail et al., 2014), and it can hence no
longer contain the Mtb in this non-replicative state (Smith, 2003).

The clinical symptoms of active TB, including: hemoptysis, coughing, night sweats, fever, chest
pain, weight loss and dyspnea might only occur at a later stage of the disease progression
because of the perfidious onset of TB. These symptoms are, however, not a confirmation of TB,
but typically precede the disease and could correlate with many other diseases or infections in the
lungs (Knechel, 2009).

2.3. Tuberculosis treatment

Conventional disease diagnostics generally entails a physician identifying a disease or
abnormality on the basis of a physical examination of the symptomatic patient, with (or without)
the additional use of standard diagnostic tests. These test include Xpert® MTB/RIF Ultra cartridge,
critical concentrations for culture-based drug-susceptibility testing, etc. A positive diagnosis is
normally followed by treatment using drugs produced on a large scale and administered at a
standardized and universally-accepted dosage. These conventional drugs are developed to treat
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general symptoms or the disease as determined by the mean results obtained over large
population groups (Debas et al., 2006). However, it is crucial to understand that because of, for
example, genetics and a variety of other factors such as individual diet, habits (e.g. smoking),
gender etc., not all diseases affect all individuals in the same manner (Jirtle & Skinner, 2007), and
neither do all individuals respond to treatment in the same way (Dworkina et al., 2014). This
occurrence is clearly reflected by the increasing incidence of treatment failure and relapse, which
Is especially disturbing when considering their prevalence in life-threatening diseases such as TB

and acquired immune deficiency syndrome (AIDS).

Currently, various anti-TB drugs are used for different aspects of drug activity, such as bacterial
activity, sterilising activity, and prevention of drug resistance. These three categories of drug
activity are included in the DOTS (directly observed treatment, short-course) regimen, which
consists of four first-line drugs, namely: rifampicin; pyrazinamide; isoniazid; and ethambutol. The
anti-bacterial activity is the ability of the drug to prevent or reduce the dividing bacilli in the initial
stages of therapy. These drugs include ethambutol, rifampicin and streptomycin, ethambutol being
the most potent of the three (Arbex et al., 2010). The second and third of the three categories are
the sterilising activity and the prevention of drug resistance, which is the drug’s ability to disrupt
the putative subpopulation of TB, normally resulting in clinical relapse (Zhang et al., 2003). The
DOTS strategy was formulated later, in the 90s, and is still recommended internationally today
(WHO, 2016). The DOTS strategy consists of a six-month treatment regimen divided into two
phases, the first being the initial intensive phase which uses all four first-line drugs to eliminate
the actively growing Mtb populations. The second phase includes the sterilising activity to clear
the intermittent dividing bacteria, using only isoniazid and rifampicin (Prideaux et al., 2015; WHO,
2016). However, because of poor patient adherence, drug resistance is emerging, limiting the
success rate of the current first-line anti-TB drug treatment protocols (Telenti & Iseman, 2000). In
the case of drug resistance in TB, also known as multi-drug resistant TB (MDR-TB) and extreme
drug resistance (XDR-TB), the infecting mycobacteria is resistant to at least rifampicin and
isoniazid. Subsequently, treatment using the more expensive second-line drugs with high toxicity
is required, which takes up to 24 months to treat the patient with MDR-TB (WHO, 2016).

For the purpose of comprehensively describing all facets of the current knowledge of anti-TB drugs
used today, apart from a discussion on the mechanisms and side effects of the current first-line
anti-TB drugs, a brief and general discussion on current second line anti-TB drugs will also be
given in this section. This will be followed by a brief description of two new anti-TB drugs currently

22



in development and being tested. This will then be followed by a comprehensive description of
what is known about colistin sulfate (CS) and colistin methanesulfonate (CMS).

2.3.1 First-line medications

2.3.1.1 Streptomycin

The first successful antibiotic against TB (streptomycin) was discovered and isolated in 1943 by
Selman Waksman, from Streptomyces griseus. Streptomycin’s anti-TB activity includes the ability
to inhibit protein synthesis, via inhibition of the Mtb mRNA translation, resulting in cell death
(Bogen, 1948). This inhibition occurs specifically at ribosomal protein S12 (rpsL) and 16S rRNA
(rrs), in the small 30S ribosomal subunit (Zhang et al., 2011). However, streptomycin-resistant
mutants started forming as early as 1946, and were classified into two groups depending on their
level (high or low) of resistance. Those with high levels of resistance to streptomycin are attributed
to mutations on the rrs and rpsL genes (found in half the resistant Mtb isolates) (Jagielski et al.,
2014). Low-level resistance, however, occurs in 33% of these resistant isolates of Mtb,
characterised by a mutation in the gidB gene encoding 7-methylguanosine (m7G) and
methyltransferase (GidB) for 16S rRNA (Okamoto et al., 2007). Apart from the rapidly forming
resistance, streptomycin is associated with a number of side effects including: hypersensitivity,

drowsiness, chronic toxicity, ataxia, blackouts, and hearing loss (WHO, 2016).

2.3.1.2 Isoniazid

Although its exact mechanism of action is largely still unknown, one of the most successful anti-
TB drugs identified to date, for eliminating Mtb, is isoniazid. It is however suggested to act by
compromising the acid-fast nature and viability of Mtb, by inhibition of mycolic acid synthesis and
subsequently altering the Mtb cell-wall lipids (Nguyen, 2016). Confirming these hypotheses,
several electron-microscopy scanning studies have shown morphological changes to Mtb
(Takayama et al., 1973). Furthermore, a number of alternative drug mechanisms have been
proposed, and includes it acting by the formation of free radicals during drug activation and
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tyrosine reduction (protein activity) (LU et al., 2010). Isoniazid is traditionally described as a pro-
drug requiring oxidation via the peroxidase catalyzation process of KatG, to react with
nicotinamide-adenine dinucleotide (NAD), which in turn inhibits the Mtb InhA enzyme (enoyl-acyl
carrier protein) via the INH-NAD product (Bulatovi et al., 2002). Consequently, this inhibition of
InhA results in the blockading of fatty acid elongation and subsequently mycolic acid synthesis
(Takayama et al., 2005). Isoniazid-resistance has been characterised by various mutations, which
mainly target the katG and inhA genes, and have been observed in 30% of all TB isolates (Miesel
et al., 1998). Apart from the Mtb developing drug resistance to isoniazid, side effects of the drug
in humans includes: hypersensitivity, peripheral neuropathy (prevented by vitamin B6) and
hepatitis (Klostranec, 2012).

2.3.1.3 Ethambutol

During the early stages of TB treatment, ethambutol is used, especially when isoniazid resistance
is detected, since ethambutol is shown to be very effective against intracellular and extracellular
Mtb. Ethambutol functions by inhibiting the transfer of arabinogalactan into the Mtb cellular wall,
resulting in a build-up of trehalose mono and dimycolates (Goude et al., 2009), and this as a result
of the repression of (D-14C) glucose transmission into the D-arabinose portion of arabinogalactan
(Umeno et al., 2005). Resistance of Mtb to ethambutol is shown to be due to common missense
mutations in the arabinosyl transferase encoding gene (embB) of this organism (Umeno et al.,
2005). Starks et al. (2009), further indicate specifically embB codon 306 are important indicators
of ethambutol resistance, confirming that up to 50-70% of the clinical samples result in ethambutol
resistance. However, the exact contribution made by embB codon to resistance ethambutol is
disputed (Starks et al., 2009).

2.3.1.4 Rifampicin

As previously mentioned, rifampicin is a sterilization anti-TB drug, which reduces the dividing
activity of the semi-dormant and putative subpopulation Mtb, by inhibiting the DNA-dependent
RNA-polymerase from transcribing RNA (Nakamura & Yura, 1976). Resistance to rifampicin is
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due to the onset of mutations in the encoding rpoB gene, which results in variation in the B-subunit
of RNA-polymerase by replacing the aromatic with non-aromatic amino acids (Cai et al., 2017).
Minor drug-related side effects experienced by the TB patient include: abdominal pain, flu-like
symptoms, dyspnea, fatigue, anorexia, and ataxia. However, more severe side effects might arise
with combinational treatment with isoniazid, which include cholestic hepatitis and exanthema
(Lawrence Flick Memorial Tuberculosis Clinic, 1998).

2.3.1.5 Pyrazinamide

Due to pyrazinamide’s acidic pH, it is effective in neutralizing semi-dormant bacteria surviving the
aforementioned TB drugs (Drew, 2017). The addition of this drug in a multi-facetted drug-
administration protocol resulted in the successful reduction of TB therapy duration, from nine to
six months (Mitnick et al., 2009). Mtb is uniguely vulnerable to pyrazinamide, due to an absence
of a pyrazinoic acid efflux mechanism (Ramirez-Busby & Valafar, 2015). Studies suggest that
pyrazinoic acid kills Mtb, not because it has a specific bacterial target, but because of its
effectiveness against Mtb’s weak acid features (Baer et al., 2015). Further studies by Zhang et
al. (2003) suggest that pyrazinoic acid de-energizes the bacterial membrane, resulting in
membrane collapse (Zhang et al., 2003; Dillon, et al., 2017; Rosen, et al., 2017; Gopal , et al.,
2017). Mtb resistance to pyrazinamide is characterised by mutations in the PZase coding gene
(pncA) (Gopal, et al., 2017; Gopal, et al., 2016). Pyrazinamide is extremely hepatotoxic and
characterised by rather severe side effects in the treated TB patient and these include: pruritus,
exanthema, kidney failure and myoglobinuria. It is suggested that treatment with pyrazinamide
should be briefly discontinued when any of the above-mentioned side effects occur (Kamfer, 2013;
Yee, et al., 2017).

2.3.2 Second-line medications

The standardised regimen for treating MDR-TB includes using various second-line drugs (D-
cycloserine, ethionamide, kanamycin and amikacin, and fluoroquinolones). However, these drugs

are characterised by extremely high toxicities, long treatment durations, and high costs (Mitchison
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& Davies, 2008). Furthermore, the STREAM study (Standardised Treatment Regimen of Anti-TB
Drugs for Patients with MDR-TB), supported by the United States Agency for International
Development (USAID), led to the first anti-TB second-line drug trial in Ethiopia, South Africa,
Vietnam and Mongolia. STREAM uses a shortened drug regimen consisting of two phases, the
first being the standardized care (as previously described), with a slight modification (gatifloxacin
has been replaced by moxifloxacin), and a second phase which entails a nine-month bedaquiline
treatment (Riya Moodley, 2016).

Although the recommendations made by the WHO, regarding second-line anti-TB drug treatment
protocols, have proven to be very effective, recent studies have shown unwanted combined
interactions - between these anti-TB drugs with one another, and with many other medications
that these patients may be consuming for other ailments (Arbex et al., 2010). Apart from these
unwanted interactions, there is also evidence that efficacy and uptake may also be
altered/influenced (Cascorbi, 2012). The second-line anti-TB drug side effects, and extent to which
they are experienced, is however dependent on a number of other factors also, including: the age
of the patient, nutritional status, dosage, time of administration, and preceding diseases and

dysfunctions (Ramappa & Aithal, 2013).

2.3.3 New possible second-line anti-TB medications and regimin

The abovementioned disadvantages associated with the current first-line and second-line anti-TB
drugs described above, in addition to known interactions between the current anti-TB drugs and
antiretroviral drugs (taken by HIV positive patients), are some of the many reasons why there is
still urgent need for the discovery of new anti-TB drugs (Lange et al., 2014). The only new anti-TB
drugs approved over the last 50 years include delamanid and bedaquiline (Zumla et al., 2013).

2.3.3.1 Delamanid

The new drug delamanid is a novel drug of the dihydro-nitroimidazole currently recommended for
adults for a maximum of six months. Delamanid is thought to primarily inhibit synthesis of methoxy-

mycolic and keto-mycolic acid, which are components of the mycobacterial cell wall and recently,

26



the WHO approved the use of delamanid for children above 6 years of age, pharmacokinetic data
having been made available (WHO, 2016). Two studies reported evidence of higher success rates
at the end of treatment. However, cardio-toxicity research on the drug is still low (Harausz et al.,
2016). In fact, the combinational therapy of delamanid and bedaquiline may induce high toxicity
(Pym et al., 2016). Two studies reported paediatric TB cases cured with a delamanid-containing
regimen (D’Ambrosio et al., 2014).

2.3.3.2 Bedaquiline

Bedaquiline is a new active substance against TB which blocks the enzyme ATP synthase inside
Mtb. By doing so, the bacteria is unable to produce energy, which in turn gives the patient the
ability to improve in health (Field, 2015). According to Pym et al. (2016), bedaquiline has increased
the cure rates of MDR-TB. Additionally, bedaquiline’s regimen led to positive outcomes during
clinical patient cohort with MDR-TB (Pym et al., 2016).

2.3.3.3. NIX-TB

A new anti-TB drug combination, currently undergoing clinical drug trials, is Nix-TB, which consists
of a completely new multi-drug combination of pretomanid, bedaquiline and linezolid. It is the first
of its kind to potentially result in a shortened treatment duration (Gualano et al., 2016). It has the
advantage of being administered orally and requires fewer pills, in addition to possibly curing
MDR-TB in six to nine months (Sloana & Lewis, 2016).
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2.3.4 Colistin

Polymyxins were originally discovered during the 1940s, and isolated from Bacillus polymyxa, a
spore-forming soil bacteria (Falagas et al., 2005). One of these polymyxins, called colistin
(polymyxin E), is a cationic cyclic decapeptide, synthesised and isolated from B. polymyxa
colistinus (Satlin & Jenkins, 2017). Colistin has previously been used for generally treating gram-
negative infections; however, due to its nephro- and neurotoxic side effects, it was replaced with
less toxic antibiotics in the 1970s (Grill & Maganti, 2011). Because recent studies have indicated
increased reports of MDR strains of various bacteria, including Pseudomonas aeruginosa (Beceiro
et al., 2013), Acinetobacter baumannii (Lin & Lan, 2014) and Mtb (Smith et al., 2013), there has

been a renewed interest in colistin, thanks to its gram-negative killing capacity.

Colistin can be sub-classified into two groups, 1. colistin sulfate (CS) and 2. colistin
methanesulfonate (CMS). The first can be used topically (Jain, et al., 2014) and orally, and the
latter used parentally, but both are less toxic in an inhaled form (Antoniu & Cojocaru, 2012).
Furthermore, it has been reported that CMS is less toxic than CS (Al-Shaer et al., 2014).

2.3.4.1 Chemistry of the different polymyxin entities

Colistin contains a cyclic heptapeptide ring of amino acids (D- and L-) with a tripeptide side chain
(positively charged) (Velkov et al., 2013). This side chain enables colistin to bind covalently to the
fatty acid groups on the bacteria (Gao et al., 2016). Colistin can occur as a number of different
polymyxin structures, differing by their fatty acid and amino acid contents, the most common of
which are colistin A (polymyxin E1) and colistin B (polymyxin E2), and the less common polymyxin
E3 and E4, polymyxin E7 and polymyxin E8 (Gallardo-Godoy et al., 2016). The major structure
resulting in the antimicrobial properties of colistin A, is its lariat structure (Kline et al., 2001). Due
to the hydrophobic fatty acid basic properties and moiety of colistin’s five y-amino groups (Pka =
10), colistin displays amphipathic behaviour (Li et al., 2005), hence colistin is able to be equally
soluble in water and the lipid membranes of various cells. A non-active pro-drug of colistin can be
synthesized via a reaction of the y-amino groups of colistin with formaldehyde, followed by reaction

with sodium bisulfate (Bergen et al., 2006). According to Li et al., (2005), CMS can be converted
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to colistin, and various other sulfomethylated colistin-related compounds. CMS was found least
stable in an isotonic phosphate buffer and human serum at 37°C, whereas CMS rapidly forms
colistin and then slowly degrades. CMS is most stable in water, where it takes much longer to be
converted to colistin. Interestingly, no colistin is formed when CMS is dissolved in Mueller—Hinton
broth at 37°C, and the reduction in live P. aeruginosa observed suggests that this sulfomethyl

derivative of colistin, has antimicrobial activity in its native form also (Li et al., 2005).

2.3.4.2 Antimicrobial mechanism of action

Previous studies have shown that colistin interacts electrostatically with the outer membrane of
gram-negative bacteria, via the interaction between the cationic fatty acid side chains of colistin
with the lipopolysaccharide (LPS) of the bacterial membrane (Catchpole et al.,, 1997),
subsequently displacing divalent cations (magnesium and calcium) from the bacterial cell
membrane lipids (phosphate groups), disrupting the cell membrane and increasing is permeability
(Clifton et al., 2015). According to Landman et al. (2008), gram-negative bacteria are likely to be
more susceptible to hydrophobic antimicrobials because of this disruption in the membrane
permeability, an important observation when considering using colistin in combination with other
antimicrobial agents (hydrophobic antibiotics). It has also been suggested that the bacteria’s
metabolic activity has no influence on the degradation of colistin, and hence bacterial resistance
to the drug is slow (Bialvaei & Kafil, 2015).

2.3.4.3 Resistance to colistin

Although bacterial resistance to colistin is lower, compared to that of other antimicrobials, a
number of studies have shown that resistance can occur, and they have suggested the
mechanisms associated with this. Resistance by P. aeruginosa was reported, in cystic fibrosis
patients using high concentrations of inhaled colistin (Field, 2015). The mechanisms for
developing resistance to these polymyxins are variations of lipid A with less cationic binding sites
in the bacterial LPS, reducing the amount of available surface charges and consequently reducing
their binding capacity for colistin (Field, 2015). These observations were confirmed from colistin
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studies done on bacteria in culture media with reduced amounts of Mg?*, which in turn results in
PhoP activating the pmrCAB locus, the latter of which is responsible for reduction in the cationic
binding sites in Salmonella enterica serovar Typhimurium (Ortwine et al., 2015). According to
Landman et al. (2008), when culturing P. aeruginosa with colistin, acidic phospholipids are
converted to neutral phospholipids in its outer membrane, subsequently leading to a neutralizing
effect on the biological properties of the endotoxins as well as cytoplasmic leakage, which causes
the bacteria to become more susceptible to hydrophobic antimicrobials.

2.3.4.4 Combined antibiotics activity

The main reason for initially approaching the treatment of various diseases with a combination-
treatment approach, using CMS and other antibiotics, was to prevent the reoccurrence of the
bacteria post treatment, as well as to prevent possible resistance from developing against the
primary antibiotic (Chi et al., 2012). Additionally, a combination-treatment approach, considering
the mechanism by which colistin acts, would be expected to allow for successful treatment
outcomes using lower dosages of the antibiotics (and therefore less toxicity) and shorter therapy

duration.

CMS, administered in combination with ciprofloxacin, has been previously used for treating cystic
fibrosis patients with an aggressive MDR P. aeruginosa infection, at the Danish cystic fibrosis
centre (Hgiby, 2011). The successful prevention of chronic P. aeruginosa occurred in 85% of the
patients and, for over 15 years of use, there has been minimal resistance to colistin in these cases
(Cassir et al., 2014). Furthermore, a combination-therapy approach of CMS with rifampicin in
patients with MDR A. baumannii infection, resulted in the successful treatment of 64% of the
treated patients with a very low incidence of any side effects in vitro (Lee et al., 2013). Landman
et al. (2008), reviewed a number of studies using colistin in combination with rifampicin, and
reported a success rate of a hundred percent when treating A. baumannii and P. aeruginosa,
similarly as to when using a combination treatment using polymyxin B, imipenem and minocycline.
Furthermore, various studies done on isolates of K. pneumoniae, S. maltophilia and S.
marcescens, indicated a high antibacterial rate when using rifampicin in combination with these
polymyxins. Zeidler et al. (2013), described the successful treatment of various Candida species,

using a combination treatment strategy using colistin and echinocandin. It was proposed that
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echinocandin weakens the cell wall, facilitating the colistin’s action on the cell membranes. Prior
to this, Garonzik et al. (2011), suggested the combination therapy using CMS and CS for treating
patients (with moderate to good renal functions) for organisms with MIC = 1.0 uyg/ml, since
inadequate colistin plasma levels are obtained in these patients when CMS monotherapy was
applied (Garonzik et al., 2011). All these studies confirm that combinational treatment strategies
of anti-TB drugs with CMS or CS could have promising outcomes.

2.3.4.5 Colistin’s activity against mycobacteria

Colistin’s antibacterial activity has been previously investigated against M. aurum and, via electron
microscopy, was suggested to function via disruption of the cytoplasmic membrane of the
infectious bacteria (patchy and diffused polysaccharide outer layer) (David & Rastogi, 1985). More
recently, colistin antibacterial activity was determined for Mtb at an MIC of 5 ug/ml. However, a
combinational-treatment approach using sub-lethal concentrations of colistin, was suggested by
the authors (Keren et al., 2011). Prior to these Mtb investigations, a number of studies were done
determining the effects of colistin on other mycobacteria strains, describing the efficacy (positive
for M. fortuitum but no inhibition for M. chelonae), using the disc diffusion and broth dilution tests
(Flores et al., 2005). Harris & Keane (2010) recently indicated that polymyxins have inhibited the
release of tumour necrosis factor via LAM, neutralizing the cytokine response associated with
cachexia (Harris & Keane, 2010), which is an important consideration in the context of treating

TB, a disease associated with cachexia (Tazi & Errihani, 2010).

2.4. Metabolomics

2.4.1 An introduction to metabolomics in the context of drug- development
research

Conventional disease diagnostics generally entails a physician identifying a disease or
abnormality on the basis of a physical examination of the symptomatic patient, with (or without)
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the additional use of standard diagnostic tests. A positive diagnosis is normally followed by
treatment using drugs produced on a large scale and administered at a standardized and
universally-accepted dosage. These conventional drugs are developed to treat general symptoms
or the disease as determined by the mean results obtained over large population groups (Debas
et al., 2006). However, it is crucial to understand that due to, for example, genetics and a variety
of other factors such as individual diet, habits (e.g. smoking), gender etc., not all diseases affect
all individuals in the same manner (Jirtle & Skinner, 2007), and neither do all individuals respond
to treatment in the same way (Dworkina et al., 2014). This occurrence is clearly reflected by the
increasing incidence of treatment failure and relapse, which is especially disturbing when
considering their prevalence in life-threatening diseases such as TB and AIDS. Although this
variation between individuals might not be obvious in the initial clinical presentation of the disease,
it is most likely still detectable on a molecular scale. Several researcher groups have subsequently
shifted their focus to the development of medicine, which uses the molecular information of an
individual, as dictated by his or her genome, transcriptome, proteome, and metabolome (Redekop
& Mladsi, 2013) to develop patient-specific diagnostics and drugs. This information can also be
used to determine/predict treatment response, prior to and during the treatment regimen, in an
attempt to lower the incidence of treatment failure or relapse (Salari, 2009), and also to optimize
drug dosages, in an attempt to prevent or lessen the severity of the drug-related side effects
(Lecea & Rossbach, 2012).

TB has undoubtedly been one of the most topical issues over the past decade, and several
research fields have joined hands in using metabolomics for the potential to transform clinical
practice and treatment efficacy. Traditionally, genomics was considered the most important
approach for determining variation and the development of antibiotics (Jain, 2009). However,
several intermediate processes occur between the genotype and disease phenotype in the
‘omics” cascade, which may influence disease outcome or treatment response, and includes
transcription, translation, and metabolism. Furthermore, various other factors, such as
environmental influences and age, may also play a role in the disease phenotype, a phenomenon
which genotyping is not able to characterize or explain. The elucidation of antimicrobial activities
requires a holistic view of all molecular variation that may differentiate individuals, and researchers
are therefore shifting their focus - from using exclusively genetics methodologies, for instance, to
a systematic/integrative “omics” approach. “Omics” is a general term used to describe the study

of all genes (genomics), transcription of these genes (transcriptomics), translation into their
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respective proteins (proteomics), and all the resulting metabolite changes (metabolomics), and is
aimed at acquiring large-scale data sets from a single and/or multiple samples (Wheelock et al.,
2013). These “omics” research fields, alone or in combination, have shown to be valuable for the
identification of new disease biomarkers for the purpose of elucidating disease mechanisms and

the development of treatment regimes.

As per definition, metabolomics is the nonbiased identification and characterization of “all” the
small molecular compounds (metabolites) in a biological system, using highly-sensitive analytical
techniques, in combination with bio-informatics (Dunn et al., 2005). The metabolome, which is a
collective term for all the metabolites in a specific biological system/sample, is the ultimate
downstream result of genes, transcription, and translation, and will therefore reflect changes to
the genome, transcriptome, and proteome, in addition to that caused by a disease state or other
environmental factors. The identification of the main differences between the metabolomes of two
sample cohorts (drug vs no-drug controls, for example) is a starting point for the discovery of new
drug metabolite biomarkers in order to elucidate mechanism of action. Additionally, a comparison
of various cohorts with individuals showing variation to disease or response to treatment can also

be done in order to identify markers associated with this type of variation.

The extraction and analysis of metabolites from a sample or sample group can be done in an
untargeted or semi-targeted manner. Untargeted metabolomics aims to extract and detect all
metabolites (known and unknown, from all metabolite classes), i.e. the total metabolome, as per
the definition of metabolomics. Semi-targeted metabolomics approaches, however, are focused
on the analysis of specific fractions of the metabolome or a subclass of metabolites, such as only
the lipids or organic acids for instance. Sample preparation methods for untargeted metabolome
analyses are simple, and the generated metabolite profiles can provide researchers with a good
general picture of the effect of the investigated perturbation on the overall metabolome. However,
these methods tend to have a lower sensitivity and detection limit, when compared to that of the
semi-targeted approach which provides simpler metabolite profiles, representing specific
metabolic pathways (Wishart, 2010). The choice of the sample preparation method will also
depend on the analytical apparatus selected, and whether an untargeted or semi-targeted
approach is required. When using nuclear magnetic resonance (NMR) spectrometry, for instance,
chemicals such as ethanol and hexane should be avoided, as these solvents are also deuteriated
and will therefore result in multiple resonances and subsequently interference (Dunn et al., 2005).
Currently, there is no single analytical apparatus available with the capacity to identify all the
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metabolites extracted from a sample and, therefore, when doing untargeted metabolomics, a
combination of a number of different analytical approaches is recommended. However, this may
not always be a viable option in a particular laboratory, as it is dependent on instrument availability.
In instances with limited analytical capacity, a lot can still be done in the context of untargeted
metabolomics. For instance, derivatization of a sample prior to gas chromatography—mass
spectrometry (GC-MS) analysis, in addition to appropriate column selection, can serve well in the
detection of a large portion of the metabolome during a single analytical run. Each analytical
technique comes with its own set of molecular preferences, advantages and limitations, as will be

discussed below.

