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“For I know the plans I have for you”, declares the Lord, “plans to 
prosper you and not to harm you, plans to give you hope and a 
future.” 
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ABSTRACT 

Metabolomics is a growing field and a valuable instrument for the identification of dysregulation 

in the metabolome of a biological system. Different approaches and analytical platforms are 

available for metabolomics based studies. Although metabolomics is a promising diagnostic tool 

there are still obstacles to overcome. There is still no standardised totally comprehensive 

approach available to detect and quantify large numbers of metabolites. There is also no 

standardised sample preparation and metabolite extraction method established. 

Targeted metabolic profiling is a feasible approach to metabolomics and allows investigation 

into the metabolome with high specificity. The establishment of a metabolic profiling method will 

be of great benefit in the characterisation of diseases whose pathogenesis still remains poorly 

understood. Idiopathic pulmonary fibrosis (IPF) is a lung disease with a prevalence of between 

1.25 and 23.4 per 100 000 population in Europe and 1 in every 32 000 population is South 

Africa. IPF is one of many diseases whose pathogenesis still remains poorly understood and 

alternative investigation is required in order to understanding the onset and progression of the 

disease. 

During this study the aim was to develop an LC-MS/MS based targeted metabolic profiling 

method that would be able to generate a metabolic profile for any disease state, together with a 

sample preparation and metabolite extraction method for various biological matrices. The aim of 

the study was achieved by developing an LC-MS/MS method using the Luna NH2 column (2 

mm x 150 mm, 5 µm, 100 Å), as well as developing a standardised protein precipitation sample 

preparation procedure. After a quality assessment was performed on all aspects of the 

analytical process, including the range, linearity, limits of detection and quantification, accuracy 

and precision, the performance of the method was considered stable and adequate for use in 

metabolic profiling. 

As validation of the developed method, a targeted metabolic profile was generated for a fibrotic 

lung animal model (C57BL/6J bleomycin treated mouse model) resembling IPF. Since sampling 

lung tissue from IPF patients is an invasive approach, the alternative approach of using an 

animal model resembling the diseases state was used. A metabolic profile was generated for 

the C57BL/6J bleomycin treated animal model using the developed method and after univariate 

and multivariate statistical analysis was performed, several metabolites were identified as 

significant (p-values < 0.05). 

The metabolic profile was compared to a metabolic profile of a lipopolysaccharide induced lung 

inflammation mouse model to identity any correlation to an inflammation induced lung disease 

state. The metabolic profile of the C57BL/6J bleomycin treated mouse model was also 
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compared to a transforming growth factor-β treated normal human lung fibroblast cellular model 

to identify any correlation to an in vitro IPF representation. The identified metabolites indicated a 

dysregulation in the glycolysis pathway as well as the methionine cycle, suggesting the key to 

understanding the pathogenesis of the disease may lie on an epigenetic level. 

Keywords: Metabolomics; targeted metabolic profiling; biomarkers; LC-MS/MS; lung fibrosis; 

IPF. 
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CHAPTER 1: INTRODUCTION 

1.1 Problem statement 

Metabolomics is a growing field and a valuable instrument for the identification of dysregulation 

in the metabolome of a biological system. Metabolic profiling is a popular approach used in 

metabolomics studies. Metabolic profiling of diseases provides the opportunity to identify 

biomarkers that can be used for diagnostic purposes, determining the stage of the disease or 

identifying dysregulated metabolic pathways that can be targeted as treatment options. 

Although there are various approaches and analytical platforms available there is still no 

standardised comprehensive analysis and sample preparation available. An incorporation of all 

analytical platforms to sample analysis could provide the desired comprehensive overview, but 

this approach will not be feasible, for extensive sample preparation, analytical time and data 

processing will be required as well as expensive analytical platform instrumentations and 

expertise. A well designed LC-MS/MS targeted metabolic profiling method will allow high 

sensitivity and specificity and will be suitable for labile, non-volatile polar and non-polar 

metabolites in their native form.  

Complex diseases with unknown pathogenesis have benefitted greatly from metabolomics 

based studies. Metabolomics based studies provided new insight into the pathogenesis of such 

diseases as well as providing new information for characterisation of the diseases. Idiopathic 

pulmonary fibrosis is an example of such a complex disease, which pathogenesis still remains 

poorly understood and can benefit from such an analysis. Therefore a standardised 

comprehensive metabolic profiling analysis would be greatly beneficial for idiopathic pulmonary 

fibrosis as well as providing the protocol to be followed for the generation of metabolic profiles 

for other complex diseases. 

1.2 Aim and objectives 

The aim of the study was to establish a standardised LC-MS/MS method for targeted metabolic 

profiling of biological matrices. The method included the identification of as many metabolites as 

possible, producing the possibility for characterising multiple diseases. The method 

development included the establishment of a standardised sample preparation and metabolite 

extraction protocol of biological matrices. The developed method was validated by producing a 

metabolic profile for a fibrotic lung animal model (C57BL/6J bleomycin treated mouse model) 

representing IPF.  

  



Chapter  1 

2 

This study was divided into three phases: 

• Phase one consisted of the LC-MS/MS metabolite analysis method development. 

Different methods were tested to find a method that allows the detection of as many 

metabolites as possible. The parameters of the method were determined by the 

characteristics of the metabolites. 

• Phase two consisted of the development of a standardised method for sample 

preparation and metabolite extraction from different matrices. Different sample 

preparation techniques, including quenching and metabolite extraction were evaluated to 

find a sample preparation method suitable for the developed LC-MS/MS method. 

• Phase three consisted of the validation of the developed LC-MS/MS method by 

generating a targeted metabolic profile for a C57BL/6J bleomycin treated mouse model. 

For the establishment of the metabolic profile for the C57BL/6J bleomycin treated mouse 

model, healthy and diseased lung tissue were compared. A comparison was also made 

between the metabolic profile of the C57BL/6J bleomycin treated mouse model and the 

metabolic profile of a lipopolysaccharide induce lung inflammation mouse model as well 

as the metabolic profile of a transforming growth factor-β treated normal human lung 

fibroblast cellular model.    

1.3 Structure of study 

1.3.1 Chapter 2: Literature review 

In this chapter a literature review is provided with regards to metabolomics, the different 

approaches and analytical platforms that are available as well as the different applications in 

which metabolomics is used.  The focus of the review was on the development of an LC-MS/MS 

based targeted metabolic profiling method, with emphasis on the importance of this approach 

and highlighting each aspect of the method development process. 

1.3.2 Chapter 3: Method development 

In this chapter the method development process, which was performed during this study, is 

described in detail as well as all challenges that was experienced. This includes all aspects of 

the LC system, optimisation of the MS system parameters, sample preparation, data analysis 

and statistical analysis. A quality assessment of the analytical aspects of the method is also 

described in this chapter with details regarding each experimental procedure that was 

performed.  
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1.3.3 Chapter 4: LC-MS/MS method for targeted metabolic profiling 

This chapter consists of a summary of the final method with regards to sample preparation, LC 

method, optimised MS parameters for each metabolite, performing data analysis and statistical 

analysis. 

1.3.4 Chapter 5: Metabolic profiling of a fibrotic lung animal model 

As validation of the developed method a targeted metabolic profile was generated for a fibrotic 

lung animal model resembling IPF. All results with regards to the generation of the metabolic 

profile of the C57BL/6J bleomycin treated mouse model, using the method as described in 

Chapter 4, are discussed in this chapter as a full length article. This article has been written 

according to the guidelines provided by the journal and has been submitted to the Respiratory 

Medicine journal. 

1.3.5 Chapter 6: Summary and future prospects 

In this chapter a summary of the study is given together with a review on the developed method. 

The final conclusion of the metabolic profile of the fibrotic lung animal model is provided and 

recommendations for future research in this area are also proposed. 

1.3.6 Chapter 7: Reference 

All references used in this study are provided in this chapter. The references are listed 

according to the requirements as specified in the NWU’s manual for post-graduate studies.  

1.3.7 Appendix A: Author guidelines  

The author guidelines provided by the Respiratory Medicine journal is given. These guidelines 

were followed to write the article provided in Chapter 5.   
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CHAPTER 2: LITERATURE REVIEW 

2.1 Metabolomics 

Metabolomics is a growing field and a valuable instrument that involves the identification of 

metabolites produced in a biological system (Álvarez-Sánchez et al., 2010a; Bino et al., 2004; 

Kang et al., 2016; Kottmann et al., 2012). Metabolites represent not only the downstream output 

of the genome but also the upstream input from the environment (Wishart, 2016). With the 

identification of metabolites, endogenous and exogenous, the ability to identify specific 

alterations in metabolic pathways arises. This creates the possibility to link dysregulated 

metabolic pathways to diseases (Kottmann et al., 2012). Metabolomics have been used in 

various applications, including investigations into disease pathogenesis, toxicology, drug 

discovery, and nutrition (Cuperlovic-Culf & Culf, 2016; Lu & Chen, 2017). Metabolomics have 

been used to determine the cause and pathogenesis of complex diseases (Kottmann et al., 

2012), as well as distinguishing between diseases showing similar clinical presentations 

(Adamko et al., 2015). Different metabolomics approaches can be followed with the use of 

various analytical platforms fulfilling the requirements of each of the different applications. 

2.1.1 Application of metabolomics 

Metabolomics can be used for various applications (Cuperlovic-Culf & Culf, 2016; Lu & Chen, 

2017), but a very important application is the characterisation of complex diseases’ 

pathogenesis. There are still a great number of complex diseases that have not been 

characterised and the onset and progression of these diseases is still unknown. Characterising 

the metabolic profile of these diseases could potentially provide new insight into the 

pathogenesis of the disease and provide new therapeutic approaches. New insight into the 

pathogenesis of a disease can lead to identifying new biomarkers that can be used for earlier 

diagnosis of the disease as well as establishing the state and progression of the disease. 

Idiopathic pulmonary fibrosis (IPF) is one of such complex diseases that are of interest since the 

onset and progression of the disease is still unknown (Costabel et al., 2014; Kottmann et al., 

2012; LaBrecque et al., 2014). 

2.1.1.1 Idiopathic pulmonary fibrosis 

IPF is a disorder characterized by progressive destruction of normal lung architecture by 

alveolar epithelial cell injury, proliferation of activated fibroblasts and myofibroblasts, and 

accumulation of the extracellular matrix that stiffens the lung and leads to respiratory failure 

(Kang et al., 2016; Richeldi et al., 2014; Sandbo, 2014). IPF is one of several lung diseases that 

are characterized by pulmonary fibrosis. Although the commencement of pulmonary diseases 
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such as the fibroproliferative phase of acute respiratory distress syndrome or fibrotic sarcoidosis 

has been characterized, the underlying etiology and pathogenesis of IPF still remains poorly 

understood (Sandbo, 2014). IPF has a prevalence of between 1.25 and 23.4 per 100 000 

population in Europe, between 42.7 and 63 per 100 000 population in America and 1 in every 

32 000 population in South Africa (Masekela et al., 2016; Nalysnyk et al., 2012). The survival 

duration from time of diagnosis for IPF patients are 2 to 3 year (Kottmann et al., 2012). Although 

there is affective treatment available, Nintedanib (Boehringer Ingelheim Pharma GmbH & Co. 

KG, Germany) and Pirfenidone (Genentech Inc. member of the Roche Group, South San 

Francisco, CA, USA),  that reduces the decline in lung function, the treatment still do not offer 

full recovery (Costabel et al., 2014; King Jr et al., 2014; Richeldi et al., 2014). Therefore the 

need for further research into the pathogenesis of this disease is crucial. 

2.1.1.2 Metabolomics and its application to respiratory diseases 

Metabolomics have been used to establish metabolic profiles for several complex respiratory 

diseases including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis and 

acute respiratory disease syndrome (ARDS) (Kang et al., 2016; Stringer et al., 2016). These 

metabolic profiles contribute to a better understanding of the pathogenesis and progression of 

these diseases. Biomarkers were also identified and may be used to distinguish between 

diseases that have similar clinical presentations (Adamko et al., 2015; Stringer et al., 2016). 

Although asthma and COPD have different pathogenesis and the degree of inflammation and 

cellular damage varies with the severity of the disease, it is still difficult to differentiate between 

them since these diseases have similar clinical presentations (Adamko et al., 2015). Metabolic 

profiling of urine samples from patients with asthma and COPD, respectively, showed that 3-

hydroxyisovalerate, taurine, histidine and succinate were identified as distinguishable 

biomarkers, since the changes in the levels of these metabolite concentration were significantly 

different between the patients with asthma and the patients with COPD (Adamko et al., 2015).  

Although metabolic profiles have been established for several respiratory diseases, metabolic 

profiling for IPF has not yet been fully investigated (Kang et al., 2016; Rindlisbacher et al., 

2018). Previous biomarker identification in IPF lung tissue indicates increased levels of inosine, 

hypoxanthine and glycolytic intermediate metabolites including lactic acid (Kottmann et al., 

2012) and a decrease in adenosine triphosphate (ATP) and glucose (Kang et al., 2016). These 

phenomena are also seen in cancer cells which portrays the Warburg effect (Cottrill & Chan, 

2013). Tumours present a high energy and anabolic need to ensure rapid cell growth and 

proliferation. The serine biosynthesis pathway was recently identified as an important source for 

necessary metabolic intermediates for these dysregulated processes and it is of great interest to 

see in which other diseases a dysregulation in the glycolysis pathway and serine biosynthesis 

pathway can be seen (Cottrill & Chan, 2013).  
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2.1.2 Challenges for metabolomics 

Although metabolomics is a powerful tool there are still shortcomings that need to be 

addressed. One of the major shortcomings is the lack of a total comprehensive approach 

allowing a global view on the metabolome of a biological system (Dettmer et al., 2007). This is a 

difficult task for metabolites differ widely in characteristics and detectible concentration (Álvarez-

Sánchez et al., 2010a; Bino et al., 2004). The most common strategy that is used to address 

this problem involves the integration of various analytical platforms. This improves metabolite 

coverage and increases the identification range, but feasibility is a great concern. 

Another challenge that have to be addressed is the lack of a standardised sample preparation 

and metabolite extraction protocol (Álvarez-Sánchez et al., 2010a; Bino et al., 2004). The 

compilation of a standardised sample preparation protocol has been disregarded over the 

years. This is a difficult task as samples differ widely in matrix diversity and metabolite 

composition. The treatment and perturbations of the experiment can also influence the sample 

preparation procedure. A standardised samples preparation protocol for all biological samples is 

needed for comparable and reproducible results (Álvarez-Sánchez et al., 2010a; Bino et al., 

2004). 

Not only is the sample preparation and analytical approach of great importance but also the 

sample handling, storage and data handling. In metabolomics large volumes of data is 

generated and analysing such complex data sets has an impact on the quality of the 

identification and quantification of metabolites and interpretation of biological relevance (Dunn 

et al., 2012). The analytical approach as well as the analytical platform greatly influences the 

volume of data handling that has to take place. With an untargeted approach the data 

processing increases tremendously since a lot more data clean-up and pre-processing are 

required, including peak identification for identification of each metabolite. This requires 

specialised programs, databases and experience (Dunn et al., 2012; Godzien et al., 2015). 

2.1.3 Different approaches for metabolomics  

Metabolomics joins genomics, transcriptomics, and proteomics in the field of omics and enables 

a greater understanding of a biological system (Rochfort, 2005; Wishart, 2016). Metabolites 

represent the final downstream products of genomic, transcriptomic and proteomic processes 

(see Figure 2.1). The number of metabolites that can be evaluated is much lower than the 

number of genes, transcriptomes and proteins. Genomics involves the study of about 25 000 

genes, transcriptomics involves about 100 000 RNA transcripts and proteomics about 1 000 000 

proteins (Solomon & Fischer, 2010; Theodoridis et al., 2011). The advantage of metabolomics is 

that metabolites serves as a direct signature of biochemical activity and provides a better 

correlation with the phenotype (Patti et al., 2012; Zhang et al., 2012a). 
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The term “metabolomics” is an ‘umbrella term’ for many types of different approaches that 

involves the investigation into the metabolome of a biological system. The different approaches 

that can be taken are targeted metabolomics, untargeted metabolomics, metabolic footprinting, 

metabolic fingerprinting, fluxomics, lipidomics, metallomics and exposomics (Patti et al., 2012; 

Wishart, 2016). The approach depends on the type of sample to be measured, requirements 

and aim of the study (Johnson & Gonzalez, 2012). 

Figure 2.1: Central dogma illustrated by different ‘omics. Metabolomics represents the downstream 
product of genomics, transcriptomics and proteomic processes. The number of metabolites to be 
investigated is magnitudes less than the amount genes, transcriptomes and proteins from the other 
‘omics (Johnson & Gonzalez, 2012; Roberts et al., 2012; Solomon & Fischer, 2010; Theodoridis et al., 
2011). Permission for the use of the metabolic profile map as graphics was gained from the Kyoto 
Encyclopedia of Genes and Genomes data base (Genome.jp, 2017). The remaining graphics used in this 
figure were gained from open-source websites (Art, 2017; En.wikipedia.org., 2017; Pixabay.com., 2017).      

Targeted metabolomics is driven by a specific biological question and consists of a method 

measuring a specific list of metabolites. Usually the focus would be on metabolites of a specific 

pathway. By limiting a study to only metabolites of interest, a well-designed method can be 

created with optimized sample preparation and analytical parameters that will ensure high 

sensitivity and specificity (Griffiths et al., 2010; Patti et al., 2012; Wishart, 2016). Untargeted 

metabolomics consists of a method that is used to measure as many metabolites as possible 
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from a biological sample without bias. This approach provides a global scope of the biological 

system with minimal limitations. The limitations associated with untargeted metabolomics are 

related to the instrumentation used for analysis and identification of the different metabolites 

(Patti et al., 2012; Wishart, 2016).  

Metabolic footprinting refers to the analysis of extracellular metabolites, intended to define the 

pattern of extracellular metabolites. Metabolic fingerprinting refers to the analysis of intracellular 

metabolites. These approaches can provide a better understanding of cellular communication 

mechanisms (Mapelli et al., 2008). Fluxomics is an approach that aims to define the genes 

involved in regulation by monitoring the flux of a single metabolite (Wiechert et al., 2007). 

Lipidomics involves the large scale analysis of cellular lipids (Han, 2009). Metallomics refers to 

the analysis of elemental species and exposomics involves the study of the complete collection 

of environmental exposures (Szpunar, 2004).  

Not only are there different approaches to metabolomics, but there are also diverse applications 

for it, including in vivo and in vitro studies of human and animal health, biomarker discovery, 

drug discovery and development, plant biology, microbiology, food chemistry and environmental 

monitoring (Wishart, 2016; Zhang et al., 2012a). The diverse applications is due to the wide 

range of substrates that can be used, solids (tissue, biological waste and soil), liquids (biofluids, 

effluent and water) and gases (breath, fumes and scents) (Wishart, 2016). 

2.2 Targeted metabolic profiling 

With metabolomics there are several approaches that can be followed, which involves different 

analytical platforms. Incorporation of the different analytical platforms will provide a 

comprehensive approach for metabolic profiling but it requires extensive resources and 

experience and is not always feasible (Roberts et al., 2012). Targeted metabolic profiling is 

limited to the identified metabolites for analysis but a well-designed analytical platform will 

minimise these limitations.  

When setting up a well-designed targeted metabolic profiling method several factors have to be 

taken into account (see Figure 2.2). Since a targeted approach is limited to the identified 

metabolites of interest, care have to be taken when identifying these metabolites. After the 

metabolites of interests have been identified an analytical platform for identification has to be 

selected. The analytical platform has to be suitable for the analysis of the identified metabolites. 

It is important to consider all aspects of the analytical work flow to ensure a robust, and feasible 

method with the high sensitivity and specificity will be generated (Dunn et al., 2005). Once the 

analytical platform has been chosen an appropriate sample preparation have to be selected to 

ensure the highest possible recovery of the identified metabolites (Dettmer et al., 2007). The 

analysis of the samples is also important with regards to quality control, to ensure reliable and 
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repeatable data can be generated. Data handling and normalisations is very important 

especially for statistical analysis that follows (Boccard et al., 2010). 

Figure 2.2: A flow chart summarising the important aspects of a targeted metabolic profiling 
method.  



Chapter  2 

10 

2.2.1 Metabolite identification 

The metabolome of a biological system is of interest because of its direct correlation to the 

phenotype (Patti et al., 2012; Zhang & Kaminski, 2012b). Characterising the metabolome of a 

biological system will provide greater understanding of any disease state. Many different 

metabolic pathways are present in the metabolome and most of these pathways are interlinked.  

When identifying metabolites to be included in a targeted metabolic profiling method these cross 

interactions of metabolites to various metabolic pathways have to be taken into account.   

The central carbon metabolism includes the major energy production metabolic pathways and 

provides crucial information about the energy state of a biological system. Not only is the central 

carbon metabolism of great importance but also metabolic pathways such as nucleotide and 

protein biosynthesis, lipid and phospholipid turnover and redox stress (Armitage & Barbas, 

2014). Metabolites in these metabolic pathways have been identified as biomarkers for 

dysregulation of cell growth and proliferation (Locasale, 2013). Figure 2.3 highlights important 

metabolites from the central carbon metabolism, serine biosynthesis pathway and methionine 

and folate cycle.  

2.2.1.1 The central carbon system 

In all biological systems the central carbon metabolism plays a key role in substrate 

degradation, energy and cofactor regeneration and biosynthetic precursor supply. The central 

carbon metabolism consists of the glycolysis, pentose-phosphate-pathway, tricarboxylic acid 

cycle (TCA) and the corresponding cofactors involved (see Figure 2.4). In the understanding of 

the central carbon metabolism has been of great importance in biotechnological production of 

fine chemicals, such as amino acids, vitamins, and antibiotics (Luo et al., 2007). Determination 

of concentration and concentration dynamics of the central carbon metabolism provides key 

information of the metabolic state of a biological system (Luo et al., 2007).  

Investigations into the central carbon metabolism have been responsible for generating 

essential hypothesis in fields such as cancer research. During an investigation of the 

relationship between glycolysis, the TCA cycle and oxidative phosphorylation, a valuable 

hypothesis was generated, indicating that pyruvate was converted to lactate rather than fuelling 

the TCA cycle even in aerobic conditions. The hypothesis is known as the Warburg effect and 

have been identified in some cancer cell types and have provided essential information in 

characterising and understanding the metabolic state of these cancer cells (Armitage & Barbas, 

2014). 
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Figure 2.3: Extended central carbon metabolic pathway. Metabolic chart of the central carbon metabolism including the fructose metabolic pathway, amino acid 

entry point into the citric cycle, serine biosynthesis pathway and the methionine and folate cycle. This diagram was generated from information obtained from the 

Kyoto Encyclopedia of Genes and Genomes data base (Genome.jp, 2017).  



Chapter  2 

12 

 

Figure 2.4: The central carbon metabolism. The metabolic chart highlights intermediates of the 

glycolysis and TCA cycle that provide key information of the energetic state of a biological system. This 

diagram is an enlargement of Figure 2.3 and was generated from information obtained from the Kyoto 

Encyclopedia of Genes and Genomes data base (Genome.jp, 2017). 
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2.2.1.2 Amino acids  

Cell growth and proliferation requires proteins, lipids and nucleic acid for the construction of new 

cellular components as well as the maintenance of cellular redox, genetic and epigenetic status 

(Locasale, 2013). Metabolic pathways of amino acids such as glycine, serine, proline, histidine, 

methionine and phenylalanine should also be investigated since these amino acids  have been 

identified as biomarkers in other disease states, including respiratory diseases such as asthma 

and COPD, and can provide an understanding of the metabolic state of a biological system 

(Armitage & Barbas, 2014). 

2.2.1.3 Serine, glycine and one-carbon metabolism 

The serine biosynthetic pathway has recently been identified as an important source of 

metabolic intermediates in assisting the high energetic and anabolic need for rapid cell growth 

and proliferation of tumours (DeNicola et al., 2015). The one-carbon metabolism involves the 

folate and methionine cycles, integrates nutritional status from amino acids, glucose and 

vitamins, as well as generates biosynthesis of lipids, nucleotides and proteins and maintains the 

redox status of substrates for methylation reactions (see Figure 2.5) (Locasale, 2013). 

Therefore input metabolites, intermediates and metabolic products of the one-carbon 

metabolism are of great interest in metabolic profiling. 

The one-carbon metabolism involves a complex metabolic network that is based on the 

chemical reaction of folate compounds. These reactions proceed in a cyclic manner during 

which a carbon unit is transferred to other metabolic pathways. Folic acid is a member of the 

vitamin B group and is reduced by a series of enzymes, leading to the generation of 

tetrahydrofolate (THF). THF participates in a number of metabolic reactions, which involves the 

movement of carbon atoms. The folate cycle is coupled to the methionine cycle through the 

generation of methyl-THF (mTHF) (see Figure 2.5). The trans-sulphuration pathway is coupled 

to the methionine cycle and serine is metabolised to glutathione via the trans-sulphuration 

pathway (see Figure 2.5). Serine and glycine serves as the main metabolites for the entry point 

into the one-carbon metabolism, but there are several entry points for both serine and glycine. 

Serine can be synthesised de novo via the serine biosynthesis pathway but can also be 

imported into the cell via amino acid transporters. The enzymatic cleavage of glycine can fuel 

the folate cycle by the generation of a carbon unit for the methylation of THF. Glycine can also 

be generated from many sources including choline, betaine, dimethylglycine, sarcosine and in 

some cells from threonine (Locasale, 2013). 
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Figure 2.5: Serine biosynthesis pathway and the methionine and folate cycles. This diagram is an 

enlargement of Figure 2.3 and was generated by using  information obtained from the Kyoto 

Encyclopedia of Genes and Genomes data base (Genome.jp, 2017). 

2.2.2 Analytical platforms 

The ultimate metabolic profiling platform would involve analysis directly on the sample, without 

sample preparation or storage, and provide unbiased results with respect to different metabolite 

classes. The analysis would have to be highly and equally sensitive to all the metabolites 

present in the sample, have a wide dynamic range and be robust and reproducible. Accurate 

and fast metabolite identification would also be needed (Theodoridis et al., 2011). Unfortunately 

there is currently no analysis that can provide all these desired properties (Vuckovic, 2012). 
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Metabolites have a broad range of characteristics and abundance within a biological system. To 

be able to achieve the desired metabolite profile a wide range of instruments is used. The 

primary instrumentation used for metabolomics are: nuclear magnetic resonance (NMR) 

spectrometry, gas chromatography mass spectrometry (GC-MS), and liquid chromatography 

mass spectrometry (LC-MS) (Zhang et al., 2012a). Every technique has its own advantages and 

disadvantages. Using multiple techniques will limit the shortcomings of a single-analysis 

technique (Zhang et al., 2012a). 

2.2.2.1 Nuclear magnetic resonance spectrometry 

Nuclear magnetic resonance spectrometry (NMR) is a powerful and one of the most widely used 

techniques. This technique provides a wealth of structural information about analytes. 

