
A decomposition approach to
solving core network design

problems

Stefan Jacholke
0000-0002-6639-4116

Dissertation submitted in fulfilment of the requirements for

the degree Master of Engineering in Computer and Electronic

Engineering at the Potchefstroom Campus of the North-West

University

Supervisor Dr MJ Grobler

Co-supervisor Prof SE Terblanche

Examination October 2017

Stefan Jacholke: Metro-Ethernet, Core Network Planning, 2017.

website:
http://stefanj.me/

e-mail:
stefanjacholke@gmail.com

http://stefanj.me/
mailto:stefanjacholke@gmail.com

A B S T R A C T

Traditionally, when automated planning is used, network planners
solve multilayer core network problems in a top-down manner, solv-
ing capacities for the top-most layer, and then using these solved ca-
pacities to solve the next lower layer. This results in a suboptimal
solution, yielding higher capital expenditure costs.

In this work an exact multilayer network Mixed Integer Linear Pro-
gramming (MILP) model is developed that integrates multiple layers
into a single model. Each layer takes the form of a multicommod-
ity flow problem. The objective is to minimize capital expenditure
costs, and the integrated network model is shown to be able to re-
duce costs. This however aggravates the computational burden, and
as such, methods to improve scalability and tractibility are developed.
This is done by decomposing the problem as per Benders decomposi-
tion and applying column generation. A heuristic warm-start is also
developed based on this approach. The performance enhancements
are compared to an integrated arc-based formulation.

Advances in Ethernet technologies have resulted in lower cost hard-
ware, scalable interfaces and flexible packet services, and together
with Wavelength Division Multiplexing (WDM) facilitates low cost
per bit transmissions. In order to demonstrate the flexibility of an
integrated multilayer network model, the general model is applied to
Ethernet over WDM networks.

Keywords: MILP, Benders decomposition, Column generation, Core
network planning, Ethernet, WDM,

iii

C O N T E N T S

1 introduction 1

1.1 Introduction 1

1.2 Motivation 3

1.3 Methodology 4

1.4 Validation and Verification 4

1.5 Contributions 5

1.6 Overview 5

2 preliminaries 7

2.1 Graph Theory 7

2.2 Time complexity 8

2.3 Linear Programming 11

2.4 Simplex method 12

2.5 Mixed Integer Programming 13

2.6 Branch and Bound 13

2.7 Benders Decomposition 15

2.7.1 Example 15

2.8 Local Search 17

2.9 Algorithmic Implementation 18

2.9.1 Graph data structures 18

2.9.2 Lookup 19

2.9.3 Graph search 19

3 background and literature 21

3.1 Background 21

3.1.1 Ethernet 21

3.1.2 Carrier Ethernet 22

3.1.3 Metro Ethernet Services 22

3.1.4 Architectures 23

3.1.5 WDM 25

3.1.6 Multiprotocol Label Switching 27

3.2 Literature 28

3.2.1 Network Planning 28

3.2.2 Mutlilayer Networks 29

3.2.3 Survivability 30

3.2.4 Decomposition and Heuristics 30

4 basic mathematical model 33

4.1 Introduction 33

4.2 Single-commmodity flow problems 33

4.3 Multicommodity flow problem 34

4.4 Capacitated Network Design 36

iv

contents v

4.4.1 The general flow problem 37

4.4.2 Example formulations 37

4.5 Travelling Salesman Problem 41

4.6 Basic multilayer formulation 42

4.7 Decomposition using Benders 44

4.8 Column generation 47

4.9 Path flow module based formulation 49

4.9.1 Example 52

4.10 Arc-flow module based formulation 55

4.11 Survivability 57

4.11.1 Single layer diversification 57

4.11.2 Multilayer diversification: Path formulation 59

4.11.3 Multilayer diversification: Arc model 62

5 computation 65

5.1 Heuristics 66

5.1.1 Limited paths 66

5.2 Strengthening cuts 67

5.3 Column generation improvements 68

5.3.1 Dijkstra 68

5.3.2 Removal of paths 70

5.4 Results 70

5.4.1 General model verification 70

5.4.2 Benders and column generation comparison with
arc-based 72

5.4.3 Benders decomposition with- and without warm-
start 73

5.4.4 Benders decomposition with- and without round-
ing cuts 73

5.4.5 Survivability 74

5.4.6 Larger problem instances 75

6 network models 77

6.1 Survivable DWDM 77

6.2 DWDM RWA 80

6.3 Ethernet over DWDM 82

6.3.1 Path model 84

6.3.2 Path model Decomposition 84

6.3.3 Arc Model 87

6.3.4 Top-down model 89

6.3.5 Results 90

7 conclusions 93

7.1 Results 93

7.2 Future Work 94

A C R O N Y M S

WDM Wavelength Division Multiplexing

GCE Google Cloud Engine

GUI Graphical User Interface

BWDM Bi-directional Wavelength Division Multiplexing

DWDM Dense Wavelength Division Multiplexing

CWDM Coarse Wavelength Division Multiplexing

SDH Synchronous Digital Hierarchy

SONET Synchronous Optical Networking

OADM Optical add-drop multiplexer

OXC Optical Cross-Connect

RWA Routing and Wavelength Assignment

MILP Mixed Integer Linear Programming

ILP Integer Linear Programming

LP Linear Program

IP Internet Protocol

MEF Metro Ethernet Forum

EVC Ethernet Virtual Connection

UNI User Network Interface

MAC Media Access Control

ECN Explicit Congestion Notification

TTL Time to live

MPLS Multiprotocol Label Switching

LAN Local Area Network

VLAN Virtual Local Area Network

WAN Wide Area Network

QOS Quality of Service

vii

viii acronyms

ATM Asynchronous Transfer Mode

SDH Synchronous Digital Hierarchy

MAN Metropolitan Area Network

OADM Optical Add Drop Multiplexer

CE Customer equipment

AP Access Point

UNI User-to-network interface

LSP Label switched path

LSR Label switched router

DA Destination address

SA Source address

SHR Self-healing Ring

MEN Metro Ethernet Network

TSP Travelling Salesman Problem

DAG Directed Acyclic Graph

DFS Depth First Search

BFS Bread First Search

API Application Programming Interface

SATNAC Southern Africa Telecommunication Networks and
Applications Conference

1 I N T R O D U C T I O N

1.1 introduction

Metro and core network providers are faced with ever-growing traf-
fic demands and consequently have to extend and upgrade their net-
works [1–3].

Advances in Ethernet technologies have resulted in lower cost hard-
ware, scalable interfaces and flexible packet services, and together
with WDM facilitates low cost per bit transmissions.

Ethernet has developed to be the dominant technology in Metro
networks, and the Metro Ethernet Forum (MEF) is devising Ether-
net standards in order to replace traditional technologies such as
Synchronous Digital Hierarchy (SDH) and Synchronous Optical Net-
working (SONET) [4,5]. In addition to the upper layer being Ethernet,
on the physical layer WDM is used with optical fiber as this reduces
fiber requirements. WDM allows multiple signals to be transmitted
over a single fiber by multiplexing multiple input signals onto the
fiber, each on a different wavelength.

Modern telecommunications networks are designed according to a
layered structure, with different layers encompassing different tech-
nologies.

When planning a multilayer network, operators commonly proceed
in a top-down fashion. The top-most layer is solved for the capacity
requirements, satisfying the demand requirements and other network
constraints. These solved capacities are then used as demands in the
next lower layer.

When solving a tradtional Internet Protocol (IP) network in a top
down approach, the IP layer is separated from the other layers. The
capacity of the IP layer is planned according to the traffic matrix
of the required IP network. The operator then determines the re-
quired bottom transport network based on the IP layer. According
to HUAWEI [6], this approach leads to wasted resources, difficulty
in meeting disjoint routing requirements, complicated network struc-
ture for future networks and an unnecessary increase in network de-
velopment costs.

The alternative approach is to model the network intrinsically as
multilayered. The integrated approach would contain hardware and
routing relations in each layer and include the layer interdependen-
cies in a single model. This has the disadvantage of being computa-
tionally intensive, and up until recently has not been viable.

1

2 introduction

1

2

3
4

5

6

1

2

3
4

5

6

physical

logical

Figure 1: A simple two layer network

A common approach is to model these problems as Mixed Integer
Linear Programming (MILP), which provides us with the best possi-
ble answer when minimizing the network cost. However the general
class integer programming problems is NP-hard [7]. Even as com-
puter technology becomes faster, the solver won’t be able to scale to
much larger instances.

With the advent of faster processing speeds and increased memory
capacity, these integrated multilayer models can be solved, however,
due to the complexity of these models, modern solvers still struggle.
For this reason, methods are investigated in this thesis in order to
improve computational tractability and scalability. In particular, de-
compositational approaches will be utilized.

This work focusses on minimizing the capital expenditure costs
for designing a green Ethernet over WDM fiber network. This ap-
proach incorporates the entire network, including all the layers in an
integrated fashion, in a MILP model. The model can then be solved
using a commercial solver such as IBM ILOG CPLEX [8].

Figure 1 is a depiction of a two-layer network. The red logical
link on the top most layer can be realized be sending data either
clockwise from node 1 to node 4 or counterclockwise. Depending on
the technologies involved the traffic can also be split to occupy both
paths. In this work, the physical paths are implicitly generated for
each logical link, instead of having to define them explicitly.

We compare the integrated multilayer model with the top-down
approach and show that the top-down approach yields suboptimal
answers. Network operators may in some instances save significantly
on network planning costs. There is a tradeoff, in which a more
accurate model increases the complexity, and hence number of con-
straints.

This work covers three main points:

• Developing a flexible approach to solving multilayer network
problems.

1.2 motivation 3

• Applying the general approach in order to develop different
Ethernet over WDM network models.

• Improving the scalability and performance of integrated multi-
layer network models by applying Bender’s decomposition and
column generation.

1.2 motivation

When planning a multilayer network, operators commonly proceed
in a top-down fashion. The top-most layer is solved for the capacity
requirements, satisfying the demand requirements and other network
constraints. These solved capacities are then used as demands in the
next lower layer.

This approach is problematic due to the following [6, 9]:

• Minimum Cost - Difficult to approximate the cost of a logical
link if the realization on the physical layer is not known.

• Survivability - A demand routed over a logically disjoint path
may not be disjoint on the physical layer.

• Routing - Uncoordinated routing between layers may result in
the top-most demand being routed several times over the phys-
ical layer.

As an example to the first point, when sequentially planning the
network, we do not know what the physical representation will be
when planning the logical layer. This is problematic because the ac-
tual physical costs may be much higher than the logical costs, leading
to sub-optimal minimization of cost.

With an integrated multilayer approach, the interdependencies are
combined into a single formulation. This approach is computation-
ally expensive, however, it avoids the problems presented above. The
use of MILP technology allows us to optimally solve the problem,
or if necessary, explicitly provide us with an optimality gap when
prematurely terminated.

The Ethernet over WDM network presented in this paper is mod-
eled using a MILP formulation. Furthermore, this work deviates from
previous work in the literature (such as [10]) by considering all possi-
ble paths implicitly, against having the physical path prespecified for
each logical link. Although this is computationally more expensive
it may improve the cost. The model is also formulated to represent
the network explicitly as a two-layer network, allowing for a separate
logical topology from the physical topology.

In order to reduce the performance and scalability divide between
the traditional approach, and the integrated multilayer approach, we
consider decomposition techniques.

4 introduction

1.3 methodology

The relevant work in the field of network planning is considered in
order to determine the current state of research in multilayer network
planning, particularly using MILP techniques.

A generic modular multilayer network model is developed in an
iterative manner. The model is decomposed in order to improve scal-
ability. The improved model is verified with the original on smaller
network instances. This generic model allows the capacity and cost of
network equipment to be specified in terms of modules and is suited
to a variety of network types and technologies. Survivability is added
to the model in terms of 1+1 protection in order to improve network
robustness.

The general model is modified to apply to WDM over Ethernet net-
works. A variety of different WDM and Ethernet network models
are considered, each with a different use case and specifications. The
WDM routing and wavelength assignment problem is considered as
well. Decomposition techniques are applied to these extended net-
work models as well in order to improve scalability.

The performance of different computational techniques and decom-
position approaches on multilayer networks are investigated in order
to determine their viability as well as performance.

Lastly we validate and verify the results delivered by the network
models.

1.4 validation and verification

In this work multilayer network models are developed, based on mul-
ticommodity flow problems.

Unfortunately there are no tests that can be applied to determine
whether a certain model is correct. No general procedure can be
applied, as it is context dependent. Developing a simulation relies on
understanding the underlying phenomena.

In order to verify the correctness of the models, we proceed as
follows:

• Investigate the underlying hardware used in Ethernet and WDM
networks, as well as the the different types of topologies.

• Investigate the common approaches to modelling network flow.

• Implement a multilayer network model that generalizes the above
two points.

• Verify that the implementation of the model is correct. This is
accomplished by developing two implementations and compar-
ing the results attained.

1.5 contributions 5

• Unit testing - Test the over a range of input parameters and
compare with the correct answer.

• Face validity - Determine whether the input output relationship
of the model is acceptable. A Graphical User Interface (GUI)
web interface is developed that can be used to plan multilayer
network interactively. The tool visually displays the potential
input network as well as the solution. When determining sur-
vivability, we ensure that there exists a backup path.

This framework is based on suggestions by Carson [11] and Sar-
gent [12].

We use the Haskell language in order to help ensure the implemen-
tation is robust and correct. Haskell has strong static typing1 based
on Hindley-Milner. In addition variables are immutable and func-
tions are pure2, which helps avoid many problems encountered in
concurrency and parallelism. Unit tests are also developed for spe-
cific parts of the CPLEX-Haskell library, as well as certain parts of
models.

In order to ensure that the mathematical models are correct, small
numerical models are worked out, in order to ascertain whether the
output makes sense for the given input. This also helps ensure the
implementation is correct. This also forms part of the face validation.

1.5 contributions

Some of the work mentioned here was featured in Southern Africa
Telecommunication Networks and Applications Conference (SATNAC):

• Initial multilayer network model, work in progress paper, De-
velopment of a Multi-Layer Model for Optimal Core Ethernet
Resource Planning [13].

• A multilayer approach for solving the Ethernet over WDM net-
work design problem [14].

1.6 overview

Chapter 2 aims to familiarize the reader with the relevant mathemat-
ical techniques and algorithmic approached employed in the paper.

Chapter 3 briefly covers the relevant technical background such as
network hardware and architecture relevant to core networks. The
chapter then covers related work and relevant research.

1 The compiler of a language with static typing has a static type checker that analyzes
the program to ensure the program satisfies some type safety properties. This is a
limited form of program verification

2 The return value of a pure function is only determined by its inputs

6 introduction

In Chapter 4 we develop a simple generic single layer network
model using the standard multicommodity flow approach. The single-
layer model is then extended to a generic multilayer model that incor-
porates demand routing and hardware constraints. The model is then
extended to cover survivability.

In Chapter 6 the model is extended to cover different WDM over
Ethernet networks. We model the logical layer as Ethernet with WDM
with wavelengths that can be installed over The model includes sur-
vivability constraints and the routing wavelength and assignment is
solved separately. A separate model is developed that emulates the
traditional layer-by-layer approach in order to demonstrate the gap
from optimality.

In Chapter 5 computational techniques are developed in order to
improve the scalability of the problem. In particular, Bender’s decom-
position is applied in order to reduce the number of constraints and
column generation is used in order to reduce the number of variables
currently in the basis. A simple primal heuristic based on Bender’s
decomposition is used in order to find a fast upper bound for the
problem. We see that some of the cuts can be rounded. To the au-
thor’s knowledge, this is the first work that uses a Bender’s frame-
work in order to solve a path-based multilayer model.

In Section 6.3 we discuss the results obtained by comparing the
top-down model with the integrated multilayer Ethernet over WDM
model. This comparison focusses on evaluating the difference in cap-
ital expenditure costs between the two approaches, reducing costs for
network planners.

In Section 5.4 we compare the performance benefits from using Ben-
ders decomposition with column generation over a generic arc-based
model. We also investigate some other techniques to improve the per-
formance, such as using a warm-start (improving the upper bound)
and strengthening the Benders cuts (improving the lower bound).

2 P R E L I M I N A R I E S

This chapter introduces the basic notions used in the process of net-
work planning and presents some fundamental ideas behind it.

2.1 graph theory

In network planning key concepts from Graph Theory are used. In
this section, we will briefly review some of these concepts and the
notation that will be used in the remainder of this thesis. Additionally,
we fix the terms and definitions used1.

Definition 2.1.1 (Graph). A graph G = (V ,E) consists of a set of vertices
V and a set of pairs of elements of V representing the edges E.