2.4.2 Analytical methods most often used for metabolomics

The most commonly used analytical approaches for metabolome data acquisition include the use
of various chromatographic techniques, most commonly gas chromatography (GC), or liquid
chromatography (LC), coupled to various different options of mass spectrometry (MS) detectors,
and Nuclear magnetic resonance (NMR). Without prior separation or derivatization, LC—MS is
considered to be the apparatus with the potential to detect the largest variety of metabolites
present in a specific sample. However, the derivatization of sample extracts makes GC-MS an
even - if not better - contender, considering the availability of spectral data for GC-MS compound
identification. Furthermore, although LC-MS is ideal for the analysis of polar and ionic
compounds, it has a lower chromatographic resolution and higher running costs in comparison.
Additionally, a great advancement in GC-MS technology was the development of the GCxGC
system, which separates metabolites in two dimensions, on the basis of not only volatility but also
polarity, thereby reducing the amount of co-eluting peaks and enhancing the resolution of the
eluting metabolites (Marriott & Shellie, 2002). GC-MS analysis also requires smaller sample
volumes when compared to that required for LC—MS and NMR, but because these samples
undergo metabolite separation and derivatization, they are non-recoverable after GC analysis.
Another downside to GC is the rather long analysis times required for compound separation, and
that the identification of “unknown” metabolites (those compounds detected with mass fragment

patterns not in the commercial libraries) is rather complex.
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NMR spectroscopy is based on the principle of detecting metabolites according to the signals
produced by their proton content, allowing for straightforward metabolite identification
(Bonhommea et al., 2014). This relatively fast method (2—-3 min per sample), is mostly used for
the detection of polar metabolites and is non-destructive to the sample. NMR instrumentation is,
however, rather expensive, requires large sample volumes and has a lower sensitivity when
compared to other techniques (Halket et al., 2005). Subsequent to sample analysis, one of the
most important steps for generating data, which can be used for metabolomics, is the extraction
of reliable data matrixes from the complex chromatographic and mass spectrometric outputs, for
subsequent statistical analyses and biomarker selection. This course of action includes peak
detection, peak de-convolution, peak alignment, compound quantification, and identification,
among various other steps. Most of the analytical methods described above come with their own
software packages, specifically designed for this purpose (such as ChromaTOF for the Leco
GCxGC-TOFMS), whereas other universal software packages, such as MET-IDEA, are also freely
available for use for processing data generated from a variety of different commercially available
analytical techniques (Broeckling et al., 2006). However, because each of these packages comes
with their own advantages and limitations, most researchers prefer to use a combination of
software packages, in addition to manual inspection, in order to obtain the optimum data matrix

for statistical data analysis and biomarker identification.

2.4.3 Statistical approaches

The increasing complexity of the data matrixes obtained from the analytical equipment used in
metabolomics studies has led to the use of various multivariate chemometric data analysis
methods for biomarker identification/ extraction from these data sets. In order to get an overview
of the data, certain unsupervised methods can be used to highlight trends in the data and grouping
or differentiation of various sample sets, and to additionally identify potential outlier samples and
batch effects. When employing these unsupervised methods, samples are not assigned to specific
groups (for example, disease and control) prior to the statistical analysis, allowing the analyst to
determine whether or not the samples are naturally differentiated or grouped based on their
analyzed metabolite profiles. For this purpose, principle component analysis (PCA) is the method

most commonly used. PCA reduces the dimension of the input data matrix by calculating a
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weighted sum (score) of the compound (metabolite) concentrations detected in each sample and
expresses these in terms of principal components (PCs), with PC1 describing the most variation
in the data, PC2 the next highest variation, and so on. These PCs subsequently serve as
coordinates on a scatter plot and provide an overview of the samples and how they relate to each
other on the basis of their analyzed metabolomes. Other chemometric methods - such as self-
organizing maps, hidden Markov models, and canonical correlation - can also be implemented in
this initial, exploratory stage for the same purpose (Madsen et al., 2010; Trygg et al., 2007). If
those samples, belonging to a specific group, do in fact assemble and group together, supervised
methods where individual samples are allocated to their respective sample groups before the
analyses, can be applied for the purpose of identifying potential biomarkers best describing the
variation detected. Partial least squares discriminant analysis (PLS-DA) is one such method,
which uses group membership information to build a discrimination model. The variable influence
on the projection (VIP) parameter, which is a weighted sum of the squares of the PLS-DA weights,
gives an indication of the importance of the metabolite to the prediction model, and can therefore
be used to identify those metabolites which are most characteristic of a specific sample group, or
those metabolites which vary the most between the specified groups. The metabolites with the
highest VIP scores are then ranked and can be used to identify potential biomarkers. Similar
supervised classification models also used for biomarker identification include, but are not limited
to, soft independent modelling of class analogy and support vector machines. The technical details
of these chemometric methods fall beyond the scope of this review, but the authors suggest the

review by Trygg et al. (2007) for a more detailed description of these.

Various software packages and Web-servers, such as MetaboAnalyst (Xia et al., 2009), have
been developed specifically for researchers with limited statistical knowledge, to perform these
essential chemometric analysis on metabolomics data. Although these tools are helpful, most
metabolomics research groups still prefer to use qualified biostatisticians, with knowledge of the
underlying mathematical programming, for mining the relevant biomarkers from these complex
data sets. In these instances, more traditional statistical packages such as Statistica and “R” are
used for the analysis of the data in the context of the specific biological question. Identified
biomarkers can subsequently be used to explain individual variation in disease and treatment
response, by interpreting this as the context of known metabolic pathways, and/or prior genomic,
proteomic and transcriptomic data. Furthermore, individual biomarkers or combinations thereof

(biosignatures) can be used for diagnostic purposes; the latter can be achieved by building a
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prediction model, such as a classification tree. In the light of this, metabolomics is considered an
important tool for the development of new anti-TB drugs.

2.4.4 The application of metabolomics towards drug investigations

Before treatment strategies can be tailored to a unique response to therapy, it is important to
understand the general xenobiotic metabolism and underlying mechanisms of the proposed drug.
For this purpose, pharmacometabonomics can be applied in a number of ways: (1) the comparison
of the changes in xenobiotic metabolite concentrations of the treated cell line versus the control
cell line (Cuperlovié-Culf et al., 2010), (2) comparison of infectious cell cultures by comparison to
those incubated in the presence of the drug and those in the absence of the drug, or the presence
of the drug carrier (Covalciuc et al., 1999), (3) and the synthesis and screening of the modeled
drug for ADMET (absorption, distribution, metabolism, elimination and toxicity) (Yang & Marotta,
2012). These methodologies have been implemented to investigate the metabolism of various
nutrients, drugs, and other xenobiotics, using a variety of analytical equipment and bioinformatics
strategies (Lan & Jia, 2010). In addition to drug-derived metabolites originating directly from
xenobiotic metabolism, these drug- exposure signatures will also include drug-induced alterations
to normal metabolism, representing the cell line’s altered metabolic state in response to the
treatment. In one such instance, Wang et al., (2011), characterized metabolites to differentiate
pathways that operate in a living cell, which was then used to evaluate differences between
diseased and healthy organisms, and provided information on the underlying cause of disease.
The pharmacometabonomics can be implemented to verify or complement drug mechanisms
proposed by other omics approaches (Wang et al., 2011). Lorenz et al., (2011), applied this
approach to investigate metabolites in adherent mammalian cells using the clonal B-cell line INS-
1 as a model sample. The utility of this methodology demonstrated a precise metabolite
measurement associated with step changes in glucose concentration that evoked insulin secretion
in the clonal B-cell line INS-1 (Lorenz et al., 2011). A study by Dewar et al. (2010), investigated
the metabolic differences between chronic myelogenous leukemic cell lines, MyL, and MyL-R.
They demonstrated a clear differentiation in the metabolite profiles of drug-resistant and sensitive
cells, with the biggest difference being an elevation of creatine metabolites in the imatinib-resistant

MyL-R cells (Dewar et al., 2010). Previous studies have linked the xenobiotic metabolism of drugs
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to the production of reactive oxygen species (ROS), and therefore this group proposed that this is
responsible for the drug action (Tiziani et al., 2009). In order to prove this hypothesis, and
potentially other previously unknown drug mechanisms, the group applied NMR metabolic profiling
to three AML cell lines treated with BEZ and MPA. From the generated biosignatures, they were
able to identify changes to TCA cycle intermediates (more specifically alterations to the conversion
of a-ketoglutarate to succinate), which are consistent with ROS action.

In order to minimize the influence of individual variation on the resultant metabolite profiles,
however, many of these studies were done on samples collected from homogeneous patient
populations or animal models kept under identical conditions, thereby ensuring that the
metabolites emanating as biomarkers are, in fact, related to the xenobiotic metabolism exclusively,
with little or no individual variation due to either genetic or environmental factors. Various external
factors - such as age, stress, diet, gut microbes (microbiome), medication, lifestyle, and disease,
in addition to genetic factors including gender, epigenetics, and polymorphisms in genes encoding
for xenobiotic-metabolizing components such as enzymes, transporters, receptors, and ion
channels - can also influence xenobiotic metabolism and account for individual variation (Johnson
et al., 2012). Clayton et al. (2009) demonstrated the application of pharmacometabonomics
toward a better understanding of these variables by analyzing pre- and post-dose urinary
metabolites of patients on acetaminophen (paracetamol), using NMR spectrometry. When
analyzing the pre-dose profiles of these individuals, considering the levels of the excreted drug-
derived metabolites, they found high levels of pre-dose p-cresol sulfate, which correlated with low
post-dose ratios of acetaminophen sulfate to acetaminophen glucuronide. The ratio of these
derivatives, which indicate the extent to which acetaminophen is metabolized through two major
phase 2 conjugating processes (O-sulfonation and glucuronidation), is known to be a site and
indicator of individual variation in response to paracetamol. The group finally concluded that in
patients with high levels of gut microbiome-mediated p-cresol generation, competitive p-cresol O-
sulfonation reduces the capacity to sulfonate acetaminophen, which in turn results in an increased
likelihood of drug-induced hepatotoxicity. This study subsequently proves the capacity of
metabolomics to identify individual variation in xenobiotic metabolism, related to a variation in

individual patient environment.

Pharmacometabonomics can also be implemented as an informative tool, assisting
pharmacogenomics in the investigation of genome-related variation in drug metabolism (Johnson
et al., 2012). With this goal, Ji et al. (2011) investigated urine metabolites of individuals with major
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depressive disorder undergoing therapy with selective serotonin reuptake inhibitors (SSRIS),
citalopram and escitalopram. On average, 40% of patients generally do not respond to this
treatment and previous pharmacogenomic studies failed to identify potential polymorphisms which
could be used for the prediction of a SSRI treatment outcome. From the obtained metabolite
profiles, elevated glycine levels were identified to be associated with a decreased treatment
response, and after subsequent pharmacogenomics studies, polymorphisms in the glycine
dehydrogenase gene were identified. These results show that metabolomics can additionally play
a significant role in supporting or initiating pharmacogenomics studies, with the intention of

identifying genetic factors related to individual variation in drug metabolism.

Considering these and several other studies on the topic (de Carvalho, Darby, Rhee, & Nathan,
2011; Halouska et al., 2007; Lu, Deng, Li, Wang, & Li, 2014; Wang et al., 2013), it is evident that
the identification of drug-exposure metabolites can play a significant role in the elucidation of drug
mechanisms and the influence of individual variation on these, which in turn can contribute to the
development of more effective drugs, or the positive adjustment of drug dosages and treatment

schedules, on the basis of the individual differences detected and explained.

2.4.4.1 Metabolomics and understanding response to treatment

Despite the elucidation of drug mechanisms, pharmacometabolomics can also be used to
investigate and predict an individual's response to treatment. Statins, for example, are commonly
prescribed for patients with increased levels of LDL-cholesterol and risk for cardiovascular
disease, despite the substantial individual variation in response to this therapy. Trupp et al. (2012)
investigated this occurrence using GC—-MS metabolomics analyses of patient plasma samples
prior to, and 6 weeks after, simvastatin treatment onset. A number of metabolites were identified
implicating genetic, gut microbiome and various environmental factors, contributing to the variation
in simvastatin response. Additionally, responders and non-responders to the drug could be
differentiated, based on their baseline metabolite profiles; and the most significant compounds
responsible for this differentiation were identified. These metabolite variations could be correlated
to different treatment responses and subsequently described the mechanisms related to the
individual variation to this therapy. These markers additionally have the potential to be

implemented pre-clinically, to identify those patients who would/would not benefit from simvastatin

39



treatment, prior to commencing treatment. Using the same approach, Wei et al. (2013) built a
prediction model, based on four identified serum metabolite biomarkers, in order to predict the
outcome of breast cancer neoadjuvant chemotherapy. The model was able to predict complete
response (disappearance of all tumor deposits) versus stable disease (tumor reduction less than
50%) with 100% specificity and 80% sensitivity (AUC of 0.95). Despite their prognostic value, the
biomarkers identified in these studies also show promise in the development of new, more efficient

drugs, and also to sub-classify patients during clinical trials.

The same approach has been used to explain and predict variation to treatment response in
patients diagnosed with various infectious diseases. Das et al. (2015) investigated the influence
of anti-TB drug treatment on the urine metabolic profiles of TB patients at various treatment
intervals. A clear treatment-dependent trend could be seen on the PCA, as the metabolite profiles
of each consecutive treatment interval shifted closer to that of healthy controls, with profiles of
clinically cured patients very closely resembling that of the control group. With these profiles, one
might be able to build a prediction model for treatment outcome, provided that profiles of patients
with failed treatment outcomes are also incorporated. These profiles may additionally give clues
as to why certain patients fail to respond to TB treatment within the recommended 6-month therapy
regime, and by using a similar approach, metabolite biomarkers predicting treatment failure or
relapse might also be identified. When investigating infectious diseases in this manner, it is
important to bear in mind that individual variation to drug treatment outcomes can be a result of
the host’s variable response to the drug, or the pathogen’s resistance to the drug, and therefore
both factors should be considered when identifying biomarkers reflecting treatment response. A
more recent study using metabolomics for elucidating the mechanisms pertaining to treatment
failure was conducted by Luies et al., (2017), using patient-collected urine. The treatment failure
group was characterized by an imbalance in the gut microbiome, abnormalities in the long-chain
fatty acid B-oxidation pathway, a mitochondrial trifunctional protein defect, and a compromised

insulin secretion (Luies et al., 2017).

Furthermore, in a second investigation, a model was built in order to predict treatment outcome to
first-line anti-TB drugs using urine collected at time of diagnosis. The predictive ability of the model
was assessed based on a ROC curve, and achieved an AUC of 0.94 (95% CI 0.84-1) and cross-
validated well in a leave-one-out context, with an AUC of 0.89 (95% CI 0.7-1). (Luiesetal., 2017).
Using a GC-MS metabolomics approach, Du Preez and Loots (2012) investigated rifampicin
resistance in pulmonary TB by comparing the fatty acid metabolomes of two Mtb strains, with
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resistance conferring mutations on different locations on the rpoB gene, to a fully susceptible wild-
type parent strain. All three groups showed a clear differentiation when doing PCA, and a number
of metabolites indicating a decreased synthesis of various 10-methyl branched-chain fatty acids
and cell wall lipids, and an increased use of the shorter-chain fatty acids as carbon sources, were
identified as markers in the drug-resistant strains. In addition, the rpoB S531L mutant, previously
reported to occur in well over 70% of all clinical rifampicin-resistant Mtb strains, showed a better
capacity for using these alternative energy sources, compared to the less frequently detected rpoB
S522L mutant. This study therefore shows that pharmacometabonomics has the power to not only
detect metabolome changes related to pathogen-induced drug resistance, but it can also
differentiate between the various genotypes leading to the observed phenotype. The clinical use
of these identified markers can significantly contribute to the development of improved treatment
approaches, thereby bettering treatment outcomes in patients with drug-resistant TB. When
developing new therapeutic approaches, it is also important to realize that not all individuals will
respond to an infection in a similar fashion, and although infected with identical pathogen strains,
treatment outcomes may vary. Through metabolomics, markers can be identified in order to
explain and predict this phenomenon. Loots (2016) investigated rifampicin resistance in
pulmonary TB by using a two-dimensional GC-coupled time-of-flight MS metabolomics approach,
in order to identify the most significant metabolite markers associated with resistant Mtb strains.
Metabolites associated with an rpoB mutation were identified, and subsequently explained how
these organisms have managed to survive despite the mutation in their rpoB gene (Loots, 2016).
Just prior to this, Loots (2014) used an identical metabolomics research approach to identify
potential new metabolite markers associated with a katG mutation which results in isoniazid
resistance in Mtb. It was determined that the isoniazid-resistant strains experienced an increased
susceptibility to oxidative stress and adapted to this by upregulation of metabolic pathways
associated in both the uptake and use of alkanes and fatty acids, and the synthesis of compounds
directly involved in reducing oxidative stress, including an ascorbic acid degradation pathway
(Loots, 2014).
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2.4.4.2 Metabolomics and understanding drug toxicology

Several metabolomics studies have identified universal, nonspecific biomarkers, related to general
toxicity of various different drugs, which are unrelated to the specific drug type, drug mechanism,
or site of action. These metabolites, including reduced concentrations of TCA-cycle intermediates
and hippurate, are a reflection of secondary side effects related to the ingestion of these drugs
and include general changes to energy demand or energy metabolism, and changes to gut
microbiota (Keun, 2006). Additionally, many metabolomics studies have also identified general
markers related to hepatotoxicity (Holmes et al., 1992; Robertson et al., 2000; Schnackenberg,
Dragan, Reily, Robertson, & Beger, 2007) and nephrotoxicity (Garrod et al., 2005; Lenz,
Nicholson, Wilson, & Timbrell, 2000). These markers are especially important in the preclinical
drug development phase, considering that liver and kidney damage are the two major reasons for
drug withdrawal from the market. Although knowledge of these general toxicity markers is of
importance, metabolomics also has the capacity to identify markers related to specific drug
mechanisms and side effects to vital organs and, by using blood and urine for biomarker detection,
eliminates the need for intrusive procedures for monitoring these outcomes (such as tissue biopsy,
for instance). Sumner, Burgess, Snyder, Popp, and Fennell (2010) detected urinary markers
related to abnormalities in inositol, carbohydrate, glycerolipid, and glyoxylate metabolism,
correlating to hepatic microvesicular lipid accumulation (MVLA), a histopathological side effect
related to the treatment of TB with isoniazid. They propose that, if validated, these metabolite
changes can be used to develop a non-invasive method for the early detection of MVLA. A study
entitled Consortium for Metabonomic Toxicology (COMET) was one of the most extensive
pharmacometabolomics investigations conducted to date. The aim of COMET was to build models
for the prediction of organ toxicity (mainly liver and kidney), from NMR spectra obtained from
rodent urine and serum, from multiple toxicity studies (Lindon et al., 2003). A validation of these
markers indicated that these methods could predict liver and kidney toxicity with specificities of
100% and 77%, and sensitivities of 41% and 67%, respectively (Ebbels et al., 2007). These
models are now being implemented by the six pharmaceutical companies involved in the

consortium, in pre-clinical studies.

Another important general drug-related adverse effect to be considered is the change in the
patient's intestinal microbiota composition, in response to antibiotic treatment.

Pharmacometabonomics has also contributed significantly to this intensely studied research area,
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indicating that 87% of all metabolites in the intestinal metabolome are influenced by antibiotic
treatment. Furthermore, a disturbance in a number of metabolic pathways, including bile acid,
eicosanoid, and steroid hormone synthesis, were identified subsequent to antibiotic treatment
(Antunes et al., 2011). In addition to better describing the molecular mechanisms resulting in
general adverse effects such as hepatotoxicity, nephrotoxicity, and intestinal microbiota response
to antibiotic treatment, metabolomics has also been used to investigate the mechanisms of more
specific drug-related side effects associated with specific treatment regimens. To this end, Loots,
Wiid, Page, Mienie, and Helden (2005) evaluated the effects of the combined anti-TB drug, Rifater,
on the metabolic profiles of Sprague-Dawley rats. The identified biomarkers indicated elevated
oxidative stress levels in the animal models receiving treatment, and the metabolite profiles closely
resembled that of human patients suffering from a multiple acyl-CoA dehydrogenase deficiency
(MADD). These findings indicated that Rifater treatment could be linked to an inhibition of the
electron transport chain flavoproteins, and the group subsequently indicated that this MADD
metabolite profile, and hence the associated drug-related side effects, could be corrected by the
co-administration of melatonin. From these and other studies, it is evident that metabolomics can
assist in a better description and understanding of the general and specific side effects related to
various drugs, which may contribute to the development of safer treatment approaches, or the
expansion of therapeutic strategies for the prevention or early management of these occurrences.
Once again, it is important to consider all factors which may influence these metabolite changes,
including the previously mentioned environmental and genetic factors, when identifying those
biomarkers related to toxic insult (Beger et al., 2010). Although adverse side effects are not
uncommon for many prescription drugs, especially those targeting life-threatening disease states
such as cancer for instance, it can also occur in drugs which are widely recognized as safe and
are normally well tolerated by most patients. As discussed earlier, the largest contributor to the
variation in individual patient xenobiotic metabolism, and hence their toxicology phenotypes, are
polymorphisms in genes encoding for xenobiotic-metabolizing enzymes. However, various other
factors have been identified that contribute to this, including the patient’s health status (hepatic
dysfunction, inflammation, infection, and cancer), drug—drug interactions, and exposure to
contaminants such as heavy metals, all of which can influence the activities of these drug-
metabolizing enzymes (Chen et al., 2007). Although pharmacogenomics is the primary approach
used for the investigation of such variation, metabolomics studies have also shown to be useful in

the elucidation of the mechanisms leading to these phenotypes. For example, a number of

43



genetics studies have linked a polymorphism in the CYP2D6 with an excessive hypotensive
response to the antihypertensive drug; debrisoquine. When investigating this phenomenon using
LC-MS metabolomics, metabolite profiles from urine could differentiate the treatment response
phenotypes (poor metabolizers vs. extensive metabolizers). As expected, debrisoquine was
significantly higher in the profiles of poor responders, whereas the products of drug metabolism:
4-hydroxy-debrisoquine, and two-open ring products of debrisoquine (2-(guanidinoethyl) benzoic
acid () and 2-(guanidinomethyl) phenyl acetic acid (Il)), were detected in higher levels in the
profiles of the good responders. The two CYP2D6 genotypes could thus be identified using
biomarkers determined by metabolomics, proving that pharmacometabonomics has the capacity
to identify individual variation in drug-related side effects, originating from these polymorphisms
(Zhen et al., 2006). In a similar fashion, metabolomics can also be implemented to investigate
other factors leading to this variation, thereby paving the way for the development of more effective

medicines, with a lowered incidence of drug-induced side effects.

2.5. Concluding remarks

Considering the above literature review, due to treatment failure, poor patient adherence, lack of
new anti-TB drugs, and long treatment duration, it is clear that the TB epidemic is still one of the
largest complications, emphasising the urgency for new, faster, less toxic TB treatment regimens.
A possible anti-TB drug candidate is the antibiotic colistin methanesulfonate (CMS), an inactive
prodrug of colistin sulfate (CS), also known as polymyxin E (Ortwine et al., 2015). Colistin has
previously been shown to have high anti-bacterial activities against P. aeruginosa, A. baumannii,
and Klebsiella pneumoniae, and additionally shown to be resistant to these organisms developing
drug tolerance (Catchpole et al., 1997). Furthermore, metabolomics has been recently shown to
be a useful research tool for investigating new drug mechanisms. Due to its capacity for
characterising the metabolome (one of the research subdivisions in the omics cascade), the
observed phenotype associated with given perturbation, which in the case of this study would be
colistin, can be observed. Considering this, the aim of the study was to use a metabolomics
approach, in order to identify the metabolite markers associated with CS and CMS, Mtb, and for

the purpose of elucidating its antibacterial mechanisms of action.
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Chapter 3: Elucidating the antimicrobial mechanisms of
colistin sulfate on Mycobacterium tuberculosis using
metabolomics
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sulfate on Mycobacterium tuberculosis using metabolomics. Tuberculosis. 111, 14-19

Abstract

Considering the disadvantageous of first line anti-tuberculosis (TB) drugs, including poor patient
adherence, drug side effects, the long treatment duration and rapidly increasing microbe
resistance, alternative treatment strategies are needed. Colistin sulfate (CS), a polymyxin
antibiotic, considered a last-resort antibiotics for treating multidrug-resistant Pseudomonas
aeruginosa, Klebsiella pneumoniae, and Acinetobacter, has antimicrobial activity towards

mycobacteria, and could serve as a possible anti-TB drug.

Using GCxGC-TOFMS metabolomics, we compared the metabolic profiles of Mycobacterium
tuberculosis (Mtb) cultured in the presence and absence of CS, to elucidate the mechanisms by

which this drug may exert its antimicrobial effects.