Information such as chemical shift, spin-spin coupling and relaxation or diffusion enables fast 

identification of analytes in a sample. Sample preparation for NMR is straightforward with 

minimal preparation steps, samples are in a solution state with the addition of a deuterated 

solvent. The analysis is non-destructive and does not require the pre-selection of analytical 

conditions such as the ion source conditions or the selection of a stationary phase, mobile 

phase or temperature as in the case of chromatographic techniques. NMR provides many 

advantages but the sensitivity is poor and the concentration of potential biomarkers might be 

below the detection limit. A reverence library is also needed for identification purposes as well 

as a specialist operator of the instrument (Dunn et al., 2005; Theodoridis et al., 2011; Zhang et 

al., 2012a). 

2.2.2.2 Gas chromatography linked to mass spectrometry  

Gas chromatography linked to mass spectrometry (GC-MS) has been used as a platform in 

non-targeted analysis and is especially used for hydrophilic metabolites. There are well defined 

spectral libraries available generated from GC-MS electron impact (EI). These libraries provide 

easy identification of unknown analytes by using well known and defined retention time or 

retention index. GC-MS requires sample derivatization, to be able to create volatile compounds. 

Compounds that are large, thermo-labile or are unable to be derivatized will not be detected by 

GC-MS analysis. Sample preparation is extensive and time consuming and a high-throughput 

technology is required to handle large volume of samples (Dunn et al., 2005; Theodoridis et al., 

2011; Zhang et al., 2012a).  

2.2.2.3 Liquid chromatography linked to mass spectrometry  

Liquid chromatography linked to mass spectrometry (LC-MS) is a well-known and the most 

widely used metabolomics platform (Lu & Chen, 2017). Sample preparation is minimal but 

depends on the type of chromatography. In most cases there is no need for derivatization of 

compounds prior to analysis. LC separation is better suited for the analysis of labile and non-
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volatile polar and non-polar compounds in their native form. LC-MS provides high resolution and 

reproducible measurements that sets up the basis for subsequent data processing and 

multivariate data analysis. LC-MS analysis is limited by the characteristics and capacity of the 

column chosen for the analysis. Different groups of analytes can be measured on different types 

of columns. 

Different columns for LC-MS  

With reverse-phase (RP) LC the mobile phase is varied starting with a higher polarity solvent 

than the stationary phase and eluting analytes by increasing the organic solvent concentration 

in the eluent. The retention of non-polar compounds increases with an increase in polarity of the 

mobile phase. To be able to induce retention of polar compounds with reversed-phase 

chromatography, techniques such as solute derivatization or ion-pairing is used. With ion-pairing 

a reagent of opposite charge to an ionic compound is introduced into the mobile phase to form a 

non-covalent adduct with the ionic compound (Pesek & Matyska, 2007). 

With normal-phase (NP) LC the stationary phase has a higher polarity than the solvent used in 

the mobile phase. Polar compounds are more strongly retained than non-polar compounds 

when the mobile phase polarity decreases. This type of chromatography is used enable 

retention, separation and detection of polar compounds (Pesek & Matyska, 2007). A widely 

used NPLC type column is the hydrophilic interaction liquid chromatography (HILIC) column. 

A HILIC column is designed to retain and separate polar-ionic compounds from each other. This 

is achieved by the polar properties of the stationary phase of the column together with a high 

concentration non-polar (organic) solvent in the composition of the mobile phase (Pesek & 

Matyska, 2007). The disadvantage of a HILIC column is that typical hydrophobic compounds will 

have little or no retention. This disadvantage can be limited by the different functional groups 

that can be present on the stationary phase (Pesek & Matyska, 2007). Examples include 

aminopropyl ligands bound to silica, alkylamide packing phase and a mixed phase containing 

different types of ligands (-NH2, -CN. –phenyl, -C8, -C18) (Buszewski & Noga, 2012).  

2.2.3 Sample preparation 

Sample preparation is dependent on the type of approach and analytical platform of choice and 

is an important aspect of method development since it is responsible for reproducibility. Different 

analytical platforms require different sample preparation procedures. With GC-MS, 

derivatization is needed to ensure all metabolites of interest are volatile. With LC-MS, 

metabolites have to be dissolved in solvent, water or organic phase. Quenching is an important 

step with regards to metabolomics. Quenching ensure representativeness of samples by 

efficiently interrupting the metabolism (Álvarez-Sánchez et al., 2010b). Another important step in 
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sample preparation is metabolite extraction. Several extraction methods are available: dilute 

and shoot, protein precipitation, solid phase extraction, liquid-liquid extraction and ultrafiltration.  

Sample preparation depends on the analytical method to be used and the purpose of the study. 

When a sample preparation protocol is set up a few steps have to be addresses. The selection 

of biological material (e.g. blood, urine, cells or tissue) together with the appropriate sampling 

technique is one of the limiting steps in metabolomics and its selection is based on the purpose 

and scientific question of the study. The sampling of biological material should ideally be non-

invasive and repeatable. With most biological material used for metabolomics a quenching step 

is required directly after sample collection. Quenching ensures a rapid interruption of the 

metabolism. This is particularly imported when working with cell cultures and tissue since the 

metabolism can be altered by enzymatic interactions. Metabolite extraction is a very important 

step and care should be taken when selecting the appropriate extraction method. The purpose 

of the study should be clearly defined; whether or not all metabolites are of interest or only 

specific metabolites. Knowledge about the metabolites of interest is required to choose between 

liquid-liquid extraction, solid phase extraction or protein precipitation. It is also necessary to 

know the characteristics of the metabolites of interest to enable selection of the appropriate 

clean up method. The analytical method should also be defined prior to sample preparation to 

determine in which solvent the metabolite extraction should be prepared, with regards to LC-

MS/MS or which derivatization has to be used for GC-MS/MS (Álvarez-Sánchez et al., 2010a; 

Bino et al., 2004).  

2.2.3.1 Derivatization 

Derivatization is a chemical modification of an analyte target structure. Derivatization is one of 

the most effective methods used to improve the detection of metabolites in GC- or LC-MS, by 

improving the binding characteristics of metabolites to LC columns, making metabolites volatile 

for GC-MS detection and stabilising metabolites (Aretz & Meierhofer, 2016). Although sensitivity 

is gained with derivatization of the metabolites there are also some drawbacks to derivatization. 

Not all metabolites can be derivatized with the same reagent and several extra preparation 

steps have to be included into the sample preparation. Furthermore, the mass spectra are 

different in terms of parent and fragment masses, which complicate the identification of the 

metabolites (Aretz & Meierhofer, 2016). 

2.2.3.2 Quenching 

Quenching is an important step in sample preparation in metabolomics studies. Quenching aims 

at stopping metabolism instantly by inhibiting endogenous enzymes. It ensures suppression of 

change in the metabolic profile during sample preparation and minimizes variability among 

samples (Álvarez-Sánchez et al., 2010b).  
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There are some requirements that have to be met for quenching to be successful. Since the 

turnover rates of many primary metabolites is very fast (in the range of 1 mM/s) and the 

concentration of the different metabolites vary greatly, the inactivation of the metabolism should 

be faster than the metabolic changes occurring in a sample (Álvarez-Sánchez et al., 2010b). 

Sample integrity is also very important particularly when working with cells. Care should be 

taken to preserve sample integrity during the sample preparation procedure. With regards to 

cells, leakages of intracellular metabolites should be minimized to ensure accurate 

representation of the sample. When quenching is performed care have to be taken to ensure 

that no significant variations are induced with regards to chemical and physical properties or 

concentration of the metabolites (Álvarez-Sánchez et al., 2010b). This also applies to the 

storage of samples since incorrect storage of samples can influence the stability of metabolites.  

Common strategies for quenching are based on rapid modification of sample conditions and 

usually include rapid change in pH or temperature. With regards to pH modification, quenching 

is achieved by instantly changing to extreme pH. The addition of potassium hydroxide (KOH) or 

sodium hydroxide (NaOH) will achieve a high alkaline pH. The addition of perchloric, 

hydrochloric or trichloroacetic acid will achieve high acidic pH. With regards to temperature 

modification, quenching is mainly carried out by cooling to lower than -20°C. One of the most 

popular methods is cold methanol quenching. This allows a rapid interruption of the metabolism 

in a sub-second time scale. This approach is used especially to discriminate between 

intracellular and extracellular metabolites (Álvarez-Sánchez et al., 2010b). 

2.2.3.3 Metabolite extraction 

Metabolite extraction aims to efficiently release metabolites from the sample, removes impurities 

that can complicate the analysis (e.g. salts and proteins), concentrates trace metabolites before 

analysis as well as ensuring compatibility between the extract and the analytical technique 

(Álvarez-Sánchez et al., 2010b). The metabolite extraction is an important step in the 

metabolomics analytical process and the effectiveness directly affects the quality of the final 

data. With the elimination of impurities that metabolite extraction provides, complications such 

as ionisation suppression is reduced (Vuckovic, 2012). Different extraction methods are 

available and the choice depends on the selectivity required by the chosen metabolomics 

approach. The extraction efficiency is limited by the solubility of the metabolites. Common 

extraction techniques include dilute and shoot, protein precipitation, liquid-liquid extraction 

(LLE), solid-phase extraction (SPE) or ultrafiltration extraction (Álvarez-Sánchez et al., 2010b; 

Henion et al., 1998; Vuckovic, 2012).  

Dilute and shoot 

Metabolomics studies require a sample preparation protocol that allows the analysis of all 

metabolites of interest. The dilute and shoot method exclude all other sample preparation steps 
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that can influence the abundance of metabolites (Henion et al., 1998). A typical dilution factor 

that is used is between 1:1 and 1:10 with a solvent appropriate for the analysis. With this 

technique it is important that the metabolites are in a relatively high concentration and that the 

matrix components do not elute at the same time as the metabolites to ensure that the matrix 

compounds do not interfere with the ionisation of the metabolites (Henion et al., 1998). 

Protein precipitation 

The most commonly used method of protein precipitation is the addition of an organic solvent to 

the sample homogenate. The addition of organic solvent  not only removes proteins from the 

sample but also disrupts any binding between the metabolites and the proteins (Vuckovic, 

2012). This allows the representation of total metabolite concentration. Acetonitrile, methanol, 

ethanol and acetone are some of the most effective organic solvent used in protein 

precipitation. Mixtures of these solvent are also used to accommodate the chosen approach 

and analytical platform as well as to increase metabolite coverage and robustness of the 

sample preparation technique. Acetonitrile and methanol have shown to result in the highest 

protein precipitation and allows a wide range of metabolites to be analysed (Gika & Theodoridis, 

2011). A popular dilution ratio used with protein precipitation is 1:4, ensuring all protein is 

precipitated with the least dilution (Vuckovic, 2012). 

Liquid-liquid extraction  

LLE usually involves mixing an aqueous sample solution with an equal volume of immiscible 

organic solvent. The two immiscible liquid phases interact with the intent to extract metabolites 

from the aqueous layer into the organic layer. There are many factors that affect the recovery 

and selectivity of the metabolites from the aqueous solution. These factors include metabolite 

solubility and pKa, as well as the pH and ionic strength of the solution (Henion et al., 1998). 

Centrifugation is then used to separate the immiscible liquids, with the organic layer containing 

the metabolites of interest. The organic layer is then removed and concentrated by evaporation 

before reconstituting it in an appropriate solvent for LC/MS analysis. This extraction technique 

can provide high recovery of the metabolites of interest but the procedure is not amenable to 

automation and a great amount of metabolites are lost due to high selectivity (Henion et al., 

1998). 

Solid-phase extraction  

SPE is a less popular extraction method in terms of global metabolomics approaches. A large 

amount of sorbent is used, typically in cartridge format, to extract metabolites from a sample. 

The metabolites are subsequently removed from the sorbent by solvent elution (Vuckovic, 

2012). With SPE metabolite pre-concentration can be achieved and matrix effect can be limited, 

increasing column lifetime. The main disadvantage of SPE is that it is highly selective and 
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decreases the metabolite coverage, making it unsuitable for global metabolomics studies 

(Vuckovic, 2012). 

Ultrafiltration extraction  

Ultrafiltration involves the filtration of a sample through a specific filter that only allows 

molecules of selected molecular masses to pass through. This is a simple technique where 

filtration is achieved by applying pressure through centrifugation. Typical molecular mass cut-

offs are: 3000 Da, 10 000 Da, 30 000 Da. With the use of a 3000 Da cut off, protein and 

macromolecule elimination can be achieved. The main disadvantage of ultrafiltration is the 

significant loss of metabolites with hydrophobic properties (Vuckovic, 2012). 

2.2.4 Analytical analysis 

Prior to the analysis of samples, some factors have to be taken into account to ensure the 

analysis is of high quality. These factors include quality control samples (QC), spiked samples 

and the use of internal standards (Godzien et al., 2015). The monitoring of these factors is an 

important indication of the quality of the data generated by the analysis. Other factors, such as 

the analytical run sequence, are also important to prevent any significant false variation among 

the experimental groups. 

2.2.4.1 Quality control samples 

QC samples are analysed at the start and end of an analytical run as well as at intermitted 

points throughout the analytical run. The function of QC samples is the monitoring of the 

performance of the method and instrumentation. In metabolomics studies, different approaches 

to QC sample preparation can be followed. A popular QC sample preparation is to pool equal 

aliquots of all samples to be measured in a batch. A less popular preparation approach involves 

only pooling and analysing a specific group (e.g. control group). The big disadvantage of this 

approach is that the QC samples do not provide an accurate representation of all the samples 

to be analysed (Godzien et al., 2015). 

In validated methods, a QC sample is usually spiked with a known concentration of the 

compounds being analysed. This allows confirmation of retention time and the reliability of 

quantitation in samples throughout an analytical run. This approach is not popular in 

metabolomics since untargeted approaches are usually used and involves hundreds to 

thousands of unknown compounds at unknown concentrations (Godzien et al., 2015). 

2.2.4.2 Internal standards 

Another form of quality control that can be implemented is the use of an internal standard (IS). 

This allows monitoring of the sample preparation procedure as well as instrumentation 

functionality. ISs can be used to minimise individual variance between sample preparation and 
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matrix effect (Griffiths et al., 2010). Ideally an internal standard should be used for each 

metabolite of interest, but it is experimentally difficult to apply an internal standard for each 

metabolite in a global metabolomics study. A single internal standard can be applied to correct 

for analytical variation for a group of metabolites that are relatable (e.g. all present in the same 

class of metabolites or have similar retention time) (Dunn et al., 2012).   

2.2.4.3 Analytical sequence 

The order in which samples are run can have an influence on the results that is produced. Due 

to instrumentation and chromatography drifts that can occur, false variations among sample 

groups can be induced. Randomisation of the run order of the samples should ensure even 

distribution of the different experimental groups throughout the analytical run; this will prevent 

any biased variation (Dunn et al., 2012; Godzien et al., 2015). 

2.2.5 Data analysis 

Metabolomics studies usually produce a large amount of data. The aim of data analysis is to 

reduce the number of variables created by the analytical analysis and to normalise the data to 

prevent any bias from distorting the data (Boccard et al., 2010). Data analysis can be further 

divided into data processing and data pre-treatment. The appropriate procedures for data 

handling depends greatly on the metabolomics approach, analytical platform, hypothesis or 

biological question, downstream data analysis method and the inherent properties of the data 

(e.g. dimensionality) (Boccard et al., 2010).  

2.2.5.1 Data processing 

With a targeted approach the data processing is significantly simplified, since identification of 

metabolites is not necessary, while identification of metabolites is required in an untargeted 

approach. The data processing depends on the available software and type of raw data 

produced. With the start of data processing it is important to ensure that the correct peak for 

each metabolite is identified and correctly intergraded. After peak identification and integration, 

data normalisation con be performed by using the respective ISs (Godzien et al., 2015; Walsh 

et al., 2008).  

2.2.5.2 Data pre-treatment  

After data processing data pre-treatment is essential before statistical analysis can be 

performed on the data. There are different data pre-treatment processes available (Boccard et 

al., 2010; Godzien et al., 2015). Usually a filter is applied to the data and different filtering 

criteria can be applied. A common filtering approach that is used is the 50% presence criteria of 

a metabolite in all samples, where metabolites are excluded if it is presents are below 50%. 

Another filtering approach that is used is a 30% relative standard deviation (RSD) among the 
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QC samples, The RSD of each metabolite, within the QC samples is determined and if the RSD 

of the metabolite is above 30% it is excluded from the data set. Missing value (zero value) 

replacement is performed on metabolites that fit the criteria of 50% presence and is necessary 

for correct statistical analysis. Different approaches to missing value replacing are available, 

where replacement can be done by the median or ½ of the minimum of all samples involved 

(Godzien et al., 2015). 

2.2.6 Statistical analysis  

The statistical analysis is employed to provide the final assessment and outcome of the study. 

Different types of analyses are available and the analysis depends on the requirements of the 

study as well as the generated data. Univariate and multivariate analysis are the most popular 

statistical analytical procedures. Although metabolomics experiments generate multivariate 

data, a univariate analysis method can be applied to identify an increase or decrease of a 

specific metabolite between different groups. Multiple parallel hypotheses are then needed 

when applying univariate tests to multivariate data (Boccard et al., 2010; Goodacre et al., 2007). 

2.2.6.1 Univariate analysis 

Popular univariate tests are the Student’s t-test, z-test, ANOVA (analysis of variance) and the 

non-parametric equivalents. The predictive power of each variable is assessed by finding the 

probability of statistical significant differences between the defined groups and a straightforward 

indicator, p-value, is given. When multiple comparisons are made, false positives are likely to 

occur. Procedures such as the Bonferroni correction can be introduced to correct such errors 

(Boccard et al., 2010; Goodacre et al., 2007). 

2.2.6.2 Multivariate analysis 

Metabolomics studies produce multivariate data. This complicates the interpretation of the data 

since the data is dependent on the number of samples as well as the number of variables (e.g. 

metabolites) and this increases the dimensionality of the data. Different approaches in 

multivariate analysis can be used to reduce the dimensionality and compress the data into an 

easily understandable outcome (Goodacre et al., 2007).  

A popular unsupervised multivariate analysis is the principal component analysis (PCA). An 

unsupervised analysis attempts to find the natural partitions of patterns to enable an 

understanding of the relationship between samples as well as identifying the variables that are 

responsible for these relationships. PCA is an orthogonal transformation of multivariate data 

and provides a summary of the data as well as identifying outliers (Goodacre et al., 2007; Putri 

& Fukusaki, 2014).  
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With multivariate analysis a supervised approach can also be followed and a partial least 

squares (PLS) analysis is a well-known supervised multivariate analysis. PLS has an intrinsic 

prediction power since bias is induced by identifying the different groups and this sharpens the 

partition between groups of observations so that maximum separation among different groups is 

obtained (Boccard et al., 2010).  

A hierarchical cluster analysis (HCA) can also be used for multivariate analysis and is employed 

to identify the similarities among samples and metabolites on a multidimensional space. This 

enables a visualisation of the biological features in two-dimensional space, thus simplifying the 

interpretation of the data by clustering the data (Putri & Fukusaki, 2014). The use of HCA is 

intended to group observations together that is similar to one another and produces a 

hierarchical structure that may reveal underlying patterns in the data set. Using HCA 

visualisation, interpretation of the data is possible as well as identification of the trends within a 

metabolic pathway, therefore an up or down regulated metabolic pathway can be identified. 

2.2.7 Biological relevancy 

After statistical relevancy is gained for the metabolites investigated, biomarkers can be 

identified. Biomarkers represent a characteristic that can be objectively measured and 

evaluated and serve as an indicator of normal biological processes, pathogenic processes or a 

pharmacological response to a therapeutic investigation (Ilyin et al., 2004). Biomarkers are 

identified based on differences observed between experimental groups (healthy versus 

diseased) with statistical verification. These observations have to be correlated with biological 

relevancy and a metabolic map can be generated based on the interactions between metabolic 

pathways across a complete system. This allows the identification of up or down regulation of 

metabolic pathways. Before any identified metabolite can be assigned as a biomarker to a 

disease state and can be used of the characterisation of the pathogenesis of a disease or have 

an impact on health risk assessment, the biomarker has to be validated (Bonassi et al., 2001). 

Biomarker validation can be divided into biomarker development, biomarker characterisation 

and longitudinal studies.  

2.2.7.1 Biomarker development  

The first step in biomarker validation is the validation of the analytical technique used for the 

analysis of the samples. All aspects of the analytical procedure, sample preparation, analytical 

platform and data handling, have to be validated. This is important to ensure the system is 

stable and comparable data will be generated without any differences induced by the analytical 

procedure. Guidelines can be followed with regards to method validation to ensure reliability, 

reproducibility, sensitivity and specificity is achieved with the developed method (Bonassi et al., 

2001; Ilyin et al., 2004). During biomarker development, multiple metabolites can be identified 
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as significant but validation is required to determine the relevancy of the identified metabolites 

as well as its consistency.  

2.2.7.2 Biomarker characterisation 

All aspects of sampling and individual differences among participants have to be taken into 

account. There are several factors that can influence the metabolic profile of an individual. 

These factors include environmental impact, health state, lifestyle, diet, genetics, age and 

medicinal consumption. During biomarker validation all of these factors have to be normalised to 

ensure no differences are induced to experimental groups by these factors (Bonassi et al., 

2001). The identified metabolites have to be validated in terms of relevancy. The metabolites 

have to be characterised the metabolome of the biological system and the influences of these 

factors have to be determined.  

2.2.7.3 Longitudinal studies 

Finally an assessment has to be established between the relationship of the identified 

biomarkers and the associated disease. This can be done by using epidemiological studies and 

incorporating the different ‘omics platforms to determine if these observation can be identified 

within the other ‘omics platforms as well (Bonassi et al., 2001; Ilyin et al., 2004). This type of 

integrated approach is known as interactomics and can provide a much better comprehensive 

understanding of a disease state.  

2.3 Summary 

During this study a targeted metabolic profiling method was developed together with a sample 

preparation and metabolite extraction procedure to be used for the establishment of a metabolic 

profile for the bleomycin treated C57BL/6J mouse model, representing IPF. Throughout the 

method development stage the above mentioned method development steps, guidelines and 

requirements were taken into account. The following chapter (Chapter 3) describes the entire 

method development process used in this study, as well as descriptive detail on how each 

method development step, described above, were considered and how the requirements were 

met.  
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CHAPTER 3: METHOD DEVELOPMENT  

3.1 Introduction 

Metabolomics, the comprehensive study of metabolites, can provide a global view on a 

biological system (Bino et al., 2004; Kang et al., 2016; Kottmann et al., 2012). During method 

development the aim is to optimise the parameters of the chosen analytical method to best suit 

its intended use and provide the optimal selectivity and sensitivity. Therefore method 

development entails the optimisation of the parameters needed for successful identification and 

chromatography separation. Not only is it necessary to optimise the analytical aspects of the 

method, but also the sample preparation and metabolite extraction procedures to ensure the 

best recovery of the metabolites of interest has been provided. In this chapter the method 

development process will be discussed for the establishment of a targeted metabolic profiling 

method to be used for generating a metabolic profile for complex diseases such as IPF. Details 

will be given with regards to the optimisation of the different parameters of the targeted 

metabolic profiling method. A quality assessment of the analytical parameters of the method 

was also performed and the detail with regards to the experiments performed for quality 

assessment is also discussed in this chapter. 

3.2 Materials and instrumentation 

3.2.1 Reagents 

The following high purity high performance liquid chromatography (HPLC) graded solvents were 

used during this study; dimethyl sulfoxide (DMSO) (CAS: 67-68-5), acetonitrile (ACN) (CAS: 75-

05-8), methanol (MeOH) (CAS: 67-56-1), ethanol (64-17-5), propanol (CAS: 67-36-0), formic 

acid (CAS: 64-18-6), ammonium hydroxide (CAS: 1336-21-6), ammonium acetate (CAS: 631-

61-8) and hexane (CAS: 110-54-3). All solvents were purchased from Sigma-Aldrich Co., 

Taufkirchen; Germany. 

3.2.3 Instrumentation 

For this project a targeted approach was chosen, using a liquid chromatography linked tandem 

mass spectrometry (LC-MS/MS) triple quadrupole system as analytical platform for method 

development. An LC-MS/MS system provides the advantage that a broad range of metabolites 

can be measured without prior chemical alteration. An LC-MS/MS triple quadrupole system is 

also robust, reproducible and provides high sensitivity and selectivity (Lu & Chen, 2017; 

Vuckovic, 2012; Zhang et al., 2012a).   
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3.2.3.1 LC-MS/MS 

A targeted metabolic profiling method was developed on a Triple Quad™ 6500+ and QTRAP® 

system from AB Sciex Pte., Ltd., Darmstadt; Germany. Together with the Triple Quad™, an 

Agilent 1290 Infinity II Multisampler and an Agilent 1290 Infinity II High Speed Pump system 

(Agilent Technologies Deutschland GmbH & Co., Waldbronn, Germany) was used to perform 

the analysis. The Triple Quad™ 6500+ was utilised for these analyses due to its capability of 

switching between positive and negative mode in a single analysis and its capability of 

performing scheduled multiple reaction monitoring (MRM). Analyst 1.6.3 software was used for 

operating the LC-MS/MS platform as well as data interpretation. 

3.3 Method development process 

3.3.1 Metabolite identification 

A literature investigation was done to identify metabolites of interest to be included into the 

method (Armitage & Barbas, 2014; DeNicola et al., 2015; Locasale, 2013; Lu & Chen, 2017). 

The metabolites of interest are products, intermediates and cofactors present in the central 

carbon system, glycolysis, TCA cycle, the serine biosynthesis pathway, as well as all amino 

acids present in human metabolic pathways. One hundred (100) metabolites was selected and 

included in the development of the targeted metabolic profiling method. The selected 

metabolites are from various metabolic pathways and can provide significant information with 

regards to the metabolic state of a biological system. These metabolites were not selected just 

for metabolic profiling of an IPF model, but also for the generation of metabolic profiles for other 

disease states.  A list of the metabolites can be seen in Table 3.1.  

