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ABSTRACT 

This thesis, entitled: “A metabolomics investigation of Fibromyalgia Syndrome”, deals with 

Fibromyalgia Syndrome (FMS), a chronic widespread pain disorder with an estimated 

prevalence of 3.2% in the South African general population. Currently, the pathophysiology 

of FMS is uncertain, and is difficult to diagnose because diagnosis is based, almost 

completely, on patient feedback. No putative biomarkers have been described for this 

disorder, as of yet. The quest to identify reliable biomarkers for definitive diagnosis and 

monitoring of disease progression forms an important aspect of FMS research. 

I present here an extensive metabolomics investigation using a clinically, well described 

FMS group in a thesis structured into three sections. 

Section one contains three chapters that primarily cover my study and the literature. Chapter 

1 gives an overview of the thesis and describes the content of each chapter. Chapter 2 is the 

review on FMS from a clinical aspect. Here I define pain, from a biochemical view, and 

discuss the different kinds of pain associated with FMS. Chapter 2 also includes the detailed 

information on the clinical profile of the FMS patients, as well as information on the controls. 

Against this background I formulated my biological question: “Is there a metabolic 

perturbation in FMS that may subsequently be used to establish a pain profile for the 

disorder and to identify a biomarker or biosignature for FMS?”. Chapter 3 is a review of the 

genetic component of FMS and I also introduce the investigative method employed in this 

study. Chapter 3 also reviews the three, key publications of the only other investigations that, 

likewise, studied FMS from a metabolomics aspect, during the course of my study. 

Section two (Chapter 4) I present an untargeted proton magnetic resonance (1H NMR) 

spectroscopy study on the urine of FMS patients and controls. This holistic 1H-NMR 

metabolomics approach proved to be useful in that the findings revealed that my FMS cohort 

was metabolically distinguishable from my controls on the basis of their urinary metabolic 

profiles. 

Section three (Chapter 5) focuses on a semi-targeted gas chromatography-mass 

spectrometry (GC-MS) study of the same FMS patients and control cohort as that in Chapter 

4, with urine once more being used as the sample material. This was a follow-up study that 

was conducted on the basis of the findings from the 1H-NMR study in Chapter 4. Outcomes 

of this GC-MS study revealed further insights on the disorder, FMS, and we speculated a 

further mechanism that may underlie the pathophysiology of FMS. 
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In the last section (Chapter 6), I discuss the achievements of this thesis. Here, I address the 

aims and objectives of this thesis and discuss the new mechanism we hypothesize to play a 

role in FMS pathophysiology, that may give rise to the phenotype observed in FMS. I 

conclude this study by speculating that 2-hydroxyisobutyric acid may be a potential putative 

biomarker for the metabolic perturbation occurring in FMS, as well as other diseases, as 

discussed in a brief overview. 

 

Keywords: Fibromyalgia syndrome (FMS), pain, central sensitization, irritable-bowel 

syndrome (IBS), dysbiosis, gut-brain axis, metabolomics, proton magnetic resonance (1H-

NMR) spectroscopy, gas chromatography-mass spectrometry (GC-MS), 2-hydroxyisobutyric 

acid (2-HIBA) 

 

Format: This thesis is presented in article format and meets the requirements set out by the 

North-West University, Potchefstroom campus. Thus, the following full, peer-reviewed 

papers (1 published and 2 submitted for review) form part of this thesis: 

1) Malatji, B.G., Meyer, H., Mason, S., Engelke, U.F., Wevers, R.A., Reenen, M. and 

Reinecke, C.J., 2017. A diagnostic biomarker profile for fibromyalgia syndrome 

based on an NMR metabolomics study of selected patients and controls. BMC 

Neurology, 17(1), 88–102. 

2) Malatji, B.G., Mienie, L.J., Wevers, R.A., Meyer, H.P., Mason, S., van Reenen, M. 

and Reinecke, C.J. The GC-MS metabolomics signature in patients with 

Fibromyalgia Syndrome directs to dysbiosis as an aspect contributing factor of FMS 

pathophysiology (submitted to BMC Neurology). 

3) Malatji, B.G., Mason, S., Wevers, R.A., Engelke, U.F.H., van Reenen, M and 

Reinecke, C.J. Alpha-hydroxyisobutyric acid: An overview and focus on fibromyalgia 

syndrome (submitted to Biomarker Research).
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CHAPTER 1: INTRODUCTION TO STUDY 

 

Fibromyalgia (FM), also known as Fibromyalgia Syndrome (FMS), is recognized to be a 

chronic pain syndrome. Professor Helgard Meyer, primary clinician and co-supervisor of this 

study, states that “the primary care doctor, having a better understanding of the 

biopsychosocial background of the patient, is in the best position to manage patients with 

FM” (Meyer 2006). This view of Meyer’s concurs with those expressed at the recent 

Congress of the European Pain Federation (EFIC), held in Copenhagen, 6–9 September 

2017 (Perrot 2017). Until 1980, FMS was mainly regarded as a psychological condition, but 

things changed. In 1990, the American College of Rheumatology (ACR) first approved 

criteria for fibromyalgia — “The American College of Rheumatology 1990 criteria for the 

classification of fibromyalgia” (Wolfe et al., 1990), although the ACR endorsed in 2010 the 

Symptoms Severity Scale as an alternative approach to identify FMS (Wolfe et al., 2010), 

generally known as the 2010/2011 criteria. Increased new insights on FMS again led to 

revisions, resulting in the 2016 revision of criteria to diagnose and classify FMS (Wolfe et al., 

2016). Virtually no information on chronic pain epidemiology was, until recently, available for 

South Africa as is common in many developing countries (Chopra & Abdel-Nasser 2008; 

Derman et al., 2011). However, things changed in South Africa: a validated South African 

Pain Catastrophizing Scale (SA-PCS) recently became available and proved to be a 

valuable tool to assess FMS in a multicultural population, as prevails in South Africa (Morris 

et al., 2012). 

At the time when the present study was designed, the research consortium opted for 

application of the 1990 criteria of the ACR, which was the most widely accepted international 

practice at that stage, for the diagnosis of FMS. These criteria emphasized chronic and 

widespread musculoskeletal pain (including pain in the axial skeleton) in the presence of 

pain on at least 11 of 18 specified tender point sites with digital palpation of 4 kg/cm2 (Wolfe 

et al., 1990). Within this framework, our FMS patient population was homogeneous with 

regard to gender (female) and ethnicity (white). All patients were selected by Professor 

Helgard Meyer, Head of the Department of Family Practice, Faculty of Health Sciences, 

University of Pretoria. 

The initiative for the present study on FMS was taken by a consortium under the auspices of 

the Nuclear Technologies in Medicines and Bioscience Initiative (NTeMBI) of the South 

African Nuclear Energy Corporation Limited (NECSA). The consortium consisted of NECSA, 

Biosequences (Pty) Ltd, the Centre for Genomic and Proteomic Research (CPGR), the 
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Clinicians Group and North-West University (NWU–Potchefstroom Campus). The 

Consortium Agreement was approved by NECSA on 26 October 2011 and provided, 

amongst other benefits, for an MSc bursary, managed on behalf of the National Research 

Foundation (NRF), by NTeMBI [Consortium Agreement, Clause 14]. The bursary was 

allocated to me, then Miss Bontle Molusi, aimed to conduct a “prototype project 

(fibromyalgia) as a focused approach” to consider required elements towards the ultimate 

aim of the consortium. The ultimate aim was to develop imaging biomarkers using 

radiolabels, to formulate and validate novel key candidate genetic (genomics investigation by 

the CPGR) or biochemical biomarkers (metabolomics investigation reported on here) and 

infer additional markers for routine diagnostic workup. The original research approach 

consisted of a pilot study, covering several aspects related to FMS. The flow diagram, 

patient and control groups, and initial outcomes at November 2012 are shown in Figure 1.1. 

The genotyping analysis was conducted by Dr H.P. Mbongwa, but no clear indications of 

FMS-specific polymorphisms — (1) 5-HT2A receptor polymorphism and (2) the 

catecholamine O-methyl transferase (COMT) polymorphism — could be detected in the 

present FMS patient group. My original amino acid metabolomics analysis, likewise, did not 

prove to give clear indications of diagnostic biomarkers (results not shown in this thesis), 

although three cases were suspected to be related to asymptomatic inborn errors of 

metabolism (IEM). A neurotransmitters analysis (e.g. involving gamma-aminobutyric acid) 

was subsequently performed in collaboration with Dr Nico Abeling of the Laboratory for 

Genetic and Endocrine Diseases (LGMD) at the Academic Medical Centre (AMC) of the 

University of Amsterdam (25 March to 6 April 2012), using a high performance-liquid 

chromatography (HPLC) separation procedure coupled to a fluorescence detector. 

Bioinformatics analysis on the complete normalized data set did not indicate a clear 

perturbation in the DOPA pathway, and any indications of dysregulated neurotransmitter 

function most probably reflected a stress-related profile, not necessarily specific for FMS. 

The outcome of the organic acid metabolomics analysis, done at the Metabolomics Platform 

of the Technological Innovation Agency (TIA, previously BioPAD), hosted in our laboratory at 

NWU, proved to present potential important markers for FMS (Figure 1.2). The content and 

volume of results obtained thus warranted its presentation for an MSc thesis, which I 

submitted to NWU in 2012. Owing to the depth of the potential information that could be 

extracted further from my MSc data, I was advised to apply for upgrading of the MSc to a 

PhD, which was approved by the Faculty Board of NWU. I was notified on 21 October 2013 

by NTemBI that they likewise approved the upgrading of the NRF bursary to the doctoral 

level. 
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Figure 1.1: Flow diagram of the original experimental procedure followed to identify potential 
biomarkers for FMS, drafted November 2012. 
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Figure 1.2: Preliminary two-dimensional PCA score plots for the urinary organic acids of the 
control groups (black) CF (A), CN (B) and CO (C) versus the FMS patient group (red), 
indicated as Pre, derived from my concept MSc thesis. From this figure, it is clear that a 
separation is visible between the patient group and the controls. The best total natural 
separation, however, can be seen between the CO and Pre groups (figure C). The CO group 
comprises controls that have no familial relation to the FMS patients. As such, this natural 
separation points to the notion of a possible presence of biomarkers. 

 

Once the upgrade of the thesis to a PhD was approved, it was agreed to add a new 

technology – nuclear magnetic resonance (NMR) spectroscopy – to my study. This was 

done to analyse the urine metabolome in a holistic non-biased manner. Analyses using NMR 

were conducted by myself under the supervision of Professor Ron Wevers and Dr Udo 

Engelke at the Translational Metabolic Laboratory of the Medical Faculty of Nijmegen 

University, in the Netherlands. 

The biological question, formulated in 2012, for this study, was: “Is there a metabolic 

perturbation in FMS that may subsequently be used to establish a pain profile for the 

disorder and to identify a biomarker or biosignature for FMS”. As a result, the aims and 

objectives of the thesis were thus as follows: 
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 Aim: The application of metabolic profiling to the disorder, FMS. 

 

 The objectives of the study were to: 

1. Perform an explorative NMR metabolomics study (1) to elucidate the global 

urinary metabolite profile of patients suffering from FMS, and (2) to explore 

the potential of this metabolite information to contribute to improving 

diagnosis of FMS. 

2. Obtain complementary information on the metabolic profile of FMS patients. 

This was done by comparing affected individuals (cases) against those who 

were not affected (controls) through an semi-targeted study using GC-MS 

technology. 

3. Compare data from the GC-MS and NMR studies and identify a set of 

markers common to both studies that can be proposed as probable markers 

of the disorder. 

4. Formulate a hypothesis as to what the metabolic effects, if any, FMS has on 

an affected individual. 

This thesis is presented in article format. The results from each of the analyses will be 

presented as an article that has been, or will be, published in a peer-reviewed journal. The 

following chapters of the thesis are structured as follows: 

 

Chapter 2 provides a literature review of the mainline clinical aspects of FMS. It highlights 

those aspects of this chronic pain syndrome and what is currently circulating in the literature 

about FMS and how far studies have come in the elucidation of a probable cause of the 

disorder. From this review, my biological question was then formulated. 

Chapter 3 comprises the genetic aspects of the disorder. Here a concise overview on the 

genetic basis of FMS is presented and also the chosen scientific method, being 

metabolomics, is introduced. A broad overview of metabolomics is presented followed by a 

discussion on the limited number of peer-reviewed studies on metabolomics applications on 

FMS. Subsequently, the aims of my study are defined along with my objectives. 

Chapter 4 entails the NMR study that was conducted on a select group of FMS cases and 

controls. A brief overview of NMR technology in biofluids, with the main focus on proton 

NMR (1H-NMR), is discussed and the outcomes of the study conducted are presented in the 

form of a peer-reviewed, published article (Malatji et al., 2017). In this article we confirm that 
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FMS is indeed distinguishable from healthy counterparts and suggest a plausible 

biosignature for FMS. A poster presentation of the preliminary results, showing FMS to be 

distinguishable from its non-pain counterparts, was presented by myself at the 

MetaboMeeting Congress 2014 in London, United Kingdom (10–12 September). 

Chapter 5 consists of the follow up GC-MS study conducted on the same group of subjects 

as in Chapter 4. A brief overview on the background of GC-MS technology is discussed and 

the outcomes of the study are presented in a scientific paper intended for submission to 

BMC Neurology. In this paper we highlight that dysbiosis is present in FMS and may have a 

role in the pathophysiology of the disorder. These results were also presented at the EFIC 

Congress 2017 by Professor Helgard Meyer in the form of a poster presentation. 

Chapter 6 is the concluding chapter of this thesis. It includes a general discussion and 

conclusion on the overall contributions and results achieved from this investigation as a 

whole. I also reflect on the aims and objectives articulated previously in Chapter 1. The 

future prospects of this PhD research are also touched on. Lastly, a manuscript is presented 

on a metabolite, alpha-hydroxyisobutyric acid (2-HIBA), previously deemed a contaminant 

metabolite through environmental exposure. In our publication (Malatji et al., 2017), 2-HIBA 

is identified as a distinguishing metabolite that was discarded due to the former reason. 

Several scientific publications have proven the contrary, thus implying that 2-HIBA has a 

probable role in the pathophysiology of FMS. As such, in this manuscript we report on 2-

HIBA as a possible biomarker for diseases such as FMS. 
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CHAPTER 2: LITERATURE REVIEW — CHARACTERISTICS OF 

FIBROMYALGIA SYNDROME 

 

2.1 Introduction  

FMS has been the subject of clinical studies since the 1980s. However, it still lacks one 

particular definition, mainly due to disagreements regarding its aetiology and pathogenesis 

(Häuser & Wolfe 2012). FMS is clinically defined and distinguished by a blend of 

perturbations in the autonomic, neuroendocrine, immune and nociceptive systems 

(Hackshaw et al., 2013) and is the most common cause of widespread musculoskeletal pain  

(Jahan et al., 2012). The mechanism of the  pain experienced in this disorder is not yet fully 

understood and has been the focus of intense research, be it in regard to FMS or to other 

chronic pain syndromes associated with central sensitization such as migraine, irritable 

bowel syndrome (IBS), temporo-mandibular joint disorder and others (Park et al., 2000; 

Chung 2004). As such, the quest to identify reliable biomarkers for the disorder for definitive 

diagnosis and monitoring of disease progression remains an important aspect of 

contemporary FMS research. Such a biomarker will aid in early diagnosis and appropriate 

management of the disorder with a reduction in both the direct and indirect financial burden  

(Greenberg et al., 2009; Hackshaw et al., 2013). The search for a specific biomarker for 

FMS is thus still unresolved, in part due to an overlap of potential biomarkers for FMS with 

other co-morbidities such as  chronic fatigue syndrome (CFS) (Breeding et al., 2012), on the 

one hand, and on the other, due to the  large variation in FMS phenotypes. A preliminary 

investigation (Bazzichi et al., 2009) — using a proteomics approach to detect potential 

markers for FMS — showed some potential for identifying biomarkers and clarifying some of 

the pathophysiological aspects of the disorder, although the authors agreed that “no 

laboratory tests have been appropriately validated for the diagnosis and the prognostic 

stratification of the disease”.  

An ideal biomarker should be cost-effective and easy to assay, highly sensitive and specific 

to the particular disorder and should also adequately provide information and ideally allow 

quantification of the condition. Moreover, it should ideally be in a source material that is 

easily attainable, for example plasma or urine (Greenberg et al., 2009). From the literature 

we see that many studies have investigated the elucidation of FMS on the genetic level. 

Metabolomics, on the other hand, is the study of the metabolome, which is the “complete set 

of metabolites in a cell or tissue” (Fiehn 2002; Brown et al., 2005) and the final products of 

gene expression. From this we can tell that what occurs at the level of the gene will 
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ultimately have effect on what occurs at the metabolome level, thereby providing us with a 

biochemical perspective of a disease or  disorder (Brown et al., 2005; Kaddurah-Daouk & 

Krishnan 2009). For this reason, metabolomics is an attractive approach used for the 

identification of biomarkers of disease. 

At the start of this study no comprehensive metabolomics investigations on FMS had been 

reported. In the interim, there have been three metabolomics studies that have been 

published, by Hackshaw et al., in Analyst, 2013, Caboni et al., in PloS One, 2014 and 

Hadrevi et al., in Scientific Reports, 2015. These articles are discussed later in this thesis in 

Chapter 3. This review will thus focus mainly on summarizing the information obtained from 

the literature of the current clinical perspectives of FMS on a genetic and biochemical level. 

This review will serve to introduce the potential of a metabolomics approach in the study of 

FMS, but it should be noted that the established views on FMS as a specific disorder fall into 

the realm of medical science, whereas the focus of this dissertation is on a biochemical 

aspect, by being a metabolomics study of FMS. The inclusion of an overview including 

clinical aspects of this pain disorder is relevant because: (1) the clinical aspects are 

important for the appropriate selection of FMS patients and controls, which is a crucial 

aspect of metabolomics studies; and (2) in order to relate the subsequent biochemical 

findings to the characteristics of FMS. 

 

2.2 Definition of Fibromyalgia Syndrome  

 

2.2.1 Clinical definition of Fibromyalgia Syndrome 

 

FMS is a syndrome of chronic widespread musculoskeletal pain associated with other 

symptoms such as fatigue, cognitive impairment and insomnia, for which no other cause can 

be identified. It is characterized by widespread pain, increased pain sensitivity, muscle and 

joint stiffness, disturbance in sleep, fatigue and depression (Bondy et al., 1999; Buskila & 

Sarzi-Puttini 2008) and cognitive impairment (relating mainly to concentration and short-term 

memory impairment). There is currently strong evidence from brain imaging and other 

techniques that FMS has an organic basis, although psychosocial and behavioural factors 

may play a role in some patients (Nelson et al., 2010; Clauw 2015). FMS affects 2–3% of the 

general population in the United States (Buskila et al., 1996; Ablin et al., 2008; Tander et al., 
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2008) and an estimated 3.2% in South Africa (Lyddell & Meyers 1992). The condition  occurs 

10 to 20 times more frequently in women than in men and tends to affect individuals in their 

most productive years, being the years 35–60 (Matsuda et al., 2010). The literature shows 

an occurrence of 0.5% for men and  3.4% for women (Clayton & West 2006; Silverman et 

al., 2010). 

Table 2.1: Table of clinical disorders which are often associated with FMS (adapted with 

permission from Jahan et al., 2012.). 

Musculoskeletal Genitourinary Gastrointestinal Miscellaneous 

 Primary 

dysmenorrhea 

Irritable bowel 

syndrome 

Tension type  

headaches 

Temporomandibular 

joint disorder 

Interstitial cystitis Oesophageal 

dysmotility disorders 

Migraine 

Hypermobility 

syndrome 

Vulvodynia  Mitral valve prolapse 

Restless legs 

syndrome 

Female urethral 

syndrome 

 Vestibular disorders 

(e.g. Menière’s 

disease) 

Rheumatoid arthritis Vulvar vestibulitis   

Systemic lupus 

erythrematosus 

Premenstrual 

syndrome 

 Mood disorders 

Sjögren’s syndrome   Raynaud’s 

phenomenon 

Osteoarthritis    

   Lyme’s disease 

   Chronic fatigue 

syndrome 

Myofascial pain 

syndrome 

   

 

Patients with FMS present with the symptoms mentioned above as well as tenderness in 

predetermined regions of the body, known as tender points (TPs). FMS is also known to 

present  with a wide range of other chronic co-morbid disorders such as those summarized 
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in Table 2.1; which include IBS, migraine, restless leg syndrome and mood disorders 

(Bennett et al., 2010; Lee et al., 2012). 

Individuals with FMS process pain differently from their healthy counterparts due to a 

dysfunction in the processing of pain by their central nervous system (CNS), which results in 

pain amplification (Ortancil et al., 2010; Gracely et al., 2002). Clayton and West (2006) also 

backed this theory by taking biopsies of the tender points and their findings showed no signs 

of peripheral pathology. Shah et al., have demonstrated a low grade increase in certain 

cytokine levels (sub-nanogram quantities) in trigger points associated with myofascial pain 

and dysfunction (MPD) and FMS. These peripheral pain generators may contribute to the 

pathophysiology of some FMS patients (Shah et al., 2005). Studies in the past have failed to 

demonstrate large-fibre neuropathy in FMS (Ersoz 2003), but, more recently, small-nerve 

fibre function has been proposed to be impaired in FMS patients (Üçeyler et al., 2013). In a 

subset of FMS subjects, small-fibre neuropathy (SFN) was identified in skin biopsy material 

(Giannoccaro et al., 2014), indicating that SFN may contribute to the sensory and autonomic 

symptoms in these FMS patients. Although the involvement of SFN in FMS is still not 

unequivocally established, it does appear that SFN plays a significant role in pain response 

in these patients (Caro & Winter 2014) and it has been proposed that a skin biopsy should 

be considered in the diagnostic work-up of FMS (Giannoccaro et al., 2014). 

Research has shown that there is a high familial aggregation of the disorder. There is 

approximately an 8-fold increase in risk to develop FMS in first-degree relatives of affected 

individuals when compared with healthy controls. From this it has been deduced that a 

genetic component is involved in the aetiopathology of FMS (Buskila et al., 1996; Lee et al., 

2012) and it is currently regarded as a polygenic disorder (Buskila et al., 2007; Rodriguez-

Revenga et al., 2014). 

The main aim of the 1990 American College of Rheumatology (ACR)  criteria for FMS, was 

to  standardize research populations and were not intended for clinical diagnosis (Wolfe et 

al., 1990). These criteria stated that a patient should present with widespread pain, that it 

had occurred for longer than 3 months and should test positive for pain in at least 11 of the 

18 predetermined TPs (Figure 2.1) (Silverman et al., 2010). The term “widespread pain” 

refers to pain in all four quadrants of the body and  includes pain in the axial skeleton 

(cervical, thoracic, and lumbar sacral spine) (Liu & Patterson 2009). TPs are assessed using 

a dolorimeter, with the amount of pressure applied being 4 kg/cm2. To be considered a 

tenderpoint, pain should be experienced only where the pressure is applied and no referred 

pain should be experienced by the patient (Jahan et al., 2012). The threshold of tenderness 
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is also assessed during examination. This is done by applying pressure at an increasing rate 

of about 1 kg/s. At this stage patients are told to indicate when the sensation changes from a 

feeling of pressure to a definite pain (Neumann et al., 2008), which is usually associated with 

“wincing”, or withdrawal of  that part of their body.  

                                           

Figure 2.1: The location of the 18 predefined tender points (indicated with black dots) 
according to the 1990 American College of Rheumatology criteria (Reproduced with 
permission from Leskowitz 2008.) 

 

The  revised  ACR  criteria of 2010 for the diagnosis of FMS (Garg & Deodhar 2012)  were 

implemented, as  a barrier was found in the primary care setting due to the examination of 

TPs being a pivotal requirement for diagnosis. Also, these TPs gave the impression that 

FMS is a peripheral musculoskeletal disease whose pathology is centred solely on the 

presence of these TPs. The primary care setting is where most of the diagnoses of FMS is 

conducted, however, the examination of these TPs does not usually occur there and is often 

not performed to the prescribed standards (Garg & Deodhar 2012). Moreover, it was found 

that when assessing the TPs, results show a relationship with distress as the patient–

examiner relationship come into play during consultation. The examination of TPs is 

normally ignored by general practitioners, pain and mental health specialists as these are 

the alternative routes of diagnosis that patients take when rheumatologists are not available. 

This examination will duly be avoided as it is time-consuming and training in the examination 

of TPs was mostly not provided during the residency years of most practitioners (Häuser & 

Wolfe 2012). For these reasons, revised criteria were needed for diagnosis of FMS. The new 

diagnostic criteria aim to simplify the process of FMS diagnosis in the primary care setting by 
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excluding the TP examination. Another reason for the change in criteria was for the 

recognition of the importance of including the other non-pain symptoms of FMS when 

diagnosing the disease. These symptoms include fatigue, sleep disturbance and cognitive 

problems (Table 2.2). The new criteria assess the severity of the disease and also allow 

patients, who may not fulfil the old criteria for FMS classification, to be monitored (Garg & 

Deodhar 2012; Jahan et al., 2012).  

In the new criteria the examination of TPs was eliminated and replaced by a widespread 

pain index (WPI). The WPI is a count of the number of bodily areas affected by pain as 

indicated by the patient on a scale of 0–19. An additional scale was added to assess the 

characteristic symptoms of FMS on a scale of 0–12. These include “fatigue, non-refreshed 

sleep, problems with cognition and the extent of somatic symptom reporting”. These are all 

assessed on a 0–3 scale and combined to a symptom severity (SS) scale and hence the 0–

12 scale previously mentioned (Häuser & Wolfe 2012; Jahan et al., 2012). The new criteria 

are expected to hold some advantages over the previous ones. First, they are easier to 

apply in the primary care setting than the previous criteria, which required the examination of 

TPs. Also, using these new criteria delivers a homogeneous group of patients for entrance 

into clinical trial studies. Second, application of the new criteria came to a correct 

classification of about 83% of new patients without having to examine them physically for the 

presence of TPs. This rate agrees with that achieved by diagnoses via a physician. Third, 

severity assessment or monitoring of patients who were previously diagnosed with FMS was 

not a part of the initial criteria whereas the new criteria capture the clinical essence of FMS 

(Garg & Deodhar 2012).  

Advantages often come with some disadvantages. In the case of the new criteria for FMS, 

these include not being able to be applied to patients with other diseases, e.g. rheumatoid 

arthritis (RA) and systemic lupus erythromatosus (Garg & Deodhar 2012). Moreover, 

assessment of the SS scale and WPI necessitates an attentive interview with the patient that 

can be time-consuming (Häuser & Wolfe 2012). Furthermore, validation of these new criteria 

in the primary care setting has not been done by means of prospective studies and has not 

yet been accepted for routine use in clinical practice (Garg & Deodhar 2012). 



1 
 

 

Table 2.2: New criteria developed by the ACR for the diagnosis of FMS (Reproduced with 
permission from Jahan et al., 2012). 

Fatigue Waking unrefreshed Cognitive problems 

0 = No problem 0 = No problem 0 = No problem 

1 = Slight or mild problems; 

generally mild or intermittent 

problems 

1 = Slight or mild problems; 

generally mild or intermittent 

problems 

1 = Slight or mild problems; 

generally mild or intermittent 

problems 

2 = Moderate; considerable 

problems, often present 

and/or at a moderate level 

2 = Moderate; considerable 

problems, often present 

and/or at a moderate level 

2 = Moderate; considerable 

problems, often present 

and/or at a moderate level 

3 = Severe: pervasive, 

continuous. Life-disturbing 

problems 

3 = Severe: pervasive, 

continuous. Life-disturbing 

problems 

3 = Severe: pervasive, 

continuous. Life-disturbing 

problems 

 

A study conducted by Egloff and colleagues investigated how these changes to the 

diagnostic criteria would impact diagnosis of other functional pain syndromes. The authors 

believe that the new ACR criteria are not accurate enough to differentiate the different types 

of functional pain syndromes, thus misclassifying other functional pain syndromes as FMS. 

Egloff et al., used a cohort of 300 patients diagnosed with different types of functional pain 

syndromes, of whom 25 of these patients were diagnosed with FMS according to ACR 1990. 

After application of the new ACR 2010 criteria the number of patients classified with FMS 

increased to 130. This resulted in 109 new FMS patients of whom 21 were the existing FMS 

patients. Of the initial 25 diagnosed with FMS, four did not meet the 2010 criteria. This study 

showed that the new criteria are not specific enough for FMS and change the clinical profile 

of FMS by not taking into account the tender point count and widespread pain. The authors 

believe that new criteria could oversimplify FMS diagnosis, resulting in misclassification of 

other pain syndromes as FMS with a potential “over-diagnosis” of FMS (Egloff et al., 2015). 

Taken together, a comment on FMS diagnosis made at the EFIC-2017 congress seems 

applicable: “Diagnosis of FMS conveys information but little insight. Currently we know what 

can work but not how and in whom” (Cedraschi 2017). Thus, some reflection on pain, its 

associated clinical principles and their relation to FMS is needed. 
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2.2.2 Clinical principles of pain  

2.2.2.1 Types of pain 

 

Pain is something we experience in our daily lives, be it emotional or physical. Pain is a 

sensory and emotional experience, unpleasant in nature and is experienced in a variety of 

manifestations (Loeser & Melzack 2017; Diatchenko et al., 2007; Little et al., 2012). Pain can 

be transient in nature, which alerts the individual by an offending stimulus on the skin or 

other part of the body, not caused by tissue damage. The function of transient pain is related 

to the speed of the onset of the stimulation and its offset, indicating to the individual that the 

physical disturbance became resolved. The perception of acute pain allows us to recognize 

events that could be life-threatening and therefore this enables us to find ways to escape the 

danger, recognizing that we have an injured region that should be “immobilized” to reduce its 

use. Chronic pain is usually defined as pain that lasts longer than one would expect 

(according to the extent of the initial tissue damage) and is the type of pain associated with 

FMS. Chronic pain is dysfunctional and has mostly lost its warning function. It may have a 

significant impact on the individual’s quality of life and activities of daily living. Due to this 

kind of human suffering, decreased quality of life and ultimately even a shortened life 

expectancy may follow (Diatchenko et al., 2007; Loeser & Melzack 2017).  

2.2.2.2 Pathophysiological mechanisms of pain 

 

Pain has distinct cognitive and emotional aspects but has been shown to be primarily a 

multidimensional sensory experience. It is not the purpose of this review to present a 

comprehensive discussion of the pathophysiological mechanism of pain, but to focus on two 

main categories of sensitization resulting in pain: central sensitization and peripheral 

sensitization — as well as the concept of functional pain — all three are relevant to FMS. 

1. Central sensitization 

Central sensitization is the mechanism whereby stimulation that normally would not cause 

pain, such as movement or a gentle touch, can stimulate a low threshold level of 

mechanoreceptors to elicit an experience of pain by the individual. In his review (Woolf 

2011) of 25 years of research on central sensitization, South African-born Clifford Woolf, an 

alumnus of the University of the Witwatersrand, reflects on his pre-clinical research of 1983 

at University College London when he and his colleagues  observed that “a brief (~10–20 

second), low frequency (1–10 Hz) burst of action potentials into the CNS generated by 
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electrical stimulation or natural activation of nociceptors” [receptors at the end of a sensory 

neuron's axon that responds to stimuli of a potential or real damaging nature] “increased 

synaptic efficacy in nociceptive neurons” that lasted several minutes after the stimulus. 

These observations contributed to what became known as central sensitization causing 

nociceptive pain.  

Central sensitization can thus be described as the state of increased excitation of the spinal 

cord involving the dorsal horn neurons responsible for nociceptive transmission in response 

to a distinct or subtle stimulation. This state of excitation is sustained as a result of these 

neurons being overly sensitive to certain nociceptive stimuli. This culminates in 

oversensitivity to both noxious and non-noxious stimuli and is clinically characterized by 

hyperalgesia and allodynia, respectively (Woolf 2004; Recla & Sarantopoulos 2009; Little et 

al., 2012; Cervero 2014). There are two types of pain conduction fibres implicated in the 

process of central sensitization, namely, A-beta and C-fibres (Nielsen & Henriksson 2007). 

The myelinated A-fibres transmit a first pain that is promptly directed to the CNS at very high 

speeds. The C-fibres transmit  second pain, are unmyelinated and direct pain signals to the 

CNS at slower speeds (Staud 2006). Central sensitization plays a role in inflammatory, 

neuropathic and functional pain. Nociceptor central terminals release transmitters that 

activate the dorsal horn neurons and ultimately modify the transmission of pain by changing 

the receptor density, threshold, kinetics and activation levels. Glutamate-activated N-methyl-

D-aspartate (NMDA) receptors are fundamental to this process. They are upregulated from 

intracellular stores to the synaptic membrane by phosphorylation, which also causes an 

increased sensitivity to glutamate by elimination of the voltage-dependent Mg2+ ions on the 

receptor. This culminates in stimuli that are normally not painful, being perceived as painful 

and noxious stimuli. Ketamine can be used to inhibit this NMDA receptor action (early-phase 

central sensitization) but it has side effects that may bring about the induction of a psychotic 

state and therefore has limited clinical application. Humoral factor secreted by inflammatory 

cells after peripheral tissue injury stimulates the endothelial cells to secrete interleukin-1β 

(IL-1β), which penetrates the cerebrospinal fluid (CSF) to stimulate the IL-1 receptor to 

express cyclooxygenase-2 (COX-2) in the CNS neurons. This also causes an increase in 

circulating prostaglandin E2 that plays a role in the late-onset phase of central sensitization. 

COX-2 expression plays a role in widespread pain, appetite loss, as well as mood and sleep 

cycle changes (Woolf 2004; Staud 2006).  

Nociception is the ability to perceive pain through stimulation of the pain receptors (called 

nociceptors). This process occurs when a pre-synaptic neuron, after responding to a specific 

painful event, releases neurotransmitters into the synapse. Examples of these 
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neurotransmitters are glutamate and substance P. The post-synaptic neuron possesses 1-

amino-3-hydroxyl-5-methyl-4-isoxazole (AMPA) receptors and they are implicated in this 

nociceptive process. Glutamate binds to these receptors, causing an inflow of sodium (Na+) 

resulting in the depolarization of the neuronal membrane and subsequent action potential 

initiation (Figure 2.2 A). During prolonged exposure to a pain stimulus, more of the 

neurotransmitters are released into the synaptic space, causing increased activation of the 

AMPA and neurokinin receptors. Neurokinin receptors are activated via attachment of 

substance P. The increased activation of these receptors causes an enhanced 

depolarization of the neuronal membrane, subsequently inducing the elimination of the 

magnesium (Mg2+) obstruction of the NMDA receptor. The unblocking of this receptor allows 

the inflow of calcium ions (Ca2+), from the intracellular space, subsequently causing the 

upregulation of the AMPA receptors thereby strengthening the nociceptive signal (Figure 2.2 

B).  This prolonged exposure process is termed “enhanced nociception” and is the process 

employed in central sensitization (Recla & Sarantopoulos 2009; Little et al., 2012), which is 

thought to play a role in the pathogenesis of FMS. 

 

Figure 2.2: Biochemical representation of the process of nociception. Figure A shows the 
normal nociceptive transmission occurring at a synapse. Neurotransmitters arrive at the 
synapse due to nociceptive stimulation and are released into the synaptic space. Glutamate 
binds to AMPA and allows the outflow of sodium from the synaptic space, causing 
depolarization of the membrane. Figure B shows the transmission in prolonged nociception. 
Excess neurotransmitters are released in the synaptic space, bringing with it substance P, 
which causes the activation of the neurokinin receptor. This subsequently causes enhanced 
membrane depolarization effecting a magnesium block removal on the NMDA receptor, 
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allowing calcium to flow out of the synaptic space (Reproduced with permission from Little et 
al., 2012). 

 

One of the early studies on FMS observed a decrease in mechanical pressure thresholds to 

be a key clinical feature in FMS patients (Gibson et al., 1994). Gibson and co-workers 

interpreted these findings to mean that greater activation of CNS pathways following noxious 

input occurred in a group of 10 FMS patients relative to 10 controls studied. These authors, 

however, cautioned that “mechanisms of peripheral nociceptive sensitization and the role of 

psychological factors might contribute to their findings”. In his review on central sensitization, 

Woolf proposed an operational definition of central sensitization: central sensitization is “an 

amplification of neural signalling within the CNS that elicits pain hypersensitivity” (Woolf 

2011). Reflecting on FMS, he concludes that central sensitization contributes to the 

symptoms of FMS, although it is not the prime mechanism of FMS pathophysiology.  

 

Reactive oxygen species (ROS) have been thought to play a role in persistent pain 

syndromes. ROS have already been shown to play a role in degenerative neurological 

diseases like Alzheimer’s, Parkinson’s and amyotrophic lateral sclerosis (ALS) (Chung 

2004).  ROS are produced as a by-product of many enzymatic reactions in the body. An 

increase in the production of ROS or an error in their removal can cause cellular damage via 

cytoplasmic swelling and can even cause cell death. There are different types of ROS that 

can cause cellular damage. Superoxide (SO) is produced by the mitochondrion via oxidative 

phosphorylation and is converted to hydrogen peroxide by the enzyme superoxide 

dismutase (SOD). Ultimately, this can be converted further to a noxious hydroxyl radical.  

Nitric oxide (NO), another form of ROS, and SO are both generated in the cytoplasm. 

Increased cytoplasmic levels of Ca2+ activate the production of SO and NO. These two 

compounds can react with one another to form the toxic peroxynitrite. ROS are hypothesized 

to play a role in the central sensitization phenomenon by initiating factors that have been 

identified to operate in this process (Kim et al., 2004).  

A study was conducted by Cordero and colleagues to assess the role of oxidative stress in 

the pathogenesis of FMS. Their sample material was blood mononuclear cells (BMC) and 

plasma. Their study found increased levels of SO along with decreased levels in both the 

mitochondrial coenzyme Q10 (CoQ10) and the mitochondrial membrane potential in FMS 

patients as compared to controls. Moreover, increased signs of mitophagy, which is the 
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elimination of defective mitochondria by the process of autophagocytosis, were observed 

(Cordero et al., 2010).  

The mitochondria are essential in the role of energy production. Energy is produced in the 

form of the high energy molecule adenosine triphosphate (ATP). The ATP synthase pump 

forms part of the electron transport chain (Figure 2.3) implicated in oxidative 

phosphorylation. CoQ10 is involved in the transport of electrons from complexes I and II to 

complex III of the electron transport chain. Decreased levels of this enzyme results in the 

failed transportation of these electrons between the complexes thereby, causing a proton 

gradient imbalance across the mitochondrial membrane.  This gradient is required for the 

ATP synthase pump to produce ATP. This culminates in decreased ATP synthesis. 

Subsequently, ROS levels increase and mitophagy of the defective mitochondria occurs. 

From these results the authors noted that increased ROS levels are observed in FMS and 

that a perturbation in the bioenergetics of the cell could be implicated in FMS too (Cordero et 

al., 2010).  

 

Figure 2.3: Electron transport system, involved in the production of energy via oxidative 
phosphorylation, present in the mitochondrion (reproduced with permission from Gardner & 
Boles 2011). 

 

Nociceptive pain is the pain felt in response to a harmful (noxious) stimulus; it is the most 

important type of pain mechanism as it prevents an individual from further harm that can 

lead to tissue damage. In the event of tissue damage, the inflammatory pain system is 

activated. Inflammatory pain occurs when non-noxious stimuli are now perceived as noxious 

by the damaged area, typically causing inflammation. Once the damaged area is healed, the 

inflammatory pain response fades. Neuropathic pain is a form of maladaptive pain that does 
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not require a noxious stimulus for activation. It is associated with injury to the nervous 

system. Functional or “central” pain is also a form of maladaptive pain, which is associated 

with irregular functioning of abnormal processing of noxious stimuli in the nervous system. In 

this form of pain no specific cause of the pain can be detected in the nervous or muscular 

musculoskeletal systems. Fibromyalgia falls under this latter type of pain (Woolf 2004).  

 

2. Peripheral sensitization 

Peripheral sensitization is an increased sensitivity to stimuli in afferent neurons due to an 

injury or cell damage, which elicits an extensive response due to neuropeptides that affect 

nociceptors. Patients showing symptoms presently seen as FMS were formerly diagnosed 

as suffering from fibrositis – a term introduced in 1904 by the British neurologist Sir William 

Gowers (Inanici & Yunus 2004). Fibrositis is a term that implies a notable contribution of 

peripheral inflammation to the condition. In time, peripheral sensitization was recognized to 

arise through several means of which three distinct and different forms of stimuli became 

defined, as represented in Figure 2.4. 

 

Figure 2.4: Three primary classes of stimuli that may act as peripheral sensitization in pain 
generation (adapted with permission from Woolf 2004).  
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Noxious peripheral stimuli include the effect of extreme temperatures (heat or cold), 

mechanical force (e.g. pressure or bruises) and chemical irritants (e.g. from strong acids). 

Inflammatory pain is a spontaneous response due to hypersensitivity associated with tissue 

damage and inflammation. Neuropathic pain occurs spontaneously as a consequence of 

damage or of a lesion to a nerve fibre. Inflammatory and neuropathic pain is a consequence 

of a decrease in the pain threshold of nociceptors causing an induction in pain at areas of 

injury or inflammation. In areas where cellular injury has occurred, cellular contents are 

spilled out and the recruited inflammatory cells release cytokines, chemokines and growth 

factors in response. The nociceptor terminal activity is altered by prostaglandin E2 (PGE2) 

and nerve growth factor binding to prostaglandin E and tyrosine kinase A receptors, 

respectively, whereas bradykinin binds to the B2 receptors and activates the nociceptor. 

PGE2 causes a reduction in the activation threshold of the nociceptor by binding to the 

aforementioned receptor and causes adenyl cyclase activation. This in turn causes an 

increase in cyclic adenosine monophosphate activation of protein kinase A. Protein kinase C 

is activated by calcium released by calcium stores. Protein kinases A and C phosphorylate 

proteins at amino acid sites of serine and threonine, causing changes in the activity of 

receptors and ion channels. Phosphorylation also alters the threshold of voltage-gated 

sodium ion channels, causing an increase in membrane excitability by producing more 

action potentials than usual (Woolf 2004; Staud 2006). 