The principal component analysis of the metabolite data indicated significant variation in the
underlying metabolite profiles of the groups. Those metabolites best explaining this differentiation,
were acetic acid, and cell wall associated methylated and unmethylated fatty acids, and their
alcohol and alkane derivatives. The elevated glucose levels, and various glyoxylate and

glycerolipid metabolic intermediates, indicates an elevated flux in these metabolic pathways.

Since all the metabolites identified in the colistin treated Mtb indicates an increase in fatty acid
synthesis and cell wall repair, it can be concluded that CS acts by disrupting the cell wall in Mtb,

confirming a similar drug action to other organisms.
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3.1. Introduction

Tuberculosis (TB), is an infectious bacterial disease caused by the organism Mycobacterium
tuberculosis (Mtb) and usually affects the lungs (Floyd, 2014). The World Health Organisation
(WHO) reports TB to be one of the world’s deadliest communicable diseases, resulting in the
death of up to 2 million people per annum. Furthermore, TB is considered the leading cause of
death among people living with HIV (World Health Organization, 2015). TB is currently treated
using the 6 month “directly observed treatment short-course” (DOTS) regimen, consisting of the
four first-line drugs: rifampicin, isoniazid, ethambutol and pyrazinamide (Palmer, Chan,
Dieckmann, & Honek, 2012). In patients with drug-susceptible TB, this regimen reportedly has a
1 — 4 % failure rate, and 7 % of the patients with a successful treatment outcome, reportedly
relapse within 24 months (Dye, et al., 2005). The WHO has additionally reported 5% of all TB
cases have multidrug-resistant TB (MDR-TB) (World Health Organization, 2015), which requires
treatment using second-line anti-TB drugs (Zhenkun, 2010). These second line drugs are not only
more expensive, but also have severe side effects, and an even longer treatment duration
(approximately 2 years) (Baths, Roy, & Sing, 2011). These complexities, in addition to the fact
that current anti-TB drugs have cross-reactions and interactions with HIV-antiretroviral therapy,
emphasise the need for researching and developing new anti-TB drugs or alternative therapeutic

approaches.

Colistin sulfate (CS), a polymyxin antibiotic discovered in the 1940s, is a cyclic peptide with a
hydrophobic tail, and was one of the first antibiotics with significant activity against gram-negative
bacteria (Ortwine, Kaye, Li, & Pogue, 2015), in particular Pseudomonas aeruginosa (Sabuda, et
al., 2008), Acinetobacter baumannii (Quresh, et al., 2015) and Klebsiella pneumonia (Poudyal,
Howden, & Bell, 2008). Colistin sulfate was proposed to function by binding electrostatically to the
lipopolysaccharides and phospholipids on the outer cell membrane of these gram negative

bacteria, and subsequently displace the membrane cations (magnesium and calcium) from the
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phosphate groups of these membrane lipids, creating pores, and subsequently causing cell death
(Falagas & Vardakas, 2014). Using M. aurum, David and Rastogi (1985), additionally indicated
that colistin sulfate has an effect on the cytoplasmic membrane of mycobacteria, and indicated a
resultant cell leakage in experiments using M. avium (Rastogi N. , Potar, Henrotte, Franck, &
David, 1988), M. aurum, M. xenopi and M. smegmatis (Rastogi, Potar, & David, 1986), as a
consequence of cell wall disruption. Considering this evidence, colistin sulfate would also be
expected to have similar effects on Mtb. Korycka-Machala et al., (2001) subsequently showed an
increased cell wall permeability in Mtb following colistin sulfate treatment, and Van Breda (2015)
and Bax et al., (2015), that colistin sulfate also allows for elevated first line TB drug uptake in Mtb,
as a result of this. Since most of this evidence pertaining to the anti-bacterial mechanisms of
colistin sulfate in mycobacteria has been done from a histological and genomics research
perspective, research using other “omics” disciplines are also required to understand this drug
better, and its possible application to treating TB. Metabolomics is one of the latest additions to
the “omics” technologies, and defined as an unbiased identification and quantification of all
metabolites present in a sample (disease or treatment related), using advanced analytical
techniques, and statistical analysis and bioinformatics, to identify the most important biomarkers
for describing a perturbation (Berg, Tymoczko, & Stryer, 2007). We used a two dimensional gas
chromatography coupled time-of-flight mass spectrometry (GCxGC-TOF/MS) metabolomics
approach, to identify those metabolite markers best differentiating Mtb cultured in the presence
and absence of colistin sulfate, for the purpose of confirming or elucidating its mechanism of action

against Mtb.

3.2. Materials and methods

3.2.1. Cell culture

The cell cultures were prepared in the presence and absence of colistin sulfate, as described by
van Breda et al., (2015), with slight modifications. Briefly, Mtb H37Ra ATCC 25177 (obtained from
Ampath Pathology Laboratory Support Services, Centurion, Gauteng, South Africa) was swabbed

onto Middlebrook 7H10 agar (Becton Dickinson, Woodmead, Gauteng, South Africa),
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supplemented with 0.5% v/v glycerol (Saarchem, Krugersdorp, Gauteng, South Africa), and
enriched with 10% v/v oleic acid, aloumin, dextrose, catalase (OADC) (Becton Dickinson). Our
reasons for selecting a H37Ra strain in this experiment, was due to the fact that the original
description of the effects of polymyxins by Rastogi et al., (1986), used H37Ra, and a recent
publication by Bax et al., (2015), described similar results using H37Rv as to what van Breda et
al., (2015), described for H37Ra.

The stock culture was prepared after three weeks of incubation at 37 °C, by suspending the cells
in 1 x phosphate buffered saline (PBS) (Sigma Aldrich, Kempton Park, Gauteng, South Africa)
containing 0.05% v/v Tween 80 (Saarchem) to a McFarland standard of 3. Aliquots of 1 mL were
stored at -80 °C in cryovials, containing 20% v/v glycerol (Saarchem). By using the TB Ag MPT64
Device (KAT Medical, Roodepoort, Gauteng, South Africa), the presence of Mtb was confirmed,
and the purity was determined by swabbing 100 pL of culture media onto tryptic soy agar (Merck,
Darmstadt, Germany) and incubating at 37 °C for 48 h. Before experimental investigations, a
cryovial of the stored aliquots was allowed to thaw to room temperature, vortexed and swabbed
onto Middlebrook 7H10 agar. Plates were sealed in Ziploc bags and incubated at 37 °C until mid-

log growth was reached (approximately 10 — 14 days).

The mid-log growth culture was suspended to a McFarland standard of 1 (using Sauton media
(van Breda et al., 2015)); approximately 1 x 10’ colony-forming units (CFU)/mL. The cell
suspension (195uL) was then added to each well in a 96 well microtiter plate (Eppendorf). The
antimicrobials were added to final concentrations of O pg/mL and 32 pg/mL colistin sulfate
respectively, and the plate was sealed using sterile ziploc bags, and incubated at 37 °C for 24
hours. The mixture in each well was subsequently transferred to Eppendorf tubes up to a volume
of 1 mL. The 10 samples containing 32 ug/mL colistin sulfate and 7 samples containing no colistin
sulfate, were centrifuged at 10000 x g for 1 min and showed no difference in the amounts of viable
CFU/mL. The supernatant was removed and pellet rinsed and resuspended in 1 x PBS (without
Tween 80) and then stored at -80°C.

In the current investigation it is important to note, that the reason Sauton media was used, is
because other media, such as Middlebrook 7H9 for instance, contains the following components
which antagonize the effects of polymyxins 1. BSA (forms complexes with polymyxins) (Liu, Tyo,
Martinez, Petranovic, & Nielsen, 2012), 2. Mg?* and Ca?* (Chen & Feingold, 1972) (D’Amato,
Capineri, & Marchi, 1975), and hence it was important to use media where physiological
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concentrations of these divalent cations can be controlled, i.e., cation-adjusted to 10-12.5mg
Mg?*/L and 20-25mg Ca?*/L (Falagas & Kasiakou, 2005) (Landman, Georgescu, Martin, & Quale,
2008), 3. Na* (Hancock & Sahl, 2006) (Ramo” n-Garcia, et al., 2013), and 4. Catalase, since the
latter is an antioxidant which would inhibit polymyxin induced Fenton reaction mechanisms
(Sampson, et al., 2012). Furthermore, it was important to substitute glycerol with 0.2% w/v
glucose, since lower than normal MICs have been previously observed for Mtb when glycerol was
used as the only carbon source (Pethe, et al., 2010), and with 0.05% v/v Tween 80, since Mtb
requires the fatty acids present within Tween 80 for growth (Schaefer & Lewis, 1965) (Smith,
Zahnley, Pfeifer, & Goff, 1993).

3.2.2. Whole metabolome extraction procedure and derivatization

Prior to GCxGC-TOFMS analysis, 0.5 mg of each of the individually cultured Mtb sample pellets
described above were weighed into an Eppendorf tube, followed by the addition of 50 pL 3-
phenylbutyric acid (0.0175ug/mL) (Sigma-Aldrich (St. Louis, MO, USA)) as internal standard.
Chloroform, methanol (Burdick and Jackson brands (Honeywell International Inc., Muskegon, M,
USA)) and water were added in a ratio 1:3:1, vortexed for 1 min and then placed in a vibration mill
(Retsch, Haan, Germany) with a 3 mm carbide tungsten bead (Retsch) for 5 min at 30 Hz/s. Each
sample was then centrifuged for 10 min at 10 000xg and the supernatants transferred to a GC
sample vial, and subsequently dried under a nitrogen stream. Each extract was derivatized using
20pL methoxyamine hydrochloride-(trimethylsilyl)-trifluoroacetamide (MSTFA) (Sigma-Aldrich
(Darmstadt, Germany)) (containing 15 mg/mL pyridine) at 50 °C for 90 min, followed by silylation
using 40uL MSTFA with 1 % trimethylchlorosilane (TMCS) at 50 °C for 60 min. These extracts
were then transferred to a 0.1 mL insert in a clean GC sample vial and capped, prior to GCxGC-
TOFMS analysis (Meissner-Roloff, Koekemoer, Warren, & Loots, 2012).
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3.2.3. GCXGC-TOFMS analyses

2.3 GCxGC-TOFMS analyses

The samples (1 pL) were analysed in random sequence, using a Pegasus 4D GCxGC-TOFMS
(LECO Africa (Pty) Ltd, Johannesburg, South Africa), equipped with an Agilent 7890 gas
chromatograph (Agilent, Atlanta, USA), TOFMS (LECO Africa) and Gerstel Multi-Purpose
Sampler (Gerstel GmbH and Co. KG, Milheim an der Ruhr, Germany), in a splitless ratio. The
necessary quality control (QC) samples were also analyzed at regular intervals in order to correct
for any batch effects and also monitor the performance of the analysis over time. A Rxi-5Sil MS
primary capillary column (30 m, 0.25 ym film thickness and 250 ym internal diameter), and a Rxi-
17 secondary capillary column (1.2 m, 0.25 um film thickness and 250 um internal diameter) where
used for GC compound separation. Helium was used as a carrier gas at a flow of 1 mL/min with
the injector temperature held constant at 270 °C for the entire run. The primary column
temperature was set at 70 °C for 2 min, and then increased at a rate of 4 °C/min to a final
temperature of 300 °C, at which it was maintained for a further 2 min. The temperature of the
secondary oven was programmed at 85 °C for 2 min, then increased at a rate of 4 °C/min to final
temperature of 305 °C, at which it was maintained for a further 4.5 min. The acquisition voltage of
the detector was 1700 V and the filament bias -70 eV. A mass range of 50-800 m/z was used for
the mass spectra, at an acquisition rate of 200 spectra/s.

3.2.4. Data processing, clean-up and statistics

Mass spectral deconvolution (at a signal to noise ratio of 20), peak alignment and peak
identification, were done on the collected mass spectra using ChromaTOF software (version 4.32).
Identical mass spectra of the compounds in each of the samples were aligned, if they displayed
similar retention times. Compounds were identified by comparison of their mass fragment patterns

and retention times, to that of libraries compiled from previously injected standards.

Following the data processing steps described above, a standardized metabolomics data clean-
up procedure was conducted (Smuts, Der Westhuizen, Francois, Louw, & al.,, 2013).

Normalization of each of the detected compounds was done using the total useful MS signal (TUS)

61



(Chen, et al., 2013) and by calculating the relative concentration of each compound, using the
internal standard as a reference. A 50% filter was applied in order to remove those compounds
showing more than 50% zero values within both groups (Lutz, Sweedler, & Wevers, 2013) and
the QC samples used to correct for any batch effects, using quantile equating (Wang, Kuo, &
Tseng, 2012). Additionally, a 50% QC coefficient of variation (CV) filter was applied (Godzien,
Alonso-Herranz, Barbas, & Armitage, 2014), and all zero-values were replaced by a value
determined as half of the smallest concentration (i.e. the detection limit) detected in the entire data
set, as these may be due to low abundance rather than being absent (Piotr, Xu, & Goodacre,
2014).

The data were subsequently analysed using a variety of multi- and univariate statistical methods,
using a web based software package supported by the Metabolomics Society: MetaboAnalyst
(based on the statistical package “R”; version 2.10.0), and included principal components analysis
(PCA) (Buydens, et al., 2009), partial least squares—discriminant analysis (PLS—DA) (Cho, et al.,
2008), a t-test and effect size calculations (Smith, Is it the sample size of the sample as a fraction

of the population that matters?, 2004).

3.3 Results

Figure 3-1 shows clear PCA differentiation between the individually cultured Mtb samples in the
presence and absence of colistin sulfate. This natural differentiation of the samples of each of the
sample groups can be ascribed to the variation in the total metabolite profiles of each, as
determined by GCxGC-TOFMS. The total variance explained by the first two principal components
(PCs) (R2X cum) was 48.4% of which PC1 contributed to 37.5% and PC2 10.9%, respectively.
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Figure 3-1 PCA differentiation using the GCxGC-TOFMS whole metabolome analysed data
of the individually cultured Mtb in the absence (Mtb-Control) and presence (Mth-CS) of

colistin sulfate (32 pg/mL). The variances accounted for are indicated in parenthesis.

Subsequently, those metabolites that contributed most to this differentiation were selected on the
basis of complying with all of the following criteria: a PCA modelling power > 0.5 (Buydens et al.,

2009), a PLS-DA VIP value > 1 (Cho et al., 2008), a t-test P-value < 0.05 and an effect size > 0.5
(Smith, 2004).
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Figure 3-2 Venn diagram illustrating a multi-statistical approach for selecting the 21
metabolite markers best describing the variation detected between the individually

cultured Mtb samples in the presence and absence of colistin sulfate.

Figure 3-2 is a summary of the number of metabolite markers selected by each of the univariate
and multivariate statistical approaches described above, as well as the selection of the 21

metabolites listed in Table 3:1, considered most important for explaining the variation detected.
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Table 3:1 The 21 metabolite markers that best explain the variance between the individually

cultured Mtb samples in the absence (Mtb-Controls) and presence (Mtb-CS) of colistin

sulfate.

Mtb controls:

Mtb treated with

colistin sulfate

Metabolite name Average . Average . PCA PLS- Effect t-test Fold

concentration concentration DA sizes change
(Chemspider ID) (mg/g cells) (mg/g cells) (Power) (VIP) (d-value) (P-value) (log2)

(standard error of (standard error of

the mean) the mean)
Octanoic acid (NSC 5024 [DBID]) 0.205 (0.192) 0.019 (0.010) 0.787 1423 0.966 >0.001 -3.43
Hexadecanoic acid (NSC 5030 [DBID]) 0.860 (0.176) 1.259 (0.198) 0.948 1.224 2.022 0.001 0.55
Octadecenoic acid (NSC931 [DBID]) >0.001 (>0.001) 0.021 (0.005) 0.861 1.165 4.580 0.003 4.39
Eicosenoic acid (4445895 ) >0.001 (>0.001) 0.006 (0.007) 0.842 1.181 0.930 0.002 2.59
Hexacosanoic acid (NSC 4205 [DBID]) >0.001 (>0.001) 0.059 (0.038) 0.804 1.244 1541 0.001 5.88
Methyldecanoic acid (LMFA01020090) 0.013 (0.004) 0.017 (0.004) 0.822 1.238 0.994 0.001 0.39
Methyldodecanoic acid ( 4445769 ) 0.045 (0.011) 0.115 (0.025) 0.855 1.123 2.794 0.004 1.35
Methyltetradecanoic acid (NSC 189699 [DBID]) 0.317 (0.021) 0.789 (0.261) 0.893 1.073 1.810 0.007 1.32
Sebacic acid (NSC 19492 [DBID]) 0.001 (0.001) 0.004  (0.003) 0.898 1.151 1.278 0.003 2.00
Tetradecanol (NSC 4194 [DBID]) 0.016 (0.003) 0.059 (0.019) 0.982 1516 2.251 >0.001 1.88
2-Ethyl-2-Methyl-Tridecanol (921600091) 0.006 (0.001) 0.044 (0.033) 0.809 1.245 1.159 0.001 2.87
5-Nonanol (NSC4552 [DBID]) 0.001 (0.001) 0.023 (0.004) 0.965 1.054 6.168 0.001 4.52
Hexadecane (NSC 172781 [DBID]) 0.002 (0.003) 0.031 (0.029) 0.978 1555 1.024 >0.001 3.95
Octadecane (NSC 172781 [DBID]) 0.020 (0.011) 0.115 (0.028) 0.878 1.197 3.446 0.002 2.52
Octacosane (NSC 5549 [DBID]) >0.001 (>0.001) 0.016 (0.016) 0.993 1.611 0.979 >0.001 4.00
Methyltetradecane (NSC 172781 [DBID]) 0.005 (0.004) 0.044 (0.012) 0.664 1.090 3.186 0.006 3.14
Glucose (NSC4552 [DBID]) 0.195 (0.187) 0.366 (0.170) 0.819 1.470 0.913 >0.001 0.91
Oxalate (c0017 [DBID]) >0.001 (>0.001) 0.006 (0.006) 0.863 1.266 0.954 0.001 2.59
Glycerol (NSC 9230 [DBID]) 0.063 (0.012) 0.082 (0.011) 0.891 1.173 1.469 0.002 0.38
Monopalmitin (110006 ) 0.165 (0.058) 0.216 (0.056) 0.987 1.614 0.874 >0.001 0.39
Propyl myristate (Al3-31609 [DBID]) 0.014 (0.003) 0.023  (0.006) 0.991 1.626 1.328 >0.001 0.72
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3.4 Discussion

As previously mentioned, treatment with colistin sulfate results in a structural disruption of the cell
wall in Mtb (Bax, et al., 2015). The metabolite markers detected in the colistin sulfate treated Mtb
in the current metabolomics investigation confirms this, and additionally indicates that Mtb
attempts to rectify this by upregulation of its fatty acid synthesis pathways for subsequent cell wall
repair. Accompanying this is an upregulation of glycolysis which will be described in detail below

and summarized in Figure 3-3.

In Table 3:1, 15 out of the 21 metabolite markers identified by the statistics described above, are
directly linked to elevated fatty acid biosynthesis and subsequently also cell wall synthesis. These
included hexadecanoic acid, octadecenoic acid, eicosanoic acid and hexacosanoic acid, all of
which are known to form methyl-branched chain fatty acids and ultimately the mycolic acids
(Shimakata, Iwaki, & Kusaka, 1984) (Du Preez & Loots, 2012), an important component of
arabinogalactan (AG) in the cell wall core of Mtb (Kaur, Guerin, Skovierova, Brennan, & Jackson,
2009). Additionally, although not detected as part of the 21 metabolite markers, decanoic acid
(0.100 vs. 0.219 pg/ml; P < 0.05), dodecanoic acid (0.421 vs. 0.592 pg/ml; P < 0.05) and
octadecanoic acid (0.491 vs. 0.888 ug/ml; P > 0.05) were also found to be elevated, further
supporting this. Another important observation was the elevated levels of the methylated branched
fatty acids (methyldecanoic acid, methyldodecanoic acid and methyltetradecanoic acid), in the
colistin sulfate treated group comparatively, which in turn not only serve as substrates for mycolic
acid synthesis, but also function as hydrophobic modulators of the host’s cellular immune function,
and various virulence factors in the microbe (Lee, VanderVen, Fahey, & Russell, 2013). These
methylated fatty acids are proposed to be formed by 3 possible routes: 1. fatty acid methylation
via S-adenosylmethionine (SAM) functioning as the methyl donor (Du Preez & Loots, 2012), 2.
methylmalonyl-CoA derived polyketide synthase complexes, originating from propionyl-CoA and
malonyl-CoA (Duncan & Garton , 2007) and 3. acetyl-CoA metabolism to butyric acid, which in

turn reacts with propionyl-CoA ( Massey, Sokatch, & Conrad, 1976).

Further substantiating these results, are the presence of various alcohols (tetradecanol, nonanol
and 2-ethyl-2-methyltridecanol) and alkanes (hexadecane, octadecane, octacosane and
methyltetradecane) corresponding to the aforementioned fatty acids (Park, 2004). Additionally,
although not detected using the marker selection process described above, decanol (0 vs. 0.018
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ug/ml; P < 0.05), decane (0.006 vs. 0.012 pg/ml; P > 0.05), dodecane (0 vs. 0.007 pg/ml; P >
0.05), eicosane (0.083 vs. 0.172 pg/ml; P < 0.05), tetracosanol (0.001 vs. 0.006 pg/ml; P > 0.05),
tetracosane (0 vs. 0.01 pg/ml; P < 0.05), methylhexacosane (0.132 vs. 0.611 pg/ml; P > 0.05),
tetramethylhexadecanol (0.001 vs. 0.023 pug/ml; P < 0.05) and metylhexadecane (0 vs. 0.01 pg/mi;

P > 0.05)), were also seen to occur in elevated amounts, further confirming these mechanisms.

Another important observation supporting the unanimous metabolic flux observed in this study
towards fatty acid biosynthesis and cell wall repair, is the significantly elevated concentrations of
glucose, glycerol and monopalmitic acid. According to de Carvalho (2010), Mtb’s central carbon
metabolism is able to co-catabolise multiple carbon sources for energy (de Carvalho, et al., 2010).
Considering the colistin sulfate treated Mtb’s need to preferably utilize fatty acids towards cell wall
repair, one would expect that this organism would subsequently resort to glucose, which was
freely available in the growth media, as the primary energy substrate, in conjunction with an
upregulated glyoxylate cycle (Badejo, et al., 2013), substantiated in this investigation by the
elevated glucose and oxalic acid detected (Coad, Friedman, & Geoffrion, 2012). Furthermore, as
shown in Figure 3-3, various intermediates of glycolysis, can additionally serve as substrates for
fatty acid biosynthesis, including acetyl-CoA, as previously mentioned, and glyceraldehyde-3-
phosphate (G-3-P) via glycerol (Berg, Tymoczko, & Stryer, 2007), the latter of which is supported

by elevations in monopalmitic acid and the glycerol present in the growth media.
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Figure 3-3 Altered Mtb metabolome induced by

treatment with colistin sulfate. The

schematic representation indicates the 21 metabolite markers in bold and the confirmatory

metabolites which were also elevated, but not necessarily significantly so, indicated in

italics. Increase and decrease in the metabolite markers are indicated by 1| respectively.
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3.5 Concluding remarks

This study, is the first of its kind to use a metabolomics research approach in order to identify
biomarkers explaining the antibacterial mechanisms of colistin sulfate against Mtb, and additionally
shows the capacity of metabolomics for identifying metabolite markers which can be used to better
understand or confirm drug action. The fatty acid metabolite markers identified in the colistin sulfate
treated Mtb, shows a metabolic flux towards fatty acid synthesis and cell wall repair. Furthermore,
glucose uptake is increased, serving as the preferential energy source (as opposed to fatty acids
which are now preferentially being used for cell wall repair) to fuel an upregulated glyoxylate cycle,
and additionally as a precursor for further cell wall fatty acid synthesis via the glycerolipid metabolic
pathway. Considering this, it can be concluded that colistin sulfate acts by disrupting the cell wall in

Mtb, confirming a similar drug action as that seen in other organisms.
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Abstract

Over the last 5 years, there has been a renewed interest in finding new compounds with anti-TB
action. Colistin methanesulfonate or polymyxin E, is a possible anti-TB drug candidate, which may
in future be used either alone or in combination to the current 6 month “directly observed treatment
short-course” (DOTS) regimen. However its mechanism of action has to date not yet been fully
explored, and only described from a histological and genomics perspective. Considering this, we
used a GCxGC-TOFMS metabolomics approach and identified those metabolite markers
characterising Mycobacterium tuberculosis (Mtb) cultured in the presence of colistin
methanesulfonate, in order to better understand or confirm its mechanism of action. The metabolite
markers identified indicated a flux in metabolism of the colistin methanesulfonate treated Mtb towards
fatty acid synthesis and cell wall repair, confirming previous reports that colistin acts by disrupting
the cell wall of mycobacteria. Accompanying this, is a subsequently elevated glucose uptake, since
the latter now serves as the primary energy substrate for the upregulated glyoxylate cycle, and
additionally as a precursor for further fatty acid synthesis via the glycerolipid metabolic pathway.
Furthermore, the elevated concentrations of those metabolites associated with pentose phosphate,
valine, threonine, and pentanediol metabolism, also confirms a shift towards glucose utilization for

energy production, in the colistin methanesulfonate treated Mtb.
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4.1 Introduction

In 2015, an approximated 10.5 million new cases of tuberculosis (TB) was reported globally, which
subsequently contributed to 1.4 million deaths [1]. Tuberculosis is caused by the infectious organism
Mycobacterium tuberculosis (Mtb), a mycobacteria bacillus which mainly targets the lungs [2].
Currently, the WHO approved treatment approach entails a 6 months combination treatment
approach which is called the “directly observed treatment short-course” (DOTS) regimen [3].
According to the annual WHO report, a significant improvement to current treatment strategies is
going to be a challenge, however the identification of new anti-TB drug candidates and or alternative
treatment regimens, might be a plausible option for speeding up treatment duration and subsequently
lowering the TB prevalence globally [4,5]. Although there are currently a number of new potential
anti-TB drugs undergoing phase Il and Il preclinical trials, delamanid and bedaquiline are the only
two new anti-TB drugs to have been approved over the last 50 years. These drugs, however, are
currently only used for treating adults with MDR-TB, and considered as last option medications, when
no other alternatives prove to be effective [6]. Considering this, there is still urgent need for new TB
drugs and alternative TB treatment approaches.