3.3.1.1 Standards  

A targeted analysis was performed on 100 metabolites (listed in table 3.1). For establishing 

identification and determining retention times of each metabolite, standards of these metabolites 

were purchased and analysed. A stock solution of 2 mM was prepared of each standard. The 

standards were dissolved in either water or DMSO, depending on the metabolite’s solubility and 

characteristics. The information on the metabolites analysed in this study is summarised in 

Table 3.1. High purity standard (≥ 95%) for each metabolite was purchased from either Sigma-

Aldrich Co., Taufkirchen; Germany, eNovation Chemicals LLC, New Jersey; USA, TCI 

Deutchland GmbH, Eschborn; Germany or Cayman Chemical, Michigan; USA. 
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Figure 3.1: Flow chart representation of the method development process. This is an extended view 

of the flow chart provided in section 2.2 (Figure 2.2). 
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Table 3.1: Summary of all the metabolites of interest 

Group Metabolite Formula      Mr           CAS Company 
Glycolysis Glucose C6H12O6 180.063 50-99-7 Sigma 

Fructose-6-Phosphate  C6H13O9P  260.029 26177-86-6 Sigma 
3-Phospho-D-Glycerate     C3H7O7P 185.992 80731-10-8 Sigma 
2-Phosphoglyceric acid  C3H7O7P  185.992 83418-48-8 Sigma 
Phosphoenolpyruvic acid  C3H5O6P  167.982 4265-07-0 Sigma 
Pyruvate C3H4O3 88.016 113-24-6 Sigma 

TCA Oxaloacetic acid C4H4O5 132.006 328-42-7 Sigma 
Citric acid  C6H8O7  192.027 77-92-9 Sigma 
cis-Aconitic acid  C6H6O6  174.016 585-84-2 Sigma 
2-Ketoglutaric acid C5H6O5 146.021 328-50-7 Sigma 
Succinic acid  C4H6O4  118.026 110-15-6 Sigma 
Fumaric acid  C4H4O4  116.011 110-17-8 Sigma 
Malic acid  C4H6O5  134.021 6915-15-7 Sigma 
Glyoxylic acid C2H2O3 74.000 563-96-2 Sigma 
Fructose C6H12O6 180.063 57-48-7 Sigma 
Lactic acid  C3H6O3  90.031 50-21-5 Sigma 

Serine bio-
synthesis 

3-Hydroxybutyrate C4H8O3 104.040 150-83-4 Sigma 
3-Phosphonooxypyruvate  C3H5O7P 183.977 3913-50-6 eNC 
L-Serine-O-Phosphate C3H8NO6P 185.008 407-41-0 Sigma 
Serine C3H7NO3 105.042 56-45-1 Sigma 
Glycine C2H5NO2 75.032 56-40-6 Sigma 

Amino 
acids 

Acetylalanine  C5H9NO3  131.058 97-69-8 Sigma 
Alanine  C3H7NO2  89.0477 56-41-7 Sigma 
Arginine  C6H14N4O2  174.111 74-79-3 Sigma 
Asparagine  C4H8N2O3  132.053 70-47-3 Sigma 
Aspartic acid  C4H7NO4  133.037 56-84-8 Sigma 
Citrulline  C6H13N3O3  175.095 372-75-8 Sigma 
Cysteine  C3H7NO2S  121.019 52-90-4 Sigma 
Cystine C6H12N2O4S2 240.020 56-89-3 Sigma 
Glutamic acid  C5H9NO4  147.053 56-86-0 Sigma 
Glutamine  C5H10N2O3  146.069 56-85-9 Sigma 
Glutathione Oxidized  C20H32N6O12S2  612.152 27025-41-8 Sigma 
Glutathione Reduced  C10H17N3O6S  307.083 70-18-8 Sigma 
Histidine  C6H9N3O2  155.069 71-00-1 Sigma 
Hydroxyproline  C5H9NO3  131.058 51-35-4 Sigma 
Isoleucine  C6H13NO2  131.094 73-32-5 Sigma 
Leucine C6H13NO2  131.094 61-90-5 Sigma 
Lysine  C6H14N2O2  146.105 657-27-2 Sigma 
Phenylalanine  C9H11NO2  165.079 63-91-2 Sigma 
Proline  C5H9NO2  115.063 147-85-3 Sigma 
Taurine  C2H7NO3S  125.014 107-35-7 Sigma 
Threonine  C4H9NO3  119.058 72-19-5 Sigma 
Tryptophan  C11H12N2O2  204.089 73-22-3 Sigma 
Tyrosine  C9H11NO3  181.073 60-18-4 Sigma 
Valine  C5H11NO2  117.079 72-18-4 Sigma 

Methionine 
cycle 

Methionine  C5H11NO2S  149.051 63-68-3 Sigma 
SAM C15H23N6O5S 399.145 86867-01-8 Cayman 
SAH  C14H20N6O5S 384.120 979-92-0 Sigma 
Homocysteine C4H9NO2S 135.035 454-29-5 Sigma 
Creatine C4H9N3O2 131.069 6020-87-7 TCI 
Creatinine C4H7N3O 113.059 60-27-5 TCI 
Folic acid C19H19N7O6 441.139 59-30-3 Sigma 

 Tetrahydrofolate C19H23N7O6 445.430 135-16-0 Sigma 
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Table 3.1 (continued): Summary of all the metabolites of interest 

Group Metabolite Formula      Mr         CAS Company 
Coenzyme Acetyl-CoA C23H38N7O17P3S 809.120 102029-73-2 Sigma 

CoA  C21H36N7O16P3S  767.115 85-61-0 Sigma 
FAD  C27H33N9O15P2  785.157 84366-81-4 Sigma 
NAD  C21H27N7O14P2  663.109 53-84-9 Sigma 
NADP  C21H28N7O17P3  743.075 24292-60-2 Sigma 
NADH C21H29N7O14P2 665.441 606-68-8 Sigma 
NADPH C21H30N7O17P3 745.090 2646-71-1 Sigma 

Nucleobase Adenine  C5H5N5  135.054 73-24-5 Sigma 
Guanine C5H5N5O  151.049 73-40-5 Sigma 
Hypoxanthine  C5H4N4O  136.039 68-94-0 Sigma 
Thymine  C5H6N2O2  126.042 65-71-4 Sigma 
Uracil  C4H4N2O2  112.027 66-2-8 Sigma 
Cytosine C4H5N3O 111.000 71-30-7 Sigma 
Uridine  C9H12N2O6  244.069 58-96-8 Sigma 
Xanthine  C5H4N4O2  152.033 69-89-6 Sigma 

Nucleoside Adenosine  C10H13N5O4  267.097 58-61-7 Sigma 
Guanosine  C10H13N5O5  283.091 118-00-3 Sigma 
Inosine  C10H12N4O5  268.080 58-63-9 Sigma 

Nucleotide ADP  C10H15N5O10P2  427.029 20398-34-9 Sigma 
GDP  C10H15N5O11P2  443.024 43139-22-6 Sigma 
UDP  C9H14N2O12P2  404.002 27821-45-0 Sigma 

Nucleotide 
derivative 

ADP-Glucose  C16H25N5O15P2  589.082 102129-65-7 Sigma 
ADP-Ribose  C15H23N5O14P2  559.071 68414-18-6 Sigma 

Nucleotide ATP  C10H16N5O13P3  506.995 34369-07-8 Sigma 
GTP  C10H16N5O14P3  522.990 36051-31-7 Sigma 
AMP  C10H14N5O7P  347.063 4578-31-8 Sigma 
CMP  C9H14N3O8P  323.051 6757-06-8 Sigma 
GMP  C10H14N5O8P  363.050 5550-12-9 Sigma 
IMP  C10H13N4O8P  348.047 352195-40-5 Sigma 
UMP  C9H13N2O9P  324.035 58-97-9 Sigma 
cAMP  C10H12N5O6P  329.052 60-92-4 Sigma 
cGMP  C10H12N5O7P  345.047 61093-23-0 Sigma 
dAMP  C10H14N5O6P  331.068 653-63-4 Sigma 
dCMP  C9H14N3O7P  307.056 1032-65-1 Sigma 
dTMP  C10H15N2O8P  322.056 3343-62-5 Sigma 

Other Carnitine  C7H15NO3  161.105 6645-46-1 Sigma 
 Orotic acid  C5H4N2O4  156.017 65-86-1 Sigma 

Salicylic acid  C7H6O3  138.032 69-72-7 Sigma 
Ascorbic acid  C6H8O6  176.032 50-81-7 Sigma 
Ketoisovalerate C5H8O3 116.047 3715-29-5 Sigma 
Kynurenine C10H12N2O3 208.213 13441-51-5 Sigma 
3-OH-Kynurenine C10H12N2O4 224.079 2147-61-7 Sigma 
Quinolinic acid C7H5NO4 167.021 89-00-9 Sigma 
Kynurenic acid C10H7NO3 189.042 492-27-3 Sigma 
Pantothenic acid C9H17NO5 219.110 137-08-6 Sigma 
Maleic acid C4H4O4  116.010 110-16-7 Sigma 
Ketoleucine C6H10O3 130.060 816-66-0 Sigma 
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3.3.1.2 Internal standards 

Internal standards (IS) were acquired for quality control purposes. Information about the internal 

standards are listed in Table 3.2. These ISs were selected based on their retention time on the 

column and chemical characteristics. The ISs are well distributed within the elution profile. A 

stock solution was prepared of each IS, with a concentration of 2 mM. The ISs were dissolved in 

either water or DMSO, depending on the compound’s solubility and characteristics. The ISs 

were purchase from ether Sigma-Aldrich Co., Taufkirchen; Germany, Omicrom Biochemicals, 

Inc. Indiana, USA or Buchem Chemie & Technik GmbH & Co. Köln, Germany. 

Table 3.2: Summary of all the IS used in this study 
Group Metabolite    Mr      CAS Company Solvent 
Glycolysis D-Glucose-13C6 186.11 110187-42-3 Sigma Water 
 D-Fructose-13C6 186.11 201595-65-5 Sigma Water 
Amino 
acids 
 
 

L-Serine-13C3,15N,2,3,3-d3 112.08  Sigma Water 
L-Glutamic acid-13C5 152.09  Sigma Water 
Glycine-C13 76.06  Sigma Water 
L-Isoleucine-13C6,15N 138.12  Sigma Water 
L-Leucine-5,5,5-d3 134.19 87828-86-2 Sigma Water 
L-Lysine-4,4,5,5-d4 186.67  Sigma Water 
L-Phenyl-d5-alanine 170.22  Sigma Water 
Thymine-d4 (methyl-d3,6-d1) 130.14 156054-85-2 Sigma Water 
Tryptophan D5 209.26  Sigma DMSO 

Coenzyme Acetyl-1,2-13C2 coenzyme A 811.56  Sigma Water 
Nucleobase 2-(Methyl-13C,d3-thio)adenine 185.23 1216721-76-4 Sigma DMSO 
Nucleoside [1',2',3',4',5'-13C5]adenosine 272.21 159496-13-6 Omicron Water 
Nucleotide Adenosine-15N5 5′-monophosphate 352.19  Sigma Water 
 Adenosine-15N5 5′-triphosphate 512.15  Sigma Water 
Other Quinolinic acid-4,5,6-D3 170.14 138946-42-6 Buchem  DMSO 

D4-Kynurenine 212.24 194546-33-3 Buchem DMSO 
Kynurenic acid-3,5,6,7,8-d5 194.20  Sigma DMSO 

3.3.2 MS parameter optimisation  

To be able to identify and differentiate between metabolites, a unique transition for each 

metabolite is required. This is done by identifying the precursor ion and product ion of each 

metabolite. The precursor ion is analysed by the first analyser (MS1) and the product ion, which 

is a fragment of the precursor ion, is analysed by the second analyser (MS2) (Griffiths et al., 

2010). Parameters such as the declustering potential (DP), collision energy (CE), entrance 

potential (EP) and collision cell exit potential (CXP) can be optimised for each metabolite to 

ensure high sensitivity.  

The identification of the precursor ion and product ion together with the optimised parameters 

for each metabolite was done by tuning (please see 3.3.2.1, below). Other parameters such as 

the source temperature (TEM), ionspray voltage (ISV), curtain gas (CUR), nebulizing gas (GS1) 

and drying gas (GS2) was used as recommended by the operator guide (see Table 3.3) 

(SCIEX, 2014).  
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Table 3.3: MS parameters  

Parameter Value 
TEM 500 °C 
ISV 4500 V 
CUR 40 psi 
GS1 50 psi 
GS2 50 psi 

3.3.2.1 Tuning 

Tuning is done for the determination of ionisation mode, positive or negative, as well as the 

identification of the precursor and product ion of each metabolite with its corresponding DP and 

CE value. Each metabolite is tuned separately to ensure the correct product ion is identified. 

Different tuning approaches are available. With the use of the Analyst 1.6.3 software (AB Sciex 

Pte., Ltd., Darmstadt; Germany) it is possible to perform a compound optimisation tuning or 

manual tuning. The compound optimisation approach is very convenient since an automated 

tuning is done by identifying the most intense product ion of the specified precursor ion together 

with the optimal DP, CE and CXP values. 

An aliquot of the metabolite stock solution (2 mM) was diluted with an 80% acetonitrile + 0.1% 

formic acid solution to a detectable concentration. This dilution was then used with a direct 

infusion to perform the tuning. For metabolites with high sensitivity the compound optimisation 

approach was used and for metabolites with low sensitivity manual tuning was performed. The 

ionisation mode, precursor and product ion as well as the optimised parameters for each 

metabolite can be seen in Chapter 4, Table 4.3.  

3.3.2.2 MRM setup 

After the identification of each metabolite’s precursor and product ion a selected reaction 

monitoring (SRM) profile can be created for each metabolite with the optimised MS parameters. 

This allows the highest selectivity for each metabolite. An MRM scan can then be generated by 

combining all the SRM profiles of the metabolites (Griffiths et al., 2010). During this scan the 

analyser jumps from one profile to the other. A scheduled MRM can also be generated were the 

scan, for a specific metabolite or group of metabolites, is limited to an approximated retention 

time. This increases selectivity by reducing unnecessary dwell time (Griffiths et al., 2010). 

An SRM profile was generated for each metabolite by the data generated from tuning. A 

scheduled MRM was generated to be able to include all metabolites’ SRM profiles in one run. A 

positive-negative switching was also included since many metabolites were only detectable in a 

negative ionisation mode. The retention times of the metabolites can be seen in Table 4.3 and 

is based on the optimised HILIC method described in Chapter 4. 
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3.3.3 LC method development 

The LC method is a core part that determines the success of the method. With LC method 

development there are several factors that have to be optimised to achieve the best separation 

of the metabolites. Factors include selection of a column, mobile phase, buffer, pH, gradient 

slope, flowrate and injection volume.  

3.3.3.1 Column selection 

The selection of a column and mobile phase depend upon each other as well as the 

characteristics of the metabolites of interest. Knowledge of the characteristics of all metabolites 

of interest is vital prior to the selection of the column. Different columns are available to provide 

separation of different groups of metabolites. The selection of a column is usually based on the 

polarity of the metabolites. Hydrophobic metabolites are usually separated on an RP column 

and there are different RP columns available containing different stationary phase packing 

material (C1, C3, C4, C8, C18, phenyl, CN, TFA, etc.) (Sandi et al., 1997). Hydrophilic metabolites 

are usually separated on a NP column and a HILIC column is a popular column used for such 

metabolites. 

The metabolites of interest in this study have a broad range with regards to polarity. Since the 

aim of the study was to develop a method that would allow the analysis of all the metabolites of 

interest in one analysis, different columns (Phenomenex Kinetex C18, Atlantis T3, ProteCol C18 

and Luna NH2 (HILIC)) were tested to find an appropriate column to separate all the metabolites 

of interest. 

Reversed phased columns 

The first column tested was a RP C18 column (Phenomenex Kinetex C18, 2.1 mm x 30 mm, 5 

micron particle size). A short summary of the method used is as follow; a 4 min method using 

0.1% formic acid in water (solvent A) and 0.1% formic acid in ACN (solvent B) was used with a 

flow rate of 400 µL/min. The gradient was as follows: starting with a 95% solvent A, hold for 

0.1 min followed by a linear gradient of 95% - 5% solvent A for 2.5 min, followed by an isocratic 

gradient of 5% solvent A for 0.7 min before returning to starting conditions at 4 min. The polar 

metabolites were tested first to establish whether or not this column would be able to retain and 

separate these polar compounds. 3-Phospho-D-glycerate was not retained on the column, 

therefore reliable detection was not possible (see Figure 3.2). 
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Figure 3.2: Phenomenex Kinetex C18 chromatography of 3-Phospho-D-glycerate. A Phenomenex 

Kinetex C18, 2.1 mm x 30 mm, 5 micron particle size column was used with a 4 min method. Due to the 

high hydrophilicity of 3-phospho-D-glycerate retention on the RP column was not possible. The figure was 

generated using the Analyst 1.6.3 software. 

An Atlantis T3 column containing trifunctional C18 alkyl stationary phase (2.1 mm x 100 mm, 5 

micron particle size) was tested using 98% aqueous phase as starting condition. A short 

summary of the method used is as follow: a 10 min method using 0.1% formic acid in water 

(solvent A) and 0.1% formic acid in ACN (solvent B) with a flow rate of 400 µL/min. The gradient 

was as follows: starting with a 98% solvent A, hold for 0.5 min followed by a linear gradient of 

98% - 5% solvent A for 5 min, followed by an isocratic gradient of 5% solvent A for 1 min before 

returning to starting conditions at 10 min. Although retention of 2-phosphoglyceric acid was 

possible with this column, the retention is not optimal since the elution time is very early and 

peak shape does not show a Gaussian distribution. Obtaining any retention of 3-phospho-D-

glycerate was still unsuccessful (see Figure 3.3).  

Figure 3.3: Atlantis T3 C18 chromatography of 2-Phosphoglyceric and 3-Phospho-D-Glycerate. An 

Atlantis T3 column with trifunctional C18 alkyl stationary phase 2.1 mm x 100 mm, 5 micron particle size 

was used with a 10 min method. 2-Phosphoglyceric acid (blue chromatogram) was able to be retained 

with poor peak shape and 3-Phospho-D-Glycerate (red chromatogram) was not able to be retained with 

this column. The figure was generated using the Analyst 1.6.3 software.  

2-Phosphoglyceric acid 

3-Phospho-D-Glycerate ? 
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A ProteCol C18 Q103 (2.1 mm x 150 mm, 3 µm, 100 Å) was tested with an ion-paring reagent, 

tributylamine (TBA), as described by Luo et al. (2007). 3-Phospho-D-glycerate as well as 

another highly polar metabolite, L-serine-O-phosphate, were retained on this column (see 

Figure 3.4). Prolonged use of an ion-paring reagent has several drawbacks including the 

limitation of column use once an ion-paring reagent was used (Watson, 2017). A decline in 

detector sensitivity was seen with prolonged used of an ion-paring reagent, therefore alternative 

methods were investigated. 

Figure 3.4: ProteCol C18 Q103 chromatography of 3-Phospho-D-Glycerate and L-Serine-O-
Phosphate. A ProteCol C18 Q103 column (2.1 mm x 150 mm, 3 µm, 100 Å) was used with a 15 min 

method. 3-Phospho-D-glycerate (red chromatogram) and L-serine-O-phosphate (blue chromatogram) 

were retained by the column using the ion-paring reagent. The figure was generated using the Analyst 

1.6.3 software. 

Normal phased columns 

A Luna NH2 (HILIC) column (2 mm x 150 mm, 5 µm, 100 Å) was tested and retention of the 

polar metabolites was archived (see Figure 3.5). The method described by Bajad et al. (2006), 

with solvent A: 20 mM ammonium acetate + 20 mM ammonium hydroxide in 95:5 H2O: ACN, 

pH 9 and solvent B: ACN was tested and adjusted for optimisation. Different lengths of the Luna 

NH2 (HILIC) column were tested, 150 mm and 250 mm in length, to find the optimal separation 

of the metabolites with the shortest run time. The Luna NH2 150 mm (HILIC) column provided 

the best separation at a run time of 20 min.  

L-Serine-O-Phosphate 

3-Phospho-D-Glycerate 
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Figure 3.5: Luna NH2 (HILIC) chromatography of L-Serine-O-Phosphate, 3-Phospho-D-Glycerate 
and 2-Phosphoglyceric acid. A Luna NH2 column, 2 mm x 150 mm, 5 µm, 100 Å was used with a 

20 min method. L-Serine-O-Phosphate (blue chromatogram) was able to be retained by the column with a 

good peak shape. 3-Phospho-D-glycerate (red chromatogram) and 2-phosphoglyceric acid (red 

chromatogram) have the same transitions, but separation is still possible with this column. The figure was 

generated using the Analyst 1.6.3 software.   

3.3.3.2 Mobile phase selection  

The selection of the mobile phase is determined by the column since stability of the column 

determines the reproducibility of the method (Kirkwood et al., 2013; Wu, 2009). The pH of the 

mobile phase is an important factor determining the stability of the column, it is important to 

know the optimal working conditions and limitations of the column (Wu, 2009). The Luna NH2 

(HILIC) column has a wide range of pH stability (pH 1.5 till pH 11) (Phenomenex, 2015). The 

basic conditions described by Bajad et al. (2006) gave the desired retention and ionisation of 

the metabolites of interest, and was used in the final method.   

3.3.3.3 Gradient slope selection 

The slope of the gradient is important with regards to separation. Many of metabolites have 

isobaric masses and it is crucial to separate these metabolites for accurate identification. Some 

metabolite’s product ion is the precursor ion of a different metabolite and separation of these 

metabolites are also crucial for accurate identification. Not only is separation necessary but the 

peak shape as well, a Gaussian distribution peak shape is ideal and the gradient and flow rate 

plays an important role in achieving this. 

Metabolites of interest in this study that is isobaric in mass is; glucose and fructose, 3-Phospho-

D-Glycerate and 2-Phosphoglyceric acid, isoleucine and leucine and fumaric acid maleic acid. 

All these metabolites could be separated except fumaric acid and maleic acid (see Figure 3.6).  

2-Phosphoglyceric acid 

3-Phospho-D-Glycerate 

L-Serine-O-Phosphate 
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a b 

c d 

Figure 3.6: Chromatographic separation of a) Glucose and Fructose, b) 3-Phospho-D-Glycerate 
and 2-phosphoglyceric acid, c) Isoleucine and Leucine and d) Fumaric acid and Maleic. In graph a, 

b and c sufficient separation were achieved. In figure d no resolution was achieved for the separation of 

fumaric acid and maleic acid. These graphs were generated using the Analyst 1.6.3 software. 

Metabolites such as adenosine, ADP, ADP-Glucose, ADP-Ribose, ATP, AMP, cAMP and dAMP 

share the same product ion. This product ion is the precursor ion of adenine and therefore all 

these metabolites had to be separated from adenine (see Figure 3.7). During method 

development these analytes were able to be separated chromatographically (see Table 4.3 for 

retention time). 
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Figure 3.7: MS/MS Fragmentation patterns of ATP, ADP, AMP, cAMP, dAMP, ADP-Glucose, ADP-
Ribose. All the metabolites shared the same product ion the adenine precursor ion. This figure was 

generated by using the MarvinSketch 14.12.15.0 software. 

ATP 

ADP 

AMP 

cAMP 

dAMP 

       ADP-Glucose 

ADP-Ribose 

Adenine 

+H+ 
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3.3.4 Sample preparation 

Sample preparation is dependent on the approach and analytical platform and it is vital that the 

metabolic state of the biological system stay intact throughout the entire procedure. For a 

targeted metabolic profiling method, the sample preparation should be non-selective, simple 

and fast to ensure no metabolites of interest will be lost and/or degraded. It should also be 

reproducible and contain a quenching step to ensure the results represent the true metabolic 

state of the sample at the time of sampling (Vuckovic, 2012). 

For the optimisation of sample preparation for the developed method, different sample 

preparation approaches with regards to metabolite extraction was investigated. A literature 

investigation was done to determine which sample preparation approaches will accommodate 

the developed method the best (Dettmer et al., 2007; Gika & Theodoridis, 2011; Henion et al., 

1998; Vuckovic, 2012). Since the metabolites of interest have a broad range with regards to 

polarity, the best approach for metabolite extraction was protein precipitation. An acetonitrile 

and methanol mixture (1:1) was used as organic solvent in a 1:4 (v/v or w/v) ratio.  

3.3.5 Analytical analysis 

There are several factors that can influence the results produced during the analytical analysis 

of the samples. Some of these factors can introduce bias into the study, which will result in false 

differences recorded among experimental groups (Dunn et al., 2012). Instrumentation and 

chromatographical drift are among these factors and are the main causes of bias inducement. 

There are several procedures that can be followed to ensure the quality of the analysis and 

system is accurate (Dunn et al., 2012). Randomisation of the order of sample preparation and 

analysis is recommended: this ensures that no bias is introduced by the instrumentation and 

analysis. Another procedure that can be performed to evaluate the quality of the analysis is the 

use of quality control (QC) samples and spiked samples, where a QC sample is spiked with 

known concentration of the metabolites.  

3.3.5.1 Run sequence  

During this study, randomisation of the run order of the samples was done for all sample 

analysis. A Microsoft Excel randomisation equation was used to re-order the run sequence of 

the samples. QC samples was prepared and included in the run, at the beginning, middle and 

end of the analytical run. When sample size was large a QC sample was run after every 5 

samples. Five (5) QC samples were also run at the beginning of the analysis, before the 

samples were analysed, to ensure the system is calibrated. A QQC (spiked QC) sample was 

also prepared and run prior to the start of sample analysis, ensuring accurate peak 

identification. 



Chapter  3 

39 

3.3.5.2 Quality control samples 

During this study, QC samples were used for evaluation of the method, instrumentation and 

system. The following QC preparation procedure was used: QC samples were generated by 

pooling equal aliquots of all samples to be analysed, after which, several QC samples were 

prepared using the same sample preparation protocol for all samples. The multiple QC 

preparation provides the opportunity for the sample preparation procedure to be evaluated as 

well.  

A QQC sample was generated by spiking a known concentration of all metabolites of interest 

into a QC sample. Since the metabolites of interest are within a low mass range and impurities 

can have similar transitions, the correct peak identification is crucial. The QQC sample can be 

used to verify peak identification by evaluating the retention time of the metabolites within the 

QQC sample.  

3.3.6 Data handling 

Metabolomics studies usually produce a large amount of data. Care should be taken when 

handling such complex data sets, since the analysis and handling of the data can impact the 

quality of the identification and quantification of the results. Data handling can be further divided 

into data processing and data pre-treatment (Boccard et al., 2010). Since a targeted LC-MS/MS 

analytical platform was used during this study the data handling is simplified.  

3.3.6.1 Data processing 

Data processing was done using Analyst 1.6.3. A quantitation method was designed for peak 

identification, peak integration and IS normalisation. With low abundant metabolites care was 

taken with peak integration to obtain an accurate peak area. Normalisation is an important 

factor in data processing and internal standards were used for this purpose. The number of 

metabolites analysed in this method is large and it is not feasible to use an internal standard for 

each metabolite. Nineteen (19) ISs were chosen for normalisation and the selection of these ISs 

were based on their retention time. The ISs are well distributed throughout the entire run. 

Metabolites were grouped according to their retention time and normalised to an IS with a 

similar retention time (see Table 4.3).  

3.3.6.2 Data pre-treatment 

After the data has been extracted, data pre-treatment and data clean-up were performed to 

prepare the data in such a way that statistical analysis can be performed on the data. Data 

clean-up was performed by excluding all metabolites that are below the detection limit (see 

table 3.4 for limit of detection (LOD) values) and have less than 50% presence in all samples. 

The QC samples were then assessed and all metabolites that have a RSD value above 30% 
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were excluded, for it indicates that the metabolite was unstable during analysis and any 

differences between the experimental groups cannot be trusted. Furthermore a zero value 

replacement was performed by replacing zero values with the half of the LOD for the metabolite 

(Croghan & Egeghy, 2003). The data was then arranged in the format compatible with the Excel 

macro file that was used for statistical analysis.    