Inflammatory pain disorders include RA, osteoarthritis (OA) and Crohn’s disease (CD). 

These disorders tend to be co-morbid with FMS, in that they present with pain, but are not 

the same as FMS. The one distinguishing feature that they possess, on clinical examination, 

is inflammation. Although current research has demonstrated “subtle” inflammatory markers 

(“neurogenic inflammation”) in some FMS patients, it is not considered an inflammatory 

disease in the true sense of the definition (Littlejohn 2015). Inflammation is the body’s 

response to local tissue injury or invasion by harmful pathogens (O’Neill & Hardie 2013). The 

cells that mediate this process are the inflammatory immune cells, macrophages, dendritic 

cells (DCs) and T cells (Palsson-McDermott & O’Neill 2013). In this section we will discuss 

the metabolic changes that occur in these cells to bring about the process of inflammation 

and inflammatory pain in response to pathogen invasion and tissue injury. 

The process of inflammation is an energy (in the form of ATP) demanding process. In normal 

cells at rest, the energy requirements are met through the standard progression of glycolysis 

in the cytosol. The end product of glycolysis is then decarboxylated to acetyl-CoA by 

pyruvate dehydrogenase (PDH) and enters the tricarboxylic acid (TCA) cycle followed by 

oxidative phosphorylation (OXPHOS) in the mitochondria. These cycles occur under normal 
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levels of circulating oxygen (normoxia). However, in conditions of low circulation oxygen 

(hypoxia), the cellular ATP is generated primarily by glycolysis and the TCA and OXPHOS 

cycles will be shut down. The pyruvate generated by glycolysis is then ultimately converted 

to lactate by lactate dehydrogenase (LDH) in the cytosol, when the generation of NAD+ for 

glycolysis starts again and does not enter the mitochondria. In the case of a tumour, cells 

are in a state of rapid growth and therefore their energy requirements are altered. They 

change from a low to a higher rate of glycolysis, with the production of lactic acid and an 

even lower rate of OXPHOS. When all these changes take place under aerobic conditions, 

this change in metabolism is named the “Warburg effect”, or aerobic glycolysis. This 

phenomenon in tumor cells was discovered by Otto Warburg in 1923. This change in 

metabolism can also take place in cells under anaerobic conditions, for example during short 

bursts of muscular energy (Palsson-McDermott & O’Neill 2013). 

The Warburg effect creates an increased need for glucose and other biological building 

blocks including nucleotides, amino acids and NADPH by making use of the intermediates 

from glycolysis and generating these building blocks via the pentose phosphate pathway 

(PPP). Concomitantly, fatty acids are also required to produce membrane lipids from 

cytosolic citrate to generate acetyl-CoA. This reaction is catalysed by ATP-citrate lyase 

(ACL). Hypoxia-inducible factor 1α (Hif 1α) is the key regulator of the Warburg effect. It 

responds to hypoxia within cells, but can also be activated under normoxic conditions by 

succinate, and also activates enzymes involved in glycolysis, namely, hexokinase 2 (HK2), 

triose phosphate isomerase, glucose-6-phosphate isomerase and pyruvate kinase M2 

(PKM2) (Palsson-McDermott & O’Neill 2013). 

Immune cells like macrophages and DCs are able to alter their metabolic state to that 

corresponding to the Warburg effect when activated by invading pathogens. These 

pathogens stimulate the release of pro-inflammatory cytokines and stimulation of membrane-

bound toll-like receptor (TLR) ligands. Glucose transporter 1 (GLUT1) becomes expressed in 

active DCs by stimulation of TLR4, TLR 2 and TLR9 ligands, which cause an increase in the 

glycolytic rate and the need for glucose (O’Neill & Hardie 2013; Palsson-McDermott & 

O’Neill 2013). Macrophages are able to take on two forms when activated, namely, the M1 

or M2 form. The M1 (classically activated) form comes about when activated, in acute 

inflammation or anti-bacterial action, by interferon-γ or certain TLR ligands in which bacteria 

are removed by release of inflammatory cytokines and ROS. The M2 (alternatively activated) 

form comes about when activated by cytokines like IL-4 and IL-13. Only activation of the M1 

form involves a switch in metabolism to the Warburg effect. The M2 form makes use of 
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OXPHOS for  tissue repair or in anti-parasitic immunity (Palsson-McDermott & O’Neill 2013; 

O’Neill 2015).  

Enhanced ATP production during inflammation by a shift in metabolism of inflammatory cells 

is clearly a hallmark change employed in inflammatory diseases. Inflammatory pain is 

brought on by the production of prostaglandins. Although FMS may not be classified as an 

inflammatory condition, the several links observed between FMS and inflammatory 

responses should be explored to further elucidate the cause or the effect of these responses 

on the suffering FMS patient. 

3. Functional pain 

Functional pain — the form of pain currently regarded as the main pathophysiological basis 

for pain in FMS — is defined as hypersensitivity to pain resulting from abnormal central 

processing of normal input, as represented in Figure 2.5 (Woolf 2004). 

 

 

Figure 2.5: A representation of peripheral sensitization in pain generation without any 
identifiable trauma (physical or inflammatory) (adapted with permission from Woolf 2004). 

 

 To recapitulate: FMS is currently characterized as a chronic disorder of widespread pain 

and tenderness, accompanied by other symptoms such as disturbed sleep and chronic 

fatigue. The pathogenesis of FMS involves abnormalities in the pain-regulating mechanisms 

at various levels in the peripheral and central nervous system; FMS is considered a disorder 

of abnormal pain processing and pain amplification. It is also regarded as the “prototype” of 

a group of disorders characterized by sensitization of the nervous system (Ablin & Hauser 

2016; Clauw 2015; Fitzcharles et al., 2014). 

Functional pain syndromes, also commonly referred to as functional somatic syndromes 

(FSS), are a cluster of pain disorders in which no anatomical or laboratory perturbations can 

be linked to the cause of the debilitating pain. Diseases of this class include FMS, IBS, CFS, 

migraine, and tension type headache; they present with common clinical symptoms of which 
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chronic pain is the most noticeable. These syndromes are more prevalent among females, 

their symptoms tend to be worsened by stress and menstruation and they are associated 

with depression and anxiety (Goodman 2016; Afari et al., 2014). No specific abnormalities 

have yet been found at the level of laboratory testing, a known characteristic of FMS 

diagnosis that partly contributed to the present study. 

Each of these disorders has their own clinical criteria on which they are diagnosed. The FMS 

ACR criteria of 1990 were modified in 2010, which elicited both criticism and approval (Garg 

& Deodhar 2012). The 1990 criteria were essentially developed to standardize research 

populations and not for diagnostic purposes in a clinical setting, whereas the modified 2010 

criteria were designed for use in epidemiological studies (Clauw 2014). Since the 2010  

criteria create a grey area with poor distinction between FMS and other functional pain 

syndromes (Egloff et al., 2015), it demonstrates further the critical need for a diagnostic 

biomarker for this disorder. Since there is no definite perturbation that can be pointed out as 

the cause of the pain and other symptoms which FMS patients experience, they are often 

told by healthcare providers that their symptoms are “all in their head”, that they are suffering 

from a primary mental disorder and that they “should pull themselves together” (Wolfe et al., 

2014).  

FMS patients have a high co-morbidity rate of psychiatric disorders, which include 

depression, anxiety, obsessive-compulsive disorder and posttraumatic stress disorder 

(PTSD) (Clauw 2014; Afari et al., 2014). It has been suggested that FSS are more prevalent 

in patients with a history of stressful events. Afari et al., in a meta-review, assessed the 

association between psychological trauma and PTSD with the presentation of FSS. These 

traumatic experiences included psychological, physical and emotional stressors or sexual 

abuse that occurred during childhood or adulthood and combat exposure. The authors 

identified 71 articles that met their search criteria. Their study found that people who 

reported exposure to some form of trauma were 2.7 times more likely to present with FSS. 

They also analysed the association of the types of trauma and FSS. At least 49 of the 71 

studies reviewed showed that physical stressors had the smallest association with 

presentation of FSS. Of the different types of FSS included in the study, CFS was the most 

common example that was associated with reported trauma whereas IBS was the least 

associated with reported trauma (Afari et al., 2014).  

FMS and other FSSs are often viewed as symptoms of somatoform disorder (“somatic 

symptom disorder”), where unresolved or suppressed emotional trauma may manifest as an 

FSS, such as FMS (Wolfe et al., 2014). With the results from Afari et al., 2014 mentioned, 

one can understand this reasoning. A traumatic event may precipitate the onset of the FSS, 
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leading to avoidance of certain situations associated with the trauma and consequently with 

distorted thoughts about the symptoms experienced (Afari et al., 2014). Wolfe and his 

colleagues analysed how a mental disorder may affect the severity of the symptoms 

experienced by patients suffering from FMS, RA and OA.  The American Psychiatry 

Association defines somatic symptom disorder (SSD), according to their Disease and 

Statistical Manual-5 (DSM-5), as “mental disease” that manifests with somatic symptoms 

such as pain. Diagnostic criteria of this disorder include “disproportionate and persistent 

thoughts about the seriousness of one’s symptoms, persistently high level of anxiety about 

health or symptoms; or excessive time and energy devoted to these symptoms or health 

concerns”. The crucial characteristic of this disease is not so much the presence of the 

symptoms but that they are “disproportionate” or “excessive”. Wolfe et al. conducted their 

study by asking FMS, RA and OA patients to complete the Patient Health Questionnaire-15 

(PHQ-15), to quantify patient symptoms. This is a 15-symptom checklist according to which 

the disorder “would consist of one or more physical symptoms currently present, not fully 

explainable by another medical or psychiatric disorder (with the exception of functional 

somatic syndromes), causing functional impairment. Duration must be at least 6 months, and 

severity could be graded as mild, moderate, or severe.” They then used the DSM-5 criteria 

to identify patients who qualified as having “mental illness”, according to the criteria. Overall, 

what they found from their study was that 51.4% of patients with FMS and 14.8% with RA 

had fatigue, sleep or cognitive problems that were severe, continuous, and life disturbing, 

related to the DSM-5 criteria of “mental disease” (Wolfe et al., 2014). This could classify 

FMS as a “mental disease” in which symptoms are precipitated by a traumatic event and 

then perpetuated as a syndrome of widespread pain due to “disproportional” or “excessive” 

thoughts about the seriousness of one’s symptoms. However, the authors are doubtful as to 

whether the DSM-5 criteria can reliably differentiate patients that do or do not have “mental 

disease” and thus they warn that this tool should be used with caution.  

In an extensive literature search by Hauser and Henningsen (2014) on the classification of 

FMS as a somatoform disorder, it was concluded that FMS is not similar to somatoform pain 

disorder, although both disorders are associated with unresolved emotional and 

psychosocial conflict. These authors also warn against “over-psychiatriation” of patients with 

somatic disorders and “mislabelling” these patients as “mentally ill”. 

 

Although there is a significant overlap and co-morbidity between FMS and psychomatic 

disorders, it is important to remember that most FMS patients do not have a definable 

psychiatric disorder. Although there is a possible overlap between the genetic susceptibility 

and neurotransmitters involved in both FMS and psychopathology, taken together, FMS is 
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not currently classified in the broad category of functional pain syndromes (discussed below) 

and is not regarded as a “mental disorder”, because the augmented pain processing of FMS 

can occur in the absence of psychopathology (Clauw 2015). 

 

 

2.3 Co-morbid disorders associated with Fibromyalgia Syndrome 

 

As previously mentioned, FMS does not present on its own. There are a number of co-

morbid disorders that exist with FMS. These disorders tend to have overlapping symptoms 

and one disorder can give rise to the other if not attended to medically, as in the case of 

myofascial pain syndrome, giving rise to FMS (Gerwin 2010). Figure 2.6 shows the overlap, 

with the main perturbation common to these disorders being the presence of pain and its 

central nervous amplification. There are also some psychiatric conditions that overlap with 

FMS (figure 2.5). This overlap can possibly be attributed to the fact that FMS and certain 

psychiatric disorders (e.g. mood disorders) share similar neurotransmitters (e.g. serotonin 

and noradrenaline) and they also share neuro-anatomy in the limbic system (Smith et al., 

2011).  

FMS has been classified under a number of groups over the years as new information of the 

disorder has emerged. These groups include idiopathic pain disorders (IPDs) (Diatchenko et 

al., 2006), affective spectrum disorders (Hudson et al., 2003), functional somatic syndromes, 

somatoform disorders, medically unexplained symptoms, chronic multi-symptom illnesses, 

central sensitivity syndromes (Smith et al., 2011; Hackshaw et al., 2013) and functional pain 

syndromes (Goodman 2016). Functional pain syndromes and functional somatic syndromes 

are used interchangeably but the most commonly used term is functional somatic 

syndromes. However, according to Yunus, central sensitivity syndromes is the most 

appropriate term to classify FMS and its co-morbidities, based on a biopsychosocial model 

(Yunus 2008). According to this model, FMS is regarded as the “prototype” of the central 

sensitivity disorders. These disorders share a common genetic predisposition (in the form of 

a polygenic polymorphism) and affected individuals have increased pain sensitivity due to 

imbalances in various pain modulating neurotransmitters, e.g. increased substance P levels 

and decreased serotonin and nor-epinephrine levels in the central nervous system. In this 

section we describe three of the most common co-morbid disorders with FMS that fall within 

the same category and also what recent scientific investigations on the disorders have 
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revealed with respect to each. In addition, some comments will be made on Complex 

Regional Pain Syndrome (CRPS) and chronic widespread pain (CWP) syndrome. Although 

FMS and CRPS have distinct clinical phenotypes, they do share many other features, which 

thus warrant some reflection. 

 

Figure 2.6: Pain and sensory amplification is the main underlying pathophysiological 
mechanism identified in co-morbid conditions with fibromyalgia (adapted with permission 
from Smith et al., 2011). 

 

Myofascial pain syndrome (MPS) 

 

MPS is a chronic regional pain syndrome that falls under the same larger classification group 

of central sensitivity syndromes with FMS (Smith et al., 2011; Hackshaw et al., 2013). MPS 

presents with regional musculoskeletal pain, weakness, limited range of movement and 

referred pain (Saxena et al., 2015). MPS pain arises from hypersensitive areas in taut bands 

found in skeletal muscle. The hypersensitive areas are known as myofascial trigger points 

(Desai et al., 2013). These trigger points are hard to the touch, very tender on palpitation 

and located in a discrete muscle-band. Diagnosis is made on the history and palpation of the 

trigger point (Gerwin 2010).   
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MPS is classified as a subtype of FMS with regional and widespread pain being the 

distinguishing factor between the two disorders (Chandola & Chakraborty 2009). MPS is 

difficult to diagnose as there is no set of validated diagnostic criteria that can be used in a 

clinical setting. The current morphological and electrodiagnostic methods used are time-

consuming, unreliable and expensive (Desai et al., 2013) and emphasize the need for a 

biomarker.  

The current accepted hypothesis for the formation of a trigger point is the integrated one of 

Mense and Simons (Mense et al., 2001). According to this hypothesis, an episode (or 

episodes) of muscle trauma leads to an increased production and release of acetylcholine. 

This is associated with an increased release of calcium ions, which leads to non-

physiological contraction of sarcomeres and local hypoxia. This then triggers the release of 

inflammatory substances and increased levels of pro-nociceptive substances (e.g. 

bradykinin, substance P, interleukin-1 beta) have been demonstrated in a micro-dialysis 

study where the biochemical milieu of trigger points was analyzed (Shah et al., 2005). 

Central sensitization is also known to play a role in MPS by means of the referred pain 

induced by trigger point stimulation (Gerwin 2010; Saxena et al., 2015). From this we can 

identify that there are many common characteristics that FMS and MPS share and the 

nociceptive input via untreated myofascial trigger points of MPS may contribute to the 

maintenance of central sensitization in FMS patients (Meyer 2002). 

 

Chronic fatigue syndrome (CFS) 

 

CFS is a poorly understood disorder in which patients complain of unrefreshing sleep, 

inexplicable prolonged fatigue and musculoskeletal pain (Sheedy et al., 2009; Armstrong et 

al., 2015). It affects about five individuals in 1000 people (Wessely 1995). As with FMS, no 

underlying pathology can be detected as the cause of the disorder. According to the 

Canadian Consensus Criteria, a patient is diagnosed with CFS if they present with the 

following symptoms for at least six months: fatigue (including substantial reduction in activity 

levels), post-exertional malaise or fatigue, sleep dysfunction, pain, neurologic/cognitive 

manifestations and autonomic, neuroendocrine, or immune manifestations (Carruthers et al., 

2003). 

In a 2015 study published by Armstrong and colleagues, a metabolomics approach was 

used to study and compare the blood serum and urine of patients diagnosed with myalgic 
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encephalomyelitis/chronic fatigue syndrome (ME/CFS) to that of healthy controls. The 

analytic method used was 1H-NMR. What their study revealed was that there is a 

perturbation in the energy metabolism and oxidative stress pathways of patients with 

ME/CFS. Results for the blood serum analyses showed substantial increased levels of 

glucose and aspartate with decreased levels of acetate, glutamate, hypoxanthine, lactate 

and phenylalanine in the patient group. PCA score plots were significantly able to 

discriminate patients from controls. The urine analyses showed significantly increased 

allantoin and creatinine levels along with decreased levels of acetate, alanine, formate, 

pyruvate, valine and serine in the patient group. PCA score plots were, however, able only 

moderately to discriminate patients from controls. The results of Armstrong et al. show signs 

of glycolysis inhibition leading to a reduction in acetyl-CoA availability for the citric acid cycle. 

The reduction in amino acid levels indicates that the use of an alternative source of 

carbohydrate metabolites for utilization in the citric acid cycle. Hypoxanthine and allantoin 

serve as indicators of ROS production. These findings offers substantial information in 

understanding the pathogenetic mechanism of ME/CFS (Armstrong et al., 2015) and also 

possibly that of FMS. 

 

Irritable bowel syndrome (IBS) 

 

IBS is a disorder of the gastrointestinal tract with its distinguishing features involving 

persistent abdominal pain and diarrhoea or constipation. It affects 10–20% of the adult 

population of whom females are most affected (Saito et al., 2002). IBS is often associated 

with stress, depression and anxiety and is diagnosed using the Rome III criteria, which state 

that a patient should present with recurrent abdominal pain/discomfort for more than three 

days per month over the previous three months associated with two or more of the following: 

improvement with defecation, onset associated with change in frequency of stool, and onset 

associated with change in form/appearance of stool (Shih & Kwan 2007). As with FMS, 

diagnosis is challenging as it is based on the presenting patient’s symptoms and no 

discernible tissue or structural damage is present. For this reason, the quest for the 

identification of plausible biomarkers is vital (Ponnusamy et al., 2011; Baranska et al., 2016). 

A recent metabolomics study conducted by Baranska and colleagues sought to analyze the 

breath samples of IBS patients with age- and sex-matched healthy controls. The analytical 

method used for this study was gas chromatography in conjunction with time-of-flight mass 

spectroscopy. Baranska et al. analyzed volatile organic compounds (VOC) in the breath 
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samples and used these VOCs to obtain discriminatory profiles through the use of 

multivariate statistics. These authors were able to identify 16 VOCs that could discriminate 

patients from controls using a random forest classification model. The receiver operating 

characteristic (ROC) curve reported an area under the curve (AUC) value of 0.83. PCA 

score plots based on the proximity matrix, obtained from the random forest model, showed 

separation between patients and controls. A Kruskal–Wallis test was also conducted 

revealing no confounding factors that may have impacted the study negatively. These results 

correlated positively with the gastrointestinal (GI) tract symptoms indicated by the patients. 

The study by Baranska et al, demonstrates the use of metabolomics for biomarker 

identification without the use of conventional sample material — being blood, urine or CSF 

— to distinguish patients from controls in a non-invasive manner. It also demonstrates the 

potential for use in monitoring the gastrointestinal symptoms of patients with central 

sensitivity disorders.   

  

Complex regional pain syndrome (CRPS)  

 

CRPS is a rare chronic neuropathic pain syndrome. As with FMS, CRPS was initially known 

by many names including causalgia, minor causalgia, algodystrophy, shoulder-hand 

syndrome and Sudeck’s atrophy, with reflex sympathetic dystrophy (RSD) being the most 

commonly used term. There are two types of the disorder, namely CRPS1 (replacing RSD) 

and CRPS2 (replacing causalgia) (Coderre 2011). The disorder types are distinguished by 

the presence (CRPS2) or absence (CRPS1) of major nerve injury. CRPS is diagnosed by 

using the 1993 International Association for the Study of Pain (IASP) criteria; Table 2.3 

summarizes these criteria for diagnosis. In 2003 the diagnostic criteria were revised at a 

workshop in Budapest, Hungary, with the aim of validating the criteria and diagnosis of 

patients as the old criteria tend to over-diagnose patients with the disorder due to poor 

specificity. These new criteria were then dubbed the 2003 Budapest criteria (Harden et al., 

2007). 

The prevalence of CRPS is estimated to be around 26.2 per 100 000 person-years (de Mos 

et al., 2007; Lee et al., 2015) with females being three times more likely to be affected than 

males. In contrast to FMS, CRPS tends to affect women in the age group 61–70 years; the 

upper extremity of the body is more often afflicted than the lower extremities (de Mos et al., 

2007). Clinical features of CRPS usually present after some form of tissue trauma with 
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fractures being the most common trigger (Sandroni et al., 2003; de Mos et al., 2007). Clinical 

features include neurogenic inflammation, allodynia, hyperalgesia, fluctuations in sweating, 

hair and nail growth, swelling, changes in skin colour and temperature of the affected limb 

(as compared to the healthier limb) and muscle weakness (Littlejohn 2015; Marinus et al., 

2011). Inflammation is prominent in the early stages of CRPS diagnosis whereas in FMS it 

tends to fluctuate over a longer period. Pain is localised in the injured limb in the early stages 

of CRPS diagnosis but as the disorder persists, pain then spreads to other areas of the body 

(Littlejohn 2015; Marinus et al., 2011) in contrast to FMS in which pain is widespread from 

the onset. There is no definite pathophysiological explanation for CRPS although peripheral 

and central sensitization is also thought to play a role. Neurocognitive function is also found 

to be impaired in CRPS. In a study conducted by Lee et al. (2015), the authors investigated 

the brain cortical thickness for evaluation of executive function and response inhibition. Their 

study showed that indeed cortical thickness was decreased and cognitive function impaired 

as compared to healthy controls. 

 

Table 2.3: Diagnostic criteria of the 1994 International Association for the Study of Pain 
used to diagnose CRPS (Reproduced with permission from Harden et al., 2007). 

CRPS I (reflex sympathetic dystrophy) 

1) The presence of an initiating noxious event or a cause of immobilization 
2) Continuing pain, allodynia or hyperalgesia to which the pain is disproportionate to 
any inciting event 
3) Evidence at some time of oedema, changes in skin blood flow, or abnormal 
sudomotor activity in the region of pain 
4) This diagnosis is excluded by the existence of conditions that would otherwise 
account for the degree of pain and dysfunction 
 
Note: Criteria 2 to 4 must be satisfied 

 
CRPS II (causalgia) 
 
1) Presence of continuing pain, allodynia or hyperalgesia after a nerve injury, not 
necessarily limited to the distribution of the injured nerve 
2) Evidence at some time of oedema, changes in skin blood flow, or abnormal 
sudomotor activity in the region of pain 
3) This diagnosis is excluded by the existence of conditions that would otherwise 
account for the degree of pain and dysfunction 
 
Note: All 3 criteria must be satisfied. 
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Chronic widespread pain (CWP) syndrome 

 

CWP is not a disorder in its own right, but rather a symptom of disease. It is the hallmark 

symptom of FMS but it can also present in a number of other diseases and thus FMS is 

commonly misdiagnosed in patients that present with CWP. It is therefore for the diagnosing 

physician to rule out other diseases before diagnosing FMS. This is difficult, however, as no 

clear clinical diagnosis is available for CWP but patients are classified as having CWP when 

they do not meet the requirement of 11/18 TPs when being assessed for FMS (Häuser et al., 

2017). A thorough medical, psychosocial history and clinical examination is essential for the 

assessment of CWP. In a review, Hauser et al. (2017) described a number of disorders that 

mimic FMS in that they too present with CWP but they highlight critical features that can be 

used to distinguish them from FMS, thereby ensuring that over-diagnosis of FMS does not 

occur.  

2.4 Conclusion 

From the above we can deduce that FMS is a complex chronic pain disorder. It has no exact 

aetiology and can be precipitated (“triggered”) by a number of stressors probably in 

genetically vulnerable individuals. FMS shares many common characteristics with its 

overlapping disorders, making it difficult to diagnose on first presentation. It is also not a 

monogenic disorder in that no specific set of gene mutations can be implicated in its 

characteristic profile. Many studies conducted on the condition over the years provided 

evidence that FMS is mainly a CNS disorder of abnormal pain processing. As previously 

mentioned, diagnosis of FMS is based off of patient feedback. No structural or tissue 

damage is observed in the disorder thus creating the need to identify a biomarker for FMS. 

 

In view of this information, the biological question for this thesis states: “Is there a metabolic 

perturbation in FMS that may subsequently be used to establish a pain profile for the 

disorder and to identify a biomarker or biosignature for FMS?”. Through the use of 

metabolomics, more scientific insight into FMS and its pain mechanisms may set us in the 

right direction to elucidate all forms of chronic pain syndromes. 

In the following chapters I will review the genetic associations in FMS and also the current 

applications of the “omics” fields of study and technology, to understand the progression and 

possibly identify an accessible, reliable and cost-effective biomarker for this disorder.  
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CHAPTER 3: LITERATURE REVIEW — METABOLOMICS AND 

GENOMICS OF FIBROMYALGIA SYNDROME 

 

3.1 Introduction 

The pathogenesis of FMS is not yet fully understood but some early studies have suggested 

that there exists a high familial aggregation of this disorder (Pellegrino et al., 1989; Park et 

al., 2015). A genetic predisposition has therefore been perceived to play a role in FMS. In 

their study, Pellegrino and colleagues suggested an autosomal dominant mode of 

inheritance from their findings. Buskila et al., (1996) continued by suggesting a gender 

dependency on the mode of inheritance. Subsequent studies by other researchers then 

sought to identify the genes involved in pain and consequently the genes responsible for a 

genetic predisposition in FMS pathogenesis. Against this brief background, FMS appears to 

be a candidate disorder for investigations using contemporary ‘omics’ technologies. Among 

these, metabolomics is a relatively new field on the ‘omics’ research agenda (Wishart 2007; 

Smilde et al., 2005). The other ‘omics’ technologies are genomics, transcriptomics and 

proteomics — respectively dealing with the characterization of organisms on the gene, 

transcript, and protein levels (Wang et al., 2011). Together with metabolomics, these ‘omics’ 

technologies form part of an ‘omics’ cascade in which metabolomics falls at the most distal 

end (Dettmer & Hammock 2004). 

In this chapter I give a brief background on the genetics of FMS and introduce the 

investigative method of choice, being metabolomics, used in my study. 

  

3.2 Genetics of Fibromyalgia Syndrome 

Many studies have attempted to understand the genetic link in FMS. The resultant candidate 

genes identified centred on pain processing and transmission (Ablin & Buskila 2015). 

Numerous markers associated with a genetic context have been identified as abnormal in 

FMS patients as compared with controls, and show symptom-based changes; these suggest 

a potential biomarker for the disorder (Ablin et al., 2009). These biomarkers include 

polymorphisms in the genes of certain pathways, namely, of the serotonin, dopamine and 

catecholamine systems (Buskila 2009). According to Buskila (2009), the polymorphisms in 

these genes all seem to affect the monoamines’ mode of transportation and their 

metabolism. It has to be noted, though, that Buskila also emphasized that these 
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polymorphisms are not specific to FMS but are also associated with other diseases 

overlapping with FMS. Thus, Buskila ruled out that a distinct biomarker for FMS emerged 

from these studies. 

There are a large number of genes that are presumed to play a role in pain (Figure 3.1). 

Only about ten of these genes have been identified along with the body of information each 

contributes towards a pain profile. Discovery of these genes came about from murine 

models of pain and many more have yet to be discovered (Mogil 2012). 

                      

Figure 3.1: Pie chart of all known pain genes and how much information they contribute to a 
pain profile. The ten known pain-associated genes contribute only 50% of the pain genes 
known today. The other 50% consist of genes whose discovery is still pending (Reproduced 
with permission from Mogil 2012). 

 

To date, most of the research conducted in pain studies has been based on traditional 

genetic analyses. However, the application of contemporary genomics technologies 

emerged to provide novel information that may further contribute to the understanding of the 

syndrome, and will be discussed below. In this section I give a brief overview of the three 

important systems and their gene polymorphisms known to play a role in FMS. 

 

3.2.1 Dopaminergic system and the polymorphisms associated with FMS 

Dopamine is a catecholamine, that is, it has a 3,4-dihydroxyphenyl (catechol) nucleus 

neurotransmitter that is derived from the breakdown of tyrosine. It is synthesized in the 
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kidneys by the adrenal glands and also in the sympathetic neurons. Dopamine has two 

functions: 1) in the brain it serves as a neurotransmitter, and 2) in the circulatory system it 

serves as a hormone. These two systems, however, operate separately because of the 

blood–brain barrier (Garret & Grisham 2005). 

The polymorphism identified to play a possible role in the pathogenesis of FMS and related 

to the dopaminergic system is the 7-repeat allele found in exon III of the gene of the D4 

receptor (DRD4). The chromosomal location of the polymorphism is found at 11p15.5 (Lee et 

al., 2012). The frequency of this repeat allele has been shown to occur less in patients that 

have FMS and these patients subsequently display a personality of low novelty-seeking 

(Buskila & Sarzi-Puttini 2006). This 7-repeat polymorphism is a 48 base pair (bp) variable 

number tandem repeat (VNTR) polymorphism. There is also a 4-repeat form of this 

polymorphism but it will not be discussed as it is not associated with FMS (Lakatos et al., 

2002).  

 

3.2.2 Serotoninergic system and the polymorphisms associated with FMS 

Serotonin is a biogenic amine derived from tryptophan, whose main function is that of a 

neurotransmitter. Serotonin stimulates the contraction of smooth muscle and simultaneously 

acts as a potent vasoconstrictor in blood vessels (Murray et al., 2009). 

There are two polymorphisms found in the serotoninergic system that are implicated in the 

possible pathogenesis of FMS. These polymorphisms are found in the serotonin transporter 

(5-HTT) and in the serotonin receptor subtype 2A (5-HT2A). 

The 5-HTT gene is encoded by the SLC6A4 gene and can be found on the 17p11.1-p12 

locus in the 5’ flanking region (Williams et al., 2003). The polymorphism occurs in the 

transcriptional region of the gene. Two forms of the polymorphism have been described in 

which a 44-bp insertion results in a “long allele” (L) and a deletion of the same 44-bp length 

results in a “short allele” (S). The L-variant of this polymorphism has been connected with 

transcriptional activity that increases threefold (Offenbaecher et al., 1999). FMS patients 

have been identified to possess the S-variant of the polymorphism at higher frequencies 

than their healthy counterparts. This variant of the polymorphism is associated with higher 

incidences of depression and “psychological distress” (Offenbaecher et al., 1999), both of 

which are associated with FMS. 

There are seven serotoninergic receptors (5-HT1-7). The type 2 receptors are divided further 

into three sub-categories, namely, A, B and C. Of these, the 5-HT2A receptor has been 
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associated with FMS (do Prado-Lima et al., 2004). The gene for the 5-HT2A receptor is 

located on the long arm of chromosome 13 (do Prado-Lima et al., 2004; Bondy et al., 1999; 

Myers et al., 2007). The polymorphism is that of T102C, resulting in cytosine (C) being 

replaced by thymine (T) at codon 102 (Bondy et al., 1999). This mutation does not result in 

the alteration in the amino acid sequence of the gene, making it a “silent mutation”; it does, 

however, alter the expression of the gene causing lesser production of these 5-HT2A 

receptors in cells (do Prado-Lima et al., 2004). 

 

3.2.3 Catecholaminergic system: catechol-O-methyltransferase (COMT) enzyme and 

the polymorphisms associated with FMS 

COMT (EC 2.1.1.6) is an enzyme that facilitates the metabolism of catecholamines. As such, 

it modulates the neurotransmission of dopamine and adrenaline/noradrenaline (van Esch et 

al., 2011; Vossen et al., 2010). A decrease in the activity of COMT causes the dopaminergic 

neurons to become activated, while levels of enkephalin in the neurons decrease and µ-

opioid receptors increase in the region where pain is experienced. The induction of these µ-

opioid receptors is in response to stressors and pain stimuli. Through this, pain and the 

stress responses are typically reduced. The total inhibition of the enzyme causes pain 

sensitivity to be increased using the β2/3 -adrenergic system (van Esch et al., 2011). 

The COMT gene is located on the long arm of chromosome 22 at the 22q11.2 locus (van 

Esch et al., 2011). There are many single nucleotide polymorphisms (SNPs) that affect the 

COMT gene but the one implicated in FMS is the Val158Met locus (Buskila & Sarzi-Puttini 

2006). The SNP occurs at the genomic level, causing an alteration in the protein sequence 

of the transcriptome. The mutation occurs at position 158 where valine is altered to 

methionine. The genotypes are described as follows: H/H is val/val (normal, wildtype), H/L is 

val/met (defective, heterozygous) and L/L is met/met (defective, homozygous) (Vossen et 

al., 2010; Matsuda et al., 2010). The brackets indicate the kind of enzyme the alteration 

gives rise to and the genotype, respectively. This polymorphism affects the activity and 

thermostability of the enzyme with the H/H type being of highest activity and L/L being of 

lowest activity. It is also linked with a pain tolerance reduction as enzyme activity decreases 

in healthy counterparts (van Esch et al., 2011; Desmeules et al., 2012). FMS patients with 

the L/L genotype experience more severe pain compared with those with the H/H genotype 

(Matsuda et al., 2010; Desmeules et al., 2012). These L/L homozygotes also have increased 

neurotransmission of dopamine and decreased activation of the µ-opioid system due to the 
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low activity of COMT, causing them to have increased sensitivity to nociceptive stimulation 

(Vossen et al., 2010). 

In my study, blood samples were collected from our patients and controls for genetic studies 

based on the three systems and their polymorphisms. These genotyping results, however, 

did not produce conclusive information — see Addendum A1 

 

3.2.4 Genomics studies on FMS 

In a review by Ablin and Buskila (2014), the question was posed whether it is possible to 

predict future development of FMS. Due to familial aggregation and advances in scientific 

research on the disorder, the genetic aspect has become an attractive angle with which to 

identify individuals with a predisposition to FMS. In this section two recent scientific papers 

are reviewed that attempt to answer the question posed by Ablin and Buskila. 

In 2013, Arnold et al. conducted an autosomal genome-wide linkage scan (also known as a 

genome-wide association study or GWAS) to detect all possible chromosomal loci that can 

be determined as markers associated with FMS susceptibility. The authors used members of 

116 families from the Fibromyalgia Family Study who were then genotyped with 341 

microsatellite markers. 

Arnold et al. were able to identify two markers linked with FMS susceptibility. The markers 

were located on chromosome 17 in the p11.2–q11.2 region of the chromosome. One of the 

markers identified coincides with a well-known FMS candidate gene for SLC6A4 (see 

section 3.2.2 above). The other marker was a lesser known candidate gene for transient 

receptor potential vanilloid channel 2 (TRPV2). The role of TRPV2 is not fully understood 

yet, but it is thought to play a role in pain mediation. Arnold et al. acknowledge that the 

region where the SLC6A4 and TRPV2 genes were identified contains more than 100 other 

genes and that the specific role that this chromosomal region plays in the pathogenesis of 

FMS needs to be elucidated. However, their current findings warrant further investigation as 

some overlaps were seen with respect to earlier research. 

In another GWAS-type study in 2014, Docampo et al. aimed to elucidate genetic 

susceptibility factors for FMS. This was done through two objectives: 1) by a GWAS study, 

and 2) using copy number variants (CNV) by using genotyping data (SNP) and array 

comparative genomic hybridization experiments (aCGH). Their study cohort comprised 313 

samples from females diagnosed with FMS having low co-morbidities and 220 females with 

no signs of FMS, who served as controls.  
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The GWAS analysis conducted by Docampo et al. did not yield SNPs of importance with 

regard to FMS susceptibility. Docampo et al. therefore conducted a secondary study 

(Docampo et al., 2014) in which 21 of the most associated SNPs were earmarked for 

replication in a larger cohort of 952 cases and 644 controls. From this secondary study, a 

SNP (rs11127292) in the myelin transcription factor 1-like (MYT1L) gene was identified as 

being associated with FMS susceptibility in the low-comorbidity cohort. MYT1L plays a role 

in neuronal differentiation and is associated with neuropsychiatric disorders. The aCGH 

study revealed an intronic 8-kb CNV deletion in NRXN3. NRXN3 also plays a role in 

neuronal development and signal transmission and may explain the pain dysfunction 

characteristic in FMS. These findings therefore implicate CNS involvement in FMS, which is 

consistent with reports highlighting a neurocognitive component in the disorder. 

In both studies (Arnold et al., 2013; Docampo et al., 2014), the FMS group was 

characterized using the ACR 1990 criteria, as was done in my study. Arnold et al., however, 

included males in their study, whereas only female subjects were used in the study by 

Docampo et al. In both studies a new genetic discrepancy was presented in FMS patients, 

not previously described in the literature. With further validation of these findings, it could 

possibly lead to a means of identifying individuals with a predisposition to the disorder, 

thereby allowing physicians to curb the effects at an earlier stage. 

 

3.3 Metabolomics and its applications in FMS 

Metabolomics encompasses the identification and quantification of small molecules called 

metabolites (<1500 Da) that are both exogenous and endogenous in nature (Zhang et al., 

2012a; Roessner & Bowne 2009). The functional use of the term metabolomics was first 

introduced in 2002 by Oliver Fiehn, who described it as “a comprehensive analysis in which 

all the metabolites of a biological system are identified and quantified as needed”. 

Metabolomics thus aids researchers in the comprehension of the intricate molecular 

interactions of all known biological systems (Bino et al., 2004). Using ‘omics’ technology 

enables one to examine biological systems in response to perturbations (disease related or 

environmental) or genetic alterations, on various levels. These include biological material 

from cellular, tissue, organ and whole organism origin (Lin et al., 2006). Eventually, the use 

of metabolomics information in a systems biology approach (van der Greef et al., 2006) 

opens up an understanding of biology, culminating in personalized medicine (Ramautar et 
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al., 2013). A major goal of metabolomics is therefore the measurement of as many 

metabolites as possible encountered in a biological system (Smilde et al., 2005). 

Many scholarly reviews have been published on metabolomics (Goodacre et al., 2004; 

Goodacre et al., 2007; Fiehn et al., 2007), metabolomics technology (Weljie et al., 2006; 

Koek et al., 2011; Zhou et al., 2012) and on its applications (Spratlin et al., 2009; Bundy et 

al., 2009; Zhang et al., 2012b). It is therefore beyond the purpose of this thesis to contribute 

to a deeper understanding of metabolomics and its technologies. It is, however, evident that 

a broad outline, as well as terminological information, is required as a prerequisite for my 

aim to use metabolomics in the study of FMS. The focus will thus be on the broad outline. 

There are many terms associated with metabolomics and these terms and their descriptions 

are summarized in Table 3.1, most of which will be used throughout this thesis. 

 

Table 3.1: Table of terms used in metabolomics, and their definitions (reproduced with 
permission from Oldiges 2007). 

Term Definition 

Metabolite Bio-reactive small molecule involved in a 
biochemical network 

Metabolome Set of all metabolites present in a biological 
system (e.g. the cell) 

Exo-metabolome Metabolites present in the extracellular 
surroundings of the cell (e.g. cell 
supernatant)  

Endo-metabolome Metabolites present inside the cell 
(sometimes separated by 
compartmentalization) 

Metabolic quenching Immediate “freezing” (termination) of all 
metabolic activity in a sample (preferably 
during the sample collection procedure) 

Metabolomics Quantification of the metabolome (and 
keyword for this scientific endeavour) 

Target analysis Quantitative analysis of specific substrate 
and/or product metabolites 

Metabolic profiling Quantitative analysis of a set of pre-defined 
metabolites belonging to a class of 
compounds, or members of particular 
pathways or a linked group of metabolites 
(e.g. sugars, sugar phosphates, lipids, 
organic acids) 

Metabolic fingerprinting Semi-quantitative analysis of the endo-
metabolome 

Metabolic footprinting Semi-quantitative analysis of the exo-
metabolome 
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Metabolites offer us the information to bridge the gap between the genotype and the 

phenotype, by providing indicators (or eventually biomarkers) that represent the functional 

phenotype at a given point in time. Analysis of these low-molecular-weight substances could 

also provide a deeper understanding of how lifestyle and dietary factors impact the 

manifestation of certain diseases (Roessner & Bowne 2009; Zhang et al., 2012a). Examples 

of these metabolites include amino acids, organic acids, phenolic acids, carbohydrates, 

lipids and alkaloids. Metabolites are not encoded in the genome like their RNA and protein 

counterparts, but are the expression products that are involved in the biochemical pathways 

present in the human body, as well as of all other organisms, depending on the source of the 

material being analysed. Metabolites are also the key substances of, or may be required for, 

metabolism (Dettmer & Hammock 2004). Collectively, these metabolites are called the 

metabolome (see Table 4.1) (Vinayavekhin et al., 2010). 

There are two main categories of platforms most generally used in metabolomics 

investigations for the identification of metabolites: (hyphenated) mass spectrometry (MS) 

and nuclear magnetic resonance (NMR) spectroscopy. 

MS is the metabolite identification technique used in conjunction with a separation method, 

which can be mainly gas chromatography (GC), liquid chromatography (LC) and capillary 

electrophoresis (CE), designated as hyphenated MS, e.g. GC–MS. MS can, however, be 

used on its own (not coupled to a separation device) by using direct-injection MS (DIMS). 