Another possible anti-TB drug candidate is the antibiotic colistin methanesulfonate (CMS), an
inactive prodrug of colistin sulfate (CS), also known as polymyxin E [7]. CMS has previously been
shown to have high anti-bacterial activities against P. aeruginosa, A. baumannii, and Klebsiella
pneumoniae, and additionally shown to be resistant to these organisms developing drug tolerance
[8]. CMS is produced via a reaction from commercially synthesised CS with formaldehyde and
sodium bisulphite, resulting in the subsequent addition of a sulfomethylated group to the primary
amine groups of CS [9]. The original reason for modifying CS in this manner is that the resulting CMS
is considered less toxic when administered parenterally [10]. When administered, a hydrolysis
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reaction occurs, where CMS in an aqueous solution forms both CS and various partially
sulfomethylated derivatives of CS [11]. Apart from the varying toxicity characteristics of CS and CMS,
these two forms of the drug show different pharmacokinetic characteristics [12—14]. A study
conducted by Plachouras et al., 2009, indicated that colistin concentrations increase slowly after the
administration of CMS in critically ill patients, reaching a steady state after 2 days, suggesting
benefits of treatment commencement with a loading dose [15]. Various colistin derivitives have also
been proposed to promote first line anti-TB drug uptake, by creating pores in the outer membrane of
Mtb, after binding electrostaticly to the outer cell membrane lipopolysaccharides and phospholipids
[16]. Very little data however exists describing the antimicrobial action of CMS against Mtb, which
has been decribed to date, was attained solely from a histologicical or genomics approach.
Metabolomics, the latest addition to the “omics” family, is defined as an unbiased identification and
quantification of all metabolites present in a sample, using highly specialised analytical procedures
and a statistical analysis / bioinformatics, by which the most important metabolites characterising a
pertubation (or drug) can be identified [17]. In this investigation, we extracted the intracellular
metabolome of Mtb cultured in the presence and absence of 32 ug/ml CMS, and analysed these
extracts using a 2 dimansional gas chromatography time of flight mass spectrometry (GCxGC-
TOFMS) metabolomics approach, for the purpose of identifying those metabolite markers best

characterising the changes to the Mtb metabolome induced by CMS.

4.2 Materials and methods

4.2.1 Cell culture

As described by van Breda et al., (2015), the cell cultures were prepared in the presence and
absence of CMS, with slight modifications. Briefly, Mtb H37Ra ATCC 25177 (obtained from Ampath
Pathology Laboratory Support Services, Centurion, Gauteng, South Africa) was swabbed onto
Middlebrook 7H10 agar (Becton Dickinson, Woodmead, Gauteng, South Africa), supplemented with
0.5% v/v glycerol (Saarchem, Krugersdorp, Gauteng, South Africa), and enriched with 10% v/v oleic
acid, albumin, dextrose, catalase (OADC) (Becton Dickinson). The reasons for selecting a H37Ra

strain in this experiment, was due to the fact that the original description of the effects of polymyxins
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by Rastogi et al., (1986), used H37Ra, and a recent publication by Bax et al., (2015), described
similar results using H37Rv as to what van Breda et al. (2015) described for H37Ra [16,18,19] .

The stock culture was prepared after three weeks of incubation at 37 °C, by suspending the cells in
1 x phosphate buffered saline (PBS) (Sigma Aldrich, Kempton Park, Gauteng, South Africa)
containing 0.05% v/v Tween 80 (Saarchem) to a McFarland standard of 3. Aliquots of 1 mL were
stored at -80 °C in cryovials, containing 20% v/v glycerol (Saarchem). By using the TB Ag MPT64
Device (KAT Medical, Roodepoort, Gauteng, South Africa), the presence of Mtb was confirmed, and
the purity was determined by swabbing 100 pL of culture media onto tryptic soy agar (Merck,
Darmstadt, Germany) and incubating at 37 °C for 48 h. Before experimental investigations, a cryovial
of the stored aliquots was allowed to thaw to room temperature, vortexed and swabbed onto
Middlebrook 7H10 agar. Plates were sealed in Ziploc bags and incubated at 37 °C until mid-log
growth was reached (approximately 10 — 14 days).

The mid-log growth culture was suspended to a McFarland standard of 1 (using Sauton media [16]);
approximately 1 x 107 colony-forming units (CFU)/mL. The cell suspension (195uL) was then added
to each well in a 96 well microtiter plate (Eppendorf). The antimicrobials were added to final
concentrations of O pg/mL and 32 pg/mL CMS respectively, and the plate was sealed using sterile
ziploc bags, and incubated at 37 °C for 24 hours. The mixture in each well was subsequently
transferred to Eppendorf tubes up to a volume of 1 mL. The 10 samples containing 32 pg/mL CMS
and 7 samples containing no CMS, were centrifuged at 10000 x g for 1 min and showed no difference
in the amounts of viable CFU/mL. The supernatant was removed and pellet rinsed and resuspended
in 1 x PBS (without Tween 80) and then stored at -80°C.

In the current investigation it is important to note, that the reason Sauton media was used, is because
other media, such as Middlebrook 7H9 for instance, contains the following components which
antagonize the effects of polymyxins 1. BSA (forms complexes with polymyxins) [20], 2. Mg2+ and
Ca2+ [21,22], and hence it was important to use media where physiological concentrations of these
divalent cations can be controlled, i.e., cation-adjusted to 10-12.5mg Mg2+/L and 20-25mg Ca2+/L
[23,24], 3. Na+ [25,26], and 4. Catalase, since the latter is an antioxidant which would inhibit
polymyxin induced Fenton reaction mechanisms [27]. Furthermore, it was important to substitute
glycerol with 0.2% w/v glucose, since lower than normal MICs have been previously observed for
Mtb when glycerol was used as the only carbon source [28], and with 0.05% v/v Tween 80, since

Mtb requires the fatty acids present within Tween 80 for growth [29,30].
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4.2.2 Whole metabolome extraction procedure and derivatization

Prior to GCxGC-TOFMS analysis, 0.5 mg of each of the individually cultured Mtb sample pellets
described above were weighed into an Eppendorf tube, followed by the addition of 50 pL 3-
phenylbutyric acid (0.0175ug/mL) (Sigma-Aldrich (St. Louis, MO, USA)) as internal standard.
Chloroform, methanol (Burdick and Jackson brands (Honeywell International Inc., Muskegon, Ml,
USA)) and water were added in a ratio 1:3:1, vortexed for 1 min and then placed in a vibration mill
(Retsch, Haan, Germany) with a 3 mm carbide tungsten bead (Retsch) for 5 min at 30 Hz/s. Each
sample was then centrifuged for 10 min at 10 000xg and the supernatants transferred to a GC sample
vial, and subsequently dried under a nitrogen stream. Each extract was derivatized using 20puL
methoxyamine hydrochloride-(trimethylsilyl)-trifluoroacetamide (MSTFA) (Sigma-Aldrich (Darmstadt,
Germany)) (containing 15 mg/mL pyridine) at 50 °C for 90 min, followed by silylation using 40uL
MSTFA with 1 % trimethylchlorosilane (TMCS) at 50 °C for 60 min. These extracts were then
transferred to a 0.1 mL insert in a clean GC sample vial and capped, prior to GCxGC-TOFMS

analysis [31].

4.2.3 GCXGC-TOFMS analyses

The samples (1 pL) were analysed in random sequence, using a Pegasus 4D GCxGC-TOFMS
(LECO Africa (Pty) Ltd, Johannesburg, South Africa), equipped with an Agilent 7890 gas
chromatograph (Agilent, Atlanta, USA), TOFMS (LECO Africa) and Gerstel Multi-Purpose Sampler
(Gerstel GmbH and Co. KG, Mulheim an der Ruhr, Germany), in a splitless ratio. The necessary
quality control (QC) samples were also analyzed at regular intervals in order to correct for any batch
effects and also monitor the performance of the analysis over time. A Rxi-5Sil MS primary capillary
column (30 m, 0.25 um film thickness and 250 pm internal diameter), and a Rxi-17 secondary
capillary column (1.2 m, 0.25 ym film thickness and 250 uym internal diameter) where used for GC
compound separation. Helium was used as a carrier gas at a flow of 1 mL/min with the injector
temperature held constant at 270 °C for the entire run. The primary column temperature was set at

70 °C for 2 min, and then increased at a rate of 4 °C/min to a final temperature of 300 °C, at which it
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was maintained for a further 2 min. The temperature of the secondary oven was programmed at 85
°C for 2 min, then increased at a rate of 4 °C/min to final temperature of 305 °C, at which it was
maintained for a further 4.5 min. The acquisition voltage of the detector was 1700 V and the filament
bias -70 eV. A mass range of 50-800 m/z was used for the mass spectra, at an acquisition rate of
200 spectral/s.

4.2.4 Data processing, clean-up and statistics

Mass spectral deconvolution (at a signal to noise ratio of 20), peak alignment and peak identification,
were done on the collected mass spectra using ChromaTOF software (version 4.32). Identical mass
spectra of the compounds in each of the samples were aligned, if they displayed similar retention
times. Compounds were identified by comparison of their mass fragment patterns and retention
times, to that of libraries compiled from previously injected standards.

Following the data processing steps described above, a standardized metabolomics data clean-up
procedure was conducted [32]. Normalization of each of the detected compounds was done using
the total useful MS signal (TUS) [33] and by calculating the relative concentration of each compound,
using the internal standard as a reference. A 50% filter was applied in order to remove those
compounds showing more than 50% zero values within both groups [34] and the QC samples used
to correct for any batch effects, using quantile equating [35]. Additionally, a 50% QC coefficient of
variation (CV) filter was applied [36], and all zero-values were replaced by a value determined as
half of the smallest concentration (i.e. the detection limit) detected in the entire data set, as these

may be due to low abundance rather than being absent [37].

The data were subsequently analysed using a variety of multi- and univariate statistical methods,
using a web based software package supported by the Metabolomics Society: MetaboAnalyst (based
on the statistical package “R”; version 2.10.0), and included principal components analysis (PCA)
[38], partial least squares—discriminant analysis (PLS—DA) [39], a t-test and effect size calculations
[40].
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4.3 Results and Discussion

Figure 4-1 shows clear PCA differentiation of the individually cultured Mtb samples in the presence
and absence of CMS, using the collected GCxGC-TOFMS metabolomics data. The total amount of
variance explained by the first two principal components (PCs) (R2X cum) was 55.9%, of which PC1
accounted for 43.4%, and PC2 accounted for 12.5%. Subsequently, by compliance with all of the
following criteria: a PCA modelling power > 0.5 [38], a PLS-DA VIP value > 1 [39], a t-test P-value <
0.05 and an effect size > 0.5 [40], the metabolites that contributed most to this differentiation were
selected (Figure 4-2) and listed in Table 4:1. These metabolite markers were mapped on a metabolic
chart as indicated in Figure 3 and discussed below. As indicated, the metabolomics investigation of
the cultured Mtb in the presence and absence of CMS, led to the identification of various significantly
altered metabolite markers. Glucose uptake was increased in the CMS treated Mtb, as the
preferential energy source (as opposed to fatty acids which are now preferentially being used for cell
wall repair) to fuel an upregulated glyoxylate cycle, and substrate further cell wall fatty acid synthesis
via the glycerolipid metabolic pathway. However, the CMS treated Mtb, also showed comparatively
elevated metabolites associated with pentose phosphate, valine, threonine, and pentanediol
metabolism. These results confirm that CMS disrupts the Mtb cell membrane, and that these bacteria
attempt to compensate for this via upregulation of various metabolic pathways related to cell wall

repair.

80



Scores Plot

A Mtb-control

1+ Mtb-cms 32

8 - .rf A= + il
- o +
: 'S [
E o = :;' _|_ II.
o g.: i +

o I ‘H_ —|_ r"

Li":. 1T y
9 @
% 20 o 2 M

PC 1 (43.4 %)

Figure 4-1 PCA differentiation of individually cultured Mtb in the absence (Mtb-control) and

presence (Mtb-CMS) of colistin methanesulfonate (32 pug/mL) and analysed via GCxGC-
TOFMS. The variances accounted for are indicated in parenthesis.

/\
(2> =
\/

81



Figure 4-2 Venn diagram illustrating the multi-statistical selection criteria of the 22 metabolite
markers best describing the variation between the individually cultured Mtb sample groups

in the presence and absence of CMS.

Colistin has been previously reported to have a antimicrobial activity, which function by binding
electrostatically to the lipopolysaccharides and phospholipids on the outer cell membrane of these
gram negative bacteria, subsequently displacing the membrane cations (magnesium and calcium)
from the phosphate groups of their membrane lipids, subsequently creating pores, which results in
cell death [41]. This was supported by our previous metabolomics work on the topic, which showed
that elevated fatty acid synthesis and cell wall repair mechanisms are activated in the CS treated
Mtb [42]. As previously described by Bax, et al. (2015) and van Breda, et al. (2015), the CMS used
in the current investigation, also forms colistin once administered, and hence, would also be expected
to result in a structural disruption of the Mtb cell wall via the same mechanism as to when CS is
administered. This is supported by the elevated levels of the cell wall associated with methylated and
unmethylated fatty acids (methyladipic acid, methyldodecanoic acid, methyltridecanoic,
octadecenoic acid) and their fatty acid associated alcohols and alkanes [43]
(tetramethylhexanedecanol, octacosane, octadecane, tetradecanol, and hentriacontane (Table 4:1).
Additionally, although not selected using the markers selection statistics approach defined in the
methods section, methyloctadecenoic acid (0.49 vs. 0.42 pg/ml; P > 0.05), hexadecanoic acid (0.859
vs. 0.857 ug/ml; P > 0.05), octadecanoic acid (22.45 vs. 8.07 ug/ml; P > 0.05), tetracosanoic acid
(24.54 vs. 14.15 pg/ml; P > 0.05), decanol (0.02 vs. 0.00 ug/ml; P > 0.05), hexadecanol (0.001 vs.
0.000 pg/ml; P > 0.05), decane (0.009 vs. 0.006 pg/ml; P > 0.05), dodecane (0.006 vs. 0.00 pg/ml;
P > 0.05), hexadecane (0.011 vs. 0.002 pg/ml; P > 0.05) and tetracosane (0.018 vs. 0.00 pg/ml; P >
0.05), were also significantly elevated in the CMS treated Mtb comparatively, when considering their
P-values, further supporting this mechanism (Figure 4-3). Octanoic acid and octadecenoic acid, are
the well-known substrates for the synthesis of methylated-branched chain fatty acids and mycolic
acids, both important components of arabinogalactan (AG) in the cell wall of Mtb [44,45]. These
methylated branched fatty acids additionally serve as hydrophobic modulators for the host’s cellular
immune system, and are also considered virulence factors in the microbe [46]. As indicated in Figure
4-3, these methylated cell wall intermediates are synthesised via 3 possible routes: 1. fatty acid
methylation via S-adenosylmethionine (SAM) functioning as the methyl donor [45], 2. methylmalonyl-
CoA derived polyketide synthase complexes, originating from propionyl-CoA and malonyl-CoA [47]

and 3. acetyl-CoA metabolism to butyric acid, which in turn reacts with propionyl-CoA [48].
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Additionally, methyladipic acid was found elevated, which is formed from methylhexanoic acid, one
of the metabolites in the branched fatty acid synthesis pathways of Mtb [49].

Similarly as to what we previously saw for the CS treated Mtb [42], glycolysis and its associated
pathways are also upregulated in the CMS treated Mtb. In our previous metabolomics investigation
using CS treated Mtb, elevated levels of glucose, acetic acid and oxalic acid where detected [50].
This suggests that the CS treated Mtb needed to preferably utilize fatty acids towards cell wall repair,
and subsequently these organisms need to resort to glucose (which was freely available in the growth
media) as the primary energy substrate [51]. Similarly, in the CMS treated Mtb in the current
investigation, elevated levels of oxalate were also detected (Table 4:1) in addition to elevated glucose
(1.21 vs. 0.88 pg/ml; P > 0.05) and acetic acid (0.218 vs. 0.102 pg/ml; P > 0.05) when considering
significance using the latter two compounds P-values. Additional evidence supporting this and
indicated in Table 4:1 and Figure 4-3, where elevated levels of valine, threonine, and pentanediol,
which also suggests a shift towards glucose utilization for energy and fatty acid synthesis in the CMS
treated Mtb. Furthermore, the elevated levels of acetic acid (or acetyl-CoA) can subsequently result
in the elevated synthesis of threonine and pentanediol, detected in the CMS treated Mtb [52]. Also
associated directly with this pathway, is elevated valine synthesis from pyruvate [53], which feeds
into the tricarboxylic acid (TCA) cycle via succinate [54]. Another branch chain amino acid metabolic
pathway affected by CMS in Mtb is that of leucine’s catabolism to acetyl-CoA, and the reduced
amounts of 3-methylgluturic acid attests to an increased flux in this direction [55] and the subsequent
synthesis of cell wall fatty acids or energy [56]. The reduced concentrations of methylmaleic acid [57]
and diethylene glycol in the CMS treated Mtb, serve as further confirmation for the flux of glucose
utilisation for growth and fatty acid synthesis via glycerol and monopalmitin, both of which were
elevated in the CMS treated Mtb comparatively (Table 4:1 and Figure 4-3).

An interesting observation in the CMS treated Mtb, where two metabolite markers associated with
the pentose phosphate pathway namely, a reduced arabinose and an elevated erythrose (Table 4:1).
As indicated in Figure 4-4, due to the high demand in fatty acid synthesis for cell repair, and an
increased demand for this and energy production via glycolysis, the pentose phosphate pathways is
most likely additionally utilised during such conditions for generating more intermediates for
glycolysis [58], with the reduction in arabitol and elevated levels of erythrose, indicating a metabolic
flux towards glyceraldehyde-3-phosphate and fructose-6-phosphate synthesis, something which
wasn’t previously seen in the CS treated Mtb [59]. A study conducted by Henry et al. (2015), indicated

differentiation of gene expression following colistin treatment. These results are consistent with that
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found in the current study, which also suggests that colistin treatment alters the outer membrane
composition and results in subsequent damage to the outer membrane of Mtb, as previously
described [60].

Additionally, the alterations made by CMS to the Mtb cell membrane, results in it becoming less
hydrophobic, hence it could be suggested that CMS be used in synergy with other hydrophilic drugs,
which previously struggle to cross these bacterial membranes. This has been previously observed
by Bax et al. (2015) and van Breda et al (2015). It is possible that disruption of the hydrophobic
barrier of Mtb by INH (inhibiting mycolic acid synthesis) or CS from CMS could lead to a greater
uptake via the self-promoted uptake for CS causing a synergistic effect. In the case of INH, disruption
of the hydrophobic barrier can lead to an uptake of hydrophilic INH. According to Nasiruddin, Neyaz,
& Das (2017), a promising drug delivery model could be to encapsulate the hydrophilic drugs to be
carried over the membrane, however in synergy with CMS, this may no longer be required [61]. Proof
for this hypothesis, are the results by Al-Shaer, Nazer, & Kherallah (2014), where a combination
therapy approach of rifampicin and CMS was used against MDR A. baumannii, which resulted in the
successful treatment of 64% of the patients, with very little side effects reported [62]. Unfortunately,
the results of these investigations are limited and no effect is given on the clinical outcomes of
rifampicin induced - hepatotoxicity.

84



Table 4:1 The 22 metabolite markers best explaining the variance between the individually

cultured Mtb samples in the absence (Mtb-Controls) and presence (Mtb-CMS) of colistin

methanesulfonate.

Metabolite name cor':/lt:gls: cor':/tlt?)ls: '\cvti?htrgl?/:? ’\\ilvtitt)htrgl{i‘/ltgfj PCA F)IID_AS ) Igfzzcst test gg“;
Average Average
(Chemspider ID) cogtr:]e(r;[:;e;g errséfz(fj?tzg cogﬁe(rr:;e}g errst;rag??lzg (Power) (VIP) (d-value) (P-value) (log2)
cells) mean cells) mean
Tetramethylhexadecanol (92535) 0,005 0,001 0,011 0,003 0,663 1,087 2,095 0,003 1.14
Methyladipic Acid (5367266) 0,159 0,024 0,204 0,042 0,984 1,592 1,063 <0,001 0.36
Avrabitol (84971) 0,554 0,133 0,328 0,062 0,989 1,603 1,703 <0,001 -0.59
(Dligégys'igg)g'yc"' (DEG) 0,072 0,020 0036 0,008 0925 | 1111 1,870 0002 | -1.00
Dotriacontane (10542) 0,070 0,013 0,053 0,013 0,722 1,147 1,279 0,001 -0.40
Erythrose (84990) 0,166 0,030 0,731 0,289 0,806 1,277 1,955 <0,001 2.14
Glycerol (733) 0.007 0.006 0.023 0.014 0,860 1,034 1,852 0,005 1.72
Hentriacontane (11904) 0,605 0,202 1,007 0,483 0,980 1,574 0,834 <0,001 0.74
Methyldodecanoic acid (92948) 0,045 0,011 0,097 0,010 0,987 1,582 4,830 <0,001 111
Methylmaleic acid (553689) 0,078 0,026 0,033 0,011 0,926 1,322 1,731 <0,001 -1.24
Methylglutaric acid (11549) 0,071 0,022 0,043 0,007 0,844 1,184 1,287 0,001 -0.72
Methyltetradecanoic acid (90098) 0,317 0,021 0,840 0,302 0,799 1,010 1,731 0,007 141
Monopalmitin (110006) 0,165 0,058 0,220 0,063 0,935 1,472 0,873 <0,001 0.42
Octacosane (11902) 0,046 0,017 0,087 0,035 0,921 1,318 1,201 <0,001 0.92
Octadecane (11145) 0,020 0,011 0,077 0,024 0,982 1,571 2,364 0,000 1.95
Octadecenoic acid (393217) <0,001 <0,001 0,010 0,009 0,925 1,467 1,125 <0,001 3.32
Octanoic acid (370) 0,204 0,192 0,019 0,013 0,903 1,273 0,969 <0,001 -3.43
Oxalate (946) 0,027 0,008 0,113 0,020 0,986 1,572 4,247 <0,001 2.07
Pentanediol (133167) 0,014 0,013 0,028 0,008 0,965 1,580 1,033 <0,001 1.00
Tetradecanol (10714572) 0,016 0,003 0,047 0,013 0,991 1,482 2,380 <0,001 1.56
Threonine (6051) <0,001 <0,001 0,007 0,008 0,859 1,229 0,891 <0,001 2.81
Valine (6050) <0,001 <0,001 0,033 0,041 0,872 1,272 0,822 <0,001 5.04

The total amount of variance explained by the first two principal components (PCs) (R2X cum) was
55.9 %, of which PC1 accounted for 43.4 %, and PC2 accounted for 12.5 %. Subsequently, by
compliance with all of the following criteria: a PCA modelling power > 0.5 (Buydens, et al., 2009), a
PLS-DA VIP value > 1 (Cho et al., 2008), a t-test P-value < 0.05 and an effect size > 0.5 (Smith,
2004), the metabolites that contributed most to this differentiation were selected (Figure 4-2) and

listed in Table 4:1. These metabolite markers were mapped on a metabolic chart as indicated in
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Figure 4-3 and discussed below. As indicated, the metabolomics investigation of the cultured Mtb in
the presence and absence of CMS, led to the identification of various significantly altered metabolite
markers. Glucose uptake was increased in the CMS treated Mtb, as the preferential energy source
(as opposed to fatty acids which are now preferentially being used for cell wall repair) to fuel an
upregulated glyoxylate cycle, and substrate further cell wall fatty acid synthesis via the glycerolipid
metabolic pathway. However, the CMS treated Mtb, also showed comparatively elevated metabolites
associated with pentose phosphate, valine, threonine, and pentanediol metabolism. These results
confirm that CMS disrupts the Mtb cell membrane, and that these bacteria attempt to compensate

for this via upregulation of various metabolic pathways related to cell wall repair.
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indicated in italics. Elevated and reduced concentrations of each metabolite marker indicated
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4.4 Concluding remarks

The most significant metabolite markers identified in this investigation, were the elevated fatty acids
indicating a shift towards fatty acid synthesis and cell wall repair in the CMS treated Mtb. This is
accompanied by an increase in glucose utilisation for energy and an additional flux towards the
upregulation of the glyoxylate cycle (a precursor for cell wall fatty acids via the glycerolipid metabolic
pathway), similarly to what was previously seen when treating Mtb with CS. Further confirmation of
this shift of glucose as an energy source, and unique to this investigation is the utilization of the
pentose phosphate, valine, threonine, and pentanediol pathways for this purpose. Considering this,
it might be possible to use CMS with other first or second line anti-TB drugs (likely only hydrophilic
ones). The feasibility, however, to treat both drug sensitive and MDR-TB using lower drug
concentrations is subject to clinical trials as it is not known if CMS would be able to successfully

target intracellular Mtb.
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Chapter 5: Discussion and conclusion

5.1 Introduction

Due to the extensive discussion of the results in each of the previous chapters, Chapter 5 will
summarize the most significant findings. The main objectives included: 1) a methodology was
developed to optimize the metabolomic profile of colistin-treated Mtb; 2) the successful use of this
developed methodology towards the identification of metabolite markers, which elucidated CS
mechanism of action; 3) the successful application of the developed methodology towards identifying
metabolite markers for the purpose of better characterization of CMS mechanism of action. Additional

future recommendations emanating from this research investigation will also be discussed.