3.3.7 Statistical analysis 

Various software and online tools are available to perform data analysis. For this study an 

Excel-based statistical analysis method, which is freely available as a macro file (developed by 

Dr. Tsugawa, and available at http://prime.psc.riken.jp), was used. With this Excel-based 

method it is possible to generate statistical relevant data by using the multi t-test, graph 

analysis, PCA, correlation analysis, partial least square regression (PLS-R) and partial least 

square discrimination analysis (PLS-DA) (Putri & Fukusaki, 2014). 

3.4 Quality assessment 

The validation of any bioanalysis method is mandatory to ensure reliable results are provided in 

routine application. Method validation is responsible for demonstrating that a biological method 

can accurately quantify analytes within a specific matrix. Although there are no guidelines for 

validating metabolomics-based studies, the “Guideline on bioanalytical method validation” by 

the European Medicines Agency (EMA) was used for assessing the quality of all aspects of the 

method by assessing the parameters suggested by the EMA. These parameters include range 

and linearity, limits of quantification and detection, accuracy, precision and carry-over (González 

et al., 2014; Peters et al., 2007; Rozet et al., 2011).  

The aim of this study was to establish a standardised LC-MS/MS method for targeted metabolic 

profiling of biological matrices, to be used for metabolic profiling of complex diseases such as 

IPF. The developed method will only be used to identify differences in metabolite abundances 

between experimental groups. Quantification of the identified metabolites is out of the scope for 

this study, but to ensure the method is reliable, reproducible and robust the parameters above 

have been tested to evaluate the quality of the method.  

3.4.1 Range and linearity 

Although a literature investigation was done to define the average concentration of all the 

metabolites in lung matrix, it was not possible to define the average concentration for each 

metabolite due to the lack of information available on the subject and not all these metabolites 

have been quantified in animal lung tissue. Therefore, a preliminary analysis was done prior to 

method validation to obtain observed concentrations of the metabolites. The metabolites’ 
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abundance differed substantially as well as instrumentation sensitivity towards each metabolite. 

Due to this substantial difference among the metabolites of interest, a detection range and 

linear range was determined for each metabolite (Table 3.4). The detection range is defined by 

the LOD and upper limit of quantification (ULOQ). The linear range is defined by the lower limit 

of quantification (LLOQ) and ULOQ. This was created by generating an area ratio between the 

metabolite peak area to the assigned IS area ratio. Linearity of each metabolite was assessed 

by the correlation coefficient (R2) obtained by plotting the area ratio of the analyte and IS to the 

concentration of each calibration point, normalised to the IS concentration. An example of this 

plotting, the calibration curve of adenosine, can be seen in Figure 3.8 and a summary of the R2 

values for each metabolite can be seen in Table 3.4 .  

Figure 3.8: A double log plotted calibration curve of adenosine. Nine calibration points were included 

in the analysis and each concentration was analysed in triplicate with a standard deviation below 10%. 

3.4.2 Limits of detection and quantification 

The LOD refers to the lowest concentration value of the metabolites that can be detected, not 

necessarily quantified, with acceptable accuracy and precision. The LLOQ and ULOQ refer to 

the lowest and highest concentration values of a metabolite that can be used for quantification 

purposes. There are several approaches that can be followed for the determination of the LOD, 

LLOQ and ULOQ. These approaches include methodological approach based on standard 

deviation at the LLOQ, this is in turn based on the signal to noise (S/N) ratio approach, linear 

regression, standard deviation of the response and the slope, etc. (González et al., 2014; 

Peters et al., 2007; Rozet et al., 2011).  
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3.4.2.1 Calculation of LOD, LLOQ, ULOQ 

Due to the low molecular masses of the metabolites of interest some impurities may have the 

same transition as the metabolites. This can increase the signal to noise in the detection of 

some analytes. To ensure an appropriate LOD and LLOQ is achieved the standard deviation of 

response and slope approach was used. The formulas used to calculate the LOD and LLOQ 

were Equation 3.1 and Equation 3.2 respectively, where σ represents the standard deviation of 

the response and S represents the slope of the calibration curve (Rozet et al., 2011). With 

regards to the LLOQ, the calculated value was visually compared with the calibration curves to 

ensure the value is within the linear regression of the calibration curve. The ULOQ of each 

metabolite was determined by the highest concentration value within the linear regression of the 

calibration range. The final LOD, LLOQ and ULOQ values of all metabolites are summarised in 

Table 3.4. 

Equation 3.1: Limit of detection 

LOD =  
3σ
𝑆𝑆

 

Where σ represents the standard deviation of the response and S represents the slope of the 

calibration curve. 

Equation 3.2: Lower limit of quantification 

LLOQ =  
10σ
𝑆𝑆

 

Where σ represents the standard deviation of the response and S represents the slope of the 

calibration curve.  
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Table 3.4: Summary of detection and quantitation limits, linear ranges and corresponding 
correlation coefficients of metabolites of interest   

Group Metabolite LOD 
(ng/mL) 

LLOQ 
(ng/mL) 

ULOQ 
(ng/mL) 

Linear Range 
(ng/mL) R2 

Glycolysis 
 

Glucose 180 900 3601 900 – 3601 0.993 
Fructose-6-Phosphate 203 406 26003 406– 26003 0.998 
3-Phospho-D-Glycerate 186 372 3720 372 – 3720 0.997 
2-Phosphoglyceric acid 19 37 1860 37 – 1860 0.997 
Phosphoenolpyruvic acid 168 336 8399 336 – 8399 0.988 
Pyruvate 550 1100 8802 1100 – 8802 0.992 

TCA 
 

Oxaloacetic acid 6600 13201 26401 13201 – 26401 0.987 
Citric acid 300 601 9601 601 – 9601 0.997 
cis-Aconitic acid 8701 17402 34803 17402 – 34803 0.976 
2-Ketoglutaric acid 913 1825 29204 1825 – 29204 0.993 
Succinic acid 738 1475 2320 1475 – 2320 0.998 
Fumaric acid 232 580 2320 58 – 2320 0.999 
Malic acid 420 838 13402 838 – 13402 0.990 
Glyoxylic acid 463 925 3700 3700 – 925 0.998 
Fructose 180 360 3601 360 – 3601 0.999 
Lactic acid 4502 9003 180062 9003 – 180062 0.993 

Serine bio-
synthesis 
 

3-Hydroxybutyrate 52 104 2081 104 – 2081 0.998 
3-Phosphonooxypyruvate 4599 9199 36795 9199 – 36795 0.997 
L-Serine-O-Phosphate 93 185 3700 185 – 3700 0.992 
Serine 82 164 10504 164 – 10504 0.998 
Glycine 60 150 7503 150 – 7503 0.993 

Amino 
acids 

 

Acetylalanine 13 26 2621 26 – 261 0.998 
Alanine 1113 2226 8905 2226 – 8905 0.984 
Arginine 136 272 17411 272 – 17411 0.997 
Asparagine 52 103 26411 103 – 26411 0.999 
Aspartic acid 3326 6652 26607 6652 – 26607 0.988 
Citrulline 69 137 17510 137 – 17510 0.997 
Cysteine 379 756 12102 756 – 12102 0.999 
Cystine 469 939 120010 939 – 120010 0.997 
Glutamic acid 58 115 14705 115 – 14705 0.997 
Glutamine 86 171 43821 171 – 43821 0.998 
Glutathione Oxidized 239 1224 61215 1224 – 61215 0.991 
Glutathione Reduced 307 614 3071 614 – 3071 0.998 
Histidine 121 242 15507 242 – 1507 0.993 
Hydroxyproline 204 410 13106 410 – 13106 0.995 
Isoleucine 26 51 13109 51 – 13109 0.999 
Leucine 102 205 13109 205 – 13109 0.999 
Lysine 23 457 14611 457 – 14611 0.998 
Phenylalanine 83 165 3302 165 – 3302 0.998 
Proline 230 575 2301 575 – 2301 0.995 
Taurine 1950 3913 250028 3913 – 250028 0.998 
Threonine 93 186 11906 186 – 11906 0.996 
Tryptophan 41 102 4082 102 – 4082 0.998 
Tyrosine 141 283 18107 283 – 18107 0.998 
Valine 59 117 2342 117 – 2342 0.999 

Methionine 
cycle 
 

Methionine 30 75 2981 75 – 2981 0.999 
SAM 200 399 7983 399 – 7983 0.995 
SAH 77 192 7682 192 – 7682 0.996 
Homocysteine 423 844 27007 844 – 27007 0.999 
Creatine 6.6 13.1 2621.4 13.1 – 2621.4 0.996 
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Table 3.4 (continued): Summary of detection and quantitation limits, linear ranges and 
corresponding correlation coefficients of metabolites of interest  

Group Metabolite LOD 
(ng/mL) 

LLOQ 
(ng/mL) 

ULOQ 
(ng/mL) 

Linear Range 
(ng/mL) R2 

Methionine 
cycle 

Creatinine 6 11 2261 11 – 2261 0.998 
Folic acid 22 44 8823 44 – 8823 0.998 

 Tetrahydrofolate 5566 11132 44526 11132 – 44526 0.998 
Coenzyme 
 

Acetyl-CoA 405 809 16182 809 – 16182 0.997 
CoA 767 1534 15342 1534 – 15342 0.999 
FAD 157 393 15703 393 – 15703 0.991 
NAD 133 332 13262 332 – 13262 0.991 
NADP 149 372 14862 372 – 14862 0.995 
NADH 1331 3327 13309 3327 – 13309 0.998 
NADPH 4657 9314 37255 9314 – 37255 0.995 

Nucleobase 
 

Adenine 7 14 2701 14 – 2701 0.999 
Guanine 30 76 3021 76 – 3021 0.998 
Hypoxanthine 27 68 2721 68 – 2721 0.999 
Thymine 6 25 2521 25 – 2521 0.999 
Uracil 6 11 11203 11 – 11203 0.999 
Cytosine 5.6 11 555 11 – 555 0.999 
Uridine 12 24 4881 24 – 4881 0.999 
Xanthine 237 476 15203 476 – 15203 0.995 

Nucleoside 
 

Adenosine 1 13 5342 13 – 5342 0.999 
Guanosine 14 28 5662 28 – 5662 0.999 
Inosine 27 105 26808 105 – 26808 0.998 

Nucleotide 
 

ADP 427 854 8540 854 – 8541 0.999 
GDP 222 443 8861 443 – 8861 0.994 
UDP 202 404 8080 404 – 8080 0.997 

Nucleotide 
derivative 

ADP-Glucose 295 589 11782 589 – 11782 0.989 
ADP-Ribose 295 589 11782 589 – 11782 0.989 

Nucleotide 
 

ATP 101 254 10140 254 – 10140 0.986 
GTP 6537 13075 52299 13075 – 52299 0.998 
AMP 347 694 6941 694 – 6941 0.996 
CMP 162 323 6461 323 – 6461 0.998 
GMP 73 182 7261 182 – 7261 0.997 
IMP 348 696 6961 696 – 6961 0.996 
UMP 65 162 6481 162 – 6481 0.999 
cAMP 33 66 32905 66 – 32905 0.999 
cGMP 35 69 6901 69 – 6901 0.999 
dAMP 17 33 3311 33 – 3311 0.999 
dCMP 61 154 6141 154 – 6141 0.992 
dTMP 32 64 6441 64 – 6441 0.996 

Other 
 
 

Carnitine 16 32 16111 32 – 16111 0.998 
Orotic acid 4 8 3120 8 – 3120 0.999 
Salicylic acid 69 138 2761 138 – 2761 0.992 
Ascorbic acid 3521 8802 35206 8802 – 35206 0.978 
Ketoisovalerate 58 116 2321 116 – 2321 0.997 
Kynurenine 104 208 4164 208 – 4164 0.998 
3-OH-Kynurenine 22 45 4482 45 – 4482 0.999 
Quinolinic acid 33 84 3340 84 – 3340 0.999 
Kynurenic acid 95 189 3781 189 – 3781 0.998 
Pantothenic acid 22 44 4382 44 – 4382 0.999 
Maleic acid 232 580 2320 580 – 2320 0.999 
Ketoleucine 2029 4071 32515 4071 – 32515 0.988 
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3.4.3 Accuracy and Precision 

Accuracy and precision assessments ensure that the data generated by the developed method 

is correct and reproducible. Accuracy describes the closeness of the measured concentration of 

an analyte within the matrix and the true concentration of the analyte within the matrix. Precision 

describes the closeness of the multiple measurements of samples that have the same 

concentration. Inter-day and intra-day accuracy and precision should be determined to evaluate 

the stability of the method.  

For the assessment of accuracy and precision of the method a stock solution was prepared of 

all metabolites with a concentration 10 times higher than the highest QC concentration. The 

stock solution was stored at -20°C. This stock solution was used to generate a high, middle and 

low QC in acetonitrile containing the different ISs. For 3 consecutive days, 3 samples were 

generated for the high-, middle- and low-QC. Accuracy was determined from the data generated 

by an inter- and intra-day assay, using Equation 3.3. Precision of the inter- and intra-day data 

was determined as a percentage (RSD, %), using Equation 3.4. The criteria for the inter- and 

intra-day accuracy are within 15% of the nominal concentration (100 ± 15%) for all QC samples 

(González et al., 2014): the criteria for inter- and intra-day precision are below a 15% RSD 

margin (Peters et al., 2007). The results of the inter- and intra-day accuracy and precision 

assessment are summarised in Table 3.5.  

During the evaluation of the inter- and intra-day accuracy and precision, 33 metabolites did not 

fit the criteria for inter-day accuracy and 40 metabolites did not fit the criteria for intra-day 

accuracy. With regards to precision, 24 metabolites did not fit the criteria set for inter- and intra-

day precision. The metabolites that did not fit the evaluation criteria were flagged but were still 

included in the analysis during this study. A quality control procedure was implemented for 

evaluation of the analysis and to ensure the data that is generated by this method is reliable. 

The quality control procedure is described in Chapter 4.         

Equation 3.3: Accuracy (%) 

Accuracy =  
mean observed concentration

nominal concentration
× 100% 

 

Equation 3.4: Precision (RSD, %) 

RSD =  
standard deviation

mean
 × 100% 
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Table 3.5: Summary of the inter-day and intra-day accuracy and precision of the metabolites of interest  

Metabolite 

Low QC  Medium QC  High QC 

Conc 
(ng/mL) 

Inter-day  Intra-day 
Conc 

(ng/mL) 

Inter-day  Intra-day 
Conc 

(ng/mL) 

Inter-day  Intra-day 
RSD

% 
Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

Glucose 346 20 73 23 85 693 35 77 35 77 1385 11 78 5 107 
Fructose 6-Phosphate 2500 8 96 5 118 5001 4 88 10 88 10001 8 98 4 89 
3-phospho-D-glycerate 358 20 120 18 118 715 30 115 30 112 1431 16 120 17 108 
2-Phosphoglyceric acid 358 29 87 35 94 715 15 84 10 105 1431 21 110 21 110 
Phosphoenolpyruvic acid 808 35 71 23 75 1615 28 69 31 69 3230 30 84 6 111 
Pyruvate 846 27 71 17 73 1693 26 76 18 129 6770 31 112 31 112 
Oxaloacetic acid 2539 21 75 20 95 5077 19 69 31 81 10154 26 70 21 120 
Citric acid 923 6 70 4 97 1846 3 84 6 80 3693 2 79 9 87 
cis-Aconitic acid 3346 20 70 6 94 6693 10 99 25 123 13386 8 82 30 129 
2-Ketoglutaric acid 2808 13 95 3 102 5616 28 73 28 73 11232 21 69 6 100 
Succinic acid 2270 8 110 3 138 4539 4 107 4 107 9079 16 88 16 86 
Fumaric acid 223 21 79 20 90 446 26 98 28 98 892 44 97 27 95 
Malic acid 1289 12 102 6 101 2577 16 88 16 88 5155 37 71 37 71 
Glyoxylic acid 356 6 129 7 132 712 10 90 15 90 1423 24 122 19 75 
Fructose 346 5 74 17 79 693 9 76 9 76 1385 11 83 8 110 
Lactic acid 17314 11 91 14 126 34627 18 91 35 91 69255 29 80 17 99 
3-Hydroxybutyrate 200 12 106 20 94 400 15 91 15 91 800 21 84 10 100 
3-Phosphonooxypyruvate 3538 11 122 7 122 7076 22 86 22 86 14152 17 79 24 100 
L-Serine-O-Phosphate 712 7 98 7 98 1423 4 107 2 109 2846 16 79 16 79 
Serine 1010 25 125 33 135 2020 29 122 15 128 4040 12 118 16 101 
Glycine 721 7 71 4 72 1443 8 77 10 75 2886 8 75 3 73 
Acetylalanine 504 3 117 3 117 1008 4 85 5 86 2016 8 78 8 78 
Alanine 856 7 79 7 95 1712 3 90 3 90 3425 11 84 7 100 
Arginine 1674 21 103 8 101 3348 17 121 17 121 6697 12 99 6 103 
Asparagine 2539 9 83 16 70 5079 2 91 2 91 10158 5 92 6 106 
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Table 3.5 (continued): Summary of the inter-day and intra-day accuracy and precision of the metabolites of interest 

Metabolite 

Low QC  Medium QC  High QC 

Conc 
(ng/mL) 

Inter-day  Intra-day 
Conc 

(ng/mL) 

Inter-day  Intra-day 
Conc 

(ng/mL) 

Inter-day  Intra-day 
RSD

% 
Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

Aspartic acid 2558 29 112 20 120 5117 4 80 4 68 10234 9 79 3 114 
Citrulline 1684 13 107 14 116 3367 13 95 13 95 6734 10 86 7 89 
Cysteine 1164 13 87 5 107 2327 7 90 7 90 4655 9 89 8 96 
Cystine 11539 9 70 14 80 23079 8 72 8 72 46158 6 91 6 107 
Glutamic acid 1414 11 95 16 103 2828 6 81 6 81 5656 7 97 5 119 
Glutamine 4214 5 81 8 90 8427 6 86 6 86 16854 8 84 5 99 
Glutathione Oxidized 5886 10 98 6 136 11772 7 98 7 98 23544 13 92 11 92 
Glutathione Reduced 295 1 125 1 134 591 3 97 3 97 1181 7 125 7 70 
Histidine 2982 5 122 13 83 5964 13 83 30 86 11928 33 75 30 129 
Hydroxyproline 1260 17 73 34 69 2520 4 88 4 88 5041 6 86 3 104 
Isoleucine 1261 5 114 4 111 2521 5 76 5 76 5042 4 107 3 116 
Leucine 1261 6 80 7 86 2521 2 89 2 89 5042 5 91 3 103 
Lysine 1405 7 80 12 86 2810 2 89 2 89 5619 5 92 4 105 
Phenylalanine 32 9 92 14 64 63 17 86 10 70 127 20 74 7 109 
Proline 221 18 81 22 80 443 4 89 4 89 885 8 95 6 105 
Taurine 24041 11 103 14 88 48082 5 96 5 96 96165 8 87 9 97 
Threonine 1145 11 82 10 79 2290 15 83 15 83 4579 11 90 12 108 
Tryptophan 392 16 81 5 114 785 9 90 9 90 1570 11 91 3 105 
Tyrosine 1741 9 80 12 76 3482 4 87 4 87 6964 6 89 8 106 
Valine 225 3 76 7 71 450 6 78 6 102 901 10 97 14 119 
Methionine 287 29 92 35 80 573 9 91 9 91 1147 12 91 8 104 
SAM 768 9 74 6 71 1535 4 82 4 89 3070 7 79 10 102 
SAH 739 6 85 3 75 1477 4 89 10 108 2955 6 87 20 75 
Homocysteine 2597 10 124 8 135 5194 12 108 2 88 10387 11 81 3 110 
Creatine 252 7 86 7 96 504 2 88 3 92 1008 3 96 5 99 
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Table 3.5 (continued): Summary of the inter-day and intra-day accuracy and precision of the metabolites of interest 

Metabolite 

Low QC  Medium QC  High QC 

Conc 
(ng/mL) 

Inter-day  Intra-day 
Conc 

(ng/mL) 

Inter-day  Intra-day 
Conc 

(ng/mL) 

Inter-day  Intra-day 
RSD

% 
Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

Creatinine 217 4 88 3 77 435 3 92 1 90 870 5 93 5 103 
Folic acid 848 2 84 15 73 1697 1 90 2 99 3393 4 90 5 109 
Tetrahydrofolate 4281 6 130 15 128 8563 2 99 6 103 17125 4 103 10 93 
Acetyl-CoA 1556 6 108 7 96 3112 6 103 10 90 6224 15 83 4 116 
CoA 1475 25 94 17 106 2950 14 89 25 130 5901 26 88 22 97 
FAD 1510 30 128 9 131 3020 25 126 9 78 6040 20 110 26 100 
NAD 1275 12 103 23 108 2550 9 78 18 70 5101 15 72 25 100 
NADP 1429 14 95 3 99 2858 18 70 18 86 5716 18 73 38 100 
NADH 2559 28 97 26 70 5119 18 86 25 69 10238 30 74 29 76 
NADPH 3582 24 101 18 108 7164 21 113 20 98 14329 14 104 26 96 
Adenine 260 2 75 5 85 519 8 72 2 82 1039 6 70 2 106 
Guanine 290 4 72 8 87 581 2 82 2 93 1162 7 84 5 95 
Hypoxanthine 262 5 96 16 79 523 2 93 5 96 1046 3 84 9 98 
Thymine 242 10 95 6 85 485 5 96 2 94 970 7 86 4 105 
Uracil 1077 3 85 4 80 2154 2 94 2 93 4309 3 98 5 108 
Cytosine 53 4 77 4 109 107 2 93 2 87 213 3 99 2 101 
Uridine 469 3 94 10 91 939 2 87 3 81 1877 7 82 4 103 
Xanthine 1462 6 80 34 114 2924 3 81 28 124 5847 7 83 29 127 
Adenosine 514 6 90 8 81 1027 6 94 2 82 2055 2 89 3 109 
Guanosine 544 4 89 8 91 1089 2 82 3 93 2178 8 86 9 101 
Inosine 2578 5 90 8 127 5155 3 93 9 72 10311 6 88 14 115 
ADP 821 23 126 18 138 1642 9 72 26 129 3285 9 103 32 128 
GDP 852 28 103 24 96 1704 21 91 10 69 3408 20 72 13 99 
UDP 777 5 95 2 99 1554 6 106 10 120 3108 17 73 14 104 
ADP-Glucose 1133 27 84 31 73 2266 28 102 36 69 4531 25 92 29 100 
ADP-Ribose 1075 28 89 38 125 2150 36 114 29 122 4301 26 72 28 128 
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Table 3.5 (continued): Summary of the inter-day and intra-day accuracy and precision of the metabolites of interest  

Metabolite 

Low QC  Medium QC  High QC 

Conc 
(ng/mL) 

Inter-day  Intra-day 
Conc 

(ng/mL) 

Inter-day  Intra-day 
Conc 

(ng/mL) 

Inter-day  Intra-day 
RSD

% 
Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

RSD
% 

Acc 
(%) 

ATP 975 24 72 28 69 1950 24 70 27 109 3900 21 69 22 74 
GTP 5029 6 126 9 131 10058 12 130 20 125 20115 7 128 21 129 
AMP 667 4 124 7 93 1335 8 104 5 102 2670 8 113 2 110 
CMP 1243 3 83 5 98 2485 11 84 5 108 4970 15 79 15 79 
GMP 698 16 95 22 88 1396 5 98 9 85 2793 6 107 2 116 
IMP 669 19 71 18 108 1339 9 85 10 106 2677 8 102 4 102 
UMP 1246 10 106 9 94 2493 3 109 2 114 4985 15 84 15 84 
cAMP 3164 22 95 33 104 6328 9 94 17 70 12656 4 110 10 127 
cGMP 664 5 87 6 92 1327 17 79 3 83 2654 14 97 4 106 
dAMP 637 3 83 6 106 1273 7 86 5 104 2547 13 76 13 76 
dCMP 590 9 94 11 94 1181 6 106 15 98 2362 6 107 7 104 
dTMP 619 20 103 18 111 1239 21 89 6 103 2477 19 120 5 108 
Carnitine 1549 12 96 9 75 3098 6 103 3 91 6196 6 110 9 100 
Orotic acid 300 5 86 3 97 600 3 91 8 81 1200 6 85 5 103 
Salicylic acid 265 7 74 17 73 531 8 81 3 86 1062 11 72 1 104 
Ascorbic acid 3385 11 72 20 94 6770 3 86 26 69 27082 20 111 20 111 
Ketoisovalerate 223 12 73 16 88 446 14 74 4 85 893 17 116 5 100 
Kynurenine 400 17 79 5 89 801 4 85 3 88 1602 9 82 4 104 
3-OH-Kynurenine 431 6 82 4 81 862 3 88 10 74 1724 3 92 4 105 
Quinolinic acid 321 5 69 9 75 642 11 74 15 74 1285 3 104 6 105 
Kynurenic acid 364 29 105 39 96 727 24 74 12 87 1454 28 79 9 106 
Pantothenic acid 421 12 73 10 69 843 12 87 3 89 1685 7 99 3 111 
Maleic acid 223 21 79 20 90 446 26 98 28 98 892 44 97 27 95 
Ketoleucine 3126 7 72 15 72 6253 3 89 10 80 12506 4 102 3 98 

*Concentration (Conc) and Accuracy (Acc) 
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3.4.4 Carryover 

Carryover is a phenomenon caused by residual amounts of analytes present in the analytical 

instrument after an injection. This can affect the accuracy and precision of results (González et 

al., 2014). During the validation of the analytical method the carryover was assessed by 

injecting a blank sample (only ACN) after a high calibration sample throughout the entire 

validation process. The detectability of the metabolites in the blank samples was evaluated by 

comparing the detectability to the LOD of the metabolites. Most metabolites were undetectable 

in the blank samples. Although the detection of some metabolites is highly sensitive and 

requires a broad calibration range, a residual amount was detectible in some of the blank 

samples, but it was below the LOD of the metabolite.  