A simple graph has no loops or parallel edges in the same direction.
We will mainly be concerned with simple graphs.

A directed graph consists of a set of vertices V and a set of directed
edges E where the elements of the edges are ordered pairs of vertices.

Definition 2.1.2 (Walk). A walk is a finite sequence of the form:

vi0, ej1, vi1, ej2, . . . , ejk, vik

A walk is called open if vi0 6= vik, otherwise it is called close.

Definition 2.1.3 (Trail). A walk is called a trail if any edge is traversed at
most once.

Definition 2.1.4 (Path). A trail is a path if any vertex is visited at most
once.

Definition 2.1.5 (Connected Vertices). Vertices u and v are said te be
connected if there exists a walk that starts at u and ends at v.

From this it follows that connections are transitive, that is if u and
v are connected, and v and w are connected, then u and w are con-
nected.

Definition 2.1.6 (Connected Graph). A graph G is called connected if all
of the vertices of G are connected.

Definition 2.1.7 (Component). The subgraph G1 of graph G is a compo-
nent of G if G1 if:

1 In order to avoid ambiguity, as many authors have different definitions

7

8 preliminaries

• G1 is connected

• G1 is trivial or G1 is the subgraph induced by edges in G that have a
end vertex in G1

Definition 2.1.8 (Circuit). A closed path is called a circuit.

Definition 2.1.9 (Cycle). A closed trail is called a cycle. A Hamiltonian
cycle is a cycle that visits every node exactly once.

We present these graph theoretic terms as definitions, however in
the context of networks the same words may be reused with a looser
definition. This will be pointed out when necessary.

We start with the following, we present the following terms and
their relations with the stricter graph-theoretic version.

A network is a simple graph or digraph. The edges of a network
are undirected and correspond the edges of a graph. The arcs of a
network are similarly directed and correspond to the arcs of a graph.
A node or vertex corresponds to a location in the network. Hence edges
and arcs correspond to a connection between nodes. The term link is
commonly used to denote a connection on the logical layer of the
network and a edge is commonly used to denote a connection on the
physical layer of the network.

2.2 time complexity

The time complexity of an algorithm is a measure of the amount of
time taken by the algorithm as a function of the length of the input.
In this work, we use Big O notation in order to indicate the worst-case
running time. Formally one writes:

f(n) = O(g(n)), as n→∞
if and only if there exists some number M such that:

|f(n)| 6M|g(n)|, ∀n > n0

indicating that f(n) is less than some multiple of g(n), i.e. it is
bounded.

Algorithms can be classified depending on their running time. An
algorithm is said to take constant time (O(1)) when f(n) does not
depend on the size of the input. An algorithm is said to take log-
arithmic time when f(n) = O(logn). A linear time algorithm has
time complexity O(n). A polynomial time algorithm is bounded by a
polynomial expression, that is f(n) = O(nk).

The variable n representing the size of the input is taken to mean
the number of bits required to represent the input. Hence if the input
to an algorithm is a list of n 32bit numbers, then the number of bits

2.2 time complexity 9

would be x = 32n. For algorithms that operate on arrays or adjacency
lists the distinction is not noted, however it breaks down when an
algorithm operates on numbers.A prime number n

is a natural number
greater than 1, that

only has two
divisors, 1 and n

Consider the naive2 algorithm given by Algorithm 1 that computes
whether a number is prime or composite.

Algorithm 1 Naive algorithm to compute whether a number n is
prime

isprime(n)

1 for i ∈ {2, 3, . . . ,n− 1}

2 if n mod i = 0
3 return False
4 return True

Deceptively, one could think that this algorithm runs in polynomial
time, since the for loop runs in O(n) and the amount of work inside
the loop is at most polynomial as well, thus one could think that this
algorithm runs inO(nk) time, however the n used here is the numeric
value of the number, and not the number of bits used to represent the
number. Since n = 2x we actually have O(2kx). Thus the naive prime-
checking3 algorithm actually runs in pseudopolynomial time.

An algorithm is said to run in pseudopolynomial time if the runtime
is polynomial in the numeric value of the input, but exponential in
the number of bits of the input. Another example is the Knapsack
dynamic programming algorithm [15].

Theoretically big O describes only an upper bound. An algorithm
that runs in O(n) is also O(n2),O(n3),O(2n) and so on. Practically,
we sometimes want to know what the lowest upper bound is.

Similarly, the lower bound is given by Ω, thus an algorithm that
runs in Ω(n) is also Ω(log(n)) and Ω(1).
Θ is used when an algorithms upper bound and lower bound is the

same. Thus an algorithm is Θ(n) when it is Ω(n) and O(n).
In practice we tend to use the tightest big O bound, which is closer

Θ.
Algorithms may belong to different complexity classes. These classes

are commonly explained using the concept of a Turing Machine.
A Turing Machine is a machine that executes a tape of instructions

and contains infinite memory. The machine stores the current state,
and the next state is determined by the current state and the next
instruction to be read from the tape. A deterministic Turing Machine
may only advance to a single unique state after each instruction. In

2 There are many improvements that can be made, such as only checking up to
√
n

3 The AKS primality test is the first algorithm to check whether a number is prime in
actual polynomial time

10 preliminaries

contrast, a non-deterministic Turing Machine may advance to multi-
ple states after each instruction, simultaneously. A deterministic Tur-
ing Machine can be thought of as an idealistic computer with infinite
memory. It is a structure which allows computation, it does not spec-
ify additional details such as input and output. The executation time
of Turing Machines are used when determining complexity classes.

A complexity class contains a set of problems with similar resource
complexity; a set of problems that take a similar range of space or
time to solve. Problems are proven to be in a complexity class using
an abstract model of computation, such as a Turing Machine. There
is a large number of complexity classes, and the interested reader can
refer to Aaronson’s complexity zoo [16]. In this work we are mostly
concerned with problems in P, NP, NP-Complete and NP-Hard:

• The class P contains all decision problems solvable using a poly-
nomial amount of computation time.

• The class NP contains all decision problems for which the an-
swer can be verified by deterministic computations in polyno-
mial time. Equivalently said, the problem, only needs to be
solvable in polynomial time by a non-deterministic Turing ma-
chine.

• A problem x in NP, is said to be in NP-Complete if and only
if every problem other than x in NP can be reduced into x, in
polynomial time.

• A problem x is said to be in NP-Hard if and only if every algo-
rithm in NP can be reduced in polynomial time to x. Note that
x need not be in NP.

When we say reduce, we mean to apply a reduction. A reduction
is an algorithm for transforming one problem into another. Formally
A is reducible to B under F if:

∃f ∈ F . ∀x ∈N . x ∈ A ⇐⇒ f(x) ∈ B

Given subsets A,B ⊆ N, and F contains the set of functions f : N→ N.
Loosely, when given a problem Π, if there exists a polynomial time

reduction from Π to Θ, and we know that Θ is in P then we can
conclude that Π is in P as well.

Complexity classes are only determined for the domain of decision
problems, that is, a question in some system that can be answered bi-
nary, either yes or no dependent on the input. Most problems, includ-
ing the problems presented in this thesis, are not decision problems,
but optimization problems. In contrast to a decision problem, an op-
timization problem has the goal of finding the best possible answer
for the given input.

2.3 linear programming 11

There are standard reductions for transforming an optimization
into a decision problem, in most cases, when minimizing, we can ask
whether a solution exists that is at most K. Thus a bound is imposed
on the value to be optimized.

When talking about the time complexity of an optimization prob-
lem, what we really refer to, is the time complexity of the equivalent
decision problem.

2.3 linear programming

The problem of solving linear inequalities dates at least back to Fourier.
The Fourier-Motzkin elimination method is a method for eliminating
variables from a system of linear inequalities [17]. Linear program-
ming was only developed later, in order to obtain the best outcome
in a model subject to a certain criterion. The outcome and criterion
has to be linear.

Linear programming is an optimization technique whereby a prob-
lem is described by a linear objective function and linear inequality
constraints. A linear programming problem maximizes or minimizes
a linear function over a convex polyhedron4 that is specified by linear
constraints.

Linear programs are usually expressed in symmetric form as:

maximize cT~x

subject to Ax 6 ~b

~x > ~0

The objective function is a linear combination that is maximized or
minimized, and is subject to a set of constraints.

The original problem is commonly called the primal problem, and
the variables will be denoted primal as well.

Von Neumann introduced the theory of duality by relating linear
programming to his own work in game theory. Given a linear pro-
gram that is in symmetric form, we obtain the dual as:

minimize bT~y

subject to AT~y > ~c

~y > ~0

which contains dual variables, each corresponding to a row in the
constraints of the primal problem. Likewise, each variable in the
primal problem corresponds to a constraint in the dual problem.

Theorem 2.3.1 (Weak Duality). For any feasible solution ~x for the primal
problem, and ~y for the dual problem we have that:

cT~x 6 bT~y

4 In a convex polyhedron all interior angles are less than or equal to 180 degress

12 preliminaries

From which we can see that if the optimal objective value in the
primal tends to become infinitely large then the dual problem is not
feasible.

Theorem 2.3.2 (Strong Duality). The primal problem has an optimal solu-
tion if and only if the dual problem does. Given optimal solutions x̄ and ȳ
for the primal and dual respectively, then cT x̄ = bT ȳ

Lemma 2.3.1 (Farkas’ Lemma). For A ∈ RM×N and b ∈ RM then only
one of the following statements are true:

1. There exists a vector ~x ∈ RN, such that ~x > 0,A~x = ~b

2. There exists a vector ~y ∈ RM, such that ~bT~y < 0 and AT~y > 0

The proofs are not presented here, but the interested reader can
refer to popular texts such as [18–21]

2.4 simplex method

Dantzig invented the simplex method in order to solve these linear
programming models generally [22].

For a linear problem in the standard form

max cT~x

s.t. Ax 6 ~b

~x > ~0

The feasible region is defined by

s.t. Ax 6 ~b, ~x > ~0

and is a convex polytope. For a linear program in standard form, the
objective function has the maximal value inside the feasible region,
and in particular, the maximal value is on the extreme points of the
polytope.

When the objective function on an extreme point is not maximal,
-there exists an edge containing this point such that the objective func-
tion is strictly increasing on the edge away from the point [21].

The original simplex method has been shown to be exponential time,
however, it is efficient in practice [18]. More efficient versions of the
simplex algorithm exist, however, the ellipsoid algorithm was the first
algorithm to show worst-case polynomial time for linear program-
ming problems [23].

The precise steps can be found in [18]. Modern solvers implement
an improved version of the simplex method. Interior point methods
solve in polynomial time, although in practice the simplex method is
faster for most problems.

2.5 mixed integer programming 13

2.5 mixed integer programming

Linear programming allows us to determine the existence of optimal
solutions; if the feasible region of a problem is a convex polyhedron
then for a given convex objective function, the local minimum is the
global minimum5.

Linear programs can be solved efficiently, however, a large class of
problems cannot be modeled as such. Integer programming requires
that the decision variables be integral. Mixed integer programming
relaxes the need for variables to be only integral and allows variables
to be continuous as well. The branch and Bound method explores the
integer state space by constructing a tree [24], where the integrality
condition is first relaxed, and then bounded. Once bounded the prob-
lem is solved as a Linear Program (LP) problem. This allows a larger
number of problems to be solved, however integer programming as
well as mixed integer programming is shown to be NP-hard [7].

An Integer Linear Programming (ILP) in canonical form is expressed
as:

max cT~x

s.t. A~x 6 ~b

~x > ~0

~x ∈ Zn

The special form MILP is obtained when only some of the variables
are constrained to be integer.

max cTx+ fTy

s.t. A~x+B~y 6 b
~y > 0
~x > 0
~x ∈ Zn

2.6 branch and bound

Branch and Bound is an algorithmic paradigm that tries to find candi-
date solutions by searching through the search space in a systematic
manner [24]. The enumeration through the search space happens
in a tree like structure. The full solution space occurs at the root
node of the tree. Each branch of the tree constrains the problem and
represents a subset of the solution space; thus each node represents
the original problem with additional constraints. When enumerating
possible solutions, the branch is checked against the lower bound and

5 Likewise, the local maximum is the global maximum given a concave function

14 preliminaries

min x1 − 2x2
subject to
x1, x2 ∈ {0, 1}

...

min x1 − 2x2
subject to
x1, x2 ∈ R+

...

min x1 − 2x2
subject to
x2 ∈ R+

x1 = 0
...

min x1 − 2x2
subject to
x2 ∈ R+

x1 = 1
...

min x1 − 2x2
subject to
x1 = 0

x2 = 0
...

min x1 − 2x2
subject to
x1 = 0

x2 = 1
...

solve as continous problem

x1 = 1x1 = 0

x2 = 0 x2 = 1

Figure 2: Binary Branch and Bound Example

upper bound of the optimal solution, if the branch cannot produce a
better solution than the current best, it is discarded.

The Branch and Bound pattern is used in many different algo-
rithms. For the work considered here Branch and Bound is employed
for solving ILP and MILP problems. Since the Simplex algorithm is a
good fit to solve continuous LP problems, the task is to reduce a MILP
to a continuous linear programming problem that can be solved using
the Simplex method. In order to do so, each variable is constrained in
a branch; the branch variable is constrained to a specific value. When
all of the integer variables are fixed to a certain value, the branch
problem can be solved as a simple LP. Figure 2 shows an example of
a binary integer programming problem. At each node a variable is
constrained to a binary (or integer) value.

2.7 benders decomposition 15

2.7 benders decomposition

Benders decomposition is a technique for solving linear program-
ming problems that have a block structure. The problem is divided
into two subsets, the reduced master problem and the subproblem.
The solution of the reduced master problem is used in the subprob-
lem. If the subproblem determines the decisions are infeasible, then
Benders cuts are added to the master problem and the problem is
resolved until no cuts can be added.

According to [25], for a mixed integer programming problem in the
following format:

minx cTx+ fTy

subject to Ax+By > b
y ∈ Y
x > 0

The minimization problem can also be written as

min
y∈Y

[
fTy+ min

x>0
{cTx|Ax > b−By}

]
And the dual of the LP is given by:

maxu (b−By)Tu

subject to ATu 6 c
u > 0

The algorithm then proceeds as follows. If the difference between
the upper bound and the lower bound is some positive number ε,
we solve the subproblem (which is a LP). From the LP we obtain the
solution of the dual (which is easy to obtain using most solvers). The
benders cut z > (b − By)Tu is then added to the master problem.
The problem is then resolved. This is repeated until the difference
between the upper bound and lower bound is nonzero.

Thus a problem can be subdivided if it has a block-like structure.
In most of the cases in this work, Y = Z, that is the problem is parti-
tioned by keeping constraints containing integers in the master prob-
lem, and solving the subproblem as a LP.

2.7.1 Example

A simple problem is chosen in order to demonstrate the concept. The
integer variables will be separated.

The overall problem is to

16 preliminaries

min y1

s.t.

3x1 + 7x2 > 3y1

x1 + x2 > 10

y1 ∈ Z

x1, x2 ∈ R

The problem can be split into two parts, the integral reduced master
problem, and the real subproblem.

The goal of the reduced master problem is to

min y1 + z

z ∈ R

and the goal of the subproblem is to

min 0x1 + 0x2,

The subproblem is also subject to

3x1 + 7x2 > 3y
∗
1

x1 + x2 > 10

where y∗1 is the solved integer variable obtained from the master
problem. This can be obtained at a branch and bound node.

The primal subproblem has the dual form of

max 3y∗1a1 + 10a2,

s.t.

3a1 + 1a2 < 0

7a1 + 1a2 < 0

The Benders feasibility cut to add each iteration to the reduced
master problem, is then obtained as,

z > 3y1a
∗
1 + 10a

∗
2,

where a∗1 ∈ R∗,a∗2 ∈ R∗ are the solved solution variables of the
dual LP subproblem.

2.8 local search 17

2.8 local search

MILP may provide the optimal solution for linear programming prob-
lems with integer variables, however the running time may be unac-
ceptable for large instances. Local search is a heuristic method for
solving optimization problems. These methods cannot guarantee op-
timality, however they may find an initial solution quicker, or solve
larger problem instances easier. Local Search algorithms are also em-
ployed when there is a combinatorial explosion, as is common with
problems in the NP classes.

Local search algorithms include (but are not limited to):

1. Gradient Descent [26] - Finds the local minimum, by taking
steps in proportional to the negative of the gradient of the ob-
jective function.

2. Simulated Annealing [27] - Tries to find the state with least
amount of energy. The algorithm tries to avoid some local min-
ima in order to approximate the global optimum, it does so by
accepting worse solutions, however the probability of doing so
decreases over time.