5.2 Summary of the main findings and future recommendations

Despite the vast amounts of research done to date aimed at the eradication of TB, TB is still
considered a worldwide pandemic. This is ascribed to treatment failure, poor patient adherence,
lack of new anti-TB drugs, and long treatment duration. Considering this, research into new anti-TB
drug candidates is needed, and colistin could serve as a possible treatment option. Metabolomics,
the latest additions to the “omics” revolution, allows for the better understanding of not only disease,
but also treatment mechanisms, shedding light on the identification of new metabolite markers
elucidating significant drug mechanistic pathways. Using a metabolomics research approach, CS
and CMS- treated Mtb samples were analysed, to identify uniqgue metabolites, characterizing the

drug mechanisms.

Before any data was recorded, a repeatability study of the apparatus and the extraction methodology
was conducted, in order to validate the generated data for use in the specific metabolomics
applications of this study. Thus, for a repeatable and reliable dataset, several statistical approaches
are incorporated to ensure the quality of the metabolomics biomarker identification. A metabolomics
comparison of cultured Mtb in the presence and absence of CS and CMS respectively, led to the
identification of various significantly altered metabolite markers. In both the CS and CMS-treated Mtb
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samples, a metabolic flux towards fatty acid synthesis and cell wall repair was identified.
Furthermore, glucose uptake was increased in the treated Mtb, indicating this to be the preferential
energy source (as opposed to fatty acids which are now preferentially being used for cell wall repair)
to fuel an upregulated glyoxylate cycle, and additionally as a precursor for further cell wall fatty acid
synthesis via the glycerolipid metabolic pathway. However, CMS also uniquely induced the utilization
of the pentose phosphate, valine, threonine, and pentanediol metabolic pathways for energy
generation in the treated Mtb. These results indicate that both CS and CMS act via disruption of the
Mtb cell membrane, and that these bacteria attempt to compensate for this via various metabolic
pathways related to cell wall repair. Considering this, it might be possible to use CMS and/or CS in
combination with other first or second line anti-TB drugs, to successfully treat both drug-susceptible
and MDR-TB, using lower drug concentrations, and subsequently cause fewer side effects to the
treated patient, since colistin would be expected to disrupt the Mtb membranes, making them more
susceptible to the other first line anti-TB drugs. Using a metabolomics approach, future studies can
be undertaken investigating colistin’s performance in synergy with current first or second line anti-
TB drugs, for treatment of both drug-susceptible and MDR-TB. Furthermore, the Mtb cell wall repair
mechanisms identified in this investigation can also potentially be targeted using novel drugs in order

to increase colistin’s anti-TB drug effects.

This investigation proves the capacity of a metabolomics research approach, towards better drug
mechanism characterization. In conclusion, metabolomics is expected to contribute significantly to a

new era in drug development and disease research, based on new metabolite marker identification.
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Chapter 6: Appendix (1-3)

Appendix 1
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PREFACE

Personalized medicine encompasses the use of biological information for
each patient in order to provide customized health care tailored to the indi-
vidual patient. Such an individualized approach for medical decisions,
practices, and treatment became clearly necessary due to a number of obser-
vations. For instance, the course of disease differs from one person to
another. The effects of drugs used for treatment of a disease also vary largely
between different patients. It is now well established that individual differ-
ences between patients, such as genetic polymorphisms, have significant
effect on the onset of diseases as well as on absorption of drugs and their
metabolism in patient’s body. Personalized medicine takes such variations
into account and tries to take advantage of them. It is believed that such cus-
tomized therapies will improve patients’ response rates to the treatment
while reducing significantly any adverse effects the drugs might have.
Personalized medicine is based on the dynamics of systems biology and
uses predictive tools to evaluate health risks and to design personalized health
plans to help patients to minimize risks, prevent disease, and to treat it with
precision when it occurs. Some of the most contemporary and very prom-
ising tools employed in personalized treatment of patients are discussed in
the first three chapters of this volume. First chapter discusses the general
principles of high-performance affinity chromatography and the various
approaches that have been used in this technique to examine drug—protein
binding and in work related to personalized medicine. This technique is a
great asset to personalized medicine because the binding of drugs with pro-
teins and other agents in serum can affect the dosage and action of drugs. The
extent of this binding may also vary with a given disease state. Second article
in this thematic volume focuses on the advances in proteomic technologies
that have made important contribution to the development of personalized
medicine by facilitating detection of protein biomarkers, proteomics-based
molecular diagnostics as well as protein biochips and pharmacoproteomics.
Application of nanobiotechnology in proteomics, nanoproteomics, has fur-
ther enhanced applications in personalized medicine. Proteomics has already
proved to be a good bridge between diagnostics and design of therapeutics.
The integration of last two processes shows to be of a great importance for
advancing personalized medicine. The third chapter in this volume reviews
in detaill metabolomics as a tool used in personalized medicine.

Xi
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Metabolomics is the newest addition to the “omics™ domain and the closest
to the observed phenotype. It reflects changes occurring at all molecular
levels, as well as influences resulting from other internal and external factors.
By comparing the metabolite profiles of two or more disease phenotypes,
metabolomics can be applied to identify biomarkers related to the perturba-
tion being investigated. These biomarkers can, in turn, be used to develop
personalized prognostic, diagnostic, and treatment approaches, and can also
be applied to the monitoring of disease progression, treatment efficacy,
predisposition to drug-related side effects, and potential relapse.

The fourth chapter discusses the importance of a range of new
approaches to developing new and reprofiled medicines to treat common
and serious diseases, and rare diseases: new network pharmacology
approaches, adaptive trial designs with enriched populations more likely
to respond safely to treatment, as assessed by companion diagnostics for
response and toxicity risk and use of “real-world” data. Case studies are
described of single and mulaple protein—drug targets in several important
therapeutic areas. These case studies also illustrate the value and complexity
in use of selective biomarkers of clinical response and risk of adverse drug
effects, either singly or in combination.

Chapters 5 and 6 in this volume give in-depth analyses of applying the
tools of personalized medicine in some of the most common diseases. The
fifth article in this volume highlights the contributions of proteomics toward
the understanding of personalized medicine in respiratory disease and its
potential applications in the chnic. The sixth chapter is focused on the chal-
lenges of treating different cancer types, which behave like moving targets
due to mutation and evolution, and the current state-of-the-art research
in this area. A special emphasis is made on the computational approaches
to accelerating novel medicine and better personalized patient care from
bedside to benchtop.

Chapter 7 in this volume focuses on high-end computational methods,
such as molecular dynamics (MD) simulation that has proved to be a con-
stitutive approach for detecting the minor changes associated with single
nucleotide polymorphisms (SNPs) in nucleic acids for better understanding
of their role in protein structural and functional alterations. MD along with
docking analysis can reveal the synergetic effect of an SNP in protein-ligand
mnteraction and provides a foundation for designing a particular drug mol-
ecule for an individual. This compelling application of computational power
and the advent of other technologies have paved a promising way toward
personalized medicine. In the Eighth article of this thematic volume,
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authors discuss the available clinical strategies and different methods how
pharmacological chaperones can be personalized and used as a next-
generation approach to address different lysosomal storage disorders.

The final two chapters in this volume exemplify the applicability of
molecular modeling and simulation approaches in personalized medicine
by exploring the inhibitory activity of Wortmannin toward oncogenic
mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic sub-
unit alpha (PIK3CA) (Chapter 9), and the importance of mutations in
Al-domain of von Willebrand factor (VWD) gene for the structural and
functional alterations related to thrombosis, compared to the native
VWD protein (Chapter 10).

The aim of this volume is to promote further research and development
in the design of new personalized therapeutics and treatments using biolog-
ical information for each patient via translation of recent genomic, genetic,
proteomics, and metabolomics advances into clinical context.

Dr. RosseEN DONEV
Biomed Consult Ltd
United Kingdom
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Abstract

Current clinical practice strongly relies on the prognosis, diagnosis, and treatment of
diseases using methods determined and averaged for the specific diseased cohort/
population. Although this approach complies positively with most patients, mis-
diagnosis, treatment failure, relapse, and adverse drug effects are common occurrences
in many individuals, which subsequently hamper the control and eradication of a num-
ber of diseases. These incidences can be explained by individual variation in the
genome, transcriptome, proteome, and metabolome of a patient. Various "omics”
approaches have investigated the influence of these factors on a molecular level, with
the intention of developing personalized approaches to disease diagnosis and treat-
ment. Metabolomics, the newest addition to the "omics” domain and the closest to
the observed phenotype, reflects changes occurring at all molecular levels, as well as
influences resulting from other internal and external factors. By comparing the metab-
olite profiles of two or more disease phenotypes, metabolomics can be applied to iden-
tify biomarkers related to the perturbation being investigated. These biomarkers can, in
turn, be used to develop personalized prognostic, diagnostic, and treatment
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approaches, and can also be applied to the monitoring of disease progression, treat-
meni efficacy, predisposition to drug-related side effects, and potential relapse. In this
review, we discuss the contributions that metabolomics has made, and can potentially
still make, towards the field of personalized medicine.

1. INTRODUCTION

Conventional disease diagnostics generally entails a physician 1denti-
fying a disease or abnormality on the basis of a physical examination of the
symptomatic patient, with (or without) the additional use of standard diag-
nostic tests. A positive diagnosis is normally followed by treatment using
drugs produced on a large scale and administered at a standardized and uni-
versally accepted dosage. These conventional drugs are developed to treat
general symptoms or the disease as determined by the mean results obtained
over large population groups (Debas, Laxminarayan, & Straus, 2006). How-
ever, it is crucial to understand that due to, for example, genetics and a vari-
ety of other factors such as individual diet, habits (e.g., smoking), gender
etc., not all diseases affect all individuals in the same manner (Jirtle &
Skinner, 2007), and neither do all individuals respond to treatment in the
same way (Dworkina, McDermottb, Farrarc, O'Connord, & Senn,
2014). This occurrence is clearly reflected by the increasing incidence of
treatment failure and relapse, which is especially disturbing when consider-
ing their prevalence in life-threatening diseases such as tuberculosis (TB) and
acquired immune deficiency syndrome (AIDS).

Although this variation between individuals might not be obvious in the
initial clinical presentation of the disease, it is most likely still detectable on a
molecular scale. Several researchers groups have subsequently shifted their
focus to the development of personalized medicine, which uses the molec-
ular information of an individual, as dictated by his or her genome, trans-
criptome, proteome, and metabolome (Redekop & Mladsi, 2013) to
develop patient-specific diagnostics and drugs. This information can also
be used to determine/predict individual treatment response, prior to and
during the treatment regimen, in an attempt to lower the incidence of treat-
ment failure or relapse (Salari, 2009), and also to optimize drug dosages, inan
attempt to prevent or lessen the severity of the drug-related side effects
(Lecea & Rossbach, 2012).

Personalized medicine has undoubtedly been one of the most topical
issues over the past decade and several research fields have joined hands
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in using this as a tool for optimizing disease management, as it has the poten-
tial to transform clinical practice and treatment efficacy.

2. THE VALUE OF “OMICS” TECHNOLOGIES IN THE
DEVELOPMENT OF PERSONALIZED MEDICINE

Traditionally, genomics was considered the most important approach
for determining individual variation and the development of personalized
medicine (Jain, 2009). However, several intermediate processes occur
between the genotype and disease phenotype in the “omics” cascade, which
may influence disease outcome or treatment response, and includes tran-
scription, translation, and metabolism. Furthermore, various other factors,
such as environmental influences and age, may also play a role in the disease
phenotype, a phenomenon which genotyping is not able to characterize
or explain. The development of personalized medicine requires a holistic
view of all molecular variation that may differentiate individuals, and
researchers are therefore shifting their focus from using exclusively genetics
methodologies for instance, to a systematic/integrative “omics” approach.
“Omics” is a general term used to describe the study of all genes (genomics),
transcription of these genes (transcriptomics), translation into their respec-
tive proteins (proteomics), and all the resulting metabolite changes (met-
abolomics), and is aimed at acquiring large-scale data sets from a single
and/or multiple samples (Wheelock et al., 2013). These “omics” research
fields, alone or in combination, have shown to be valuable for the identifi-
cation of new disease biomarkers for the purpose of elucidating disease
mechanisms and the development of personalized diagnostic and treatment
regimes. The successful completion of the human genome project was
considered a major breakthrough in science, especially for those involved
in genomics and personalized medicine, as any variation in a person’s
genome at a specific locus, could potentially have a direct or indirect effect
on gene expression, thereby influencing disease susceptibility (Ginsburg &
Willard, 2009). Genomics has to date identified various genetic risk factors,
for a number of chronic diseases, including heart disease, diabetes, and
several form of cancers (Ginsburg & Willard, 2009). For example, it is
now well known that women with mutations in BRCA1 or BRCA2 are
at risk for developing breast and ovarian cancer (Schwartz, Hughes, &
Lynch, 2008), and similarly, individuals with a mutation in MLH1 and
MSH2 are at risk for developing colon cancer (Wiesner, Slavin, &
Barnholtz-Sloan, 2009). In a similar fashion, genomics can be used to predict
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drug response, by identfying the effect of drugs on gene expression, as well
as the effect of various genes on the variable response of the patient to a drug
(Ginsburg & Willard, 2009). One example of this, are the two genes,
CYP2C9 and VKORCI, identified using genomics methodologies, which
are used to determine/predict the effective maintenance/chronic treatment
dose of warfarin, a widely used anticoagulant. CYP2C9 has been shown to
be responsible for the metabolic clearance of the S-enantiomer of the drug
and various genotypic alterations have been associated with a 10-fold variaton
in S-warfarin clearance. It has additionally been estimated that the genotypic
variation of CYP2C9, together with that of VKORC1 (which is targeted by
warfarin), and other factors including body weight and age, accounts for
35-60% of the varation seen in individual drug response to warfarin
(Voora, McLeod, Eby, & Gage, 2005). An additional example of the use
of genomics for the purpose of personalized treatment approaches was the
development of a blood-based test for the prediction of grafi-rejecton
(Deng, Eisen, & Mehra, 2006). These DINA assessments or “stable” genomics
approaches can also be done at birth, to predict a predisposition to a disease or
treatment. The other “omics”™ approaches described above, however, detect
“dynamic” disease markers also, which have the capacity to show individual
variation due to other factors including diet, individual habits, comedication,
coinfection with other pathogens, etc. These biomarkers can therefore be
used to characterize diseases and drug action on an even more detailed
individualized level (Ginsburg & Willard, 2009).

Several biomarkers identified using transcriptomics approaches have also
been validated and used clinically for disease diagnosis and risk assessment.
One example of this is the DNA microarray-based diagnostic kit,
MammaPrintﬁ, which can be used for breast cancer prognosis and measures
the degree of transcription of 70 specified genes (Hong et al., 2013).
Oncyrypf[)}(@ 1s another example of such an assay, which measures the
expression of 21 genes for the prediction of recurrences, death, and response
to therapy, in patients with estrogen-positive breast cancer (Hong et al.,
2013). Heidecker et al. (2008) additionally investigated the potential use
of transcriptomics to identify prognostic biomarkers for heart failure, as sev-
eral genes were identified to be overexpressed in patients with a good versus
a bad prognosis, and when the predictive value of these biomarkers were
tested, a 74% sensitivity and 90% specificity were obtained.

In addition to the transcriptome, posttranslational medification of pro-
teins has also been shown to play a major role in various biological processes
and disease states. Using proteomics, Ono et al. (2006) identified a
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posttranslational modification of alpha-fibrinogen (4-hydroxylated alpha-
fibrinogen) in pancreatic cancer patient plasma and subsequently con-
structed an antibody and validated the assay on the basis of this for the better
diagnosis of the disease. The same group also used proteomics to investigate
the life-threatening side effects related to gemcitabine monotherapy, a stan-
dard treatment used for pancreatic cancer, and subsequently identified hap-
toglobin as a biomarker for the prediction of this drug’s hematological
toxicities.

These studies show the value of genomics, transcriptomics, and proteo-
mics, in all fields of personalized medicine. The contribution of met-
abolomics, the most recent addition to the “omics” revolution, will
subsequently be discussed in detail in the remainder of this review.

3. WHAT IS METABOLOMICS?

As per definition, metabolomics is the nonbiased identification and
characterization of “all” the small molecular compounds (metabolites) in
a biological system, using highly sensitive analytical techniques, in combi-
nation with bioinformatics (Dunn, Bailey, & Johnson, 2005). The
metabolome, which is a collective term for all the metabolites in a specific
biological system/sample, is the ultimate downstream result of genes, tran-
scription, and translation, and will therefore reflect changes to the genome,
transcriptome, and proteome, in addition to that caused by a disease state or
other environmental factors. The identfication of the main differences
between the metabolomes of two sample cohorts (disease vs. healthy con-
trols, for example) 1s a starting point for the discovery of new metabolite bio-
markers. Additionally, a comparison of various cohorts with individuals
showing variation to disease or response to treatment can also be done in
order to identify markers associated with this type of variation, in the context
of individualized medicine.

The extraction and analysis of metabolites from a sample or sample group
can be done in an untargeted or semitargeted manner. Untargeted met-
abolomics aims to extract and detect all metabolites (known and unknown,
from all metabolite classes), 1.e., the total metabolome, as per definition of
metabolomics. Semitargeted metabolomics approaches, however, are
focused on the analysis of specific fractions of the metabolome or a subclass
of metabolites, such as only the lipids or organic acids, for instance. Sample
preparation methods for untargeted metabolome analyses are simple, and the
generated metabolite profiles can provide researchers with a good general
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picture of the effect of the investigated perturbaton on the overall
metabolome. However, these methods tend to have a lower sensitivity and
detection limit when compared to that of the semitargeted approach, which
provides simpler metabolite profiles, representing specific metabolic pathways
(Wishart, 2010). The choice of the sample preparation method will also
depend on the analytical apparatus selected and whether an untargeted or
semitargeted approach is required. When using nuclear magnetic resonance
(NMR) spectrometry for instance, chemicals such as ethanol and hexane
should be avoided, as these solvents are also deuterated and will therefore
result in muldple resonances and subsequently interference (Dunn et al.,
2005). Currently, there is no single analytical apparatus available with the
capacity to identify all the metabolites extracted from a sample, and therefore,
when doing untargeted metabolomics, a combination of a number of different
analytical approaches is recommended, however, this may not always be a via-
ble option in a particular laboratory as it is dependent on instrument availa-
bility. In instances with limited analytical capacity, a lot can sull be done in
the context of untargeted metabolomics, for instance, derivatization of a
sample prior to gas chromatography—mass spectrometry (GC-MS) analysis,
in additional to appropriate column selection, can serve well in the detection
of a large portion of the metabolome during a single analytical run. Each ana-
lytical technique comes with its own set of molecular preferences, advantages,
and limitations, as will subsequently be discussed below.

3.1 Analytical Methods Most Often Used for Metabolomics

The most commonly used analytical approaches for metabolome data acqui-
sition include the use of various chromatographic techniques, most
commonly gas chromatography (GC), or liquid chromatography (LC),
coupled to various different options of mass spectrometry (MS) detectors,
and NMR. Without prior separation or derivatization, LC-MS is considered
to be the apparatus with the potential to detect the largest variety of metab-
olites present in a specific sample. However, the derivatization of sample
extracts makes GC—MS an even, if not better contender, considering the
availability of spectral data for GC-MS compound identification. Further-
more, although LC-MS is ideal for the analysis of polar and ionic com-
pounds, it has a lower chromatographic resolution and higher running
costs in comparison. Additionally, a great advancement in GC—MS technol-
ogy was the development of the GCxGC system, which separates metabo-
lites in two dimensions, on the basis of not only volatlity but also polarity,
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thereby reducing the amount of coeluting peaks and enhancing the resolu-
tion of the eluting metabolites (Marriott & Shellie, 2002). GC-MS analysis
also requires smaller sample volumes when compared to that required for
LC-MS and NMR, but because these samples undergo metabolite separa-
tion and derivatization, they are nonrecoverable after GC analysis. Another
downside to GC is the rather long analysis times required for compound sep-
aration, and the identification of “unknown” metabolites (those compounds
detected with mass fragment patterns not in the commercial libraries) is
rather complex.

NMR spectroscopy is based on the principle of detecting metabolites
according to the signals produced by their proton content, allowing for
straightforward metabolite identification (Bonhommea, Gervaisa, &
Laurencin, 2014). This relatively fast method (2-3 min per sample), is
mostly used for the detection of polar metabolites and is nondestructive
to the sample. NMR instrumentation is, however, rather expensive,
requires large sample volumes and has a lower sensitivity when compared
to other techniques (Dunn et al., 2005; Halket et al., 2005).

Subsequent to sample analysis, one of the most important steps for gen-
erating data, which can be used for metabolomics, is the extraction of reliable
data matrixes from the complex chromatographic and mass spectrometric
outputs, for subsequent statistical analyses and biomarker selection. This
course of action includes peak detection, peak deconvolution, peak align-
ment, compound quantification, and identification, among various other
steps. Most of the analytical methods described above come with
their own software packages, specifically designed for this purpose (such as
ChromaTOF for the Leco GCxGCTOFMS), whereas other universal soft-
ware packages, such as MET-IDEA, are also freely available for use for
processing data generated from a variety of different commercially available
analytical techniques (Broeckling, Reddy, Duran, Zhao, & Sumner, 2006).
However, because each of these packages comes with their own advantages
and limitations, most researchers prefer to use a combination of software
packages, in addition to manual inspection, in order to obtain the optimum
data matrix for statistical data analysis and biomarker identfication.

3.2 Statistical Approaches

The increasing complexity of the data matrixes obtained from the analytical
equipment used in metabolomics studies has led to the use of various mul-
tivariate chemometric data analysis methods for biomarker identification/
extraction from these data sets. In order to get an overview of the data,
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certain unsupervised methods can be used to highlight trends in the data and
grouping or differentiation of various sample sets, and to additionally iden-
tify potential outlier samples and batch effects. When employing these
unsupervised methods, samples are not assigned to specific groups (for exam-
ple, disease and control) prior to the statistical analysis, allowing the analyst to
determine whether or not the samples are naturally differentiated or grouped
based on their analyzed metabolite profiles. For this purpose, principle com-
ponent analysis (PCA) is the method most commonly used. PCA reduces the
dimension of the input data matrix by calculating a weighted sum (score) of
the compound (metabolite) concentrations detected in each sample and
expresses these in terms of principal components (PCs), with PC1 describing
the most variation in the data, PC2 the next highest vanation, etc. These
PCs subsequently serve as coordinates on a scatter plot and provide an over-
view of the samples and how they relate to each other on the basis of their
analyzed metabolomes. Other chemometric methods, such as self-
organizing maps, hidden Markov models, and canonical correlation, can also
be implemented in this initial, exploratory stage for the same purpose
(Madsen, Lundstedt, & Trygg, 2010; Trygg, Holmes, & Lundstedt,
2007). If those samples, belonging to a specific group, do in fact assemble
and group together, supervised methods where individual samples are allo-
cated to their respective sample groups before the analyses, can be applied for
the purpose of identifying potential biomarkers best describing the variation
detected. Partial least squares discriminant analysis (PLS-DA) is one such
method, which uses group membership information to build a discrimina-
tion model. The wvariable influence on the projection (VIP) parameter,
which 1s a weighted sum of the squares of the PLS-DA weights, gives
an indication of the importance of the metabolite to the prediction model,
and can therefore be used to identify those metabolites which are most
characteristic of a specific sample group, or those metabolites which vary
the most between the specified groups. The metabolites with the highest
VIP scores are then ranked and can be used to identify potential bio-
markers. Similar supervised classification models also used for biomarker
identification, include, but are not limited to, soft independent modeling
of class analogy and support vector machines. The technical details of these
chemometric methods fall beyond the scope of this review, but the anthors
suggest the review by Trygg et al. (2007) for a more detailed description
of these.

Various software packages and Web-servers, such as MetaboAnalyst
(Xia, Psychogios, Young, & Wishart, 2009), have been developed
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specifically for researchers with limited statistical knowledge, to perform
these essential chemometric analysis on metabolomics data. Although these
tools are helpful, most metabolomics research groups still prefer to use qual-
ified biostatisticians, with knowledge of the underlying mathematical pro-
gramming, for mining the relevant biomarkers form these complex data
sets. In these instances, more traditional statistical packages such as Statistica
and “R” are used for the analysis of the data in the context of the specific
biological question. Identified biomarkers can subsequently be used to
explain individual variation in disease and treatment response, by inter-
preting this as the context of known metabolic pathways, and/or prior
genomic, proteomic and transcriptomic data. Furthermore, individual bio-
markers or combinations thereof (biosignatures) can be used for diagnostic
purposes, the latter of which can be achieved by building a prediction
model, such as a classification tree. In the light of this, metabolomics is con-
sidered an important tool for personalized medicine.

4. THE APPLICATION OF METABOLOMICS TOWARD
PERSONALIZED MEDICINE

The ongoing advancements in technology and subsequent availability
of more sensitive analytical equipment for application to metabolomics
studies, has made it possible to detect even subtle variations in the met-
abolomes of even healthy individuals. These variations are now known to
be a consequence of a variety of factors, including environment (such as
habits, lifestyle differences, and stress), age, genetics (mutations, epigenetics),
gender and race (Hernandez & Blazer, 2006).