DIMS leads to a resultant spectrum in which a single sample is represented (Lin et al., 

2006). DIMS constitutes a rapid technique but allows for only a limited number of 

metabolites to be analysed. DIMS possesses some disadvantages, because it has a low 

ionization efficiency and co-suppression occurs. Hence, it is preferred to use MS in 

conjunction with a chromatographic separation technique — the hyphenated MS (Zhang et 

al., 2012a). Other disadvantages of MS include the fact that samples are destroyed and 

cannot be re-analysed as in NMR analysis. It also usually calls for sample preparations that 

result in the loss, or chemical modifications, of metabolites. Key advantages are that 

analysis times are not long, its selectivity and sensitivity are very high and that it can be 

coupled to separation technologies (Wang et al., 2011). 

The most commonly used hyphenated MS platform for metabolite analysis is GC–MS (Wang 

et al., 2011), which is mostly used in non-targeted or semi-targeted analyses (described in 

detail later in this review), especially for metabolites that are hydrophilic in nature (Zhang et 

al., 2012a; Lin et al., 2006). GC separation is ideal for the analysis of volatile compounds, for 

example organic acids. Since temperatures reach extreme heights during GC separation, 
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the analytes need to be thermally stable and volatile. This is achieved by derivatizing the 

samples before actual analysis on the mass spectrometer, but this can also result in 

metabolite loss or chemical modification of artifacts, which is one of the major disadvantages 

of GC–MS. 

NMR is an analytical method used for metabolic profiling in which a sample is subjected to a 

magnetic field for compound identification, resulting in a collection of spectral peaks with 

each compound rendering a distinctive pattern (Wang et al., 2011). It can be used for 

samples in a solid or liquid state. For the scope of this thesis, only liquid state NMR will be 

referred to. NMR is a non-discriminative (Wang et al., 2011) method in which complex 

samples, like biofluids, can be analysed without destruction of the sample, which is the case 

with most other metabolomic techniques (Smolinska et al., 2012). There are different forms 

of NMR that can be performed, with proton (1H-NMR) and carbon-13 (13C-NMR) being the 

most commonly used forms — my study focuses on 1H-NMR. There are certain 

disadvantages to NMR as compared to chromatographic metabolomic techniques with the 

main drawback being that the sensitivity of NMR is low. This means that analyses using 

NMR can only be used on samples with sufficiently high physiological concentrations of the 

metabolites of interest (Smolinska et al., 2012; Breau & Cantor 2003; Zhang et al., 2012a). 

Second, the spectra produced from NMR are highly complex, such that rapid analysis of 

samples is not possible (Breau & Cantor 2003; Wang et al., 2011). Lastly, compounds 

without protons cannot be detected in 1H-NMR. Advantages of this method are that sample 

preparation is minimal and the sample does not get destroyed (as mentioned above) during 

analyses, thereby making NMR more reproducible than other techniques (Smolinska et al., 

2012; Breau & Cantor 2003). 

 

3.3.1 Different approaches used in metabolomics investigations 

Metabolomics experiments are conducted in either a targeted or untargeted fashion. This is 

done depending on the kind of information one is seeking to obtain from an analysis. 

The targeted approach is a type of analysis in which the goal of the experiments is to focus 

on only certain metabolites (Figure 3.2) (Vinayavekhin et al., 2010). These metabolites 

(targets) are all known (predetermined classes of molecules), hence no new metabolites are 

identified with these analyses. With this type of analysis only one type of analytical technique 

is used that is best suited for the analysis of these specific compounds (Roessner & Bowne 

2009). This approach is also known as “biased“ or “directed” metabolomics (Wang et al., 
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2011). Targeted approaches normally make use of internal standards that are isotope-

labelled for absolute quantitation (Vinayavekhin et al., 2010; Wang et al., 2011). As a 

hypothesis-driven approach, it is often used for the confirmation of an untargeted study and 

also for the validation of important biological pathways. The information generated from this 

approach is interpreted by means of known biological pathways and physiological 

interactions. However, the one disadvantage of this approach is that it is not seen as a 

universal or “omics” approach (Dettmer & Hammock 2004). 

 

3.3.2 What is metabolic profiling? 

Metabolic profiling (also see Table 3.1) is the “identification and quantitation of compounds in 

the metabolome” (Dunn et al., 2011). This high-throughput method is applied to biofluids, like 

blood and urine, to measure and interpret their metabolic parameters (Kuhara 2005). By 

doing this we are able to track the changes in the levels of the metabolites, the end products 

of cellular metabolism. This in turn allows us to quantify gene function. 

Studies using metabolic profiling are conducted using different analytical techniques 

including chromatography coupled to MS, as was the case for my PhD study where GC–MS 

was used. 

As opposed to the targeted approach, the untargeted approach aims to measure as many 

metabolites as possible that are present in a given sample (Lommen et al., 2007) and to 

compare how, if any, changes occur in the level of metabolites in response to a certain 

disease, exposure to toxins or any other applicable perturbation (Dettmer & Hammock 

2004). If the untargeted analysis focuses on a certain class of metabolites, e.g. organic 

acids, steroids or bile acids, the approach is often typified as semi-targeted metabolomics. 

These metabolites that are being analysed can be either identified or unknown, based on 

their chemical make-up (Roessner & Bowne 2009). If the variables are not chemically 

identified by name or structural formula (e.g. as intensity or area values at a distinct retention 

time (RT) in a GC spectrum or of a spectral amplitude at a specific chemical shift position, in 

units of parts per million (ppm), of an NMR spectrum), this approach is termed “metabolic 

fingerprinting”. Both metabolite profiling and fingerprinting allow us to make use of a 

resultant profile from an analysis to classify a phenotype (Wang et al., 2011). Both 

approaches were applied in the NMR metabolomics of urine samples from the FMS patients 

and controls studied in Malatji et al., 2017. Metabolic fingerprinting can be seen as a true 

“omics” approach as the extensive amount of original data is compared (e.g. those of 
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patients with controls) using unsupervised statistical tools such as principal component 

analysis (PCA) and cluster analyses. If sample segregation occurs from these analyses, 

then further investigations are initiated to identify (annotate/absolute identification and 

quantification) these compounds/metabolites, leading to a metabolic profiling result. This 

may then be further analysed to identify a limited number of metabolites, which may become 

potential biomarkers or a biosignature for the perturbation under investigation (Dettmer & 

Hammock 2004). This untargeted approach is often an exploratory or hypothesis-generating 

process and is most commonly used in cases where biomarker identification is the goal of 

the study. Hence this is the approach that was largely followed in the experimental part of 

this project. 

 

 

Figure 3.2: The differences between targeted and untargeted analyses, and their uses, as 
utilized in MS-based metabolomics investigations. A) Isotopic standards are used for 
absolute quantitation of metabolites in targeted analyses, whereas in an untargeted analysis 
variations in all metabolites are measured by scanning a broad mass range (e.g. m/z 100–
1500). B) Knowing the exact mass of a compound can aid in identification of the metabolite 
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in question by comparison against other metabolites of the same mass. C) Structural 
characterization leads to identification of novel metabolites, which can be validated with the 
use of additional analytical experiments such as tandem MS (shown in figure) and NMR 
(Reproduced with permission from Vinayavakhin et al., 2009.) 

 

3.4 Metabolic indicators of Fibromyalgia Syndrome 

When this project was initiated in 2011, no publications or investigations using metabolomics 

as the investigative method for identification of biomarkers in FMS had been published. 

However, after completion of the experimental aspects of the present investigation, three 

articles, by Hackshaw et al., Caboni et al., and Hadrévi et al.,, were published online in the 

journals The Royal Society of Chemistry in April 2013, PLOS ONE in September 2014, and 

Scientific Reports in November 2015, respectively. The article by Hackshaw et al., is entitled 

“A bloodspot-based diagnostic test for fibromyalgia syndrome and related disorders”, the 

article by Caboni et al., is entitled “Metabolomics analysis and modelling suggest a 

lysophosphocholines-PAF receptor interaction in Fibromyalgia”, and the paper by Hadrévi et 

al., is entitled “Systemic differences in the serum metabolome: a cross sectional comparison 

in woman with localized and widespread pain and controls”, with FMS being a special form 

of CWP. 

For the remainder of this chapter, these three specific articles will be dissected and critically 

assessed based upon their: 1) novelty, 2) contribution to the subject, and 3) limitations, as 

offered as metabolomics studies of FMS. 

 

3.4.1 Metabolomics of FMS from dried blood samples 

Hackshaw and colleagues used a partly metabolomics approach in their investigation of 

FMS. The analytical protocol included mid-infrared microspectroscopy (IRMS) and a 

metabolomics (multivariate) analysis of data obtained from three platforms: ultra-high-

performance liquid chromatography with tandem MS (UPHLC–MS/MS) and GC–MS using 

non-targeted metabolic profiling, with two UPHLC–MS/MS platforms being used, namely, 

one optimized for an acidic analysis and the other optimized for a basic analysis. The aim of 

their investigation was to identify a “rapid biomarker-based method” to help diagnose FMS (n 

= 14) and to distinguish it from two other inflammatory disorders, namely, osteoarthritis (OA) 

(n = 12) and rheumatoid arthritis (RA) (n = 15), using dried blood samples. 
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For metabolomics analyses, the punches from the bloodspot cards were subjected to the 

solvent extraction method using methanol; 100 µl of this supernatant was used for analysis. 

Equal aliquots were made for each of the three analyses, respectively. The supernatant was 

then further evaporated to dryness under nitrogen and vacuum-desiccated. The samples 

were then reconstituted in different solvents for the different analyses to be performed. With 

regard to UHPLC–MS/MS, for acidic conditions 50 µl of 0.1% formic acid in water was used, 

for basic conditions 50 µl of 6.5 mM ammonium bicarbonate in water was employed. For the 

GC–MS analysis, the samples were derivatized using N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA) and a solvent mixture of acetonitrile, 

dichloromethane and cyclohexane with trimethylamine to a final volume of 50 µl. 

Through using this approach, Hackshaw and colleagues were able to detect and identify 166 

metabolites. By applying multivariate analysis, they were able to identify 30 metabolites as 

the top-ranking metabolites to contribute to the separation between FMS and RA. A PCA 

based on these 30 metabolites was insufficient to provide a natural separation between the 

FMS and the RA and OA cases (see Figure 3.3A). A natural separation could be obtained, 

however, for the FMS cases using eight variables which were identified as having high 

discriminatory value (see Figure 3.3B). 

 

      

Figure 3.3: Results obtained from a PCA score plot created in a metabolomics experiment 
conducted by Hackshaw and colleagues. (A) PCA using the top 30 metabolites, identified 
through random forest analysis, shows that a natural separation could not be obtained for 
FMS versus the inflammatory disorders. (B) PCA showing the natural separation between 
FMS and the inflammatory disorders, based on the eight selected metabolites. The analysis 
was performed using SIMCA (adapted with permission from Hackshaw et al., 2013.) 
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Amidst the 30 significant markers identified, trans-urocanate, kynurenine, bradykinin, 

sarcosine, ornithine and asparagine (all involved in metabolism of peptide/amino acids), 

heme, cysteine-glutathione disulfide, oxidized glutathione and opthalamate (oxidative stress 

markers), nicotinamide adenine dinucleotide (NAD+), fumarate and phosphoenolpyruvate 

(PEP) (all involved in energy metabolism), choline and glycerol-3-phosphate (all involved in 

membrane remodelling) were identified as the metabolites that were chiefly responsible for 

the observed separation. Similar results were obtained for the separation between FMS and 

OA cases. Kynurenine, trans-urocanate, cysteine-glutathione disulfide, PEP, pyruvate and 

NAD+ were all found in elevated concentrations in FMS sufferers. The observed important 

metabolites were not quantified, but the spectral information was correlated with the 

symptom severity of the patients, using pattern recognition software for the partial least 

squares regression (PLSR). Loadings on the PLSR factors provide information on the most 

influential explanatory variables, which turned out to be asparagine, heme and trans-

urocanate, in descending order. Heme, along with other hemoproteins, was significantly 

elevated in FMS sufferers. 

The novelty of this pioneering metabolomics study lies in the analytical advantage of using 

samples from blood spot cards — dried and transported to the laboratory for analysis 

elsewhere — which enabled a clear separation between samples from RA and OA relative to 

FMS cases. Furthermore, a notable biochemical contribution is the prediction by Hackshaw 

et al.,, from the results of their untargeted metabolomics study, that changes in the 

tryptophan catabolic pathway differentiated FMS patients and those identified with RA and 

OA. Third, the fact that the discriminatory variables were identified via a regression algorithm 

and not through relative or absolute qualified values, limits the applicability of the results for 

future comparative studies. 

 

3.4.2 Metabolomics of FMS through plasma lipidomic analysis 

Caboni and colleagues used a modified Folsch method to extract plasma lipids, for their 

study on FMS, for the identification of potential biomarkers and better understanding of the 

pathogenesis of the disorder. In their study they utilized liquid chromatography–quadrupole 

time-of-flight–mass spectroscopy (LC-QTOF-MS) to analyse the plasma of 22 FMS patients 

and 21 matched controls. The metabolome of choice in this study was that of lipids, with 

compounds of interest being lysophosphochilines (lysoPC), phosphocholines and 

ceramides, based on the observation that oxidative stress with lipid peroxidation induced by 

ROS has been proposed as a relevant contributing factor to FMS pathogenesis. 
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Figure 3.4: Unsupervised PCA (A) and supervised PLS-DA (B) analysis results obtained 
from the study by Caboni and colleagues on FMS patients (denoted by black squares) 
versus matched controls (denoted by grey circles). No natural separation or outliers were 
observed in the PCA, whereas a separation was observed in the PLS-DA. The analyses 
were based on the data of the metabolites identified using LC–QTOF–MS. All analyses were 
performed using SIMCA software. (Reproduced with permission from Caboni et al., 2014.) 

 

Caboni’s findings showed elevated amounts of lysoPCs, which are produced by lipid 

oxidative fragmentation, in FMS patients as compared to controls. Statistical analyses 

showed no separation of the two groups, on the basis of the metabolites identified by LC–

QTOF–MS, on an unsupervised PCA (Figure 3.4A), with subsequent separation on a 

supervised PLS-DA (Figure 3.4B). Using the numerical values of the loadings from a PCA 

plot, seven metabolites were identified as the discriminant molecules responsible for the 

separation between FMS and controls. Of these seven metabolites, PC(14:0/0:0) and 

PC(16:0/0:0) were noted to have a platelet activating factor (PAF)-like structure and their 

binding affinity for the PAF receptor (PAFr) was examined. This was done as the PAF/PAFr 

system has been linked to the modulation of pain signalling. These two phosphocholines 

possessing a PAF-like structure therefore suggests that they can bind to and activate the 

PAFr receptor, thereby eliciting pain signalling and enhancing pain sensitivity (Caboni et al., 

2014). 

The novelty of this study was the application of metabolomics information to direct a 

molecular dynamics analysis of an endogenous metabolite–PAFr interaction that may play a 

role in the clinical manifestation of FMS. Second, this study, like the dried blood spot 

analysis by Hackshaw et al., indicated the capability of a metabolomics approach to 

generate distinct metabolic profiles that distinguish between FMS and controls; here, through 

a targeted lipidomic analysis. Third, the same limitation as in Hackshaw et al. occurred here, 

as no relative or absolute qualified values of the relevant discriminating variable from the 

loadings plot were calculated. 
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3.4.3 Metabolomics of CWP/FMS though analysis of serum 

The aim of the study by Hadrévi et al., (2015) was to use metabolomics to explore the 

metabolite content and profile in patients with widespread and localized pain and controls. 

The blood serum of females was the sample material utilized in their study. The cases 

studied were female FMS patients (n = 16) with CWP (indicated as CWP/FM). These cases 

were identified through the sensitivity of 11 tender points out of 18, as for FMS. There were 

two sets of controls, namely, those with pain (n = 32) that had a localized nonspecific 

manifestation of pain (neck–shoulder pain, indicated by NP) and normal healthy controls (n = 

39) without pain (indicated as CON). 

Serum samples were extracted with methanol:water (9:1) followed by methoxymation and 

analysed by gas chromatography–time-of-flight–mass spectrometry (GC–TOF–MS). A total 

of 244 metabolites were detected by GC–TOF–MS but only 110 of those detected were 

identified. The metabolites were identified through hierarchical multivariate curve resolution 

(H-MCR). All 244 metabolites, however, were used for multivariate analyses. Group 

separation, through PCA, differentiated CON from undifferentiated CWP and NP, but an 

orthogonal partial least squares analysis (OPLS-DA) separated all three groups in a model 

using two predictive components (Figure 3.5). Metabolites (up- or down-regulated) unique to 

CWP were identified through a shared and unique structure plot (SUS-plot), shown in Figure 

3.6. 

 

A  B  
 

Figure 3.5: Unsupervised PCA (A) and supervised OPLS-DA (B) conducted by Hadrevi et 
al., In both (A) and (B) FMS/CWP is denoted by red circles, NP by green triangles and CON 
by black squares. The PCA shows the initial multivariate analysis in which a clear natural 
separation of NP was observed from FMS/CWP and CON, which did not separate from each 
other. The OPLS-DA shows a clear separation of NP from the CON and FMS/CWP, with 
lesser separation observed between FMS/CWP and CON. (Reproduced with permission 
from Hadrévi et al., 2015.) 
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Figure 3.6: A SUS plot showing the shared and unique correlations between CON-NP, and 
the CON-CWP OPLS-DA model. Correlation coefficients of 0.3 are indicated by the dashed 
lines (Reproduced with permission from Hadrévi et al., 2015.) 

 

A metabolite profile, consisting of metabolites from several metabolic pathways, showed a 

differentiation between subjects with NP and the CON but only to a weak extent between 

subjects with CWP and CON. In the final instance the authors regard the outcome as a 

systemic difference of processes related to energy utilization, which may be central aspects 

of the mechanisms maintaining CWP. 

The novelty of this publication is that Hadrévi et al. were able to show that there are systemic 

differences that enable a metabolomics study to distinguish widespread pain from localised 

pain and non-pain controls. Second, the scientific contribution is that their findings point to 

perturbations in the lipid metabolism (section 3.4.2: observed in the study by Carboni et al.) 

and energy utilization pathways (generally accepted to be a perturbation in the closely 

related FMS). Third, limitations of the publication are that Hadrévi et al. were not clear in how 

they distinguished CWP from FMS cases (e.g., they provided no detail on pressure point 

estimations as done for CWP and FMS patients) and the link between these two disorders 

was not addressed in the paper. Moreover, a similar limitation of Hackshaw et al. and 

Caboni et al. applies here in that the discriminating variables were not quantified. 
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In conclusion 

These three investigations clearly substantiate the potential power of a metabolomics 

approach to identify biomarkers, and possibly the underlying pathophysiology, in 

perturbations as complex as FMS. From the results, of the respective studies, we can clearly 

see that the neurobiological pathways, as well as the energy metabolism pathways, are 

important in the pathophysiology of FMS, as intermediates associated with these pathways 

are found to be perturbed (increased or decreased) in FMS. Moreover, slight modifications in 

monosaccharide metabolites were also observed, lending further support to the recognition 

of energy disruption. Evidence of elevated oxidative stress biomarkers shows that oxidative 

stress does indeed play a role in the pathogenesis of FMS. Changes in amino acids are 

shown to occur in FMS but inconsistent results have been observed in this regard. Heme 

was shown to be present in highly elevated amounts in FMS patients but the reason as to 

why this occurred was not elucidated by Hackshaw et al. Through the latter’s investigation 

we can see that FMS possesses distinguishing features from inflammatory diseases such as 

RA and OA. Moreover, the authors of all three publications are generally convinced that their 

results — and by implication the outcome of validated metabolomics studies on FMS — can 

be used to confirm  possible biomarkers of disease diagnosis and progression. 
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CHAPTER 4: NUCLEAR MAGNETIC RESONANCE (NMR) 

SPECTROSCOPY OF FIBROMYALGIA SYNDROME 

 

4.1 Brief NMR theory 

Proton nuclear magnetic resonance (1H-NMR) spectroscopy is an analytical platform 

employed in metabolomics for the analysis of biofluids such as blood, serum, plasma or 

urine. 1H-NMR is a highly reproducible method in which a magnetic field is applied to the 

sample under investigation in order to manipulate the orientation of the hydrogens in the 

nuclei. There are many different kinds of NMR experiments that can be done but for the 

purposes of this thesis only proton (1H) NMR will be referred to. The protons inside the 

nucleus of the particles have a random orientation when outside a magnetic field. Once they 

are placed in a static magnetic field they align in two possible orientations. These 

orientations can either be north–south or south–north. A radio frequency (RF) is then applied 

to the sample to “knock over” the aligned protons. As the protons return to their original state 

they release the energy applied by the RF pulse, which is called free induction decay (FID). 

Fourier transformation (FT) is then used to convert FID into the generally known NMR 

spectrum. Figure 4.1 shows this conversion. Each peak of the spectrum represents the 

intensity of protons of a particular compound.  

 

 

Figure 4.1: Transformation of free induction decay (time domain) to the NMR peak profile 
(frequency domain) by means of Fourier transformation. Each peak in the 1H-NMR spectrum 
represents the intensity of free protons attached to carbons of a particular compound in a 
sample. 
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4.2 Advantages and limitations of NMR and sample preparation of biofluids  

4.2.1 Advantages and limitations of NMR over MS 

NMR and mass spectrometry are the most popular platforms that are used in metabolomics 

experiments. Both come with their own advantages and limitations. Each of their individual 

limitations can, however, be offset by the other. This essentially makes them complementary 

techniques. Numerous publications have made use of a combination of metabolomics 

platforms to investigate their research question. In fact, the Human Urine Metabolome 

Database (Bouatra et al., 2013) was created with the aid of six different metabolomics 

platforms to elucidate the urine metabolome. Each method was able to identify a set of 

compounds unique to the method and compounds that overlap with each other. Figure 4.2 is 

a Venn diagram adapted from Bouatra et al. (2013), showing the number of compounds 

NMR and GC–MS can detect uniquely, and overlapping commonly found metabolites. 

Overall, GC–MS was able to identify 179 compounds with 89 of those compounds being 

unique to GC–MS analysis. NMR was able to identify 200 compounds with 108 of those 

compounds unique to NMR analysis. A total of 88 of the compounds identified were detected 

by both NMR and GC–MS. It should be noted that multiple extraction protocols were used to 

elucidate the urine metabolome and establish the urine metabolome database (Bouatra et 

al., 2013). In this thesis, only NMR and GC–MS will be referred to as these are the two 

platforms used, as shown best by Bouatra et al., to elucidate the urinary metabolic profile. 

GC–MS will be discussed in more detail in Chapter 5. 

 

 

Figure 4.2: Venn diagram showing the number of compounds each metabolomics 
technique, being NMR and GC–MS, contributed to the elucidation of the human urine 
metabolome (adapted with permission from Bouatra et al., 2013). 
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The main advantage of NMR is that no prior knowledge of the sample is needed, meaning 

that no tedious sample extraction needs to be conducted. This makes sample preparation 

simple and the whole metabolome can be studied at once. The sample is also not destroyed 

during analysis, allowing it to be analysed multiple times for NMR or to be used downstream 

in other experiments. NMR is, however, not as sensitive as MS, which can detect 

compounds in the pico- to fentomole range. That means NMR is not viable for the analysis of 

many secondary metabolites, which usually lie within that range. Although 1H-NMR detects 

only metabolites with free hydrogens attached to carbons, only one technique is needed to 

analyse samples, unlike MS, where different extraction techniques usually need to be 

employed to target the different classes of metabolites. NMR is a highly reproducible method 

and analysis run times are typically short as compared to GC–MS (~15 minutes compared to 

~45 minutes, respectively). Since minimal sample preparation and little prior knowledge of 

the sample is required for NMR analyses, it is best for untargeted metabolomics experiments 

(Emwas 2015). Moreover, the running costs of NMR are markedly lower than those of other 

platforms, although initial set-up is expensive. Minimal expertise is required to perform NMR 

analyses but it does require advanced expertise to interpret the spectra. Table 4.1 briefly 

outlines the comparative advantages and disadvantages of NMR and MS. 

 

Table 4.1: Brief summary of the comparative advantages and disadvantages of NMR and 
MS (adapted with permission from Emwas 2015). 

 NMR MS 

Sensitivity 
  

Low  High  

Specificity 
  
  
  

 High confidence in identification of 
compounds 

Lower level of 
confidence in 
identification of 
compounds  

Sample measurement 
  
  

Only one measurement required for 
detection of metabolites 

Different techniques 
are required for 
different classes of 
metabolites  

Sample recovery 
  
  

Non-destructive; multiple analyses 
can be performed on one sample  

Sample is destroyed 
during analysis  

Reproducibility Very high Moderate 

Sample preparation 
  
  

Minimal/simple preparation 
  
  

More complex 
preparation  

Targeted analysis Yes Yes 
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4.2.2 NMR sample preparation 

As previously mentioned, the main advantage of NMR analyses is the simple preparation of 

samples. The protocol for sample preparation is a well-established Standard Operating 

Procedure (SOP) as used by the Translational Metabolic Lab at Nijmegen, in the 

Netherlands (Wortmann et al., 2006; Engelke et al., 2004; Moolenaar et al., 2001). First, the 

urine is centrifuged to separate out any large particles as sediment, proteins in particular, 

present in the sample. This reduces the risk of broad resonance peaks that will obscure the 

presence of low concentration peaks in the spectra, and so give poor quantitative results. 

The resultant supernatant is then transferred to a clean tube and an internal standard (IS) is 

added. The IS in the case of this study was trimethylsilyl-2,2,3,3-tetradeuteropropionic acid 

(TSP), dissolved in a deuterated solvent, namely deuterium oxide (D2O). The TSP serves as 

the source of a reference peak for quantification and scaling of the spectra, while the D2O 

serves to lock the signal during analysis. It is important to standardize the pH of the samples 

as it affects the chemical shift of the metabolites in the spectra. The pH of urine varies quite 

considerably and so all samples were adjusted to pH 2.5 ± 0.05, as per the Dutch protocol. 

The pH-adjusted samples were then transferred to a 5 mm NMR tube for analysis.  

 

4.3 NMR profiling of Fibromyalgia Syndrome 

4.3.1 Power of NMR metabolomics 

Metabolomics is an emerging field in the “omics” cascade. It is of great value to systems 

biology as it allows us to study the distal alterations of gene and protein mutations, enabling 

us to define a phenotype of a particular disease. When coupled with NMR technology, it 

allows us even greater insight into disease analysis. Since little prior knowledge of the 

sample being analysed is needed, NMR makes for a valuable platform for untargeted 

metabolomics studies that are discovery based. This allows the metabolome to be studied 

untargeted, permitting one to identify the affected metabolites and pathways. From a 

foundation of these untargeted studies, one can then move on to more targeted studies 

using techniques such as MS. 

Once the raw NMR spectra have been obtained, they have to be pre-processed so that 

statistical methods can be applied to identify class separation. As with any metabolomics 

investigation, normalization and scaling are applied to the data. This corrects for variability in 

metabolite concentrations between samples and within a sample  (Powers 2014). Data pre-

processing unique to NMR pre-processing involves binning. Binning constitutes separating 
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the spectrum into regions, or “bins”, of equal width (equidistant binning), usually around 

0.01–0.04 ppm (Kim et al., 2009; Wu et al., 2012) width, or of variable size (Figure 4.3). This 

allows for correction of small variations in peak position and shape due to deviations in 

sample conditions such as pH, ionic strength and concentration (Powers 2009; Smolinska et 

al., 2012). Variable-sized binning is generally preferred to equidistant binning because whole 

peaks of different compounds are incorporated into a single bin, whereas with equidistant 

binning peaks are potentially separated into different bins, depending on the bin width 

selected. 

To elucidate the metabolites that differentiate a disease state from healthy controls, 

multivariate statistical techniques need to be employed, which are standard for any 

metabolomics investigation. Principal component analysis (PCA) and partial least squares 

discriminant analysis (PLS-DA) are the common multivariate statistical methods used to 

discriminate between experimental groups. Concurrently, univariate statistics help to 

describe the data.  

                          

Figure 4.3: Equidistant and variable-sized binning methods used in the pre-processing of 
NMR spectra. Dotted vertical lines show the “bin” width for equidistant binning and how they 
could potentially cut peaks into different “bins”. Solid lines show variable-sized binning that 
allows a single peak to be incorporated into one bin. (Reproduced with permission from 
Powers 2009.) 
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4.3.2 A diagnostic biomarker profile for Fibromyalgia Syndrome  

4.3.2.1 Background 

FMS is a disorder of an unknown pathogenic mechanism. Criteria for diagnosis have been 

amended twice in the past two decades, yet, there is still no definitive way to diagnose FMS. 

Although we know far more about the disorder, today than before, the discovery measurable 

biomarkers for objective identification of affected individuals would substantially aid in the 

better and earlier diagnosis of FMS. 

In this section I present the results of an explorative NMR study conducted on FMS patients 

and controls, published in BMC Neurology. The primary objective of this untargeted study 

was to determine if FMS patients could be differentiated from healthy controls on the basis of 

their urine metabolome, with the ultimate aim of identifying a possible diagnostic biomarker 

profile for FMS. This study is presented as a supplement to the current criteria used to 

diagnose the disorder. Note that the article is presented in the format that it was published 

in, as per the BMC Neurology journal’s article submission guidelines. 
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Abstract 

Background 

Fibromyalgia syndrome (FMS) is a chronic pain syndrome. A plausible pathogenesis of the disease is 

uncertain and the pursuit of measurable biomarkers for objective identification of affected individuals 

is a continuing endeavour in FMS research. Our objective was to perform an explorative 

metabolomics study (1) to elucidate the global urinary metabolite profile of patients suffering from 

FMS, and (2) to explore the potential of this metabolite information to augment existing medical 

practice in diagnosing the disease. 

Methods 

We selected patients with a medical history of persistent FMS (n = 18), who described their recent 

state of the disease through the Fibromyalgia Impact Questionnaire (FIQR) and an in-house clinical 

questionnaire (IHCQ). Three control groups were used: first-generation family members of the 

patients (n = 11), age-related individuals without any indications of FMS or related conditions 

(n = 10), and healthy young (18–22 years) individuals (n = 20). All subjects were female and the 

biofluid under investigation was urine. Correlation analysis of the FIQR showed the FMS patients 

represented a well-defined disease group for this metabolomics study. Spectral analyses of urine were 

conducted using a 500 MHz 
1
H nuclear magnetic resonance (NMR) spectrometer; data processing and 

analyses were performed using Matlab, R, SPSS and SAS software. 

Results and discussion 

Unsupervised and supervised multivariate analyses distinguished all three control groups and the FMS 

patients, and significant increases in metabolites related to the gut microbiome (hippuric, succinic and 

lactic acids) were observed. We have developed an algorithm for the diagnosis of FMS consisting of 

three metabolites — succinic acid, taurine and creatine — that have a good level of diagnostic 

accuracy (Receiver Operating Characteristic (ROC) analysis — area under the curve 90%) and on the 

pain and fatigue symptoms for the selected FMS patient group. 

Conclusion 

Our data and comparative analyses indicated an altered metabolic profile of patients with FMS, 

analytically detectable within their urine. Validation studies may substantiate urinary metabolites to 

supplement information from medical assessment, tender-point measurements and FIQR 

questionnaires for an improved objective diagnosis of FMS. 

Keywords 

Fibromyalgia syndrome, Proton nuclear magnetic resonance (
1
H–NMR) spectroscopy, Metabolomics, 

Metabolite markers, Pain 

  



61 
 

 

Background 

Fibromyalgia syndrome (FMS) is a common chronic pain syndrome characterized by widespread 

musculo-skeletal pain and associated with multiple other symptoms such as cognitive impairment, 

disrupted sleep and chronic fatigue. The American College of Rheumtology (ACR) first published 

criteria for FMS in 1990 [1] which emphasized chronic widespread musculo-skeletal pain (including 

pain in the axial skeleton) in the presence of pain on at least 11 of 18 specified tender point sites with 

digital palpation of 4 kg/cm2. 

The 2010 ACR updated criteria for FMS [2] are applied in a 2-part, self-administered questionnaire 

and do not require a tender point assessment. The first part assesses the presence of pain at 19 sites on 

a body diagram (widespread pain index) and part 2 measures the symptom severity score (0–3) of 3 

core symptoms (insomnia, fatigue and cognitive impairment) and an average score (0–3) for 

additional somatic symptoms. FMS is the most common cause of widespread or generalized musculo-

skeletal pain and affects 2–8% of the adult population with the highest prevalence in women between 

30 and 55 years [3, 4]. 

FMS is currently viewed as a central sensitivity syndrome associated with abnormal pain processing. 

It is regarded as a “pain amplification syndrome” associated with increased sensitivity of the nervous 

system and decreased anti-nociception which results in the clinical phenomena of hyperalgesia and 

allodynia. Dysfunction in central mono-aminergic neurotransmission which involves serotonin, 

norepinephrine, nerve growth factor, substance P and others have been implicated in the patho-

physiology of FMS. [5, 6, 7, 8] FMS patients often have associated comorbidities such as irritable 

bowel syndrome, interstitial cystitis and mood disorders [9, 10]. 

In the absence of an objective biomarker, the diagnosis of FMS is based on a comprehensive clinical 

assessment. Before 2010, the diagnosis was principally based on the 1990 ACR criteria of widespread 

pain (including in the axial skeleton) > 3 months and at least 11 painful “tender points” with digital 

palpation. Although the 2010 ACR criteria do not include a “tender point” count, a musculo-skeletal 

clinical examination remains mandatory, to exclude other couses of widespread pain and also to 

identify peripheral pain generators e.g. myofascial trigger points. Selective use of laboratory testing is 

used to exclude other causes of widespread pain such as polymyalgia rheumatica and hypothyroidism. 

The pursuit of specific and measurable biomarkers that may assist in objectively identifying 

susceptible individuals, confirming disease diagnosis and facilitating treatment, is a continuing 

endeavour in FMS research. The development of high-throughput metabolic profiling and the study of 

the metabolome have proven to be particularly applicable in neurological research where small 

molecules are key in neurochemical metabolism and in performing a role as neurotransmitters, 

signalling modulators and osmolytes. It is now generally anticipated that metabolomics profiling 

methods, linked to systems biology approaches, will emerge with well-defined metabolic phenotypes, 

enhancing the understanding of brain metabolism in health and disease. Recently, a few metabolomics 

studies have been reported on fibromyalgia, potentially disclosing novel insights into metabolic 

perturbations in the brain that go brain metabolic homeostasis beyond alterations of neurotransmission 

variations associated with neurological disorders [11]. 

In a pilot study, presented only as a poster at an Annual Meeting of the Rheumatologic Society of the 

UK [12], Richards and co-workers (2001) reported that muscle metabolites detected in the urine of 

fibromyalgia patients may suggest a prevailing muscle damage. Although not by definition a 

metabolomics study, their targeted metabolite analysis of urine by nuclear magnetic resonance (NMR) 

spectroscopy revealed significant levels of creatine in FMS patients and elevated (t-test p < 0.05) 

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR1
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR2
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR3
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR4
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR5
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR6
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR7
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR8
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR9
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR10
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR11
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR12
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urinary excretion of choline, taurine, citrate and trimethylamine N-oxide (TMAO) relative to matched 

controls. 

The first metabolomics study on FMS, reported in 2013 [13], used 50 μl blood samples collected on 

blood spot cards (Whatman 903 Protein Saver Snap Apart Card, GE Healthcare, Westborough, MA, 

USA) from patients diagnosed with FMS (n = 14), osteoarthritis (OA; n = 15) and rheumatoid arthritis 

(RA; n = 12). Samples were dried and then transported to the laboratory for mid-infrared micro-

spectroscopy (IRMS) and other analyses. The RA and OA groups appeared to be metabolically 

similar, but different from the metabolite profile of FMS. The IRMS approach did not conclusively 

identify the metabolites responsible for the diagnostic spectral differentiation, although changes in 

tryptophan catabolism seemed to be involved. 

Another metabolomics approach to FMS involved liquid chromatography/quadrupole–time-of-

flight/mass spectrometry (LC/Q-TOF/MS) with multivariate statistical analysis aimed at 

discriminating FMS patients (n = 22) and controls (n = 21) from blood plasma analysis [14]. 

Lysophosphocholine (lysoPCs), phosphocholine and ceramide lipids dominated the metabolite profile. 

The metabolites that discriminated the most between FMS patients and controls were identified as 1-

tetradecanoyl-sn-glycero-3-phosphocholine [PC(14:0/0:0)] and 1-hexadecanoyl-sn-glycero-3-

phosphocholine [PC(16:0/0:0)] — suggesting that lysoPCs may be potential biomarkers for FMS. 

In addition to these metabolomics findings, a recent review on biomarkers of FMS included 

contributions from genetic and proteomic studies [15]. Although genetic factors have been shown to 

influence predisposition to FMS, no specific genes have been confirmed as being involved in this 

disease [16]. The review also listed several proteins of the immune response, cytoskeleton 

remodelling and the inflammatory process in FMS. Their role in FMS, however, is still controversial. 

Thus the availability of biomarkers for unequivocal and objective diagnosis of FMS remains elusive 

in clinical practice. Yet, metabolites identified as being involved in the aetiology and pathogenesis of 

FMS could meanwhile contribute to insights into various presentations of FMS and provide ancillary 

diagnostic testing criteria to complement general diagnostic procedures. We thus present here the 

outcomes of a 
1
H NMR metabolomics study on FMS. All experimental subjects were females and 

provided urine samples for the study. The investigation was designed as an untargeted approach and 

revealed metabolite information with predictive potential to discriminate between FMS patients and 

healthy young controls. The outcomes thus underscore the versatility of metabolomics to provide 

insights into disease pathophysiology, furthering potential novel approaches to supplement existing 

protocols proposed for the practising clinician to assess FMS and monitor its treatment [17]. 

Methods 

Experimental subjects, physical characteristics, symptoms and clinical profiles 

All the patients that were included in this study were previously diagnosed with FMS by the same 

specialist pain clinician from his chronic pain practice in Pretoria. This practice manages the full 

spectrum of chronic pain disorders, with a special interest in FMS and related pain disorders. The 

diagnosis was based on a comprehensive clinical assessment using the 1990 criteria. All patients in 

the study were confirmed with FMS before 2010 and all were on a comprehensive evidence-based 

management programme according to international guidelines. They were only included if they 

continued to complain of widespread musculo-skeletal pain (including in the axial skeleton) in the 

presence of >11 painful tender points with musculo-skeletal assessment. 

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR13
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR14
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR15
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR16
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR17
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Informed consent was obtained from all the participants in this study by means of a voluntarily 

completed consent form; ethical approval for the study was obtained as specified under Declarations. 

All participants in the study were female and the sample material investigated was urine. The 

experimental subjects consisted of one FMS patient group (Group 1) and three control groups (Groups 

2 to 4). Clinical description and serum and urine sample collection on all experimental groups 

commenced from 2009 to 2011. Case definition and selection for the eventual study was done by 

clinical and scientific group of co-workers in 2010. Following scrutinizing of the records of patients 

with a medical history of FMS, a group of 18 FMS patients eventually selected based on the above 

selection criteria as well as after excluding outliers based on statistical analysis [see S5 in 

Supplementary Information (SI) to Article 1]. 

The socio-demographic, tender point and myofascial pain experience, awareness of gastro-intestinal 

symptoms, pain-specific medication and levels of emotional experience associated with FMS for the 

18 patients was obtained through the FIQR [17] and the IHCQ. The questionnaires are presented in 

Table S1 and the response to the IHCQ are summarised in Table S2 of the SI. The IHCQ included 18 

items that could be extended to a total of 30 sub-items. The questionnaire provided socio-

demographic information on the patients (3 items), personal clinical experience of pain and their FMS 

condition (5 items) and use of medication against pain (2 questions), emotional experience (7 

questions) and digestive functioning (1 item). The urine samples were provided by the patients prior 

to application of pressure to the tender-points (TPs). For a total of 16 of these FMS patients a 

complete set of data was available for the comparative analysis of the FIQR and metabolomics data, 

as some information on some patients had to be excluded because the data were incomplete. Some 

degree of comorbidity of conditions that overlap with FMS (e.g. chronic fatigue syndrome) could not 

be excluded, as the mean level of energy in the FIQR was rated at 7,0 and according to responses to 

the IHCQ, 94% of the patients experienced sleep disturbances and did not awoke refreshed. The 

responses to an experience of mood disturbances (58% answered “Yes”) and anxiety (52% answered 

“Yes”) for the FMS patients as a group were moderate. Responses on depression was inconsistent 

(mean FIQR-score = 5.1 with 84% “Yes” answers on the IHCQ) but 88% indicated discomforts with 

their gastrointestinal functions (Indicated as Irritable Bowel Syndrome (IBS) in the IHCQ). These 

scores were accepted as indications of the mental and physical profile of the FMS patient group and 

were not further clinically verified. 

Three control groups were used: (1) a group of 11 subjects that were first-degree relatives of the 

patients, meaning that they were a mother, sister or daughter relation (Group 2: CF); (2) a group of 10 

unrelated subjects, selected by physicians and defined as unrelated and age matched controls to the 

patients (Group 3: CO); (3) a control group of young and healthy individuals, comprising 20 

randomly selected students (aged 18–22 years) of North-West University (NWU) (Group 4: CN). All 

individuals in the control groups showed no indications of FMS or related conditions and was not 

required to complete the FIQR or IHCQ. 

This investigation used availability sampling on the clinically selected FMS patients and controls 

(CO, CF and CN). However, statistical analyses indicated that the sample sizes provided sufficient 

power to detect large effects at a univariate level.in the FMS and CN comparison. 

Sample preparation and 1H NMR analysis 

Spectral analyses were conducted according to the protocol at the NMR facility of the Translational 

Metabolic Laboratory at Radboud University Medical Centre in Nijmegen, the Netherlands [18, 19]. 