3. Genetic Algorithms [28] - A metaheuristic based on the idea of
passing over genes and natural selection. A population of can-
didates are created, with each candidate representing a possible
solution. Candidates are subject to genetic operates which may
modify and alter them. Solutions are kept in the population
based on their fitness6.

Another class of local search algorithms would be expert system
algorithms. These algorithms try to emulate what a human expert
would do. While many local search algorithms such as Genetic Algo-
rithms are known as black box algorithms, as we cannot always see
how the problem is solved, expert systems are more transparent and
are usually comprised of a set of rules.

Local search algorithms and heuristics may be used to find a good
initial solution7 for the MILP problem, and in combination may pro-
vide a speedup. A solution is called a warm start solution, when
provided to the MILP solver as a starting point. In this work a heuris-
tic based on Benders Decomposition and Column generation is used
as a warmstart.

6 The fitness is determined by the objective function
7 The generated solutions would need to be faster, or yield a higher quality solution

than the initial solution generated by the solver in order to be of use

18 preliminaries

2.9 algorithmic implementation

The problems presented in this work are modelled as MILP problems,
and are solved using a special purpose high performance solver such
as CPLEX [8].

There are algorithmic subtleties involved, when doing Benders de-
composition and column generation, as a separate LP problem needs
to be solved at each Branch and Bound node. Details of this will be
expounded in later chapters. Some of the required underpinnings
will be presented henceforth in this section.

When solving a specific problem, the formulations are generated
programatically. The data is read and parsed, whereafter a MILP is
then generated and solved, via an Application Programming Inter-
face (API) that interacts with the solver. For some of the decomposi-
tions we require the ability to solve suproblems such as finding the
shortest path. Hence we require flexibility and utilize a programmatic
framework.

Since for the most part, the problems are based on graphs, we uti-
lize graph algorithms and data structures. Dijkstra’s algorithm is
covered in more detail in a later chapter, see Algorithm 4.

2.9.1 Graph data structures

Since a graph is a collection of nodes and edges, we need some data
structure to store nodes and their connections. Three common ways
of storing graphs are:

• Using an adjacency matrix

• Using an adjacency list

• Using objects and pointers

An adjacency matrix is a N×N boolean matrix where a true value
at (i, j) indicates an edge between i and j. In an undirected graph, the
matrix will be symmetric.

An adjacency list is an extendable array where arr[i] returns a list
of outgoing nodes from i. This is the preferred data structure for
sparse graphs. An adjacency list is only filled as necessary, whereas
an adjacency matrix would be filled with excessive zeroes.

In terms of space complexity an adjacency matrix takes up space on
the order of O(n2), while an adjacency list takes of O(n+m) where
n is the number of nodes and m is the number of edges.

For many search algorithms the list is more efficient, as in the ma-
trix the node’s row needs to be iterated through in order to find all of
its neighbors.

Objects and pointers represent the graph as an object. Each node
contains references to its children. This approach is not commonly

2.9 algorithmic implementation 19

used, as it is cumbersome to obtain an arbitrary node’s neighbors.
When using this approach, one would first need to traverse the graph
up to a certain node, in order to find its neighbors. Random access
representations are typically preferred.

2.9.2 Lookup

A graph G is determined by the pair (V ,E). A weight of an edge
is some quantity. It can be the length of the edge (the distance be-
tween the edge end nodes), or it could be a monetary cost associ-
ated with the edge or other measuruble quantities. These weights are
stored separately. Since an edge can be represented as a tuple (i, j)
we can use a data structure with fast lookup, either a search tree or a
hash table. A balanced binary search tree provides a lookup time of
O(log(n)) [29]. A hash table provides a worse time lookup of O(n),
however the amortized (averaged) lookup time is O(1)8.

In a search tree, the key for each node is greater than the keys of the
subtrees on the left, and less than those on the right. Thus a binary
search algorithm is commonly used to quickly lookup a key, running
in O(log(n)) time when the tree is balanced. In general we simply
need a preference (≺) between two elements in order to build a tree.

A hash table maps keys to values by using a hash function. The
hash function assigns each key to a unique bucket. Sometimes the
same hash is obtained for different keys, resulting in a collision, in
this case two (or more) values will occupy a bucket, this results in
a worse time lookup of O(n), though in practice a good hash table
facilitates lookup times of O(1) on average.

For a tuple of integers {(i, j), i ∈ Z, j ∈ Z} it is possible to define a
preference9, as well as a hash, so both methods can be employed as
a method to lookup the weight or length of an edge. In this manner
the weight of an edge in the graph can be quickly obtained.

In addition to providing quick lookup times for weights, hash ta-
bles can be used when storing MILP index variables and constraints.

2.9.3 Graph search

The two most common way of searching through a graph is with a
Depth First Search (DFS), or a Bread First Search (BFS). With a DFS
the search first goes deep - it explores all of the children first, recur-
sively, and then broad. A BFS first goes broad and then deep. With
the BFS each neighbors is visited, and only afterwards are the chil-
dren explored. Since BFS searches level by level, it can be used to

8 There is also a cost for hashing, which for tuples would be small, but for items with
dynamic input size such as strings a length variable would arise

9 One such preference could be the following, for a = (i, j),b = (k, l) with i < k or if
i = k and j < l then we can write a ≺ b

20 preliminaries

1

2 3

4 5 6 7

8

1

2 6

3 5 7 8

4

Figure 3: Example of DFS

1

2 3

4 5 6 7

8

1

2 3

4 5 6 7

8

Figure 4: Example of BFS

find the shortest path between two nodes, when distance is consid-
ered as the number of nodes hopped.

Both algorithms have a worst case time of O(|N|+ |E|), where |N| is
the amount of nodes and |E| is the amount of edges.

DFS has a convenient recursive implementation and can be modi-
fied to find all paths between two nodes.

Figure 3 shows the order in which a DFS algorithm visits nodes
on an example tree, likewise figure 4 shows the order in which a
BFS would visit nodes. The orange colored boxes denote the numeric
order.

In this work a backtracking graph search algorithm is used to find
all paths connecting a b for a commodity k = (a,b). These commod-
ity paths are used in the vanilla path-based formulations.

3 B A C KG R O U N D A N D
L I T E R AT U R E

3.1 background

3.1.1 Ethernet

Ethernet refers to a family of local-area network technologies that
is covered by the IEEE 802.3 standard. Data is divided into pieces
called frames when transmitted over Ethernet. The frame contains the
source and destination address, error checking data, protocol headers
and the payload.

Traditionally Ethernet was mostly used in Local Area Networks
(LANs). A LAN is a computer network that interconnects devices
within a limited area such as an office, laboratory or residence. The
transmission speeds of Ethernet is continually improving and is start-
ing to facilitate use cases that require greater distance. Carrier Eth-
ernet is a high-bandwidth Ethernet Technology that provides connec-
tivity to government, business and academic networks.

There are several architectures available to carry Ethernet frames
across metro networks, with the two popular approaches in the indus-
try being either using MPLS as the transport technology or extend-
ing the native Ethernet protocol (Provider Bridged Networks) [30].
Metropolitan Ethernet is Carrier Ethernet in a metropolitan area net-
work. In addition to the greater speeds provided by Carrier Ethernet,
Metro Ethernet employes bandwidth management and other control
functionality. Metro Ethernet is used to connect LANs to a WAN.

Ethernet brings with it improved properties such as cost effective-
ness, rapid provisioning, ease of interworking and good adoption
along with it [31]. The focus of Metro Ethernet is to provide solutions
for the shortcomings of Ethernet such that it can be used in the enter-
prise domain. Some of these shortcomings include lack of Quality of
Service (QOS) guarentees, protection mechanisms and performance
monitoring.

Most connections between LANs are still performed by a combina-
tion of Asynchronous Transfer Mode (ATM) or SDH whereby layer
3 packets are transported. New technologies in Carrier and Metro
Ethernet will extend the reach supported of Ethernet and will allow
point to point connections. This will yield cost benefits as the net-
work design will be simplified and the number of layers will be re-
duced, resulting in a more scalable homogeneous Metropolitan Area
Network (MAN) [32].

21

22 background and literature

MEN
UNI

UNI

UNI
CE

CE

CE

Figure 5: Simple metro ethernet network

3.1.2 Carrier Ethernet

Carrier Ethernet is Ethernet that has been developed from regular
Ethernet employed in local area networks, but is aimed specifically
for use in a wide area. Carrier Ethernet has a number of modifications
in order to be suited for this wide transport application, namely [33]:

• Enhanced equipment redundency.

• Traffic engineering techniques to scale network services.

• Implementation of Ethernet services such as virtual private LAN
services that facilitates multipoint Ethernet.

3.1.3 Metro Ethernet Services

An Ethernet service is provided by a Metro Ethernet Network (MEN)
provider. In a standard network the Customer equipment (CE) con-
nects to a User-to-network interface (UNI) using a standard Ethernet
interface. This is depicted in figure 5.

Ethernet Virtual Connection

Inside a metro network connectivity between UNI is provided by a
Ethernet Virtual Connection. The actual connectivity of the virtual
connection is provided by a lower layer architecture such as SDH
or WDM, however the perspective of the subscriber is that the the
network is Ethernet based.

3.1 background 23

MEN UNI

CE CE
point-to-point EVC

Figure 6: Example of ethernet line service

Ethernet Virtual Connection

A Ethernet Virtual Connection (EVC) is a connection between two or
more UNIs. The EVC connects two or more UNIs and allows Ethernet
service frames to be transferred between them. Similarly data transfer
is disallowed between UNIs that are not part of the EVC. An EVC
may be used to construct a private layer 2 line, and this may be point-
to-point or multipoint-to-multipoint.

Ethernet Line Service

The Ethernet Line Service provides a point-to-point EVC between
two UNIs. This is depicted in figure 6. The service may be multi-
plexed and more than one line service may be offered at one of the
UNIs. Service frames may also be relayed, allowing two UNI to be
connected through another UNI. This allows the creation of more
complex topologies such as ring networks.

Ethernet LAN Service

In contrast to the Ethernet Line Servce, The Ethernet LAN Service
provides multipoint connectivity for UNIs. Data sent from a UNI
can be received by the other connected UNIs. Each UNI is connected
to a multipoint EVC. Thus the MEN is viewed as a conventional
LAN from the point of view of the subscriber. Similar to the Ethernet
Line Service, the Ethernet LAN Service may provide multiplexing at
the ports of some of the connected UNIs. An example is shown in
figure 7. It is important to note that when connecting multiple UNIs,
they share the same EVC under the Ethernet LAN Service; when
connecting multiple UNIs under the Ethernet Line Service, a separate
EVC is required for each UNI. Such as Ethernet Line Service scheme
with frame relay used to construct a LAN is shown in figure 8.

3.1.4 Architectures

Ring topologies are the preferred architecture by architectures for im-
plementing MAN networks as they are easier to deploy and manage
than meshed networks.

24 background and literature

MEN
UNI

UNI

UNI

CE

CE

CE

multipoint to

multipoint EVC

Figure 7: Example of Ethernet LAN Service

UNI

UNI

UNI

CE

CE

CE

Frame relay

Figure 8: Frame relay on Ethernet Line Service

3.1 background 25

Figure 9: Example of SHR
Figure 10: Example of a fully meshed

network

Self-healing ring

A Self-healing Ring (SHR) is a circular network topology. Using a
loop structure provides redundency. In a circular network structure,
when an edge fails, there is still a backup path in the other direc-
tion. The system contains bidirectional links between any two nodes.
Under normal operating conditions, network traffic is sent from the
source along the shortest path toward the destination. In the event
of a node loss, or when a link gets severed, the traffic can be routed
through the other direction in the loop. This provides survivability
to the network. Figure 9 shows an example of such a ring.

Meshed network

In a mesh network topology, each node relays data to other nodes in
the network. Routing is employed in order to direct packets to the
correct destination.

A fully meshed network is a topology where each node is linked to
every other node. When a node or link is broken, a routing algorithm
ensures that the message is propagated along another path. The num-
ber of links, increases rapidly as the number of nodes increase, hence
a similar rapid increase in cost follows. Figure 10 shows an example
of such a network. A fully meshed network provides a high degree
of survivability and robustness.

3.1.5 WDM

WDM provides multiplexing for fiber-optic networks. WDM uses
multiplexing to join several signals together, and a demultiplexing
to recover individual signals; see figure 11. The optical signals are
multiplexed onto a optical fiber using different wavelengths. This
allows network providers to easily add bidirectional communication
on a single fiber, as well as upgrading the capacity of existing fiber
installations.

26 background and literature

Optical Fiber

Transponders
MUX DEMUX

Transponders

Signal 1

Signal 2

Signal 3

Signal 4

Signal 1

Signal 2

Signal 3

Signal 4

Figure 11: Example of WDM system

Different types of WDM systems exist such as Bi-directional Wave-
length Division Multiplexing (BWDM), Coarse Wavelength Division
Multiplexing (CWDM) and Dense Wavelength Division Multiplex-
ing (DWDM). BWDM is commonly referred to as just WDM and
uses two wavelengths on a single fiber. CWDM provides up to 16

channels. DWDM uses the least amount of spacing between wave-
lengths and provides the most number of channels, usually 40 or 80.
New technologies such as Ultra Dense are being developed that may
allow up to 12.5GHz spacing between channels.

WDM offers a low cost per bit transmission capability. When using
Ethernet over WDM an arbitrary logical Ethernet topology is used
that is based on WDM lightpaths, which is independent of the under-
lying physical topology.

Many service providers are moving away from SONET/SDH net-
works towards DWDM networks, as this reduces fiber requirements.
WDM allows multiple signals to be transmitted over a single fibre by
encompassing each on a different wavelength.

Siemans has estimated that the capital savings of Ethernet over
DWDM to be approximately 40% [34], and up to 70% capital sav-
ing when Carrier Ethernet replaces legacy ATM access networks. Sie-
mans identifies 5 reasons why network providers should consider
Ethernet switching on top of DWDM [34]:

1. Reducing network layers, which also reduces equipment costs.

2. Improve better bandwidth efficiency.

3. Simplify End-to-End provisioning.

4. Better network management and reduction in operating expenses.

5. Better detection of network problems.

Two configurations are commonly used:

1. Opaque - Lightpaths terminate at each node and there is no
transparent bypass, hence the logical topology mimicks the phys-
ical topology.

2. Meshed - Transparent bypass of lightpaths through optical nodes.
This is accomplished using reconfigurable optical add drop mul-
tiplexers or optical crossconnects.

3.1 background 27

WDM devices provide multiplexing and demultiplexing capability
and operate at the nodes of the network. Some of these devices have
simple functionality such as retransmitting or regenerating the signal,
others allow wavelength channels to be added or dropped.

1. Optical Add Drop Multiplexer (OADM) - This device is used in
WDM systems for multiplexing and routing channels of light
into or out of a single mode fiber. A reconfigurable OADM
consists of remotely configurable optical switches in the middle
stage. An OADM can be viewed as a Optical Cross-Connect
(OXC) with a to-node-degree of two. The device has the capa-
bility to add (or drop) wavelength channels to an existing WDM
signal. In this work these devices are sometimes referred to as
optical nodes

2. Optical Cross-Connect - A device to switch high speed opticals
signals in fiber network. Different types exist, namely:

• Opaque OXC - Optical input signals are converted into
electric signals. Optical signals are converted to electronic
signals, these electronic signals are switched by an elec-
tronic switch module which are lastly converted back into
optical signals. These devices are not transparent to the
network protocols used, however they have the advantage
of regenerating the optical signal.

• Photonic cross connect - Transparent OXC - Demultiplexes
optical signals; these wavelengths are switched by optical
switch modules where afterwards they are multiplexed on
the output fibers by optical multiplexers.

• Translucent OXCs - Combination of Opaque OXC and Trans-
parent OXC. Is capable of regenerating the signal when
needed and provides optical signal transparency otherwise.

3.1.6 Multiprotocol Label Switching

Multiprotocol Label Switching (MPLS) is a data carrying technique
that directs data from a one node to another based on short path la-
bels. These labels identify virtual links between nodes. MPLS is capa-
ble of encapsulating various different network protocols and supports
a range of access technologies.

A Label switch router is located in the middle of the network and
is responsible for switching the labels and routing the packets. The
router uses the label and looks up the Label switched path (LSP) from
a lookup and swaps the original label with the new corresponding
label indicating the next hop.

A Label edge router operates at the edges of the MPLS network.
The router either pushes a label if it acts as an entry point (ingress)

28 background and literature

or pops the label if it acts as an exit point (egress). An egress router
needs to contain routing information based on the packets’ payload
(since there are no labels left to lookup).