By implementing various different GC—MS and LC-MS metabolomics
techniques, Lawton et al. (2008) investigated the influence of age, gender
and race, on the plasma metabolite profiles of 269 healthy individuals. Of
these three variables, age was considered to have the most significant influ-
ence on the metabolite concentrations of these individuals, and the identi-
fication of elevated oxidative stress markers and changes in protein, energy
and lipid metabolism could strongly be associated with age. The proposed
antiaging androgen, dehydroepiandrosterone-sulfate, additionally showed
inverse correlations with age, whereas certain xenobiotics (e.g., caffeine)
positively correlated, potentially indicating decreased activity of cytochrome
P450. A significant interaction between age and gender was also identified
and a subsequent positive correlation between age and urea concentrations
was shown, which i1s more pronounced in females than in males. When
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investigating the metabolome-specific gender-related differences, 35 metab-
olite markers were detected, indicative of an increased amino acid, energy
and nucleotide metabolism, in the males comparatively. When investigating
metabolome differences in race, caffeine, paraxanthine and theobromine
were detected in far lower concentrations, and hydroxyproline, glyc-
ochenodeoxycholate and glycolate were detected in comparatively higher
concentrations in African-Americans versus Caucasians. Although variations
were also determined when comparing metabolite profiles obtained of His-
panics and African-Americans or Hispanics and Caucasians, the identity of
these compounds could not be identified.

In a similar study, Urban, Kavvadiasa, Riedela, Scherera, and Trickerb
(2006) investigated variations in the metabolite profiles of smokers versus
nonsmokers using LC-MS/MS and GC-MS metabolomics. Various acryl-
amide (a neurotoxin known to be present in tobacco smoke) metabolites
(N-acetyl-S-(2-carbamoylethyl)-L-cysteine, glycidamide N-(R./S)-acetyl-S-
(2-carbamoyl-2-hydroxyethyl)-L-cysteine, and N-2-carbamoylethylvaline)
were detected in significantly higher concentrations in the urine and blood
samples of the 60 smokers and strongly correlated to the number of cigarettes
they smoked daily. These compounds are therefore considered valid bio-
markers of acrylamide exposure.

From these and many other related studies, it is evident that met-
abolomics can be useful for identifying biomarkers explaining individual
variation in the metabolome profiles of healthy individuals, related to var-
1ous “natural” or *habitual” factors. The idenufication of the metabolite
biomarkers related to the variation detected in various disease states and/or
the xenobiotic treatment of these diseases, and/or the influence of various
other environmental factors on this, can assist in explaining the underlying
mechanisms associated with individual variation in disease diagnosis, disease
susceptibility, treatment response, and drug-related side effects (Lawton
et al., 2008). These findings will consequently contribute to the develop-
ment of personalized medicine, a concept which not only involves person-
alized diagnosis and treatment but also personalized disease susceptibility
assessment, health monitoring, and preventative medicine.

4.1 Identification of Disease Biomarkers for Metabolomics-
Based Diagnostics

Various metabolomics studies have been performed for the purpose of dis-

covering new diagnostic biomarkers for a variety of diseases. These bio-

markers are identified as those metabolites with the highest intergroup
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variation after comparing metabolome profiles obtained from healthy or
nonspecific-diseased sick individuals with similar symptoms, to those
obtained from the specific/investigated diseased patients. One such a study
was done with the aim of identifying diagnostic breath biomarkers for
pediatric asthma, using NMR metabolomics. By applying linear discrim-
inant analysis and PLS-DA to the metabolite profiles obtained from
exhaled breath condensate of 25 children with asthma and 11 healthy con-
trols, Carraro et al. (2008) were able to differentiate between the two
groups with a success rate of 86%, which is slightly better when compared
to the conventionally used methods (81%). The metabolites contributing
most to this differentiation were identified as oxidized and acetylated com-
pounds, indicative of increased oxidative stress and inflammation in the
airways of the lungs. Considering this, despite their superior diagnostic
ability and capacity to explain disease mechanisms, these compounds
are not necessarily specific to asthma, but are rather indicative of a general
disease state. For this reason, biomarkers identified in diseases, using
healthy subjects as controls, although for the purpose of describing diseased
mechanisms, have serious limitations for diagnostic applications. Hence, in
order to validate diagnostic markers, comparison to other diseased states
with similar symptoms is a true test for potential application in a clinical
diagnostic scenario.

A good example of this is a study done by Sugimoto, Wong, Hirayama,
Soga, and Tomita (2010), who analyzed saliva metabolites obtained from
three different groups of cancer patients (69 individuals with oral cancer,
18 with pancreatic cancer, and 30 with breast cancer), 11 periodontal disease
patients, and 87 healthy controls, using capillary electrophoresis tme-of-
flight mass spectrometry (CE-TOF-MS). Different sets of metabolites were
subsequently identified which could be used to differentiate each individual
disease state from the healthy controls, with the area under the receiver
operating characteristic curves (AUCs) of 0.865 for oral cancer, 0.973 for
breast cancer, 0.993 for pancreatic cancer, and (.969 for periodontal diseases.
Although these diseases could not be differentiated from each other using
PCA, three metabolites were identified specific for oral cancer (detected
in concentrations significantly different to all other groups) and eight com-
pounds specific to pancreatic cancer. No biomarkers could, however, be
uniquely identfied for breast cancer. The authors hypothesized that the rea-
son for this may be due to the fact that breast cancer has various structurally
different forms, dependant on the expression of hormone receptors, and
they added that additional factors such as age and menopausal status can
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additionally contribute to the diverse metabolite profiles detected in these
patients. Considering this, when identifying diagnostic biomarkers for a par-
ticular disease, it 1s crucial to consider all the contributing factors, such as the
various stages of the disease, characteristics of the pathogen (drug resistance,
pathogen subspecies, active vs. latent infection), and individual variation due
to genetic and environmental factors, which could have an influence on the
detected metabolite profiles. Various metabolomics studies have investigated
the influence of these and other factors with the aim of developing person-
alized diagnostic approaches.

In a semitargeted metabolomics study, Zhang et al. (2006) investigated
the influence of different stages of hepatitis C virus (HCV)-induced liver
fibrosis on plasma amino acid profiles. The disease progression, from early
to advanced fibroses, correlated with a decrease in branched-chain amino
acids and a simultaneous increase in aromatic amino acids. These amino acid
profiles were subsequently used to develop a diagnostic classification model
which was able to differentiate between early and advanced fibrosis
(AUC=0.9£0.04) and cirrhosis (AUC=0.99+0.01). Similarly, bio-
markers related to disease progression have also been identified for colorectal
cancer (Nishiumi et al., 2012) and Parkinson’s disease (Bogdanov et al.,
2008), thereby proving that metabolomics not only has the capacity to iden-
tify markers specific to a disease but also to identify the specific disease stages.
Such approaches can not only be used to identify biomarkers for use in less
invasive diagnostic methods (for example, identifying markers in plasma, as
opposed to performing a colonoscopy in colorectal cancer patients for
instance) but also to assist clinicians in determining the most appropriate
treatment protocol, with regards to the patient’s individualized disease stage
or severity.

When investigating the metabolome of patients with disease resulting
from an infectious pathogen, the individual characteristics of the pathogen
can also potentially add further interindividual variation to the presentation
and treatment response of the patient. Olivier and Loots (2012) used GC-MS
metabolomics to identify biomarkers classifying the various Mycobacterium
species forming part of TB complex, which are known to cause infections
with symptoms closely related to that caused by Mycobacterium tuberculosis in
pulmonary TB patients, but respond differently to standard TB treatment.
Based on the lipid metabolite profiles, they were able to differentiate between
M. tuberculosis, M. avium, M. bovis, and M. kansasii, and they furthermore
identified the 12 compounds which best describe the variation between these
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disease causing Mycobacterium species. These potential biomarkers were then
used to build a multivariate diagnostic model, which was able to correctly clas-
sify unknown samples with probabilities ranging from 72% to 100%, at an
exceedingly better detection limit as compared to current speciation methods.
By using the same research approach, this group was additionally able to dif-
ferentiate various different drug-resistant strains from each other (Du Preez &
Loots, 2012; Loots, 2014). In another example of such an application, Denery,
Nunes, Hixon, Dickerson, and Janda (2010) used a LC-MS metabolomics
approach to differentiate serum and plasma samples collected from patients
with active onchocerciasis (Onchocerca  volvulus  positive) and  controls
(O. volvulus negative), and subsequently identified 14 compounds as bio-
markers for this infection. They subsequently applied this biomarker set to
samples collected from individuals living in onchocerciasis endemic areas,
where ivermectin was given as a chronic medication, and were able to distin-
guish between those subjects with compromised worm viability due to treat-
ment and those sall with an active infection, and hence these markers could
subsequently be used not only for disease diagnostics but also to determine
disease severity and to predict treatment outcome or monitor individual treat-
ment response. These studies subsequently show the capacity of metabolomics
for identifying markers which not only accurately diagnose disease but also
have the capacity to detect individual vanation not necessarily evident from
the clinical symptoms, such that an individualized treatment regimen can
be given. These markers can additionally be used to monitor treatment
response or predict treatment outcome (Redekop & Mladsi, 2013).

Lastly, despite the actual metabolome changes induced by a disease or
pathogen, individual variation due to genetic and environmental factors
can also influence the identified diagnostic biomarkers, in a similar fashion
to that previously described in healthy individuals. Szymanska et al. (2012),
for example, showed that metabolic biomarkers used for the diagnosis of
obesity are strongly influenced by gender. When investigating the plasma
and serum metabolite profiles of healthy overweight men and women, cen-
tral obesity, insulin, cholesterol, VLDL, and certain triacylglycerols, were
identified as potential biomarkers for abdominal visceral (VAT) fat distribu-
tion in women, whereas in men, the identfied VAT -associated biomarkers
included different triacylglycerols as compared to women, phosphatidylcho-
line, and VLDL. These results highlight the fact that individual vanation,
such as gender, can be detected via metabolomics, and that these variations
should be considered when identfying diagnostic biomarkers.
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4.2 Pharmacometabonomics

Apart from the contribution that metabolomics has made to the early detec-
tion and characterization of a disease state in the context of personalized clin-
ical care, it has also shown promise in the domain of pharmacokinetics, and
subsequently to the new research domain termed pharmacometabonomics.
This research field investigates the response of a patient to xenobiotics from a
metabolism perspective (Baraldi et al., 2009). Xenobiotics include those
substances foreign to the biological system, which may originate from the
individual’s environment, including diet and medication. When these xeno-
biotic substances are ingested, the first reaction of the body is to eliminate
these compounds, by modifying their chemical characteristics by means
of any number of enzymatic reactions (xenobiotic metabolism). This
response also forms the basis for the activation of various medications, the
products of which act to alleviate symptoms or treat the respective disease.
Individual variation in xenobiotic metabolism is a concept known for quite
some time now and plays an important role in individual response to treat-
ment, and hence treatment outcome, relapse, and side effects (de Villiers &
Loots, 20113). It has been shown that various innate factors including race,
ethnicity, and gender, in addition to the previously mentioned environmen-
tal factors or social habits, such as diet, alcohol consumption, and smoking,
can influence individual variation to xenobiotic metabolism and response
(Matthews, 1995). Idenufying these factors and determining their influence
or correlations to individual treatment response, forms the basis of person-
alized disease treatment and will subsequently be discussed in the following
sections, in the context of metabolomics.

4.2.1 Metabolomics and the Elucidation of Drug Mechanisms

Before treatment strategies can be tailored to an individual’s unique response
to therapy, it is important to understand the general xenobiotic metabolism
and underlying mechanisms of the proposed drug. For this purpose,
pharmacometabonomics can be applied in a number of ways: (1) the com-
parison of the metabolite profiles of a patient group receiving the vehicle/
placebo versus those receiving the xenobiotic treatment, (2) the comparison
of the metabolite profiles of patient groups receiving unlabeled xenobiotic
treatment versus stable i1sotope-labeled xenobiotic treatment, and (3) the
comparison of the metabolite profiles of wild-type and genetically modified
animals receiving the investigated xenobiotic (Lan & Jia, 2010). These
methodologies have been implemented to investigate the metabolism of
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various nutrients, drugs, and other xenobiotics, using a variety of analytical
equipment and bioinformatics strategies (Lan & Jia, 2010). In addition to
drug-derived metabolites originating directly from xenobiotic metabolism,
these drug exposure signatures will also include drug-induced alterations to
normal metabolism, representing the patient’s altered metabolic state in
response to the treatment. In one such instance, Rozen et al. (2005) were
able to differentiate between patients with motor neuron diseases (MND)
and healthy controls, in addition to MND patients with and without
Riluzole treatment, using the plasma metabolite profiles of these individuals.
Two fatty acid-based compounds were uniquely associated with patients on
Riluzole, and although these compounds could not be identified
completely, they did not appear to be derivatives of the drug, but rather
reflected changes to the patient’s normal metabolome. Absolute identifica-
tion of these compounds might help to elaborate on the still poorly under-
stood drug mechanism of Riluzole and can assist with the deciphering its
related side effects.

In a similar fashion, pharmacometabonomics can be implemented to ver-
ify or complement drug mechanisms proposed by other omics approaches.
Tiziani et al. (2009) applied this approach to investigate the antileukemic
activities of the combination of bezafibrate (BEZ) and medroxyprogesterone
acetate (MPA), against acute myeloid leukemia (AML). Previous studies
have linked the xenobiotic metabolism of these drugs to the production of
reactive oxygen species (ROS), and therefore this group proposed that this
is responsible for the drug action (Tiziani et al., 2009). In order to prove this
hypothesis, and potentially other previously unknown drug mechanisms, the
group applied NMR metabolic profiling to three AML cell lines treated
with BEZ and MPA. From the generated biosignatures, they were able to
identify changes to TCA cycle intermediates (more specifically alterations
to the conversion of a-ketoglutarate to succinate), which are consistent with
ROS action.

In order to minimize the influence of individual variation on the resul-
tant metabolite profiles, however, many of these studies were done on sam-
ples collected from homogeneous patient populations or animal models kept
under identical conditions, thereby ensuring that the metabolites emanating
as biomarkers are, in fact, related to the xenobiotic metabolism exclusively,
with little or no individual variation due to either genetic or environmental
factors. Various external factors such as age, stress, diet, gut microbes (micro-
biome), medication, lifestyle, and disease, in addition to genetic factors
including gender, epigenetics, and polymorphisms in genes encoding for
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xenobiotic-metabolizing components such as enzymes, transporters, recep-
tors, and ion channels, can also influence xenobiotic metabolism and
account for individual variation (Johnson, Patterson, Idle, & Gonzalez,
2012). Clayton, Baker, Lindon, Everett, and Nicholson (2009) demon-
strated the application of pharmacometabonomics toward a better under-
standing of these variables by analyzing pre- and postdose urinary
metabolites of patients on acetaminophen (paracetamol), using NMR spec-
trometry. When analyzing the predose profiles of these individuals, consid-
ering the levels of the excreted drug-derived metabolites, they found high
levels of predose p-cresol sulfate, which correlated with low postdose ratios
of acetaminophen sulfate to acetaminophen glucuronide. The ratio of these
derivatives, which indicate the extent to which acetaminophen is metabo-
lized through two major phase 2 conjugating processes (O-sulfonation and
glucuronidation), 1s known to be a site and indicator of individual variation
in response to paracetamol. The group finally concluded that in patients with
high levels of gut microbiome-mediated p-cresol generation, competitive
p-cresol O-sulfonation reduces the capacity to sulfonate acetaminophen,
which in turn results in an increased likelihood of drug-induced hepatotox-
icity. This study subsequently proves the capacity of metabolomics to iden-
tify individual variation in xenobiotic metabolism, related to a variation to
individual patient environment.

Pharmacometabonomics can also be implemented as an informative tool,
assisting pharmacogenomics in the investigation of genome-related variation
in drug metabolism (Johnson et al., 2012). With this goal, Ji et al. (2011)
investigated urine metabolites of individuals with major depressive disorder
undergoing therapy with selective serotonin reuptake inhibitors (SSRls),
citalopram and escitalopram. On average, 40% of patents generally do
not respond to this treatment and previous pharmacogenomic studies failed
to 1dentify potential polymorphisms which could be used for the prediction
of a SSRI treatment outcome. From the obtained metabolite profiles, elevated
glycine levels were identified to be associated with a decreased treatment
response, and after subsequent pharmacogenomics studies, polymorphisms
in the glycine dehydrogenase gene were identified. These results show that
metabolomics can additionally play a significant role in supporting or initiating
pharmacogenomics studies, with the intention of identifying genetic factors
related to individual variation in drug metabolism.

Considering these and several other studies on the topic (de Carvalho,
Darby, Rhee, & Nathan, 2011; Halouska et al.,, 2007; Lu, Deng, Li,
Wang, & L1, 2014; Wang et al., 2013), it is evident that the identification
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of drug exposure metabolites can play a significant role in the elucidation of
drug mechanisms and the influence of individual variation on these, which
in turn, can contribute to the development of more eftective drugs, or the
positive adjustment of drug dosages and treatment schedules, on the basis of
the individual differences detected and explained.

4.2.2 Metabolomics and Understanding Response to Treatment
Despite the elucidation of drug mechamisms, pharmacometabolomics can
also be used to investigate and predict an individual’s response to treatment.
Statins, for example, are commonly prescribed for patients with increased
levels of LDL-cholesterol and risk for cardiovascular disease, despite the sub-
stantial individual variation in response to this therapy. Trupp et al. (2012)
investigated this occurrence using GC-MS metabolomics analyses of patient
plasma samples, prior to, and 6 weeks after simvastatin treatment onset.
A number of metabolites were identified implicating genetic, gut micro-
biome and various environmental factors, contribute to the variation in sim-
vastatin response. Additionally, responders and nonresponders to the drug
could be differentiated based on their baseline metabolite profiles and the
most significant compounds responsible for this differentiation were 1denti-
fied. These metabolite variations could be correlated to different treatment
responses and subsequently described the mechanisms related to the individ-
ual variation to this therapy. These markers additionally have the potential to
be implemented preclinically, to identify those patients who would/would
not benefit from simvastatin treatment, prior to commencing treatment.
Using the same approach, Wei et al. (2013) built a prediction model, based
on four identified serum metabolite biomarkers, in order to predict the out-
come of breast cancer neoadjuvant chemotherapy. The model was able to
predict complete response (disappearance of all tumor deposits) versus stable
disease (tumor reduction less than 50%) with 100% specificity and 80% sen-
sitivity (AUC of 0.95). Despite their prognostic value, the biomarkers iden-
tified in these studies also show promise in the development of new, more
efficient drugs, and also to subclassify patients during clinical trials.

The same approach has been used to explain and predict variation to
treatment response In patients diagnosed with various infectious diseases.
Das et al. (2015) investigated the influence of anti-TB drug treatment on
the urine metabolic profiles of TB patients at various treatment intervals.
A clear treatment-dependent trend could be seen on the PCA, as the metab-
olite profiles of each consecutive treatment interval shifted closer to that of
healthy controls, with profiles of clinically cured patients very closely
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resembling that of the control group. With these profiles, one might be able
to build a prediction model for treatment outcome, provided that profiles of
patients with failed treatment outcomes are also incorporated. These profiles
may additionally give clues as to why certain patients fail to respond to TB
treatment within the recommended 6-month therapy regime, and by using a
similar approach, metabolite biomarkers predicting treatment falure or
relapse might also be identified.

When investigating infectious diseases in this manner, it is important to
bear in mind that individual variation to drug treatment outcomes can be a
result of the host’s variable response to the drug, or the pathogen’s resistance
to the drug, and therefore, both factors should be considered when identi-
tying biomarkers reflecting treatment response. In a GC—MS metabolomics
study, Du Preez and Loots (2012) investigated rifampicin resistance in pul-
monary TB by comparing the fatty acid metabolomes of two M. tuberculosis
strains, with resistance conferring mutations on different locations on the
rpoB gene, to a fully susceptible wild-type parent strain. All three groups
showed a clear differentiation when doing PCA, and a number of metabo-
lites indicating a decreased synthesis of various 10-methyl branched-chain
fatty acids and cell wall lipids, and an increased use of the shorter-chain fatty
acids as carbon sources, were identified as markers in the drug-resistant
strains. In addition, the mpoB S531L mutant, previously reported to occur
in well over 70% of all clinical rifampicin-resistant M. tuberculosis strains,
showed a better capacity for using these alternative energy sources, com-
pared to the less frequently detected rpoB $522L mutant. This study there-
fore shows that pharmacometabonomics has the power to not only detect
metabolome changes related to pathogen-induced drug resistance, but it
can also differentiate between the various genotypes leading to the observed
phenotype. The clinical use of these identified markers can significantly con-
tribute to the development of improved treatment approaches, thereby
bettering treatment outcomes in patients with drug-resistant TB. When
developing such personalized therapeutic approaches, it 15 also important
to realize that not all individuals will respond to an infection in a similar fash-
1on, and although infected with identical pathogen strains, treatment out-
comes may vary, and through metabolomics, markers can be identified in
order to explain and predict this phenomenon.

4.2.3 Metabolomics and Understanding Drug Toxicology
Several metabolomics studies have identified universal, nonspecific bio-
markers, related to general toxicity of various different drugs, which are
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unrelated to the specific drug type, drug mechanism, or site of action. These
metabolites, including decreased concentrations of TCA cycle intermedi-
ates and hippurate, are a reflection of secondary side effects related to the
ingestion of these drugs and include general changes to energy demand
or energy metabolism, and changes to gut microbiota (Keun, 2006). Addi-
tionally, many metabolomics studies have also identified general markers
related to hepatotoxicity (Holmes et al., 1992; Robertson et al., 2000;
Schnackenberg, Dragan, Reily, Robertson, & Beger, 2007) and nephro-
toxicity (Garrod et al.,, 2005; Lenz, Nicholson, Wilson, & Timbrell,
2000). These markers are especially important in the preclinical drug devel-
opment phase, considering that liver and kidney damage are the two major
reasons for drug withdrawal from the market. Although knowledge of
these general toxicity markers is of importance, metabolomics also has
the capacity to identify markers related to specific drug mechanisms and side
effects to vital organs also, and by using blood and urine for biomarker
detection, eliminates the need for intrusive procedures for monitoring
these outcomes, such as tissue biopsy for instance. Sumner, Burgess,
Snyder, Popp, and Fennell (2010) detected urinary markers related to
abnormalities in inositol, carbohydrate, glycerolipid, and glyoxylate metab-
olism, correlating to hepatic microvesicular lipid accumulation (MVLA), a
histopathological side effect related to the treatment of TB with isoniazid.
They propose that, if validated, these metabolite changes can be used to
develop a noninvasive method for the early detection of MVLA.

A study entitled Consortium for Metabonomic Toxicology (COMET)
was one of the most extensive pharmacometabolomics investigations con-
ducted to date. The aim of COMET was to build models for the prediction
of organ toxicity (mainly liver and kidney), from NMR spectra obtained
from rodent urine and serum, from multiple toxicity studies (Lindon
et al,, 2005, 2003). A validation of these markers indicated that these
methods could predict liver and kidney toxicity with specificities of 100%
and 77% and sensitivities of 41% and 67%, respectively (Ebbels et al.,
2007). These models are now being implemented by the six pharmaceutical
companies involved in the consortium, in preclinical studies.

Another important general drug-related adverse effect to be considered is
the change in the patient’s intestinal microbiota composition, in response to
antibiotic treatment. Pharmacometabonomics has also contributed signifi-
cantly to this intensely studied research area, indicating that 87% of all
metabolites in the intestinal metabolome are influenced by antibiotic treat-
ment. Furthermore, a disturbance in a number of metabolic pathways,
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including bile acid, eicosanoid, and steroid hormone synthesis, were iden-
tified subsequent to antibiotic treatment (Antunes et al., 2011).

In addition to better describing the molecular mechanisms resulting in
general adverse effects such as hepatotoxicity, nephrotoxicity, and intestinal
microbiota response to antibiotic treatment, metabolomics has also been
used to investigate the mechanisms of more specific drug-related side effects
associated with specific treatment regimens. To this end, Loots, Wiid, Page,
Mienie, and Helden (2005) evaluated the effects of the combined anti-TB
drug, Rifater, on the metabolic profiles of Sprague-Dawley rats. The iden-
tified biomarkers indicated elevated oxidative stress levels in the animal
models receiving treatment, and the metabolite profiles closely resembled
that of human patients suffering from a multiple acyl-CoA dehydrogenase
deficiency (MADD). These findings indicated that Rifater treatment could
be linked to an inhibition of the electron transport chain flavoproteins, and
the group subsequently indicated that this MADD metabolite profile, and
hence the associated drug-related side effects, could be corrected for by
the coadministration of melatonin. From these and other studies, it is evident
that metabolomics can assist in a better description and understanding of the
general and specific side effects related to various drugs, which may contrib-
ute to the development of safer treatment approaches, or the expansion of
therapeutic strategies for the prevention or early management of these
occurrences. Once again, it is important to consider all factors which may
influence these metabolite changes, including the previously mentioned
environmental and genetic factors, when identifying those biomarkers
related to toxic insult (Beger, Sun, & Schnackenberg, 2010). Although
adverse side effects are not uncommon for many prescription drugs, espe-
cially those targeting life-threatening disease states such as cancer for
instance, it can also occur in drugs which are widely recognized as safe
and are normally well tolerated by most patients. As discussed earlier, the
largest contributor to the variation in individual patient xenobiotic metab-
olism, and hence their toxicology phenotypes, are polymorphisms in genes
encoding for xenobiotic-metabolizing enzymes. However, various other
factors have been identified to contribute to this, including the patient’s
health status (hepatic dysfunction, inflammation, infection, and cancer),
drug—drug interactions, and exposure to contaminants such as heavy metals,
all of which can influence the activities of these drug-metabolizing enzymes
(Chen, Gonzalez, & Idle, 2007). Although pharmocogenomics is the pri-
mary approach used for the investigation of such variation, metabolomics
studies have also shown to be useful in the elucidation of the mechanisms

131



Metabolomics and Personalized Medicine 73

leading to these phenotypes. For example, a number of genetics studies have
linked a polymorphism in the CYP2D6 with an excessive hypotensive
response to the antihypertensive drug; debrisoquine. When investigating
this phenomenon using LC—MS metabolomics, metabolite profiles from urine
could differentiate the treatment response phenotypes (poor metabolizers vs.
extensive metabolizers). As expected, debrisoquine was significantly higher
in the profiles of poor responders, whereas the products of drug metabolism:
4-hydroxy-debrisoquine, and two-open ring products of debrisoquine:
2-(guanidinoethyl)benzoic acid (I) and 2-(guanidinomethyl) phenyl acetic
acid (II), where detected in higherlevels in the profiles of the good responders.
The two CYP2D6 genotypes could thus be identified using biomarkers
determined by metabolomics, proving that pharmacometabonomics has the
capacity to identify individual variation in drug-related side effects, originating
from these polymorphisms (Zhen et al., 2006). In a similar fashion, met-
abolomics can also be implemented to investigate other factors leading to this
variation, thereby paving the way for the development of more eftective, per-
sonalized medicines, with a lowered incidence of drug-induced side eftects.