The urine samples were collected in South Africa, stored at –80 °C and transported to the Netherlands 

before being thawed at room temperature for analysis. A 1 ml volume of each sample was centrifuged 

at 3000 rpm for 10 min to remove any sediments or debris. A 70 μl volume of a deuterated solution 

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR17
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR18
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR19
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containing 20.2 mM of trimethyl-2,2,3,3-tetradeuteropropionic acid (TSP, sodium salt; Sigma 

Aldrich) was added to 700 μl of the supernatant and vortexed. This internal standard (IS) solution 

served to lock the signal during analysis and to provide a chemical shift reference of δ = 0.00. The 

sample was then acidified to pH 2.5 ± 0.05, with 37% concentrated hydrochloric acid (HCl). A 650 μl 

aliquot of the acidified sample was then transferred to a 5 mm NMR tube (Wilmad Royal Imperial; 

Wilmad LabGlass, USA) and analysed on a 500 MHz Bruker Avance spectrometer (Bruker 

Analytische Messtechnik, Karlsruhe, Germany) (pulse angle 90
o
, delay time 4 s, number of scans 256, 

temperature 298 K). Water suppression was achieved by using gated irradiation focused on the water 

frequency. All samples were automatically shimmed prior to acquisition of data, using topshim from 

Bruker BioSpin. The resultant raw spectral data, in the form of free induction decay, were Fourier 

transformed. These transformed spectra were then manually corrected for phase and baseline. All the 

samples were normalized with reference to the creatinine CH3 peak at 3.13 ppm. We opted for two 

methods of spectral analysis. The first method entailed equidistant binning [20] using a bin width of 

0.02 ppm applied to the selected region of 0.5–10 ppm, which gave a total of 461 integrated units per 

NMR spectrum, excluding the water region, for each individual of the four experimental groups. The 

second method entailed variable-sized binning. The equal-binning procedure masks subtle chemical 

shift differences, hides potentially significant changes of low-intensity peaks and incurs the risk of 

splitting peaks or spectral features between bins [21]. To avoid these problems we also used variable 

bin sizes in areas of peaks above the noise level, preventing peak division between multiple bins. This 

approach was specifically applied for the identification and quantification of discernible and 

important known metabolites, generating data for univariate analysis. 

Data and statistical analysis 

The original normalized spectral data (presented in Additional file 1 as Table S4 in section S1 – 

Supplementary information (SI) to Article 1or Additional file 2 – Raw data matrix) were pre-

processed by performing log transformation and auto-scaling. Outliers were detected through 

Hotelling’s T
2
 and PCA scores (using a 90% confidence region) analysis and resulted in the exclusion 

of 4 outliers from further analysis. Univariate statistical analyses, specifically the Mann–Whitney 

test p-values (MW) and associated effect sizes (ES), were generated for each feature. Multivariate 

analyses were performed using cluster analysis (Euclidean distance and Ward linkage) principal 

components analysis (PCA) and partial least squares discriminant analysis (PLS-DA), using a 90% 

confidence interval (CI). Data processing and analyses were performed using Matlab (MATLAB with 

Statistics and PLS Toolbox Release 2012b, The MathWorks, Inc., Natick, MA, USA); R (R version 

3.2.3 downloaded from https://www.R-project.org with the corrplot package downloaded 

from https://cran.r-project.org/web/packages/corrplot); the SPSS software package (SPSS Inc. (2015). 

IBM SPSS Statistics Version 22, Release 22.0.0, © IBM Corporation and its licensors - http://www-

01.ibm.com/software/analytics/spss/) and SAS (SAS Institute Inc. 2016 The SAS System for 

Windows Release 9.4 TS Level 1 M3, SAS Institute Inc., Cary, NC, USA). A table containing all 

discriminant information, i.e. the power and VIP values as generated from the PCA and PLS-DA 

analyses, respectively, as well as the ES and MW p-values, was constructed. 

We did not test for a normal distribution of the data, given the small number of cases and used 

Pearson’s r and Spearman’s rho to assess correlations, analysed through SPSS version 12.0 (SPSS, 

Inc., Chicago, IL). All tests were one-tailed, given the positive fold changes (FC) observed for all 

metabolites. 

  

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR20
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR21
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https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#MOESM2
https://www.r-project.org/
https://cran.r-project.org/web/packages/corrplot
http://www-01.ibm.com/software/analytics/spss/
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Results 

Characteristics of the FMS patient group 

The age profile of the patients concurs with the general agreement of FMS being uncommon in young 

subjects (<25–30 years), increasing with age towards the prevalence peak in middle-aged individuals, 

and then declines [3, 4]. According to the feedback, 88% of our patients had stable relationships with 

a male partner, 89% had one form or another of day-filling or employment activities, and their 

emotional experience was not severely affected by their disease. The pain experience and medication 

used resembled that generally prescribed for FMS. The mean scores and ranges of the 21 FIQR 

questions obtained for our patient group and those (designated as the reference group) used for the 

standardization of the questionnaire [17] are compared in Table S3 (see SI to Article 1). 

To characterize further the relationship between questions or variables making up the FIQR 

questionnaire, we calculated Kendall’s tau correlation coefficients for the FMS patient group (Fig. 1). 

The correlation coefficients along with their associated significance levels are indicated in Table S3 

(see SI to Article 1). The highest correlation (r = 0.817) was indicated for the relationship between 

pain and the symptoms for FMS. The function domain contains 9 physical functioning items related to 

the ability to perform relatively demanding but regular daily muscle tasks. Apart from the low score 

for ‘brushing hair’, all remaining items showed high correlation coefficients among each other, 

ranging from 0.399 to 0.778. These high values collectively substantiate the major signs and 

symptoms experienced by the FMS patients. The ‘overall impact’ domain contained 2 items that 

asked about the number of days individuals felt well (could reach their goals) and the corresponding 

number they were unable to work because of FMS symptoms. These again showed high correlation 

coefficients, ranging from 0.421 to 0.686, with the 8 items in the functional domain indicating the 

underlying negative impact of the FMS symptoms on the daily routine of the FMS patients. The 

symptoms domain contained 9 items on which patients had to rate work and physiological, 

psychological and environmental difficulties related to FMS. Lower correlations, ranging from 0.076 

to 0.499 (mean = 0.25), were found between the 8 functional items and sleep patterns, memory, 

anxiety and depression, indicating little overlap within the patient group with other FMS-related 

conditions. Taking everything into account, we conclude the FMS patients represent a well-defined 

group for this explorative metabolomics study. 

 

 

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR3
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR4
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Fig. 1 

Correlation matrix for all items on the FIQR questionnaire. Full details on the data analysis are 

included in the SI 

 

Data generation and case selection 

Representative scaled NMR spectra from an FMS patient and from the young control group (CN) is 

shown in Fig. 2 to illustrate some of the discernible qualitative NMR differences observed in these 

selected examples. Close inspection of the spectra indicates that there were no immediately 

discernible qualitative differences between the two representative examples, suggesting that FMS is 

not associated with distinctive metabolic aberrations, as otherwise observed in monogenetic disorders 

such as inborn errors of metabolism. Using the equal-bins spectral data, case reduction was first 

applied to all four experimental groups (see Figure S2 in SI to Article 1). Four outliers were identified 

using a 95% confidence region in a Hotelling’s T
2
 test in conjunction with the respective PCA score 

plots with 90% confidence regions. Cases that were identified as outliers by either method were 

removed. The outliers were: group 1 (FMS patients) – one outlier; group 2 (CF; family controls) – 

two outliers; group 3 (CO; matched controls) – no outliers; group 4 (CN; young controls) – one 

outlier. 

  

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#Fig2
http://media.springernature.com/full/springer-static/image/art:10.1186/s12883-017-0863-9/MediaObjects/12883_2017_863_Fig1_HTML.gif
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Fig. 2 

Representative spectra from one FMS patient (b, black) and one young control subject (a, blue), both 

scaled according to the creatinine CH3 peak at 3.13 ppm. Expanded regions (c-e), framed in red in the 

spectra, are the regions where variables important in projection (VIP) through the supervised PLS-DA 

are located. The labelled metabolites with their chemical shift (in ppm) and multiplicity, respectively, 

indicated in brackets are given numerically as follows: 1, 3-hydroxyisovaleric acid (1.33 s); 2, 

threonine (1.33 d); 3, lactic acid (1.41 d); 4, alanine (1.50 d); 5, creatine (3.05 s); 6, taurine (3.25 t, 

3.42 s – broad line); 7, trimethylamineN-oxide (TMAO) (3.54 s); 8, histidine (8.68 d); 9, 2-

hydroxyisobutyric acid (1.44 s); 10, N-acetyl-X (2.03 s); 11, succinic acid (2.67 s); 12, citric acid 

(2.91 AB); 13, N,N-dimethylglycine (2.93 s); 14, carnitine (3.22 s); 15, hippuric acid (4.18 d, 7.55 t, 

7.64 t, 7.83 d); 16, tyrosine (6.89 d); 17, histamine (8.70 d); 18, creatinine (3.13 s, 4.29 s) 

http://media.springernature.com/full/springer-static/image/art:10.1186/s12883-017-0863-9/MediaObjects/12883_2017_863_Fig2_HTML.gif
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Group characteristics 

Supposed changes in metabolite profiles from the FMS patients and the three control groups 

(excluding outliers) were established through three multivariate approaches: unsupervised Euclidian 

and Ward hierarchical cluster analyses presented as dendrograms, unsupervised PCA, and supervised 

PLS-DA models, applied to the original 461 
1
H NMR profiled bins for the four experimental groups. 

Figure 3 shows the group separations based on the unsupervised cluster analysis, indicating the 

perceived closeness of spectral data encapsulated in the NMR bins. The main clusters formed between 

the CF family members group (Fig. 3a) and the CO age-matched group (Fig. 3b) relative to the FMS 

patients are heterogeneous in terms of case distribution. In contrast, two well-defined clusters were 

formed between the FMS patients and CN young controls (Fig. 3c), suggesting distinct differences in 

the spectral fingerprints between these two groups. 

  

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#Fig3
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Fig. 3 

Group separation between experimental groups through cluster and multivariate analysis based on 

equidistant binning data. (a–c): Dendrograms from cluster analysis are shown for the CF (a), CO (b) 

and CN (c) groups relative to FMS patients. Cases from the FMS patients are shown as pink dots, CF 

as black, CO as red and CF controls as blue. (d–f): PCA indicating the group separation between the 

FMS patients and CF (d), CO (e), and CN (f) groups respectively, with areas using the same colour 

code as the dots in the dendrograms. (g–i): PLS-DA indicating the separation between the FMS 

patients and CF (g), CO (h), and CN (i) groups respectively, with areas using the same colour code as 

in the PCA 

 

Next, group separations based on unsupervised PCA and supervised PLS-DA were performed. The 

data were log transformed and auto-scaled. The PCA between the CF family members (Fig. 3d), CO 

matched controls (Fig. 3e) and FMS patients complemented results from the cluster analyses. A 

complete separation was obtained between all three control groups and the FMS patients (Fig. 3f–i) 

through supervised PLS-DA. Evaluation of the PLS-DA model shown in Fig. 3i (FMS vs CN) was 

performed by calculating the goodness-of-fit (R
2
) and predictive ability (Q

2
) parameters. These 

metrics confirmed the complete separation between the FMS and CN young control groups, with good 

model fit (R
2
 = 0. 96), however this model may not generalize well (Q

2
 = 0.29). 

From the equal binning analysis it is evident that there are bins or combinations of bins that can 

discriminate between our patient and control groups. However, since it is not clinically practical to 

measure bins, we did not investigate this data further. Instead, the metabolites potentially responsible 

for the separation of the FMS patients and the CN young controls were subsequently identified by 

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#Fig3
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#Fig3
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#Fig3
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#Fig3
http://media.springernature.com/full/springer-static/image/art:10.1186/s12883-017-0863-9/MediaObjects/12883_2017_863_Fig3_HTML.gif
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analyzing variable bins from the NMR spectra and converting these measures to concentration values 

of the identified metabolites. 

Metabolite profile of the FMS patient group 

Twenty-one metabolites could be identified and quantified from the NMR spectra. From this list we 

selected twenty endogenous metabolites (listed in Table 1), and also included 2-hydroxyisobutyric 

acid of exogenous origin [22], with high VIP, ES and ES values, despite being present in low 

concentrations. The endogenous metabolites include seven amino acids (tyrosine, leucine, valine, 

histidine, alanine, threonine and lysine), seven metabolites directly or indirectly associated with 

energy metabolism (lactic acid, succinic acid, citric acid, 3-hydroxyisovaleric acid, creatine, carnitine 

and formic acid), three osmolytes (taurine, TMAO and dimethylglycine), a major mammalian 

detoxification product (hippuric acid), histamine and an N-acetyl-derivative. The N-acetyl-derivative 

showed a singlet at 2.03 ppm, possibly indicative of an N-acetyl group. One-dimensional spectral data 

suggested that aspartic acid (multiplet at 4.70 ppm) could be the moiety linked to the N-acetyl group, 

which, however, could not be substantiated as N-acetyl-aspartic acid by two-dimensional NMR 

spectral analysis Additional file 1: Figure S4). We thus designated the variable as an N-acetyl 

derivative (N-acetyl-X). 

 

Table 1 

Univariate, multivariate and descriptive statistics for the 20 bins, comparing FMS and CN 

Variable CS and 

M[Ps] 

VIP Mann-Whitney Fold 

Change 

Mean StDev 

3 

LV 

p-

value 

Effect 

size 

CN FMS CN FMS 

2-Hydroxyisobutyric 

acid 

1.44 s 

[CH3] 

6.26 0.0001 0.72 −1.56 0.01 0.02 0.0 0.00 

Succinic acid 2.66 s 

[(CH2)2] 

0.25 0.0001 0.61 −1.63 0.02 0.03 0.01 0.01 

Taurine 3.25 t 

[CH2] 

5.21 0.0007 0.52 −2.29 0.20 0.45 0.05 0.57 

Tyrosine 6.89 dd 

[(CH)2] 

0.37 0.0029 0.45 −1.70 0.03 0.06 0.03 0.06 

Lactic acid 1.41 d 

[CH3] 

2.83 0.0044 0.42 −1.81 0.06 0.11 0.03 0.07 

Creatine 3.05 s 

[CH3] 

4.40 0.0053 0.41 −2.08 0.05 0.09 0.04 0.08 

TMAO 3.54 s 

[(CH3)3] 

2.21 0.0062 0.41 −2.10 0.06 0.14 0.06 0.23 

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#Tab1
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR22
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#MOESM1
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Variable CS and 

M[Ps] 

VIP Mann-Whitney Fold 

Change 

Mean StDev 

3 

LV 

p-

value 

Effect 

size 

CN FMS CN FMS 

Dimethylglycine 2.93 s 

[(CH3)2] 

0.00 0.0127 0.36 −1.29 0.01 0.01 0.00 0.00 

Leucine 0.95 t 

[(CH3)2] 

0.00 0.0136 0.36 −1.11 0.01 0.02 0.00 0.00 

Formic acid 8.25 s [CH] 0.01 0.0361 0.29 −1.15 0.03 0.03 0.01 0.01 

Valine 1.04 d 

[CH3] 

0.00 0.0436 0.28 −1.24 0.01 0.01 0.00 0.00 

Histamine 8.70 d [CH] 0.08 0.0436 0.28 −1.29 0.06 0.07 0.06 0.05 

N-acetyl-X 2.03 s 

[CH3] 

0.02 0.0464 0.27 −1.28 0.01 0.02 0.00 0.01 

Lysine 1.73 m 

[CH2] 

0.61 0.0739 0.23 −1.03 0.11 0.12 0.03 0.06 

Hippuric acid 4.18 d 

[CH2] 

1.61 0.0966 0.21 −1.55 0.22 0.35 0.10 0.24 

Citric acid 2.89 AB 

[(CH)4] 

1.36 0.1070 0.20 −1.21 0.39 0.47 0.16 0.17 

Alanine 1.51 d 

[CH3] 

0.13 0.1785 0.15 −1.16 0.06 0.07 0.02 0.03 

Histidine 8.68 d [CH] 0.85 0.1942 0.14 1.19 0.07 0.06 0.04 0.04 

Carnitine 3.22 s 

[(CH3)3] 

0.02 0.2107 0.13 −1.24 0.02 0.02 0.01 0.01 

Threonine 1.33 d 

[CH3] 

0.04 0.2648 0.10 −1.28 0.03 0.04 0.01 0.04 

3-Hydroxyisovaleric 

acid 

1.33 s 

[(CH3)2] 

0.00 0.4942 0.00 −1.02 0.00 0.00 0.00 0.00 

 

 

We subsequently performed multivariate (log and centred concentration values) and univariate 

(unscaled concentration values) analyses on the reduced bins (endogenous metabolites, converted to 
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their respective metabolite concentrations) to refine our identification of the key variables that 

discriminate between the FMS patients and the controls. All cases were retained for this analysis as 

none were identified as outliers based on the concentrations. Multivariate PCA (Fig. 4a) and PLS-DA 

(Fig. 4b) both indicated that the 20 metabolites contained information that differentiates, but did not 

separate, the FMS patients from the young controls. Model performance was evaluated using the 

goodness of fit (R
2
) and goodness of prediction (Q

2
) parameters, which were R

2
(X) = 0.52 and 

Q
2
(Y) = 0.05, respectively, indicating a reasonable (R

2
) but not necessarily reproducible (Q

2
) fit 

between the variation in the data and the components (quantified metabolites) comprising the model 

for the present FMS group. It thus appears that some metabolites below the sensitivity range for 

quantification from the NMR spectra might be required for reproducibility (Q
2
) and for further 

differentiation between the FMS patients and young controls. 

 

 

               

Fig. 4 

PCA (a) and PLS-DA (b) for the FMS patients relative to the young controls, based on the quantified 

20 metabolites 

 

Univariate analyses using Mann–Whitney p-values and fold changes, as summarized in a volcano plot 

(Fig. 5a), point to important substances that cause group differentiation. The outcome of this analysis 

of the data set of 20 variables is presented in Fig. 5a, indicating which large-magnitude changes (fold 

change: |log2 FC| ˃ 1.5) are also statistically significant (Mann–Whitney test: p < 0.05). Six 

informative metabolites complied with these measures, with their respective VIP values shown in 

brackets: succinic acid (0.246), taurine (5.214), tyrosine (0.365), lactic acid (2.832), creatine (4.402) 

and trimethylamine N-oxide (TMAO; 2.209). 

 

 

    

Fig. 5 

Statistical assessments of three metabolites indicative of FMS: (a) Volcano plot mapped by the scaled 

fold change and p-values for the 20 metabolites observed for FMS patients and young controls. 

Metabolites with high FC and significant p-values among patients are indicated by black squares. (b) 

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#Fig4
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https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#Fig5
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ROC analyses for discriminating FMS patients from controls (AUROC) as well as leave-one-out cross 

validated ROC analysis (CV AUROC). The discriminator consisted of the three informative 

metabolites (succinic acid, taurine and creatine) identified by multivariate, univariate and metabolic 

pathway analyses 

 

Important endogenous metabolites in the FMS patient group 

A summary of the results for the univariate and multivariate statistical analyses is presented in 

Table 1, nine of which could be related to physiological functions that could be related to FMS. 

The neurological functions of succinic acid, tyrosine and lactic acid are well known: the aerobic 

mitochondrial energy regeneration function, a precursor for neurotransmitters and a key metabolite in 

the astrocyte-neuron lactate shuttle [23], respectively. Taurine is an abundant β-amino acid in the 

mammalian brain [24] and has been shown to be a neurotransmitter in the substantia nigra (SN). It has 

been suggested from micro-dialysis experiments on Sprague-Dawley rats that osmoregulation of the 

nonsynaptic taurine pool of the SN could influence the nigral cell vulnerability, seen in the 

pathogenesis of Parkinson’s disease [25]. Likewise, nutritional studies [26] suggest that TMAO may 

be involved in diet-induced variations in the balance of several osmolytes, including betaine, choline, 

creatinine and creatine, whereas creatine has also been proposed as being involved in pain 

experienced in FMS [25]. Thus, we subsequently evaluated the potential diagnostic value of these six 

metabolites on FMS by means of a logistic regression analysis, as indicated below. 

Important exogenous metabolites in the FMS patient group 

The pain intensity of patients with FMS has been reported to correlate with the degree of small 

intestinal bacterial overgrowth [9, 10]. This clinical observation may have pathogenetic relevance for 

FMS, because bacterial overgrowth leads to the exposure of immune cells to luminal antigens and 

consequent immune modulation. An untargeted NMR metabolomics study of celiac disease, a 

multifactorial immune-mediated enteropathy [27], suggested alterations of energy metabolism - a 

clinical characteristic in FMS - while urine data pointed to alterations of gut microbiota. At least three 

metabolites observed in the urine samples of our FMS patient group suggest perturbations in their gut 

metabolome (Fig. 6): (1) Hippuric acid is a normal and major component of urine and appear in 

humans as an increased excretory product from unnatural (detoxification) and natural 

(gastroesophageal reflux disease in children) sources. (2) 2-Hydroxyisobutyric acid, the most 

discriminatory variable between our FMS group and controls (VIP = 6.2 – Table 1), is an apparent 

catabolic from gut microbiotica and was shown to be statistically linked to Faecalibacterium 

prausnitzii[28] an important commensal bacterium of the human gut flora proposed to be an indicator 

of the dynamic basis of host–microbiome symbiosis. (3) Lactic acid is a key intermediate in many 

biochemical processes and is a measure of critical illness in patients with poor prognosis. It may be of 

endogenous (L-lactate) or exogenous (D-lactate) origin and we recently proposed that the 

determination of its enantiomers in infectious conditions may provide a basis for substantiating the 

clinical significance of disease markers [29]. The presence of these exogenous markers of gut origin 

provides further indications of the connectivity between disturbances in the gut microbial populations 

and the metabolic consequences of the altered microbial–mammalian metabolic balance influencing 

host disease, which will be discussed below in the context of FMS. 

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#Tab1
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Fig. 6 

Graphs showing important urinary metabolites related to the gut microbiome. Indicated in the figure 

are: FMS patients relative to young controls for hippuric (a), 2-hydroxyisobutyric (b) and lactic (c) 

acids. Values for all individual cases are shown as dots, while the squared area represents the 95% 

confidence interval (orange) and 1 standard deviation (blue) of the mean (red line) 

 

A putative biosignature for FMS 

A combination of three selection methods (Forward, Backward and Step-wise selection) was used to 

identify the best metabolite predictors. Instead of using one selection method, a combined approach 

was chosen since each method has its advantages and disadvantages [30, 31]. Although our aim was 

to explore a small set of highly discriminatory endogenous metabolites, we also investigated the 

potential of a combination of these metabolites to function as a biosignature for the FMS patient 

group. We followed a forced entry approach to evaluate the combination of metabolites. Table 2 lists 

the methods used as well as the preferred metabolite predictors selected from the six informative 

metabolites. The last model (Forced entry) entered succinic acid, taurine and creatine, and produced 

the best model based on −2 Log Likelihood (−2LL) from the present data. Table 2 also reports other 

model performance measures, but -2LL was used to select the best model as it gives an indication of 

the variation not explained in the data, and gave the lowest -2LL value compared to the other models. 

The Forced entry model was also well calibrated since the Hosmer Lemeshow (HL) statistic was not 

significant. The model fit is reported by using the Max Rescaled R-squared value and only the Forced 

entry model had a satisfactory value of above 0.6. 

 

 

Table 2 

Summary of logistic regression results for the six informative metabolites. The predictors used or 

selected by the logistic regression model are listed as Predictors selected. Other columns report the 

model fit results (Max Rescaled R-squared), the relative variance explained (−2LL), the calibration 

(HL p-value), and the classification ability (AUC and AUC (LOO CV)) of each model 

Selection 

method 

Predictors selected -2LL HL p-

value 

Max rescaled R-

squared 

AUC AUC (LOO 

CV) 

Forward Creatine & succinic 

acid 

36.15 0.0273 0.47 0.8917 0.8583 

Backward Taurine 40.16 0.6336 0.37 0.8056 0.7556 

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR30
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR31
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http://media.springernature.com/full/springer-static/image/art:10.1186/s12883-017-0863-9/MediaObjects/12883_2017_863_Fig6_HTML.gif


75 
 

 

Selection 

method 

Predictors selected -2LL HL p-

value 

Max rescaled R-

squared 

AUC AUC (LOO 

CV) 

Stepwise Succinic acid 40.87 0.5496 0.35 0.8583 0.8306 

Forced Entry Creatine; succinic acid 

& taurine 

29.66 0.0932 0.60 0.8972 0.875 

 

Finally, the classification ability of each model was assessed by using a Receiver Operating 

Characteristic (ROC) analysis to the data mentioned. The values of the area under the ROC curve 

(AUC) provide a measure of how well this combination could distinguish between the two groups. A 

value of AUC = 1 represents a perfect test, while a cursory guide for classifying the accuracy of a 

diagnostic test is given by: AUC = 0.90–1 (excellent, i.e. high sensitivity and high specificity); 0.80–

0.90 (good); 0.70–0.80 (fair); 0.60–0.70 (poor); 0.50–0.60 (fail). To provide some indication of how 

well the model would potentially generalize, the last column in Table 2 reports the classification 

ability when one sample is left out repeatedly — in other words, based on a leave-one-out cross-

validation strategy (AUC (LOO CV)). Again the Forced entry model performed the best (AUC = 90% 

[0.8972]; AUC (LOOCV) = 88% [0.8750]). 

Correlation between clinical and metabolic indicators 

Pearson and Spearman correlation analysis was done to compare the bivariate relationships between 

responses to the FIQR and the three endogenous variables defining the biosignature of FMS. 

Specifically, correlations were assessed between the sum of all three FIQR domains as well as the 

sum of the functional, impact and symptoms domains and SUM-3, SUM-2, creatine, succinic acid and 

taurine. Finally we inspected the data for symptoms related to metabolism to be included in the 

bivariate correlation analysis. In this regard it should be noted: (1) The scores of the 21 questions of 

the FIQR corresponds to an average based on the subjective self-assessment of the FMS patients as 

used in the behavioural sciences (i.e., it is not empirically based). We therefore used the mean scores 

of fibromyalgia patients on the symptoms for experience of pain, low energy levels and tenderness to 

touch only as a directive to include these symptoms in the bivariate correlation analysis [30]. Their 

mean values did not differed in practice from the data of a reference group of the revised FIQR (see 

Figure S1in SI to Article 1). (2) The number of FMS cases is relatively small for assessment of 

normality in the data distribution. We therefore included the Pearson and Spearman correlations in 

Table 3, but used only the Spearman’s correlations for the interpretation of the bivariate correlation 

analyses, with guideline values for “small”(r ≥ 0.1), “medium” (r ≥ 0.3) and “large” (r ≥ 0.5) as 

operational convention for the correlation coefficients [32]. 

 

Table 3 

Relationship between the clinical information of the FIQR and the components of the FMS 

biosignature 

Bivariate components for the correlation analysis Pearson correlation Spearman correlation 

Coeff. (r) p-value
b
 Coeff. (r) p-value 

Correlations of the biosignature (SUM-3)
a
 with the FIQR domain categories 

SUM-3 vs Sum of 21 questions of the full FIQR 0.35 0.102 0.42 0.059 

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#Tab2
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR30
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#Tab3
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR32


76 
 

 

Bivariate components for the correlation analysis Pearson correlation Spearman correlation 

Coeff. (r) p-value
b
 Coeff. (r) p-value 

SUM-3 vs Sum of 9 questions of the functional domain 0.31 0.134 0.25 0.134 

SUM-3 vs Sum of 2 questions of the impact domain 0.15 0.316 0.22 0.241 

SUM-3 vs Sum of 10 questions of the symptoms domain 0.41 0.057 0.57 0.011* 

Correlations of two components of the biosignature (SUM-2) with the FIQR domain categories 

SUM-2 vs Sum of 21 questions of the full FIQR 0.56 0.016* 0.53 0.021* 

SUM-2 vsSum of 9 questions of the functional domain 0.52 0.023* 0.41 0.008** 

SUM-2 vs Sum of 2 questions of the impact domain 0.5 0.043* 0.51 0.039* 

SUM-2 vs Sum of 10 questions of the symptoms domain 0.59 0.009** 0.57 0.011* 

Correlations of components of the biosignature with the symptom of pain
c
 

SUM-3 vs pain experience 0.46 0.037* 0.64 0.004** 

SUM-2 vs pain experience 0.52 0.02* 0.54 0.016* 

Creatine vs pain experience 0.5 0.025* 0.5 0.024* 

Succinic acid vs pain experience 0.08 0.384 0.18 0.249 

Taurine vs pain experience 0.39 0.069 0.29 0.135 

Correlations of components of the biosignature with the symptom of energy
d
 

SUM-3 vs energy loss 0.32 0.115 0.61 0.006** 

SUM-2 vs energy loss 0.68 0.002** 0.72 0.001** 

Creatine vs energy loss 0.65 0.003** 0.66 0.003** 

Succinic acid vs energy loss 0.15 0.295 0.22 0.221 

Taurine vs energy loss 0.22 0.204 0.14 0.307 
a
Biosignature: SUM-3 = creatine + succinic acid + taurine; SUM-2 = creatine + succinic acid 

b
Statistical significance: *significant at p ≤ 0.05, **significant at p ≤ 0.01 

c
Pain: No pain = 0; Unbearable pain = 10 

d
Energy: Lots of energy = 0; No energy = 10 
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The results shown indicate a medium and borderline significant relationship between the SUM-3 

biosignature and the sum of the FIQR, with insignificant correlations for its functional and impact 

domains. Sum-3 and the symptoms domain showed a large and significant correlation. The 

relationship between SUM-2 and the sum of the FIQR and its three domains improved significantly. 

Taken together these results directs to a more meaningful relationship between the metabolites which 

comprise the biosignature and clinical symptoms related to biochemical perturbations in FMS. This 

impression is substantiated by the strong and significant relationship between SUM-3 and SUM-2 on 

the experience of pain (p = 0.004 and 0.016, respectively) and loss of energy (p = 0.006 and 0.001, 

respectively) in the FMS patients as a group. Notably this relationship is not shared by succinic acid 

(a metabolite from the Krebs cycle) and taurine (an osmolite), but a good and significant relationship 

was shown between creatine and the symptoms pain and energy (p = 0.024 and 0.003, respectively). 

The relationship between the biosignature components to tenderness to touch, the third clinical 

symptom evaluated, was statistically insignificant (not included in Table 2). All correlation 

coefficients were positive indicating that patients with high scores on the biosignature will likely also 

have high FIQR scores. 

Discussion 

The results of this metabolomics study lead to three main discussion points – whether FMS presents 

with a unique global metabolic profile which characterizes this disease, whether metabolomics studies 

contributed to the advancement of an objective clinical diagnosis of FMS in patients so affected and 

on gut microbial–host metabolic perturbations in FMS. 

As the overall health status of individuals is captured in their metabolic state, there exists a prevailing 

view that metabolomics results embody global biochemical changes in an individual due to a disease 

and neurological conditions [33], and supported by our results and of two other NMR metabolomics 

investigations. The first NMR metabolomics study evaluated the diagnostic accuracy of biomarker 

profiles in three neurological conditions: idiopathic intracranial hypertension, multiple sclerosis, and 

cerebrovascular disease relative to controls with either no or combined neurological diseases [34]. It 

appeared that the metabolomics investigation identified differences in metabolite profiles in patients 

suffering from these three conditions. A related conclusion was drawn from the second NMR 

metabolomics study of FMS [14]. Although a relatively small number of patients formed the 

experimental group, the metabolomics approach was successful in identifying distinct metabolic 

profiles for FMS patients relative to controls, supporting the concept that the Platelet Activating 

Factor/Platelet Activating Factor Receptor (PAF/PAFr) system plays a role in modulating pain 

signalling. Our results furthermore indicated the differentiation of the three control groups used 

(family members, an age-matched group, and young individuals) and the FMS patients (Additional 

file 1: Figure S3). Statistical assessment of the outcome of a supervised PLS-DA model confirmed the 

complete separation between the FMS and young control groups. Good model fit values substantiated 

some unique differences between the global metabolic profiles of the FMS patients and the healthy 

young controls. The metabolites principally responsible for the differentiation between our FMS 

patients and controls included taurine and TMAO which were also reported to be significantly 

increased (p < 0.05) in an FMS patient group in a preliminary targeted NMR study [12]. In addition, 

we observed perturbed succinic acid suggesting altered energy metabolism in FMS. This result is 

linked to a study [13] where there was relatively elevated: glucose, the glycolytic intermediate 

phosphoenolpyruvate, pyruvate and nicotinamide adenine dinucleotide (NAD
+
) seen in dried blood 

spots from FMS patients. This observation was previously reported for patients with chronic 

widespread pain [35]. 

A common thread in the metabolomics studies on FMS discussed here is the affirmation of the ability 

of metabolomics to identify distinct metabolic profiles for FMS patients relative to controls. Some 

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#Tab2
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metabolites/biomarkers could therefore contribute to the disease phenotype by having a role in the 

pathogenesis of FMS. The biomarkers revealed in these metabolomics studies seemed, however, not 

to be metabolically closely linked, but may be due to the multi-factorial nature of FMS. Noteworthy 

also are the two main limitations of our own and the other two metabolomics studies: the FMS groups 

investigated and analytical methods used. Most metabolomics studies are limited by the number of 

experimental subjects available for investigation, and therefore ultimately call for follow-up 

validation studies with larger and better-defined experimental groups. Further, given the complexity 

of the human metabolome and the multi-dimensional nature of biofluids and other biological samples 

available for metabolomics studies, no single analytical technology can fully disclose and account for 

the information encapsulated in these samples. Nonetheless, metabolomics retains a promise well 

beyond the scope of standard clinical chemistry techniques, for affording detailed characterization of 

metabolic phenotypes and is believed, eventually, to lead to so-called precision medicine in which 

knowledge of their unique metabolic derangements explains the disease state of individual patients 

[36]. A third limitation in the present study is the use of the 1990 criteria for FMS (1, 14) as the 

patient selection was one before publication of the revised criteria in 2011. The use of the revised 

criteria is now standard practice in our pain clinic. 

So, can metabolomics studies contribute to the advancement of objective clinical diagnosis of FMS? 

The results of the present and the two other metabolomics studies on the disease imply that they can, 

albeit with qualifications. The analyses of blood spots from FMS patients provided information using 

IRMS technology that differentiated samples from FMS subjects from those with RA or OA with zero 

misclassifications (100% accuracy). The accuracy of the metabolomics approach was 75%, but with 

the advantage of disclosing a prioritized list of metabolites that may underlie the differences identified 

[9]. The possible role of lysoPCs as biomarkers or as contributors to the FMS phenotype and function 

in the pathogenesis of this condition suggest they are potential new disease biomarkers and thereby 

open a new approach for the treatment in FMS [10]. Likewise, the predictive potential of the 

combination of succinic acid, taurine and creatine proved to be excellent for discriminating between 

our cases of FMS and controls (AUC = 90%). The combination of creatine and succinic acid also 

showed a significant correlation with the characteristic symptoms of pain and fatigue in FMS. The 

inclusion of this predictive information on these three metabolites could in time be considered to form 

part of the initial evaluation of patients suspected of suffering from the disease, in anticipation of 

validation of FMS diagnostic markers. 

Finally, the involvement of gut microbial–host metabolic perturbations in FMS may prove to 

contribute significantly in defining the clinical profile in FMS. In health, brain-gut interactions are 

crucial in the maintaining of homeostasis [37]. It appears that neuroplasticity-related systems and 

neurotransmitter systems are influenced by the gut–brain axis regulation and perturbed homeostasis 

may contribute to risk of disease through alterations in gastrointestinal tract, central nervous, 

autonomic nervous and immune systems [38]. The frequent comorbidity of fibromyalgia with stress 

related disorders, such as chronic fatigue and irritable bowel syndromes and some CNS related 

abnormalities, suggests that gut–brain axis regulation may at least be a partial common denominator 

for these disorders. This view may well be revealed by data from a follow-up targeted metabolomics 

investigation of high sensitivity, like through mass spectrometric-based technologies. 

Conclusions 

An untargeted 
1
H NMR metabolomics analysis of urine samples obtained from a group of clinically 

well-defined female FMS patients with no psychiatric co-morbidity could be fully differentiated from 

a group of young healthy women. The presence of metabolic indicators of perturbations in the gut 

microbiome (hippuric, 2-hydroxyisobutyric and lactic acids) supports the paradigm that regulation of 

the gut-brain axis becomes affected in stress related disorders, like FMS. Three metabolite markers 

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9#CR36
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(taurine, creatine and succinic acid) were important for the differentiation between FMS patients and 

controls and were significant indicators of the pain and fatigue symptoms in FMS. ROC analysis and 

odds ratios substantiated the good predictive potential of a combination of these three metabolites for 

FMS in the present patient group. Follow-up metabolomics research on a larger number of urine 

samples, including those from individuals at high risk of developing the disease, as well as 

longitudinal studies on FMS patients during treatment, are needed to validate the findings presented 

here and to potentially detect effects which would require greater statistical power. These markers 

may in time provide objective supplementary information together with tender-point measurements 

and FIQR questionnaires used to confirm FMS. 
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As previously stated, multiple extraction protocols and annotation methods were used by 

Bouatra and colleagues for metabolite isolation and identification. By this means they were 

able to identify many metabolites in their study especially with reference to the NMR 

component of the investigation. Two-dimensional (2D) techniques, COrrelation 

SpectroscopY (COSY) and J-resolved spectroscopy (J-RES) were also employed in their 

NMR experiment. In our study, as presented in the publication above, only one-dimensional 

1H-NMR experiment was used for metabolite isolation and identification. 2D NMR was briefly 

used for the purposes of metabolite confirmation, being the presence of N-acetyl aspartic 

acid in the urine of FMS cases (data shown in the supplementary material of Malatji et al., 

2017). Likewise, only one SOP was used as that is the method employed by the Nijmegen 

lab, and as such is limited in what can be detected. 

4.4 Conclusion 

NMR is a quantitative analytical method and is thus ideally suited for non-targeted profiling 

studies, as presented in the publication referred to above. It allows us a snapshot of the total 

complement of metabolites in a particular metabolome at one particular time. MS and NMR, 

the primary analytical techniques used in metabolomics investigations, are complementary 

to each other, based on their advantages and limitations. From our untargeted NMR study 

we were able to discriminate FMS from healthy young controls based on their urine 

metabolome. Furthermore, we also identified compounds that show a link to a perturbation in 

the gut metabolome of FMS patients that warrants further investigation. A further discussion 

on how these findings contribute to the phenotype that is FMS will be discussed in Chapter 

6. For this reason, further targeted studies were conducted using an MS platform, namely 

GC–MS, to confirm this finding. Chapter 5 deals with this GC–MS study, the findings of 

which are presented in the form of an article. 
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CHAPTER 5: GAS CHROMATOGRAPHY-MASS SPECTROMETRY 

(GC-MS) OF FIBROMYALGIA SYNDROME 

 

5.1 Brief GC-MS theory 

Mass spectrometry (MS) is an analytical technique commonly employed in metabolomics 

studies to analyse biofluids. MS is a detection technique, in which molecules are ionized and 

the resultant ions are categorized according to their mass-to-charge (m/z) ratio, where m is 

the mass of the ion in Daltons and z is the fundamental charge of the ion. The resulting 

output is a mass spectrum (Emwas 2015) (figure 5.1). This is done by bombarding the 

molecules with a stream of electrons, breaking them into small, or large, fragments. A 

quadrupole (made of four magnets) allows fragments of a certain m/z to pass through a slit, 

few at a time, to the detector. The quadrupole cycles through each of the m/z ratios, 

numerous times per second, until the whole range of m/z ratios are covered. A single range 

is called a scan. Figure 5.1 shows a typical mass spectrum which is recorded for each scan. 

The m/z ratio is plotted on the x-axis and the signal intensity (abundance) is plotted on the y-

axis for each of the detected fragments. 

There are a number of separation techniques that can be coupled to MS, for example, gas 

chromatography (GC) and liquid chromatography (LC). For the purposes of this thesis, only 

GC-MS will be referred to. 
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Figure 5.1: Example of a typical mass spectrum created by mass spectrometry representing 
one cycle of a range of m/z ratios of fragmented particles present in a sample. The plotted 
graph is of abundance (signal intensity; y-axis) versus the m/z ratio (x-axis). This particular 
mass spectrum shows the fragmentation pattern of the metabolite, 2-hydroxyisobutyric acid. 

 

GC-MS is the most commonly used hyphenated MS platform for metabolite analyses (Wang 

et al., 2011). Mostly used for non-targeted analyses, GC-MS is best used for the analyses of 

metabolites that are hydrophilic in nature (Zhang et al., 2012; Lin et al., 2006). GC is an 

analytical technique that separates complex mixtures into individual compounds. In all 

chromatography methods, there is a mobile phase and a stationery phase. In the case of 

GC, the mobile phase is an inert gas (e.g. helium), and the stationery phase is a column 

lined with a chemical that can selectively attract compounds in a sample. The sample under 

investigation is injected into the mobile phase and carried along the stationery phase, up 

until it elutes into the MS for detection. While being carried by the mobile phase, the 

compounds interact with the stationery phase at different speeds and the fastest to interact 

elute first while the slowest elute last. Retention time (RT) is the amount of time a 

compounds takes, from time of injection to the time it elutes from the column, to enter the 

MS for detection. As the compounds elute from the column, they generate a signal that is 

captured on a graph of RT versus abundance (signal intensity) called a chromatogram 

(figure 5.2). The peaks represent the different compounds found in the sample. Unlike a 

NMR spectrum, each peak represents a compound. The RT is used against a reference 
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library to identify the compound. There are different parameters that have to be controlled in 

order to ensure the compounds always elute at, precisely, the same time on the graph. 

These parameters include: characteristics of the mobile and stationery phases, oven 

temperature ramp and type of GC column. 