3.2 literature

In this section we briefly review work in the network planning litera-
ture, as well as related work on multilayer network planning.

3.2.1 Network Planning

Mixed Integer Linear Programming (MILP) can be used in network
planning to solve a variety of problems, including minimization of
energy consumption [35], survivability [36, 37], minimization of capi-
tal expenditure [9,38], traffic engineering [39], dimensioning [40] and
so on. Other methods such as heuristics exist to solve these problems,
however an exact framework such as MILP provides the optimal so-
lution for the model, and for large instances not solved in time, may
provide the percentage gap from optimality.

Most commonly networks are modelled as a multicommodity flow
problem, Gendron et al. [41] provides further information and possi-
ble formulations of capicated multicommodity flow problems in net-
work design.

In this work we are mostly concerned with determining the optimal
topology for which the capital expenditure cost is minimal. The net-
work is then realized using multicommodity flow optimization [41].

Three main steps are commonly involved in the network planning
process:

• Topological design - Determinining the topology of the network
and what components and network devices to utilize.

• Network synthesis - Determining the specifications of the com-
ponents used and the performance criteria, as well as transmis-
sion costs and routing details.

• Network realization - Determining the capacity requirements
and reliability of the network.

In this work we are mostly concerned with the topological design
of the network and the network realization, though some parts of
the network synthesis may feature as well. We incorporate ideas
from Graph Theory and Discrete Optimization when planning the
network.

3.2 literature 29

3.2.2 Mutlilayer Networks

Network planning research has traditionally focussed on single layer
planning even though networks were practically composed of multi-
ple layers. Only recently has computational power increased enough
in order to solve multiple layered network models.

Orlowski and Wessäly [9] proposed a model that integrates hard-
ware, capacity, routing, and grooming decisions. The focus is on
multiplexing and grooming. The goal is to minimize the capital ex-
penditure costs. No computational results are provided. Idzikowski
et al. [42] proposed an IP over WDM model. The objective is to min-
imize power consumption. The model is based on a single layer arc-
based formulation with network equipment constraints and is based
on previous work by Orlowski [10].

Engel and Autenrieth [43] proposed a multilayer network for mini-
mizing cost for a network provided by Swisscom. They found that the
cost of the IP layer topology is dependend on the ratio of equipment
costs and recommend keeping the topology as a design parameter.
The actual model, however, is not provided.

Kubilanskas et al. [44] develop three formulations for two-layer net-
works that carry elastic traffic. Network flow can be reconfigured on
the case of link failures.

Rizzelli et al. [35] present an IP over WDM MILP model with a
arc-based formulation for minimizing power consumption. They ac-
count for equipment and include rack/shelf model of the IP layer.
Wavelength assignment is also included. The study finds that the IP
layer accounts for the majority of the power usage. The authors of
the study do not explicitely formulate the model as multilayer.

Baier et al. [45] evaluate a metro ethernet ring network. An arc-
based formulation is used in order to minimize the cost of installed
network cards. The network is protected against single link failures
by incorporating 1+1 protection in the model. It was found that for
transparent networks the connection-oriented Transport Ethernet is
more cost-efficient. When accounting for equal survivability require-
ments Transport Ethernet was found to be more cost-efficient in both
cases.

With the exception of Orlowski [9, 10] most of the literature does
not explicitely model multiple layers. Some work such as [10] ex-
plicitely define possible physical paths for each logical link. This has
the advantage of reducing computational requirements, but results
in a higher objective value when minimizing cost. In this work possi-
ble physical paths are generated implicitely for logical links, and any
physical path may be used that shares the same node endpoints as
the logical link.

30 background and literature

3.2.3 Survivability

Network survivability, is the ability of the network to remain opera-
tional in the event that one or more network components fail, and is
critical in present day networks.

The two main models of survivability used in the MILP network
literature are dedicated 1+1 protection and diversification. Protection
is often given against single link failures, as the introduction of addi-
tional survivability requirements increases computational effort. This
is the motivation behind work such as [46] which uses decomposition
techniques and primal heuristics in order to improve the scalability
of models that include survivability.

The dedicated 1+1 protection used in this work, sends double the
amount of flow d required (i.e. 2d is sent), and ensures that the
maximum flow over a link not exceed d. This ensures that should
a link fail, a backup path exists over which the required flow may
traverse. This approach is used in [36].

Alternatively diversification may be used, this limits the maximum
flow over a link to a certain percentage λ. In the event of a link failure,
the demand may not be fully satisfied, however some part of it would
remain intact. This approach is used in Terblanche et al. [38] and is
used in some of the models in this work.

3.2.4 Decomposition and Heuristics

The general problem of integer programming is as hard as the hardest
problems in NP [7, 47]. Thus much work is dedicated to improving
scalability.

MILP models may have a large number of constraints and vari-
ables. A greater burden is placed on the solver when there are more
constraints and variables. Cutting plane methods focus on reducing
the number of constraints and column generation focus on reducing
the number of variables.

Lagrangian relaxion1 [48] penalizes violations of inequality con-
straints using a Lagrange multiplier. These added costs are then used
in place of the inequality constraints in the original problem. Benders
decomposition [49] is a technique for solving large problems which
have a block structure, such as many MILP problems. Benders de-
composition is a type of row-generation technique since it adds more
constraints to the problem as it progresses toward a solution. As
such it may reduce the number of constraints of the master problem.
The general technique is explained in Chapter 2. Column genera-
tion [50, 51] is used to solve problems where there are a large num-
ber of variables and the technique tries to determine which variables
should be in the basis.

1 A relaxation approximates the problem to a easier version

3.2 literature 31

Fortz and Poss [52] present a general multilayer network model
that is based on an path flow formulation. They employ Benders
decomposition as well as mixed integer rounding cuts in order to
speed up the algorithm. A similar approach is used in this work.

The authors of [46] present a general single-layer multicommodity
flow problem that incorporates survivability. They study the case
of a single node or edge failure in which the flow will be rerouted.
Benders decomposition and column generation is used in order to
improve scalability. In addition, a primal heuristic is proposed which
derives a feasible integer solution from a non-feasible one.

4 B A S I C M AT H E M AT I C A L M O D E L

4.1 introduction

Optimally designing several layers in an integrated step has not been
possible until recently due to a lack of suitable mathematical models,
algorithms, and computing power.

A common approach in practice has thus been to decompose the
multilayer planning problem into a series of singlelayer planning
problems: first, the topology, capacities, and routing are planned in
the topmost layer; the capacities of this layer then have to be routed
as demands in the next lower layer, and capacities have to be deter-
mined for this routing, and so on.

As stated previously, planning a network layer by layer results in
several inefficencies. When layer by layer network planning is used
to build a transport network with IP, the IP services need to be for-
warded at intermediate routers. This results in demand for increased
capacity of the core routers. The increase in capacity of IP layer
equipment leads to demand for large capacity of the optical trans-
port equipment at the bottom layer. This results in a larger than nec-
essary capital expenditure cost in network construction for operators.
As mentioned previously, further difficulties are encountered when
trying to keep the physical routing paths disjoint when planning the
logical layer.

In this chapter we develop a basic, general mathematical formula-
tion for Multilayer networks. The multilayer model is based on the
multicommodity flow problem, extended to multiple layers. On each
layer equipment is encapsulated by modules, which provide capacity
to the network at a certain cost. The goal of these models, is to mini-
mize the capital expenditure costs; the total network equipment cost.
The problem is formulated as an arc-based formulation and a path-
based formulation. The advantage of the path based formulation is
that we can decompose the problem using Bender’s decomposition
and column generation in order to improve scalability on larger prob-
lem instances.

4.2 single-commmodity flow problems

A flow network is a directed graph where each edge has a capacity
and a flow may traverse over each edge. The amount of flow over
an edge may not exceed the capacity. The amount of flow into a

33

34 basic mathematical model

Figure 12: A simple network graph with a source and target

node must equal the amount of flow out of the node, that is, the
amount of flow must be conserved. The flow network can be used to
model many use cases, such as traffic systems, eletric circuits, fluids,
circulation and network traffic.

In the case of the singlecommodity flow problem, a source may
only have net positive outgoing flow, and a sink (or target) may only
have net positive incoming flow. The source and target pair is com-
monly known as a commodity. In the singlecommodity maximum
flow problem the goal is to obtain the maximum amount of flow be-
tween the source and target.

Given a graph G = (N,A), we want to maximize the total flow,
given that the flow fij may not exceed the capacity uij over arc ij.
The goal is to,

max F, (4.1)

subject to conserving the flow (4.2) and restricting the flow to be
less than the capacity (4.3), that is,

∑
j∈N

fij −
∑
j∈N

fji =


F i = s

−F i = t

0 else

, ∀i ∈ N (4.2)

0 6 fij 6 uij, ∀ij ∈ A, (4.3)

where A is the set of all arcs.
The problem, formulated as a LP, can be solved by the simplex

method. However, a more efficient algoritm such as the Ford-Fulkerson
algorithm is commonly used [53].

4.3 multicommodity flow problem

Many problems commonly have more than a single commodity, in
which case the problems are referred to as multicommodity flow

4.3 multicommodity flow problem 35

problems. In most of the network problems discussed in this work,
the cost will be minimized, as is the case of this example as well.
For the multicommodity flow problem, the Ford-Fulkerson algorithm
cannot be applied anymore, and the problem is commonly solved us-
ing LP.

Given a graph G = (N,E), we want to minimize the total cost, given
that each edge e ∈ E has a cost ce associated with it.

A commodity k ∈ K is a pair (a,b), a ∈ N,b ∈ N with a specific
demand dk that needs to be satisfied, with K denoting the set of all
commodities.

In the single-commodity case, flow was modelled over edges. An
alternative approach is to model the flow over paths. The former
is commonly called a arc-based based formulation and the latter is
known as a path-based based formulation1.

A graph theoretic path is written as a finite sequence of the form
(recall section 2.1)

vi0, ej1, vi1, ej2, . . . , ejk, vik

where each edge and vertex is traversed at most once (except possibly
the start and end vertices). For notational convenience we commonly
only write the edges, e.g. {e1, e2, . . . , en}, as it is usually clear in
which direction the path is going and we only consider simple graphs
without parallel edges.

SMC (Singlelayer Multicommodity):
The objective is to

min
∑
a∈E

caua, (4.4)

s.t. ∑
p∈Pk

fp = dk, ∀k ∈ K, (4.5)

∑
p∈Pa

fp 6 ua, ∀a ∈ E. (4.6)

The set of paths P contains all paths of the graph. The set Pk
contains all paths for commodity k, and the set Pa contains all paths
that go over over edge a. Constraint set (4.5) requires the sum of
flow for each commodity to match the required demand. Constraint
set (4.6) indicates that the capacity on edge e must be greater (or
equal) to the sum of flows over that edge. This is similar to the single
commodity case, however each commodity pair k = (s, t) contains a
demand dk that is required to flow from s to t. Intuitively, we try to
minimize the required capacity over each edge, while still trying to

1 This is sometimes abbreviated as just a path or arc formulation

36 basic mathematical model

match the demand for each commodity. For a commodity k = (s, e)
the paths can be generated using DFS or BFS, see section 5.1.1 for an
example algorithm. Generating all paths is computationally difficult
for most problems. Column generation will be applied later in order
to generate paths only when necessary.

4.4 capacitated network design

The two models of sections 4.3 and 4.2 are capacitated network prob-
lems. The realized flow over an edge may not exceed the capacity.
The network structure is hence determined by the installed capacities.
Similarly nodes may also have capacities which may not be exceeded.
The network is said to support the demand if there exist a set of flows
which do not exceed the respective capacities. In capacitated network
design we try to find the optimal capacities that support the demand,
for a given objective function [54]. The capacities are commonly inte-
ger. Thus the structure of the Capacitied Network Design problem is
commonly:

CND (Capacitated Network Design):
The goal is to

min
∑
a∈E

caua, (4.7)

s.t. ∑
p∈Pk

fp = dk, ∀k ∈ K, (4.8)

∑
p∈Pa

fp 6 ua, ∀a ∈ E, (4.9)

with ua ∈N

When the integrality constraint on the capacity is removed, the
problem reduces to |K| shortest path problems. The LP is then solved
by sending each demand k = (s, t) from s to t over the shortest path
on a graph with with weights ca

With the integrality constraint the structure is much more difficult
computationally and this depends on the actual data of the prob-
lem. From Chopra [55] we know that CND is NP-hard. Furthermore,
the lower bound of the LP relaxation2 is weak, which will cause the
branch and bound tree to be large.

By applying Farkas’ lemma (Eq (2.3.1)) to the LP relaxation of CND
we obtain the Japanese theorem

2 Removing the constraint that requires the variables to be integer

4.4 capacitated network design 37

Theorem 4.4.1 (Japanese theorem). The capacity vector u supports the
demand iff

∑
a inE

µaua 6
∑
k∈K

lµ(k)dk

Where lµ(k) is the shortest path of between the end points of commodity
k with respect to weights µ

The Japanese theorem is used when applying Bender’s decompo-
sition to the path-based formulation of multi commidity flow prob-
lems.

4.4.1 The general flow problem

Given a directed graph G = (V ,A) with capacities ua for each arc a
∈ A. Given two nodes s, t ∈ V we wish to find a flow that fulfills
the following constraint:∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = 0, ∀ v ∈ V\{s, t}

where δ+(v) = {(v,w) ∈ A} and δ−(v) = {(w, v) ∈ A} which represent
in the in-arc and out-arcs respectively, and the vector x is called a
flow.

The flow is feasible if:

xa 6 ua ∀ a ∈ A

One can alternatively formulate the constraints using paths. Let
Pst be the set of all paths from s to t and let Pa be a subset for which
each path p ∈ Pa has a ∈ p.

Thus a feasible path flow is one that:∑
p∈Pa

fp 6 ua, ∀ a ∈ A

Figure 13 shows a simple solution of a capacitated singlecommod-
ity flow problem. The edge labels denote the cost. For a given de-
mand, either the mid path or the bottom path (shown in red), for
commodity (A,B) would be used3, as they have the lowest cost.

4.4.2 Example formulations

Aside from the previously covered multicommodity and singlecom-
modity formulations, we present below a few other capacitated for-
mulations, which are presented below.

3 Or possibly both, with the flow being divided

38 basic mathematical model

5

5

5

20

20

20 15

5

5

5

20

20

20 15

A B

Figure 13: Example solution of capacitated singlecommodity flow problem

Maximum flow arc-based formulation

Using arcs, the multicommodity problem is formulated as,

max
k∑
i=1

 ∑
a∈δ+(si)

xia −
∑

a∈δ−(si)

xia


s.t. ∑

a∈δ+(v)

xia −
∑

a∈δ−(v)

xia = 0, ∀ v ∈ V\{s, t}, i ∈ K,

k∑
i=1

xia 6 ua, ∀ a ∈ A,

xia > 0, ∀ a ∈ A, i ∈ K.

Maximum flow path-based formulation

Using paths, the previously mentioned singlecommodity problem
(section 4.2) is formulated as

max
∑
p∈P

fp,

s.t.

max
∑
p∈Pa

fp 6 ua, ∀ a ∈ A,

0 6 fp, ∀ p ∈ P.

4.4 capacitated network design 39

Minimum cost multicommodity flow

Commonly we want to minimize the capacity needed. For each flow
there is a cost ca for each a ∈ A involved. The demand for flow needs
to be satisfied for demand values dk > 0 for k ∈ K. Hence the goal is
to

min
∑
p∈P

∑
a∈p

cafp,

s.t. ∑
p∈Pk

fp = dk, ∀ k ∈ K

∑
p∈Pa

fp 6 ua, ∀ a ∈ A,

0 6 fp, ∀ p ∈ P.

A minimum capacity cost formulation

Capacity is commonly an expensive resource and has a cost associ-
ated with it. In place of flow having a cost, the installed capacity has
a cost, and we wish to minimize the installed capacity.

For each arc a ∈ A we have a cost ca.
The goal is to

min
∑
a∈A

caua

where ua is the capacity of edge a,
s.t. ∑

p∈P
fp = dk, ∀k ∈ K,

∑
p∈Pa

fp − ua 6 0, ∀a ∈ A,

where Pa = {p ∈ P : a ∈ p}, with bounds

ua ∈ Z+, ∀ a ∈ A,

fp > 0, ∀ p ∈ P.

The problem is a MILP as the capacities are positive integers
Figure 14 shows an example simple singlecommodity network, which

will be used to demonstrate the formulation. Note that a singlecom-
modity network is a multi commodity network with |K| = 1.

For the example, let us assume the following:

40 basic mathematical model

Figure 14: Example singlecommodity network

• There is a single commodity consisting of nodes A and B with
a demand of d0

• For each edge i there exists a cost ci per unit capacity.