5. CONCLUDING REMARKS

The leap in technology over the past few decades has significantly con-
tributed to our knowledge of biological systems on a molecular level, and the
newly gained information has subsequently shed light on the variation that
exists in the genetic, protein, and metabolite compositions of different indi-
viduals. The application of this knowledge to the development and imple-
mentation of personalized medicine is currently a hot topic among clinical
researchers, and as described above, metabolomics has been a valuable con-
tributor to this. However, before the identified metabolite biomarkers (or
any other marker for that matter, identified via genomic, proteomic, or
transcriptomic approaches) can be applied toward personalized clinical care,
they should be validated using large sample cohorts, with all influencing var-
1ables, such as age, gender, habits, and diet considered. It should additionally
be noted that current metabolomics, genomics, transcriptomics, and prote-
omics techniques require highly trained technical competence and infra-
structure, and hence, is regarded to be rather expensive to perform,
especially if these methods are being considered for use directly for clinical
application to diagnostics. For this reason, various research efforts have been
made toward using these newly identified diagnostic and prognostic markers
for clinical application, through the development of simple, cheap tests,
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targeted for identifying these specific compounds/biomarkers previously
identified, and validated using these “omics™ approaches. The use of geno-
mics, transcriptomics, proteomics, and also more recently, metabolomics
data, in large databases such as DrugBank (Knox et al., 2011) (which is a
comprehensive collection of drug mechanism and drug target information),
proves that despite challenges in these fields, the contribution of all of these
technologies to the development of personalized medicine is invaluable.
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ABSTRACT

Considering the disad:
drug side effects, the long treatment duration and rapidly increasing microbe resistance, alternative treatment
strategies are needed. Colistin sulfate (CS), a pD]ymy‘Jurl antibiotic considered a last-resort antibiotics for treating
multidrug-resistant Pseudomonas aerug iell: and Acinetobacter, has antimicrobial activity
towards mycobacteria, and could serve as a ]}DGSlblE anti-TB drug.

Using GCxGC-TOFMS metabolomics, we compared the metabolic profiles of Mycobacterium tuberculosis (Mth)
cultured in the presence and absence of CS, to elucidate the mechanisms by which this drug may exert its
antimicrobial effects.

The principal component analysis of the metabolite data indicated significant variation in the underlying
metabolite profiles of the groups. Those metabolites best explaining this differentiation, were acetic acid, and
cell wall associated methylated and unmethylated fatty acids, and their alcohol and alkane derivatives. The
elevated glucose levels, and various glyoxylate and glycerolipid metabolic intermediates, indicates an elevated

geous of first line anti-tuberculosis (TB) drugs, including poor patient adherence,

flux in these metabolic pathways.
Since all the metabolites identified in the colistin treated Mth indicates an increase in fatty acid synthesis and
cell wall repair, it can be concluded that CS acts by disrupting the cell wall in Mth, confirming a similar drug

action to other organisms.

1. Introduction

Tuberculosis (TB) is an infectious bacterial disease caused by the
organism Mycobacterium tuberculosis (Mtb) and usually affects the lungs
[1]. The World Health Organisation (WHO) reports TB to be one of the
world's deadliest communicable diseases, resulting in the death of up to
2 million people per annum. Furthermore, TB is considered the leading
cause of death among people living with HIV [2]. TB is currently
treated using the 6 month “directly observed treatment short-course”
(DOTS) regimen, consisting of the four first-line drugs: rifampicin,
isoniazid, ethambutol and pyrazinamide [3]. In patients with drug-
susceptible TB, this regimen reportedly has a 1-4% failure rate, and 7%
of the patients with a successful treatment outcome, reportedly relapse
within 24 months [4]. The WHO has additionally reported 5% of all TB
cases have multidrug-resistant TB (MDR-TB) [2], which requires
treatment using second-line anti-TB drugs [5]. These second line drugs
are not only more expensive, but also have severe side effects, and an
even longer treatment duration (approximately 2 years) [6]. These

" Corresponding author.

complexities, in addition to the fact that current anti-TB drugs have
cross-reactions and interactions with HIV-antiretroviral therapy, em-
phasise the need for researching and developing new anti-TB drugs or
alternative therapeutic approaches.

Colistin sulfate (CS), a polymyxin antibiotic discovered in the
1940s, is a cyclic peptide with a hydrophobic tail, and was one of the
first antibiotics with significant activity against gram-negative bacteria
[71, in particular Pseudomonas aeruginosa [8], Acinetobacter baumannii
[9] and Klebsiella pneumonia [10]. Colistin sulfate was proposed to
function by binding electrostatically to the lipopolysaccharides and
phospholipids on the outer cell membrane of these gram negative
bacteria, and subsequently displace the membrane cations (magnesium
and calcium) from the phosphate groups of these membrane lipids,
creating pores, and subsequently causing cell death [11]. Using M.
aurum, Rastogi et al. [12], additionally indicated that colistin sulfate
has an effect on the cytoplasmic membrane of mycobacteria, and in-
dicated a resultant cell leakage in experiments using M. avium [12], M.
aurum, M. xenopi and M. smegmatis [13,14], as a consequence of cell
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wall disruption. Considering this evidence, colistin sulfate would also
be expected to have similar effects on Mitb. Korycka-Machala et al. [15]
subsequently showed an increased cell wall permeability in Mth fol-
lowing colistin sulfate treatment, and Van Breda et al. [16] and Bax
et al. [17,18], that colistin sulfate also allows for elevated first line TB
drug uptake in Mth, as a result of this. Since most of this evidence
pertaining to the anti-bacterial mechanisms of colistin sulfate in my-
cobacteria has been done from a histological and genomics research
perspective, research using other “omics™ disciplines are also required
to understand this drug better, and its possible application to treating
TB. Metabolomics is one of the latest additions to the “omics” tech-
nologies, and defined as an unbiased identification and quantification
of all metabolites present in a sample (disease or treatment related),
using advanced analytical techniques, and statistical analysis and
bioinformatics, to identify the most important biomarkers for de-
scribing a perturbation [19]. We used a two dimensional gas chroma-
tography coupled time-of-flight mass spectrometry (GCxGC-TOF/MS)
metabolomics approach, to identify those metabolite markers best dif-
ferentiating Mtb cultured in the presence and absence of colistin sulfate,
for the purpose of confirming or elucidating its mechanism of action
against Mib.

2. Materials and methods
2.1. Cell culture

The cell cultures were prepared in the presence and absence of
colistin sulfate, as described by van Breda et al., [16]; with slight
modifications. Briefly, Mth H37Ra ATCC 25177 (obtained from Ampath
Pathology Laboratory Support Services, Centurion, Gauteng, South
Africa) was swabbed onto Middlebrook 7H10 agar (Becton Dickinson,
‘Woodmead, Gauteng, South Africa), supplemented with 0.5% v/v gly-
cerol (Saarchem, Krugersdorp, Gauteng, South Africa), and enriched
with 10% wv/v oleic acid, albumin, dextrose, catalase (OADC) (Becton
Dickinson). Our reasons for selecting a H37Ra strain in this experiment
was due to the fact that the original description of the effects of poly-
myxins by Rastogi et al. [13,14], also used H37Ra, and a recent pub-
lication by Bax et al. [17,18], described similar results using H37Rv as
to what van Breda et al., [16] described for H37Ra.

The stock culture was prepared after three weeks of incubation at
37 °C, by suspending the cells in 1 x phosphate buffered saline (PBS)
(Sigma Aldrich, Kempton Park, Gauteng, South Africa) containing
0.05% v/v Tween 80 (Saarchem) to a McFarland standard of 3. Aliquots
of 1 mL were stored at — 80 °C in cryovials, containing 20% v/v glycerol
(Saarchem). By using the TB Ag MPT64 Device (KAT Medical,
Roodepoort, Gauteng, South Africa), the presence of Mth was con-
firmed, and the purity was determined by swabbing 100 puL of culture
media onto tryptic soy agar (Merck, Darmstadt, Germany) and in-
cubating at 37 °C for 48 h. Before experimental investigations, a cryo-
vial of the stored aliquots was allowed to thaw to room temperature,
vortexed and swabbed onto Middlebrook 7H10 agar. Plates were sealed
in Ziploc bags and incubated at 37 °C until mid-log growth was reached
(approximately 10-14 days).

The mid-log growth culture was suspended to a McFarland standard
of 1 (using Sauton media [16]); approximately 1 x 107 colony-forming
units (CFU)/mL. The cell suspension (195 pL) was then added to each
well in a 96 well microtiter plate (Eppendorf). The antimicrobials were
added to final concentrations of 0 pg/mL and 32 pg/mL colistin sulfate
respectively, and the plate was sealed using sterile ziploc bags, and
incubated at 37 °C for 24 h. The mixture in each well was subsequently
transferred to Eppendorf tubes up to a volume of 1 mL. The 10 samples
containing 32 pg/mL colistin sulfate and 7 samples containing no co-
listin sulfate, were centrifuged at 10000 % g for 1 min and showed no
difference in the amounts of viable CFU/mL. The supernatant was re-
moved and pellet rinsed and resuspended in 1 x PBS (without Tween
80) and then stored at —80°C.
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In the current investigation it is important to note, that the reason
Sauton media was used, is because other media, such as Middlebrook
7H9 for instance, contains the following components which antagonize
the effects of polymyxins: 1. BSA (forms complexes with polymyxins)
[20], 2. Mg** and Ca®* [21,22], and hence it was important to use
media where physiological concentrations of these divalent cations can
be controlled, ie., cation-adjusted to 10-12.5mgMg>*/L and
20-25mg Ca®* /L [23,24], 3. Na* [25,26], and 4. Catalase, since the
latter is an antioxidant which would inhibit polymyxin induced Fenton
reaction mechanisms [27]. Furthermore, it was important to substitute
glycerol with 0.2% w/v glucose, since lower than normal MICs have
been previously observed for Mth when glycerol was used as the only
carbon source [28], and with 0.05% v/v Tween 80, since Mtb requires
the fatty acids present within Tween 80 for growth [29,30].

2.2. Whole metabolome extraction procedure and derivatization

Prior to GCxGC-TOFMS analysis, 0.5 mg of each of the individually
cultured Mth sample pellets described above were weighed into an
Eppendorf tube, followed by the addition of 50 pL 3-phenylbutyric acid
(0.0175 pg/mL) (Sigma-Aldrich (St. Louis, MO, USA)) as internal
standard. Chloroform, methanol (Burdick and Jackson brands
(Honeywell International Ine., Muskegon, MI, USA)) and water were
added in a ratio 1:3:1, vortexed for 1 min and then placed in a vibration
mill (Retsch, Haan, Germany) with a 3mm carbide tungsten bead
(Retsch) for 5minat 30 Hz/s. Each sample was then centrifuged for
10minat 10 000 x g and the supernatants transferred to a GC sample
vial, and subsequently dried under a nitrogen stream. Each extract was
derivatized using 20 pL. methoxyamine hydrochloride-(trimethylsilyl)-
trifluoroacetamide (MSTFA) (Sigma-Aldrich (Darmstadt, Germany))
(containing 15 mg/mL pyridine) at 50 °C for 90 min, followed by sily-
lation using 40 pL. MSTFA with 1% trimethylchlorosilane (TMCS) at
50 °C for 60 min. These extracts were then transferred to a 0.1 mL insert
in a clean GC sample vial and capped, prior to GCxGC-TOFMS analysis
[31].

2.3. GCxGC-TOFMS analyses

The samples (1 pL) were analysed in random sequence, using a
Pegasus 4D GCxGC-TOFMS (LECO Africa (Pty) Ltd, Johannesburg,
South Africa), equipped with an Agilent 7890 gas chromatograph
(Agilent, Atlanta, USA), TOFMS (LECO Africa) and Gerstel Multi-
Purpose Sampler (Gerstel GmbH and Co. KG, Miilheim an der Ruhr,
Germany), in a splitless ratio. The necessary quality control (QC)
samples were also analysed at regular intervals in order to correct for
any batch effects and also monitor the performance of the analysis over
time. A Rxi-58il MS primary capillary column (30m, 0.25pm film
thickness and 250 pm internal diameter), and a Rxi-17 secondary ca-
pillary column (1.2m, 0.25pum film thickness and 250 pm internal
diameter) where used for GC compound separation. Helium was used as
a carrier gas at a flow of 1 mL/min with the injector temperature held
constant at 270 °C for the entire run. The primary column temperature
was set at 70 °C for 2 min, and then increased at a rate of 4°C/min to a
final temperature of 300 °C, at which it was maintained for a further
2min. The temperature of the secondary oven was programmed at
85 °C for 2 min, then increased at a rate of 4 *C/min to final temperature
of 305°C, at which it was maintained for a further 4.5 min. The ac-
quisition voltage of the detector was 1700V and the filament bias
—70eV. A mass range of 50-800 m/z was used for the mass spectra, at
an acquisition rate of 200 spectra/s.

2.4. Data processing, clean-up and statistics
Mass spectral deconvolution (at a signal to noise ratio of 20), peak

alignment and peak identification, were done on the collected mass
spectra using ChromaTOF software (version 4.32). Identical mass
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spectra of the compounds in each of the samples were aligned, if they
displayed similar retention times. Compounds were identified by
comparison of their mass fragment patterns and retention times, to that
of libraries compiled from previously injected standards.

Following the data processing steps described above, a standardized
metabolomics data clean-up procedure was conducted [32]. Normal-
ization of each of the detected compounds was done using the total
useful MS signal (TUS) [33] and by calculating the relative con-
centration of each compound, using the internal standard as a re-
ference. A 50% filter was applied in order to remove those compounds
showing more than 50% zero values within both groups [34] and the
QC samples used to correct for any batch effects, using quantile
equating [35]. Additionally, a 50% QC coefficient of variation (CV)
filter was applied [36], and all zero-values were replaced by a value
determined as half of the smallest concentration (i.e. the detection
limit) detected in the entire data set, as these may be due to low
abundance rather than being absent [37].

The data were subsequently analysed using a variety of multi- and
univariate statistical methods, using a web based software package
supported by the Metabolomics Society: MetaboAnalyst (based on the
statistical package “R"; version 2.10.0), and included principal com-
ponents analysis (PCA) [38], partial least squares—discriminant analysis
(PLS-DA) [39], a t-test and effect size calculations [40].

3. Results

Fig. 1 shows clear PCA differentiation between the individually
cultured Mth samples in the presence and absence of colistin sulfate.
This natural differentiation of the samples of each of the sample groups
can be ascribed to the variation in the total metabolite profiles of each,
as determined by GCxGC-TOFMS. The total variance explained by the
first two principal components (PCs) (R2X cum) was 48.4% of which
PC1 contributed to 37.5% and PC2 10.9%, respectively.

Subsequently, those metabolites that contributed most to this dif-
ferentiation were selected on the basis of complying with all of the
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Fig. 1. PCA differentiation using the GCxGC-TOFMS whole metabolome ana-
lysed data of the individually cultured Mtb in the absence (Mtb-Control) and
presence (Mtb-CS) of colistin sulfate (32 pg/mL). The variances accounted for
are indicated in parenthesis.
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Fig. 2. Venn diagram illustrating a multi-statistical approach for selecting the
21 metabolite markers best describing the variation detected between the in-
dividually cultured Mth samples in the presence and absence of colistin sulfate.

following criteria: a PCA modelling power > 0.5 [38], a PLS-DA VIP
value = 1 [39], a t-test P-value < 0.05 and an effect size > 0.5 [40].
Fig. 2 is a summary of the number of metabolite markers selected by
each of the univariate and multivariate statistical approaches described
above, as well as the selection of the 21 metabolites listed in Table 1,
considered most important for explaining the variation detected.

4. Discussion

As previously mentioned, treatment with colistin sulfate results in a
structural disruption of the cell wall in Mtb [17,18]. The metabolite
markers detected in the colistin sulfate treated Mthb in the current me-
tabolomics investigation confirms this, and additionally indicates that
Mtb attempts to rectify this by upregulation of its fatty acid synthesis
pathways for subsequent cell wall repair. Accompanying this is an up-
regulation of glycolysis which will be deseribed in detail below and
summarized in Fig. 3.

In Table 1, 15 out of the 21 metabolite markers identified by the
statistics described above, are directly linked to elevated fatty acid
biosynthesis and subsequently also cell wall synthesis. These included
hexadecanoic acid, octadecenoic acid, eicosanoic acid and hex-
acosanoic acid, all of which are known to form methyl-branched chain
fatty acids and ultimately the mycolic acids [41], an important com-
ponent of arabinogalactan (AG) in the cell wall core of Mth [42]. Ad-
ditionally, although not detected as part of the 21 metabolite markers,
decanoic acid (0.100 vs. 0.219pg/ml; P < 0.05), dodecanoic acid
(0.421 vs. 0.592pug/ml; P < 0.05) and octadecanoic acid (0.491 vs.
0.888 pg/ml; P > 0.05) were also found to be elevated, further sup-
porting this. Another important observation was the elevated levels of
the methylated branched fatty acids (methyldecanoic acid, methyldo-
decanoic acid and methyltetradecanoic acid), in the colistin sulfate
treated group comparatively, which in turn not only serve as substrates
for mycolic acid synthesis, but also function as hydrophobic modulators
of the host's cellular immune function, and various virulence factors in
the microbe [43]. These methylated fatty acids are proposed to be
formed by 3 possible routes: 1. fatty acid methylation via S-adeno-
sylmethionine (SAM) functioning as the methyl donor [41], 2. me-
thylmalonyl-CoA derived polyketide synthase complexes, originating
from propionyl-CoA and malonyl-CoA [44] and 3. acetyl-CoA metabo-
lism to butyric acid, which in turn reacts with propionyl-CoA ( [45].

Further substantiating these results, are the presence of various al-
cohols (tetradecanol, nonanol and 2-ethyl-2-methyltridecanol) and al-
kanes (hexadecane, octadecane, octacosane and methyltetradecane)
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Table 1

The 21 metabolite markers that best explain the variance between the individually cultured Mth samples in the absence (Mth-Controls) and presence (Mth-CS) of

colistin sulfate.
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Metabolite name Mib controls: Mib treated with colistin sulfate PCA PLS-DA Effect sizes ttest
(Chemspider ID) {Power) (VIF) (d-value) (P-value)

Average concentration Average concentration

(mg/g cells) (mg/g cells)

(standard error of the mean) (standard error of the mean)
Octanoic acid (NSC 5024 [DBID]) 0.205 (0.192) 0.019 (0.010) 0.787 1.423 0.966 = 0.001
Hexadecanoic acid (NSC 5030 [DBID]) 0.860 (0.176) 1.259 (0.198) 0.948 1.224 2022 0.001
Octadecenoic acid (NSC931 [DBID]) 0 (0) 0.021 (0.005) 0.861 1.165 4.580 0.003
Eicosenoic acid (4445895) O (o) 0.006 (0.007) 0.842 1.181 0.930 0.002
Hexacosanoic acid (NSC 4205 [DBID]) 0 (o) 0.059 (0.038) 0.804 1.244 1.541 0.001
Methyldecanoic acid (LMFAQ1020090) 0.013 (0.004) 0.017 (0.004) 0.822 1.238 0.994 0.001
Methyldodecanoic acid (4445769) 0.045 (0.011) 0.115 (0.025) 0.855 1.123 2.794 0.004
Methyltetradecanoic acid (NSC 189699 [DBID]) 0.317 (0.021) 0.789 (0.261) 0.893 1073 1.810 0.007
Sebacic acid (NSC 19492 [DBID]) 0.001 (0.001) 0.004 (0.003) 0.898 1.151 1.278 0.003
Tetradecanol (NSC 4194 [DBID]) 0.016 (0.003) 0.059 (0.019) 0.982 1.516 2251 = 0.001
2-Ethyl-2-Methyl-Tridecanol (921600091) 0.006 (0.001) 0.044 (0.033) 0.809 1.245 1.159 0.001
5-Nonanol (NSC4552 [DBID]) 0.001 (0.001) 0.023 (0.004) 0.965 1.054 6.168 0.001
Hexadecane (NSC 172781 [DBID]) 0.002 (0.003) 0.031 (0.029) 0.978 1.555 1024 = 0.001
Octadecane (NSC 172781 [DBID]) 0.020 (0.011) 0.115 (0.028) 0.878 1.197 3.446 0.002
Octacosane (NSC 5549 [DBID]) 0 (o) 0.016 (0.016) 0.993 1.611 0.979 > 0.001
Methyltetradecane (NSC 172781 [DBID]) 0.005 (0.004) 0.044 (0.012) 0.664 1.090 3.186 0.006
Glucose (NSC4552 [DBID]) 0.195 (D.187) 0.366 (0.170) 0.819 1.470 0.913 = 0.001
Oxalate (c0017 [DBID]) 0 (o) 0.006 (0.006) 0.863 1.266 0.954 0.001
Glyeerol (NSC 9230 [DBID]) 0.063 (0.012) 0.082 (0.011) 0.891 1173 1.469 0.002
Monopalmitin (110006) 0.165 (0.058) 0.216 (0.056) 0.987 1.614 0.874 = 0.001
Propyl myristate (Al3-31609 [DBID]) 0.014 (0.003) 0.023 (0.006) 0.991 1.626 1.328 = 0.001
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Fig. 3. Altered Mtb metabolome induced by treatment with colistin sulfate. The schematic representation indicates the 21 metabolite markers in bold and the
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corresponding to the aforementioned fatty acids [46]. Additionally,
although not detected using the marker selection process described
above, decanol (0 vs. 0.018 pg/ml; P < 0.05), decane (0.006 vs.
0.012 pg/ml; P > 0.05), dodecane (0 vs. 0.007 pg/ml; P > 0.05), ei-
cosane (0.083 vs. 0.172pg/ml; P < 0.05), tetracosanol (0.001 vs.
0.006 pg/ml; P > 0.05), tetracosane (0 vs. 0.01 pg/ml; P < 0.05),
methylhexacosane (0.132 ws. 0611pg/ml; P > 0.05), tetra-
methylhexadecanol (0.001 vs. 0.023 pg/ml; P < 0.05) and metylhex-
adecane (0 vs. 0.01 pg/ml; P > 0.05)), were also seen to occur in
elevated amounts, further confirming these mechanisms.

Another important observation supporting the unanimous meta-
bolic flux observed in this study towards fatty acid biosynthesis and cell
wall repair, is the significantly elevated concentrations of glucose,
glycerol and monopalmitic acid. According to de Carvalho et al. [47];
Mib's central carbon metabolism is able to co-catabolise multiple carbon
sources for energy [47]. Considering the colistin sulfate treated Mih's
need to preferably utilize fatty acids towards cell wall repair, one would
expect that this organism would subsequently resort to glucose, which
was freely available in the growth media, as the primary energy sub-
strate, in conjunction with an upregulated glyoxylate cycle [48], sub-
stantiated in this investigation by the elevated glucose and oxalic acid
detected [49]. Furthermore, as shown in Fig. 3, various intermediates of
glycolysis, can additionally serve as substrates for fatty acid biosynth-
esis, including acetyl-CoA, as previously mentioned, and glycer-
aldehyde-3-phosphate (G-3-P) via glycerol [19], the latter of which is
supported by elevations in monopalmitic acid and the glycerol present
in the growth media.

5. Concluding remarks

This study, is the first of its kind to use a metabolomics research
approach in order to identify biomarkers explaining the antibacterial
mechanisms of colistin sulfate against Mth, and additionally shows the
capacity of metabolomics for identifying metabolite markers which can
be used to better understand or confirm drug action. The fatty acid
metabolite markers identified in the colistin sulfate treated Mth, shows
a metabolic flux towards fatty acid synthesis and cell wall repair.
Furthermore, glucose uptake is increased, serving as the preferential
energy source (as opposed to fatty acids which are now preferentially
being used for cell wall repair) to fuel an upregulated glyoxylate cycle,
and additionally as a precursor for further cell wall fatty acid synthesis
via the glycerolipid metabolic pathway. Considering this, it can be
concluded that colistin sulfate acts by disrupting the cell wall in M.
tuberculosis, confirming a similar drug action as that seen in other or-
ganisms.
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ARTICLE INFO ABSTRACT

Keywords:
Colistin methanesulfonate
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Over the past 5 years, there has been a renewed interest in finding new compounds with anti-TB action. Colistin
methanesulfonate or polymyxin E, is a possible anti-TB drug candidate, which may in future be used either alone
or in combination to the current 6 month “directly observed treatment short-course” (DOTS) regimen. However

T“‘*E’:“f its mechamsm of action has to date not yet been fully explored, and only described from a histological and
‘T"r:I: 'l'"“ pective. Considering this, we used a GCxGC-TOFMS metabolomics approach and identified those
Antibiotics metabollte markers characterising Mycobacterium tuberculosis (Mth) cultured in the presence of colistin metha-

nesulfonate, in order to better understand or confirm its mechanism of action. The metabolite markers identified
indicated a flux in the bolism of the colistin h | treated Mib s fatty acid synthesis and
cell wall repair, confirming previous reports that colistin acts by disrupting the cell wall of mycobacteria.
Acc ing this, isa ly elevated glucose uptake, since the latter now serves as the primary energy

i for the upregulated glyoxylate cycle, and additionally as a precursor for further fatty acid synthesis via
the glycerolipid metabolic parhway Furthermore, the elevated concentrations of those metabolites associated
with pentose phosphate, valine, tk ine, and p diol bolism, also confirms a shift towards glucose
utilization for energy production, in the co]]stm melhanesu]fm.ale lrealed Mith.