 

 

Figure 5.2: Typical ion chromatogram of retention time (RT; x-axis) versus abundance (y-
axis) of a urine sample taken from one of the FMS patients, showing the compounds 
separated by gas chromatography. Each peak represents a compound as it elutes from the 
GC column. RT is the amount of time, from injection, each compound takes to elute from the 
column. Abundance indicates the amount of each compound present in the sample (i.e. 
high/tall peaks indicate a large presence of the compound in the urine). 

 

5.2 Advantages and limitations of GC-MS 

Coupled with the advantages of MS, as stated in chapter 4 (Table 4.1), GC-MS is a low cost, 

highly sensitive method, and the instrumentation is easy to use (Emwas 2015). 

Quantification of the data is much easier and less time consuming than that of NMR. 

Limitations include: laborious sample preparation that can incorporate experimental error, 

sample destruction and analysis that can only measure thermo-labile and volatile small 

molecules. Due to the latter, GC-MS is not widely used in global metabolic profiling studies, 

as is the case with NMR. Derivatization is a process whereby the chemical properties of 
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isolated metabolites are altered (in the case of my study, the organic acids). By doing this, 

the compounds become more “thermally stable, chemically inert and volatile at temperatures 

below 300oC” (Kuhara 2005). Derivatization alters compounds to make them more volatile; 

however, this process can cause non-volatile metabolites to form different forms of the same 

parent metabolite, resulting in erroneous detection, and quantification, of the metabolite. In 

samples with variable metabolite content, derivatization times of the different metabolites 

can vary, depending on the metabolite properties. This affects the results of the analysis 

(Emwas 2015). Lastly, batch sizes can also negatively impact the results of an analysis. 

Samples are queued for analysis, and the metabolites still continue to undergo 

derivatization. However, to help mitigate these problems, an internal standard (IS) is added 

for compound normalization to reduce incorrect quantification. 

 

5.3 Organic acid extraction from urine for GC-MS analysis — standard operating 

procedure (SOP) 

The protocol used for the extraction of organic acids was a Standard Operating Procedure 

(SOP) used by the Potchefstroom Laboratory for Inborn Errors of Metabolism (PLIEM) at the 

NWU. A detailed SOP, including reagents and equipment settings, for organic acid 

extraction has been included as Addendum A2 to this thesis. 

Organic acids are the end products of metabolism excreted in the urine of humans. These 

chemical compounds are derived from host cellular metabolism, and also from the gut flora 

found in the host. As such, they can be used to monitor health and disease states of an 

individual. Organic acids primarily contain carbon and hydrogen, but oxygen, nitrogen, 

sulphur and phosphorus may be also present. 

I was lead to do an organic acid extraction due to the findings from my explorative NMR 

study (Malatji et al., 2017, Chapter 4). Here, abnormal metabolites were detected in the urine 

of the FMS patients, which pointed to a possible perturbation in the host gut metabolism. 

Since organic acid analyses can provide a snapshot on the state for the gut flora, yet still 

impart further information with regards to FMS, it was deemed feasible to expand my NMR 

study with organic acid extraction through GC-MS analysis. This study was conducted on the 

same experimental cohort as those used in the NMR study. For the remainder of this section 

I will briefly describe the SOP used for the organic acid extraction. 
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The creatinine content of each urine sample was determined by an external lab, namely 

Ampath Laboratories (Drs Du Buisson, Kramer, Swart, Bower Inc.). The creatinine content 

was subsequently used to determine the exact volume of urine to use in the extraction 

procedure (Table 5.1). This was done to correct for the concentration differences of 

metabolites in the urine between the individual samples, due to varying dilutions of urine. 

This creatinine normalization yields gas chromatograms that are comparable to each other. 

Correcting for creatinine content not only adjusts the urine volume to be used but also the 

amount of some of the reagents to be used during extraction and derivatization of the 

organic acids. 

Table 5.1: Urine volume used for analysis with regards to creatinine content 

Creatinine value (mmol/l): Urine volume: 

Creatinine > 8.8 0.5 ml 

Creatinine < 8.8 and > 0.44 1 ml  

Creatinine < 0.44 and > 0.18 2 ml 

Creatinine < 0.18  3 ml 

 

The calculated volume of urine samples were added to glass Kimax tubes, to which a 

standard amount of six drops of hydrochloric acid was added to each sample to acidify the 

urine to approximately pH=1. By adjusting the pH of the urine the organic acids become non-

protonated and hydrophobic, facilitating their extractability to the organic phase (diethyl ether 

and ethyl acetate). 

The IS used during all organic acid extractions was provided by PLIEM and was prepared by 

dissolving 26.25 mg of 4-phenylbutyric acid in a few drops of sodium hydroxide (NaOH). This 

was then diluted with distilled water to a volume of 50 ml. 

The next step involved the liquid-liquid extraction of the organic acids using ethyl acetate (6 

ml) and diethyl ether (3 ml) in two separate extraction steps. Ethyl acetate was added first to 

the preceding mixture, mixed by using a rotor torque for 30 min, and followed by 

centrifugation for 3 min at 40 000 rpm. The centrifugation step allows for separation of the 

mixture into the organic (upper) and aqueous (lower) phases. The organic phase was then 

transferred to a clean Kimax tube using a glass Pasteur pipette. The diethyl ether was then 

added to the remaining aqueous phase and, similarly, mixed for 10 min and centrifuged 

again. Following phase separation, the resulting organic phase was then transferred to the 

Kimax tube containing the previously transferred ethyl acetate organic phase. The aqueous 
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phase was then discarded. This second extraction step was incorporated to extract any 

remaining organic acids from the aqueous phase. 

Sodium sulphate, two spatulas full in a powder form, was then added to the resultant organic 

phase solution. This step is for the removal of any remaining water in the organic phase. 

This was then vortexed and centrifuged for 1 min at 40 000 rpm. The anhydrous organic 

phase was then transferred to a smaller, clean Kimax tube and evaporated to dryness at 

40oC under a flow of nitrogen for approximately an hour. 

The dried sample was then derivatized using N,O-Bis(trimethylsilyl) trifluoroacetamide 

(BSTFA), trimethylchlorosilane (TMCS) and pyridine according to a 5:1:1 ratio. BSTFA is the 

preferred silylation reagent due to the fact that it possesses the best reactivity, volatility and 

solvent properties. BSTFA is also found in its pure form, which is another good attribute of 

this reagent. The TMCS, together with BSTFA, acts as a catalyst, allowing for the full 

derivatization of compounds at 60oC within 10 min (Kuhara 2005). 

Once all derivatizing reagents were added to the samples they were incubated in a sand 

bath at 80oC for 45min. An aliquot of the derivatized sample was then transferred to a 0.25 

ml conical insert and placed in a 1.5 ml vial and capped. One microlitre of this derivatized 

sample was then injected by an auto-sampler onto the GC-MS. 

The temperature program used for the GC was a standard program applicable to organic 

acid derivatives. The run-time for each GC-MS analysis was approximately 1 hour, and the 

reader is referred to Addendum A2 for more settings on the GC-MS run. 

Once the raw data from the GC-MS machine had been generated for all the samples, it was 

analysed using AMDIS (Automated Mass Spectral Deconvolution and Identification System). 

This is a software programme used for the identification and spectral extraction of the GC-

MS data for each compound in a sample (figure 5.3) (refer to Addendum A2 for the settings 

used in AMDIS). Deconvolution of peaks allows overlapping signals to be separated into 

single peaks. AMDIS extracts each compound’s mass spectrum from the data file generated 

by the GC-MS and compares it to the chromatogram in the custom-made reference library 

developed by Prof. Mienie at PLIEM in order to identify the metabolite and assign it a name. 

This library for the organic acids partially consisted of spectra obtained from the 

NIST/EPA/NIH Mass Spectral Library and Search Software (NIST 11) (www.nist.gov). 

Spectra that were not available in the library were created by obtaining commercial, or 

synthesizing, standards, derivatizing them with BSTFA, and manually analysing on a GC-

MS. This custom library was comparable to those used in other international laboratories for 
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the study of inherited metabolic diseases; but, unlike those, is not commercially available. 

The resultant AMDIS file was then opened with Microsoft Excel and for each of the identified 

metabolites their relative concentrations were calculated. This was done using the following 

formula: area of analyte/area of IS*262.5 (concentration of the IS). Using this formula 

expressed the concentration of the metabolites in mmol/mol creatinine. Data matrices were 

generated using these relative concentration values, and biostatistical analyses were carried 

out. 

 

 

Figure 5.3: Example of the output window obtained in AMDIS when analyzing the raw data 
files. Graph A is the ion chromatogram of all the compounds in the mixture identified by the 
GC component. The ‘T’s’ and triangles above each peak indicates named compounds 
identified by the library and unnamed compounds, respectively. Graph B indicates the 
abundance of the various fragments. Graph C is the MS profile of a selected compound, 
which in this case is 4-phenylbutyric acid. Graph D is the library match of the same identified 
compound in Graph C. Figures 5.1 and 5.2 are also part of the output window seen in 
AMDIS and correspond with D and A respectively. 
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5.4 GC-MS profiling of Fibromyalgia Syndrome 

5.4.1 Statistical analyses of FMS data 

This section will present results from a semi-targeted GC-MS study done on FMS patients 

and controls. The term semi-targeted, here, refers to the fact that a metabolome sub-class, 

namely organic acids, was extracted from the urine for analyses. 

The resultant matrices that were generated from AMDIS analysis were subjected to some 

data pre-treatment steps, before statistical analyses. First, three patient cases were 

removed, as they were suspected of having a possible inborn error of metabolism from 

spectral analysis done by Prof Mienie. Second, an 80% zero filter was done on the variables 

to remove those with more than 80% zero concentration values across all four experimental 

groups, namely FMS, CF, CO and CN. Initially, a total of 357 variables were detected, from 

which 147 were deleted as a result of the zero filter; hence, 210 remained. Ten variables 

were further deleted as they were deemed as contaminant metabolites, and 200 variables 

remained. A further four metabolites were combined with their parent metabolites, as they 

were named differently but were essentially the same metabolite, and 196 metabolites 

remained. Zero replacement was done on the remaining variables from a Beta distribution 

truncated at the first non-zero value for each variable. Finally, the reduced data was log 

scaled and case outliers were removed based upon the Hotelling’s T2 method. Three outlier 

cases were removed as a result — two from the CN group and one from the FMS group — 

hence 80 cases remained. 

 5.4.2 Results and discussion 

Unsupervised (PCA and cluster analyses) and supervised (PLS-DA) multivariate statistical 

analyses were then carried out on the matrix that resulted from these data pre-treatment 

processes. This was done for the patient group versus all three control group pairings; 

namely: FMS vs CF, FMS vs CN and FMS vs CO. Figure 5.4 shows the PCA results 

obtained for each of these pairings. A natural separation can be observed for all parings. 

Figure 5.5 shows the PLS-DA results obtained for all parings — a total separation was 

observed for all pairings, indicating that the FMS group is distinguishable from each control 

group. A Euclidean-Ward cluster analysis (figure 5.6) was also done on the data, further 

confirming that the FMS group is distinguishable from each control group. From these results 

it is possible to see that a unique metabolite profile exists in the FMS group. Subsequent 

univariate analyses (data not shown) identified a group of metabolites, namely 

monosaccharides and their derivatives, to be elevated in the FMS group. This indicated the 
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presence of a gut perturbation in FMS. These findings warranted further investigating to 

understand the biological implications. 
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Figure 5.4: Unsupervised PCA analysis, at a 90% confidence interval (CI), of the patient (FMS) group versus each of the control groups, namely CF (A), CN 
(B) and CO (C). In each picture the FMS group is shown in blue and the control group is shown in their corresponding colour. 
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Figure 5.5: Supervised PLS-DA analysis, at a 90% CI, of the FMS group versus CF (A), CN (B) and CO (C). In each picture the FMS group is shown in blue 
and the controls groups in their corresponding colour. Analyses were done using 196 variables. 
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Figure 5.6: Euclidean-Ward cluster analyses of FMS versus CF (A), CN (B) and CO (C). These results reveal clear separations between FMS and the control 
groups, thus substantiating that there exists a unique metabolite profile in the FMS group. 



98 
 

5.4.3 A GC-MS metabolomics signature in patients with Fibromyalgia Syndrome 

5.4.3.1 Background 

FMS patients frequently complain of gastrointestinal discomfort. In our NMR study (Malatji et 

al., 2017) we identified elevated metabolites in the urine of FMS patients that indicated a gut 

perturbation, in the form of dysbiosis. These findings warranted further investigation by 

means of a semi-targeted study. Thus organic acid analyses coupled with GC-MS 

metabolomics became an attractive option. 

In the following section, I present a manuscript, submitted to BMC Neurology, documenting 

the results of this GC-MS study conducted on the FMS patients and controls. In this study, 

based on the findings, we speculated that dysbiosis, does indeed, seem to be present in 

FMS patients. Dysbiosis can be considered a feature underlying FMS pathophysiology, 

supporting the model that brain function in patients suffering from this disorder may be 

altered by the perturbed gut microbiota through the gut-brain axis, substantiating the notion 

that the gut may be a gateway to generalized pain. Note that the article is presented in the 

format as per BMC Neurology journal’s article submission guidelines. 
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5.4.3.2 The GC-MS metabolomics signature in patients with Fibromyalgia Syndrome 

directs to dysbiosis as aspect contributing factor of FMS pathophysiology 

 

The GC-MS metabolomics signature in patients with Fibromyalgia Syndrome directs to 

dysbiosis as an aspect contributing factor of FMS pathophysiology 

Bontle G. Malatji
1
, Lodewyk J. Mienie

1
, Ron A. Wevers

2
, Helgard Meyer

3
, Shayne Mason

1
, 

Mari van Reenen
1
 and Carolus J. Reinecke

1
 

1
Centre for Human Metabolomics, Faculty of Natural Sciences, North-West University 

(Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa, 

2
Radboud University Nijmegen Medical Centre, Translational Metabolic Laboratory, 

Department of Laboratory Medicine, PO Box 9101, 6500 HB Nijmegen, The Netherlands. 

3
Department of Family Medicine, Kalafong Hospital, University of Pretoria, Private Bag 

X396, Pretoria, South Africa. 

 

Email addresses: 

Bontle G. Malatji:  bonnie.g.bm@gmail.com 

Lodewyk J. Mienie  10061533@g.nwu.ac.za 

Ron A. Wevers  ron.wevers@radboudumc.nl 

Helgard Meyer:  Helgard.Meyer@up.ac.za 

Shayne Mason:  nmr.nwu@gmail.com 

Mari van Reenen:  12791733@nwu.ac.za 

Carolus J. Reinecke:   carools.reinecke@nwu.ac.za 

 

Corresponding author: 

Carolus J. Reinecke   carools.reinecke@nwu.ac.za 

 

 

Submitted: BMC Neurology 

mailto:bonnie.g.bm@gmail.com


100 
 

Abstract 

 

Background: Fibromyalgia syndrome (FMS) is a chronic pain syndrome. Comparative analyses of 

untargeted metabolomics data indicated an altered metabolic profile in patients with FMS. Our 

objective was to perform a semi-targeted explorative metabolomics study to (1) elucidate the global 

urinary metabolite profile of FMS patients and (2) explore the potential of this non-invasive 

metabolite information to augment existing medical practice in diagnosing the disease. 

Methods: All cases were females. The patients had a medical history of persistent FMS (n = 18). 

Control groups were first-generation family members of the patients (n = 11), age-related individuals 

without indications of FMS (n = 10), and healthy young (18–22 years) individuals (n = 41). The 

biofluid investigated was early morning urine samples. Data generation was done through gas 

chromatographic-mass spectrometric (GC-MS) analysis and data processing and analyses were 

performed using Matlab, R, SPSS and SAS software.  

Results and discussion: Quantitative analysis revealed the presence of 196 metabolites. 

Unsupervised and supervised multivariate analyses distinguished all three control groups and the FMS 

patients, which could be related to 14 highly significantly increased metabolites. These metabolites 

are associated with energy metabolism, digestion and metabolism of carbohydrates and other host and 

gut metabolites. The energy metabolites confirm interrupted energy utilization, often seen in FMS 

patients. The carbohydrate digestion products include components which are mostly very low to 

absent from normal urine and are known to be structural parts of complex dietary plant 

polysaccharides, digested by microbiota of the distal gut. In addition, the remaining abundant 

metabolites that differed between the FMS patients and controls are also gut-related, directing to 

dysfunction in the gut microbiome – dysbiosis. 

Conclusion: The overall urinary metabolite profile observed in the FMS patients suggests that (1) 

energy utilization is a central aspect of this pain disorder, (2) dysbiosis seems to prevail in FMS 

patients, supporting the model that microbiota may alter brain function through the gut-brain axis, 

with the gut being a gateway to generalized pain and (3) screening of urine from FMS patients is an 

avenue to explore for adding non-invasive clinical information for diagnosis and treatment of FMS. 

 

 

Keywords 

Fibromyalgia syndrome, Gas chromatography- mass spectrometry (GC-MS), Metabolomics, 

Dysbiosis, Carbohydrate markers, Monosaccharides, Pain, Biomarkers 
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Background 

Fibromyalgia syndrome (FMS) is currently viewed as part of the Functional Pain Syndromes 

(FPS) [1]: Central sensitization is associated with abnormal pain processing, increased sensitivity of 

the nervous system and decreased anti-nociception, which results in the clinical phenomena of 

hyperalgesia and allodynia. Dysfunction in mono-aminergic neurotransmission, which involves 

serotonin, norepinephrine, nerve growth factor, substance P and others, has been implicated to 

account for the central pathophysiology of FMS [2,3,4,5]. Peripheral pain generators may contribute 

to the pathophysiology of some FMS patients [6] and patients often manifest with multiple other 

symptoms such as cognitive impairment, disrupted sleep and chronic fatigue, including the 

association with comorbidities such as irritable bowel syndrome (IBS), small intestinal bacterial over-

growth (SIBO), interstitial cystitis and mood disorders [7,8,9]. 

The human gut microbiota, which functions symbiotically with the host, extensively affects 

the host through metabolic exchange and contributes to the risk of several human diseases [10]. A 

recent untargeted NMR metabolomics study of FMS [11] supported alterations of energy metabolism 

- a clinical characteristic of FMS - while hippuric, 2-hydroxyisobutyric and lactic acids observed in 

the urine samples of the patients suggested perturbations in the gut metabolome of the patient group. 

The metabolic associations of each of these metabolites have been shown to be associated with the 

Clostridia phylogenetic gut microbiotic group [12]. In health, host-gut microbiota metabolic [13] and 

brain-gut interactions are crucial in the maintenance of homeostasis [14]. It appears that 

neuroplasticity-related systems and neurotransmitter systems are influenced by the gut–brain axis 

regulation and perturbed homeostasis is proposed to contribute to disease aetiology through 

alterations in the gastrointestinal tract, central nervous, autonomic nervous and immune systems [15]. 

The frequent comorbidity of fibromyalgia with stress-related disorders, such as chronic fatigue [16] 

and IBS [17] and some CNS-related abnormalities [18], suggests that gut–brain axis regulation may at 

least be a partial common denominator for these disorders [19].  

The presence of the exogenous markers of gut origin observed in the NMR metabolomics 

study [11] provides further indications of altered microbial–mammalian metabolic balance 

influencing FMS and may be significant in defining the clinical profile in FMS. To further investigate 

this view, we performed a semi-targeted GC-MS metabolomics study on the same samples used for 

the NMR study. The three gut metabolites observed in the NMR study were also significantly 

increased in the FMS patients relative to the controls, although not to the level of being responsible 

for group separations. Most noticeable was the presence of a wide array of metabolites which are 

associated with digestion of complex dietary plant polysaccharides by gut microbiota. Likewise, 

metabolites of carbohydrates associated with the metabolic pathways known to occur in gut 

microbiota were also present in the urine of FMS patients – observations that were not previously 
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reported. These results may provide an avenue for understanding the dynamic basis of host–

microbiome perturbations in FMS, contribute to clinical information that distinguish FMS patients 

from related comorbidities and direct the development of a functional approach towards its treatment. 

 

Materials and methods 

The study population and sampling 

We applied a sample collection and analysis pipeline (Fig. 1) for exploratory metabolic profiling of 

urine samples [20] from FMS patients and age-matched, healthy and non-related controls (CO) as 

well as two additional control groups: first-degree relatives of the patients (CF) and young (aged 18–

22 years), healthy students of North-West University (CN). All cases were Caucasian females.  

 

Fig. 1 Schematic pipeline applied for exploratory metabolic profiling of urine samples. The direction 

of the flow of the analytical procedures is shown by the arrow to the left. The samples were obtained 

from all cases prior to detection of outliers (4 FMS and 2 CN cases). 
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All the patients included in this study were previously diagnosed with FMS by the same 

specialist pain clinician from his chronic pain practice in Pretoria as previously described [11]. The 

diagnosis was based on a comprehensive clinical assessment using the American College of 

Rheumatology (ACR) criteria, first published for FMS in 1990 [21] and the 21 patients selected for 

this study (FMS group) were confirmed with FMS. All these patients were on a comprehensive 

evidence-based management programme according to international guidelines and were only included 

as they continued to complain of widespread musculoskeletal pain (including in the axial skeleton) in 

the presence of >11 painful tender points with musculoskeletal assessment.  

The socio-demographic, clinical information, pain-specific medication and levels of 

emotional experience associated with FMS for the patients were obtained through the Fibromyalgia 

Impact Questionnaire (FIQR) [22] and an in-house clinical questionnaire (IHCQ) [11]. Further details 

are presented in the SI (see SI to Article 2). Clinical description, urine sample collection on all 

experimental groups commenced from 2009 to 2011. Case definition and selection for the eventual 

study was done by a clinical and scientific group of co-workers in 2010. Following scrutinizing of the 

records of patients with a medical history of FMS, a group of 17 FMS patients was eventually 

selected based on the above selection criteria as well as after excluding outliers based on statistical 

analysis. Taking everything into account, we conclude that the present FMS patients are 

representative of patients used in studies on FMS in general and also represent a well-defined group 

as required for metabolomics investigations. All individuals in the control groups showed no 

indications of FMS, or related conditions, were defined as healthy females and were not required to 

complete the questionnaires.  

Informed consent was obtained from all the participants in this study by means of a 

voluntarily completed consent form; ethical approval for the study was obtained via the consortium 

under the Nuclear Technologies in Medicine and Biosciences Initiative (NTeMBI) (ethical approval 

by Pharma Ethics Pty, Ltd, reference number 11064365). Pharma Ethics confirmed the following: 

“The study has been accepted as complying to the Ethics Standards for Clinical Research with a new 

drug in participants based on FDA, ICH GCP and the Declaration of Helsinki guidelines. The Ethics 

Committee (IRB) granting this APPROVAL is in compliance with the Guidelines for Good Practice 

in the Conduct of Clinical Trials in Human Participants in South Africa (2006), ICH Harmonised 

Tripartite Guidelines E6: Note: for the Guidance in Good Clinical Practice (CPMP/ICH/135/95) and 

FDA Code of Federal Regulation Part 50, 56 and 312.” as specified under Declarations.  
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Analytical procedures and quality control 

Organic acid profiles of urine collected from our sample groups were analysed by a standard 

GC-MS method (see section S2 in SI to Article 2 for detailed descriptions), which was standardized to 

comply with the required levels of qualitatively and quantitatively repeatable and reproducible [23]. 

We observed that MS-spectra of some of the carbohydrates can be very similar when analysed as 

TMS-ethers and -esters. In addition, some carbohydrates may also be present in the linear or ring 

configuration, or can even be converted from one configuration to the other during the extraction 

and/or derivatization procedure. These characteristics of carbohydrates make the use of relative 

retention times (RRTs) in combination with EI MS spectra compulsory for final identification and are 

included in the standard operating procedure in our laboratory. RRTs using 4-phenylbutyric acid as an 

internal standard for all monosaccharides, sugar alcohols, aldonic acids, ulosonic acids, uronic acids 

and aldaric acids were extracted from a standard solution as described for urine organic acids. The 

dried product was derivatized with BSTFA, TMCS and pyridine and GC-MS analyses were done 

using the same GC operational settings and column as for organic acid analyses. Most of the 

monosaccharides and sugar acids produced at least 2 peaks and in some instances 3 peaks 

representing the linear structure, pyranose or furanose configuration and in some instances the 

pyranose as well as the furanose conformations for the same monosaccharide. The RRTs were 

calculated and the combination of RRTs and MS-spectra was added to the in-house spectral database 

for future use. For final identification, RRTs and MS-spectra from the in-house MS-spectra database 

as well as a commercially available database (National Institute of Standards and Technology (NIST) 

17 Main EI MS Library) were applied. 

Statistical analyses 

Statistical analysis was performed on the organic acids data matrix, which consisted of 196 

original features recorded from 85 original samples obtained from the four experimental groups, 

becoming 79 samples following outlier detection. The number of variables identified here compared 

well with the expanded urine metabolome of 179 metabolites (85 quantified), identified through GC-

MS [25]. 

All variables in each group that did not contain values in at least 20% of the cases (i.e. more 

than 80% zero values) were removed from the original data matrix, a process known as zero filtering. 

Variables in the reduced data matrices were followed by manual curation and classification based on 

the Human Metabolome Database [24], with any non-biological variables (e.g. contaminants, 

medication and derivatization artefacts) being excluded from further analysis, leaving a biologically 
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heterogeneous group of 122 metabolites, related to energy metabolism (38), phenolic and benzene 

products from the gut microbiome (54) and carbohydrates (30). 

Next, the data were scaled using a shifted log transformation with shift parameter equal to 

one. The Hotelling’s T
2
 statistic from a principal component analysis (PCA) model was used to detect 

outliers, after which outliers were excluded from further analysis. Univariate statistics, specifically the 

Mann-Whitney (MW) test (p values and effect sizes) and fold change (FC) ratios, were produced for 

the untransformed data.  

Pairwise comparisons between groups identified features which differed for the three 

experimental groups. Zero replacement was performed for the untransformed data from the tail of a 

fitted beta distribution not exceeding the minimum observed value for each feature. After zero 

replacement, the data were again scaled using a shifted log transformation (with shift parameter equal 

to one) and mean centred. Unsupervised (PCA) and supervised (PLS-DA) models were fitted to the 

zero-replaced, transformed and centred data to identify combinations of features which differentiated 

between the groups. The next section describes the separations found between the groups and lists the 

features responsible for the separations. 

The following statistical packages were used in the analysis of the metabolomics data: 

i. MATLAB with Statistics and PLS Toolbox Release (2012). The MathWorks, Inc., Natick, 

MA, USA; together with notBoxPlot.m developed by Rob Campbell 

(http://www.mathworks.com/matlabcentral/fileexchange/26508-raacampbell13-notboxplot). 

ii. SAS Institute Inc. (2015). The SAS System for Windows Release 9.3 TS Level 1M0, 

Copyright© by SAS Institute Inc., Cary, NC, USA. 

iii. SPSS Inc. (2015). IBM SPSS Statistics Version 22, Release 22.0.0, Copyright© IBM 

Corporation and its licensors (http://www-01.ibm.com/software/analytics/spss/) 

 

http://www-01.ibm.com/software/analytics/spss/
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Results 

Data generation and case selection 

Using the original variable data, case reduction was first applied to all four experimental 

groups (Fig. S1in SI to Article 2). Outliers were identified firstly, based on the presence of suspicious 

metabolites (including those due to medication) and secondly, statistically by using a 95% confidence 

region in a Hotelling’s T
2
 test in conjunction with the respective PCA score plots with 90% 

confidence regions. Cases that were identified as outliers by either method were removed. The 

outliers were: FMS patients – four outliers (three on metabolite profiles and one through the statistical 

profiles); CF (family controls) – no outliers; CO (matched controls) – no outliers; CN (young 

controls) – two outliers through statistical profiles, yielding the final experimental groups: FMS 

patients (17), CF (11), CO (10) and CN (41) for the controls. 

Group characteristics 

Supposed changes in metabolite profiles from the FMS patients and the three control groups 

(excluding outliers) were first established through two unsupervised methods: unsupervised PCA and 

Euclidian and Ward hierarchical cluster analyses presented as dendrograms, based on all (n = 196) 

original metabolites. The data were log transformed and auto-scaled. Figure 2 shows the group 

separations based on these analyses. Differentiation between the FMS patients and all three control 

groups were found by the PCA (Fig. 2a to 2c) and complete separation by the cluster analysis (Fig. 2d 

to 2f). Both methods indicate a distinct difference between the metabolic profiles of the FMS patients 

and each of the control groups. 
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Fig. 2 Unsupervised analyses for the FMS patients relative to the three control groups based on all 

metabolites. PCA loading plots are shown for CF (a), CO (b) and CN (c) groups relative to FMS 

patients. Group separation between experimental groups through cluster analysis is shown in the 

dendrograms for the CF (d), CO (e) and CN (f) groups relative to FMS patients. Cases from the FMS 

patients are shown as light blue areas and dots, CF as dark blue, CO as red and CN controls as purple. 

 

Next, group separations based on supervised PLS-DA and volcano plots were performed (Fig. 

3) on the same data as for the unsupervised analyses. The PLS-DA between the CF (Fig. 3a), CO (Fig. 

3b) and CN (Fig. 3c) against the FMS patients complemented results from the cluster analyses by 

indicating a complete separation between the three control groups and the FMS patients. The PLS-DA 

provided for calculating the goodness-of-fit (R
2
) and predictive ability (Q

2
) parameters. The outcome 

of these metrics is reported in the legend to Fig. 3, indicating a good model fit. Subsequently all three 

volcano plots for the FMS patients relative to the control groups (Fig 3d, 3e and 3f for CF, CO and 

CN respectively) indicate that a large number of variables (n > 50) differed significantly (p < 0.05) 

between the FMS and the control groups, manifesting with high up- or down-regulated FC-values. 
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Fig. 3 Supervised (multivariate and univariate) analysis for the FMS patients relative to the controls, 

based on all metabolites. Upper panels: PLS-DA, with the 95% confidence areas indicated in light 

blue for the FMS group and in dark blue in (a) red in (b) and purple in (c) for the CF (R
2
 = 0.99; Q

2
 = 

0.49) , CO (R
2
 = 0.99; Q

2
 = 0.58) and CN (R

2
 = 0.99; Q

2
 = 0.70) controls, respectively. Lower panels: 

Red lines in the volcano plot (d to f) indicate the univariate boundaries of p < 0.05 and |FC| > 2, 

respectively. 

 

Perturbed metabolite profile of the FMS patient group 

Important metabolites that distinguish the FMS patients relative to the matched controls (CO) 

were identified from the values for variables important in projection (VIP) of the PLS-DA (Fig.3a). 

Additional inclusion criteria were statistical significance (p < 0.5 and smaller than the B-F 5% 

values), effect size > 0.8 and fold change > 5.0. A total of 12 metabolites complied with these criteria, 

and were simultaneously common to all three control groups relative to, the FMS patients. The 12 

metabolites are listed in Table 1, which also include oxalic acid and 4-hydroxybutyric acid, which 

were highly significant for the CO group and were also observed as such for one of the other control 

groups as well - the CF and CN groups, respectively. Tagatofuranose (common to CF and CN groups) 

is not included in Table 1, as tagatose is already included as common by all three groups. Of the two 

gut-related metabolites (hippuric and 2-hydroxyisobutyric acids) identified previously through the 

NMR study [11], 2-hydroxyisobutyric acid was significantly increased, but did not contribute to group 

separation (p = 0.00012; FC = + 2.13, and VIP = 0.32). 
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Table 1 Important metabolites in FMS patients relative to CO controls. Means and standard deviations (SD)  for the metabolitres listed  

are shown for the FMS patients and three control groups (CO, CF and CN). Abbreviations: VIP – Variables important in projection; M-W: 

Mann-Whitney p-values; B-F: Bonferroni-Holm test; ES: effect size; FC: fold change; 4-HBA: 4-hydroxybutyric acid; 2,3,4-trihydroxy- 

butyl-L: 2,3,4-trihydroxybutyl-lactone; 2-D-3,5-DHPL: 2-deoxy-3,5-dihydroxypentanoic lactone. Twelve metabolites were important and  

common for all three controls groups relative to FMS, while two (no. 6 and 10) were common to only two groups, as indicated in brackets. 
_________________________________________________________________________________________________________________________ 

 

No.  Metabolite  VIP M-W      B-F    ES  FC FMS FMS CO CO  CF CF CN CN 

   > 2.0 < 0.5      5%    > 0.5    > 10 Mean SD Mean SD  Mean SD Mean SD 

__________________________________________________________________________________________________________________________ 

1    Sorbose  27.9 <0.00001   0.00026    0.82  >550 549 438 0 n/a  0 n/a 0.01 0.05 

2    Phosphoric acid 11.2 0.000011   0.00028    0.82      59 147 111 2.47 2,39  0.05 0.09 5.42 6.95 

3    Glutaric acid  10,6 0.000011   0.00028    0.82    144  77 60 0.53 0,59  0.39 0.33 0.76 0.77 

4    Threonic acid    8,7 <0.00001   0.00027    0.82    298  39 28 0.13 0.40  0.04 0.09 1.78 5.69 

5    Tagatose   7.3   0.00024    0.00031   0.67  >550  103 154 0 n/a  0 n/a 0.01 0.05 

6    Oxalic acid (CO&CF)  7.2 0.000011   0.00027    0.82      21  46  24 2.11 2.69  6.79 5.32 12.13 6.56 

7    Erythropentonic acid  6.9 <0.00001   0.00027    0.82    526   28 22 0,05 0,12  0.21 0.51 0.24 0.41 

8    Rhamnose   4.7 0.000011   0.00027    0.82      81   15 9 0.19 0.17  0 n/a 0.01 0.05 

9   Arabinose   3.9 0.000017   0.00028    0.80      44   19 17 0.44 0.64  0.56 0,51 0.27 0.46 

10  4-HBA (CO & CN)  3.6 0.00109     0.00185     0.59     57   36 36 0.62 1,15  0.09 0.13 0.15 0.62 

11  2,3,4-trihydroxybutyl-L  3.3 0.000021   0.00029    0.79      24   13 10 0.54 1.41  0.51 0.70 0.60 0.47 

12  2-Keto-1-gluconic acid  2.8 <0.00001   0.00026    0.82  >550   19 15 0 n/a  0 n/a 0 n/a 

13  2-D-3,5-DHPL  2.8 0.000199   0.00031    0.68      17   28 25 1.67 2.27  1.30 2.41 3.26 4.80 

14  3-D-ribohexonic acid   2.6 0.000089   0.00029    0.72   >550   31 30 0 n/a  0 n/a 0 n/a 

___________________________________________________________________________________________________________________________   
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Assessment of the biological functions of these 14 metabolites indicates their association with energy 

metabolism, carbohydrate metabolism and gut-host associations. For further assessment of these 

observations, we divided the metabolites causing group separations (Fig. 2 and 3) into four groups 

with the metabolites relatively assigned as: (1) gut-host metabolites with a focus on benzene 

derivatives of poly-phenolic dietary origin (54 metabolites), (2) metabolites of energy and 

intermediary metabolism (36 metabolites), (3) carbohydrates and related metabolites (30 metabolites), 

and (4) the remaining metabolites. The lists of the assigned metabolites are included in the SI (section 

S4 in SI to Article 2). Note: We regard assignment as relative as a certain metabolite may actually be 

assigned to more than one group, while each metabolite was classified here in one group only. 

For a qualitative visualization of the multitude of metabolites classified in the four groups, the 

unsupervised hierarchical clustering was applied for the FMS patients relative to the CO, CF and CN 

controls, using the quantitative concentrations of the four metabolite groups as basis for classification. 

The outcomes of these 15 analyses were visualized as heat maps as in Moon et al. [26]. Colour coding 

in the heat map indicates the metabolite concentrations in a range of six zones, from dark brown (high 

difference between FMS and controls), through lighter shades of brown to white (no differentiation), 

with the rows of subjects across the respective metabolites (columns). The outcome of these analyses 

is shown for the FMS and CO groups against the 54 gut-host metabolite (Fig. 4a), the 36 energy and 

intermediary metabolites (Fig. 4b) and the 30 carbohydrates and related metabolites (Fig. 4c). 

Incomplete cluster separation was observed from FMS relative to the CO for the gut-related 

metabolites (Fig. 4a), as well as for the CF and CN controls. Complete case separations occurred by 

application of the energy (Fig. 4b for FMS and CO) and carbohydrate (Fig. 4c for FMS and CO) 

metabolites. Subsequently, the heat maps were visually inspected to locate the distribution of the 14 

important metabolites listed in Table 1 within the maps. First, four energy metabolites (phosphoric, 

oxalic, glutamic and 4-hydroxybutyric acid) showed very good differentiation between the FMS 

patients and CO controls (boxed areas 1 and 2 in Fig. 4b). Area 2 includes two highly increased 

intermediates of the Krebs cycle, which, however, did not comply with the criteria used for the 

selection of the most important metabolites shown in Table 1: malic acid (p = 0.024; ES = 0.38) FC = 

24; VIP = 1.69) and 2-hydroxyglutaric acid (p = 0.000013; ES = 0.81; FC = 9.26; VIP = 1.62). We 

indicated these two metabolites as they are strong biological indicators of decreased energy efficiency 

in the FMS patients. Second, all ten carbohydrates listed in Table 1 clustered in two areas that showed 

excellent differentiation between the FMS patients and CO groups (boxed areas 1 and 2 in Fig. 4b). 

Area 2 again includes an additional metabolite (galactonic acid-lactone) which did not comply with 

the selection criteria for Table 1. Galactonic acid-lactone was significantly increased (VIP = 0.59; p = 

0.00084; FC = + 66), but is a structural monosaccharide that abundantly forms part of pectin. 

Together, the combination of the visual inspection (Fig. 4) and the quantitative metabolite 
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concentrations (Table 1) points to the effectiveness of the monosaccharide metabolite signature of 

gut-host metabolites.  
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Fig. 4 Heat map analysis of FMS and CO controls. A clustered analysis of metabolites, 

expressed as quantified values, representing (a) 54 gut-host metabolites, (b) 36 energy-related 

metabolites and (c) 30 carbohydrates and their metabolites, determined in urine from the 

FMS patients and controls. Indicated clusters which differentiate between FMS (17 blue dots) 

and CO (10 red dots) controls are: (a) none; (b) Cluster 1: 2 = phosphoric acid; 3 = glutaric 

acid; 6 = oxalic acid; Cluster 2: M = malic acid; 10 = 4-hydroxybutyric acid; h = 2-hydroxy-

glutaric acid. (c) Cluster 1: 1 = sorbose; 5 = tagatose; 4 = threonic acid; 7 = erythropentonic 

acid; 8 = rhamnose; 11 = 2,3,4-trihydroxybutyl-lactone; 9 = arabinose; Cluster 2: 14 = 3-

deoxy-ribohexonic acid; G = galactonic acid-lactone; 12: 2-keto-gluconic acid; 13 = 2-deoxy-

3,5-dihydroxy-pentanoic acid-lactone. 
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An underlying possible relationship between the small number of metabolites that distinguish patients 

from controls was finally tested by a correlation analysis between the metabolites concentrations from 

Table 1. The outcome of the correlation analysis is shown in Fig. 5. The immediate observation is the 

broad correlation (~ 65% of correlation coefficients greater than 0.8) between the 14 metabolites. The 

very high correlation between sorbose and 2-ketogulonic acid (r > 0.95) indicates a possible link 

between a catabolic pathway of glucose, shared by sorbose. The high correlation between threonic 

acid and 2,3,4-trihydroxybutyryl lactone (tetronic acids) supports the co-metabolic destiny between 

the host and the microbiome of digestive products of plant origin [27]. 

 

 

Fig. 5 Correlation matrix for the 14 significant metabolites discriminating between FMS patients and 

controls. Abbreviations used as in Table 1. Red: High up-regulation; blue: high down-regulation. 

 

Discussion 

Although FMS is presently better understood than ever before [28], there is still no consensus on the 

mechanisms leading to its pathogenesis. Recent genome-wide profiling studies identified at least 482 

genes that differ between FMS patients and controls [29]. Untargeted metabolomics studies on FMS 

have revealed that tryptophan [30], lysophosphocholine [31] and gut metabolism [11] were perturbed 

in FMS patients. Based on the diverse genomic and metabolic findings, we hypothesize that systemic 

metabolic differences underlie FMS pathophysiology, which include host and gut microbiome 

interactions. To direct deductive reasoning, we present a conceptual representation that highlights 

three aspects that we regard as essential elements for the hypothesis (Fig. 6). 
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Fig 6 Conceptual representations of microbiome-host metabolic interactions proposed to be elemental 

in dysbiosis in FMS patients. (a) A model of the pectin (derived from [32]) with a colour code that 

combines the dietary polysaccharide structure and constituent monosaccharides from pectin digestion, 

observed in the urine of FMS patients. (b) A model (adapted from [39]) for the tagatose-specific 

membrane phosphor-transferase system (PTS) for the trans-membrane transport and for 

phosphorylation of tagatose, only detected in urine of the FMS patients, and the PTS proposed to be 

operative in B. licheniformis, a gut microbe. (c) Enzyme dependent conversions of sorbose (having 

the highest VIP in the multivariate analysis of FMS vs CO), with (d) a link to glucose and a catabolic 

pathway, including metabolites that were observed to be increased in FMS patients (names indicated 

in red). Abbreviations: EII-A
T
, EII-B

T 
and EII-C

T 
: tagatose-specific B. licheniformis multi-domain 

membrane proteins; EI and HP: a general and a histidine-containing cytoplasmic phosphor-carrier 

bacterial protein system; Tag-1P and Tag-6P: tagatose-1-phosphate and tagatose-6-phosphate, 

respectively; ~P: high-energy phosphate; TagK: tagatose-1-phosphate kinase; ATP and ADP: 

adenosine-triphosphate and adenosine -diphosphate, respectively; EC: Enzyme Commission number 

(EC number) of the numerical classification scheme for enzymes.  