3.5 Results and discussion  

Since the aim of the study was to establish a standardised LC-MS/MS method for targeted 

metabolic profiling of biological matrices, different biological matrices were analysed to evaluate 

the compatibility of the method. During the evaluation of the compatibility of the method for 

various biological matrices the detectability of the identified metabolites, listed in Table 3.1, were 

assessed by implementing the developed targeted metabolic profiling method. The following 

matrices were used for the evaluation of the compatibility of the method: lung, liver, plasma, 

hypothalamus and liver lysate. One tissue sample per animal was available and originated from 

already euthanized animals. The tissue samples were collected from storage at the Drug 

Discovery Sciences Department of Boehringer Ingelheim, Germany. Three lung, liver, 

hypothalamus, liver lysate and plasma samples were used for the compatibility test and these 

samples originated from three different healthy C57BL/6J mice. The use of these samples were 

ethically approved by the Regierungspräsidium in Tübingen, Germany (TVV 12-012) and 

additional ethical approval for the use of the matrices was obtained from the Ethics committee 

(AnimCare) of the North-West University (NWU-00275-17-A5). Fibroblasts samples were also 

analysed to evaluate the compatibility of the method. Three fibroblast samples from normal 

human lung fibroblasts, obtained from healthy, non-smoking donors (Lonza Rockland Inc, 

Rockland, ME, USA) were collected from the Immunology and Respiratory department at 

Boehringer Ingelheim, Germany for the analysis. A summary of the detectability of the different 

metabolites within the various matrices are given in Table 3.6. All metabolites identified in the 

various matrices were detectible above their respective LODs after the analysis of the three 

samples per matrix. 
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Table 3.6: Summary of the detectability of the metabolites of interest in various matrices  

Group 
 

Metabolite 
Matrix (n=3) 

Lung Fibroblast Liver Liver 
lysate Plasma Hypo-

thalamus 

Glycolysis 
 

Glucose X X X X X X 
Fructose 6-Phosphate  X X X  X 
3-phospho-D-glycerate X X X    
2-Phosphoglyceric acid X  X    
Phosphoenolpyruvic acid X   X   
Pyruvate       

TCA 
 

Oxaloacetic acid X   X   
Citric acid       
cis-Aconitic acid X   X   
2-Ketoglutaric acid X X X  X  
Succinic acid      X 
Fumaric acid X X  X X X 
Malic acid X     X 
Glyoxylic acid X X X X  X 
Fructose X X X X X X 
Lactic acid X X X X X X 

Serine bio-
synthesis 
 

3-Hydroxybutyrate  X   X X 
3-Phosphonooxypyruvate       
L-Serine-O-Phosphate X  X    
Serine X X X X X X 
Glycine X X X X X X 

Amino 
acids 

 

Acetylalanine X  X X X X 
Alanine X X X X X X 
Arginine X X X  X X 
Asparagine X X X X X X 
Aspartic acid X  X X   
Citrulline X  X X X  
Cysteine       
Cystine       
Glutamic acid X X X X X X 
Glutamine X X X X X X 
Glutathione Oxidized X X X X  X 
Glutathione Reduced X X X X  X 
Histidine X X X X X X 
Hydroxyproline     X  
Isoleucine X X X X X X 
Leucine X X X X X X 
Lysine X X X X X  
Phenylalanine X X X X X X 
Proline X X X X X X 
Taurine X X X X X X 
Threonine X X X X X X 
Tryptophan X X X X X X 
Tyrosine X X X X X X 
Valine X X X X X X 

Methionine 
cycle 
 

Methionine X X X X X X 
SAM X    X X 
SAH X     X 
Homocysteine X    X X 
Creatine X X   X X 
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Table 3.6 (continued): Summary of the detectability of the metabolites of interest in 
various matrices.  

Group 
 

Metabolite 
Matrix (n=3) 

Lung Fibroblast Liver Liver 
lysate Plasma Hypo-

thalamus 

Methionine 
cycle 
 

Creatinine X X   X X 
Folic acid X X     
Tetrahydrofolate       

Coenzyme 
 

Acetyl-CoA  X    X 
CoA  X  X  X 
FAD X X X X  X 
NAD  X X X  X 
NADP  X X X   
NADH  X X   X 
NADPH      X 

Nucleobase 
 

Adenine X X X X X X 
Guanine X X X X X  
Hypoxanthine X X X X  X 
Thymine X  X X  X 
Uracil X X  X X X 
Cytosine X  X X X X 
Uridine X X X X  X 
Xanthine X X X X X X 

Nucleoside 
 

Adenosine X X X X X X 
Guanosine X X X X X X 
Inosine X X X X  X 

Nucleotide 
 

ADP X X X   X 
GDP  X X X  X 
UDP  X X X  X 

Nucleotide 
derivative 

ADP-Glucose   X    
ADP-Ribose   X    

Nucleotide 
 

ATP X X X X  X 
GTP       
AMP X X X X  X 
CMP  X X X  X 
GMP X X X X  X 
IMP X X X X  X 
UMP X X X X  X 
cAMP       
cGMP    X   
dAMP  X X X   
dCMP  X     
dTMP  X  X   

Other 
 
 

Carnitine X X X X X X 
Orotic acid X   X X X 
Salicylic acid X   X X X 
Ascorbic acid       
Ketoisovalerate     X  
Kynurenine  X     
3-OH-Kynurenine       
Quinolinic acid       
Kynurenic acid       
Pantothenic acid X X X X X X 
Maleic acid X X  X X X 
Ketoleucine       
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The comparison of the detectability of the metabolites in the various matrices showed that most 

of the metabolites can be detected in all the matrices that were tested but a few metabolites still 

could not be detected in all the matrices. The plasma analysis yielded the lowest number of 

detectible metabolites. Most of the metabolites not detectible in plasma were intracellular 

metabolites from the glycolysis pathway and TCA cycle. The endogenous levels of the different 

metabolites differ greatly between the different matrices and for some matrices the endogenous 

levels were found to be below the LOD of this method. Some intermediate metabolites such as 

kynurenine, 3-hydroxykynurenine and quinolinic acid were not detectible in any of the analysed 

matrices. This may be due to rapid downstream metabolism of the metabolites (Fuertig et al., 

2016) and therefore detectible concentrations are low. Cysteine and cystine were also not 

detected in any of the matrices. It is known that these two metabolites are prone to oxidation 

(Johnson et al., 2008) which may be the reason why it is not detectible without a reduction 

agent present in the sample preparation. 

3.6 Conclusion  

In this chapter the method development of a standardised LC-MS/MS method for targeted 

metabolic profiling of biological matrices was described. After identifying the metabolites to be 

included in the targeted approach, all parameters of the MS were optimised for each metabolite 

to ensure the highest sensitivity is achieved for the detection of the metabolites. Once both the 

sample preparation procedure that is non-selective and the HILIC LC separation method were 

developed and optimised, the established workflow was evaluated by performing a quality 

assessment.  

During the quality assessment the detectible range and linearity of each metabolite included in 

the targeted metabolic profiling method were determined, as well as the limits of quantification 

and detection for each metabolite. The established targeted metabolic profiling method was also 

validated by performing an inter- and intra-day accuracy and precision analysis. Some 

metabolites did not fit the evaluation criteria for the inter- and intra-day accuracy and precision. 

These metabolites include homocysteine and the reduced form of glutathione, which is prone to 

oxidation and consequently interfere with accuracy analysis. To ensure that the method can be 

used to generate reliable results a quality control procedure was implemented for the evaluation 

of the analysis. This quality control procedure included the analysis of a QC sample, with known 

concentrations of all the metabolites, at the beginning, middle and end of the analysis. The 

multiple analysis of the QC sample was then used to evaluate the intra-day accuracy and 

precision and if a metabolite did not fit the quality control criteria, the results of this metabolite 

were excluded from the data set. An in-depth description of the quality control procedure 

together with the quality control criteria is described in Chapter 4.   
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As part of the quality assessment of the developed method, various matrices from different 

origin, mouse and human, were tested to determine the compatibility of the method. With the 

use of the developed method the baseline levels of most of the metabolites could be detected 

for the healthy C57BL/6J mouse model in the different tissue matrices. The final description of 

the optimised targeted metabolic profiling method is described in Chapter 4. The method was 

used to generate a metabolic profile for a fibrotic lung animal model, which is described in 

Chapter 5 in a full length article prepared for submission to the Respiratory Medicine journal. 
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CHAPTER 4: LC-MS/MS METHOD FOR 
TARGETED METABOLIC PROFILING 

4.1 Metabolites of interest 

The metabolites listed in Table 3.1 are all compatible in terms of detectability with the developed 

method. The metabolites are products, intermediates and cofactors present in the central 

carbon system, glycolysis, TCA cycle, the serine biosynthesis pathway as well as all amino 

acids present in human metabolic pathways. A visual representation of the compatible 

metabolites (highlighted in green) can be seen in Figure 4.1. 

Figure 4.1: Visual representation of metabolites compatible for detection by the developed 
method.  All metabolites compatible with the method is highlighted in green. This diagram was generated 

using information obtained from the Kyoto Encyclopaedia of Genes and Genomes data base (Genome.jp, 

2017).  
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4.2 MS parameters 

The precursor and product ion of each metabolite was determined with optimal ionisation 

conditions including the optimal DP and CE values (see Table 4.3). The optimal MS parameters 

for the internal standards used, were also determined (see Table 4.4). Other MS parameters 

that were kept at a fixed value can be seen in Table 4.1.  

Table 4.1: Fixed MS parameters  

Parameter Value 

TEM 500 °C 

ISV 4500 V 

CUR 40 psi 

GS1 50 psi 

GS2 50 psi 

4.3 LC conditions 

A 20 min HILIC method was developed using the Luna NH2 column (2 mm x 150 mm, 5 µm, 

100 Å). Solvent A consisted of 20 mM ammonium acetate + 20 mM ammonium hydroxide in 

95:5 H2O: ACN ratio with a pH 9 and solvent B consisted of only ACN. A 0.4 mL/min flowrate 

was used together with the gradient described in Table 4.2. 

Table 4.2: Gradient used for the 20 min HILIC method 

Time (min) Solvent A (%) Solvent B (%) 

0 15 85 

1.5 15 85 

14 98 2 

17 98 2 

18.5 15 85 

20 15 85 
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Table 4.3: Summary of all the MS parameters for the different metabolites included in the method 

Group Metabolite Formula Mr 
[M+H]+ 

(m/z) 
[M+H]- 

(m/z) 
Product 
ion (m/z) 

DP 
(V) 

CE 
(V) 

RT   
(min) Internal Standard 

 
Glycolysis 
 

Glucose C6H12O6 180.063  178.957 89.000 -55 -12 4.38 C13-Glucose  
Fructose-6-Phosphate  C6H13O9P  260.029 261.036  109.028 20 20 11.98 D3-Quinolinic acid POS 
3-Phospho-D-Glycerate     C3H7O7P 185.992 187.000  140.900 20 15 14.40 D3-Quinolinic acid POS 
2-Phosphoglyceric acid  C3H7O7P  185.992 187.001  98.984 20 40 15.20 D3-Quinolinic acid POS 
Phosphoenolpyruvic acid  C3H5O6P  167.982  166.974 78.958 -20 -20 12.18 D5-Glutamic acid NEG 
Pyruvate C3H4O3 88.016  86.787 42.970 -25 -10 11.47 D5-Glutamic acid NEG 

TCA 
 

Oxaloacetic acid C4H4O5 132.006  131.000 86.975 -65 -16 11.44 D5-Glutamic acid NEG 
Citric acid  C6H8O7  192.027  191.019 111.008 -20 -20 13.8 D3-Quinolinic acid NEG 
cis-Aconitic acid  C6H6O6  174.016  173.009 85.029 -20 -20 11.46 D5-Glutamic acid NEG 
2-Ketoglutaric acid C5H6O5 146.021  145.014 100.900 -42 -11 11.97 D5-Glutamic acid NEG 
Succinic acid  C4H6O4  118.026  117.019 73.029 -20 -40 12.00 D5-Glutamic acid NEG 
Fumaric acid  C4H4O4  116.011  115.000 71.000 -20 -20 11.97 D5-Glutamic acid NEG 
Malic acid  C4H6O5  134.021  133.013 71.014 -20 -40 11.91 D5-Glutamic acid NEG 
Glyoxylic acid C2H2O3 74.000  72.800 45.000 -30 -12 12.52 D5-Glutamic acid NEG 
Fructose C6H12O6 180.063  178.957 89.000 -55 -12 3.76 C13-Fructose 
Lactic acid  C3H6O3  90.031  88.900 42.800 -50 -15 6.52 C13-Serine NEG 

Serine bio-
synthesis 
 

3-Hydroxybutyrate C4H8O3 104.040  102.895 59.042 -10 -12 6.20 C13-Serine NEG 
3-Phosphonooxypyruvate  C3H5O7P 183.977  182.900 78.869 -55 -40 13.90 D3-Quinolinic acid NEG 
L-Serine-O-Phosphate C3H8NO6P 185.008 186.000  88.200 20 20 12.11 D3-Quinolinic acid POS 
Serine C3H7NO3 105.042 105.700  60.000 35 15 6.40 C13-Serine POS 
Glycine C2H5NO2 75.032 76.040  29.700 20 20 6.02 C13-Glycine 

Amino 
acids 
 

Acetylalanine  C5H9NO3  131.058  130.050 88.040 -20 -20 6.61 C13-Serine NEG 
Alanine  C3H7NO2  89.0477 89.800  62.200 20 9 5.58 D5-Tryptophan 
Arginine  C6H14N4O2  174.111 175.119  70.067 20 20 6.95 D5-Kynurenic acid 
Asparagine  C4H8N2O3  132.053 133.061  74.020 20 20 6.41 C13-Serine POS 
Aspartic acid  C4H7NO4  133.037 133.986  43.010 91 61 9.19 D5-Glutamic acid POS 
Citrulline  C6H13N3O3  175.095 176.104  70.066 20 20 6.14 C13-Glycine 
Cysteine  C3H7NO2S  121.019 122.028  58.996 20 40 6.95 D5-Kynurenic acid 
Cystine C6H12N2O4S2 240.020 241.235  74.000 66 31 10.17 D5-Glutamic acid POS 
Glutamic acid  C5H9NO4  147.053 148.100  84.000 65 20 9.28 D5-Glutamic acid POS 
Glutamine  C5H10N2O3  146.069 147.077  84.045 20 20 6.15 C13-Glycine 
Glutathione Oxidized  C20H32N6O12S2  612.152  611.144 306.075 -20 -20 12.04 D5-Glutamic acid NEG 
Glutathione Reduced  C10H17N3O6S  307.083  306.076 143.046 -20 -20 11.63 D5-Glutamic acid NEG 
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Table 4.3 (continued): Summary of all the MS parameters for the different metabolites included in the method 

Group Metabolite Formula Mr 
[M+H]+ 

(m/z) 
[M+H]- 

(m/z) 
Product 
ion (m/z) 

DP 
(V) 

CE 
(V) 

RT   
(min) Internal Standard 

Amino 
acids 
 

Histidine  C6H9N3O2  155.069 156.077  110.071 20 20 6.60 D5-Kynurenic acid 
Hydroxyproline  C5H9NO3  131.058 131.955  86.000 76 9 5.42 D5-Phenylalanine 
Isoleucine  C6H13NO2  131.094 132.102  86.097 20 10 4.30 N15-Isoleucine 
Leucine C6H13NO2  131.094 132.100  44.049 20 40 4.23 C13-Adenosine  
Lysine  C6H14N2O2  146.105 147.113  84.081 20 20 7.72 D3-Lysine 
Phenylalanine  C9H11NO2  165.079 166.087  120.081 20 20 4.81 D5-Phenylalanine 
Proline  C5H9NO2  115.063 116.071  70.066 20 40 5.30 D5-Tryptophan 
Taurine  C2H7NO3S  125.014 126.023  64.969 20 40 5.84 C13-Glycine 
Threonine  C4H9NO3  119.058 120.066  56.050 20 40 6.05 C13-Glycine  
Tryptophan  C11H12N2O2  204.089 205.098  146.059 20 20 4.96 D5-Tryptophan 
Tyrosine  C9H11NO3  181.073 182.082  91.055 20 40 5.76 D5-Tryptophan 
Valine  C5H11NO2  117.079 118.087  72.081 20 10 4.89 D5-Tryptophan 

Methionine 
cycle 
 

Methionine  C5H11NO2S  149.051 150.059  104.053 20 10 5.02 D5-Tryptophan 
SAM C15H23N6O5S 399.145 400.196  251.085 51 21 6.27 C13-Glycine  
SAH C14H20N6O5S 384.120 385.074  136.062 20 21 6.69 D5-Kynurenic acid 
Homocysteine C4H9NO2S 135.035 136.040  90.030 10 15 4.22 N15-Isoleucine 
Creatine C4H9N3O2 131.069 132.056  90.050 10 17 5.10 D5-Phenylalanine 
Creatinine C4H7N3O 113.059 114.069  44.100 10 21 2.29 D3- Adenine  
Folic acid C19H19N7O6 441.139 442.180  295.093 20 21 16.00 C13-Acetyl-CoA POS 
Tetrahydrofolate C19H23N7O6 445.430 446.262  299.139 10 27 11.97 D3-Quinolinic acid POS 

Coenzyme 
 

Acetyl-CoA C23H38N7O17P3S 809.120  808.117 408.000 -200 -50 16.23 C13-Acetyl-CoA NEG 
CoA  C21H36N7O16P3S  767.115  766.107 407.800 -200 -48 15.72 C13-Acetyl-CoA NEG 
FAD  C27H33N9O15P2  785.157 786.165  348.069 20 20 12.02 D3-Quinolinic acid POS 
NAD  C21H27N7O14P2  663.109 664.117  136.061 20 40 9.53 D5-Glutamic acid POS  
NADP  C21H28N7O17P3  743.075 744.083  136.061 20 40 14.41 D3-Quinolinic acid POS 
NADH C21H29N7O14P2 665.441 666.128  136.060 20 40 11.62 D3-Quinolinic acid POS 
NADPH C21H30N7O17P3 745.090 746.099  729.018 200 25 15.97 N15-ATP 

Nucleobase 
 

Adenine  C5H5N5  135.054 136.062  119.035 20 20 3.34 C13-Adenosine 
Guanine C5H5N5O  151.049 152.057  135.030 20 20 4.56 D4-Kynurenine 
Hypoxanthine  C5H4N4O  136.039 137.047  55.029 20 40 5.08 D5-Tryptophan 
Thymine  C5H6N2O2  126.042  124.800 42.000 -35 -36 1.65 D3-Tymine 
Uracil  C4H4N2O2  112.027  111.019 41.998 -20 -20 1.98 D3-Tymine 
Cytosine C4H5N3O 111.000 112.030  52.010 61 41 2.95 C13-Adenosine 
Uridine  C9H12N2O6  244.069 245.077  113.035 20 20 2.75 C13-Adenosine  
Xanthine  C5H4N4O2  152.033 153.041  110.035 20 20 9.20 D5-Glutamic acid POS 
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Table 4.3 (continued): Summary of all the MS parameters for the different metabolites included in the method 

Group Metabolite Formula Mr 
[M+H]+ 

(m/z) 
[M+H]- 

(m/z) 
Product 
ion (m/z) 

DP 
(V) 

CE 
(V) 

RT   
(min) Internal Standard 

Nucleoside 
 

Adenosine  C10H13N5O4  267.097 268.105  136.200 20 23 2.69 C13-Adenosine 
Guanosine  C10H13N5O5  283.091 284.099  152.050 20 20 5.14 D5-Tryptophan 
Inosine  C10H12N4O5  268.080 269.100  137.100 70 17 5.65 D5-Tryptophan 

Nucleotide 
 

ADP  C10H15N5O10P2  427.029 428.037  136.060 20 40 14.75 N15-ATP  
GDP  C10H15N5O11P2  443.024  442.017 78.959 -20 -40 16.36 C13-Acetyl-CoA NEG 
UDP  C9H14N2O12P2  404.002  402.994 158.920 -20 -40 15.04 D3-Quinolinic acid NEG 

Nucleotide 
derivative 

ADP-Glucose  C16H25N5O15P2  589.082 590.090  136.060 20 20 11.96 D3-Quinolinic acid POS 
ADP-Ribose  C15H23N5O14P2  559.071 560.079  136.060 20 40 11.45 D3-Quinolinic acid POS 

Nucleotide 
 

ATP  C10H16N5O13P3  506.995 508.004  136.060 20 40 18.24 N15-ATP 
GTP  C10H16N5O14P3  522.990  521.983 158.920 -155 -50 13.59 D3-Quinolinic acid NEG 
AMP  C10H14N5O7P  347.063 347.900  136.300 40 25 12.24 N15-AMP 
CMP  C9H14N3O8P  323.051 324.059  112.050 20 20 12.08 D3-Quinolinic acid POS 
GMP  C10H14N5O8P  363.050 364.066  152.050 20 20 13.33 D3-Quinolinic acid POS 
IMP  C10H13N4O8P  348.047 349.055  137.046 20 20 12.29 D3-Quinolinic acid POS 
UMP  C9H13N2O9P  324.035 325.044  97.020 20 20 12.25 D3-Quinolinic acid POS 
cAMP  C10H12N5O6P  329.052 330.060  136.060 20 20 9.19 D5-Glutamic acid POS 
cGMP  C10H12N5O7P  345.047 346.055  152.050 20 20 10.07 D5-Glutamic acid POS 
dAMP  C10H14N5O6P  331.068 332.076  136.060 20 20 12.28 N15-AMP 
dCMP  C9H14N3O7P  307.056 308.065  112.050 20 20 12.06 D3-Quinolinic acid POS 
dTMP  C10H15N2O8P  322.056 323.064  81.000 20 25 12.02 D3-Quinolinic acid POS 

Other 
 
 

Carnitine  C7H15NO3  161.105 162.310  102.909 31 23 5.43 D5-Tryptophan 
Orotic acid  C5H4N2O4  156.017  155.009 111.010 -20 -20 7.27 C13-Serine NEG 
Salicylic acid  C7H6O3  138.032  137.024 93.030 -20 -20 4.66 Glucose C13 
Ascorbic acid  C6H8O6  176.032  174.830 86.900 -200 -28 9.28 D5-Glutamic acid NEG 
Ketoisovalerate C5H8O3 116.047  114.847 70.924 -5 -10 4.93 C13-Glucose  
Kynurenine C10H12N2O3 208.213 209.100  192.000 20 24 4.73 D4-Kynurenine 
3-OH-Kynurenine C10H12N2O4 224.079 225.100  208.000 40 13 6.06 C13-Glycine  
Quinolinic acid C7H5NO4 167.021 168.000  78.000 20 28 12.2 D3-Quinolinic acid POS 
Kynurenic acid C10H7NO3 189.042 190.100  144.100 40 25 6.51 D5-Kynurenic acid 
Pantothenic acid C9H17NO5 219.110 220.200  90.100 90 21 6.99 D5-Kynurenic acid 
Maleic acid C4H4O4  116.010  115.000 71.000 -20 -20 11.97 C13-Glutamic acid NEG 
Ketoleucine C6H10O3 130.060  128.986 85.079 -10 -12 15.00 D3-Quinolinic acid NEG 
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Table 4.4: MS parameters of all the internal standards included in the method 

Group Metabolite      Mr 
[M+H]+ 

(m/z) 
[M+H]- 

(m/z) 
Product 
ion (m/z) 

DP        
(V) 

CE         
(V) 

RT      
(min) 

Conc. 
Used 

(ng/mL) 
Glycolysis D-Glucose-13C6 186.11  185.024 91.673 -80 -12 4.38 991.97 
 D-Fructose-13C6 186.11  185.024 91.673 -80 -12 3.76 1116.66 
Amino 
acids 
 
 

L-Serine-13C3,15N,2,3,3-d3 POS 112.08 113.000  66.080 10 15 6.40 1494.03 
L-Serine-13C3,15N,2,3,3-d3 NEG 112.08  110.870 77.990 -20 -16 6.40 1494.03 
L-Glutamic acid-13C5 POS 152.09 153.000  87.900 10 21 9.28 2027.36 
L-Glutamic acid-13C5 NEG 152.09  151.000 107.100 -15 -18 9.28 2027.36 
Glycine C13 76.06 77.200  31.000 20 20 6.02 50655.96 
L-Isoleucine-13C6,15N 138.12 139.034  92.098 31 13 4.30 921.26 
L-Leucine-5,5,5-d3 134.19 135.044  89.127 46 13 4.23 895.05 
L-Lysine-4,4,5,5-d4 186.67 151.068  88.100 36 21 7.72 12445.29 
L-Phenyl-d5-alanine 170.22 171.045  125.115 31 17 4.81 1135.37 
Thymine-d4 (methyl-d3,6-d1) 130.14  128.900 42.010 -10 -30 1.65 868.03 
Tryptophan-D5 209.26 210.100  122.100 86 21 4.96 1395.76 

Coenzyme Acetyl-1,2-13C2 Coenzyme A POS 811.56 812.130  305.130 200 50 16.23 54078.70 
 Acetyl-1,2-13C2 Coenzyme A NEG 811.56  810.125 463.050 -200 -50 16.23 54078.70 
Nucleobase 2-(Methyl-13C,d3-thio) adenine 185.23 186.200  134.000 26 15 1.93 1235.48 
Nucleoside [1',2',3',4',5'-13C5]adenosine 272.21 114.069  44.100 64 27 2.69 182.38 
Nucleotide Adenosine-15N5 5′-monophosphate 352.19 352.948  141.079 56 23 12.24 23480.51 
 Adenosine-15N5 5′-triphosphate 512.15 513.000  141.000 20 40 18.24 3416.04 
Other Quinolinic acid-4,5,6-D3 POS 170.14 171.000  81.000 20 28 12.20 1134.83 

Quinolinic acid-4,5,6-D3 NEG 170.14  169.026 125.031 -10 -27 12.20 1134.83 
D4-Kynurenine 212.24 213.100  140.100 20 13 4.73 1415.64 
Kynurenic acid-3,5,6,7,8-d5 194.20 195.100  149.100 40 25 6.51 1295.31 
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4.4 Sample preparation  

A standardised sample preparation protocol was developed for the following matrices: plasma, 

lung, liver, hypothalamus and cultured cells. The following steps were performed as part of the 

protocol: homogenisation, protein precipitation and transfer.    

4.4.1 Homogenisation  

Homogenisation was performed in a Precellys homogeniser (Bertin Corp. Maryland: USA). Lung 

and liver samples were homogenised in a 1:4 (w/v) ratio with an ACN: MeOH 1:1 ratio mixture. 

The hypothalamus samples were homogenised in 600 µL ACN: MeOH. Since the hypothalamus 

is so small, 600 µL was used to ensure sufficient liquid is available for homogenisation. After 

homogenisation the samples were centrifuged for 5 min at 13 000 rpm.  

4.4.2 Protein precipitation  

The following steps were the same for all matrices: 5 µL of the supernatant/plasma/QQC/QC 

pool was added to 70 µL of ACN: MeOH 1:1 in a 96-well plate and placed in a -20°C freezer for 

at least 15 min for optimal protein precipitation. The samples were then centrifuged for 4 min at 

4 000 rpm.  

4.4.3 Transfer 

After centrifugation 30 µL of supernatant was transferred to 170 µL ACN containing the different 

internal standards with appropriate concentrations (see Table 4.4). The plate was shaken of 

30 s and centrifuged for 1 min at 2 000 rpm to ensure no air bubbles are present in the mixture.  

4.4.4 QC sample preparation 

Equal amounts of aliquots from all samples of a specific matrix were pooled. This generated the 

QC sample. For tissue matrices, lung, liver and hypothalamus, equal amounts of the 

supernatant were used. Multiple QC samples were prepared for quality control evaluation. Five 

(5) µL of the pooled QC sample was used for protein precipitation and all other steps were 

performed as described above. 