For each edge, there exists a capacity to be solved. The capacities
will be given by u1,u2,u3,u4,u5,u6 for edges e1, e2, e3, e4, e5, e6.

From the example we can see that there are three paths from A to
B. The first path consists of p1 = {A, e1,C, e4,E}, the second path
consists of p2 = {A, e3,D, e6,E}, and the last path consists of p3 =

{A, e2,B, e5,E}. There exists a flow variable fi for each path i, which
for the example will be f1, f2, f3 for the respective paths.

The decision variables are the flow fi and the capacities ua. These
are the variables to be solved. The inputs are the costs of each edge
ca and the demand for the commodity.

Thus, the example can be formulated as:

min
6∑
i=1

ciui

s.t.

f1 + f2 + f3 = d0

f1 6 u1

f1 6 u4

f2 6 u3

f2 6 u6

f3 6 u2

f3 6 u5

with ui being positive integers and the flows being real numbers
greater or equal to zero.

4.5 travelling salesman problem 41

Here the flow over a path may not exceed the capacity of any con-
stituent edge.

When we have values for the costs and demands, the problem can
be given to a MILP solver, which will utilize the branch and bound
method together with the simplex method, in order to calculate the
flows and capacities.

This is an extremely simple example; even this basic formulation
can be slow to solve for larger problem instances4.

For more commodities and larger graphs it becomes extremely
difficult to enumerate all of the possible paths, and hence an arc-
formulation is preferable. Alternatively the problem can be decom-
posed and column generation can be used, to only calculate the paths
as necessary. This will be explained in later sections.

4.5 travelling salesman problem

The Travelling Salesman Problem (TSP) can be phrased as follows:
given a list of cities, and the distance between each pair of cities, what
is the shortest route that visits each city exactly once, and returns to
the starting city?

The solution to the problem is the Hamiltonian cycle with the least
weight. The problem can be formuled as a integer linear program:

min
N∑
i=0

N∑
j=1,j6=i

cijxij

s.t.

N∑
i=1,i 6=j

xij = 1, ∀j ∈ S

N∑
j=1,j6=i

xij = 1, ∀i ∈ S

ui − uj +Nxij 6 n− 1, 2 6 i 6= j 6 N

ui ∈ Z

Where S = {1, 2, . . . ,N} and xij ∈ {0, 1} equals 1 when there is a
path from i to j and 0 otherwise.

The problem has signficance as it is related to survivability in later
sections, although not explicitely used. The physical layer of Metro
networks is commonly a ring structure, and each commodity pair
needs to be connected.

4 A general problem for NP problems as they face the combinatorial explosion

42 basic mathematical model

Figure 15: A cycle, with the top edge being broken

Figure 16: A salesman wanting to travel to of his destination cities and back

Survivability through 1+1 can be achieved by constructing a cycle
through all of the required nodes. The required nodes are the com-
modities on the logical layer, and the logical layer links on the physi-
cal layer. This, however, is a heuristic approach, as there may possibil-
ities to share cycles between protected nodes. When a Hamiltonian
cycle is constructed on protected nodes, there will exist a backup
path if a single edge fails. This is shown in figure 15. For a cycle
closing on node v0: v0, e0, . . . , ej−1, vi, ej+1, . . . , v0 the graph can be
partitioned into v0, e0, . . . ej−1, vi and viej+1, . . . , v0, with each being
a path. Hence v0 has two paths to vi. Since a cycle is a closed circuit,
each edge is traversed at most once. Hence the two partitioned paths
are edge-disjoint and provide protection for a single edge failure.

Figure 16 displays a solution to a TSP problem. In this simple ex-
ample a greedy approach connecting the nearest cities would suffice.
However for larger problem instances such an approach yields sub-
optimal

4.6 basic multilayer formulation

The basic multicommodity flow model is used to develop a multilayer
multicommodity flow model. This model is based on the capacitated
multi commodity flow problem, extended to cover two layers. The
flow on each layer is constrained by the capacities that the edges can
provide. The layers are then interconnected, by requiring that the
flows match for each layer. Each layer is modeled after the multicom-
modity flow problem.

4.6 basic multilayer formulation 43

Consider the following two graphs, P = (N,E) and L = (N,L),
which denote the physical layer and logical layer respectively.

The node set is shared between the two graphs. This is an im-
portant point, as it allows us to generate the physical paths for each
logical link implicitely. In an explicit approach, the physical paths for
each link would have to be predetermined.

The constraint sets (4.8) and (4.9) are added for the logical layer,

∑
p∈Pk

fLp = dk, ∀k ∈ K (4.10)

∑
p∈Pl

fLp 6 ua, ∀l ∈ L (4.11)

Since there are two layers of multicommodity flow problems, each
has its own path flow. The flow on the logical layer for a path p is
given by the decision variable fLp, and similarly fPl describes the flow
on the physical layer.

In a similar manner to constraint set (4.11), for the physical layer
we add:

∑
p∈Pa

fPp 6 σa, ∀a ∈ E (4.12)

The physical flow over a logical link must be equal to the logical
flow over it:

∑
p∈δ(l)

fLp =
∑
p∈Pl

fLp, ∀l ∈ L (4.13)

We will change constraint set (4.13) later when decomposing the
problem.

This can be seen as two multicommodity flow problems, one on
the physical layer and another on the logical layer. On the top layer,
the logical flow

As a reminder, in this model, the possible physical paths for each
logical link is determined implicitely, and the best possibility is se-
lected. An alternative method, which is used by Orlowski [10] is to
explicitely predefine possible physical paths for each link. This places
a burden on the network planner, and yields a worse solution, how-
ever in some circumstances it may be specified, and required, by the
network operator.

44 basic mathematical model

4.7 decomposition using benders

In this section we apply Bender’s decomposition to the simple mul-
tilayer formulation in order to demonstrate the basic process. The
process is the same for more involved models.

The problem in section 4.6 will be divided into a master problem
and two subproblems using Benders decomposition. Each subprob-
lem is a simpler LP problem.

The logical and physical constraints need to be set independent
of each other in order to divide them. This is done by modifying
constraint set (4.13) to:

∑
p∈δ(l)

fEp > ul, ∀l ∈ L

The reason for changing this is twofold. Firstly there might be ad-
ditional traffic on the physical layer (such as control packets), which
results in greater physical flow. The second reason is that we need to
loosen the dependence between the physical and logical constraints
for the decomposition.

The result is that the physical flow should be greater than or equal
to the logical capacity. It must be, as it needs to support the logical
traffic. In this model, there are no additional traffic requirements on
the physical layer, and equality should suffice.

MBEND (Multilayer Benders decomposition)
This results in the following model, where the goal is to

min
∑
a∈E

caσa, (4.14)

s.t.

∑
p∈Pk

fLp = dk, ∀k ∈ K, (4.15)

∑
p∈Pl

fLp − ua 6 0, ∀l ∈ L, (4.16)

∑
p∈Pa

fEp − σa 6 0, ∀a ∈ E, (4.17)

∑
p∈δ(l)

fEp − ul > 0, ∀l ∈ L. (4.18)

4.7 decomposition using benders 45

As stated in section 2.7, decomposing this problem involves sepa-
rating the problem into a relaxed master problem and into a subprob-
lem(s). The relaxed master problem only contains integral constraints
(or none as per the basic multilayer formulation).

RMP (Reduced Master Problem):

min
∑
a∈E

caσa + y+ z, (4.19)

with integral capacities,

σa∀a ∈ E.

With an empty constraint, to which Bender cuts will be added.
The current feasible solution of the RMP is used for the subprob-

lems. For the logical subproblem:
LOG (Logical)

min
∑
p∈P

0fLp (4.20)

s.t.

∑
p∈Pk

fLp = dk, ∀k ∈ K (4.21)

∑
p∈Pl

fLp 6 u∗l , ∀l ∈ L (4.22)

Associate dual variables πk ∈ R,k ∈ K and θl ∈ R+, l ∈ L to
constraint sets (4.21) and (4.22) respectively. Then, the cut we need to
add is

y >
∑
k∈K

π∗kdk +
∑
l∈L

θ∗lul (4.23)

The simplification of the linear combination of weights in the ob-
jective of LOG is simply zero, as such, only a feasibility problem is
solved. From hereforth, the goal of subproblems will simply be writ-
ten as min 0.

For the physical subproblem:
PHYS (Physical)

min 0 (4.24)

46 basic mathematical model

s.t.

∑
p∈δ(l)

fEp > u∗l , ∀l ∈ L (4.25)

∑
p∈Pa

fEp 6 σ∗a, ∀a ∈ E (4.26)

Associate dual variables ηl ∈ R, l ∈ L and µa ∈ R+,a ∈ E to
constraint sets (4.25) and (4.26) respectively. Then, the cut we need to
add is

z >
∑
l∈L

ulη
∗
l +
∑
a∈E

σaµ
∗
a (4.27)

In order to avoid having to calculate an initial feasible solution, we
add an α to each subproblem, which serves as a capacity shortfall.
We rearrange some terms and obtain our final decomposition as:

RMP’:

min
∑
a∈E

caσa (4.28)

integers:

σa∀a ∈ E

LOG’

min α (4.29)

s.t.

∑
p∈Pk

fLp = dk, ∀k ∈ K (4.30)

∑
p∈Pl

fLp −α 6 u∗l , ∀l ∈ L (4.31)

The cut we need to add is∑
l∈L

θ∗lul 6 −
∑
k∈K

π∗kdk (4.32)

PHYS’

min α (4.33)

4.8 column generation 47

s.t.

∑
p∈δ(l)

fEp > u∗l , ∀l ∈ L (4.34)

∑
p∈Pa

fEp −α 6 σ∗a, ∀a ∈ E (4.35)

The cut we need to add is∑
a∈E

µ∗aσa +
∑
l∈L

ulη
∗
l 6 0 (4.36)

Benders decomposition is applied in a branch and bound frame-
work, where we obtain a feasible integral solution and use this fixed
value in the subproblems. The process is repeated if we obtain a
feasible master problem. The algorithm is described in (2). Each iter-
ation of the algorithm is applied on a branch and bound node, after
we obtain a feasible solutions for the integers variables in the master
problem. The implementation may vary across solvers, For example,
in CPLEX we utilize the lazy callback, to call the procedure given in
(2). The lazy callback in CPLEX called when CPLEX finds a new inte-
ger feasible solution and when CPLEX finds that the LP relaxation at
the current node is unbounded.

Algorithm 2 Bender’s decomposition for Multilayer

1 if UB− LB > ε

2 Obtain the solved variables of the RMP’
3 Solve LOG’ if αLOG’ > 0

4 Add cut (4.32)
5 Solve PHYS’ if αPHYS’ > 0

6 Add cut (4.36)

Benders decomposition could also have been used to seperate all
the integer variables from the continuous flow variables. This would
have resulted in a single subproblem for all the layers together. The
advantage of having two subproblems is, that we can solve them sep-
arately, in parallel.

4.8 column generation

The time complexity to find all paths in a Directed Acyclic Graph
(DAG) tends to be exponential in the worst case. For both the logical

48 basic mathematical model

and physical subproblems, the number of columns increase greatly
as the problem size increases. Using Benders decomposition above
we would not be able to handle large problem instances.

We use column generation to address this problem. We initially
restrict the number of flow variables available, and only add addi-
tional flow variables if they improve the solution. The flow variables
determine which paths are available, hence the initial set of paths are
reduced, and this set expands. This drastically reduces the number
of flow variables in the basis, and is preferred, as in the original (non-
column generation) case many of these flow variables would have
been assigned a value of zero regardless.

We restrict the paths to P′ ⊆ P. For the logical paths we have
P′L ⊆ P′L, likewise, for the physical paths we have P′E ⊆ P′E

Logical
For the logical subproblem, we then have:

min α (4.37)

s.t.

∑
p∈P′k

fp = dk, ∀k ∈ K (4.38)

∑
p∈P′l

fLp −α 6 u∗l , ∀l ∈ L (4.39)

Taking the dual, we obtain:

max
∑
k∈K

πkdk +
∑
l∈L

u∗lθl (4.40)

s.t.

−
∑
l∈L

θl = 1 (4.41)

πk +
∑
l∈Lk

θl 6 0, ∀k ∈ K,p ∈ P ′k (4.42)

Where equation (4.42) can be seen as a shortest path problem:

πk = min
p∈Pk

{∑
l∈L

−θl

}
(4.43)

4.9 path flow module based formulation 49

For every commodity k = (a,b) we calculate the shortest path from
a to b on graph L given edge weights θl,∀l ∈ L.

The goal is to see if we can find a shorter path length than πK for
commodity k. If this is the case then constraint (6.40) is violated and
we need to add the path, and reiterate.

Let SP(G,W,a,b) be a function returning the shortest path between
a and b on graph G given edge weightsW. Let (d,p) denote the result,
where d is the distance and p is the path.

For every commodity k we solve the shortest path using Dijkstra’s
algorithm, we add the resulting path p if d < πk to P′L.

Physical
Similarly we proceed with the physical paths. Notice that both

problems share the same structure.
We obtain the dual as:

max
∑
l∈L

u∗lηl +
∑
a∈E

σ∗aµa (4.44)

s.t.

−
∑
a∈E

µa 6 1 (4.45)

ηl +
∑
a∈El

µa 6 0 ∀l ∈ L,p ∈ P ′l (4.46)

For every logical link l = (q,w) we solve the shortest path between
q and w on the on graph P with weights µ and add the resulting path
to P′E if d < ηl. Benders decomposition with column generation is
described in Algorithm 3.

As described previously, algorithm (3) would be called at a branch
and bound node, when we have obtained feasible integer solutions
for the variables in the master problem.

Orlowsky [10] considers an edge flow formulation for Multi Layer
networks since many subproblems with a path based formulation are
NP-hard. Orlowsky and Pioro [37] have shown that for multiple logi-
cal link failures the pricing problem for path variables is NP hard for
most path-based survivability mechanisms. We deviate from these
suggestions as we only consider single link failures.

4.9 path flow module based formulation

We expand the path-based model presented in the previous section
with modules. Commonly we don’t only want to determine the least

50 basic mathematical model

Algorithm 3 Benders decomposition with column generation

1 Solve the RMP’
2 Obtain the solved variables of the RMP’
3 logical: Solve LOG’ for k = (s, t) ∈ K
4 Add path:
5 (p, distk)← SP(L, {θl : ∀l ∈ L}, s, t)
6 if distk < πk
7 PL ← PL ∪ {p}
8 Repeat Add path
9 if path was added

10 goto logical
11 Repeat Add path if αLOG > 0

12 Add cut (4.32)
13 physical: Solve PHYS’ for l = (v,w) ∈ L
14 Add path:
15 (p, distl)← SP(P, {µa : ∀a ∈ E}, v,w)
16 if distl < ηl
17 PE ← PE ∪ {p}
18 if path was added
19 goto physical if αPHYS > 0

20 Add cut (4.36)
21 Solve RMP’ again with added cuts

4.9 path flow module based formulation 51

capacity of an edge, but to determine what is the optimal network
configuration to realize the edge.

The broad spectrum of available equipment is vast for any type
of technology. In this section we develop a general and modular
Multilayer formulation which can be more easily adapted to accomo-
date certain technological requirements. A path based formulation is
more expressive and certain path requirements cannot be expressed
in a arc-formulation.

There is a wide range of hardware that can be installed at the nodes
of the network. The hardware commonly has a modular structure
which allows additional components to be inserted. A link can be
established by adding the same type of interface cards to both routers
at the node endpoints.

In a network a large part of the cost is incurred by the transmission
equipment. We assume every line card provides a single port, hence
the cost of the logical link can be attributed to it. This is similar for
physical equipment. The cost of the multiplexing and switching can
be aggregrated with the cost dependent on the length of the physical
medium. The actual costs and capacities provided are dependent on
the underlying technology.

For these reasons we encapsulate the the various costs of equip-
ment, and the capacity they provide as modules. A module on a
edge provides a certain capacity at a certain cost (which may be cal-
culated depending on the length of the edge and the equipment in-
volved). We use this generalization for both the physical and logical
layers. Later we will specifically apply this general multilayer model
to certain technologies.

We denote this model by MLPILNS (Multilayer path-based no sur-
vivability).

The aim again is to minimize the total capital expenditure:

min
∑
a∈E

∑
m∈Ma

cmx
m
a +
∑
l∈L

∑
m∈Ml

cmy
m
l (4.47)

Where cm is the cost of module m. The decision variables Xma ∈ N0

and Yml ∈ N0 determine how many modules of type m are installed
on physical edge a and logical link l respectively determine how
many modules.