 

First, the human genome encodes a limited number of intestinal saccharidases and pancreatic 

amylases for the digestion of plant reserve carbohydrates (starch) and the cell walls of plants, which 

are an enormous human nutrient source of chemically and structurally highly complex carbohydrates 
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(cellulose, xylan, and pectin) [32]. These macromolecular foodstuffs are intrinsically resistant to 

human enzymatic breakdown, but are substrates for digestion by the gut microbiome, with constituent 

structural monomers (e.g. arabinose, rhamnose, xylose and galactose) being the digestive products. 

The plant-derived monosaccharides are important precursors or co-factors in human metabolism and 

fulfil a protective function by repressing the overgrowth of harmful microorganisms and foster human 

immunological protection. Monosaccharides are normal constituents of the human urine metabolome 

[25] but exceed normal reference ranges in dysbiosis, the imbalance in the gut microbiome [33]. 

Metabolic profiling of urine provides a strategy to characterize metabolites from microbial origin and 

to define dysbiosis [13]. An example was the increase in arabinose observed in our FMS patients 

relative to the CO controls (arabinose: Ref. value: 0.8–19.4 μmol/mmol creatinine (HMDB); FMS 

19.60 and CO 0.44 μmol/mmol creatinine), but the urinary profile also included monosaccharides 

which are constituents of dietary polysaccharides but which are not part of the normal urine 

metabolome and are rarely detected in human urine (sorbose, rhamnose and tagatose, Table 1). From 

these observations we postulate that dysbiosis is part of the FMS pathophysiology. Although the basis 

of dysbiosis in gastrointestinal disturbances is still unresolved, there is increasing evidence that a 

redistribution of the microbiota in specific gut Firmicutes, Bacteroidetes and Faecalibacteria of these 

patients does occur [34, 35]. It may thus be reasoned that the combination of gastrointestinal 

discomfort and an abnormal urinary monosaccharide profile provide biomarkers that a disturbed 

composition of the gut microbiome prevails in FMS patients. 

Second, variation in the content of the gut lumen challenges the microbiota to detect these frequent 

changes and to regulate their metabolism according to these changes. In bacteria, membrane-bound 

transport systems are part of their sensing ability, which includes the 

phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) [36]. Since its discovery in 1964 

[37], the PTS has been shown to be a complex protein kinase system that regulates a wide variety of 

transport metabolic and mutagenic processes and the expression of numerous genes in bacteria [38]. 

The PTS has tight substrate specificity for the translocation and subsequent phosphorylation 

(formation of the monophosphate monosaccharide) process, shown schematically in Fig. 6b for 

tagatose [39]. Two factors of the PTS are key regarding our hypothesis: (1) The transport, 

phosphorylation and metabolism of the monosaccharides are tightly coupled, and no free 

monosaccharides reside within the bacteria, and (2) mutants of PTS of several microbial species 

indicated that they lost their capacity to utilize monosaccharide forage and cease to grow [40], while 

mutants of E. faecium displayed a colonization defect in antibiotic-treated mice [41]. These 

observations clearly linked an aspect of dysbiosis to potential genetic aberrations in the PST of a gut 

microbe, which may provide a second line of thinking about the basis of the gastrointestinal 

discomfort in patients suffering from FMS. Patients with increased urinary metabolites, not seen in 

normal urine, may best serve for metagenomic investigations of their gut microbiota.  
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Third, a number of the metabolites listed in Table 1 relate to the microbiome (4-hydroxybutyric acid - 

a short-chain fatty acid [42], the main end products of microbial metabolism), the host (glutaric acid - 

intermediate in lysine catabolism, and a biomarker of succinic semialdehyde dehydrogenase 

deficiency, in an inborn error of energy metabolism [43]) or to microbiome-host co-metabolism 

(sorbose; see Fig. 6c and 6d). Sorbose is a structural product of fruit polysaccharides [44]. Two 

metabolic sorbose pathways reside in bacteria: (1) The PTS mediated pathway, of L-sorbose  → L-

sorbose-1-P → D-gluticol-6-P  →D-fructose-6-P  → energy release [45]; (2) The 2-keto-L-gulonic 

acid pathway (Fig. 6d), observed in a large number of bacterial strains, including the gut-linked 

Eschericia coli
 
[46]. Next, sorbitol, an abundant osmolite with a key role in regulating human cell 

volume homeostasis and cytoprotection, is produced from L-sorbose (sorbose reductase – EC 

1.1.1.289). Sorbitol can be converted to glucose (aldehyde reductase – EC 1.1.1.21) and catabolized to 

2-keto-L-guconic, threonic and oxalic acid, all three highly elevated in the urine from the FMS 

patients. Against this background it can be predicted that the increased urinary sorbose in FMS may 

result from dysfunction in the gut microbiome and/or the host metabolism as well as through their co-

metabolism – alternatives to be considered in the dysfunctional systemic metabolism hypothesis on 

FMS pathophysiology. 

In conclusion: The results and interpretation of this study are hampered by limitations. (1) Based on 

the clinical criteria used for selection of the FMS patients, we regard the group as representative of 

FMS in general, However, the observations should be validated through a metabolic study on a 

different group of FMS patients and the study should include healthy controls (as with the CO and CN 

controls in our study) as well as a patient group with a well-defined gastrointestinal disorder, like IBS. 

(2) As we did not validate the present metabolic profile over time the present observations actually are 

only a snapshot of a proposed metabolic profile that distinguishes FMS from controls. What is 

required is a longitudinal component in a future experimental design to confirm the claim of dysbiosis 

being a key clinical feature of FMS. (3) Furthermore, in the present study no analytical analysis on 

stereoisomer standards was included in the confirmation of the monosaccharides, which is a 

requirement for final interpretation of their functional implications which seems to be key in the FMS 

pathophysiology [e.g the tetronic acids [(R*,s*)-2,3,4-trihydroxy-butanoate: threonic acid; (R*,r*)-

2,3,4-trihydroxy-butanoate: erythronic acid] and their lactones (2,3,4-trihydroxybutyryl-lactone)]. 

Notwithstanding these limitations, the results from the present investigation provide a new insight into 

the gastrointestinal discomfort shared by 80% of FMS patients and, more importantly, provide a 

potential target for therapeutic benefit. Knowledge of FMS is gaining momentum. A present view 

sees effective treatment for fibromyalgia now to be achievable [28]. The challenge remains for a deep 

understanding on how our complex symbiotic gastrointestinal organs interact with our complex 

immune and nervous systems, as implied by gut-brain interactions [47]. This might provide the key to 

future management of FMS. 
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5.5 Conclusion 

GC-MS is a powerful hyphenated analytical technique employed in metabolomics studies 

that allows one to qualitatively and quantitatively analyse a chemical mixture of interest. It 

consists of gas chromatography, for chemical separation, and mass spectrometry, for 

compound identification. In this chapter, a semi-targeted metabolomics study, using GC-MS 

as the analytical platform, was presented; wherein the aim was to discriminate FMS patients 

from controls. The study revealed that, indeed, FMS does possess a unique metabolic 

profile, and thus substantiates the findings presented in Chapter 4. Subsequently, it was 

identified that a perturbation in the gut metabolome prevails which indicates extensive 

dysbiosis in the patient group. Although validation studies on this finding need to be 

conducted, a plausible set of biomarkers are presented, thus shedding insight on the 

complex disorder that is FMS. 
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CHAPTER 6: DISCUSSION AND FUTURE PROSPECTS 

 

6.1 Discussion: Addressing the aims and objectives of the investigation 

To recapitulate: FMS has an estimated prevalence of 2% in the general population with an 

estimated 3.2% prevalence in South Africa (Lyddell & Meyers 1992). Diagnosis of this 

disorder may take several years to be firmly established as there is no pathological basis on 

which to diagnose the disorder. Therefore, initial diagnosis is usually done by exclusion. 

FMS was first described by Wolfe and colleagues in 1990 when a set of criteria, called the 

ACR 1990 criteria, was defined for the diagnosis of this disorder. In 2010, 2011 and recently 

in 2016, the criteria were refined for diagnosis as primary care clinicians’ main issue with the 

1990 criteria was that the process of palpation of the tender points was not feasible in the 

primary care setting. Diagnosis had to be simplified, which resulted in the alternative 2010 

fibromyalgia criteria, which became the preferred manner of FMS diagnosis – with the input 

actually being an entirely self-report by the patient, interpreted by the physician (Häuser & 

Wolfe 2012).  

Thus, currently no definitive biologically-based biomarkers for FMS have been identified. 

Much research has been conducted on the genetic facet of the disorder and numerous 

scientific papers have been published on this topic. Since metabolomics is synonymous with 

biomarker discovery, it became a very attractive method to address this question of 

biomarker discovery for FMS. The application of metabolomics technology to the study of 

FMS is still new. In fact, since the initiation of this investigation, only three research articles 

(reviewed in Chapter 3) have been published on FMS in which metabolomics was the 

investigative method of choice. 

As such, in this section, I will reflect on the aims and objectives of this investigation with 

emphasis on whether each was achieved and also briefly discuss the outcomes of each. 

 

6.1.1 Aim: The application of metabolic profiling to the disorder, FMS 

This was the primary goal of this investigation as no metabolic information had been 

reported on FMS in the literature. As previously mentioned, three metabolomics 

investigations were since published after the start of this investigation. As such, the action of 

applying a metabolomics approach to FMS was achieved in that I was able to distinguish 

FMS from non-pain controls. However, no global metabolic profile could be established 
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through the use of NMR and GC-MS metabolomics. My interpretation is that this is due to 

the multifactorial nature of FMS. Hence, the perturbation in FMS is not of a singular origin, 

as is the case of other metabolomics studies done in our laboratory,  for example, isovaleric 

academia [which is an endogenous monogenetic disorder (Dercksen 2014)] and tuberculous 

meningitis [which is an exogenous infectious disorder (Mason 2016)]. 

 

6.1.2 Objective 1: Perform an explorative NMR metabolomics study to (1) elucidate the 

global urinary metabolite profile of patients suffering from FMS, and (2) explore the 

potential of this metabolite information to contribute to improved diagnosis of FMS 

The NMR study was an initial study conducted to identify if a metabolic discrepancy due to 

pain could be detected in the urine of patients with FMS versus controls, without the 

discrimination of pre-selecting a particular set of metabolites to look at - in other words, a 

global study. This NMR study was successful in obtaining this information as it was vital for 

progression of the investigation. The exploratory NMR metabolomics study revealed an 

elevated profile for metabolites that point to a disturbance in the gut microbiome. Using this 

outcome of an altered metabolic profile, it was then possible for me to execute the second 

part of this objective, being to offer supplementary information on a possible pathophysiology 

of FMS and also further to contribute to a strategy for improved diagnosis of the disorder. 

Detailed outcomes are presented in Chapter 4.  

 

6.1.3 Objective 2: Obtain complementary information on the metabolic profile of FMS 

patients using GC-MS technology. This was done by comparing affected individuals 

(cases) against those that are not affected (controls), through a semi-targeted study 

using GC-MS technology 

The follow-up on the explorative NMR study led to a semi-targeted GC-MS metabolomics 

study, with emphasis on organic acids. Outcomes of this study are presented in Chapter 5 in 

the form of a peer-reviewed publication. The main findings from the GC-MS study were that 

dysbiosis seems to underlie an important aspect of the pathophysiology in FMS: First, it 

related to the gastrointestinal discomfort complained about by the majority of FMS patients 

and very much so (81%) in the cohort studied by myself. Second, the gut-metabolites 

observed in the GC-MS study, confirmed the outcomes of the NMR study, that hippuric and 

2-hydroxyisobutyric acids direct to a gastrointestinal disturbance in FMS. The significance of 

2-hydroxyisobutyric acid will be discussed in detail in the final section of this chapter. These 

findings are not unfounded as the complaints of FMS patients on gastrointestinal problems 

are a common clinical feature in IBS, a comorbid condition in FMS. Moreover, alterations in 
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the gut-brain axis (discussed in detail later in this chapter) is a chief perturbation in IBS and 

from the findings of this GC-MS study, we can deduce that it also plays a role in FMS. 

 

6.1.4 Objective 3: Compare data from the GC-MS and NMR studies and identify a set 

of markers common to both studies that can be proposed as probable markers of the 

disorder 

The data from both metabolomics studies conducted were compared and only one 

metabolite marker was identified as common to both studies, namely 2-hydroxyisobutyric 

acid (2-HIBA). According to the human metabolome database (Wishart et al., 2013), 2-HIBA 

is an exogenous, contaminant metabolite seen in urine due to environmental exposure. As a 

result, 2-HIBA was initially discarded from our findings in the NMR metabolomics study, 

albeit its contribution as a distinguishing metabolite in the separations, observed. However, 

several scientific publications emerged to prove this to the contrary. Moreover, urinary 2-

HIBA may even be linked to altered microbial–host symbiosis, indicating perturbed host 

energy metabolism and mucosal integrity due to altered gut microbiota functioning. As such, 

this could also be linked to the phenotype observed in FMS as dysbiosis was identified to be 

present in the disorder and that 2-HIBA was identified as a discriminatory metabolite. 

Against this background, we present a manuscript (as a future prospect in section 6.2), for 

publication in Biomarker Research in which we suggest 2-HIBA as an emerging biomarker in 

disease conditions, like FMS. 

 

6.1.5 Objective 4: Formulate a hypothesis as to the metabolic effects, if any, FMS has 

on an affected individual 

From this investigation, I was able to identify that metabolic changes are present in FMS. 

However, these changes that are observed are not, per se, as a direct result of pain itself but 

rather as a result of a continuum of disorders that present together to form the phenotype 

that is FMS. As such, in true metabolomics fashion, I was able to formulate a hypothesis 

which I put forward in section 6.3. 
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6.2 Future prospect 1: 2-HIBA as a potential biomarker of FMS 

6.2.1 Background 

I have observed 2-HIBA as one of the discriminating metabolites in the NMR metabolomics 

study of FMS (Malatji et al., 2017). Our interpretation of this observation was: 

“2-Hydroxyisobutyric acid, the most discriminatory variable between our FMS group 

and controls, is an apparent catabolic metabolite from gut microbiotica and was 

shown to be statistically linked to Faecalibacterium prausnitzii, an important 

commensal bacterium of the human gut flora proposed to be an indicator of the 

dynamic basis of host–microbiome symbiosis”. 

Subsequently, it appeared that 2-HIBA occurs as a potential biomarker in several clinical 

conditions, unrelated to FMS. These observations from the literature prompted an overview 

and re-assessment of our findings on 2-HIBA in FMS. For this purpose, data from the NMR 

metabolomics (Chapter 4) as well as the GC-MS data (Chapter 5) were used. We regard the 

information that emerged from this study as an important future application for FMS 

research. Herewith I present a copy of the manuscript that we submitted to Biomarker 

Research (part of the BMC publishing group) as one of my suggestions for future research. 

Note that the manuscript is presented in the format as per Biomarker Research journal’s 

article submission guidelines.  
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Abstract 

 
Background 

2-Hydroxyisobutyric acid (2-HIBA) is of unknown metabolic origin and appears to be a non-

metabolite. Several metabolomics studies, however, have revealed 2-HIBA as a potential biomarker in 

a variety of conditions in health and disease. Thus, we firstly present an overview of ten of these 

unrelated investigations, followed by an evaluation of 2-HIBA observed in fibromyalgia syndrome 

(FMS) relative to three control groups, using untargeted NMR and semi-targeted GC-MS 

metabolomics data. 

Methods and results 

An overview of clinical studies reveals that 2-HIBA is a measurable indicator in several disease 

states. 2-HIBA has also been discovered as being an acylation agent of histones through lysine 2-

hydroxyisobutyrylation – a potential new histone mark. Results on 2-HIBA in FMS have indicated a 

significant difference (p < 0.0001) between the FMS group relative to unrelated controls. The 

difference between the FMS and family-related group ranged from significant (p = 0.01) to 

insignificant (p = 0.27). Receiver Operating Characteristic analysis for the FMS patients relative to 

unrelated controls indicated a very good (AUC > 0.9) classification of the FMS patients. The 

classification of the FMS patients and the family member group was distinctly found to be poor (AUC 

= 0.5 to 0.7). 

Conclusions 

Taken together, the overview indicates 2-HIBA to be an emerging biomarker, measurable in several 

kinds of biological samples from unrelated disease conditions, including FMS. Longitudinal 

metabolomics studies may suggest 2-HIBA to be a product from the gut microbiome, an indicator of 

metabolic allostasis, or histone dynamics. 

 

Keywords: Alpha-hydroxyisobuturic acid, 2-HIBA, biomarker, fibromyalgia syndrome, metabolic 

allostasis, gut microbiome, histone marker. 
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Overview 

Alpha-hydroxyisobutyric acid (2-hydroxyisobutyric acid; 2-HIBA) was listed as one of 155 important 

metabolites in the pioneering publication on potential biomarkers for inborn errors of metabolism 

(IEM) [1, 2]. Today, outcomes from multiple metabolomics platforms and technologies include 2-

HIBA as a confirmed metabolite that constitutes the human urine [3] and serum metabolome [4]. 

Views on 2-HIBA in urine samples from normal and diseased individuals are ambiguous. Urinary 2-

HIBA is reported to be an endogenous co-metabolite with lactic acid in ketone body metabolism 

observed in IEM [5]. The emphasis in the Human Metabolome Database (HMDB) is that 2-HIBA is a 

metabolite of methyl tertiary-butyl ether (MTBE; CAS 1634-04-4) and tertiary-butyl acetate (TBAC; 

CAS 540-88-5) – both present in humans through environmental exposure. MTBE may be 

encountered by breathing air contaminated with gasoline fumes, causing several symptoms of 

respiratory irritation [6]. Along the same line, the US Environmental Protection Agency lists TBAC 

as an exempt volatile organic compound [7], mostly derived from adhesive industrial coatings and 

cleaning applications. 

From these ambiguous views, 2-HIBA seems to be a non-metabolite and regarded to be of lesser 

biological or diagnostic significance, but views are beginning to change. During the last decade, 

several clinical and metabolomics studies, using different technology platforms, have revealed 2-

HIBA among metabolite predictors on a variety of conditions in health and disease, summarized in 

Table 1. Chinese individuals served to model the microbial–host metabolic connectivity, which 

indicated 2-HIBA to be a marker metabolite derived from Faecalibacterium prausnitzii (F. 

prausnitzii), the most significant n-butyrate-producing gut bacterium, having a known effect on host 

energy metabolism and mucosal integrity [8]. Moreover, 2-HIBA was reported to be associated with 

several diseases having metabolic consequences: diabetes mellitus [9], lung [10] and gastric [11,12] 

cancer, myocardial infarctions in men and women [3], chronic kidney disease [14,15] and 

fibromyalgia syndrome (FMS) [16]. Interestingly, 2-HIBA was identified through an NMR 

metabolomics study to be an important metabolite that was increased in obese individuals [17], but 

could be normalized in obese children following a treatment with the VSL#3
®
 probiotic [18]. None of 

the studies listed in Table 1 assessed 2-HIBA as a classifier, which is a key requirement for its 

predictive and diagnostic value. Here we present such an assessment of 2-HIBA for FMS. 

Of particular interest, but not included in Table 1, are metabolomics studies on 2-HIBA that were 

complemented by genome-wide association studies (GWAS). A significant negative association was 

revealed between urinary 2-HIBA levels and SNP rs830124, an intronic SNP of the WDR66 gene on 

chromosome 12, which is closely associated with mean platelet volume [19, 20]. The regulatory 

potential of histones is affected by even small chemical differences through modifications of amino 

acid side chains. These variations may lead to very different functional outputs. A project on 

chromatin structure identified lysine 2-hydroxyisobutyrylation as such a new form of histone 
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modification [21], thus defining a new type of histone mark. The histone mark is conserved, widely 

distributed and induces distinct structural changes, adding to the putative role of 2-HIBA as a 

measurable indicator of perturbations affecting health and disease. 
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Table 1 Association reported for discriminating levels of 2-HIBA in healthy and diseased groups 
_____________________________________________________________________________________________________________________________ 

Date  Experimental   Analytical technology  2-HIBA biomarker pattern    Interpretation     Reference 
 group and      Response / Disease / Control 
 disease condition    (Statistical significance) 
____________________________________________________________________________________________________________________________ 

2008 Chinese family  NMR / PCR  Qualitative presence of 8 urinary  2-HIBA as an indicator of the dynamic basis      [8] 
Metagenomics  metabolites including 2-HIBA  of host-microbiome symbiosis.  

2009 Diabetic patients GC × GC–TOFMS [↑] in plasma    2-HIBA as one potential biomarker for diabetes      [9] 
 Healthy controls  Metabolomics       mellitus pathophysiology 

2010  Obesity / Lean  NMR    [↑] 12.1±3.8 / 9.8±2.1 (μmol/mmol Cr) Significant functional disturbance in metabolic      [17] 
    Metabolomics  (p < 0.001)    activity of the microbiome of obese individuals 

2011 Lung cancers  GC-MS   [↑] FC = 1.35    Indicator that metabolites in serum were changed     [10] 
 Healty volunteers Metabolomics  (p < 0.0001)    by the pathogenesis of lung cancer. 

2013 Chronic Kidney Disease NMR   [↑] 32 ± 15 μM     2-HIBA is a novel uremic retention solute and it        [14] 
 Adult controls  1

o 
spectroscopy  Reference range: 7 (0-9) μM  negatively influences cell physiology in CKD patients 

2015 Obese children  NMR   Time 0/4: 6.98 / 5.20 (μmol/mmol Cr) Decreased 2-HIBA following probiotic treatment       [18] 
 Clinical trial  Corr. Spectroscopy (p < 0.005 / 0.023 / 0.021)  indicates it as an indicator of metabolic dynamics  

2015 Myocardial infarction UPLC/Q-TOF MS [↑] 32.1 / 39.5 m/z intensity [Male MI] Increased serum 2-HIBA in MI is likely to be related  [13] 
Male/Female controls Metabolomics  (p 0.003 - MM/CM)   to oxidative stress, ROS and inflammation 

2016 Gastric cancer cohort NMR   [↑] VIP: 1.26; FC = 1.02   2-HIBA as one of 48 tissue metabolites that              [11] 
 Normal controls  Metabolomics  (p : 0.000 – adjusted: 0.000)  distinguish various stages of gastric cancer 

2016 Chronic Kidnet Disease CE-TOF-MS  [↑] Hazard ratio ~ 4;    2-HIBA has predictive value on the outcome of CKD, [15] 
 Prospective cohort Metabolomics  (p = 0.008; 3

rd
 Tertile: p = 0.013  and was detected in 67.5% of cohort patients. 

2017 Fibromyalgia  NMR   [↑] VIP: 6,26; FC = 1.56   2-HIBA seems to be from the gut, but with high        [16] 
 Patients and controls  Metabolomics  (p = 0.0001)    biomarker values despite low urinary concentrations 

2017 Gastric cancer   GC-MS   [↓] VIP: 1.05; FH = - 1.059  2-HIBA as a differential from multivariate analysis       [12] 
Patients and controls Metabolomics  (p = 0.00326)     but not so from univariate statistical analysis. 

_____________________________________________________________________________________________________________________________ 
Abbreviations: NMR – nuclear magnetic resonance; GC-MS – gas chromatography-mass spectrometry PCR – polymerase chain reaction GC-TOFMS – gas 
chromatography-time-of-flight-mass spectrometry; GC x GC: two dimensional gas chromatography; UPLC Q TOF MS ultra-performance liquid 
chromatography quadrupole time-of-flight mass sectrometry;: CE: capillary electrophoresis; VIP: variable important in projection; Corr.: correlation; FC: fold 
change; CKD: chronic kidney disease; ROS: reactive oxygen species; Cr: creatinine; MI: myocardial infarction 
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2-HIBA in FMS 

Regardless of the interest in 2-HIBA, as follows from Table 1, still little insight has been gained 

regarding its biological origin, distribution and regulation [15]. We regularly observe 2-HIBA in 

urinary metabolomics studies, but not significantly up- or down-regulated, although we reported on 

quantitative urinary concentrations of 2-HIBA from an NMR metabolomics study on FMS in middle-

aged women [16]. Despite being present in a relatively low concentration (mean = 0.008 and 0.014 

μmol 2-HIBA/mmol creatinine in controls and patients, respectively), multivariate analysis indicated 

2-HIBA as the most important metabolite that distinguished the patients from matched controls (FC = 

1.56; VIP = 6.2). We then interpreted 2-HIBA as an apparent catabolic metabolite from gut F 

prausnitzii, an indicator of the host–microbiome symbiosis, and disregarded further attention to the 

presence of 2-HIBA in FMS. However, the recent observations on 2-HIBA (Table 1) alerted us to a 

possible link between the gut microbiome and dysbiosis in FMS, as has recently been highlighted in 

other extra-intestinal diseases like FMS [22]. 

We therefore extended our previous research [16], by reporting on 2-HIBA in additional controls and 

expanded our 
1
H-NMR analytical study with a complementary GC-MC metabolomics study. The 

three control groups were: a group of first-degree relatives of the FMS patients, unrelated age-

matched controls and a group of young and healthy females. The additional observations indicated 2-

HIBA to be important in FMS and strengthened the apparent importance of 2-HIBA in defining 

pathophysiological conditions, as suggested in the overview and summarized in Table 1. 

Materials and methods 

Study participants and sample collection 

All our patients regularly attend a chronic pain practice in Pretoria and were previously diagnosed 

with FMS by a specialist pain clinician. The diagnosis was based on a comprehensive clinical 

assessment using the American College of Rheumatology (ACR) criteria [21] and clinical 

questionnaires. The patients selected for this study were confirmed with FMS (n = 17). Full socio-

demographic, clinical and medication information was previously reported [16], The three control 

groups were: first-generation family members of the patients (CF; n = 11), age-related individuals 

without any indications of FMS or related conditions (CO; n = 10), and healthy young (18–22 years) 

individuals (CN; n = 20 and 41 in the NMR and GC-MS studies, respectively). All participants were 

female. All cases complied with selection criteria, following exclusion of outliers based on statistical 

analysis. Informed consent was obtained from all the participants in this study by means of a 

voluntarily completed consent form. Ethical approval for the study was obtained via the consortium 

under the Nuclear Technologies in Medicine and Biosciences Initiative (NTeMBI) (ethical approval 

by Pharma Ethics Pty, Ltd, reference number 11064365). The study has been performed in accordance 

with the Declaration of Helsinki.  
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Conventional metabolomics data generation 

Untargeted NMR metabolomics data were generated as previously reported for the FMS and age-

matched controls [16]. Targeted GC-MS metabolomics data were generated through standard 

analytical procedures, shown to be repeatable and reproducible [24]. Identification of 2-HIBA was 

done in the GC-MS study through our in-house as well as a commercially available MS database (MS 

database (National Institutes of Standards and Technology (NIST) 17 EI MS library), and from the 

NMR spectral data through the resonance singlet at 1.44 ppm from the combination of its iso-methyl 

groups [(CH3)2]. Quantification of 2-HIBA was expressed as μmol/mmol creatinine in both methods 

of analysis. 

Statistical analysis 

Univariate statistical analyses, including the Mann–Whitney test p-values (MW), were generated for 

the 2-HIBA concentrations in each experimental group, using the NMR as well as GC-MS data. The 

classification ability of 2-HIBA was assessed by applying a Receiver Operating Characteristic (ROC) 

analysis to the data mentioned. The ROC analysis was based on a simple two-group logistic 

regression model with the FMS patient group compared to each control group. Our interest was 

primarily in the discriminatory ability of 2-HIBA with respect to FMS and not between control 

groups. The values of the area under the ROC curve (AUC) provide a measure of how well 2-HIBA 

could distinguish between the FMS and each of the three control groups, respectively. To obtain an 

indication of how well 2-HIBA per comparison would potentially generalize, we assessed the 

classification ability with one sample is left out repeatedly, i.e. leave-one-out cross validation [AUC 

(LOO CV)].  

Results 

Urinary 2-HIBA levels in FMS patients and controls 

A representative 
1
H-NMR spectrum from an individual from the young control group (CN) is shown 

in Fig. 1. The highlighted region (1.425–1.450 ppm) contains the 1.44 ppm singlet used for 

identification of 2-HIBA and the zoomed box illustrates the median peaks – scaled according to 

creatinine – for FMS, CO, CN and CF, indicating the overall increase of 2-HIBA in FMS; and to a 

small degree in family-related controls (CF). 
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Fig. 1 A representative 
1
H-NMR spectrum of human urine at pH 2.5 [TSP = 0.00s ppm; creatinine = 

3.13s, 4.29s ppm]. Highlighted region (1.425–1.450 ppm) contains the 1.44 ppm singlet that 

represents the combination of the iso-methyl groups (indicated in red) from alpha-hydroxyisobutyric 

acid (alpha-carbon also in red). The Box indicates median peaks – scaled according to creatinine – for 

FMS, CO, CN and CF, with median values of 12.97, 9.53, 8.78 and 10.48 μmol 2-HIBA/mmol 

creatinine, respectively. 

 

Concentrations of 2-HIBA for each individual in this study, arranged within their respective groups, 

are indicated in Fig. 2, as determined from the NMR (Fig. 2a), as well as the GC-MS analyses (Fig. 

2b). The summary statistics of these comparisons are summarized in Table 2. For comparative 

purposes, we used the effect sizes (derived from the Mann-Whitney test statistic) as p-values are 

difficult to compare directly across applications of the Mann-Whitney test. Effect sizes greater than 

0.5 are considered to represent practically significant group differences, while ES larger than 0.3 are 

considered practically visible. The urinary concentrations for 2-HIBA were higher as determined 

through the NMR analysis than through the GC-MS analysis. Such differences are not the exception, 

illustrated by extensive side-by-side platform comparisons on the serum metabolome which informed 

on the array of factors causing these differences [4]. Notwithstanding this, a significant difference 

between the values for 2-HIBA in the FMS group relative to the age-matched controls (CO) was 

found for the NMR (ES = 0.64), as well as the GC-MS (ES = 0.71) data. The respective differences 

relative to the young controls (CN) are likewise practically significant (NMR ES=0.73 and GC-MS 

ES=0.55, respectively). By contrast, the difference between the FMS and family-related group was 



135 
 

less significant, only practically visible, based on the NMR data (ES = 0.42) and insignificant (ES = 

0.12) for the GC-MS data. 

 

Fig. 2 Graphs showing urinary 2-HIBA for all individuals from all four groups. Concentration values 

were determined through NMR (a) and GC-MS (b) metabolomics, respectively. Values for all 

individual cases are shown as dots, while the squared area represents the 95% confidence interval 

(orange) and 1 standard deviation (blue) of the mean (black line). The p-values are indicated above 

the brackets between the respective groups, relative to the FMS group. 

 

 

 
Table 2 Summary statistics on 2-HIBA determined for the FMS patients relative to all control groups. 

_______________________________________________________________________ 

Experimental   Summary statistics 

Groups  M-W test B-H (5%) ES  Mean SD Mean SD 

p-value     FMS FMS control control 

_______________________________________________________________________ 
1
H NMR Ouantified 2-HIBA data (μmol/mmol creatinine)

 

_______________________________________________________________________ 

FMS/CN 0.00001 0.05  9.73         13.390 3.733  8.548 1.550 

FMS/CF 0.0116  0.05  0.43         13.390 3.733 10.600 2.145 

FMS/CO 0.00036 0.05  0.64         13.390 3.733  9.138 0.847 

_______________________________________________________________________ 

GC-MS Quantified 2-HIBA data (μmol/mmol creatinine 

_______________________________________________________________________ 

FMS/CN 0.000017 0.00033 0.55          5.998 2.164 3.447 1.362 

FMS/CO 0.000112 0.00029 0.71          5.998 2.164 2.814 0.698 

FMS/CF 0.270426 0.00104 0.12          5.998 2.164 5.681 2.650 

_______________________________________________________________________ 
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Classification analysis 

The classification ability of 2-HIBA was  based on a logistic regression model by using a Receiver 

Operating Characteristic (ROC) analysis for the FMS patients relative to each of the three control 

groups, as well as for data from both methods of analysis (NMR and GC-MS). The values of the area 

under the ROC curve (AUC) provided a measure of how well this combination could distinguish 

between the two groups. A value of AUC = 1 represents a perfect test, while a cursory guide for 

classifying the accuracy of a diagnostic test is given by: AUC = 0.90–1 (excellent, i.e. high sensitivity 

and high specificity); 0.80–0.90 (good); 0.70–0.80 (fair); 0.60–0.70 (poor); 0.50–0.60 (fail). To 

provide some indication of how well the model would potentially generalize, the classification ability 

was tested with one sample is left out repeatedly — in other words, based on a leave-one-out cross-

validation strategy (AUC (LOO-CV)). The graphic outcomes of these analyses are shown in Fig 3. 

The classification ability of 2-HIBA for the FMS group relative to the age-matched controls was good 

(AUC = 0.89) to excellent (AUC = 0.93) for the NMR and GC-MS data, respectively. The respective 

classification values were in the same category for the FMS group relative to the young controls 

(AUC = 0,93 and 0,83 for the NMR and GC-MS data, respectively). These values were supported by 

the outcome of the LOO-CV analysis. The outcome on the classification of the FMS patients and their 

family members (CF-group) was distinctly different: the classification ability was fair (AUC = 0.76) 

for the NMR data but failed (0.57) for the GC-MS data. These observations were strengthened by the 

LOO-CV analysis. Importantly, the AUC statistic provides information on the classification ability of 

the associated logistic regression model. The validity of the model was also assessed based on the 

goodness-of-fit (i.e. will a different or more complicated model performs better). Goodness-of-fit 

statistics are provided and discussed in the SI (Table S1 in SI to Article 3). 
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Fig. 3 ROC analyses of 2-HIBA to be indicative of FMS biomarker. (a to c) ROC analyses for 

discriminating FMS patients from CO (a and d), CN (b and e) and CF (c and f) controls based on 

NMR (a to c) and GC-MS data (d to f). Classification of cases and the respective AUC values are 

indicated in red, and for the LOO-CV analysis in blue, with their respective 95% confidence intervals 

in square brackets. 

 

Discussion 

2-HIBA has been found to be increased in several disease conditions (Table 1), including FMS in 

middle-aged females [16]. No classification ability for 2-HIBA was reported in these investigations. 

Here, we have indicated that in a potential biomarker model, 2-HIBA, could yield an AUC [95% 

Confidence Interval] for FMS of 0.89[0.76-1] and 0.94[0.82-1] relative to healthy, age-matched 

female controls through NMR, as well as GC-MS analysis, respectively. These observations 

demonstrate that the clinical applicability of metabolic profiling for FMS diagnosis shows great 

promise and should be explored further. From the information presented in the overview, it may be 

speculated that 2-HIBA is an emerging biomarker for a variety of disease conditions, although no 

common aetiology for such a biomarker role emerged from these reports. Nonetheless, at least three 

lines of thinking, on such a role, can be distinguished. 

First, 2-HIBA was shown to be linked to F. prausnitzii, one of the symbiotic human gut microbes [8]. 

Additionally, the group of Miccheli [17] indicated through an NMR-based metabolomic analysis that 

a combination of 2-HIBA and other gut flora-derived metabolites contributed to a classification model 

that discriminate between obese and lean controls, which was later extended to inclusion of 2-HIBA 

in a group of urinary metabolites ('biomarkers'), which indicated clinical improvement in children 
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suffering from non-alcoholic fatty liver disease [18]. Lastly, our preferred interpretation of 2-HIBA, 

the most discriminatory variable between our FMS group and controls, was likewise for 2-HIBA 

being a metabolite from gut microbiota [16]. 

Second, 2-HIBA has not, hitherto, been identified as a biomarker for an IEM, but high concentrations 

of 2-HIBA, 3-hydroxyisovaleric and 2-methyl-3-hydroxybutyric acids were found in the urine from 

patients presenting with ketoacidosis, which was proposed to be associated with derangement of the 

metabolism of the three branched-chain amino acids [4]. Furthermore, urinary 2-HIBA is known to be 

observed in conditions like severe ketosis (highly increased lactic, 3-hydroxybutyric, acetoacetic and 

2-hydroxyisovaleric acids), but not necessarily directly correlated with these markers in time – 2-

HIBA seems to peak in the second phase following the severe clinical presentations [26, 27]. It thus 

appears that a distinction is warranted between a primary biomarker (diagnostic indicator) and a 

secondary biomarker (perturbation biomarker). We speculate that 2-HIBA might be a perturbation 

indicator, associated with allostasis due to metabolic stress. A recent perspective in this regard 

proposed the concept of ‘mitochondrial allostatic load’ ]29] to define the deleterious structural and 

functional changes mitochondria undergo in response to perturbed metabolite levels and stress-related 

pathophysiology – a concept that could provide insight on the association between increased 2-HIBA 

seen in cancers, diabetes, obesity and related disease conditions, summarized in Table 1. 

Third, the observation of 2-HIBA being a histone mark through lysine 2-hydroxyisobutyrylation, 

remains to be considered [21]. The histone mark is conserved and widely distributed, has high 

stoichiometry and apparently induces large structural changes. These findings suggest its critical role 

on the regulation of chromatin functions and place further emphasis of a putative role of 2-HIBA on 

metabolism in health and disease. In this regard the comparable levels of 2-HIBA between the FMS 

patients and their relatives (Fig. 2 and Table 2) as well as the poor value of the discrimination between 

the FMS and CF groups (AUC: 0.76[0.58-0.94]; 0.57[0.34-0.81], for the NMR and GC-MS data, 

respectively in Fig. 3), raise a different question: “Could 2-hydroxyisobutyrylated lysine produce 

increased 2-HIBA seen in some perturbed conditions?” A directive undertone for this question is the 

increasing evidence that alteration of the histone epigenome is one of the earliest steps in oncogenic 

transformation [30, 31], and strongly associated with cancer homeostasis [32]. 

Taken together, the overview presented here indicates 2-HIBA to be increased in faecal and urine 

samples [8], blood [9,13,14,15], serum [10], surgical tissues specimens [11] and urine [12,16,18] 

during several disease conditions. 2-HIBA is proposed to be a potential biomarker in diabetes [9], 

gastric cancer [12], non-alcoholic fatty liver disease [12], chronic kidney disease [14] and for FMS as 

shown here. We propose that 2-HIBA may be an exogenous product from the gut microbiome or may 

be of endogenous origin related to allostasis due to perturbed metabolic homeostasis. Longitudinal 

metabolomics studies may provide explorative insights to direct further studies on 2-HIBA and 

disease. 
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6.3 Future prospect 2: FMS as a function of altered microbe gut-brain axis 

The gut-brain axis (GBA) is the bidirectional communication system between the brain and 

the gut in humans (Mayer et al., 2015; Raskov et al., 2016) and regulates functions such as 

gut motility and appetite. It involves the CNS, enteric nervous system (ENS), autonomic 

nervous system (ANS) and the GI. GBA is a well-known phenomenon involved in disorders 

like IBS and functional GI disorders like small intestinal bacterial overgrowth (SIBO) (Mayer 

et al., 2015) and is also speculated to play a role in chronic pain (Amaral et al., 2008). When 

an individual is in a healthy state, the gut communicates with the CNS in an autonomous 

fashion, but when a pathological state is assumed, the somatic sensory system may be 

signalled and cause symptoms such as discomfort, nausea and pain as seen in FMS 

patients, while CNS output by means of the ANS can cause gastrointestinal dysfunction. 

When alterations (disruptions) in the symbiotic interactions between the host and microbiota 

occur, known as dysbiosis as discussed in Chapter 5, it can negatively influence the GBA 

(Raskov et al., 2016; Slim et al., 2015).  

To recapitulate: Dysbiosis is a microbial imbalance in which, in the case of the gut, the 

normal (beneficial) dominating species of the gut flora become replaced with other gut 

microbial species not usually dominating in the gut, to fill the void (Tamboli et al., 2004). 

Dysbiosis can occur as a result of overexposure to antibiotics and diet that cause changes in 

bacterial metabolism and allow overgrowth of potentially pathogenic microorganisms that 

release toxic products that underlie a cause of many chronic and degenerative diseases 

(Hawrelak & Myers 2004). 

Dysbiosis is associated with IBS, a comorbid disorder of FMS, but can it be associated with 

pain generation or modulation? Amaral et al. (2008) showed, using a germ-free mouse 

model, that the gut-microbiota is necessary for the mice to develop inflammatory 

hypernociception, proving that indeed there exists a link between the gut and pain. This will 

further be elaborated on below, regarding a microbiome gut-brain axis model. 

The GBA is comprised of a complex group of interacting systems, being the CNS, ANS, ENS 

and the GI tract. The CNS regulates the GI tract and ENS via the ANS, which is composed 

of the sympathetic and parasympathetic nervous systems (Mayer et al., 2015). The ANS 

conducts afferent signals from the gut lumen to the CNS via the enteric, spinal and vagal 

pathways (of which the vagus nerve serves as the chief communication pathway between 

the gut and the brain). Stress is also a contributor to gut microbiota alterations though an 

increase in the parasympathetic output to the small and large intestine and a reduction in 

vagal output to the stomach. Neurotransmitters 5-HT, somatostatin, dopamine, neuropeptide 

Y, peptide YY, cholecystokinin and corticotropin-releasing factor are responsible for 
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signalling between bacteria and epithelial cells in the gut (Raskov et al., 2016). The gut can 

also activate the immune system via action of the ANS in two ways. Direct activation occurs 

by means of gut immune cells (e.g macrophages and mast cells) reacting to luminal bacteria 

with antimicrobial peptide and indirect activation by means of modifying accessibility of the 

gut immune cells to the luminal bacteria (Mayer et al., 2015). This action may account for the 

presence of inflammatory cytokines observed in the serum of FMS patients even though 

FMS is not an inflammatory disorder. The ENS functions autonomously and can produce 

more than 30 different neurotransmitters. The enterochromaffin cells (ECC) of the GI tract 

are the main producer of dopamine and 5-HT, while the remainder is produced by the 

myenteric neurons and mast cells. In the distal gut, production of 5-HT is increased by the 

gut microbiota by means of the action of the short-chain fatty acids (e.g propionate, acetate, 

butyrate and  4-hydroxybutyrate [observed through my GC-MS data]), which are end 

products of fermentable carbohydrates that have been broken down in the colon, on ECC 

(Raskov et al., 2016; Mayer et al., 2015). The levels of 5-HT (as well as nitric oxide and 

substance-P) can also be influenced by alterations in the gut microbiota (Raskov et al., 

2016), which may account for the unknown increase of substance P observed in the CSF of 

FMS patients in other studies. 