4.4.5 QQC sample preparation 

A spiked QC (QQC) sample was generated by spiking a known concentration of all metabolites 

of interest into a QC sample. An equal amount of pooled QC sample and standard mix was 

used to generate the QQC sample. After mixing, 5 µL of the QQC sample was used for protein 

precipitation and all other sample preparation steps were followed as described above.  
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4.5 Analytical analysis 

A randomised run order of the samples was used for sample analysis and a Microsoft Excel 

randomisation equation was used to re-order the run sequence of the samples. QC samples 

were analysed at the beginning, middle and end of the analytical run or after every 5 samples. 

Five (5) QC samples were analysed at the beginning of analysis before any analyses of 

samples were performed, to ensure the system is calibrated. A QQC sample was also analysed 

prior to the start of sample analysis, ensuring accurate peak identification.    

4.6 Data handling 

A large amount of data was generated while using this method and care was taken with 

handling the complex data set.  Since a targeted LC-MS/MS analytical platform was used during 

this study, the data handling was simplified. The data handling process is divided into data 

processing and data pre-treatment.  

4.6.1 Data processing 

Data processing was done using Analyst 1.6.3. A quantitation method was designed for peak 

identification, peak integration and IS normalisation. This includes chromatogram peak 

integration and normalisation to IS by generation of an area ratio value between the observed 

metabolite’s peak area to the assigned spiked IS area. The data was then extracted to an Excel 

file. 

4.6.2 Data pre-treatment 

After data extraction, data pre-treatment and data clean-up were done before statistical analysis 

was performed on the data. Data clean-up was performed as describes in section 3.3.6.1 by 

excluding all metabolites that were below the detection limit (see table 3.4 for LOD values) and 

were below 50% presence in all samples. A quality control procedure was implemented to 

assess the quality of the analysis and to eliminate any metabolites that may be responsible for 

introducing bias into the study and distorting the data (see section 3.6). Therefore after the data 

processing of the QC samples, the metabolites that had an RSD value above 30% were 

excluded from the data set. A zero value replacement was performed and the data was then 

arranged in the format compatible with the Excel macro file that was used for statistical analysis.  
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4.7 Statistical analysis 

As described in section 3.3.7 an Excel-based statistical analysis macro file was used. Univariate 

and multivariate statistical analysis were performed including the multi t-test with Bonferroni 

correction, graph analysis and PCA. An HCA analysis was also performed for the identification 

of patterns in the data set.    

4.8 Biological relevancy  

After statistical analysis, the metabolites identified as significant between experimental groups 

can be assessed in terms of biological relevancy. A metabolic profile can be established, and 

biomarkers can be identified. With regards to this study, a metabolic profile for a fibrotic lung 

animal model was established and is described in Chapter 5 in a full length article. Biomarker 

identification requires validation with large samples sizes and cross validation. This is an 

important step with the investigation of diseases such as IPF, but biomarker validation was out 

of the scope for this study.  

4.9 Discussion  

This chapter serves as a summary of the developed LC-MS/MS based targeted metabolic 

profiling method containing all details related to sample preparation, analytical parameters as 

well as data handling and statistical analysis, to provided adequate results and answer 

biological relevant questions. The description of the development, optimisation and quality 

assessment of the developed method are provided in Chapter 3. The LC-MS/MS based 

metabolic profiling method was used, as described in this chapter, to generate a metabolic 

profile for a fibrotic lung animal model. The results of the metabolic profiling of a fibrotic lung 

animal model are discussed in Chapter 5 in a full length article prepared for submission to the 

Respiratory Medicine journal.   
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CHAPTER 5: METABOLIC PROFILING OF A 
FIBROTIC LUNG ANIMAL MODEL 

This chapter is presented in a full length text article that has been submitted to the Respiratory 

Medicine journal. In this chapter the letter of submission of manuscript is provided together with 

the manuscript written according to the guidelines specified by the journal. For comprehensible 

reading purposes the table and figures, referred to in this chapter has been enlarged and placed 

in chronological order together with the text. The author guidelines can be reviewed in appendix 

A of the dissertation or at:   

https://www.elsevier.com/journals/respiratory-medicine/0954-6111/guide-for-authors 

Title of manuscript: 

Metabolic profiling of the C57BL/6J bleomycin induced lung fibrosis mouse 

model  

Authors:   Venter Maryke a,b,  

Grobler Anne Frederica b,  

Kästle Marc a,  

Sobotta Mirco Christoph a  

Bretschneider Tom a, 
a Boehringer Ingelheim Pharma GmbH &Co. KG, Biberach an der Riß, Germany 
b DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, South Africa 

https://www.elsevier.com/journals/respiratory-medicine/0954-6111/guide-for-authors
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 Letter of proof of submission   
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Metabolic profiling of the C57BL/6J bleomycin induced lung 
fibrosis mouse model  

Venter Maryke a,b, Grobler Anne Frederica b, Kästle Marc a, Sobotta Mirco Christopha, 
Bretschneider Tom a 
a Boehringer Ingelheim Pharma GmbH &Co. KG, Biberach an der Riß, Germany  
b DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, South Africa 

ABSTRACT 
Background: IPF is characterized by progressive destruction of normal lung architecture. The disease has 

a prevalence of between 1.25 and 23.4 per 100 000 population in Europe and 1 in every 32 000 

population in South Africa. The underlying pathogenesis of IPF still remains poorly understood and 

alternative investigations for this disease is needed. Metabolic profiling has provided valuable information 

about the pathogenesis as well as treatment options for respiratory diseases such as asthma, COPD and 

cystic fibrosis. The establishment of a metabolic profiling method would be greatly beneficial in the 

characterisation of diseases, such as IPF.  

Methods: During this study an LC-MS/MS based targeted metabolic profiling method was developed 

using the Luna NH2 column (2 mm x 150 mm, 5 µm, 100 Å) operating with solvents at pH 9. A 

standardised sample preparation procedure was developed for various matrices.  

Results: A metabolic profile was generated for a bleomycin treated mouse model resembling IPF. After 

statistical analysis, 26 metabolites were identified as significant (p-value < 0.05). These metabolites were 

crosschecked against an inflammation inducing lipopolysaccharide treated mouse model. In addition, a 

metabolic profile was also generated for a TGF-β stimulated fibroblasts cellular model.  

Conclusion: Metabolites such as lactic acid, inosine, hypoxanthine, proline and intermediates from the 

methionine cycle were identified as significant in both the bleomycin treated model and the cellular model. 

A substantial correlation between the bleomycin treated mouse model and the TGF-β treated NHLF 

cellular model is present as well as to literature. These metabolites can be potential biomarkers for lung 

fibrosis. 

Keywords: Metabolomics; targeted metabolic profiling; biomarkers; LC-MS/MS; lung fibrosis; IPF 

1. Introduction 

Metabolomics is a growing field and a valuable instrument for the identification of dysregulation 

in the metabolome of a biological system [1-4]. Metabolomics provides a vast range of 

applications and have been used to determine the cause and pathogenesis of complex 

diseases [4], as well as distinguishing between diseases showing similar clinical presentations 

[5]. Within metabolomics based studies there are different approaches that can be followed, 

including targeted metabolomics, untargeted metabolomics, metabolic footprinting, metabolic 

fingerprinting, fluxomics, lipidomics, metallomics and exposomics [6,7]. Various analytical 

platforms are available for the execution of the different approaches. 
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Metabolic profiling, a metabolomics based approach, have been used in the characterisation of 

complex diseases of which the onset and progression is still unknown. The use of a metabolic 

profiling approach to characterise diseases could potentially provide new insight into the 

pathogenesis of the disease and provide new therapeutic approaches [4,8,9]. 

Idiopathic Pulmonary Fibrosis (IPF) is a complex lung disease characterised by progressive 

destruction of normal lung architecture and accumulation of extracellular matrix that stiffens the 

lung and leads to respiratory failure [3,10,11]. IPF has a high prevalence of between 1.25 and 

23.4 per 100 000 population in Europe, between 42.7 and 63 per 100 000 population in America 

and 1 in every 32 000 population in South Africa [12,13]. The survival duration from time of 

diagnosis for IPF patients are 2 to 3 year after diagnosis [4]. The current treatments that are 

available, Nintedanib (Boehringer Ingelheim Pharma GmbH & Co. KG, Germany) and 

Pirfenidone (Genentech Inc. member of the Roche Group, South San Francisco, CA, USA), are 

effective by reducing the decline in lung function but neither of these treatments offer full 

recovery [8,10,14]. There is a growing need for further research into the pathogenesis of this 

disease. Since metabolic profiling has provided beneficial insight into the pathogenesis of 

respiratory diseases such as asthma, COPD and cystic fibrosis [3], the establishment of the 

metabolic profile for IPF can provide essential insight into the onset and progression of the 

disease. 

The metabolic profiling approach is a promising diagnostic tool to be used but there are still 

shortcomings that have to be addressed. There is still no standardised totally comprehensive 

approach available to detect and quantify large number of metabolites and there is also no 

standardised sample preparation and metabolite extraction method have been established 

[1,2,15]. Establishing a targeted metabolic profiling method is a feasible approach to 

metabolomics and allows investigation into the metabolome with high specificity [16].  

The establishment of a targeted metabolic profiling method requires a well-designed method. 

Several factors have to be taken into account, such as metabolite identification, selection of the 

analytical platform, sample preparation, analytical analysis, data analysis, statistical analysis 

and biological relevance [15,16,17]. Since the metabolome of a biological system provides a 

direct correlation to the phenotype, characterising of the metabolome of a biological system 

could provide significant understanding of any disease state [6,18]. The selection of the 

analytical platform for metabolomics studies is important. Several analytical platforms are 

available, including nuclear magnetic resonance spectrometry (NMR), gas chromatography 

mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS), each with 

its own advantages and disadvantages [19]. The choice of an analytical platform influences the 

sample preparation procedure, an optimal sample preparation procedure should be compatible 

with the analytical platform [20]. Furthermore the analytical analysis and data handling is also 

important, since it can influence the quality of the results of the study [17]. 
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During this study the aim was to develop an LC-MS/MS based targeted metabolic profiling 

method that would be able to generate a metabolic profile for any disease state, together with a 

sample preparation and metabolite extraction method suitable for various matrices. The method 

was validated by using the method for the generation of a metabolic profile for a fibrotic lung 

animal model. 

2. Materials and methods 

The targeted metabolic profiling method include metabolites, intermediates and cofactors 

present in the central carbon system, glycolysis, tricarboxylic acid (TCA) cycle, the serine 

biosynthesis pathway as well as all amino acids present in human metabolic pathways. A visual 

representation of the metabolites included in the method (highlighted in green) can be seen in 

Figure 1.  

Figure 1. A visual representation of the metabolites in the developed method. All metabolites highlighted 

in green are compatible with the developed method. This diagram was generated from information 

obtained from the Kyoto Encyclopaedia of Genes and Genomes data base [25]. 
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2.1 Reagents and standards 

During this study the following high purity high-performance liquid chromatography (HPLC) 

graded solvents were used, dimethyl sulfoxide (DMSO) (CAS: 67-68-5), acetonitrile (ACN) 

(CAS: 75-05-8), methanol (MeOH) (CAS: 67-56-1), formic acid (CAS: 64-18-6), ammonium 

hydroxide (CAS: 1336-21-6) and ammonium acetate (CAS: 631-61-8). All solvents were 

purchased from Sigma-Aldrich Co. (Taufkirchen, Germany). 

After a literature review was performed 100 metabolites and 19 Internal Standards (IS) were 

selected for targeted analysis [21-24]. The ISs were selected based on their retention time on 

the column and characteristics. Standards of these metabolites and ISs were purchased and a 

stock solution was prepared for each metabolite and IS, either in water or DMSO depending on 

the metabolite’s solubility and characteristics. The stock solutions were used for identification, 

by generating a unique multiple reaction monitoring (MRM) transition for each metabolite as well 

as determining the retention time of each metabolite. The information of the metabolites 

analysed in this study is summarised in Table S1 and all information of the ISs used during this 

study are listed in Table S2. High purity standards (≥ 95%) for each metabolite and IS were 

purchased from either Sigma-Aldrich Co., eNovation Chemicals LLC (New Jersey, USA), TCI 

Deutschland GmbH (Eschborn, Germany), Cayman Chemical (Michigan, USA), Omicrom 

Biochemicals, Inc. (Indiana, USA) or Buchem Chemie & Technik GmbH & Co. (Köln, Germany). 

2.2 Sample selection 

To be able to fully understand the pathogenesis of IPF, human lung samples would have to be 

examined. This is an invasive approach with no benefit to the participant. An alternative to study 

the disease is to use animal models and cell cultures that closely resemble the disease state. 

Therefore during this study lung tissue from healthy and diseased C57BL/6J mouse models that 

resembles IPF was used. The diseased lung tissue used during the study was collected from 

storage and originated from C57BL/6J mice that were treated with bleomycin.  

2.3 Ethical aspects 

All tissue samples, healthy and diseased, from the bleomycin treated mouse study and the 

lipopolysaccharide induced lung inflammation study used during this study were from already 

euthanized animals and were collected from storage at the Drug Discovery Sciences 

Department of Boehringer Ingelheim, Germany. This study was ethically approved by the 

Regierungspräsidium in Tübingen, Germany (TVV 12-012). Additional ethical approval was 

obtained from the Ethics committee (AnimCare) of the North-West University (NWU-00275-17-

A5). 
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2.4 Sample Preparation  

A standardised sample preparation protocol, developed during this study, was used for the 

preparation of all samples. The sample preparation procedure is suitable for the following 

matrices: plasma, lung, liver, hypothalamus and cell culture. The sample preparation protocol 

consists of a homogenisation, protein precipitation and transfer step.  

2.4.1 Homogenisation  

Homogenisation was performed using the Precellys homogeniser (Bertin Corp. Maryland, USA). 

The lung samples were homogenised in a 1:4 (w/v) ratio with an ACN:MeOH 1:1 ratio mixture. 

After homogenisation the samples were centrifuged for 5 min at 13 000 rpm.  

2.4.2 Protein Precipitation 

Five (5) µL of the supernatant of the lung homogenate was added to 70 µL of ACN:MeOH 1:1 in 

a 96-well plate and placed in a -20 °C freezer for at least 15 min, to achieve optimal protein 

precipitation. The samples were then centrifuged for 4 min at 4 000 rpm.  

2.4.3 Transfer 

After centrifugation, 30 µL of supernatant was transferred to 170 µL ACN containing the 

different internal standards with appropriate concentrations (see Table S4). The plate was 

shaken for 30 s and centrifuged for 1 min at 2 000 rpm to ensure no air bubble is present in the 

mixture.  

2.4.4 Quality control 

Quality control (QC) samples were generated for the assessment of the sample preparation 

procedure, analytical method, instrumentation and system. A master QC sample was generated 

by pooling equal amounts of aliquots of the supernatant from the lung homogenates. The 

master QC sample was used to generate multiple QC samples by using 5 µL of the master QC 

sample and following all the steps described above.  

A spiked QC sample (a QQC sample) was generated by spiking a known concentration of all 

metabolites of interest into a QC sample. An equal amount of master QC sample and standard 

mix was used to generate the QQC sample. After mixing, 5 µL of the QQC sample was used 

and all other sample preparation steps were followed as described above. To ensure that no 

bias is introduced into the results of the study a randomised run order of the samples was used 

for sample analysis and a Microsoft Excel randomisation equation was used to re-order the run 

sequence of the samples. QC samples were analysed at the beginning, middle and end of the 

analytical run. Five (5) QC samples were analysed at the start of analysis before any analyses 

of samples were performed, to ensure the system is calibrated and stable. A QQC sample was 

also analysed prior to the start of sample analysis, ensuring accurate peak identification. 
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2.5 LC Analysis 

A modified version of the method described by Bajad et al. [26] was used. A 20 min HILIC 

method was developed using the Luna NH2 column (2 mm x 150 mm, 5 µm, 100 Å). Solvent A 

consisted of 20 mM ammonium acetate and 20 mM ammonium hydroxide in 95:5 H2O:ACN 

ratio (v/v) with pH 9; solvent B consisted of ACN. A 0.4 mL/min flowrate was used throughout 

the analysis. The LC gradient started with an isocratic gradient with 85% solvent B for 1.5 min, 

followed by a linier gradient to 2% solvent B within 12.5 min, a hold of 2% solvent B for 3 min, 

which was then followed by a 1.5 min gradient to starting conditions and was held constant for 

1.5 min.   

2.6 MS Parameters  

The targeted metabolic profiling method was developed on a Triple Quad™ 6500+ and QTRAP® 

system from AB Sciex Pte., Ltd. (Darmstadt, Germany). Together with the Triple Quad™, an 

Agilent 1290 Infinity II Multisampler and an Agilent 1290 Infinity II High Speed Pump system 

(Agilent Technologies Deutschland GmbH & Co., Waldbronn, Germany) was used to perform 

the analysis. The Triple Quad™ system was operated in the positive and negative switching 

mode with a source temperature of 500°C, ionspray voltage of 4500V, curtain gas of 40, 

gas 1 of 50 and gas 2 of 50. Transitions and MS parameters (DP: declustering potential and CE: 

collision energy) for all metabolites and ISs were determined and are listed in Table S3 and S4. 

2.7 Data Processing 

Data processing was done by using the Analyst 1.6.3 software (AB Sciex Pte., Ltd. Darmstadt, 

Germany). A quantitation method was designed for peak identification, peak integration and IS 

normalisation. This includes chromatogram peak integration and normalisation to IS by 

generating an area ratio value between the observed metabolite’s peak area to the assigned 

spiked IS area. The data was then extracted to an Excel file. 

2.8 Data Pre-treatment 

After data extraction, data pre-treatment and clean-up was performed before statistical data 

analysis. Data clean-up was performed by excluding all metabolites that are below the detection 

limit and have a lower that 50% presence in all samples. The QC samples were assessed and 

all metabolites that have a RSD value above 30% were excluded. A zero value replacement 

was performed by replacing zero values with half of the limit of detection (LOD) for the 

metabolite. The data was then arranged in the format compatible with the Excel macro file that 

was used for statistical analysis. 
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2.9 Statistical Analysis  

For the statistical analysis an Excel-based statistical analysis method, which is freely available 

as a macro file (developed by Dr Tsugawa, available at http://prime.psc.riken.jp), was used [27]. 

With this Excel-based method univariate and multivariate analyses were performed, including 

the multi t-test with Bonferroni correction, graph analysis and principal component analysis 

(PCA). A hierarchical cluster analysis (HCA) analysis was also performed for the identification of 

patterns in the data set.  

3. Results and Discussion  

3.1 C57BL/6J bleomycin treated mouse model 

For the establishment of a metabolic profile for the C57BL/6J bleomycin treated mouse model, 

resembling IPF, metabolites have to be identified that differ in their abundance between healthy 

and diseased groups. Bleomycin (see Figure 1 for structure) is a chemotherapeutic antibiotic 

and causes an inflammatory and fibrotic reaction within a short period of time. An initial 

elevation of pro-inflammatory cytokines (interleukin-1, tumour necrosis factor-α, interleukin-6 

and interferon-γ) is followed by an increased expression of pro-fibrotic markers (transforming 

growth factor-β1, fibronectin and procollagen-1) [28]. In the mouse model, the pro-fibrotic stage 

peaks at 14 days post exposure and the turnover between inflammation and fibrosis appears to 

occur around day 9 after bleomycin treatment [28].  

Figure 2. The structure of bleomycin. This figure was generated by using the MarvinSketch 14.12.15.0 

software. 

To generate a metabolic profile for the fibrotic lung animal model for this study, one lung lobe of 

5 healthy C57BL/6J and 5 bleomycin treated C57BL/6J mice were available for analysis. 

Samples were obtained from 9-15 week old mice, treated with a 0.5 mg/kg bleomycin dosing 

(inhalation anaesthesia isoflurane (3-4%) bleomycin dissolved in 0.9% NaCl) by intratracheal 

application. The application volume was 2 mL/kg. Bleomycin treatment was administered for 

two consecutive days, the mice were euthanized 20 days post bleomycin treatment and the 

lungs were collected.  
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A metabolic profile was generated for the C57BL/6J bleomycin treated mouse model, 

resembling lung fibrosis, by identifying metabolites that demonstrated a difference in abundance 

between the healthy and diseased groups. After statistical analysis was performed, 26 

metabolites were identified as significant (p-value < 0.05) between the healthy and treated 

group. Table 1 summarises the identified metabolites and contains the corresponding quality 

control, with regards to the QC RSD%, corresponding p-value generated by the t-test, average 

normalised values (area ratio between metabolite and corresponding IS), RSD% within each 

group and percentage increase/decrease. An RSD% of the QCs was generated for each 

metabolite to assess whether or not the metabolites were stable throughout the analysis. The 

metabolites that had a QC RSD value above 30% were identified as unstable and were 

excluded from the data set. A p-value was generated for each metabolite by using the Excel 

macro file. All the metabolites listed in Table 1 have a p-value below 0.05, indicating significant 

difference is present between the healthy and diseased groups. The average of the normalised 

area ratio of each metabolite to the assigned IS is provided as well as the RSD% within each 

group. The RSD% of each group demonstrates the variance within the groups.  

During the quality control assessment of the data two metabolites, S-Adenosyl-L-homocysteine 

(SAH) and adenine, had a higher than 30% RSD within a group and some metabolites (e.g. 

threonine and valine) demonstrates high difference in variance between the two groups’ RSD%. 

An explanation for this may be that differences occur due to uneven distribution of the 

bleomycin treatment, resulting in uneven development of fibrosis throughout the entire lung. 

Alternatively, differences in response to bleomycin treatment by the animals may occur, since 

not all animals respond to bleomycin treatment in the same manner [28]. This phenomenon is 

difficult to assess since not all the metabolites demonstrated the same phenomenon within the 

same range. Currently histological examination of lung tissue is the standard protocol for the 

assessment of the degree of fibrosis and the response to bleomycin [28]. Therefore the 

response to bleomycin is difficult to assess before metabolite analysis without sample loss. All 

positive values indicate the percentage increase and all negative values indicate the percentage 

decrease.  
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Table 1. Summary of statistical analysis of bleomycin treated C57BL/6J mice and healthy C56BL/6J 

mice. 

Metabolite QC 
RSD% p-value 

Control group  Bleomycin treated % 
increase/ 
decrease Average RSD% Average RSD% 

Phosphoenolpyruvic acid 16 0.000143 0.012 8 0.018 9 46 
Glyoxylic acid 9 0.000658 0.241 7 0.346 12 43 
Lactic acid 14 0.004602 3.682 29 7.442 25 102 
Glycine 19 0.033382 7.156 10 5.972 12 -17 
Acetylalanine 14 0.002854 0.163 16 0.420 23 157 
Asparagine 6 0.000042 0.628 18 1.202 10 91 
Glutamic acid 4 0.001563 29.360 4 37.540 10 28 
Glutamine 15 0.000003 225.800 10 358.000 3 59 
Isoleucine 4 0.000118 0.564 13 0.917 9 63 
Leucine 8 0.000037 0.030 13 0.060 13 106 
Phenylalanine 7 0.000254 0.767 11 1.221 12 59 
Proline 8 0.000068 26.300 15 43.820 8 67 
Threonine 25 0.000148 1.886 20 3.462 10 84 
Tryptophan 9 0.000024 17.000 8 25.660 7 51 
Tyrosine 10 0.000630 7.480 17 11.760 11 57 
Valine 10 0.002892 90.020 16 122.600 8 36 
Methionine 9 0.000098 11.554 14 18.960 9 64 
SAH 14 0.000258 0.0161 17 0.006 37 -62 
Creatinine 7 0.028479 0.243 7 0.195 19 -20 
Adenine 8 0.010175 0.001 31 0.002 20 -60 
Hypoxanthine 9 0.001497 22.500 14 32.960 11 46 
Uracil 7 0.000020 1.358 8 2.730 12 101 
Uridine 7 0.002965 0.006 12 0.012 20 118 
Adenosine 5 0.016183 0.437 9 0.340 17 -22 
Guanosine 8 0.000320 67.220 14 35.740 20 -47 
Inosine 8 0.004120 140.200 13 167.000 14 19 

The PCA score plot seen in Figure 3 was generated from the data presented in Table 1 and 

reveals that a substantial distinction is present between the control group (blue) and the 

bleomycin treated group (red) and therefore a substantial difference is present between the 

metabolic profiles of the healthy and bleomycin treated groups. This supports the observation 

provided by the univariate statistical analysis. The PCA score plot also reveals that a variation is 

present within the groups and the variation within the bleomycin treated group is much higher. 

This finding may indicate that the degree of fibrosis of the treated animals was uneven, but does 

not influence the substantial difference present between the two groups. 
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Figure 3. A principle component analysis score plot of the data of 5 control lung samples and 5 

bleomycin treated lung samples. This figure was generated by using the Excel-based statistical analysis 

macro file as described in section 2.9. 

An HCA was subsequently performed and the heat map can be seen in Figure 4. This heat map 

provides a simplified visualisation of all the data. Up and down regulation can be identified by 

the colour code. The HCA also allows the identification of outliers, with regards to metabolites 

as well as animals. An example of a metabolite that can be identified as an outlier is 

ketoleucine. Within the HCA heat map substantial variance can be identified among the different 

animals in a group. The QC RSD% of ketoleucine was higher that 30%, therefore this can 

indicate that the metabolite is not stable throughout the analysis. Animal outliers can also be 

identified. Using the HCA heat map, animal 26 in the bleomycin treated group can be 

considered as an outlier, since great variation in numerous metabolites are present when 

compared to the other animals of the treated group. 

  

Animal 1 

Animal 2 
Animal 3 

Animal 4 
Animal 5 

Animal 24 

Animal 25 

Animal 26 

Animal 29 

Animal 51 

-6

-5

-4

-3

-2

-1

0

1

2

3

-8 -6 -4 -2 0 2 4 6 8

PC
2 

(1
0.

12
%

) 

PC1 (60.56%) 

PCA Score Plot Control

Bleomycin treated



Chapter  5 

76 

Control Bleomycin treated 

 

Figure 4. A hierarchical cluster analysis of the data of 5 control lung samples and 5 bleomycin treated 

lung samples. This figure was generated using the R 3.2.5 software.  
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With the identification of these 26 significant metabolites a metabolic profile for the fibrotic 

animal model can be generated, but since bleomycin treatment induces not only a fibrotic 

response but also an initial inflammatory response it is important to validate the metabolic 

profile. An approach for the validation is to compare the metabolic profile of the fibrotic animal 

model to an inflammation induced animal model. This will ensure that the identified metabolites 

are not a result of inflammation but a result of fibrosis. Therefore during this study healthy and 

bleomycin treated C57BL/6J mice were compared as well as the bleomycin treated C57BL/6J 

mice and lipopolysaccharide treated C57BL/6J mice.  

3.2 LPS treated mouse model 

Lipopolysaccharide (LPS)-induced lung inflammation is commonly used in acute lung injury 

studies, especially with regards to chronic obstructive pulmonary diseases and acute 

exacerbation [29]. LPS provokes the intrinsic immune response and initiates a cascade of 

inflammatory responses. Samples were available from C57BL/6J mice resulting from an acute 

exposure to LPS. These samples were used for validation purposes.  