We proceed with the usual constraints, replacing the occurence of
capacity with the total capacities provided by all modules on a link
or edge.

s.t.
The total flow for each commodity must be equal to its demand.∑

p∈Pk

fLp = dk, ∀k ∈ K (4.48)

52 basic mathematical model

The flow cannot exceed the logical capacity∑
p∈Pl

fLp 6
∑
m∈Ml

kml y
m
l , ∀l ∈ L, (4.49)

where km gives the capacity of module m, and the physical path
flows are determined by the logical capacity∑

p∈δ(l)

fEp >
∑
m∈Ml

kml y
m
l , ∀, l ∈ L (4.50)

with the physical flow constrainted by the capacity∑
p∈Pa

fEp 6
∑
m∈Ma

kma x
m
a , ∀a ∈ E. (4.51)

The number of installable modules on each layer is integral,

Xma ∈ Z+, ∀a ∈ E,m ∈M

Yml ∈ Z+, ∀l ∈ L,m ∈M

In the above model we assume that any integral number of mod-
ules may be installed.

We may alternatively explicitely require that only a single module
may be installed on link or edge. For this we may add the additional
constraint of:

∑
m∈Ml

Yml 6 1, ∀l ∈ L (4.52)

where Yml is binary, i.e. Yml ∈ {0, 1},∀l ∈ L,m ∈M
The same can be done for physical capacities.

∑
m∈Ma

Xma 6 1, ∀a ∈ E (4.53)

where Xma is binary, i.e. Xma ∈ {0, 1},∀a ∈ E,m ∈M
In order to avoid unnecessary redundency, we develop the Ben-

der’s decomposition and column generation framework for the case
when diversification constraints are added, in section 4.11.2.

4.9.1 Example

Consider the network given by figures 17 and 18. The set of nodes
is shared between the two. The orange nodes represent commodity
nodes. The yellow colored nodes on the physical layer represent end
points of logical links. We denote a module with a tuple,mi = (ci,ki),
where ci is the cost of module mi and ki is the capacity of module
mi.

Let us assume the following:

4.9 path flow module based formulation 53

Figure 17: Physical layer of example multicommodity network

Figure 18: Logical layer of example multicommodity network

• There are two commodities (A, F) and (B, F) with demands of
d0 and d1 respectively.

• There is a universal set of modules for the physical edgesMA =

m1,m2. Hence Ma =MA∀a ∈ A. This assumption is not made
for the datasets used in later chapters, where each edge may
have its own unique modules, where the cost may be depen-
dent on the edge length and so on. This is convenient for the
example, however.

• Similarly, there is a universal set of modules for the logical links
ML = m2,m3. Again Ml =M

L∀l ∈ L.

The decision variables are xma and yml indicating whether module
m is (or how many) installed on the edge or link respectively.

In the multilayer setting we need to determine paths for all of the
possible links. We label them as follows:

• pE1 = {A, e1,C, e6, F}

• pE2 = {A, e2,D, e5, F}

• pE3 = {B, e3,D, e5, F}

• pE4 = {B, e4,E, e7, F}

54 basic mathematical model

• pE5 = {A, e2,D}

• pE6 = {B, e3,D}

• pE7 = {D, e5, F}

The set of paths on the physical layer is thus PE = {pE1 ,pE2 ,pE3 ,pE4 ,pE5 ,pE6 }
For the logical paths we have PL = {{A, l1, F}, {A, l3,D, l5, F}, {B, l4,D, l5, F}, {B, l2, F}}

Let us denote, in numerical sequence, these paths by pL1 ,pL2 ,pL3 ,pL4 .
The respective flows are fL1 , fL2 , fL3 , fL4 .

We also need to determine the set of physical paths available for
each logical link. This is given by the function δ(l). Hence we have:

• δ(l1) = {pE1 ,pE2 }

• δ(l2) = {pE3 ,pE4 }

• δ(l3) = {pE5 }

• δ(l4) = {pE6 }

• δ(l5) = {pE7 }

Thus for the formulation we have:

min
7∑
i=1

∑
m∈MA

cmx
m
i +

5∑
j=1

∑
m∈ML

cmy
m
j

For the demands from constraint set (4.48) we have:

fL1 + f
L
2 = d0

fL3 + f
L
4 = d1

We determine the logical capacities according to constraint set (4.49):

fL1 6
∑
m∈Ml

kml y
m
1

fL4 6
∑
m∈Ml

kml y
m
2

fL2 6
∑
m∈Ml

kml y
m
3

fL3 6
∑
m∈Ml

kml y
m
4

fL2 + f
L
3 6

∑
m∈Ml

kml y
m
5

From constraint set (4.50) we obtain:∑
p∈δ(l1)

fEp >
∑
m∈Ml

kml y
m
1 ,

4.10 arc-flow module based formulation 55

∑
p∈δ(l2)

fEp >
∑
m∈Ml

kml y
m
2 ,

∑
p∈δ(l3)

fEp >
∑
m∈Ml

kml y
m
3 ,

The summations can be expanded by using the δ(l) paths we derived
above.

The physical capacities are determined according to constraint set (4.51):

fE1 6
∑
m∈Ma

kma x
m
1

fE2 + p
E
5 6

∑
m∈Ma

kma x
m
2

fE3 + p
E
6 6

∑
m∈Ma

kma x
m
3

fE4 6
∑
m∈Ma

kma x
m
4

fE2 + f
E
3 + f

E
7 6

∑
m∈Ma

kma x
m
5

fE1 6
∑
m∈Ma

kma x
m
6

fE4 6
∑
m∈Ma

kma x
m
7

And the number of modules we install is integer.
In this example we can intuitively reason that the link paths con-

taining D will not be used, since they have more modules in total,
and the set of modules are the same between links, which would sim-
ply mean minimizing the cost by using the least number of modules.
In our datasets this is not the case, D may be a central node with
cheap connectivity, or it may be already exist (Implying its module
costs might be low).

4.10 arc-flow module based formulation

Here we consider an alternative formulation that focusses on the edge
flow. This formulation is denoted by MLAILNS (Multilayer arc-flow
no survivability).

The same objective function is used, that is

min
∑
a∈E

∑
m∈Ma

cmx
m
a +
∑
l∈L

∑
m∈Ml

cmy
m
l . (4.54)

56 basic mathematical model

We introduce variables ak(v,w) ∈ R+, bl(v,w)∈R+ that specify the arc
flow over a logical link and physical edge respectively.

The total arc flow over a logical link for a specified commodity is
zero; the arc flow in the forward direction over an edge must be the
same as the arc flow in the backward direction over the edge. Excep-
tionally, when the arc flow terminates on sink, we require negative
demand; likewise when the arc flow comes from a source, we require
positive demand.

∑
w∈N

(v,w)∈L

ak(v,w)−
∑
w∈N

(w,v)∈L

ak(w,v) =


dk v = s

−dk v = t

0 else

,
∀v ∈ N

∀k = (s, t) ∈ K

(4.55)

The total flow for each commodity cannot be greater than the sup-
plied logical capacities. Logical capacity is the sum of the capacity
provided by the link modules.∑

k∈K
ak(s,t) +

∑
k∈K

ak(t,s) 6
∑
m∈Ml

hmy
m
l , ∀l = (s, t) ∈ L (4.56)

Similar to constraints (4.55), we require the sum of physical arc
flow over a physical edge to be zero, except when we are starting at
or terminating a logical link.

∑
k∈K

 ∑
w∈N

(v,w)∈E

bkl (v,w) −
∑
w∈N

(w,v)∈E

bkl (w, v)

 =


∑
m∈Ml

hmy
m
l v = s

−
∑
m∈Ml

hmy
m
l v = t

0 else

∀v ∈ N
∀l = (s, t) ∈ L (4.57)

We ensure that that the physical edge can provide sufficient capac-
ity for the flow.

∑
k∈K

(∑
l∈L

bkl (s, t) +
∑
l∈L

bkl (t, s)

)
6
∑
m∈Ma

hmx
m
a , ∀a = (s, t) ∈ E

(4.58)

with integers:

xma ∈ Z+, ∀a ∈ E,m ∈M

yml ∈ Z+, ∀l ∈ L,m ∈M

The arc formulation is not as intuitive as the path flow formulation,
furthermore it suffers furthermore the limitation that it is difficult to
restrict allowable paths. With the arc formulation we cannot restrict
paths to have a maximum hop count.

4.11 survivability 57

4.11 survivability

In this section we review basic survivability. A failure state indicates
what set of network equipment fails simultaneously. In our models,
this indicates what set of edges or links fail and hence are unavailable.
Commonly, for protection, we redefine our demands constraints such
that commodities fullfill their demands for all failure states. Thus for
the multicommodity problem we have:∑

p∈Pk

fp = dk, ∀s ∈ S,k ∈ K

∑
p∈Pa

fp 6 xa, ∀s ∈ S,a ∈ E∩ s

In this thesis we only cover single edge failures. Thus the set of
failure states is equivalent to the set of edges.

4.11.1 Single layer diversification

In this section we develop a simple method of protection against sin-
gle link failures.

For any single link failure, we still want to be able to route the full
demand of a commodity.

In place of sending only the demand for a commodity, we send
double the demand. At the end node, the router then discards the
extra data. We restrict the network flow on any path, to not exceed
the demand. Thus for a commodity k, with a demand of dk, we route
2dk, but ensure that on any link l, no more than dk can be routed for
that commodity. Thus should link l fail, there is another path that
can handle the demand dk.

We extend model SMC with modules, and add the above surviv-
ability.

SMPSD:
min

∑
l∈L

∑
m∈Ml

cmy
m
l

s.t.

∑
p∈Pk

fp = 2dk, (4.59)

∑
p∈Pl

fp 6
∑
m∈Ml

kmy
m
l , ∀l ∈ L (4.60)

58 basic mathematical model

∑
p∈Pk
l∈p

fp 6 dk, ∀k ∈ K, l ∈ L (4.61)

Where constraints (4.61) ensures that we don’t send more than dk
of traffic over any single link, for a commodity. Note that in con-
straint (4.59), the total flow must equal to twice the demand.

In order for the path flow model to remain computationally tractable,
we decompose the problem using Bender’s decomposition and gen-
erate columns as necessary.

We obtain the restricted Benders master problem as:∑
l∈L

∑
m∈Ml

cmy
m
l

to which cuts will be added.
For the subproblem, with paths P ′ ⊆ P:

min α

s.t.

∑
p∈P ′k

fp = 2dk, (4.62)

∑
p∈P ′l

fp −α 6
∑
m∈Ml

kmy
m
l , ∀l ∈ L (4.63)

∑
p∈P ′k
l∈p

fp 6 dk, ∀k ∈ K, l ∈ L (4.64)

We obtain the dual of the subproblem:

max
∑
k∈K

2dkπk +
∑
l∈L

∑
m∈Ml

kmy
m
l µl +

∑
l∈L

∑
k∈K

dkγ
k
l (4.65)

s.t.

−
∑
l∈L

µl = 1 (4.66)

πk +
∑
l∈L

µl +
∑
l∈L

γkl 6 0, ∀k ∈ K,p ∈ P ′k (4.67)

4.11 survivability 59

The cut we need to add is:

∑
l∈L

∑
m∈Ml

kmy
m
l µ
∗
l 6 −

∑
k∈K

2dkπ
∗
k −
∑
l∈L

∑
k∈K

dkγ
k∗
l (4.68)

Since we are using a subset of paths P ′ ⊆ P, constraints (4.65) must
be satisfied; which provides us with the pricing problem.

Thus for a commodity k:

πk = min
p∈Pk

{
−
∑
l∈L

µl + γ
k
l

}
(4.69)

which states that πk is the length of the shortest path of graph G

with edge weights µl + γkl for edges l.
Note that the constraints are the same as MLPILNS, with surviv-

ability being added from Section 4.11.1. See the relevant sections for
an explanation of the constraints and variables.

Thus in order to find a path that improves the solution value, we
need to determine if there exists a shorter path for commodity k that
is less than πk, if there is one, we add it it P ′ and reiterate.

4.11.2 Multilayer diversification: Path formulation

Survivability for a two-layer network takes a different form than sin-
glelayer survivability.

For a two-layer network, given that a physical link fails, we can
either reroute the flow on the physical layer (preserving the logical
path), or reroute the flow on the logical layer in order to avoid the
failed physical edge.

The model is MLPILNS decomposed using Bender’s decomposi-
tion and column generation in order to add both physical diversifica-
tion and logical diversification.

The model is split into a reduced master problem and two subprob-
lems, one for the logical flow and another for the physical flow, in the
same manner as section 4.7.

The multilayer model with both physical and logical diversification
which will be developed is denoted by MLPILPLS

For the reduced master problem we have the objective function as:∑
a∈E

∑
m∈Ma

cmx
m
a +
∑
l∈L

∑
m∈Ml

cmy
m
l

For the logical subproblem we have:
min α
s.t.

60 basic mathematical model

Double the demand is sent. The end node can then has to decide
which flows to use (Commodity k will in the end only utilize a single
dk).

∑
p∈Pk

fLp = 2dk, ∀k ∈ K (4.70)

∑
p∈Pl

fLp −α 6
∑
m∈Ml

kmy
m
l , ∀l ∈ L (4.71)

The flow is constrained on each link, to be less than or equal to dk
for commodity k. Should a link fail, the sum of all the other paths
will be at least dk

∑
p∈Pk
l∈p

fLp 6 dk, ∀k ∈ K, l ∈ L (4.72)

Associate dual variables πk, θl, γkl with constraints sets (4.70),
(4.71) and (4.72) respectively.

The dual constraints are obtained as:

−
∑
l∈L

θl = 1 (4.73)

πk +
∑
l∈L

θl +
∑
l∈L

γkl 6 0, ∀k ∈ K,p ∈ P ′L (4.74)

And we solve the pricing problem by finding the shortest path:

πk = min
p∈Pk

{∑
l∈L

−(θl + γ
k
l)

}
(4.75)

The Bender’s is obtained as:

z > 2
∑
k∈K

dkπ
∗
k +
∑
l∈L

∑
m∈Ml

kmy
m
l θ
∗
l +
∑
k∈K

∑
l∈L

dkγ
∗k
l (4.76)

Proceeding similarly for the physical subproblem:

min α

s.t.

4.11 survivability 61

Send double the required physical flow. We need to still be able to
match the logical capacity should a physical edge fail.

∑
p∈l

fEp > 2
∑
m∈Ml

kmy
m
l , l ∈ L (4.77)

∑
p∈Pa

fEp −α 6
∑
m∈Ma

kmx
m
a , a ∈ E (4.78)

Dont send more than the capacity on a single physical edge:

∑
p∈l
a∈p

fEp 6
∑
m∈Ml

kmy
m
l , ∀l ∈ L,a ∈ E (4.79)

Associate dual variables ηl, µa and δla with constraint sets (4.77),
(4.78) and (4.79) respectively.

The dual constraints of the problem are:

−
∑
a∈E

µa = 1 (4.80)

ηl +
∑
a∈E

µa +
∑
a∈E

δla 6 0 (4.81)

Similarly we solve the problem of

ηl = min
p∈Pl

{∑
a∈E

−(µa + δ
l
a)

}
(4.82)

The Bender’s cut is obtained as:

z >
∑
a∈E

∑
m∈Ma

kmx
m
a µ
∗
k+
∑
l∈L

∑
m∈Ml

2kmy
m
L η
∗
l +
∑
a∈E

∑
l∈L

∑
m∈Ml

kmy
m
l δ
∗l
a

(4.83)

Note that we can remove the logical diversification by simply re-
moving the factor of 2 from (4.70). Similarly we can disable the phys-
ical diversification by removing the factor of 2 from (4.77). In the case
that that the diversification is disabled, constraints (4.72) and (4.79)
serve no feasibility purpose.

62 basic mathematical model

4.11.3 Multilayer diversification: Arc model

The model MLAILNS is extended to cover both physical- and logical
survivability. The resultant model is denoted by MLAILPLS (Multi-
layer arc-flow with physical- and logical survivability).

min
∑
a∈E

∑
m∈Ma

cmx
m
a +
∑
l∈L

∑
m∈Ml

cmy
m
l (4.84)

s.t.
Logical
In order to protect the network against a single logical link failure

we send double the demand.

∑
w∈N

(v,w)∈L

ak(v,w)−
∑
w∈N

(w,v)∈L

ak(w,v) =


2dk v = s

−2dk v = t

0 else

,
∀v ∈ N

∀k = (s, t) ∈ K

(4.85)

∑
k∈K

ak(s,t) +
∑
k∈K

ak(t,s) 6
∑
m∈Ml

hmy
m
l , ∀l = (s, t) ∈ L (4.86)

Ensure the flow on each logical link does not exceed the demand.

ak(a,b) + a
k
(b,a) 6 dk, ∀ l = (a,b) ∈ L,k ∈ K (4.87)

Physical
Alternatively, to protect the physical layer against a single edge

failure, we ensure that we send double the logical capacity required.