1. Introduction

In 2015, an approximated 10.5 million new cases of tuberculosis
(TB) were reported globally, which subsequently contributed to 1.4
million deaths [1]. Tuberculosis is caused by the infectious organism
Mycobacterium tuberculosis (Mtb), a mycobacteria bacillus which mainly
targets the lungs [2]. Currently, the WHO approved treatment approach
entails a 6 months combination treatment approach which is called the
“directly observed treatment short-course” (DOTS) regimen [3]. Aec-
cording to the annual WHO report, a significant improvement to cur-
rent treatment strategies is going to be a challenge, however the
identification of new anti-TB drug candidates and or alternative treat-
ment regimens, might be a plausible option for speeding up treatment
duration and subsequently lowering the TB prevalence globally [4,5].
Although there are currently a number of new potential anti-TB drugs
undergoing phase II and III preclinical trials, delamanid and bedaqui-
line are the only two new anti-TB drugs to have been approved over the
last 50 years. These drugs, however, are currently only used for treating
adults with MDR-TB, and considered as last option medications, when
no other alternatives prove to be effective [6]. Considering this, there is

" Corresponding author.

still urgent need for new TB drugs and alternative TB treatment ap-
proaches.

Another possible anti-TB drug candidate is the antibiotic colistin
methanesulfonate (CMS), an inactive prodrug of colistin sulfate (CS),
also known as pelymyxin E [7]. CMS has previously been shown to have
high anti-bacterial activities P. aerugi A b ii, and
Klebsiella pneumoniae, and additionally shown to be resistant to these
organisms developing drug tolerance [8]. CMS is produced via a reac-
tion from commercially synthesised CS with formaldehyde and sodium
bisulphite, resulting in the subsequent addition of a sulfomethylated
group to the primary amine groups of CS [9]. The original reason for
modifying CS in this manner is that the resulting CMS is considered less
toxic when administered parenterally [10]. When administered, a hy-
drolysis reaction oceurs, where CMS in an aqueous solution forms both
CS and various partially sulfomethylated derivatives of CS [11]. Apart
from the varying toxicity characteristics of CS and CMS, these two
forms of the drug show different pharmacokinetic characteristics
[12-14]. A study conducted by Plachouras et al. (2009), indicated that
colistin concentrations increase gradually after the administration of
CMS in critically ill patients, reaching a steady state after 2 days,

E-mail addresses: nadiakoen93@gmail.com (N. Koen), shane. vontelin van breda@gmail.com (S.V. van Breda), dutoit loots@nwivac.za (D.T. Loots).

* The first and last authors contributed equally to the writing of this manuseript.

https://dol.org/10.1016,/j.tube. 2018.06.008

Received 14 November 2017; Received in revised form 29 May 2018; Accepted 7 June 2018

1472-9792/ © 2018 Elsevier Ltd. All rights reserved.



N. Koen et al

suggesting benefits of treatment commencement with a loading dose
[15]. Various colistin derivatives have also been proposed to promote
first line anti-TB drug uptake, by creating pores in the outer membrane
of Mtb, after binding electrostatically to the outer cell membrane lipo-
polysaccharides and phospholipids [16]. Very little data however exists
describing the antimicrobial action of CMS against Mth, and that which
has been described to date, was attained solely from a histological or
genomics approach. Metabolomics, the latest addition to the “omics”
family, is defined as an unbiased identification and quantification of all
metabolites present in a sample, using highly specialised analytical
procedures and a statistical analysis/bioinformatics, by which the most
important metabolites characterising a perturbation (or drug) can be
identified [17]. In this investigation, we extracted the intracellular
metabolome of Mth cultured in the presence and absence of 32 pg/ml
CMS, and analysed these extracts using a 2 dimensional gas chroma-
tography time of flight mass spectrometry (GCxGC-TOFMS) metabo-
lomies approach, for the purpose of identifying those metabolite mar-
kers best characterising the changes to the Mth metabolome induced by
CMS.

2. Materials and methods
2.1. Cell culture

As described by van Breda et al. (2015), the cell cultures were
prepared in the presence and absence of CMS, with slight modifications.
Briefly, Mth H37Ra ATCC 25177 (obtained from Ampath Pathology
Laboratory Support Services, Centurion, Gauteng, South Africa) was
swabbed onto Middlebrook 7H10 agar (Becton Dickinson, Woodmead,
Gauteng, South Africa), supplemented with 0.5% w/v glycerol
(Saarchem, Krugersdorp, Gauteng, South Africa), and enriched with
10% w/v oleic acid, albumin, dextrose, catalase (OADC) (Becton
Dickinson). The reasons for selecting a H37Ra strain in this experiment,
was due to the fact that the original description of the effects of poly-
myxins by Rastogi et al. (1986), used H37Ra, and a recent publication
by Bax et al. (2015), described similar results using H37Rv as to what
van Breda et al. (2015) described for H37Ra [16,18,19].

The stock culture was prepared after three weeks of incubation at
37 °C, by suspending the cells in 1 x phosphate buffered saline (PBS)
(Sigma Aldrich, Kempton Park, Gauteng, South Africa) containing
0.05% v/v Tween 80 (Saarchem) to a McFarland standard of 3. Aliquots
of 1 ml were stored at — 80 °C in cryovials, containing 20% v/v glycerol
(Saarchem). By using the TB Ag MPT64 Device (KAT Medical,
Roodepoort, Gauteng, South Africa), the presence of Mth was con-
firmed, and the purity was determined by swabbing 100 pL of culture
media onto tryptic soy agar (Merck, Darmstadt, Germany) and in-
cubating at 37 °C for 48 h. Before experimental investigations, a cryo-
vial of the stored aliquots was allowed to thaw to room temperature,
vortexed and swabbed onto Middlebrook 7H10 agar. Plates were sealed
in Ziploe bags and incubated at 37 °C until mid-log growth was reached
(approximately 10-14 days).

The mid-log growth culture was suspended to a McFarland standard
of 1 (using Sauton media [16]); approximately 1 x 107 colony-forming
units (CFU)/mL. The cell suspension (195 pL) was then added to each
well in a 96 well microtiter plate (Eppendorf). The antimicrobials were
added to final concentrations of 0pg/mL and 32 pg/mL CMS respec-
tively, and the plate was sealed using sterile ziploc bags, and incubated
at 37 °C for 24 h. The mixture in each well was subsequently transferred
to Eppendorf tubes up to a volume of 1 mL. The 10 samples containing
32 pg/mlL CMS and 7 samples containing no CMS, were centrifuged at
10000 x g for 1 min and showed no difference in the amounts of viable
CFU/mL. The supernatant was removed and pellet rinsed and re-
suspended in 1 x PBS (without Tween 80) and then stored at — 80°C.

In the current investigation it is important to note, that the reason
Sauton media was used, is because other media, such as Middlebrook
7H9 for instance, contains the following components which antagonize
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the effects of polymyxins 1. BSA (forms complexes with polymyxins)
[20], 2. Mg2+ and Ca2+ [21,22], and hence it was important to use
media where physiological concentrations of these divalent cations can
be controlled, i.e., cation-adjusted to 10-12.5 mg Mg®*/L and
20-25 mg Ca®* /L [23,24], 3. Na™ [25,26], and 4. Catalase, since the
latter is an antioxidant which would inhibit polymyxin induced Fenton
reaction mechanisms [27]. Furthermore, it was important to substitute
glycerol with 0.2% w/v glucose, since lower than normal MICs have
been previously observed for Mth when glycerol was used as the only
carbon source [28], and with 0.05% v/v Tween 80, since Mth requires
the fatty acids present within Tween 80 for growth [29,30].

2.2. Whole metabolome extraction procedure and derivatization

Prior to GCxGC-TOFMS analysis, 0.5 mg of each of the individually
cultured Mth sample pellets described above were weighed into an
Eppendorf tube, followed by the addition of 50 pL 3-phenylbutyric acid
(0.0175pg/mL) (Sigma-Aldrich (St. Louis, MO, USA)) as internal
standard. Chloroform, methanol (Burdick and Jackson brands
(Honeywell International Inc., Muskegon, MI, USA)) and water were
added in a ratio 1:3:1, vortexed for 1 min and then placed in a vibration
mill (Retsch, Haan, Germany) with a 3mm carbide tungsten bead
(Retsch) for 5minat 30Hz/s. Each sample was then centrifuged for
10 minat 10 000 x g and the supernatants transferred to a GC sample
vial, and subsequently dried under a nitrogen stream. Each extract was
derivatized using 20 uL methoxyamine hydrochloride-(trimethylsilyl)-
trifluoroacetamide (MSTFA) (Sigma-Aldrich (Darmstadt, Germany))
(containing 15 mg/mL pyridine) at 50 °C for 90 min, followed by sily-
lation using 40 pL MSTFA with 1% trimethylchlorosilane (TMCS) at
50 *C for 60 min. These extracts were then transferred to a 0.1 mL insert
in a clean GC sample vial and capped, prior to GCxGC-TOFMS analysis
[31].

2.3, GCxGC-TOFMS analyses

The samples (1pL) were analysed in random sequence, using a
Pegasus 4D GCxGC-TOFMS (LECO Africa (Pry) Ltd, Johannesburg,
South Africa), equipped with an Agilent 7890 gas chromatograph
(Agilent, Atlanta, USA), TOFMS (LECO Africa) and Gerstel Multi-
Purpose Sampler (Gerstel GmbH and Co. KG, Miilheim an der Ruhr,
Germany), in a splitless ratio. The necessary quality control (QC)
samples were also analyzed at regular intervals in order to correct for
any batch effects and also monitor the performance of the analysis over
time. A Rxi-5Sil MS primary capillary column (30 m, 0.25pm film
thickness and 250 um internal diameter), and a Rxi-17 secondary ca-
pillary column (1.2m, 0.25pm film thickness and 250 pm internal
diameter) where used for GC compound separation. Helium was used as
a carrier gas at a flow of 1 mL/min with the injector temperature held
constant at 270°C for the entire run. The primary column temperature
was set at 70 °C for 2 min, and then increased at a rate of 4 °C/min to a
final temperature of 300 °C, at which it was maintained for a further
2min. The temperature of the secondary oven was programmed at
85 °C for 2 min, then increased at a rate of 4 *C/min to final temperature
of 305°C, at which it was maintained for a further 4.5min. The ac-
quisition voltage of the detector was 1700V and the filament bias
—70eV. A mass range of 50-800 m/z was used for the mass spectra, at
an acquisition rate of 200 spectra/s.

2.4. Data processing, clean-up and statistics

Mass spectral deconvolution (at a signal to noise ratio of 20), peak
alignment and peak identification, were done on the collected mass
spectra using ChromaTOF software (version 4.32). Identical mass
spectra of the compounds in each of the samples were aligned, if they
displayed similar retention times. Compounds were identified by
comparison of their mass fragment patterns and retention times, to that
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of libraries compiled from previously injected standards.

Following the data processing steps described above, a standardized
metabolomics data clean-up procedure was conducted [32]. Normal-
ization of each of the detected compounds was done using the total
useful MS signal (TUS) [33] and by calculating the relative con-
centration of each compound, using the internal standard as a re-
ference. A 50% filter was applied in order to remove those compounds
showing more than 50% zero values within both groups [34] and the
QC samples used to correct for any batch effects, using quantile
equating [35]. Additionally, a 50% QC coefficient of variation (CV)
filter was applied [36], and all zero-values were replaced by a value
determined as half of the smallest concentration (i.e. the detection
limit) detected in the entire data set, as these may be due to low
abundance rather than being absent [37].

The data were subsequently analysed using a variety of multi- and
univariate statistical methods, using a web based software package
supported by the Metabolomics Society: MetaboAnalyst (based on the
statistical package “R"; version 2.10.0), and included principal com-
ponents analysis (PCA) [38], partial least squares—discriminant analysis
(PLS-DA) [39], a t-test and effect size calculations [40].

3. Results and discussion

Fig. 1 shows clear PCA differentiation of the individually cultured
Mtb samples in the presence and absence of CMS, using the collected
GCxGC-TOFMS metabolomics data. The total amount of variance ex-
plained by the first two principal components (PCs) (R2X cum) was
55.9%, of which PC1 accounted for 43.4%, and PC2 accounted for
12.5%. Subsequently, by compliance with all of the following criteria: a
PCA modelling power > 0.5 [38], a PLS-DA VIP value > 1 [39], a t-
test P-value < 0.05 and an effect size > 0.5 [40], the metabolites that
contributed most to this differentiation were selected (Fig. 2) and listed
in Table 1. These metabolite markers were mapped on a metabolic
chart as indicated in Fig. 3 and discussed below. As indicated, the
metabolomics investigation of the cultured Mtb in the presence and
absence of CMS, led to the identification of various significantly altered
metabolite markers. Glucose uptake was increased in the CMS treated
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Fig. 1. PCA differentiation of individually cultured Mth in the absence (Mth-
control) and presence (Mth-CMS) of colistin methanesulfonate (32 pg/mL) and
analysed via GCxGC-TOFMS. The variances accounted for are indicated in
parenthesis.

Tuberculosis 111 {2018) 154-160

Fig. 2. Venn diagram illustrating the multi-statistical selection criteria of the 22
metabolite markers best describing the variation between the individually
cultured Mth sample groups in the presence and absence of CMS.

Mitb, as the preferential energy source (as opposed to fatty acids which
are now preferentially being used for cell wall repair) to fuel an upre-
gulated glyoxylate cycle, and substrate further cell wall fatty acid
synthesis via the glycerolipid metabolic pathway. However, the CMS
treated Mth, also showed comparatively elevated metabolites associated
with pentose phosphate, valine, threonine, and pentanediol metabo-
lism. These results confirm that CMS disrupts the Mtb cell membrane,
and that these bacteria attempt to compensate for this via upregulation
of various metabolic pathways related to cell wall repair.

Colistin has been previously reported to have an antimicrobial ac-
tivity, which function by binding electrostatically to the lipopoly-
saccharides and phospholipids on the outer cell membrane of these
gram negative bacteria, subsequently displacing the membrane cations
(magnesium and calcium) from the phosphate groups of their mem-
brane lipids, subsequently creating pores, which results in cell death
[41]. This was supported by our previous metabolomics work on the
topic, which showed that elevated fatty acid synthesis and cell wall
repair mechanisms are activated in the CS treated Mtb [42]. As pre-
viously described by Bax et al. (2015) and van Breda et al. (2015), the
CMS used in the current investigation, also forms colistin once ad-
ministered, and hence, would also be expected to result in a structural
disruption of the Mtb cell wall via the same mechanism as to when CS is
administered. This is supported by the elevated levels of the cell wall
associated with methylated and unmethylated fatty acids (methyladipic
acid, methyldodecanocic acid, methyltridecanoic, octadecencic acid)
and their fatty acid associated alcohols and alkanes [43] (tetra-
methylhexanedecanol, octacosane, octadecane, tetradecanol, and hen-
triacontane (Table 1)). Additionally, although not selected using the
markers selection statistics approach defined in the methods section,
methyloctadecenoic acid (0.49 wvs. 0.42pg/ml; P > 0.05), hex-
adecanoic acid (0.859 vs. 0.857 pg/ml; P > 0.05), octadecanoic acid
(22.45 wvs. 8.07pg/ml; P > 0.05), tetracosanoic acid (24.54 ws.
14.15pg/ml; P > 0.05), decanol (0.02 vs. 0.00 pg/ml; P > 0.05),
hexadecanol (0.001 vs. 0.000 pg/ml; P > 0.05), decane (0.009 vs.
0.006 pg/ml; P = 0.05), dodecane (0.006 vs. 0.00 pg/ml; P > 0.05),
hexadecane (0.011 vs. 0.002 pg/ml; P > 0.05) and tetracosane (0.018
vs. 0.00 pg/ml; P > 0.05), were also significantly elevated in the CMS
treated Mitb comparatively, when considering their P-values, further
supporting this mechanism (Fig. 3). Octanoic acid and octadecenoic
acid, are the well-known substrates for the synthesis of methylated-
branched chain fatty acids and mycolic acids, both important compo-
nents of arabinogalactan (AG) in the cell wall of Mth [44,45]. These
methylated branched fatty acids additionally serve as hydrophobic
modulators for the host's cellular immune system, and are also
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Table 1

The 22 metabolite markers best explaining the variance between the individually cultured Mth samples in the absence (Mth-Controls) and presence (Mth-CMS) of

colistin methanesulfonate.

Tuberculpsis 111 (2018) 154-160

Metabalite name Mib controls: Mih controls: Mib treated with CMS:  Mib treated PCA PLS-DA  Effect sizes  t-test Fold
(Chemspider D) Average concentration  standard error  Average concentration  with CMS: {Power) (VIF) (d-value) (P-value) Change
(mg/g cells) of the mean (mgsg cells) standard error (log2)
of the mean
Tetramethylhexadecanol 0,005 0001 0,011 0003 0,663 1087 2095 0,003 1.14
(92535)
Methyladipic Acid (5367 266) 0,159 0024 0,204 0042 0,984 1592 1063 <0001 0.36
Arabitol (84971) 0,554 0133 0,328 0062 0,989 1603 1703 = 0001 -—-0.59
Diethylene glycol (DEG) 0,072 0020 0,036 0008 0,925 1111 1870 0,002 —-1.00
(13835180)
Dotriacontane (10542) 0,070 0013 0,053 0013 0,722 1147 1279 0,001 —0.40
(84990) 0,166 0030 0,731 0289 0,806 1277 1955 = 0,001 214
Glyceral (733) 0.007 0.006 0.023 0.014 0,860 1034 1852 0,005 1.72
Hentriacontane (11904) 0,605 0202 1007 0,483 0980 1574 0,834 = 0,001 074
Methyldodecanoic acid (92948) 0,045 0011 0,097 oo1o 0,987 1582 4830 = 0001 1.11
Methylmaleic acid (553689) 0,078 0026 0,033 0011 0,926 1322 1731 <0001 -1.24
Methylglutaric acid (11549) 0,071 0022 0,043 ooa7 0,844 1184 1287 0,001 -0.72
Methyltetradecanoic acid 0,317 0021 0,840 0302 0,799 1010 1731 0,007 1.41
(90098)
Monopalmitin (110006) 0,165 0058 0,220 0063 0,935 1472 0,873 = 0,001 0.42
Octacosane (11902) 0,046 0017 0,087 0035 0,921 1318 1201 = 0,001 0.92
Octadecane (11145) 0,020 0011 0,077 0024 0,982 1571 2364 0,000 1.95
Octadecenoic acid (393217) = 0,001 = 0,001 o010 0,009 0925 1467 1125 =0,001 3.32
Octanoic acid (370) 0,204 0192 0,019 0013 0,903 1273 0,969 <0001 -343
Oxalate (946) 0,027 0008 0,113 0020 0,986 1572 4247 = 0,001 2.07
Pentanediol (133167) 0,014 0013 0,028 0008 0,965 1580 1033 = 0,001 1.00
Tetradecanol (10714572) 0,016 0003 0,047 0013 0,991 1482 2380 = 0001 1.56
Threonine (6051) = 0,001 = 0,001 o007 0,008 0859 1229 0,891 = 0,001 2.81
Valine (6050) = 0,001 = 0,001 o033 0,041 0872 1272 0,822 = 0,001 5.04

considered virulence factors in the microbe [46]. As indicated in Fig. 3,
these methylated cell wall intermediates are synthesised via 3 possible
routes: 1. farty acid methylation via S-adenosylmethionine (SAM)
functioning as the methyl donor [45], 2. methylmalonyl-CoA derived
polyketide synthase complexes, originating from propionyl-CoA and
malonyl-CoA [47] and 3. acetyl-CoA metabolism to butyric acid, which
in turn reacts with propionyl-CoA [48]. Additionally, methyladipic acid
was found elevated, which is formed from methylhexanoic acid, one of
the metabolites in the branched fatty acid synthesis pathways of Mtb
[49].

Similarly as to what we previously saw for the CS treated Mth [42],
glycolysis and its associated pathways are also upregulated in the CMS
treated Mth. In our previous metabolomics investigation using CS
treated Mth, elevated levels of glucose, acetic acid and oxalic acid
where detected [S0]. This suggests that the CS treated Mib needed to
preferably utilize fatty acids towards cell wall repair, and subsequently
these organisms need to resort to glucose (which was freely available in
the growth media) as the primary energy substrate [51]. Similarly, in
the CMS treated Mth in the current investigation, elevated levels of
oxalate were also detected (Table 1) in addition to elevated glucose
(1.21 vs. 0.88 pg/ml; P > 0.05) and acetic acid (0.218 vs. 0.102 pg/ml;
P > 0.05) when considering significance using the latter two com-
pounds P-values. Additional evidence supporting this and indicated in
Table 1 and Fig. 3, where elevated levels of valine, threonine, and
pentanediol, which also suggests a shift towards glucose utilization for
energy and fatty acid synthesis in the CMS treated Mtb. Furthermore,
the elevated levels of acetic acid (or acetyl-CoA) can subsequently result
in the elevated synthesis of threonine and pentanediol, detected in the
CMS treated Mtb [52]. Also associated directly with this pathway, is
elevated valine synthesis from pyruvate [53], which feeds into the tri-
carboxylic acid (TCA) cycle via succinate [54]. Another branch chain
amino acid metabolic pathway affected by CMS in Mtb is that of leu-
cine's catabolism to acetyl-CoA, and the reduced amounts of 3-me-
thylglutaric acid attests to an increased flux in this direction [55] and
the subsequent synthesis of cell wall fatty acids or energy [56]. The
reduced concentrations of methylmaleic acid [57] and diethylene
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glycol in the CMS treated Mtb, serve as further confirmation for the flux
of glucose utilisation for growth and fatty acid synthesis via glycerol
and monopalmitin, both of which were elevated in the CMS treated Mth
comparatively (Table 1 and Fig. 3).

An interesting observation in the CMS treated Mth, where two me-
tabolite markers associated with the pentose phosphate pathway
namely, the reduced arabinose and the elevated erythrose (Table 1). As
indicated in the supplementary figures, due to the high demand in fatty
acid synthesis for cell repair, and an increased demand for this and
energy production via glycolysis, the pentose phosphate pathways is
most likely additionally utilised during such conditions for generating
more intermediates for glycolysis [58], with the reduction in arabitol
and subsequent increase of erythrose, indicating a metabolic flux to-
wards glyceraldehyde-3-phosphate and fructose-6-phosphate synthesis,
something which wasn't previously seen in the CS treated Mth [59]. A
study conducted by Henry et al. (2015), indicated differentiation of
gene expression following colistin treatment. These results are con-
sistent with that found in the current study, which also suggests that
colistin treatment alters the outer membrane composition and results in
subsequent damage to the outer membrane of Mth, as previously de-
scribed [60].

Additionally, the alterations made by CMS to the Mib cell mem-
brane, results in it becoming less hydrophobic, hence it could be sug-
gested that CMS could be used in synergy with other hydrophilic drugs,
which when administered alone, usually struggle to cross these bac-
terial membranes. This has been previously observed by Bax et al.
(2015) and van Breda et al. (2015). It is possible that disruption of the
hydrophobic barrier of Mth by INH (inhibiting mycolic acid synthesis)
or CS from CMS, could lead to a greater uptake via the self-promoted
uptake for CS causing a synergistic effect. In the case of INH, disruption
of the hydrophobic barrier can lead to an uptake of hydrophilic INH.
According to Nasiruddin, Neyaz, & Das (2017), a promising drug de-
livery model could be to encapsulate the hydrophilic drugs to be carried
over the membrane, however in synergy with CMS, this may no longer
be required [61]. Proof for this hypothesis, are the results by Al-Shaer,
Nazer, & Kherallah (2014), where a combination therapy approach of
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Fig. 3. Metabolite markers best describing the variation in the metabolome of the CMS treated Mth compared to that of Mth cultured without CMS, are schematically
represented in bold and those metabolites which were not necessarily significantly elevated using the statistical procedure selected, but still showed significance via
considering their P-values, indicated in italics and underlined. Elevated and reduced concentrations of each metabolite marker indicated by either t or | and red and
green respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

rifampicin and CMS was used against MDR A. baumannii, which re-
sulted in the successful treatment of 64% of the patients, with very few
side effects [62]. Unfortunately, the results of these investigations are
limited and no effect is given on the clinical outcomes of rifampicin
induced - hepatotoxicity.

4. Concluding remarks

The most significant metabolite markers identified in this in-
vestigation, were the elevated concentrations of various fatty acids in-
dicating a shift towards farty acid synthesis and cell wall repair in the
CMS treated Mtb. This is accompanied by an increase in glucose utili-
sation for energy and an additional flux towards the upregulation of the
glyoxylate cycle (a precursor for cell wall fatty acids via the glycerolipid
metabolic pathway), similarly to what was previously seen when
treating Mtb with CS. Further confirmation of this shift towards glucose
as an energy source, and unique to this investigation, is the utilisation
of the pentose phosphate, valine, threonine, and pentanediol pathways
for this purpose also. Considering this, it might be possible to use CMS
with other first or second line anti-TB drugs (likely only hydrophilic
ones). The feasibility, however, to treat both drug sensitive and MDR-
TB using lower drug concentrations is subject to further clinical trials as
it is not known if CMS would be able to successfully target intracellular
Mtb.
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