Firstly a metabolic profile was generated for the LPS treated mouse model by identifying 

metabolites that showed significant difference (p-value < 0.05) in abundance between the 

healthy and LPS treated group. The metabolic profile was generated by using the analytical 

method described above. One lung lobe each from 4 healthy C57BL/6J mice and 4 C57BL/6J 

LPS treated mice were available for analysis. After statistical analysis was performed on the 

generated data, 13 metabolites were identified as significant (see Table 2). Table 2 provides a 

summary of the 13 metabolites that were identified as significant with their corresponding QC 

RSD%, p-value, percentage increase/decrease as well as the RSD% within each group.      
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Table 2. Summary of the statistical analysis of the lung samples from healthy and LPS treated 

mice. 

Metabolite QC 
RSD% p-value 

Control group  LPS treated % 
increase/ 
decrease Average RSD% Average RSD% 

Glucose 3 0.041154 98.525 7 88.175 5 -11 
Fructose 6-Phosphate 2 0.026789 0.077 29 0.031 73 -60 
S-Adenosyl-L-homocysteine 15 0.003285 0.017 10 0.011 18 -35 
Adenine 9 0.002849 0.006 5 0.004 15 -29 
Guanine 15 0.000829 0.095 16 0.025 64 -73 
Hypoxanthine 19 0.005220 6.738 12 2.578 68 -62 
Thymine 6 0.015373 0.004 4 0.003 20 -26 
Guanosine 15 0.000896 23.900 20 5.104 77 -79 
Inosine 16 0.002461 129.500 9 45.625 69 -65 
AMP 4 0.005856 0.190 28 0.436 24 131 
GMP 10 0.010669 1.695 10 2.373 14 40 
IMP 8 0.009252 1.330 26 2.868 26 116 
UMP 11 0.002666 1.860 24 3.023 5 63 

The PCA score plot analysis revealed that substantial variation exists between the healthy and 

LPS treated group. The PCA score plot also revealed that there is a difference present amongst 

the LPS treated group (see Figure 5). The variation present amongst the treated group is 

supported by the high RSD% of the metabolites within the treated group. Due to the small 

sample size an outlier analysis was not performed. 

Figure 5. A principle component analysis score plot from the data of 4 control lung samples and 4 LPS 

treated lung samples. This figure was generated by using the Excel-based statistical analysis macro file 

described on section 2.9. 
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5 

Bleomycin 
LPS 

The 13 metabolites identified as significant in the C57BL/6J LPS treated mouse model were 

cross checked against the metabolites that were identified as significant in the C57BL/6J 

bleomycin treated mouse model. Five metabolites were identified as significant in both groups. 

Although these 5 metabolites were identified in both groups, the metabolites did not 

demonstrate the same trend with regards to percentage increase/decrease. For the evaluation 

of the trend, a 30% RSD margin was used, evaluating whether or not the metabolites 

demonstrated an increase/decrease within an RSD value of 30% (see Table 3). 

Table 3. Summary of the 5 metabolites identified in both the C57BL/6J bleomycin treated 

mouse model and the LPS treated mouse model.    

Metabolite 
   RSD% 

bleomycin 
and       
LPS 

C57BL/6J bleomycin treated 
mouse model 

 LPS treated mouse model 

QC 
RSD% p-Value % Change  QC 

RSD% p-Value % Change 

S-Adenosyl-L-
Homocysteine 39 14 0.000258 -62  15 0.003285 -35 

Adenine 49 8 0.010175 -60  9 0.002849 -29 
Hypoxanthine 968 9 0.001497 46  19 0.005220 -62 
Guanosine 36 8 0.000320 -47  15 0.000896 -79 
Inosine 259 8 0.004120 19  16 0.002461 -65 
 

 
Figure 6. Venn diagram of the identified metabolites within the C57BL/6J bleomycin treated mouse model 

and the LPS treated mouse model.   
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The identified metabolites from the LPS treated group represent a metabolic profile for an 

inflammatory lung model. These metabolites either did not correspond to the C57BL/6J 

bleomycin treated mouse model’s metabolic profile or did not demonstrate the same change. 

Therefore the metabolic profile of the C57BL/6J bleomycin treated mouse model can be 

assigned to a fibrotic metabolic profile.  

Although the C57BL/6J bleomycin treated mouse model’s metabolic profile can be assigned to 

a fibrotic state, it is uncertain whether or not this metabolic profile correlates with that of an IPF 

fibrotic state. To be able to validate that the metabolic profile of the C57BL/6J bleomycin treated 

mouse model correlates with the metabolic profile of IPF in human patients, biopsy samples 

from human participants would have to be assessed. This falls outside the scope of this study 

but another non-invasive investigation approach can be used. A transforming growth factor-beta 

(TGF-β) treated normal human lung fibroblast cellular model was used for this purpose.    

3.3 TGF-β treated normal human lung fibroblasts  

Since IPF is characterized by progressive destruction of normal lung architecture because of 

proliferation of activated fibroblasts and myofibroblasts [3,10,11], TGF-β stimulated normal 

human lung fibroblasts (NHLF) is frequently used in studies investigating IPF. TGF-β is a key 

cytokine responsible for the transformation of fibroblasts to myofibroblasts. Myofibroblasts are 

responsible for generating excess collagen and other extracellular matrix protein, leading to 

scar tissue formation in the lung [30].  

As part as the validation of the metabolic profile of the C57BL/6J mouse model a metabolic 

profile was generated for a TGF-β treated NHLF cellular model. The metabolic profile of the 

TGF-β treated NHLF cellular model was compared to the metabolic profile generated for the 

C57BL/6J bleomycin treated mouse model. All cell samples were provided by the Immunology 

and Respiratory department at Boehringer Ingelheim, Germany.  

NHLFs were obtained from healthy, non-smoking donors (Lonza Rockland Inc, Rockland, ME, 

USA). The NHLF were seeded in a 6-well plastic culture dish (Thermo Scientific, 

Massachusetts, USA) at a cell number of 200 000 cells per well. The cells were then grown in 

fibroblast growth medium (FGM-2, Lonza Rockland Inc, Rockland, ME, USA) and supplemented 

with insulin (0.5 ml), recombinant human fibroblast growth factor-B (rh-FGFB) (0.5 ml) and 2% 

foetal bovine serum (FBS) (10 ml), at 37°C in a humidified (5% CO2) atmosphere. After 24 

hours, half of the NHLF cells were stimulated with TGF-β (5 ng/mL) for 24 hours. The media 

was then removed and the cells were washed with phosphate buffered saline (PBS) (500 µL). 

The cells were scraped from the culture dish and pelleted by centrifugation for 5 min at 10 000 

rpm. The PBS was discarded and the cell pellets were sonicated in ice cold ACN:MeOH 1:1 
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(500 µL) to disrupt all cell membranes. The supernatant was used for LC-MS/MS analysis using 

the method as described.    

After analysis of the NHLF cell samples, 24 metabolites were identified as significant (p-value < 

0.05). The summary of the identified metabolites together with the corresponding QC RSD%, p-

value, percentage increase/decrease, average and RSD% of each group can be seen in Table 

4. After the generation of the PCA score plot, two samples from the TGF-β group was identified 

as outliers, since these two samples present the same trend as the untreated samples (treated 

sample 5 and 6, see Figure 7). Therefore these samples were removed from the data set before 

further statistical analysis was performed.  

Table 4. Summary of statistical analysis of untreated NHLF cells and TGF-β treated NHLF cells. 

Metabolite QC 
RSD% p-value 

Control group  TGF-β 
stimulated 

% 
increase/ 
decrease Average RSD% Average RSD% 

Glucose 13 0.026328 6.162 13 15.650 30 154 
Fructose 15 0.025110 0.379 12 0.926 29 144 
Lactic acid 3 0.014829 0.061 13 0.119 21 93 
Arginine 11 0.044501 0.013 38 0.051 45 284 
Asparagine 5 0.028454 0.011 11 0.022 25 95 
Glutamic Acid 10 0.006794 0.080 8 0.155 15 93 
Glutamine 12 0.012541 3.390 10 6.675 19 97 
Histidine 18 0.033616 0.020 8 0.036 24 76 
Isoleucine 10 0.032980 0.012 13 0.023 27 95 
Lysine 24 0.012199 0.009 19 0.013 19 47 
Phenylalanine 19 0.043239 0.014 14 0.028 30 99 
Proline 11 0.015208 1.567 10 3.568 23 128 
Tryptophan 12 0.014021 0.443 22 0.752 29 70 
Tyrosine 21 0.004536 0.388 23 0.588 10 52 
Valine 5 0.012023 2.492 7 5.280 20 112 
Methionine 14 0.024844 0.258 12 0.640 29 148 
Creatine 17 0.011033 0.008 13 0.021 23 158 
Creatinine 14 0.023444 0.037 12 0.094 29 152 
Uracil 14 0.000595 0.001 28 0.001 22 140 
Uridine 12 0.000087 0.0002 20 0.0005 7 82 
Adenosine 9 0.000076 0.006 16 0.011 13 95 
Guanosine 24 0.006080 0.193 25 0.295 11 53 
Inosine 22 0.045526 0.191 35 0.270 16 41 
Carnitine 9 0.000367 1.358 19 2.345 11 73 
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Figure 7. A principle component analysis score plot of the data of 6 control NHLF cell samples 

(untreated) and 6 TGF-β NHLF treated samples. Illustrating great variance present within each group 

(untreated and treated). Since two of the samples from the treated group show the same trend as the 

untreated group, these two samples were identified as outliers and were excluded from statistical analysis 

(treated sample 5 and 6). This figure was generated by using the Excel-based statistical analysis macro 

file described on section 2.9.     

The 24 identified metabolites were cross checked against the identified metabolites from the 

C57BL/6J bleomycin treated mouse model metabolic profile. 17 metabolites were identified as 

significant in both the bleomycin treated mouse model and the NHLF TGF-β treated cell 

samples. A summary of these 17 metabolites can be seen in Table 5.5. Of the 17 metabolites 

only 7 metabolites (highlighted in Table 5) demonstrated the same trend with regards to 

percentage increase/decrease, below a 30% RSD margin. 
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Table 5. Summary of the 17 metabolites identified in both the C57BL/6J Bleomycin treated 

mouse model and the NHLF TGF-β treated cell samples.    

Metabolite 
RSD% 

Bleomycin 
and       

TGF-β 

C57BL/6J Bleomycin treated 
mouse model 

 NHLF TGF-β treated cell 
samples 

QC 
RSD% p-Value % Change  QC 

RSD% p-Value % Change 

Lactic acid 6 14 0.004602 102  3 0.014829 93 
Asparagine 3 6 0.000042 91  5 0.028454 95 
Glutamic Acid 76 4 0.001563 28  10 0.006794 93 
Glutamine 34 15 0.000003 59  12 0.012541 97 
Isoleucine 29 4 0.000118 63  10 0.032980 95 
Phenylalanine 36 7 0.000254 59  19 0.043239 99 
Proline 44 8 0.000068 67  11 0.015208 128 
Tryptophan 22 9 0.000024 51  12 0.014021 70 
Tyrosine 7 10 0.000630 57  21 0.004536 52 
Valine 73 10 0.002892 36  5 0.012023 112 
Methionine 56 9 0.000098 64  14 0.024844 148 
Creatinine 184 7 0.028479 -20  14 0.023444 152 
Uracil 23 7 0.000020 101  14 0.000595 140 
Uridine 25 7 0.002965 118  12 0.000087 82 
Adenosine 227 5 0.016183 -22  9 0.000076 95 
Guanosine 2520 8 0.000320 -47  24 0.006080 53 
Inosine 52 8 0.004120 19  22 0.045526 41 

* The 7 metabolites demonstrating the same trend for percentage change (increase or decrease) 

between the C57BL/6J bleomycin treated mouse model and the TGF-β treated cell samples are indicated 

in bold.  

 

 

 

 

 

 

 

 

 

 

Figure 8. Venn diagram of the identified metabolites within the bleomycin induced fibrotic lung mouse 

model and the TGF-β treated NHLF cell samples. Twenty-six (26) metabolites were identified as 

significant in the C57BL/6J bleomycin treated mouse model and 24 metabolites were identified as 

significant in the NHLF TGF-β treated cell samples. 17 metabolites overlaps within these two groups and 

7 metabolites demonstrate the same trend for percentage increase/decrease.  
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The seven metabolites that demonstrate the same trend for percentage increase/decrease 

between the metabolic profiles of NHLF TGF-β treated cellular cultures and the C57BL/6J 

bleomycin treated mouse model are lactic acid, asparagine, isoleucine, tryptophan, tyrosine, 

uracil and uridine, as shown in Figure 9.  

 
a 

   
b 
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e 

  

F 

 

  
g 

 

Figure 9. The seven metabolites identified as significant in both the C57BL/6J bleomycin treated mouse 

model and the NHLF TGF-β treated cellular model. The following metabolites a) lactic acid, b) 

asparagine, c) isoleucine, d) tryptophan, e) tyrosine, f) uracil and g) uridine have been identified as 

significant in the C57BL/6J bleomycin treated mouse model as well as in the NHLF TGF-β treated cellular 

model’s metabolic profiles. These 7 metabolites demonstrate the same trend with regards to percentage 

increase between these two groups.  
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Lactic acid has previously been identified as a metabolite of interest after the analysis of human 

lung tissue from IPF patients [3,4]. Kottmann et al. [4] identified a connection between lactic 

acid levels and myofibroblast differentiation. Increased concentration of lactic acid was detected 

in a TGF-β treated fibroblast study and lactic acid is associated with TGF-β activation. Lactic 

acid is responsible for lowering the pH of the intracellular environment, generating favourable 

conditions for TGF-β to differentiate to myofibroblasts from fibroblasts [3,4]. This type of 

metabolic dysregulation has been identified in cancer cells and is known as the Warburg effect, 

where a high energy production demand result in the up-regulation of the glycolysis pathway 

and pyruvate is diverted to lactic acid production instead of entering the TCA cycle [21].  

Figure 10. Up-regulation identified in the C57BL/6B bleomycin treated mouse model and TGF-β treated 

NHLF cellular model. This diagram was generated by using information obtained from the Kyoto 

Encyclopaedia of Genes and Genomes data base [25]. 
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Kang et al. [3] identified elevation of other metabolites in IPF human lung tissue, including ATP, 

inosine and hypoxanthine. During this study the detection of ATP was below the LOD. Inosine 

was one of the metabolites identified as significant in both the C57BL/6J bleomycin treated 

mouse model and the NHLF TGF-β treated cellular model but demonstrated a trend of 

percentage increase above the 30% RSD margin. Hypoxanthine was only identified as a 

metabolite of significant in the C57BL/6J bleomycin treated mouse model. The elevation of 

inosine and hypoxanthine has been suggested to be linked to intracellular ATP depletion since 

inosine and hypoxanthine are breakdown products of ATP (see Figure 4) [3]. The depletion of 

intracellular ATP serves as an indication for oxidative stress and hypoxia, resulting in 

mitochondrial damage and induction of apoptosis pathways. 

 

Figure 11. Up-regulation of inosine and hypoxanthine. This representation of ATP depletion and increase 

of inosine and hypoxanthine is similar to the results demonstrated by Kang et al. [3].  
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Glycine, methionine and SAH, important intermediates in the one carbon metabolism pathway 

and methionine cycle [31,32], have also been identified as significant in the C57BL/6J 

bleomycin treated mouse model. The identification of these metabolites as possible biomarkers 

may indicate that a dysregulation in the methionine cycle is present, which in turn can result in 

dysregulation of  methylation of proteins, DNA, RNA and lipids and consequently in 

dysregulated cell proliferation [31,33].   

Figure 12. Dysregulation of asparagine, glycine, proline, arginine, methionine and S-adenosyl-L-

homocysteine. This diagram was generated by using information obtained from the Kyoto Encyclopaedia 

of Genes and Genomes data base [25]. 
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Proline have been identified as significant in both the C57BL/6J bleomycin treated mouse model 

and the TGF-β NHLF cellular model. Proline was identified by Kang et al. [3] as a possible 

biomarker for IPF after lung samples from IPF patients were analysed. Collagen fibrils are the 

most abundant protein in extracellular matrix and excess collagen deposit is associated with the 

progression of IPF. Collagen synthesis is a proline-dependant process, with proline being a 

major amino acid component for collagen. The total hydroxyproline content have previously 

been used to assess the state of lung fibrosis, but an acid hydrolysis of the lung tissue is 

required. Proline can be considered a biomarker of lung fibrosis since an increase in proline 

concentration would suggest an up-regulation in collagen synthesis. The assessment of the 

total hydroxyproline content in the lung tissue was outside of the scope of this study. 

The following amino acids were also identified as significant in the C57BL/6J bleomycin treated 

mouse model: asparagine, glutamic acid, glutamine, isoleucine, leucine, phenylalanine, 

tryptophan, tyrosine and valine. Elevated levels of amino acid in lung tissue have been 

associated with dysregulated cell proliferation [34], since proliferating cells require amino acids 

for both protein synthesis and as a nitrogen source for non-essential amino acid synthesis. 

Elevated levels of glutamine have been identified as a major free amino acid substrate for 

nitrogen and carbon conception [34]. 

4. Conclusion 

Several metabolites were identified as significant in the C57BL/6J bleomycin treated mouse 

model. After comparing the metabolic profile of the C57BL/6J to the metabolic profile of the LPS 

treated mouse model, it can be concluded that the C57BL/6J bleomycin treated mouse model’s 

metabolic profile resembles a fibrotic state. The comparison of the C57BL/6J bleomycin treated 

mouse model’s metabolic profile with the metabolic profile of the TGF-β NHLF cellular model 

revealed substantial correlation. Substantial correlation is also present between the C57BL/6J 

bleomycin treated mouse model’s metabolic profile and recent clinical findings, especially to that 

of Kang et al. [3]. The identified metabolites suggest a dysregulation in the glycolysis pathway 

as well as the methionine cycle. Since IPF is such a complex disease and has been shown to 

be influenced by genetic and environmental factors [32], the key to understanding the etiology 

of IPF might lie at the epigenetic level of lung fibrosis. Epigenetic modifications subjugate all 

aspects of the central dogma and a dysregulation at the epigenetic level can explain the rapid 

progression of lung fibrosis in IPF, since a dysregulation of epigenetic modifications will initiate 

a cascade of dysregulation on all levels of the central dogma.  

To our knowledge, this study is a first with regards to metabolic profiling of the C57BL/6J 

bleomycin treated mouse model for fibrotic lung inducement, to date no comparison has been 

made between the metabolic profiles of the C57BL/6J bleomycin mouse model and a cellular 

model resembling IPF or to human IPF lung tissue. Therefore we hypothesise that the 
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C57BL/6J bleomycin treated mouse model for lung inflammation induction is a suitable animal 

model for the investigation of lung fibrosis and that the key to understanding lung fibrosis lies at 

the epigenetic level and the dysregulation of epigenetic modifications. This hypothesis is 

supported by a recent study done by Guiot et al. [35], who investigated circulating nucleosomes 

and observed a significantly reduced level of cell free nucleosome associated methylated DNA 

(5-methylcytosine) in IPF patients compared to healthy subjects, indicating that a dysregulation 

of epigenetic modification is present [35].   
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Supplementary data 

Table S1. Summary of all the metabolites of interest 
Group Metabolite Formula      Mr        CAS Company 
Glycolysis Glucose C6H12O6 180.063 50-99-7 Sigma 

Fructose-6-Phosphate  C6H13O9P  260.029 26177-86-6 Sigma 
3-Phospho-D-Glycerate     C3H7O7P 185.992 80731-10-8 Sigma 
2-Phosphoglyceric acid  C3H7O7P  185.992 83418-48-8 Sigma 
Phosphoenolpyruvic acid  C3H5O6P  167.982 4265-07-0 Sigma 
Pyruvate C3H4O3 88.016 113-24-6 Sigma 

TCA Oxaloacetic acid C4H4O5 132.006 328-42-7 Sigma 
Citric acid  C6H8O7  192.027 77-92-9 Sigma 
cis-Aconitic acid  C6H6O6  174.016 585-84-2 Sigma 
2-Ketoglutaric acid C5H6O5 146.021 328-50-7 Sigma 
Succinic acid  C4H6O4  118.026 110-15-6 Sigma 
Fumaric acid  C4H4O4  116.011 110-17-8 Sigma 
Malic acid  C4H6O5  134.021 6915-15-7 Sigma 
Glyoxylic acid C2H2O3 74.000 563-96-2 Sigma 
Fructose C6H12O6 180.063 57-48-7 Sigma 
Lactic acid  C3H6O3  90.031 50-21-5 Sigma 

Serine bio-
synthesis 

3-Hydroxybutyrate C4H8O3 104.040 150-83-4 Sigma 
3-Phosphonooxypyruvate  C3H5O7P 183.977 3913-50-6 eNC 
L-Serine-O-Phosphate C3H8NO6P 185.008 407-41-0 Sigma 
Serine C3H7NO3 105.042 56-45-1 Sigma 
Glycine C2H5NO2 75.032 56-40-6 Sigma 

Amino 
acids 

Acetylalanine  C5H9NO3  131.058 97-69-8 Sigma 
Alanine  C3H7NO2  89.0477 56-41-7 Sigma 
Arginine  C6H14N4O2  174.111 74-79-3 Sigma 
Asparagine  C4H8N2O3  132.053 70-47-3 Sigma 
Aspartic acid  C4H7NO4  133.037 56-84-8 Sigma 
Citrulline  C6H13N3O3  175.095 372-75-8 Sigma 
Cysteine  C3H7NO2S  121.019 52-90-4 Sigma 
Cystine C6H12N2O4S2 240.020 56-89-3 Sigma 
Glutamic acid  C5H9NO4  147.053 56-86-0 Sigma 
Glutamine  C5H10N2O3  146.069 56-85-9 Sigma 
Glutathione Oxidized  C20H32N6O12S2  612.152 27025-41-8 Sigma 
Glutathione Reduced  C10H17N3O6S  307.083 70-18-8 Sigma 
Histidine  C6H9N3O2  155.069 71-00-1 Sigma 
Hydroxyproline  C5H9NO3  131.058 51-35-4 Sigma 
Isoleucine  C6H13NO2  131.094 73-32-5 Sigma 
Leucine C6H13NO2  131.094 61-90-5 Sigma 
Lysine  C6H14N2O2  146.105 657-27-2 Sigma 
Phenylalanine  C9H11NO2  165.079 63-91-2 Sigma 
Proline  C5H9NO2  115.063 147-85-3 Sigma 
Taurine  C2H7NO3S  125.014 107-35-7 Sigma 
Threonine  C4H9NO3  119.058 72-19-5 Sigma 
Tryptophan  C11H12N2O2  204.089 73-22-3 Sigma 
Tyrosine  C9H11NO3  181.073 60-18-4 Sigma 
Valine  C5H11NO2  117.079 72-18-4 Sigma 

Methionine 
cycle 

Methionine  C5H11NO2S  149.051 63-68-3 Sigma 
SAM C15H23N6O5S 399.145 86867-01-8 Cayman 
SAH C14H20N6O5S 384.120 979-92-0 Sigma 
Homocysteine C4H9NO2S 135.035 454-29-5 Sigma 
Creatine C4H9N3O2 131.069 6020-87-7 TCI 
Creatinine C4H7N3O 113.059 60-27-5 TCI 
Folic acid C19H19N7O6 441.139 59-30-3 Sigma 

 Tetrahydrofolate C19H23N7O6 445.430 135-16-0 Sigma 
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Table S1 (continued). Summary of all the metabolites of interest 
Group Metabolite Formula      Mr       CAS Company 
Coenzyme Acetyl-CoA C23H38N7O17P3S 809.120 102029-73-2 Sigma 

CoA  C21H36N7O16P3S  767.115 85-61-0 Sigma 
FAD  C27H33N9O15P2  785.157 84366-81-4 Sigma 
NAD  C21H27N7O14P2  663.109 53-84-9 Sigma 
NADP  C21H28N7O17P3  743.075 24292-60-2 Sigma 
NADH C21H29N7O14P2 665.441 606-68-8 Sigma 
NADPH C21H30N7O17P3 745.090 2646-71-1 Sigma 

Nucleobase Adenine  C5H5N5  135.054 73-24-5 Sigma 
Guanine C5H5N5O  151.049 73-40-5 Sigma 
Hypoxanthine  C5H4N4O  136.039 68-94-0 Sigma 
Thymine  C5H6N2O2  126.042 65-71-4 Sigma 
Uracil  C4H4N2O2  112.027 66-2-8 Sigma 
Cytosine C4H5N3O 111.000 71-30-7 Sigma 
Uridine  C9H12N2O6  244.069 58-96-8 Sigma 
Xanthine  C5H4N4O2  152.033 69-89-6 Sigma 

Nucleoside Adenosine  C10H13N5O4  267.097 58-61-7 Sigma 
Guanosine  C10H13N5O5  283.091 118-00-3 Sigma 
Inosine  C10H12N4O5  268.080 58-63-9 Sigma 

Nucleotide ADP  C10H15N5O10P2  427.029 20398-34-9 Sigma 
GDP  C10H15N5O11P2  443.024 43139-22-6 Sigma 
UDP  C9H14N2O12P2  404.002 27821-45-0 Sigma 

Nucleotide 
derivative 

ADP-Glucose  C16H25N5O15P2  589.082 102129-65-7 Sigma 
ADP-Ribose  C15H23N5O14P2  559.071 68414-18-6 Sigma 

Nucleotide ATP  C10H16N5O13P3  506.995 34369-07-8 Sigma 
GTP  C10H16N5O14P3  522.990 36051-31-7 Sigma 
AMP  C10H14N5O7P  347.063 4578-31-8 Sigma 
CMP  C9H14N3O8P  323.051 6757-06-8 Sigma 
GMP  C10H14N5O8P  363.050 5550-12-9 Sigma 
IMP  C10H13N4O8P  348.047 352195-40-5 Sigma 
UMP  C9H13N2O9P  324.035 58-97-9 Sigma 
cAMP  C10H12N5O6P  329.052 60-92-4 Sigma 
cGMP  C10H12N5O7P  345.047 61093-23-0 Sigma 
dAMP  C10H14N5O6P  331.068 653-63-4 Sigma 
dCMP  C9H14N3O7P  307.056 1032-65-1 Sigma 
dTMP  C10H15N2O8P  322.056 3343-62-5 Sigma 

Other Carnitine  C7H15NO3  161.105 6645-46-1 Sigma 
 Orotic acid  C5H4N2O4  156.017 65-86-1 Sigma 