∑
k∈K

 ∑
w∈N

(v,w)∈E

bkl (v,w) −
∑
w∈N

(w,v)∈E

bkl (w, v)

 =


2
∑
m∈Ml

hmy
m
l v = s

−2
∑
m∈Ml

hmy
m
l v = t

0 else

∀ v ∈ N,∀ l = (s, t) ∈ L (4.88)

∑
k∈K

(∑
l∈L

bkl (s, t) +
∑
l∈L

bkl (t, s)

)
6
∑
m∈Ma

hmx
m
a , ∀ a = (s, t) ∈ E

(4.89)

Also ensure that the flow on a physical edge does not exceed the
demand.

bkl (a,b)+bkl (b,a) 6
∑
m∈Ml

kmy
m
l , ∀(a,b) ∈ E, l ∈ L,k ∈ K (4.90)

4.11 survivability 63

The decision variables, denoting the number of modules on each
layer, are integral:

xma ∈ Z+, ∀ a ∈ E,m ∈M

yml ∈ Z+, ∀ l ∈ L,m ∈M

5 C O M P U TAT I O N

In the knapsack problem, a set of items is given, each with a weight
and a value. The goal is to determine the number of each item to in-
clude, such that the total weight is less than some specified amount,
and the total value is as large as possible. The subset-sum is a spe-
cialized version of the knapsack problem where the weights and val-
ues are the same, and is NP-complete [56], and this extends to the
decision version of the knapsack problem1. The optimal dynamic
programming solution of the knapsack problem admits a pseudo-
polynomial solution, which implies that the problem is weakly NP-
complete.

Assigning modules to edges or nodes is a special form of the knap-
sack problem, as each module has a value (cost) and weight (capac-
ity). The goal is to minimize the cost and to determine a capacity
sufficiently big for the network flow. The dynamic programming so-
lution for this is pseudo-polynomial.

Furthermore, the decision problem version of the multicommodity
flow problem is NP-complete under integer flow [57]. The capaci-
tated multicommodity network design problem is NP-complete even
with real flows [58–60].

As such, the model described in Section 4.6 is NP-complete as it
contains the capacitated network design problem on both layers, and
the knapsack problem for module selection. Thus the problem admits
no polynomial solution.

The difficulty of the problem motivates the Benders decomposition
approach utilized in Section 4.7 and the column generation shown in
Section 4.8, in order to improve the scalability for larger problems.

In this chapter an overview of the algorithmic approach utilized, is
given, along with some implementation details. Since larger instances
might be computationally intractable, we strenghten the Benders fea-
sibility cuts and implement a simple primal heuristic based on the
decompositions used.

Lastly we cover the computational improvements and the results.
These results are based on the general models given in Chapter 4.

1 The decision version asks whether a value of V can be attained without exceeding
some weight W

65

66 computation

5.1 heuristics

In this section a heuristic is introduced which can be used to find
a good guess of what the optimal solution should be. The solved
solution of the decision variables of the heuristic are then used as a
warm-start in order to provide a better upper bound on the problem.
Finding a better upper bound saves the solver time, provided a better
upper bound is obtained in a smaller amount of time.

5.1.1 Limited paths

In the regular multicommodity path flow formulation, all paths are
present for each commodity. In the multilayer case, we also require
all physical paths for each logical link. This can be generated with a
BFS or DFS backtracking algorithm. However this is not feasible for
most problems. In previous sections it was demonstrated how col-
umn generation can be used to only generate paths as necessary for
the dual LP. This idea can be extended to a simple primal heuristic.

A simple heuristic yielding good results is to reduce the number of
paths available. Only having a small static subset of available paths
will not yield an objective value close to optimal.

An alternative approach is to decompose the problem using Ben-
ders’ decomposition and apply column generation. However the the
amount of iterations is limited for searching for paths, therefore the
number of paths, and path flow variables are limited.

The algorithm is similar to the one described in Algorithm 3. For
every iteration the number of path variables generated is limited, as
such the procedure Add path is run a maximum number of times
per iteration. Heuristically, a value of between 1 and 4 yielded good
results, as the solution value is close to optimal and is obtained fast.
For most of our experiments we only add a single path variable per
iteration, as this is fast and obtains a good upper bound for the master
problem when used as a warm-start.

The overall idea here is to preserve the same constraints as in the
regular MILP problem; that is, the heuristic always provides a feasible
solution to the regular MILP. Since only a subset of paths is covered,
there may exist some paths which yield a better objective value, and
these are skipped in favor of computation time. Colunm generation
is thus used heuristically.

An alternative version of this heuristic would be to use the path-
based formulation of the problem, and only include path variables re-
lating to the shortest path for the links and commodities. This would
be faster than the heuristic discussed above, but would yield a worse
objective value.

5.2 strengthening cuts 67

5.2 strengthening cuts

The Bender cuts generated for SMPSD are weak. We follow a simple
way of strengthening them, based on [52].

We review the single layer multicommodity with survivability prob-
lem:

min
∑
l∈L

∑
m∈Ml

cmy
m
l

s.t.

∑
p∈Pk

fp = 2dk, ∀k ∈ K

∑
p∈Pl

fp 6
∑
m∈Ml

kmy
m
l , ∀l ∈ L

∑
p∈Pk
l∈p

fp 6 dk, ∀k ∈ K, l ∈ L

The Bender’s cut for for the problem is taken from the dual, and is
obtained as:

∑
l∈L

∑
m∈Ml

kmθ
∗
ly
m
l 6 −

∑
k∈K

2dkπ
∗
k −
∑
l∈L

∑
k∈K

dkγ
∗
l (5.1)

The metric inequality 5.1 is weak as the capacities are modular
and integral. We strengthen the metric inequality by dividing by the
biggest possible integer and rounding up to the nearest integer on
the right hand side.

Let gcd(a,b) denote the greatest common divisor between two
numbers, a and b, that is, it returns the largest positive integer that di-
vides a and b without a remainder. The function can be extended to
three or more positive integers, and returns the largest divisor shared
by all of them.

Since kmθ∗l is integer; we determine the greatest common divisor
of {kmθ∗l : l ∈ L,m ∈ mL} and denote it with gcd(kθ).

We divide both sides of 5.1 by gcd(kθ) and round up the right hand
side, obtaining:

∑
l∈L

∑
m∈Ml

kmθ
∗
l

gcd(kθ)
yml 6

⌈
−

∑
k∈K 2dkπ

∗
k

gcd(kθ)

⌉
+

⌈
−

∑
l∈L
∑
k∈K dkγ

∗
l

gcd(kθ)

⌉
(5.2)

Strengthening the Bender’s cuts on the multi layer model is the
same as for the singe layer model. Recall that we have two Bender
subproblems, each with its own cut.

68 computation

5.3 column generation improvements

5.3.1 Dijkstra

In order to find variables with negative reduced cost in the pricing
problem encountered in most of our column generation decompo-
sitions, we need to solve the shortest path problem, which is sim-
ply a path that minimizes the sum of the weights of the constituent
edges. Dijkstra is commonly used to optimally find the shortest path
in weighted graphs and originally had O(|V |2) running time.

Algorithm 4 Dijkstra’s algorithm

Dijkstra(G = Graph, s = vertex)

1 for each vertex v ∈ VG

2 dist[v]←∞
3 parent[v]← NIL
4 dist[s]← 0

5 Q← VG

6 while Q 6= ∅
7

8 u← Extract-MinQ

9 for each edge e = (u, v)
10 if dist[v] > dist[u] + weight[e]
11 dist[v]← dist[u] + weight[e]
12 parent[v]← u return parent, dist

Dijkstra’s algorithm is described in Algorithm 4. Dijkstra’s algo-
rithm is a greedy algorithm for finding the shortest path, and pro-
ceeds as follows:

1. Assign to each node v a distance value, stored in dist, this is
initialized to infinity (or a large number) for all nodes at the
start of the search.

2. Keep a list of nodes that are unvisited. The exclusion from Q
determines whether a node is unvisited.

3. Set the starting node u as current.

4. For every neighbor of the current node, calculate its distance
from the current node (by adding the weight of the edge to
the calculated distance of the current node). Update the stored
distance of the node to be the minimum of its current value and
the newly calculated value.

5. Mark the current node as visited, by removing it from Q. End
when the destination node is visited.

5.3 column generation improvements 69

6. Mark the node with the smallest stored distance as current, and
repeat from 4.

When computing the shortest path between two points, the search
can be halted once u is the target vertex.

In the pseudocode of the algorithm, given in Algorithm 4, the pro-
cedure EXTRACT-MINQ performs the task of selecting a node with
the smallest stored distance (step 6), as well as removing it from the
set of unvisited nodes Q (step 5). This structure represents a queue,
and in particular a priority-queue is able to obtain the smallest ele-
ment. When a priority is implemented using a Heap structure, it is
able to do so in O(log(|V |)) time.

A functional variant of Dijkstra’s single-source shortest path algo-
rithm is used, that is based on Priority Search Queues. In order to
improve the original algorithm from O(|V |2) to O((|V |+ |E|) log(|V |))
we need to be able to find the minimal element faster. Heaps allow
the minimum element to be found in O(log(n)), which is what we
need. The term priority queue is often used to refer to a non-specific
datastructure which allows us to determine the minimum element,
but does not specify the implementation. We will be using a func-
tional equivalent, priority search queues.

The implementation of priority search queues used is based on
work from Hinze [61], which is a combination of finite maps and
priority queues. This data structure is used since it features Θ(log(n))
lookup time for the minimum value and Θ(log(n)) for decreasing
the value of a key (for updating the frontier distances in Dijkstra’s
algorithm).

Overall, the implementation of Dijkstra has a worst-case running
time of Θ((|V |+ |E|) log |V |) using Priority Search Queues.

Dijkstra’s algorithm is mainly used in the pricing problem for iden-
tifying additional paths to be included when doing column genera-
tion. For the logical subproblem we check whether each commodity
k ∈ K has a path shorter than it’s dual value πk. The task is actu-
ally embarrassingly parallel2. We calculate the shortest path for each
commodity k ∈ K in parallel. For a small number of commodities
the overhead of parallelization is not worth the time gained however
there is a positive payoff for a large number of commodities.

Similarly, we can calculate the shortest path for the physical sub-
problem, that is, finding the shortest physical path realization of logi-
cal link (the shortest grooming path). That is we evaluate {SP(P, θl, s, t) :
l = (s, t) ∈ L} in parallel.

2 An embarrassingly parallel problem can be parallelized trivially, as there are little to
none dependencies between tasks, as such each task can be run in parallel with little
change

70 computation

5.3.2 Removal of paths

Column generation is used in order to avoid generating all path vari-
ables: A subset of paths are used, and paths are only added if they
(possibly) improve the solution value. Over time however, some paths
might not be required anymore and only bloat the problem, increas-
ing the computation time required to solve the problem.

In order to avoid a unnecessary inflation in the computation time
required to solve the problem, we remove unused paths. If a path has
not been used in the basis of the LP for n amount of iterations, we
remove the path.

In order to implement this, for each p ∈ P ′, we track the number of
iterations since it was used in the basis with lcbp. If lcbp > n, then
we remove p from that set of available paths: P ′ ← P ′ \ {p}

We do this for both the physical subproblem, and the logical sub-
problem.

The value of n is problem specific however, with some small values
negatively affecting solution time, thus the optimal value of n needs
to be determined experimentally per problem instance. A large value,
typically does not worsen the computation time and is typically set
to 500, removing a path if after 500 iterations it was not in the basis.

5.4 results

5.4.1 General model verification

In order to verify that the model is correct, it was implemented it in
two different ways.

For the first, a Haskelll library3 that interfaces with the CPLEX C
Callable library was developed, together with a complete implemen-
tation. The library serves as the API in which we are able to interface
with CPLEX in Haskell. Haskell is a pure, lazy, functional program-
ming language with an emphasis on strong typing. These strong
types help ensure program correctness.

Secondly, the model was implemented with C++ using CPLEX’s
CONCERT library. This will serve as a reference with which the
Haskell implementation can be benchmarked against.

For the dataset, the physical layers were obtained from SNDLibs
problem instances. The weights were converted into single mod-
ules, containing capacity and cost. Both implementations were run
against this small dataset. The capacity is a random number in the
set {1000, 2000, 3000, 4000}. The logical layer is based on the physical
layer. A quarter of the physical layer edges were samples to form
the logical layer links. For the costs and capacities guassian noise

3 The library can be found at https://github.com/stefan-j/cplex-haskell

https://github.com/stefan-j/cplex-haskell

5.4 results 71

was added in order to deter a transparent topology. Table 1 some
characteristics of this particular dataset.

Table 1: SNDlibs datasets used for comparing the Haskell and C++ imple-
mentation

Dataset |V | |E| |L| |D|

newyork 16 49 13 120

polska 12 18 5 33

abilene 12 15 5 66

germany 17 26 7 60

dfngwin 11 47 12 11

diyuan 11 42 11 105

atlanta 15 22 6 11

geant 22 22 6 112

pdh 11 34 9 12

Both of these implementations are based on the path-flow module
formulation, MLPILNS, as given in Section 4.9. For these comparison,
single module constraints aren’t used, as there is only a single module
per edge.

The results are given in table 2. The objective value and time (in
seconds) is given.

The performance difference is due to an implementation detail. In
the Haskell implementation, the shortest path problem was solved
over multiple commodities in parallel. Using parallelization has some
overheads and is detrimental for small datasets. The C++ implemen-
tation does not make use of any parallelization and only runs on a
single core. C++ is in general a faster language than Haskell, how-
ever since most of the time is on the branch and bound process, and
solving LP problems within CPLEX, this performance difference is
negligible.

Table 2: Comparison between the Haskell and C++ implementations

C++ Haskell

Dataset Objective value Time (s) Objective value Time (s)

newyork 960800 874.03 960800 621.31

polska 55841 22.08 55841 20.47

abilene 20118 24.70 20118 18.05

germany 39126 24.61 39126 23.53

dfngwin 31162 14.57 31162 18.07

diyuan 311100 78.12 311100 53.02

atlanta 73213 20.21 73213 23.50

geant 41821 97:36 286611 71.50

pdh 28661 38.03 28661 36.50

72 computation

The objective value is the same for both instances, confirming that
the implementations match. From hereforth we proceed only with
the Haskell based implementations.

5.4.2 Benders and column generation comparison with arc-based

The Benders decomposition model with column generation was tested
against the arc-based model. Ideally we would like to compare the
Benders only decomposition, however it faces the same problems as
the path-flow model, in that there are simply too many paths. For the
general path-flow model all possible physical paths need to be gener-
ated for each link, and all possible logical paths for each commodity.
This is infeasible for multilayer models, as there are simply too many.

Benders decomposition with column generation (MLPILNS) is thus
compared against the arc-based model (MLAILNS). The dataset is
similar to that of the previous, as can be seen in table 3. The number
of logical links was increased, as well as the number of demands. Log-
ical links and physical edges were allowed to have multiple modules.
In this test more than one module may be selected.

Table 3: SNDlibs datasets used for comparing Benders decomposition with
arc-based model

Dataset |V | |E| |L| |D|

newyork 16 49 26 200

polska 12 18 10 66

abilene 12 15 10 112

germany 17 26 14 101

dfngwin 11 47 24 22

diyuan 11 42 22 140

atlanta 15 22 12 22

geant 22 22 12 262

pdh 11 34 18 24

Table 4 shows the results. The objective value of each method and
the time (in minutes) is given. The maximum memory usage is also
shown. Each instance was fully solved to optimality. The objective
value for both is the same, and only shown once.

These benchmarks were run on Google Cloud Engine (GCE) vir-
tual Instance with 40 vCPUs, 20 cores Xeon Skylake processor, with
64GB Memory. There is no clear trend, however Benders decompo-
sition and column generation uses less memory for larger instances.
The arc-based method is slightly faster. Column generation only adds
path variables to the basis as needed. We calculate how many itera-
tions the path variables weren’t in the basis. For both the logical and
physical subproblem, path variables get removed from the basis if
they weren’t used in the last 40 iterations. This variable is a hyperpa-

5.4 results 73

Table 4: Comparison Bender’s decomposition with column generation
against the Arc-based formulation

Arc Benders + column

Dataset Objective value Time (m) Max Mem Time (m) Max Mem

newyork 820700 423.77 43107 365.55 32414

polska 45151 73.28 5032 202.37 6061

abilene 20318 92.87 12200 100.03 1024

germany 22126 81.56 9341 163.43 9291

dfngwin 41862 50.56 3021 66.07 3601

diyuan 261920 312.48 40123 412.03 2012

atlanta 73233 20.93 3203 44.22 4021

geant 21421 844:31 51123 713.84 32021

pdh 20261 38.82 4132 71.66 3123

rameter and can be adjusted per problem instance, however for our
experiments we keep it fixed at 40 for all problems.