Against this background, it is possible to see that there exists a large nervous system 

component to FMS, which can substantiate the central sensitization theory currently 

postulated as FMS pathophysiology. Yunus was one of the earliest authors to speculate, 

FMS as a dysfunction of various components of the CNS (Yunus 1992). Petzke and Clauw 

(2000) went on to show that specifically the sympathetic nervous system seems to underlie 

the pathophysiology in FMS. Our results from the study presented in Chapter 5 shows that 

through the GBA, the gut microbiota (as dysbiosis), also plays a role in the pathophysiology 

of FMS in synergy with the ANS. In a recent review by Martinez-Martinez et al. (2014), it was 

shown that 65% of the literature they reviewed support the hypothesis that the sympathetic 

nervous system is the predominant and common dysfunction in FMS and its comorbid 

syndromes. 

From the discussion thus far, it seems that a bidirectional model (brain-gut axis / gut-brain 

axis) may actually be operative in the interaction between the nervous system and the 

digestive system (Mayer 2011). It has been proposed that in IBS the gut-brain axis may be 

dominating, with dysbiosis an important determinant in this model (figure 6.1) 
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Figure 6.1: The structure of the bidirectional microbiome gut-brain axis. The central nervous 
system can be activated in response to environmental factors, such as emotion or stress. 
Hypothalamic (HYP) secretion of the corticotropin-releasing factor (CRF) stimulates 
adrenocorticotropic hormone (ACTH) secretion from the pituitary gland that, in turn, leads to 
cortisol release from the adrenal glands. In parallel, the central nervous system 
communicates along both afferent and efferent autonomic pathways (SNA) with different 
intestinal targets such as the enteric nervous system (ENS), muscle layers and gut mucosa, 
modulating motility, immunity, permeability and secretion of mucus. The enteric microbiota 
has a bidirectional communication with these intestinal targets, modulating gastrointestinal 
functions and being in itself modulated by brain-gut interactions (reproduced with permission 
from Carabotti et al., 2015). 

 

I speculate that a microbe gut-brain axis model may contribute to the pathophysiology 

underlying FMS, based on three points of view: 

(1) Comorbidity with IBS 

It is known that IBS is comorbid with FMS and it has been shown that the GBA alteration 

plays a key role in its pathophysiology (Mayer et al., 2015; Kennedy et al., 2014). 

Naturally, FMS should also possess a GBA malfunction element by association. 

 

(2) Perturbed metabolic profile in FMS, largely influenced by excretion of urinary microbial 

metabolites (as presented in our manuscript in Chapter 5). 
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Both the NMR and GC-MS studies conducted revealed a perturbed metabolic profile in 

FMS versus controls, and a number of microbial metabolites were identified as 

discriminatory metabolites for the disorder. These show that dysbiosis, due to altered gut 

microbial activity, is present in FMS. 2-HIBA was identified as common to both studies 

and can thus be considered as a marker in FMS as postulated above in the provisional 

manuscript in section 6.2. 

 

(3) Probiotics in the treatment of FMS ̵ Future directive? 

Supraha et al. (2013) suggested a protocol wherein administering probiotics (live 

organisms) in FMS may have a beneficial effect by alleviating the gastrointestinal 

symptoms, and thus the pain too, experienced in the disorder. They proposed this 

intervention (as opposed to many of the current interventions, which are mostly 

pharmacological) focus almost exclusively on the pain element of FMS (with limited to 

moderate positive effect), and all other symptoms being largely ignored. Moreover, 

manipulation of the microbiota has been confirmed to have a positive effect on alleviation 

of symptoms like abdominal pain and bowel movement habits in other conditions, like 

IBS (Kennedy et al., 2014). 

 

Against this background, I formulated a hypothesis as follows: 

“A continuum in comorbidities (CFS-IBS-FMS-CRPS) may be defined by metagenomics of 

gut microbiome and metabolomics of host metabolites” 

Accumulating evidence in the literature shows that the gut microbiome plays a critical role in 

the GBA. It has been speculated that the effects observed as a result of the alterations on 

the GBA may be strain specific (Carabotti et al., 2015). Thus, if scientists were to identify the 

exact make-up of the gut microbiome – through metagenomic studies – this, together with 

metabolomics, could aid us in elucidating the exact microbe responsible for a dysregulated 

GBA.  

Another future directive/suggested therapy for FMS, with regard to manipulation of the gut 

microbiota, is fecal microbiota transplantation (FMT). FMT is the infusion of fecal matter, in 

the form of a suspension, from a healthy individual into the GI tract of an individual to cure 

disease linked to dysbiosis (Aroniadis & Brandt 2013). This treatment has in fact been 

administered with success in IBS patients (Borody & Khoruts 2012; Smits et al., 2017). FMT 

as a possible therapy may help alleviate the GI symptoms seen in FMS, thereby assisting 

with pain reduction and GBA communication. 
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A commentary published by Komaroff (2017) states: “On one hand, it now is clear that there 

are objective abnormalities in patients with CFS: abnormalities that standard laboratory tests 

do not measure. On the other hand, not all of these reported abnormalities have yet been 

repeatedly confirmed. On one hand, it is clear that the underlying pathology involves the 

nervous system, energy metabolism, and the immune system. On the other hand, it is not 

clear what ties together the pathology seen in these different systems, nor which of the 

abnormalities came first, or what triggered that first abnormality”. The same can be said for 

FMS. I speculate that in FMS pain is the onset symptom. Due to multiple doctor’s visits and 

no cause for the pain being identified, the patient feels discouraged and stress sets in. It has 

been proven that stress can affect and initiate GBA alterations (Carabotti et al., 2015; Mayer 

et al., 2015), thus affecting the microbiota leading to dysbiosis. This then feeds back to the 

brain as GBA is a bidirectional platform leading to exacerbation of the symptoms observed in 

FMS. 

In conclusion: FMS is a complex disorder whose pathophysiology, to date, has still not been 

elucidated although ongoing research is providing more information to substantiate the 

phenotype that is FMS. In this investigation an altered metabolic profile was observed in 

FMS. No global urinary profile could be achieved due to the multifactorial nature of FMS in 

that there is not a singular origin for the perturbation that occurs in the disorder. No putative 

biomarkers were identified for FMS, however markers that gave additional information on the 

possible pathophysiology underlying the disorder were identified. We were able to develop 

an algorithm that we propose can be used together with the current diagnostic methods to 

classify patients. Dysbiosis was identified to be present in FMS and consequently a GBA 

element is also thought to play a role in FMS. This indicates that the CNS and its branches 

play a large role in the pathophysiology of FMS. The findings obtained in this investigation 

require follow up validation studies in a larger cohort as the one used in the present 

investigation was small.  
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ADDENDUM 

 

Addendum A1: Genotyping analyses conducted on blood samples from FMS patients 

and controls  

Blood samples were taken from each of the participants for genotyping studies. From the 

literature, we know that there are several polymorphisms associated with the pathogenesis 

of FMS. For this reason, each participant was genotyped for the four polymorphisms referred 

to in the literature and in Chapter 3 (namely, the 5-HT2A serotonin receptor polymorphism, 

SLC6A4 serotonin transporter polymorphism, COMT polymorphism and the DRD4 dopamine 

receptor exon III repeat polymorphism). The genotyping studies were performed by Dr HP 

Mbongwa, a post-doctoral fellow formerly in the NWU Biochemistry Department and co-

worker in this investigation. A conventional polymerase chain reaction (PCR) was used to 

execute these analyses. This method was not sensitive enough for the DRD4 and SLC6A4 

polymorphisms, however, and the use of real-time PCR was suggested, by Dr Mbongwa, as 

an alternative method for characterizing these two polymorphisms, as it is more sensitive 

than conventional PCR. However, Dr Mbongwa left for the University of KwaZulu-Natal 

(UKZN) at the end of 2011, so further optimization of this PCR method for these 

polymorphisms could not continue. For this reason, all patients and controls were genotyped 

for only the 5-HT2A and COMT polymorphisms.  

For each polymorphism there are three possible genotypes, depending on the alleles each 

person possesses. These genotypes are wild type (WT), heterozygous (He) and 

homozygous (Ho). Figures A1 and A2 show the agarose gel resolution results, depicting 

what each genotype should look like for classification after a digestion reaction using the 

restriction enzymes MspI and NIaIII for both 5-HT2A and COMT, respectively. These gels 

were produced by Dr Mbongwa.  
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Figure A1: Agarose gel (3%) resolution, for the 5-HT2A polymorphism, of 12 of the CN 
control group of experimental subjects after digestion with the MpsI enzyme. The size of the 
undigested band (which serves as a digestion control, not shown as it is similar to and lies at 
the same position as the homozygous genotype) is 342 base pairs (bp). If after digestion the 
band is intact, it means that the subject is homozygous for this particular polymorphism. If 
after digestion the sample contains 2 bands (namely, at 215 bp and 126 bp) or 3 bands 
(namely, at 342 bp, 215 bp and 126 bp), it means that the subject is classified as wild type or 
as heterozygous, respectively.  
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Figure A2: Agarose gel (3%) resolution, for the COMT polymorphism, of 4 experimental 
subjects from the CN group after enzymatic digestion with NIaIII. The size of the undigested 
band is 185 bp (represented by the first lane of each sample). The 18 bp band is too small to 
be visualized on the gel and hence there is no band at the 18 bp mark for any of the 
samples. After digestion, a wild-type genotype will have bands at the 114 bp, 36 bp and 35 
bp that correspond with those on the molecular ladder in the first lane. The latter two bands 
are very close in bp fragment size so they lie adjacent to each other in the gel. A slightly 
clearer view of these two bands can be seen in sample 32, which represents the 
heterozygous genotype. Heterozygotes, after digestion, will have bands at the 114 bp, 96 
bp, 36 bp, 35 bp and 18 bp marks. No homozygous individuals were observed but, after 
digestion, should possess bands at the 96 bp, 36 bp, 35 bp and 18 bp marks.  

 

In 2013, preliminary supervised (PLS-DA) and unsupervised (PCA) statistical analyses were 

conducted on the GC–MS data that were produced from the laboratory analyses. Pairwise 

comparisons were conducted for the FMS-pre (urine samples taken prior to pressure point 

analysis) and the controls (namely, CF, CN and CO). Subsequent results revealed that a 

partial natural separation could be observed in the PCA results of the FMS-pre vs CF and 

FMS-pre vs CN comparisons; a total separation for FMS-pre vs CO was observed (results 

presented in Chapter 1). The PLS-DA analyses further revealed a distinctive separation for 
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only the FMS-pre vs CO pairing. These statistical analyses were conducted using the 

mixOmics package from the R program. Figure A3 shows the outcome of the PLS-DA 

analysis for the FMS-pre vs CO comparison.  

 

Figure A3: Two-dimensional PLS-DA representation of the urinary organic acids for the 
FMS patients Pre (red) versus the CO (black) control group. 

 

On visual inspection of the PLS-DA, I observed that the patient (red) group results gathered 

into clusters. It was speculated that this phenomenon occurred as a consequence of the 

genotype polymorphism associated with FMS pathogenesis. This notion was investigated, 

as all experimental subjects were genotyped for the 5-HT2A and COMT polymorphisms, and 

the results of this endeavour are tabulated in Table A1. This table was constructed to 

determine if this clustering was due to the polymorphic identity of the patients 

 

 

 

 

 

 

 



154 
 

Table A1: Table of the polymorphic identities of the clusters observed in the PLS-DA score 
plot (see Fig. A3 above) for each of the genotyped polymorphisms, 5HT2A and COMT, 
associated with FMS. Abbreviations: W = wild type, He = heterozygote, Ho = homozygote.  

Upper 

cluster 

5HT2A COMT Middle 

cluster 

5HT2A COMT Lower 

cluster 

5HT2A COMT 

Pre 16 W He Pre 32 He W Pre 12 W W 

Pre 18 He W Pre 22 W He Pre 23 He W 

Pre 27 Ho W Pre 31 W He Pre 28 W W 

Pre 15 He He Pre 26 He He 5HT2A: 

W:45% He:33% Ho:22% 

 

COMT: 

W:61% He:39% Ho:0% 

Pre 14 He W Pre 21 W W 

Pre 24 Ho W Pre 30 Ho He 

Pre 25 W He Pre 13 Ho W 

 Pre 20 W W 

 

 

Table A1 shows the polymorphic identities of the patient samples for each of the 

polymorphisms, 5HT2A and COMT, associated with FMS. From this table we note that there 

was no uniform clustering as a consequence of the polymorphic identity. From this 

observation it can be noted that polymorphic identity does not appear to be related to the 

metabolomic profiles of the FMS patients. As a result, it was concluded that polymorphic 

identity does not appear to influence the metabolic profile of FMS patients and, therefore, in 

the pathophysiology of FMS. For this reason, further studies on polymorphisms, and their 

correlation with FMS, were stopped. 
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Addendum A2: GC-MS standard operating procedure 

In this section, the laboratory standard operating protocol (SOP) for general organic acid 

analysis of urine by GC-MS is presented. 

Overview 

The 3 principal steps for this method are: 

1. Isolation of the organic acids from physiological fluids 

2. Formation of volatile derivatives 

3. GC-MS analysis. 

Organic acids are isolated from physiological fluids with ethyl acetate and diethyl ether 

extractions. The organic acid extract is evaporated to dryness under nitrogen; volatile 

trimethylsilyl (TMS) derivatives of the extracted organic acids are formed by heating with 

N,O-bis-(trimethylsilyl)trifluoraceteamine (BSTFA). The TMS derivatives are less than ideal 

products for some classes of compounds such as acylglycine, which form mono and di-TMS 

derivatives, yet they are the most useful and versatile compounds for the wide range of 

functional groups in organic acids. The derivatives are analysed on GC-MS. 

GC-MS is able to separate the highly volatile organic acids using gas chromatography, 

followed by detection of individual components by means of mass spectroscopy. This 

procedure permits rapid identification and quantification of constituent organic acids with a 

high degree of sensitivity and chromatographic resolution. 

Reagents 

NOTE: refer to chemical information sheet below for descriptions and precautions/hazards of 

chemicals used. 

Internal standard (4-phenylbutyric acid solution) prepared by measuring precisely 26.25 mg 

4-phenylbutyric acid, adding 3 drops of 1M sodium hydroxide (NaOH) to dissolve and adding 

50 ml distilled H2O (dH2O). Other reagents include: 5M hydrochloric acid (HCl); ethyl acetate 

(HPLC grade), distilled once to purify further; diethyl ether (HPLC grade), distilled once to 

purify further; anhydrous sodium sulphate (Na2SO4); bis(trimethylsilyl)-trifluoracetamide 

(BSTFA); trimethylchlorosilane (TMCS); pyridine and hexane. 

 

Instrument Settings 

Gas chromatography (GC) 



156 
 

GC Agilent 7890A 

Auto-sampler Agilent 7693 

Oven program 50°C for 1 min; 

then 20°C/min to 60°C; 

then 5°C/min to 120°C; 

then 7°C/min to 280°C 

Run time 40.35 min 

Post run  1 min at 300°C 

Injection volume 1 µl 

Pre-injection washes Solvent A: 2 x 4 µl 

Solvent B: 0 

Post-injection washes Solvent A: 1 x 4 µl 

Solvent B: 2 x 4 µl 

Front inlet Heater: 280°C 

Carrier gas: Helium 

Total flow: 15.29 ml/min 

Split ratio: 12:1 

Split flow: 11.34ml/min 

Column DB-1MS 

340°C: 30 m x 250 µm x 0.25 µm 

 

Mass spectrometry (MS) 

MS Agilent 5975C VL MSD 

Solvent delay 7 min 

Acquisition mode scan 

Scan parameters Low mass: 50.0 

High mass: 600.0 

Threshold: 15 

MS source 230°C (max 250°C) 

MS quad 150°C (max 200°C) 

 

Organic acid extraction 

1. Add 1 ml sample to large kimax test tube 

2. Add 6 drops 5M HCl to adjust to pH 1 (using glass pipette) 

3. Add creatinine-based calculated volume of internal standard 
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4. Add 6 ml ethyl acetate 

5. Cap test tubes and check there is no leakage by inverting test tube (quality control 

step to ensure no sample is lost during next step) 

6. Mix for 30 min in Roto-torque 

7. Centrifuge at 3000 rpm for 3 min 

8. Aspirate the organic phase into clean large kimax test tube (using glass pipette) and 

set aside 

9. Add 3 ml diethyl ether to the aqueous (lower) phase 

10. Cap test tubes and check there is no leakage by inverting test tube 

11. Mix for 10 min in Roto-torque 

12. Centrifuge at 3000 rpm for 3 min 

13. Aspirate the organic phase and add to the ethyl acetate phase (using glass pipette) 

14. Discard lower aqueous phase into appropriate organic waste container 

15. Add two level spatula scoops of anhydrous Na2SO4 

16. Cap and invert test tube several times (or vortex for 5 seconds) to ensure good 

mixing (proper dispersion of Na2SO4 ensures all water molecules removed from 

organic phase as water reverses chemical process of silylation, thereby reducing the 

efficiency of derivatization) 

17. Centrifuge at 3000 rpm for 1 min 

18. Pour/decant the organic phase into a clean small kimax tube 

19. Evaporate to dryness in heating block at 37°C under nitrogen gas (~1 hour) 

20. Use Hamilton glass syringe to add 5:1:1 BSTFA, TMCS and pyridine, respectively, 

based on creatinine-based calculated volume. 

NOTE: Hamilton glass syringe is kept clean with pyridine and approximately 100 µl 

hexane is withdrawn into syringe and discarded (five times) between the addition of each 

reagent (quality control step to ensure syringe is clean and avoid cross-contamination) 

21. Cap test tubes and incubate at 60°C for 1 hour (45 min at 70°C) 

22. Set up and label GC-MS vials, with insert and cap 

23. Transfer approximately 100 µl sample to GC-MS vial 

NOTE: clean glass syringe with hexane (five times) after each transfer 

24. Cap GC-MS vial and place in auto-sampler and process via GC-MS. 

General AMDIS settings (organic acids) 

- 80% minimum match factor 

- Type of analysis: use internal standards for RI (show standards) 

- Resolution: medium 
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- Sensitivity: medium 

- Shape requirements: medium 

Feature/metabolite identification is done by comparing each feature’s/metabolite’s MS-

spectral pattern with customized spectral library specific to the urine sample under 

investigation. 
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Chemical information sheet 

 4-Phenylbutyric acid – C10H12O2; Mw: 164.21 g/mol; supplier: Fluka (25 g) (index 

no.78243). Precaution/ hazard: avoid contact with skin and eyes. 

 Sodium hydroxide – NaOH; Mw: 40.00 g/mol; supplier: Merck (500 g). Precaution/ 

hazard: corrosive (causes severe burns). 

 Hydrochloric acid (32%) – HCl; Mw: 36.36 g/mol; supplier: Merck (2.5 l). Precaution/ 

hazard: corrosive (causes severe burns); irritating to respiratory system. 

 Ethyl acetate – CH3COOC2H5; Mw: 88.11 g/mol; supplier: Merck (2.5 l) (index no. 

607-022-00-5). Precaution/ hazard: highly flammable; causes drowsiness/dizziness; 

causes eye irritation; repeated exposure causes skin dryness/cracking. 

 Diethyl ether – (C2H5)2O; Mw: 74.12 g/mol; supplier: Merck (2.5 l) (index no. 602-022-

00-4). Precaution/ hazard: extremely flammable; harmful if swallowed; causes 

drowsiness/dizziness; repeated exposure causes skin dryness/cracking; may form 

explosive peroxides. 

 Hexane – CH3(CH2)4CH3; Mw: 86.18 g/mol; supplier: Merck (2.5 l) (index no. 601-

037-00-0). Precaution/ hazard: highly flammable; fatal if swallowed; causes skin 

irritation; toxic to aquatic life; causes drowsiness/dizziness; may cause infertility or 

damage to unborn child; may cause damage to organs through prolonged or 

repeated exposure. 

 Sodium sulphate – Na2SO4; Mw: 142.04 g/mol; supplier: Merck (500 g). 

 Chlorotrimethylsilane (TMCS) – C3H9ClSi; Mw: 108.64 g/mol; supplier: Flukka 

Analytical (100 ml) (index no. 92360). Precaution/ hazard: highly flammable; 

corrosive (causes severe burns); reacts violently with water; harmful by 

inhalation/contact to skin; irritating to respiratory system. 

 Pyridine – C5H5N; Mw: 79.10 g/mol; supplier: Flukka Analytical (1 l) (index no. 

82703). Precaution/ hazard: highly flammable; harmful if inhaled or swallowed; 

harmful to skin. 

 Bis(trimethylsilyl)-trifluoracetamide (BSTFA) – CF3C=NSi(CH3)3OSi(CH3)3; Mw: 

257.40 g/mol; supplier: Supelco Analytical (25 ml) (index no. 3-3027). Precaution/ 

hazard: flammable; irritant to eyes and skin; causes burns. 
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SUPPLEMENTARY MATERIAL TO ARTICLE 1 

A diagnostic biomarker profile for Fibromyalgia Syndrome based on an NMR 
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1
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2
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3
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3
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S1: Experimental subjects symptom assessment questionnaire 

The Fibromyalgia Impact Questionnaire (FIQR) is an internationally derived questionnaire 

developed by Burckhardt and co-workers
 
[1]. It was developed with the aim to evaluate and 

understand the effects of therapy on the broad range of symptoms that manifest in FMS. As 

such, the questionnaire has routinely been used, since its official release in 1991, as a means to 

assess the progression of the disorder and any therapeutic interventions applied
 
[2]. 

Questionnaire A in Table S1 shows this FIQR questionnaire that was voluntarily completed by 

the FMS patients who took part in this study. The in-house clinical questionnaire, Table S1B, 

was drawn up to identify secondary data about the patients for use in conjunction with the 

FIQR questionnaire. 

Table S1: Fibromyalgia Impact Questionnaire (FIQR) (A) and Clinical questionnaire (B). 

Questionnaire A was used by the clinicians to assess the severity of the symptoms experienced by the 

FMS patients. Questionnaire B was used to gather supplementary information on the FMS patients 

A - Fibromyalgia Impact Questionnaire (FIQR) 

1. Function domain 
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Directions:  For each question, place an “X” in the box that best indicates how much your fibromyalgia made it 

difficult to do each of the following activities during the past 7 days  

Brush or comb your hair No difficulty 0 1 2 3 4 5 6 7 8 9 10 
Very 
difficult 

  

Walk continuously for 20 minutes No difficulty 
0 1 2 3 4 5 6 7 8 9 10 Very 

difficult 
  

Prepare a homemade meal No difficulty 
0 1 2 3 4 5 6 7 8 9 10 Very 

difficult 
  

Vacuum, scrub or sweep floors No difficulty 
0 1 2 3 4 5 6 7 8 9 10 Very 

difficult 
  

Lift and carry a bag full of groceries No difficulty 
0 1 2 3 4 5 6 7 8 9 10 Very 

difficult 
  

Climb one flight of stairs No difficulty 
0 1 2 3 4 5 6 7 8 9 10 Very 

difficult 
  

Change bed sheets No difficulty 
0 1 2 3 4 5 6 7 8 9 10 Very 

difficult 
  

Sit in a chair for 45 minutes No difficulty 
0 1 2 3 4 5 6 7 8 9 10 Very 

difficult 
  

Go shopping for groceries No difficulty 
0 1 2 3 4 5 6 7 8 9 10 Very 

difficult 
    

 

2. Overall impact domain: 

Directions:  For each question, check the one box that best describes the overall impact of your fibromyalgia 
over the last 7 days:  

 

Fibromyalgia prevented me from 
accomplishing goals for the week 

Never 0 1 2 3 4 5 6 7 8 9 10 Always 

  

I was completely overwhelmed by 
my fibromyalgia symptoms 

Never 0 1 2 3 4 5 6 7 8 9 10 Always 

    

 

3. Symptoms domain: 

Directions:  For each of the following 10 questions, select the one circle that best indicates the intensity of your 
fibromyalgia symptoms over the past 7 days  

 

Please rate your level of pain No pain 0 1 2 3 4 5 6 7 8 9 10 
Unbearable 
pain 

Please rate your level of energy 
Lots of 
energy 

0 1 2 3 4 5 6 7 8 9 10 
No energy 

Please rate your level of stiffness No stiffness 
0 1 2 3 4 5 6 7 8 9 10 Severe 

stiffness 

Please rate the quality of your sleep 
Awoke well 

rested 
0 1 2 3 4 5 6 7 8 9 10 Awoke very 

tired 

Please rate your level of depression 
No 

depression 
0 1 2 3 4 5 6 7 8 9 10 Very 

depressed 

Please rate your level of memory 
problems 

Good 
memory 

0 1 2 3 4 5 6 7 8 9 10 Very poor 
memory 

Please rate your level of anxiety Not anxious 
0 1 2 3 4 5 6 7 8 9 10 Very 

anxious 
 

Please rate your level of tenderness No 0 1 2 3 4 5 6 7 8 9 10 Very tender 
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to touch tenderness 

Please rate your level of balance 
problems 

No 
imbalance 

0 1 2 3 4 5 6 7 8 9 10 Severe 
imbalance 

Please rate your level of sensitivity 
to loud noises, bright lights, odors 

and cold 

No 
sensitivity 

0 1 2 3 4 5 6 7 8 9 10 
Extreme 
sensitivity 

    
    

 

B - Clinical Questionnaire 

 

1. Age:  Years  Months 

 

2. Relationship status: 1. Married 2. 
Engaged 

3. In a relationship, 
but not married or 

engaged 

4. Single 

 

3. Current employment status 
1. Fulltime 
employed 

2. Part-time 
employed 

3. Home executive 
(housewife) 

4. 
Retired 

5. Disabled 
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4. How long ago did your fibromyalgia symptoms start (e.g. widespread muscle 
pain, poor sleep, fatigue, headaches, etc.) 

 Years  Months  

 

5. How long ago were you diagnosed with fibromyalgia? 
 Years  Months 

 

6. (a) Were your fibromyalgia symptoms triggered by? Please tick (√) 

  (you may tick more than one block) 

1. Neck injury  

2. Other injuries  

3. After surgical 
procedure 

 

4. Severe emotional 
stress 

 

5. Acute infection  

6. Spontaneous onset  

7. Uncertain  

 

 (b)  Length  

Bodyweight  

 

7. Please rate your pain by circling the one number that best describes you pain at its worst in the last month. (A rating of 

10 would indicate pain so severe as to prohibit all activity; the worst pain you can imagine.) 

 

8. Please rate your pain by circling the one number that best describes you pain on the average in the last month. (A 

rating of 10 would indicate pain so severe as to prohibit all activity; the worst pain you can imagine.) 
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9.  (i)   Which medications are you receiving for your pain? 

Please tick 

Trepeline  Lyrica  

Cymbalta  Syndol  

Tramal (Tramahexal)  Myprodol  

Tenston  Mypaid  

Stilpayne  Cataflam  

Other  

 

(ii) How often do you take pain killers (e.g. Tramal, Tramahexal, Tramacet, Panado, Syndol., Mypaid, Cataflam, 

Voltaren, etc.)  

± Once a week  

± Twice a week  

± Three days a week  

± Every second day  

± Daily  

 

10. During the past week how much did the state of your health, including any pain, interfere with the following things: 

choose the one number, from 0 to 4 below, that best describes your state and write them in the appropriate box (I to 

vi). 

0 Not at all 
1 A little bit 
2 Moderately 
3 Quite a bit 
4 Extremely  

i. Mood  

ii. Relations with other people  

iii. Walking ability  

iv. Sleep  

v. Normal Work (includes both work outside the home and housework)  

vi. Enjoyment of life  

 

11. Have you ever been diagnosed and treated for depression 
 Yes  No 

 

12. Do you suffer from regular headaches? 
 Yes  No 

 
13 Irritable bowel syndrome (IBS) is known to commonly affect patients with fibromyalgia. It is characterized by 

abdominal pain and cramps as well as bloating, flatulence, diarrhea and/or constipation 
 

Have you ever been diagnosed with IBS? 
 Yes  No 
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14 Restless leg syndrome (RLS) is characterized by uncomfortable sensations in the lower legs and an uncontrollable 
urge to move them so as to provide relief. Some of the sensations felt in RLS include burning, creeping or a crawling 
feeling inside the legs. 

 

Have you ever experienced symptoms of RLS? 
 Yes  No 

 

15. Have you suffered from anxiety since being diagnosed with fibromyalgia 
or thereafter? (Symptoms such as feeling nervous most of the time, not 
able to control worrying, etc.) 

 Yes  No 

 

16. If yes, have you been diagnosed and treated for anxiety? 
 Yes  No 

 

17. Have you ever suffered from a sleep disturbance? 
 Yes  No 

 

If yes, please tick the appropriate block(s) 

(you may tick more than one block) 

Problem with sleep initiation  

Problem with maintaining sleep  

Early morning awakening  

Waking up feeling unrefreshed  

 

18. Dysmenorrhoea is defined as painful menstruation often associated with cramps for mostly 1–3 days after beginning 
of menstruation. 

 Were you treated before or are you currently being treated for dysmenorrhoea? Yes  

 No  
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Table S2: Summary of the supplementary data collected based on the in-house questionnaire (Table 

S1B) completed by the FMS patient group.  

Variable  Mean 

 

% 

1. Socio-demographic information 

Age (years) 45.5 n/a 

Marital status 

Single 

Separated/Divorced/Widow 

In permanent relationship 

Married 

 

2 

0 

2 

15 

 

11 

0 

11 

78 

Employment 

Disabled/Retired 

Housewife 

Part-time  

Full-time 

 

2 

6 

1 

10 

 

11 

32 

5 

52 

2. Pain experience 

Worst pain experience 7,7 n/a 

Recent past pain average  5,7 n/a 

Pain specific medication 

Trepiline (antidepressant for neuropathic pain) 

Cymbalta (antidepressant for chronic pain) 

Tramal (analgesic for moderate to severe pain) 

Myprodol (relief of pain of inflammatory origin) 

Patients using also other medication against pain 

 

12 

10 

9 

6 

11 

 

63 

52 

47 

32 

58 

3. Levels of emotional experiences affected by FMS 
Mood 

Relations with other people 

Enjoyment of life 

Normal work 

 

2.3 

2.2 

2.1 

2.4 

n/a 

0 = Not at all  1 = A little bit        2 = Moderately     3 = Quite a bit      4 = Extremely  
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S2: Comparison of FMS symptom severity with a published reference group 

The mean scores of FMS patients’ symptoms based on severity in relation to the published 

reference group [3] are shown in Figure S1.  

 

Figure S1: Comparison of minimum, mean and maximum scores of fibromyalgia patients’ symptoms 

based on severity in relation to a published reference group. Every FIQR question is compared with 

the data from a reference group, presented for the revised FIQR. The questions are ranked according 

to the difference between the effect sizes (ES) ranked from high to low (1.0 ≥ ES ≥ 0.00), with the 

mean values shown as a circular point in the figure. The range of points scored for the reference group 

is shown in blue and for the present FMS group by green vertical bars. 

 

Higher scores are indicative of greater dysfunction or symptom severity, while differences 

between the blue (previously published study) and green (current study) observed ranges 

show how the current patient group differs from another patient group. These differences 

were also quantified using Cohen’s d-value as a measure of practical significance of 

differences (i.e. effect size).  Effect sizes exceeding 0.5 are considered practically visible, 

whereas those exceeding 0.8 are considered practically significant [4]. The six highest scores 

reported for the reference group were: sleep quality (mean 7.61 ± 2.4 (standard deviation)), 

tenderness to touch (6.86 ± 2.5), energy level (6.80 ± 2.4), stiffness (6.72 ± 2.2), sensitivity to 

the environment (6.19 ± 2.9), and pain (6.01 ± 2.1). The mean values of the highest scores 

obtained for the present FMS group remarkably resemble the published observations: 
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sensitivity to the environment > sleep quality > energy level > tenderness to touch > stiffness 

and pain. Likewise, ‘difficulty with combing hair' had the lowest score in both groups. The 

scores for the three FIQR domains did, however, indicate some clear differences between the 

two groups: Reliability was assessed using Cronbach’s alpha coefficient (α) and indicated 

reliability for all domains. The mean values (reference group vs present group) obtained were 

18 vs 36 for the ‘Function domain’ (α = 0.94 and mean inter-item correlation = 0.62); 11 vs 

10 for the ‘Impact domain’ (α = 0.89 and mean inter-item correlation = 0.8) and 30 vs 60 for 

the ‘Symptoms domain’ (α = 0.88 and mean inter-item correlation = 0.44). The total scores 

(α = 0.95 and mean inter-item correlation = 0.5) were comparable: 55 vs 50. It is important, 

finally, to notice that the difference between the minimum and maximum scores obtained for 

all 21 questions involving the present group mostly exceeded the values for the reference 

group, clearly suggesting a greater diversity between the present FMS patients group than in 

the reference group.  
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S3: Correlation table based on the FIQR questionnaire 

Table S3: Correlation table data, as based on the FIQR questionnaire, used to draw up Fig. 1 in the 

main article. 

Comparison 
Correlation 
coefficient 

Correlation coefficient p-value 

    
(As quoted in Fig. 1 

of main article) 
  

Hair  correlation with  Walk 0.466454 0.5 0.012 

Hair  correlation with  Meals 0.418437 0.4 0.024 

Hair  correlation with  Clean 0.460269 0.5 0.014 

Hair  correlation with  Carry 0.421214 0.4 0.022 

Hair  correlation with  Stairs 0.216187 0.2 0.247 

Hair  correlation with  Make bed 0.177345 0.2 0.345 

Hair  correlation with  Sit 0.307686 0.3 0.095 

Hair  correlation with  Shop 0.269565 0.3 0.154 

Hair  correlation with  Goals 0.335035 0.3 0.070 

Hair  correlation with  Symptoms 0.195924 0.2 0.296 

Hair  correlation with  Pain 0.261516 0.3 0.159 

Hair  correlation with  Energy 0.068820 0.1 0.710 

Hair  correlation with  Stiffness 0.497131 0.5 0.007 

Hair  correlation with  Sleep 0.157715 0.2 0.407 

Hair  correlation with  Depression 0.014139 0.0 0.940 

Hair  correlation with  Memory 0.048174 0.0 0.795 

Hair  correlation with  Anxiety -0.151901 -0.2 0.414 

Hair  correlation with  Tenderness 0.202921 0.2 0.279 

Hair  correlation with  Balance 0.079710 0.1 0.676 

Hair  correlation with  Environment 0.020921 0.0 0.911 

Walk  correlation with  Meals 0.538961 0.5 0.003 

Walk  correlation with  Clean 0.719570 0.7 0.000 

Walk  correlation with  Carry 0.636686 0.6 0.000 

Walk  correlation with  Stairs 0.646953 0.6 0.000 

Walk  correlation with  Make bed 0.483494 0.5 0.008 

Walk  correlation with  Sit 0.614890 0.6 0.001 

Walk  correlation with  Shop 0.557361 0.6 0.002 

Walk  correlation with  Goals 0.550165 0.6 0.002 

Walk  correlation with  Symptoms 0.609392 0.6 0.001 

Walk  correlation with  Pain 0.553749 0.6 0.002 

Walk  correlation with  Energy 0.403911 0.4 0.025 

Walk  correlation with  Stiffness 0.620928 0.6 0.001 

Walk  correlation with  Sleep 0.149298 0.1 0.420 

Walk  correlation with  Depression 0.281064 0.3 0.124 

Walk  correlation with  Memory 0.312705 0.3 0.083 

Walk  correlation with  Anxiety 0.078433 0.1 0.665 

Walk  correlation with  Tenderness 0.549777 0.5 0.003 
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Walk  correlation with  Balance 0.342981 0.3 0.065 

Walk  correlation with  Environment 0.389492 0.4 0.033 

Meals  correlation with  Clean 0.666757 0.7 0.000 

Meals  correlation with  Carry 0.546649 0.5 0.002 

Meals  correlation with  Stairs 0.448906 0.4 0.014 

Meals  correlation with  Make bed 0.718525 0.7 0.000 

Meals  correlation with  Sit 0.569582 0.6 0.002 

Meals  correlation with  Shop 0.443203 0.4 0.016 

Meals  correlation with  Goals 0.563110 0.6 0.002 

Meals  correlation with  Symptoms 0.563025 0.6 0.002 

Meals  correlation with  Pain 0.508146 0.5 0.005 

Meals  correlation with  Energy 0.469058 0.5 0.009 

Meals  correlation with  Stiffness 0.411774 0.4 0.023 

Meals  correlation with  Sleep 0.278236 0.3 0.133 

Meals  correlation with  Depression 0.267680 0.3 0.143 

Meals  correlation with  Memory 0.175897 0.2 0.331 

Meals  correlation with  Anxiety 0.176474 0.2 0.330 

Meals  correlation with  Tenderness 0.245081 0.2 0.180 

Meals  correlation with  Balance 0.377279 0.4 0.042 

Meals  correlation with  Environment 0.237656 0.2 0.193 

Clean  correlation with  Carry 0.778044 0.8 0.000 

Clean  correlation with  Stairs 0.416107 0.4 0.024 

Clean  correlation with  Make bed 0.505193 0.5 0.006 

Clean  correlation with  Sit 0.723825 0.7 0.000 

Clean  correlation with  Shop 0.716828 0.7 0.000 

Clean  correlation with  Goals 0.684344 0.7 0.000 

Clean  correlation with  Symptoms 0.653202 0.7 0.000 

Clean  correlation with  Pain 0.695425 0.7 0.000 

Clean  correlation with  Energy 0.456994 0.5 0.012 

Clean  correlation with  Stiffness 0.578102 0.6 0.002 

Clean  correlation with  Sleep 0.241471 0.2 0.198 

Clean  correlation with  Depression 0.326561 0.3 0.078 

Clean  correlation with  Memory 0.377517 0.4 0.039 

Clean  correlation with  Anxiety 0.186056 0.2 0.310 

Clean  correlation with  Tenderness 0.316500 0.3 0.087 

Clean  correlation with  Balance 0.474216 0.5 0.012 

Clean  correlation with  Environment 0.248322 0.2 0.178 

Carry  correlation with  Stairs 0.424982 0.4 0.019 

Carry  correlation with  Make bed 0.399043 0.4 0.029 

Carry  correlation with  Sit 0.576935 0.6 0.001 

Carry  correlation with  Shop 0.645120 0.6 0.000 

Carry  correlation with  Goals 0.685912 0.7 0.000 

Carry  correlation with  Symptoms 0.656023 0.7 0.000 

Carry  correlation with  Pain 0.703284 0.7 0.000 

Carry  correlation with  Energy 0.541981 0.5 0.003 

Carry  correlation with  Stiffness 0.543761 0.5 0.003 
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Carry  correlation with  Sleep 0.396545 0.4 0.031 

Carry  correlation with  Depression 0.192205 0.2 0.290 

Carry  correlation with  Memory 0.322608 0.3 0.073 

Carry  correlation with  Anxiety 0.110047 0.1 0.541 

Carry  correlation with  Tenderness 0.380494 0.4 0.036 

Carry  correlation with  Balance 0.353276 0.4 0.056 

Carry  correlation with  Environment 0.241913 0.2 0.182 

Stairs  correlation with  Make bed 0.539328 0.5 0.004 

Stairs  correlation with  Sit 0.473776 0.5 0.009 

Stairs  correlation with  Shop 0.512020 0.5 0.006 

Stairs  correlation with  Goals 0.421135 0.4 0.020 

Stairs  correlation with  Symptoms 0.478117 0.5 0.010 

Stairs  correlation with  Pain 0.344401 0.3 0.059 

Stairs  correlation with  Energy 0.357647 0.4 0.050 

Stairs  correlation with  Stiffness 0.598036 0.6 0.001 

Stairs  correlation with  Sleep 0.075891 0.1 0.685 

Stairs  correlation with  Depression 0.197297 0.2 0.285 

Stairs  correlation with  Memory 0.245055 0.2 0.179 

Stairs  correlation with  Anxiety 0.079738 0.1 0.663 

Stairs  correlation with  Tenderness 0.397309 0.4 0.031 

Stairs  correlation with  Balance 0.488164 0.5 0.009 

Stairs  correlation with  Environment 0.382550 0.4 0.038 

Make bed  correlation with  Sit 0.522093 0.5 0.004 

Make bed  correlation with  Shop 0.437500 0.4 0.020 

Make bed  correlation with  Goals 0.428384 0.4 0.019 
Make bed  correlation with  
Symptoms 0.561697 0.6 0.003 

Make bed  correlation with  Pain 0.464860 0.5 0.011 

Make bed  correlation with  Energy 0.410963 0.4 0.025 

Make bed  correlation with  Stiffness 0.310924 0.3 0.092 

Make bed  correlation with  Sleep 0.189484 0.2 0.315 
Make bed  correlation with  
Depression 0.304500 0.3 0.101 

Make bed  correlation with  Memory 0.276221 0.3 0.133 

Make bed  correlation with  Anxiety 0.202777 0.2 0.271 
Make bed  correlation with  
Tenderness 0.363048 0.4 0.051 

Make bed  correlation with  Balance 0.581692 0.6 0.002 
Make bed  correlation with  
Environment 0.423270 0.4 0.022 

Sit  correlation with  Shop 0.716204 0.7 0.000 

Sit  correlation with  Goals 0.425806 0.4 0.018 

Sit  correlation with  Symptoms 0.561206 0.6 0.002 

Sit  correlation with  Pain 0.571441 0.6 0.002 

Sit  correlation with  Energy 0.324682 0.3 0.072 

Sit  correlation with  Stiffness 0.605892 0.6 0.001 

Sit  correlation with  Sleep 0.142051 0.1 0.442 
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Sit  correlation with  Depression 0.466926 0.5 0.011 