Salicylic acid  C7H6O3  138.032 69-72-7 Sigma 
Ascorbic acid  C6H8O6  176.032 50-81-7 Sigma 
Ketoisovalerate C5H8O3 116.047 3715-29-5 Sigma 
Kynurenine C10H12N2O3 208.213 13441-51-5 Sigma 
3-OH-Kynurenine C10H12N2O4 224.079 2147-61-7 Sigma 
Quinolinic acid C7H5NO4 167.021 89-00-9 Sigma 
Kynurenic acid C10H7NO3 189.042 492-27-3 Sigma 
Pantothenic acid C9H17NO5 219.110 137-08-6 Sigma 
Maleic acid C4H4O4  116.010 110-16-7 Sigma 
Ketoleucine C6H10O3 130.060 816-66-0 Sigma 
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Table S2. Summary of all the IS used  
Group Metabolite     Mr      CAS Company Solvent 
Glycolysis D-Glucose-13C6 186.11 110187-42-3 Sigma Water 
 D-Fructose-13C6 186.11 201595-65-5 Sigma Water 
Amino 
acids 
 
 

L-Serine-13C3,15N,2,3,3-d3 112.08  Sigma Water 
L-Glutamic acid-13C5 152.09  Sigma Water 
Glycine-C13 76.06  Sigma Water 
L-Isoleucine-13C6,15N 138.12  Sigma Water 
L-Leucine-5,5,5-d3 134.19 87828-86-2 Sigma Water 
L-Lysine-4,4,5,5-d4 186.67  Sigma Water 
L-Phenyl-d5-alanine 170.22  Sigma Water 
Thymine-d4 (methyl-d3,6-d1) 130.14 156054-85-2 Sigma Water 
Tryptophan D5 209.26  Sigma DMSO 

Coenzyme Acetyl-1,2-13C2 coenzyme A 811.56  Sigma Water 
Nucleobase 2-(Methyl-13C,d3-thio)adenine 185.23 1216721-76-4 Sigma DMSO 
Nucleoside [1',2',3',4',5'-13C5]adenosine 272.21 159496-13-6 Omicron Water 
Nucleotide Adenosine-15N5 5′-monophosphate 352.19  Sigma Water 
 Adenosine-15N5 5′-triphosphate 512.15  Sigma Water 
Other Quinolinic acid-4,5,6-D3 170.14 138946-42-6 Buchem  DMSO 

D4-Kynurenine 212.24 194546-33-3 Buchem DMSO 
Kynurenic acid-3,5,6,7,8-d5 194.20  Sigma DMSO 
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Table S3. Summary of all the MS parameters for the different metabolites included in the method 

 
  

Group Metabolite Formula Mr 
[M+H]+ 

(m/z) 
[M+H]- 

(m/z) 
Product 
ion (m/z) 

DP 
(V) 

CE 
(V) 

RT   
(min) Internal Standard 

 
Glycolysis 
 

Glucose C6H12O6 180.063  178.957 89.000 -55 -12 4.38 C13-Glucose  
Fructose-6-Phosphate  C6H13O9P  260.029 261.036  109.028 20 20 11.98 D3-Quinolinic acid POS 
3-Phospho-D-Glycerate     C3H7O7P 185.992 187.000  140.900 20 15 14.40 D3-Quinolinic acid POS 
2-Phosphoglyceric acid  C3H7O7P  185.992 187.001  98.984 20 40 15.20 D3-Quinolinic acid POS 
Phosphoenolpyruvic acid  C3H5O6P  167.982  166.974 78.958 -20 -20 12.18 D5-Glutamic acid NEG 
Pyruvate C3H4O3 88.016  86.787 42.970 -25 -10 11.47 D5-Glutamic acid NEG 

TCA 
 

Oxaloacetic acid C4H4O5 132.006  131.000 86.975 -65 -16 11.44 D5-Glutamic acid NEG 
Citric acid  C6H8O7  192.027  191.019 111.008 -20 -20 13.8 D3-Quinolinic acid NEG 
cis-Aconitic acid  C6H6O6  174.016  173.009 85.029 -20 -20 11.46 D5-Glutamic acid NEG 
2-Ketoglutaric acid C5H6O5 146.021  145.014 100.900 -42 -11 11.97 D5-Glutamic acid NEG 
Succinic acid  C4H6O4  118.026  117.019 73.029 -20 -40 12.00 D5-Glutamic acid NEG 
Fumaric acid  C4H4O4  116.011  115.000 71.000 -20 -20 11.97 D5-Glutamic acid NEG 
Malic acid  C4H6O5  134.021  133.013 71.014 -20 -40 11.91 D5-Glutamic acid NEG 
Glyoxylic acid C2H2O3 74.000  72.800 45.000 -30 -12 12.52 D5-Glutamic acid NEG 
Fructose C6H12O6 180.063  178.957 89.000 -55 -12 3.76 C13-Fructose 
Lactic acid  C3H6O3  90.031  88.900 42.800 -50 -15 6.52 C13-Serine NEG 

Serine bio-
synthesis 
 

3-Hydroxybutyrate C4H8O3 104.040  102.895 59.042 -10 -12 6.20 C13-Serine NEG 
3-Phosphonooxypyruvate  C3H5O7P 183.977  182.900 78.869 -55 -40 13.90 D3-Quinolinic acid NEG 
L-Serine-O-Phosphate C3H8NO6P 185.008 186.000  88.200 20 20 12.11 D3-Quinolinic acid POS 
Serine C3H7NO3 105.042 105.700  60.000 35 15 6.40 C13-Serine POS 
Glycine C2H5NO2 75.032 76.040  29.700 20 20 6.02 C13-Glycine 

Amino 
acids 
 

Acetylalanine  C5H9NO3  131.058  130.050 88.040 -20 -20 6.61 C13-Serine NEG 
Alanine  C3H7NO2  89.0477 89.800  62.200 20 9 5.58 D5-Tryptophan 
Arginine  C6H14N4O2  174.111 175.119  70.067 20 20 6.95 D5-Kynurenic acid 
Asparagine  C4H8N2O3  132.053 133.061  74.020 20 20 6.41 C13-Serine POS 
Aspartic acid  C4H7NO4  133.037 133.986  43.010 91 61 9.19 D5-Glutamic acid POS 
Citrulline  C6H13N3O3  175.095 176.104  70.066 20 20 6.14 C13-Glycine 
Cysteine  C3H7NO2S  121.019 122.028  58.996 20 40 6.95 D5-Kynurenic acid 
Cystine C6H12N2O4S2 240.020 241.235  74.000 66 31 10.17 D5-Glutamic acid POS 
Glutamic acid  C5H9NO4  147.053 148.100  84.000 65 20 9.28 D5-Glutamic acid POS 
Glutamine  C5H10N2O3  146.069 147.077  84.045 20 20 6.15 C13-Glycine 
Glutathione Oxidized  C20H32N6O12S2  612.152  611.144 306.075 -20 -20 12.04 D5-Glutamic acid NEG 
Glutathione Reduced  C10H17N3O6S  307.083  306.076 143.046 -20 -20 11.63 D5-Glutamic acid NEG 
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Table S3 (continued). Summary of all the MS parameters for the different metabolites included in the method 

 

Group Metabolite Formula Mr 
[M+H]+ 

(m/z) 
[M+H]- 

(m/z) 
Product 
ion (m/z) 

DP 
(V) 

CE 
(V) 

RT   
(min) Internal Standard 

Amino 
acids 
 

Histidine  C6H9N3O2  155.069 156.077  110.071 20 20 6.60 D5-Kynurenic acid 
Hydroxyproline  C5H9NO3  131.058 131.955  86.000 76 9 5.42 D5-Phenylalanine 
Isoleucine  C6H13NO2  131.094 132.102  86.097 20 10 4.30 N15-Isoleucine 
Leucine C6H13NO2  131.094 132.100  44.049 20 40 4.23 C13-Adenosine  
Lysine  C6H14N2O2  146.105 147.113  84.081 20 20 7.72 D3-Lysine 
Phenylalanine  C9H11NO2  165.079 166.087  120.081 20 20 4.81 D5-Phenylalanine 
Proline  C5H9NO2  115.063 116.071  70.066 20 40 5.30 D5-Tryptophan 
Taurine  C2H7NO3S  125.014 126.023  64.969 20 40 5.84 C13-Glycine 
Threonine  C4H9NO3  119.058 120.066  56.050 20 40 6.05 C13-Glycine  
Tryptophan  C11H12N2O2  204.089 205.098  146.059 20 20 4.96 D5-Tryptophan 
Tyrosine  C9H11NO3  181.073 182.082  91.055 20 40 5.76 D5-Tryptophan 
Valine  C5H11NO2  117.079 118.087  72.081 20 10 4.89 D5-Tryptophan 

Methionine 
cycle 
 

Methionine  C5H11NO2S  149.051 150.059  104.053 20 10 5.02 D5-Tryptophan 
SAM C15H23N6O5S 399.145 400.196  251.085 51 21 6.27 C13-Glycine  
SAH C14H20N6O5S 384.120 385.074  136.062 20 21 6.69 D5-Kynurenic acid 
Homocysteine C4H9NO2S 135.035 136.040  90.030 10 15 4.22 N15-Isoleucine 
Creatine C4H9N3O2 131.069 132.056  90.050 10 17 5.10 D5-Phenylalanine 
Creatinine C4H7N3O 113.059 114.069  44.100 10 21 2.29 D3- Adenine  
Folic acid C19H19N7O6 441.139 442.180  295.093 20 21 16.00 C13-Acetyl-CoA POS 
Tetrahydrofolate C19H23N7O6 445.430 446.262  299.139 10 27 11.97 D3-Quinolinic acid POS 

Coenzyme 
 

Acetyl-CoA C23H38N7O17P3S 809.120  808.117 408.000 -200 -50 16.23 C13-Acetyl-CoA NEG 
CoA  C21H36N7O16P3S  767.115  766.107 407.800 -200 -48 15.72 C13-Acetyl-CoA NEG 
FAD  C27H33N9O15P2  785.157 786.165  348.069 20 20 12.02 D3-Quinolinic acid POS 
NAD  C21H27N7O14P2  663.109 664.117  136.061 20 40 9.53 D5-Glutamic acid POS  
NADP  C21H28N7O17P3  743.075 744.083  136.061 20 40 14.41 D3-Quinolinic acid POS 
NADH C21H29N7O14P2 665.441 666.128  136.060 20 40 11.62 D3-Quinolinic acid POS 
NADPH C21H30N7O17P3 745.090 746.099  729.018 200 25 15.97 N15-ATP 

Nucleobase 
 

Adenine  C5H5N5  135.054 136.062  119.035 20 20 3.34 C13-Adenosine 
Guanine C5H5N5O  151.049 152.057  135.030 20 20 4.56 D4-Kynurenine 
Hypoxanthine  C5H4N4O  136.039 137.047  55.029 20 40 5.08 D5-Tryptophan 
Thymine  C5H6N2O2  126.042  124.800 42.000 -35 -36 1.65 D3-Tymine 
Uracil  C4H4N2O2  112.027  111.019 41.998 -20 -20 1.98 D3-Tymine 
Cytosine C4H5N3O 111.000 112.030  52.010 61 41 2.95 C13-Adenosine 
Uridine  C9H12N2O6  244.069 245.077  113.035 20 20 2.75 C13-Adenosine  
Xanthine  C5H4N4O2  152.033 153.041  110.035 20 20 9.20 D5-Glutamic acid POS 
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Table S3 (continued). Summary of all the MS parameters for the different metabolites included in the method 

 

  

Group Metabolite Formula Mr 
[M+H]+ 

(m/z) 
[M+H]- 

(m/z) 
Product 
ion (m/z) 

DP 
(V) 

CE 
(V) 

RT   
(min) Internal Standard 

Nucleoside 
 

Adenosine  C10H13N5O4  267.097 268.105  136.200 20 23 2.69 C13-Adenosine 
Guanosine  C10H13N5O5  283.091 284.099  152.050 20 20 5.14 D5-Tryptophan 
Inosine  C10H12N4O5  268.080 269.100  137.100 70 17 5.65 D5-Tryptophan 

Nucleotide 
 

ADP  C10H15N5O10P2  427.029 428.037  136.060 20 40 14.75 N15-ATP  
GDP  C10H15N5O11P2  443.024  442.017 78.959 -20 -40 16.36 C13-Acetyl-CoA NEG 
UDP  C9H14N2O12P2  404.002  402.994 158.920 -20 -40 15.04 D3-Quinolinic acid NEG 

Nucleotide 
derivative 

ADP-Glucose  C16H25N5O15P2  589.082 590.090  136.060 20 20 11.96 D3-Quinolinic acid POS 
ADP-Ribose  C15H23N5O14P2  559.071 560.079  136.060 20 40 11.45 D3-Quinolinic acid POS 

Nucleotide 
 

ATP  C10H16N5O13P3  506.995 508.004  136.060 20 40 18.24 N15-ATP 
GTP  C10H16N5O14P3  522.990  521.983 158.920 -155 -50 13.59 D3-Quinolinic acid NEG 
AMP  C10H14N5O7P  347.063 347.900  136.300 40 25 12.24 N15-AMP 
CMP  C9H14N3O8P  323.051 324.059  112.050 20 20 12.08 D3-Quinolinic acid POS 
GMP  C10H14N5O8P  363.050 364.066  152.050 20 20 13.33 D3-Quinolinic acid POS 
IMP  C10H13N4O8P  348.047 349.055  137.046 20 20 12.29 D3-Quinolinic acid POS 
UMP  C9H13N2O9P  324.035 325.044  97.020 20 20 12.25 D3-Quinolinic acid POS 
cAMP  C10H12N5O6P  329.052 330.060  136.060 20 20 9.19 D5-Glutamic acid POS 
cGMP  C10H12N5O7P  345.047 346.055  152.050 20 20 10.07 D5-Glutamic acid POS 
dAMP  C10H14N5O6P  331.068 332.076  136.060 20 20 12.28 N15-AMP 
dCMP  C9H14N3O7P  307.056 308.065  112.050 20 20 12.06 D3-Quinolinic acid POS 
dTMP  C10H15N2O8P  322.056 323.064  81.000 20 25 12.02 D3-Quinolinic acid POS 

Other 
 
 

Carnitine  C7H15NO3  161.105 162.310  102.909 31 23 5.43 D5-Tryptophan 
Orotic acid  C5H4N2O4  156.017  155.009 111.010 -20 -20 7.27 C13-Serine NEG 
Salicylic acid  C7H6O3  138.032  137.024 93.030 -20 -20 4.66 Glucose C13 
Ascorbic acid  C6H8O6  176.032  174.830 86.900 -200 -28 9.28 D5-Glutamic acid NEG 
Ketoisovalerate C5H8O3 116.047  114.847 70.924 -5 -10 4.93 C13-Glucose  
Kynurenine C10H12N2O3 208.213 209.100  192.000 20 24 4.73 D4-Kynurenine 
3-OH-Kynurenine C10H12N2O4 224.079 225.100  208.000 40 13 6.06 C13-Glycine  
Quinolinic acid C7H5NO4 167.021 168.000  78.000 20 28 12.2 D3-Quinolinic acid POS 
Kynurenic acid C10H7NO3 189.042 190.100  144.100 40 25 6.51 D5-Kynurenic acid 
Pantothenic acid C9H17NO5 219.110 220.200  90.100 90 21 6.99 D5-Kynurenic acid 
Maleic acid C4H4O4  116.010  115.000 71.000 -20 -20 11.97 C13-Glutamic acid NEG 
Ketoleucine C6H10O3 130.060  128.986 85.079 -10 -12 15.00 D3-Quinolinic acid NEG 
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Table S4. MS parameters of all the internal standards included in the method 

 

 

Group Metabolite   Mr 
[M+H]+ 

(m/z) 
[M+H]- 

(m/z) 
Product 
ion (m/z) 

DP        
(V) 

CE         
(V) 

RT      
(min) 

Conc. 
Used 

(ng/mL) 
Glycolysis D-Glucose-13C6 186.11  185.024 91.673 -80 -12 4.38 991.97 
 D-Fructose-13C6 186.11  185.024 91.673 -80 -12 3.76 1116.66 
Amino 
acids 
 
 

L-Serine-13C3,15N,2,3,3-d3 POS 112.08 113.000  66.080 10 15 6.40 1494.03 
L-Serine-13C3,15N,2,3,3-d3 NEG 112.08  110.870 77.990 -20 -16 6.40 1494.03 
L-Glutamic acid-13C5 POS 152.09 153.000  87.900 10 21 9.28 2027.36 
L-Glutamic acid-13C5 NEG 152.09  151.000 107.100 -15 -18 9.28 2027.36 
Glycine C13 76.06 77.200  31.000 20 20 6.02 50655.96 
L-Isoleucine-13C6,15N 138.12 139.034  92.098 31 13 4.30 921.26 
L-Leucine-5,5,5-d3 134.19 135.044  89.127 46 13 4.23 895.05 
L-Lysine-4,4,5,5-d4 186.67 151.068  88.100 36 21 7.72 12445.29 
L-Phenyl-d5-alanine 170.22 171.045  125.115 31 17 4.81 1135.37 
Thymine-d4 (methyl-d3,6-d1) 130.14  128.900 42.010 -10 -30 1.65 868.03 
Tryptophan-D5 209.26 210.100  122.100 86 21 4.96 1395.76 

Coenzyme Acetyl-1,2-13C2 Coenzyme A POS 811.56 812.130  305.130 200 50 16.23 54078.70 
 Acetyl-1,2-13C2 Coenzyme A NEG 811.56  810.125 463.050 -200 -50 16.23 54078.70 
Nucleobase 2-(Methyl-13C,d3-thio) adenine 185.23 186.200  134.000 26 15 1.93 1235.48 
Nucleoside [1',2',3',4',5'-13C5]adenosine 272.21 114.069  44.100 64 27 2.69 182.38 
Nucleotide Adenosine-15N5 5′-monophosphate 352.19 352.948  141.079 56 23 12.24 23480.51 
 Adenosine-15N5 5′-triphosphate 512.15 513.000  141.000 20 40 18.24 3416.04 

Other 
Quinolinic acid-4,5,6-D3 POS 170.14 171.000  81.000 20 28 12.20 1134.83 
Quinolinic acid-4,5,6-D3 NEG 170.14  169.026 125.031 -10 -27 12.20 1134.83 
D4-Kynurenine 212.24 213.100  140.100 20 13 4.73 1415.64 
Kynurenic acid-3,5,6,7,8-d5 194.20 195.100  149.100 40 25 6.51 1295.31 
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CHAPTER 6: SUMMARY AND FUTURE 
PROSPECTS 

6.1 Summary  

A need for an investigation into complex diseases such as IPF is growing. Due to the unknown 

nature of the pathogenesis of IPF, the short survival duration (2 to 3 years after diagnosis), and 

the limited effective treatment available, alternative approaches to characterising IPF is vital. 

The application of metabolomics have effected great advances in such investigations 

(Cuperlovic-Culf & Culf, 2016; Lu & Chen, 2017), especially when metabolic profiling 

approaches are used. Metabolic profiling has provided new insight into the pathogenesis of 

diseases such as asthma and COPD, as well as the identification of new therapeutic 

approaches. Although metabolomics is a great tool, there are still shortcomings to address, 

such as the lack of a total comprehensive approach and a standardised sample preparation 

procedure.  

Therefore during this study, a targeted LC-MS/MS based method for metabolic profiling was 

established together with a sample preparation method suitable for various matrices.  

In summary the aim and objectives of the study were:  

1. The development of a standardised LC-MS/MS method for targeted metabolic profiling. 

2. Establishment of a standardised sample preparation and metabolite extraction 

procedure suitable for various matrices. 

3. Validation of the developed method by generating a metabolic profile for a bleomycin 

induced lung fibrosis C57BL/6L mouse model. 

6.1.1 Method development  

The first aim of the study was addressed through the development of the LC-MS/MS method. A 

HILIC method was developed with the use of the Luna NH2 column (2 mm x 150 mm, 5 µm, 

100 Å). A hundred (100) metabolites can be identified using this method in a scheduled MRM 

mode, with adequate accuracy and precision. The quality assessment that was performed on 

the analytical aspects of the LC-MS/MS method demonstrated acceptable linearity, precision 

and accuracy without carryover. From the quality assessment it was clear that the method could 

be employed for the generation of metabolic profiles for any disease state.  
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6.1.2 Standardised sample preparation  

As part of the study a standardised sample preparation and metabolites extraction procedure 

that is non-selective, simple and robust was established. Various matrices, originating from 

three healthy C57BL/6J mice and fibroblasts from human donors were tested to determine the 

detectability of the different metabolites. Since the presence and detectability of the metabolites 

differ within the different matrices, not all metabolites were detected in all matrices. After the 

inter- and intra-day accuracy and precision quality assessment of the analytical aspects of the 

developed method, it was clear that some metabolites may be responsible for bias in the 

results. This issue was addressed with the implementation of an adequate quality control 

procedure performed with each analysis, eliminating any metabolites that are found to be 

unstable during the analysis. 

6.1.3 Metabolic profile for a fibrotic lung C57BL/6L mouse model  

As validation of the developed method, a metabolic profile for a fibrotic lung animal model was 

generated. This was achieved by comparing the abundance of the detectable metabolites in 

healthy lung samples against bleomycin induced fibrotic lung samples. After statistical analysis 

was performed 26 metabolites were identified as significant (p-values < 0.05). Since bleomycin 

exposure involves a fibrotic response as well as an inflammatory response, a cross analysis to a 

LPS mouse model was performed to establish whether or not the identified metabolites were a 

result of fibrosis or a consequence of inflammation. After cross analysis five metabolites 

overlapped between these two groups but none of the five metabolites demonstrated the same 

trend with regards to percentage increase/decrease. A metabolic profile was also generated for 

a TGF-β treated NHLF cellular model. The 24 significant metabolites within the cellular model 

were cross analysed with the bleomycin treated mouse model and 17 metabolites overlapped 

between these two groups. Of the 17 metabolites, seven metabolites demonstrated the same 

trend with regards to percentage increase/decrease with a 30% RSD margin. The seven 

metabolites identified as significant demonstrated an up regulation towards the healthy group 

and are: lactic acid, asparagine, isoleucine, tryptophan, tyrosine, uracil and uridine. With the 

substantial correlation between the C57BL/6J bleomycin treated mouse model’s metabolic 

profile and that of the TGF-β NHLF cellular model, as well as to literature, the identified 

metabolites can be potential biomarkers for IPF.   

6.2 Conclusion 

With the identification of several metabolites, including lactic acid, inosine, hypoxanthine, 

methionine, SAH and non-essential amino acids proline and asparagine, in the C57BL/6J 

bleomycin treated mouse model and the substantial correlation to the TGF-β treated NHLF 

cellular model as well as to literature (Kang et al., 2016; Kottmann et al., 2012), these 
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metabolites can potentially be assigned as biomarkers for lung fibrosis. Validation of these 

metabolites would have to be done to determine whether or not these metabolites are 

biomarkers of IPF. The identification of the dysregulation in the methionine cycle suggests that 

an understanding of the pathogenesis of lung fibrosis may lie at the epigenetic level.  

This study is a first with regards to metabolic profiling of the C57BL/6J bleomycin induced 

fibrotic lung mouse model. To our knowledge, there has to date not been a comparison made 

between the metabolic profiles of the C57BL/6J bleomycin mouse model and a cellular model 

resembling IPF or to human IPF lung tissue. With the results generated by this study we 

hypothesise that the C57BL/6J bleomycin treated mouse model for lung inflammation induction 

is a suitable animal model for the investigation of lung fibrosis and that the key to understanding 

lung fibrosis lies at an epigenetic level and the dysregulation of epigenetic modifications. Our 

hypothesis is supported by a recent study done by Guiot et al. (2017). The study done by Guiot 

et al. (2017) involved an investigation of circulating nucleosomes. These authors observed a 

significant reduction in cell free nucleosome level associated with methylated DNA (5-

methylcytosine) in IPF patients compared to healthy subjects, indicating that a dysregulation of 

epigenetic modification is present. 

During this study an LC-MS/MS targeted metabolic profiling method was established together 

with a sample preparation procedure that is non-selective. The quality assessment of the 

developed method demonstrated that the method is sensitive, robust, reproducible and 

compatible for various matrices from different origins. This method can be used in future 

metabolic profiling studies for characterising any disease state. The metabolic profile of a fibrotic 

lung animal model was established during this study and yielded important information, 

contributing to a better understanding of the fibrotic lung animal model and how the model 

correlates to the human fibrotic lung condition. Potential biomarkers were identified for lung 

fibrosis and the identification of the dysregulation in the methionine cycle suggested that lung 

fibrosis may lie at the epigenetic level. Not only was a comparison made between the metabolic 

profile of the C57BL/6J bleomycin treated mouse model and the TGF-β treated normal human 

lung fibroblasts model but also to an LPS treated lung inflammation mouse model. This 

contributes to a better understanding of the differences and similarities that are present between 

the metabolic profiles of the bleomycin treated fibrotic lung mouse model and the LPS treated 

lung inflammation model. From the knowledge gained in this study about the metabolic profile of 

the fibrotic lung animal model and potential biomarkers for lung fibrosis, further studies can be 

performed especially in the field of epigenetics and epigenetic modification to determine the 

cause of IPF and identify a treatment plan.            
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6.3 Future prospects 

As contribution to future developments for IPF characterisation, the following suggestions are 

made: 

• Firstly, the findings in this study should be validated since sample size was limited during 

the study.  

• Together with the validation of the findings of this study, the identified metabolites should 

be validated to determine if one or more these metabolites can be assigned as 

biomarker(s) for a fibrotic lung animal model. It must also be investigated if these 

metabolites are also biomarkers for IPF by analysing lung samples from human IPF 

patients. The metabolites identified as significant in this study is based on the observed 

increased levels of the metabolites in the treated group. Therefore, a comparison should 

be made between lung samples from IPF patients and the findings in this study to 

evaluate whether or not this up regulation can be seen in IPF.   

• During this study the methionine cycle was identified as dysregulated and future studies 

could incorporate other -omics platforms including epigenetics to determine the influence 

of the dysregulated methionine cycle and how it contributes to the pathogenesis of IPF. 

• This study provided key information for the characterisation of the C57BL/6J bleomycin 

treated mouse model for fibrotic lung induction. This information can be used for 

optimisation of the bleomycin model to ensure accurate representation of IPF in the 

animal model.  

• A future study should include the investigation of plasma biomarker identification for the 

C57BL/6J bleomycin model. It would be greatly beneficial if the identified biomarkers, 

with the dysregulated levels, can be identified in plasma as well. This would provide the 

opportunity to study the progression of lung fibrosis and get a better understanding of 

the pathogenesis of the disease. 

• Since IPF is characterised by multiple aspects contributing to the progression of the 

disease such as alveolar epithelial cell injury, proliferation of activated fibroblasts and 

myofibroblasts, and accumulation of the extracellular matrix that stiffens the lung and 

leads to respiratory failure, it would be beneficial to gain an -omics overview of each 

aspect. Biomarker identification (metabolites, lipids, proteins, etc.) should be performed, 

using all omics platforms, for each aspect separately (epithelial cell injury, proliferation, 

myofibroblasts differentiation and the extracellular matrix accumulation). This could 

provide new insight into therapeutic approaches.  
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