Sit  correlation with  Memory 0.266239 0.3 0.140 

Sit  correlation with  Anxiety 0.293174 0.3 0.105 

Sit  correlation with  Tenderness 0.297109 0.3 0.103 

Sit  correlation with  Balance 0.369223 0.4 0.046 

Sit  correlation with  Environment 0.401394 0.4 0.027 

Shop  correlation with  Goals 0.602414 0.6 0.001 

Shop  correlation with  Symptoms 0.568546 0.6 0.002 

Shop  correlation with  Pain 0.633287 0.6 0.001 

Shop  correlation with  Energy 0.384015 0.4 0.038 

Shop  correlation with  Stiffness 0.567775 0.6 0.002 

Shop  correlation with  Sleep 0.287735 0.3 0.129 

Shop  correlation with  Depression 0.346023 0.3 0.064 

Shop  correlation with  Memory 0.498545 0.5 0.007 

Shop  correlation with  Anxiety 0.297406 0.3 0.108 

Shop  correlation with  Tenderness 0.287698 0.3 0.124 

Shop  correlation with  Balance 0.560411 0.6 0.003 

Shop  correlation with  Environment 0.307212 0.3 0.099 

Goals  correlation with  Symptoms 0.680049 0.7 0.000 

Goals  correlation with  Pain 0.727288 0.7 0.000 

Goals  correlation with  Energy 0.538972 0.5 0.003 

Goals  correlation with  Stiffness 0.553772 0.6 0.002 

Goals  correlation with  Sleep 0.473503 0.5 0.011 

Goals  correlation with  Depression 0.266815 0.3 0.144 

Goals  correlation with  Memory 0.311695 0.3 0.084 

Goals  correlation with  Anxiety 0.234539 0.2 0.195 

Goals  correlation with  Tenderness 0.343326 0.3 0.060 

Goals  correlation with  Balance 0.376060 0.4 0.043 

Goals  correlation with  Environment 0.144765 0.1 0.427 

Symptoms  correlation with  Pain 0.817389 0.8 0.000 

Symptoms  correlation with  Energy 0.651253 0.7 0.000 

Symptoms  correlation with  Stiffness 0.360032 0.4 0.050 

Symptoms  correlation with  Sleep 0.470726 0.5 0.012 
Symptoms  correlation with  
Depression 0.409578 0.4 0.027 

Symptoms  correlation with  Memory 0.465180 0.5 0.011 

Symptoms  correlation with  Anxiety 0.380034 0.4 0.039 
Symptoms  correlation with  
Tenderness 0.459459 0.5 0.013 

Symptoms  correlation with  Balance 0.510802 0.5 0.007 
Symptoms  correlation with  
Environment 0.417511 0.4 0.024 

Pain  correlation with  Energy 0.562092 0.6 0.002 

Pain  correlation with  Stiffness 0.452461 0.5 0.013 

Pain  correlation with  Sleep 0.510630 0.5 0.006 

Pain  correlation with  Depression 0.443113 0.4 0.016 

Pain  correlation with  Memory 0.411765 0.4 0.023 
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Pain  correlation with  Anxiety 0.400002 0.4 0.028 

Pain  correlation with  Tenderness 0.365499 0.4 0.046 

Pain  correlation with  Balance 0.392274 0.4 0.035 

Pain  correlation with  Environment 0.251678 0.3 0.169 

Energy  correlation with  Stiffness 0.288526 0.3 0.112 

Energy  correlation with  Sleep 0.510630 0.5 0.006 

Energy  correlation with  Depression 0.416257 0.4 0.023 

Energy  correlation with  Memory 0.503268 0.5 0.005 

Energy  correlation with  Anxiety 0.419674 0.4 0.021 

Energy  correlation with  Tenderness 0.159490 0.2 0.384 

Energy  correlation with  Balance 0.385392 0.4 0.038 
Energy  correlation with  
Environment 0.304662 0.3 0.095 

Stiffness  correlation with  Sleep 0.136615 0.1 0.463 
Stiffness  correlation with  
Depression 0.303115 0.3 0.099 

Stiffness  correlation with  Memory 0.078689 0.1 0.665 

Stiffness  correlation with  Anxiety 0.118421 0.1 0.516 
Stiffness  correlation with  
Tenderness 0.313361 0.3 0.088 

Stiffness  correlation with  Balance 0.138092 0.1 0.460 
Stiffness  correlation with  
Environment 0.179411 0.2 0.328 

Sleep  correlation with  Depression 0.293735 0.3 0.118 

Sleep  correlation with  Memory 0.299569 0.3 0.107 

Sleep  correlation with  Anxiety 0.396184 0.4 0.033 

Sleep  correlation with  Tenderness 0.083069 0.1 0.658 

Sleep  correlation with  Balance 0.229404 0.2 0.230 

Sleep  correlation with  Environment 0.055193 0.1 0.768 
Depression  correlation with  
Memory 0.416257 0.4 0.023 

Depression  correlation with  Anxiety 0.734211 0.7 0.000 
Depression  correlation with  
Tenderness 0.157005 0.2 0.397 

Depression  correlation with  Balance 0.219148 0.2 0.245 
Depression  correlation with  
Environment 0.380988 0.4 0.039 

Memory  correlation with  Anxiety 0.386887 0.4 0.033 
Memory  correlation with  
Tenderness 0.166136 0.2 0.364 

Memory  correlation with  Balance 0.536796 0.5 0.004 
Memory  correlation with  
Environment 0.344401 0.3 0.059 

Anxiety  correlation with  Tenderness -0.026669 0.0 0.885 

Anxiety  correlation with  Balance 0.227852 0.2 0.222 
Anxiety  correlation with  
Environment 0.292373 0.3 0.110 

Tenderness  correlation with  0.104959 0.1 0.578 
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Balance 

Tenderness  correlation with  
Environment 0.457915 0.5 0.013 
Balance  correlation with  
Environment 0.299872 0.3 0.111 
 

Table S3 shows the correlation coefficient and associated p-value (rounded to 1 and 3 

decimals, respectively, for display purposes) for each question with the remaining questions, 

as summarized in Fig. 1 in the main paper. We made use of Kendall’s tau correlation 

coefficient as it is a non-parametric method better suited to small groups with multiple tied 

values [4]. Coefficients range between –1 and 1 are considered practically visible if above 0.3 

or below –0.3 (indicating an inverse relationship) and as practically significant is above 0.5 or 

below –0.5. Since we did not have a truly randomised sample, we focus more on practical 

significance than statistical significance; however, we also report the associated p-values 

indicating statistically significant associations if less than 0.05. 
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S4: Normalized data of the original NMR spectral bins 

Division of the original 
1
H NMR spectrum of each analysed urine sample into 0.02 ppm 

equal-sized bins, between 0.5 ppm and 10 ppm, yielded 468 bins with spectral data, 

excluding the region of the water peak (4.66–4.90 ppm). To account for dilution differences 

common to urine samples, each spectral bin was made relative to the CH3 singlet of 

creatinine at 3.13 ppm. The raw, normalized spectral data matrix of every analysed sample in 

this study is given as an electronic file (Excel format) in Table S4. 

Table S4: Raw NMR spectral data (Excel format) normalized relative to the CH3 singlet of 

creatinine at 3.13 ppm, given as an electronic file (See Additional File S2 – Raw data matrix) attached 

online as part of the SI. 
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S5: Outlier identification 

Outliers were detected using equidistant binning data to identify cases with undue influences 

on the predictor models. This was done by assessing the principal components analysis 

(PCA) score plots for each of the experimental groups as shown in Fig S2(e–h). Cases 

presenting outside of the confidence interval boundary are classified as outliers. Similarly, a 

Hotelling’s T
2
 (Fig S2 a–d) analysis was also applied to the same data for supplementary 

outlier detection. Cases presenting above the solid horizontal line are classified as outliers. 

These two methods were then used in conjunction to identify outliers. Cases identified by 

either method were excluded from further analysis. 

 

Figure S2:  Outlier detection by means of a Hotelling’s T
2
 distance plot (a–d) and PCA scores plot 

(e–h) for each of the four experimental groups. Cases appearing above the red line (Hotelling’s T
2
 

plot) or outside the blue confidence interval boundary (PCA scores plot) were earmarked as outliers.  
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S6: PCA Analysis 

Principal component analysis (PCA) was also performed on the entire scaled dataset, 

including all four groups. This provides a more holistic view of the variation in the data 

relative to the groups. 

 

Figure S3: PCA of FMS (magenta); CF (black); CN (blue) and CO (red) groups  
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S7: N-acetyl aspartic acid (NAA) verification 

Overview 

Peak 9 in Fig. 2 of the main article was initially labelled as N-acetylaspatic acid. However, 

this peak is a characteristic moiety of most N-acetyl compounds and thus this result 

necessitated more detailed NMR analyses, by means of two-dimensional (2D) NMR, for 

verification. Of these 2D analyses we opted for correlation spectroscopy (COSY) and J-

resolved spectroscopy (JRES). 

Reagents 

The reagents used for this analysis were three of the study’s experimental subjects’ urine, 

namely, two Pre patient samples (Pre 1 and Pre 2) and one control sample from the CN 

group. A 1 mM sample of pure NAA compound (Sigma-Aldrich) was prepared in MilliQ-

water. The samples were then spiked with this pure compound for analysis. 

Sample preparation and analysis 

The two patients’ urine samples and the pure NAA compound were prepared as per the 

protocol described in the main article. Only the CN sample was spiked with the pure NAA 

compound as the aim of this analysis was to identify and verify NAA in the patient samples; 

we also required a urine control to see where the spiked NAA peak would present in urine. 

As such, the preparation protocol was adjusted for the CN sample, to take into account the 

addition of the pure NAA, by adding 630 µl of the centrifuged urine supernatant, 70 µl pure 1 

mM NAA compound and 70 µl of internal standard (IS), which was TSP. the samples were 

adjusted to pH 2.5. All four samples were then analysed on 
1
H NMR, COSY and JRES. For 

the purposes of verification, the 
1
H NMR analysis was done at 512 scans to reduce the noise 

peaks to a minimum. The results of this analysis are shown in Fig. S4.  

Results and discussion 

Fig. S4 shows the 1H NMR overlay of the four analysed samples. Red indicates the pure 

NAA compound, green indicates the spiked CN urine sample, and orange and light blue 

indicate the non-spiked Pre samples. The circled areas show the regions of interest where the 

pure NAA compound and NAA+ urine (spiked CN urine) peaks appear. Within the blue 

circled area in Fig. S4A, we can see that all the samples present with a singlet peak, which is 

characteristic of any N-acetyl compound, as also identified in the JRES (Fig. S4B) analysis 
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shown in the corresponding blue area. In the yellow circled area we can see that all samples 

peak in this area, with the red sample being the highest. This peak depicts the characteristic 

multiplet peak of NAA. In the JRES picture we see that only the red and green samples 

present with this multiplet peak as the peak patterns correlate. All other peaks presenting in 

this area of the other samples can be concluded as not including the characteristic NAA peak 

as the peak patterns do not match those of the CN (green) and  pure NAA (red) peaks.  

 

 

Figure S4: 
1
H NMR overlay of three urine samples, namely, two PRE patient samples (orange and 

blue) and a CN control group sample (green) spiked with pure N-acetyl aspartic acid. Red indicates 

the pure NAA compound dissolved in MilliQ water. Picture A shows the one-dimensional NMR 

analysis whereas B and C show the two-dimensional JRES and COSY analyses, respectively. The 

circled areas show the regions of interest for the verification of the presence of NAA.  

A 

B 

C 
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S1: Experimental subjects symptom assessment questionnaire - Malatji et al 2017 [1] 

The Fibromyalgia Impact Questionnaire (FIQR) is an internationally derived questionnaire 

developed by Burckhardt and co-workers
 
[2]. It was developed with the aim to evaluate and 

understand the effects of therapy on the broad range of symptoms that manifest in FMS. As 

such, the questionnaire has routinely been used, since its official release in 1991, as a means to 

assess the progression of the disorder and any therapeutic interventions applied
 
[3]. 
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Questionnaire A in Table S1 shows this FIQR questionnaire that was voluntarily completed by 

the FMS patients who took part in this study. The in-house clinical questionnaire, Table S1B, 

was drawn up to identify secondary data about the patients for use in conjunction with the 

FIQR questionnaire. 

 

Table S1: Fibromyalgia Impact Questionnaire (FIQR) (A) and Clinical questionnaire (B). 

Questionnaire A was used by the clinicians to assess the severity of the symptoms experienced by the 

FMS patients. Questionnaire B was used to gather supplementary information on the FMS patients 

A - Fibromyalgia Impact Questionnaire (FIQR) 

4. Function domain 
Directions:  For each question, place an “X” in the box that best indicates how much your fibromyalgia made it 

difficult to do each of the following activities during the past 7 days  

Brush or comb your hair No difficulty 0 1 2 3 4 5 6 7 8 9 10 Very difficult 
  

Walk continuously for 20 
minutes 

No difficulty 
0 1 2 3 4 5 6 7 8 9 10 

Very difficult 

  

Prepare a homemade meal No difficulty 0 1 2 3 4 5 6 7 8 9 10 Very difficult 
  

Vacuum, scrub or sweep floors No difficulty 0 1 2 3 4 5 6 7 8 9 10 Very difficult 
  

Lift and carry a bag full of 
groceries 

No difficulty 
0 1 2 3 4 5 6 7 8 9 10 

Very difficult 

  

Climb one flight of stairs No difficulty 0 1 2 3 4 5 6 7 8 9 10 Very difficult 
  

Change bed sheets No difficulty 0 1 2 3 4 5 6 7 8 9 10 Very difficult 
  

Sit in a chair for 45 minutes No difficulty 0 1 2 3 4 5 6 7 8 9 10 Very difficult 
  

Go shopping for groceries No difficulty 0 1 2 3 4 5 6 7 8 9 10 Very difficult 
    

 

5. Overall impact domain: 
Directions:  For each question, check the one box that best describes the overall impact of your fibromyalgia 

over the last 7 days:  
 

Fibromyalgia prevented me from 
accomplishing goals for the 
week 

Never 0 1 2 3 4 5 6 7 8 9 10 Always 

  

I was completely overwhelmed 
by my fibromyalgia symptoms 

Never 0 1 2 3 4 5 6 7 8 9 10 Always 

    

 

6. Symptoms domain: 
Directions:  For each of the following 10 questions, select the one circle that best indicates the intensity of your 

fibromyalgia symptoms over the past 7 days  
 

Please rate your level of pain No pain 0 1 2 3 4 5 6 7 8 9 10 
Unbearable 
pain 

Please rate your level of energy Lots of 0 1 2 3 4 5 6 7 8 9 10 No energy 
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energy 

Please rate your level of 
stiffness 

No stiffness 
0 1 2 3 4 5 6 7 8 9 10 Severe 

stiffness 

Please rate the quality of your 
sleep 

Awoke well 
rested 

0 1 2 3 4 5 6 7 8 9 10 Awoke very 
tired 

Please rate your level of 
depression 

No 
depression 

0 1 2 3 4 5 6 7 8 9 10 Very 
depressed 

Please rate your level of 
memory problems 

Good 
memory 

0 1 2 3 4 5 6 7 8 9 10 Very poor 
memory 

Please rate your level of anxiety Not anxious 
0 1 2 3 4 5 6 7 8 9 10 Very 

anxious 
 

Please rate your level of 
tenderness to touch 

No 
tenderness 

0 1 2 3 4 5 6 7 8 9 10 
Very tender 

Please rate your level of balance 
problems 

No 
imbalance 

0 1 2 3 4 5 6 7 8 9 10 Severe 
imbalance 

Please rate your level of 
sensitivity to loud noises, bright 
lights, odors and cold 

No 
sensitivity 

0 1 2 3 4 5 6 7 8 9 10 
Extreme 
sensitivity 

    
    

 

B - Clinical Questionnaire 

 

7. Age: 
 Years  Months 

 

8. Relationship status: 1. Married 2. 
Engaged 

3. In a relationship, 
but not married or 
engaged 

4. Single 

 

9. Current employment status 
1. Fulltime 
employed 

2. Part-time 
employed 

3. Home executive 
(housewife) 

4. 
Retired 

5. 
Disabled 
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10. How long ago did your fibromyalgia symptoms start (e.g. widespread 

muscle pain, poor sleep, fatigue, headaches, etc.) 
 Years  Months  

 

11. How long ago were you diagnosed with fibromyalgia? 
 Years  Months 

 

12. (a) Were your fibromyalgia symptoms triggered by? Please tick (√) 

  (you may tick more than one block) 
1. Neck injury  

2. Other injuries  

3. After surgical 
procedure 

 

4. Severe emotional 
stress 

 

5. Acute infection  

6. Spontaneous onset  

7. Uncertain  

 

 (b)  Length  

Bodyweight  

 

8. Please rate your pain by circling the one number that best describes you pain at its worst in the last month. (A rating of 
10 would indicate pain so severe as to prohibit all activity; the worst pain you can imagine.) 

 

9. Please rate your pain by circling the one number that best describes you pain on the average in the last month. (A 
rating of 10 would indicate pain so severe as to prohibit all activity; the worst pain you can imagine.) 

 

  



192 
 

10.  (i)   Which medications are you receiving for your pain? 
Please tick 

Trepeline  Lyrica  

Cymbalta  Syndol  

Tramal (Tramahexal)  Myprodol  

Tenston  Mypaid  

Stilpayne  Cataflam  

Other  

 

(ii) How often do you take pain killers (e.g. Tramal, Tramahexal, Tramacet, Panado, Syndol., Mypaid, Cataflam, 

Voltaren, etc.)  

± Once a week  

± Twice a week  

± Three days a week  

± Every second day  

± Daily  

 

10. During the past week how much did the state of your health, including any pain, interfere with the following things: 

choose the one number, from 0 to 4 below, that best describes your state and write them in the appropriate box (I to 

vi). 

5 Not at all 

6 A little bit 

7 Moderately 

8 Quite a bit 

9 Extremely  

vii. Mood  

viii. Relations with other people  

ix. Walking ability  

x. Sleep  

xi. Normal Work (includes both work outside the home and housework)  

xii. Enjoyment of life  

 

13. Have you ever been diagnosed and treated for depression 
 Yes  No 

 

14. Do you suffer from regular headaches? 
 Yes  No 

 
14 Irritable bowel syndrome (IBS) is known to commonly affect patients with fibromyalgia. It is characterized by 

abdominal pain and cramps as well as bloating, flatulence, diarrhea and/or constipation 
 

Have you ever been diagnosed with IBS? 
 Yes  No 
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15 Restless leg syndrome (RLS) is characterized by uncomfortable sensations in the lower legs and an 

uncontrollable urge to move them so as to provide relief. Some of the sensations felt in RLS include burning, 

creeping or a crawling feeling inside the legs. 
 

Have you ever experienced symptoms of RLS? 
 Yes  No 

 

15. Have you suffered from anxiety since being diagnosed with 
fibromyalgia or thereafter? (Symptoms such as feeling nervous 
most of the time, not able to control worrying, etc.) 

 Yes  No 

 

16. If yes, have you been diagnosed and treated for anxiety? 
 Yes  No 

 

19. Have you ever suffered from a sleep disturbance? 
 Yes  No 

 

If yes, please tick the appropriate block(s) 
(you may tick more than one block) 

Problem with sleep initiation  

Problem with maintaining sleep  

Early morning awakening  

Waking up feeling unrefreshed  

 
20. Dysmenorrhoea is defined as painful menstruation often associated with cramps for mostly 1–3 days after 

beginning of menstruation. 

 Were you treated before or are you currently being treated for 
dysmenorrhoea? 

Yes  

 No  
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Table S2: Summary of the supplementary data collected based on the in-house questionnaire (Table 

S1B) completed by the FMS patient group.  

Variable  Mean 

 

% 

1. Socio-demographic information 

Age (years) 45.5 n/a 

Marital status 

Single 

Separated/Divorced/Widow 

In permanent relationship 

Married 

 

2 

0 

2 

15 

 

11 

0 

11 

78 

Employment 

Disabled/Retired 

Housewife 

Part-time  

Full-time 

 

2 

6 

1 

10 

 

11 

32 

5 

52 

2. Pain experience 

Worst pain experience 7,7 n/a 

Recent past pain average  5,7 n/a 

Pain specific medication 

Trepiline (antidepressant for neuropathic pain) 

Cymbalta (antidepressant for chronic pain) 

Tramal (analgesic for moderate to severe pain) 

Myprodol (relief of pain of inflammatory origin) 

Patients using also other medication against pain 

 

12 

10 

9 

6 

11 

 

63 

52 

47 

32 

58 

3. Levels of emotional experiences affected by FMS 

Mood 

Relations with other people 

Enjoyment of life 

Normal work 

 

2.3 

2.2 

2.1 

2.4 

n/a 

0 = Not at all  1 = A little bit        2 = Moderately     3 = Quite a bit      4 = Extremely  
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S2: Standard Operating Protocol for organic acid extraction 

In this section, the laboratory standard operating protocol (SOP) is presented.  

General organic acid analysis of urine by GC/MS: 

Overview 

The 3 principal steps for this method are: 

1. Isolation of the organic acids from physiological fluids 

2. Formation of volatile derivatives 

3. GC-MS analysis. 

Organic acids are isolated from physiological fluids with ethyl acetate and diethyl ether 

extractions. The organic acid extract is evaporated to dryness under nitrogen; volatile 

trimethylsilyl (TMS) derivatives of the extracted organic acids are formed by heating with 

N,O-bis-(trimethylsilyl)trifluoraceteamine (BSTFA). The TMS derivatives are less than ideal 

products for some classes of compounds such as acylglycine, which form mono and di-TMS 

derivatives, yet they are the most useful and versatile compounds for the wide range of 

functional groups in organic acids. The derivatives are analysed on GC-MS. 

GC-MS is able to separate the highly volatile organic acids using gas chromatography, 

followed by detection of individual components by means of mass spectroscopy. This 

procedure permits rapid identification and quantification of constituent organic acids with a 

high degree of sensitivity and chromatographic resolution. 

Reagents 

NOTE: refer to chemical information sheet below for descriptions and precautions/hazards of 

chemicals used. 

Internal standard (4-phenylbutyric acid solution) prepared by measuring precisely 26.25 mg 

4-phenylbutyric acid, adding 3 drops of 1M sodium hydroxide (NaOH) to dissolve and 

adding 50 ml distilled H2O (dH2O). Other reagents include: 5M hydrochloric acid (HCl); 

ethyl acetate (HPLC grade), distilled once to purify further; diethyl ether (HPLC grade), 

distilled once to purify further; anhydrous sodium sulphate (Na2SO4); bis(trimethylsilyl)-

trifluoracetamide (BSTFA); trimethylchlorosilane (TMCS); pyridine and hexane. 
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Instrument Settings 

Gas chromatography (GC) 

GC Agilent 7890A 

Auto-sampler Agilent 7693 

Oven program 50°C for 1 min; 

then 20°C/min to 60°C; 

then 5°C/min to 120°C; 

then 7°C/min to 280°C 

Run time 40.35 min 

Post run  1 min at 300°C 

Injection volume 1 µl 

Pre-injection washes Solvent A: 2 x 4 µl 

Solvent B: 0 

Post-injection washes Solvent A: 1 x 4 µl 

Solvent B: 2 x 4 µl 

Front inlet Heater: 280°C 

Carrier gas: Helium 

Total flow: 15.29 ml/min 

Split ratio: 12:1 

Split flow: 11.34ml/min 

Column DB-1MS 

340°C: 30 m x 250 µm x 0.25 µm 

 

Mass spectrometry (MS) 

MS Agilent 5975C VL MSD 

Solvent delay 7 min 

Acquisition mode scan 

Scan parameters Low mass: 50.0 

High mass: 600.0 

Threshold: 15 

MS source 230°C (max 250°C) 

MS quad 150°C (max 200°C) 
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Organic acid extraction 

1. Add 1 ml sample to large kimax test tube 

2. Add 6 drops 5M HCl to adjust to pH 1 (using glass pipette) 

3. Add creatinine-based calculated volume of internal standard 

4. Add 6 ml ethyl acetate 

5. Cap test tubes and check there is no leakage by inverting test tube (quality control 

step to ensure no sample is lost during next step) 

6. Mix for 30 min in Roto-torque 

7. Centrifuge at 3000 rpm for 3 min 

8. Aspirate the organic phase into clean large kimax test tube (using glass pipette) and 

set aside 

9. Add 3 ml diethyl ether to the aqueous (lower) phase 

10. Cap test tubes and check there is no leakage by inverting test tube 

11. Mix for 10 min in Roto-torque 

12. Centrifuge at 3000 rpm for 3 min 

13. Aspirate the organic phase and add to the ethyl acetate phase (using glass pipette) 

14. Discard lower aqueous phase into appropriate organic waste container 

15. Add two level spatula scoops of anhydrous Na2SO4 

16. Cap and invert test tube several times (or vortex for 5 seconds) to ensure good mixing 

(proper dispersion of Na2SO4 ensures all water molecules removed from organic 

phase as water reverses chemical process of silylation, thereby reducing the efficiency 

of derivatization) 

17. Centrifuge at 3000 rpm for 1 min 

18. Pour/decant the organic phase into a clean small kimax tube 

19. Evaporate to dryness in heating block at 37°C under nitrogen gas (~1 hour) 

20. Use Hamilton glass syringe to add 5:1:1 BSTFA, TMCS and pyridine, respectively, 

based on creatinine-based calculated volume. 

21. NOTE: Hamilton glass syringe is kept clean with pyridine and approximately 100 µl 

hexane is withdrawn into syringe and discarded (five times) between the addition of 

each reagent (quality control step to ensure syringe is clean and avoid cross-

contamination) 

22. Cap test tubes and incubate at 60°C for 1 hour (45 min at 70°C) 
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23. Set up and label GC-MS vials, with insert and cap 

24. Transfer approximately 100 µl sample to GC-MS vial 

25. NOTE: clean glass syringe with hexane (five times) after each transfer 

26. Cap GC-MS vial and place in auto-sampler and process via GC-MS. 

General AMDIS settings (organic acids) 

- 80% minimum match factor 

- Type of analysis: use internal standards for RI (show standards) 

- Resolution: medium 

- Sensitivity: medium 

- Shape requirements: medium 

Feature/metabolite identification is done by comparing each feature’s/metabolite’s MS-

spectral pattern with customized spectral library specific to the urine sample under 

investigation. 
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Chemical information sheet 

 4-Phenylbutyric acid – C10H12O2; Mw: 164.21 g/mol; supplier: Fluka (25 g) (index 

no.78243). Precaution/ hazard: avoid contact with skin and eyes. 

 Sodium hydroxide – NaOH; Mw: 40.00 g/mol; supplier: Merck (500 g). Precaution/ 

hazard: corrosive (causes severe burns). 

 Hydrochloric acid (32%) – HCl; Mw: 36.36 g/mol; supplier: Merck (2.5 l). 

Precaution/ hazard: corrosive (causes severe burns); irritating to respiratory system. 

 Ethyl acetate – CH3COOC2H5; Mw: 88.11 g/mol; supplier: Merck (2.5 l) (index no. 

607-022-00-5). Precaution/ hazard: highly flammable; causes drowsiness/dizziness; 

causes eye irritation; repeated exposure causes skin dryness/cracking. 

 Diethyl ether – (C2H5)2O; Mw: 74.12 g/mol; supplier: Merck (2.5 l) (index no. 602-

022-00-4). Precaution/ hazard: extremely flammable; harmful if swallowed; causes 

drowsiness/dizziness; repeated exposure causes skin dryness/cracking; may form 

explosive peroxides. 

 Hexane – CH3(CH2)4CH3; Mw: 86.18 g/mol; supplier: Merck (2.5 l) (index no. 601-

037-00-0). Precaution/ hazard: highly flammable; fatal if swallowed; causes skin 

irritation; toxic to aquatic life; causes drowsiness/dizziness; may cause infertility or 

damage to unborn child; may cause damage to organs through prolonged or repeated 

exposure. 

 Sodium sulphate – Na2SO4; Mw: 142.04 g/mol; supplier: Merck (500 g). 

 Chlorotrimethylsilane (TMCS) – C3H9ClSi; Mw: 108.64 g/mol; supplier: Flukka 

Analytical (100 ml) (index no. 92360). Precaution/ hazard: highly flammable; 

corrosive (causes severe burns); reacts violently with water; harmful by 

inhalation/contact to skin; irritating to respiratory system. 

 Pyridine – C5H5N; Mw: 79.10 g/mol; supplier: Flukka Analytical (1 l) (index no. 

82703). Precaution/ hazard: highly flammable; harmful if inhaled or swallowed; 

harmful to skin. 

 Bis(trimethylsilyl)-trifluoracetamide (BSTFA) – CF3C=NSi(CH3)3OSi(CH3)3; Mw: 

257.40 g/mol; supplier: Supelco Analytical (25 ml) (index no. 3-3027). Precaution/ 

hazard: flammable; irritant to eyes and skin; causes burns. 
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S3: Case reduction analyses  

Using the original variable data, case reduction was first applied to all four experimental groups. 

Outliers were identified based on the presence of suspicious metabolites (including due to medication) 

and statistical by using a 95% confidence region in a Hotelling’s T
2

 test in conjunction with the 

respective PCA score plots with 90% confidence regions. Cases that were identified as outliers by 

either method were removed. Figure S1 shows the results of these case reduction analyses. 

 

Outlier Detection Hotellings Distances Outliers (CI90) PCA 

A  B  

C  
D  
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E  
F  

G  H  

 

Fig. S1: Case reduction analyses, using Hotelling’s T2 and a PCA test. These tests were used 

to detect outliers in the controls (CF (A to B), CO (C to D) and CN (E to F)) and patients (G 

to H). Red (Hotelling’s) and blue (PCA) lines indicate the threshold where a sample is 

considered an outlier. 

 

S4: Variable lists indicating metabolite groupings 

In this section we show the metabolite lists used to obtain the results in Fig. 4 of the main text 

namely (1) gut-host metabolites with a focus on benzene derivatives of poly-phenolic dietary 

origin (54 metabolites), (2) metabolites of energy and intermediary metabolism (36 

metabolites), (3) carbohydrates and related metabolites (30 metabolites), and (4) the 

remaining metabolites. Note: We regard assignment as relative as a certain metabolite may 
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actually be classified to more than one group, while each metabolite was classified here in 

one group only. 

Benzenes: 

1,2,3,5-Tetramethylbenzene 

1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl) 

ester 

1,2-Benzenedicarboxylic-acid 

1,2-Dihydroxybenzene 

2,3,4-Trihydroxybenzoic-Acid 

2,3-Dihydroxybenzoic-Acid 

2,4-Dihydroxybenzoic-Acid 

2,5-Dihydroxybenzoic acid 

2,6-Dihydroxybenzoic-Acid 

2-Aminobenzoic-Acid 

2-Hydroxy-5-Methoxybenzoic-Acid 

2-Hydroxybenzoic-Acid 

2-Hydroxyhippuric-Acid 

2-Hydroxyphenylacetic-Acid 

3,4-Dihydroxybenzoic-Acid 

3,4-Dihydroxycinnamic-Acid 

3,4-Dihydroxyphenylacetic-Acid 

3,4-Dihydroxyphenylpropionic-Acid 

3,5-Dihydroxybenzoic-Acid 

3-Hydoxybenzoic-Acid 

3-Hydroxyhippuric-Acid 

3-Hydroxyphenylacetic-Acid 

3-Hydroxyphenylhydracrylic-Acid 

3-Hydroxyphenylpropionic-Acid 

3-Methoxy-4-hydroxycinnamic-acid 

3-Methoxy-4-Hydroxyphenylhydracrylic-Acid 

3-Methoxy-4-Hydroxyphenyllactic-Acid 

3-Methoxy-4-Hydroxyphenylpropionic-Acid 

4-Hydroxbenzoic-Acid 

4-Hydroxybenzeneacetic-Acid 

4-Hydroxybutyric-Acid 

4-Hydroxycinnamic-Acid 

4-Hydroxycyclohexylacetic-Acid 

4-Hydroxyhippuric-Acid 

4-Hydroxymandelic-Acid 

4-Hydroxyphenyllactic-Acid 

4-Methoxy-3-Hydroxycinnamic-Acid 

4-Methylmandelic-Acid 

4-Phenol 

Benzamide, N-(trimethylsilyl)- 
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Benzoic-Acid 

Butylated Hydroxytoluene 

Hippuric-Acid 

Homovanillic-Acid 

Hydroxymethoxybenzoylglycine 

Mandelic-acid 

N-Acethyl-4-Phenol 

N-ACETYLTYROSINE 

Phenylacetic-Acid 

Phenylacetylglutamine 

Phenyllactic-Acid 

p-Tolylglucuronide 

Vanillic-Acid 

Vanillylmandelic-Acid 

 

Energy: 

1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl) 

ester 

1H-Indole-3-Acetic-Acid 

2-HYDROXYGLUTARIC-ACID 

2-Hydroxyphenylacetic-Acid 

3-(4-Hydroxy-2,5-Dioxoimidazolidin-4-yl)propanoic-

Acid 

3,4-Dihydroxybenzoic-Acid 

3,4-Dihydroxycinnamic-Acid 

3-Hydroxypyridine 

3-Methoxy-4-Hydroxyphenylpropionic-Acid 

4-Hydroxybenzeneacetic-Acid 

4-Hydroxybutyric-Acid 

4-Hydroxyphenyllactic-Acid 

4-Phenol 

5-Hydroxyindoleacetic-Acid 

Aconitic-Acid 

Butylated Hydroxytoluene 

Dodecanoic-Acid 

ETHYLMALONIC-ACID 

Furoylglycine 

GLUTARIC-ACID 

GLYCOLIC-ACID 

Hexanoic-Acid 

Levulinic-Acid 

Maleic-Acid 

Malic-Acid 

METHYLMALONIC-ACID 

METHYLSUCCINIC-ACID 
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Monohexadecanoylglycerol 

Monostearylglycerol 

N-ACETYLASPARTIC-ACID 

N-ACETYLTYROSINE 

N-TIGLYLGLYCINE 

Octadecanoic-Acid 

OXALIC-ACID 

Palmitic-Acid 

Phosphoric-Acid 

SUCCINIC-ACID 

Tiglic-Acid 

 

Sugars: 

1,2-Dihydroxyethane 

2,3,4,5-Tetrahydroxypentanoic-Acid-1,4-Lactone 

2,3,4-Trihydroxybutyric-Acid 

2,3,4-Trihydroxybutyric-Acid-Lactone 

2,4-Dihydroxybutyric-Acid 

2-Deoxy-3,5-Dihydroxypentonic-Acid-G-Lactone 

2-Keto-l-gluconic-Acid 

2-Methyl,2,3-Dihydroxypropanoic-Acid 

3,4,5-Trihydroxypentanoic-Acid 

3,4,5-trihydroxyvaleric-Acid-Lactone 

3,4-Dihydroxybutyric-Acid 

3-Deoxy-erythro-Pentonic-Acid 

3-Deoxy-ribohexonic acid 

Arabinose 

D-Erythronic acid τ-lactone 

Erythro-Pentonic-Acid 

Fructopyranose 

Fucono-G-Lactone 

Galactonic-Acid-Gamma-Lactone 

Galactonic-Acidlactone 

Galactopyranose-2-Deoxy 

Galactopyranose-Alpha-D 

Glycerol 

Mannonic-Acid 

Mannose 

Rhamnose 

Sorbose 

Tagatofuranose 

Tagatose 

Threonic-Acid 
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Other 

1,2-Butanediol 

1,2-Dihydroxypropane 

1,6-Dihydroxyhexane 

1H-Indole-1-acetic-Acid 

2-(Furan-2-yl)-2-Hydroxyacetic-Acid 

2,2-Dihydroxyacetic-Acid 

2,3,5-Trihydroxyvaleric-Acid-Lactone 

2,3-Dihydroxybutane 

2,3-Dihydroxybutanoic-Acid 

2,5-Furandicarboxylic-Acid 

2,6-Dihydroxy-4-Pyrimidinecarboxylic-Acid 

2-Ethyl-3-Hydroxypropionic-Acid 

2-Hexenoic-Acid 

2-Hydroxy-3-Methylbutryic-Acid 

2-Hydroxy-3-Methylvaleric-Acid 

2-Hydroxyadipic-Acid 

2-Hydroxybutyric-Acid 

2-Hydroxyisobutyric-Acid 

2-Hydroxysebacic-Acid 

2-Keto-3-Methylbutyric-Acid 

2-Ketobutyric-Acid 

2-KETOGLUTARIC-ACID 

2-Methyl-2-Hydroxybutyric-Acid 

2-METHYL-3-HYDROXYBUTYRIC-ACID 

2-Octenoic-Acid 

3-HYDROXY-3-METHYLGLUTARIC-ACID 

3-HYDROXYGLUTARIC-ACID 

3-HYDROXYISOBUTYRIC-ACID 

3-HYDROXYISOVALERIC-ACID 

3-HYDROXYPROPIONIC-ACID 

3-HYDROXYSEBACIC-ACID 

3-Methyl-2-pentenedioic-Acid 

3-Methyladipic-Acid 

3-METHYLGLUTACONIC-ACID 

3-Methylglutaric-Acid 

4-Hydroxy-3-Penten-2-One 

4-Hydroxycyclohexanecarboxylic-Acid 

4-Ketovaleric-Acid 

4-Pyridinecarboxylic-Acid 

5-(Hydroxymethyl)Furan-2-Carboxylic-Acid 

5-Hydroxyhydantoin 

5-Hydroxyvaleric-Acid 

6-Hydroxyhexanoic-Acid 

ACETOACETIC-ACID 
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Acetylaminophenylglucopyranosiduronic-Acid 

ADIPIC-ACID 

Altro-2-Heptulose 

Azelaic-Acid 

Citraconic-Acid 

Citramalic-Acid 

Citric-acid 

Erythronic-Acid 

FUMARIC-ACID 

Glucopyranose 

Glucopyrorono-(6-1)Lactone 

Glucuronic-Acid 

Glutaconic-Acid 

GLYOXYLIC-ACID 

Hydantoinpropionic-Acid 

Isocitric-Lactone 

LACTIC-ACID 

MALONIC-ACID 

METHYLCITRIC-ACID 

Methylmaleic-Acid 

N-Acetylanthranilic-Acid, 

N-Acetylisoleucine 

N-Acetyltrheonine 

N-HEXANOYLGLYCINE 

N-ISOBUTYRYLGLYCINE 

N-ISOVALERYLGLYCINE 

Nonanoic-Acid 

Octenedioic-Acid 

Oleic-Acid 

Pantothenic-Acid 

Parabanic-Acid 

Pimelic-Acid 

Pyroglutamic-Acid 

Pyrrole-2-Carboxylic-Acid 

Pyruvic-Acid 

Quinolinic-Acid 

Ribonic-G-Lactone 

Sorbic-Acid 

Suberic-Acid 

Threitol 

Uracil 
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Logistic regression models for FMS patient and control groups 

 

Table S1 summarizes the six logistic regression models fit to predict FMS from three 

different control groups (CF, CN and CO) utilizing two platforms (GC-MS and NMR).  The 

first two columns provide details of the model being considered.  The third and fourth 

columns consider measures of goodness-of-fit, two tests are considered Hosmer-Lemeshow 

and Stukel.  Goodness-of-fit statistics are complimentary to the predictive ability, as reported 

in columns 7 to 11, as it provides an indication as to whether a more complex model may 

perform better.  If the Hosmer-Lemeshow test is significant we can conclude that the current 

model is not acceptable.  The change in the log likelihood (column four) from the fitted 

model to the Stukel model (described belwo) also indicates if a more complex model may 

perform better.  A negative value indicates that the more complex Stukel model is better, but 

without penalizing the Stukel model for having more parameters.   

Columns five and six consider the significance of the parameter estimates based on the Wald 

statistic.  The first p-value relates to the overall significance of the model parameters actually 

in the model, if this p-value is significant it implies that the predictor contributes significantly 

to the predictive ability of the model.  The second p-value is associated with a model adjusted 

based on Stukel’s approach, where two terms are added to the model which allow for 

asymmetry and a different approach rate.  If the p-value for the extended model is significant 

then the parameters should be considered individually and if the added effects are significant, 

a more complex model should be considered.  This was on the case for the logistic model 
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regressing against groups FMS and CN for the GC-MS data, here we may need to adjust the 

model to allow for asymmetry. 

The predictive ability of each model is described in columns 7 to 11.  The first statistic 

reported is Tjur’s R-squared which is similar to the r-squared reported for linear models and 

is also a coefficient of discrimination.  Values close to 1 for Tjur’s R-squared are excellent 

and as we can see from the table, the values here are low to moderate indicating that some 

information may not be captured by the models.   

The remaining predictive statistics are discussed in the main text.  The final three columns 

provide the odds ratios, confidence intervals for the ratios and the unit of change. 
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Table S1 Outcome of six logistic regression models applied to data from FMS patients and controls 

 

 

Hosmer-

Lemeshow

Stukel              

(Change in -2logL)
Model Stukel

Tjur 

R2 AUC AUC CI LOO AUC LOO AUC CI

CF 0.69 1.65 0.6 1 0.01 0.57 0.34-0.81 0.18 0.02-0.33 1.27 0.52-3.24 0.4

CN 0.70 0.39 0.0004 0.01 0.35 0.85 0.73-0.97 0.83 0.69-0.96 4.12 2.1-10.4 0.3

CO 0.34 10.1 0.009 0.3 0.58 0.94 0.82-1 0.91 0.78-1 10.07 2.7-120.7 0.3

CF 0.78 1.24 0.04 0.36 0.18 0.76 0.58-0.94 0.67 0.46-0.88 2.6 1.17-7.9 0.2

CN 0.07 4.23 0.002 0.27 0.59 0.93 0.84-1 0.91 0.8-1 10.22 3.2-62.1 0.2

CO 0.57 9.07 0.008 0.39 0.49 0.89 0.76-1 0.88 0.73-1 10.15 2.56-90.45 0.2

OR Unit                              

(1 x SD)

N
M

R
P

la
tf

o
rm

FM
S 

vs
 …

OR OR CI

Predictive Power
Goodness-of-Fit Significance 

Test
Significance of BETA (Wald)

G
C

-M
S