The arc-based model fares surprisingly well, however when for-
mulating the problem as arc-based, the solver, CPLEX 12.6 applies
multiple cuts which help find a much better lower bound. For exam-
ple, on the geant instance CPLEX is able to find 3 Multicommodity
flow cuts and, 47 Flow cuts, 35 Mixed integer rounding cuts and 6631

implied bound cuts.

5.4.3 Benders decomposition with- and without warm-start

A warm start was developed that applies Benders decomposition and
column generation, as described in Section 5.1.1. In regular column
generation we keep adding path variables until no improvement can
be found. For this experiment we only add one path per iteration for
each link and commodity. Using a heuristic we are able to reduce the
upper bound the solver starts with. The datasets remain the same as
in the previous section, as per table 3.

Table 5 compares the results between the vanilla Bender’s decom-
position with column generation without a warm start and with a
warm-start.

We omit giving a percentage improvement, as the warmstart only
appears to be giving a fixed time improvement, however this varies
per problem instance.

5.4.4 Benders decomposition with- and without rounding cuts

The Benders feasibility cuts were strengthened, as described in Sec-
tion 5.2. The dataset used for comparison is the same as in the pre-
vious section and is summarized by table 3. The base comparison

74 computation

Table 5: Comparison between not using a warm-start and using a warm-
start

Without warm-start With warm-start
Dataset Objective value Time (m) Time (m)

newyork 820700 365.55 321.42

polska 45151 202.37 189.44

abilene 20318 100.03 95.09

germany 22126 163.43 140.81

dfngwin 41862 66.07 61.35

diyuan 261920 412.03 390.03

atlanta 73233 44.22 51.13

geant 21421 713.84 700.91

pdh 20261 71.66 69.84

Table 6: Comparison between with rounding cuts and without rounding
cuts

Without cuts With cuts
Dataset Objective value Time (m) Time (m) Improvement

newyork 820700 365.55 302.17 1.21

polska 45151 202.37 170.81 1.18

abilene 20318 100.03 97.59 1.02

germany 22126 163.43 151.99 1.07

dfngwin 41862 66.07 59.00 1.12

diyuan 261920 412.03 370.47 1.11

atlanta 73233 44.22 42.79 1.03

geant 21421 713.84 612.25 1.17

pdh 20261 71.66 67.22 1.07

is Bender’s decomposition with column generation (MLPILNS). No
warm-start was used.

Table 6 compares the results between rounding the Bender’s cuts
and regular Bender’s cuts. The Improvement is measured as the time
of the old version (only Benders with column generation), divided by
the time of the improved version (strengthened cuts), or Tbenders

Tcuts
. The

results are quite signficant for larger problem instances.

5.4.5 Survivability

Survivability is covered in Section 4.11. The dataset is the same as the
one shown in 3, however diyuan, newyork and geant were omitted.
Bender’s decomposition with column generation was used to solve
these instances. No warm-start or rounding cuts were added.

The results are given in table 9. These benchmarks were run on the
same GCE virtual as the previous section, however the memory was

5.4 results 75

Table 7: Results when adding survivability

Survivability
Dataset Objective value Time (m) Memory (mB)

polska 60612 3321.37 101231

abilene 34312 2532.59 95095

germany 36128 2021.44 81203

dfngwin 51234 843.21 66812

atlanta 83231 515.91 34106

pdh 39631 808.31 73393

increased to 128GB. The added survivability significantly increased
the computational difficulty. Further work could include looking into
heuristics for survivability.

5.4.6 Larger problem instances

We have shown in the previous section that it is possible to improve
the computational performance of the path-based model, using vari-
ous ways. In this section we compare Bender’s decomposition with
column generation, together with a warm-start and strengthed cuts,
to the arc-based model, on larger problem instances. Survivability is
not covered in this experiment. This larger dataset is summarized by
table8.

Table 8: SNDlibs datasets

Dataset |V | |E| |L| |D|

sun 27 102 51 67

norway 27 51 26 702

india35 35 80 40 595

germany50 50 88 44 662

france 25 45 23 300

nobeleu 28 41 22 378

janosus 26 84 42 650

ta1 24 55 28 396

ta2 65 108 54 1869

These benchmarks were run on the same GCE virtual instance, al-
though with 256GB Memory. The search was stopped after 24 hours
(1440 minutes) for each problem instance, if required. The maxi-
mum memory usage, total time, as well as the the optimality gap
was recorded.

The only problem that was fully solved within the timelimit was
the sun instance. The arc-based formulation did well on the france

76 computation

Table 9: Benders decomposition with column generation on a large dataset

Benders Arc
Dataset T (m) Mem (mB) Gap T (m) Mem (mB) Gap

sun 1312.48 50193 0.0 900.95 60123 0.0
norway - 92145 45.1 - 128610 40.8
india35 - 40312 22.5 - 44101 23.2
germany50 - 91209 30.7 - 101233 34.4
france - 41533 4.1 - 69581 1.4
nobeleu - 66123 5.4 - 78123 7.8
janosus - 80012 25.2 - 99831 30.2
ta1 - 67521 10.6 - 76234 14.6
ta2 - 140120 80.3 - 224128 79.9

instance and ended with a better optimality gap. A large part of the
memory is used for the branch and bound method.

Although not shown, the arc-based formulation finds a better in-
teger solution early on, than the Bender’s formulation, however af-
tewards it progresses much more slowly. A guess would be that we
remove unnecessary path variables in the column generation model,
and only add paths as necessary. This keeps the size of the LP prob-
lem we solve at each node smaller. Comparing the optimality gap the
arc-based formulation faires quite well. In general the memory usage
of the Bender’s with column generation method is better.

Overall there is still work to be done for larger problem instances
for integrated multilayer network models.

6 N E T W O R K M O D E L S

6.1 survivable dwdm

We start by extending the basic model to for WDM network. WDM
is inherently a multilayer network. At the bottom we have an optical
physical layer, with WDM on top. As usualy, we minimize the total
installation cost.

For this network we may choose to install a fiber or not, with each
fiber accomodating a maximum number of lightpaths, denoted by
B. Modern DWDM systems typically employ 40 or 80 wavelengths
per channel, which may carry 10 or 40 Gbit/s per wavelength. The
problem of determining which wavelengths should be assigned to
each lightpath is not covered here, as it is a difficult problem on its
own, but will be covered in a later section.

We proceed under the assumptions that there are an unlimited
number of wavelengths available, and that each cross-connect is able
to convert wavelengths. Under these assumptions we are able to fo-
cus on developing a general survivable WDM network. In the next
section we cover a two-part model that solves the network topology
and routing and wavelength assignment problem.

In this model a single physical edge represents a single physical
fiber, and we solve which modules should be installed on a physical
fiber. A module in this context aggregates the costs of the optical
cross connects at both endpoints. The capacity of the module is the
number of wavelengths to be installed, and we have r capacity (mea-
sured in Gbits) available per wavelength. We use B to denote the max-
imum number of wavelengths to be used in the system; this would
also restrict the number of wavelengths per fiber to B. Installing a
fiber incurs a cost of ce. Here we assume that the cost of the physical
fiber, as well as the trenching cost is captured by ce.

Installing fiber on an edge requires work to dig the trench and
laying down the fiber t(l), as well as the cost of the fiber itself f(l) as
well as any additional costs, j. Here the both trenching and fiber costs
can be seen to be dependent on l, where it is plausible to assume that
the relation is linear. Thus the actual cost of installing fiber on an
edge is c(l) = t(l) + f(l) + d. We don’t model the actual costs though,
and rather rely on our data to provide the actual costs. Hence the
cost is obtained from the data, and we can assume that it already
takes length and other factors into account.

For our decision variables we have xe ∈ {0, 1} indicating whether
fiber is installed on edge e. This is one way of modelling whether

77

78 network models

a fiber is to be employed on an edge. With this approach the data
set needs to provide multiple parallel edges between two nodes, in
order for there to be multiple physical fibers which can be utilized.
Another approach is to let xe be integer, and assume the data allows
multiple fibers to exist on a single edge. This alternative approach is
used in a later model. yma indicating the number of capacity modules
of type m are installed on edge a.

We allow modular capacity modules on the logical layer, for the
reason that wavelength channels typically exhibit economies of scale
behavior, that is, the cost of large Gbit/s channels is cheaper when
compared by capacity per price.

The set Pk contains all logical paths for commodity k. The set Pl
contains all logical paths that go over link l. Pa is a set containing
all lightpaths that go over edge a. The set Ma contains activatible
channels. V is a set containing all the graph nodes. The set E contains
all physical edges. The set L contains all logical links. K is the set
containing all commodities.

For the decision variables, xa ∈ {0, 1} indicates whether a fiber line
is active on edge e. yma ∈ N0 indicates the number of channels of
type m on edge a. fEp ∈ R represents the amount of flow on physical
path p. fLp ∈ R indicates the amount of flow on logical path.

For the problem parameters, we have a demand dk for each com-
modity k. B is the maximum number of wavelengths per fiber. ca is
the installation cost of fiber on physical edge a. km is the amount of
wavelengths given by m. r is the capacity provided per wavelength.

min
∑
a∈E

cexa +
∑
l∈L

∑
m∈Ma

cmy
m
a (6.1)

s.t.

∑
p∈Pk

fLp = dk, ∀k ∈ K (6.2)

The total physical flow realized from a logical link needs to be at
least double the flow on that link, for the diversification.

2
∑
p∈Pl

fLp 6
∑
p∈l

fEp, ∀l ∈ L (6.3)

∑
p∈Pa

fEp 6
∑
m∈Ma

yma rkm, ∀a ∈ E (6.4)

Where km is the number of wavelengths that can be installed, r is
the capacity per wavelength and yma is a binary decision variable
indicating whether module m is installed on fibre a.

6.1 survivable dwdm 79

Note that the path p in (6.2) is a commodity path, and in (6.4) p is
a lightpath that spans multiple fiber links.

When there is a positive number of modules installed on edge e we
need to activate the underlying physical optical fiber connection. We
do so using if-then modelling. We also limit the number of modules on
a given fiber, since there can only be a maximum of B wavelengths
employed.∑

m∈Ma

yma 6 Bxa, ∀a ∈ E (6.5)

Together with (6.3) we need to ensure we only maximally send
half of the required flow over a physical edge. This keeps us from
putting all our eggs in one basket; should a physical edge fail, there
is sufficient capacity on another path in order to meet the required
demand.∑

p∈l
:a∈p

fEp 6
∑
p∈Pl

fLp, ∀l ∈ L,a ∈ E (6.6)

int

xa ∈ {0, 1}, ∀a ∈ E

yma ∈ {0, 1},∀a ∈ E,m ∈Ma

The physical and logical layers are intricately connected in this
model, due to constraint sets (6.3) and (6.6). Thus the problem will
be separated into a master problem and a single subproblem.

The master problem contains the wavelength constraint set and the
objective:

min∑
a∈E

cexa +
∑
l∈L

∑
m∈Ma

cmy
m
a (6.7)

s.t.

∑
m∈Ma

yma 6 Bxa, ∀a ∈ E (6.8)

For the subproblem we introduce the auxiliary α variable, which
we minimize in the objective function, as was done in section 4.7, the
details are derived mechanically and are omitted here. The dual is
more interesting as we obtain the pricing problem and required cut
from it.

We obtain the dual subproblem as:

max
∑
k∈K

dkπk +
∑
a∈E

∑
m∈Ma

y∗ma kmµa (6.9)

80 network models

s.t.

∑
a∈E

µa = −1 (6.10)

πk +
∑
l∈L

(
2ηl −

∑
a∈E

γla

)
6 0, ∀k ∈ K,p ∈ P ′ (6.11)

−ηl +
∑
a∈E

(
µa + γ

l
a

)
6 0, ∀l ∈ L,p ∈ P ′ (6.12)

And the Benders cut we need to add is obtained as:

0 >
∑
k∈K

dkπ
∗
k +
∑
a∈E

∑
m∈Ma

yma rkmµ
∗
a (6.13)

On the physical layer we have the fixed charge network design
problem (FCNDP), with a capacitated multi commodity flow on the
logical layer.

Note that a logical link may be more than one lightpath, in which
case it can be considered as the aggregate of all constituent lightpaths.

6.2 dwdm rwa

In the previous section we assume there were a unlimited number of
wavelengths available and that wavelength conversion took place. Re-
alistically this is not possible. In this section we consider the Routing
and Wavelength Assignment (RWA) problem in optical networks em-
ploying WDM for which the traffic is known in advance, i.e. the
network is assumed to be static.

Each lightpath in the network is assigned a wavelength. A light-
path must use the same wavelength on each physical fibre along its
path. Furthermore, all lightpaths traversing the same physical fibre,
must be assigned distinct wavelengths.

The overall problem is solved in two steps:

• Solve the minimum cost network topology. The topology and
routing of the network is solved and the actual lightpaths to be
used is obtained.

• Determine the wavelength for each lightpath, obeying the wave-
length constraints.

6.2 dwdm rwa 81

The problem is separated, as solving both in a single model is not
feasible for large networks.

For the first part, the model is similar to the one presented in the
previous section. We omit survivability and use a path based formu-
lation in order to focus on the wavelength assignment problem.

DWDM:

min
∑
a∈E

caxa +
∑
l∈L

∑
m∈Ma

cmy
m
a (6.14)

s.t.

∑
p∈Pk

fLp = dk, ∀k ∈ K (6.15)

∑
p∈Pl

fLp 6
∑
p∈l

fEp, ∀l ∈ L (6.16)

∑
p∈Pa

fEp 6
∑
m∈Ma

yma rkm, ∀a ∈ E (6.17)

∑
m∈Ma

yma 6 Bxa, ∀a ∈ E (6.18)

∑
p∈l
:a∈p

fEp 6
∑
p∈Pl

fLp, ∀l ∈ L,a ∈ E (6.19)

with integral bounds

xa ∈ {0, 1}, ∀a ∈ E

yma ∈ {0, 1},∀a ∈ E,m ∈Ma

For performance this problem is decomposed using Bender’s de-
composition and only a subset of paths is used, with possible new
paths obtained using column generation and proceeds in the same
manner as in the previous section. More details of this can be found
in the chapter 4.

Routing and Wavelength Assignment:
Subsequently, we utilize the answer of the cost minimization prob-

lem in order to solve the wavelength assignment problem. The light-
paths are obtained from the solution of the first problem, these are the
physical paths. We also use the number of wavelengths used from the
first problem.

82 network models

The set W denotes all possible wavelengths. The set P denotes all
lightpaths {p ∈ Pa : ∀a ∈ E}.

The decision variable λwp denotes whether wavelengthw is used for
the lightpath p. Since the model is formulated in a path based man-
ner, the continuity constraint is already satisfied, as we are assigning
a wavelength w to lightpath p.

The wavelength assignment problem is formulated as follows:

min
∑
w∈W

∑
p∈P

λwp

That is, we are minimizing the total number of wavelengths used
over all paths.

s.t.
The number of wavelengths to be installed needs to match the num-

ber we solved in the previous problem:∑
w∈W

∑
p∈Pa

λwp =
∑
m∈Ma

kmy
m
a , ∀a ∈ E (6.20)

All wavelengths are required to be distinct over a fiber.∑
p∈Pa

λwp 6 1, ∀a ∈ E,w ∈W (6.21)

The set Pk contains all logical paths for commodity k. The set Pl
contains all ogical paths that go over link l. Pa is a set containing
all lightpaths that go over edge a. The set Ma contains activatible
channels. V is a set containing all the graph nodes. The set E contains
all physical edges. The set L contains all logical links. K is the set
containing all commodities.

For the decision variables, xa ∈ {0, 1} indicates whether a fiber line
is active on edge e. yma ∈N0 indicates the number of channels of type
m on edge a. fEp ∈ R represents the amount of flow on physical path
p. fLp ∈ R indicates the amount of flow on logical path. λwp ∈ {0, 1}
indicates whether wavelength w is used for lightpath p.

For the problem parameters, we have a demand dk for each com-
modity k. B is the maximum number of wavelengths per fiber. ca is
the installation cost of fiber on physical edge a. km is the amount of
wavelengths given by m. r is the capacity provided per wavelength.

6.3 ethernet over dwdm

The model is based on the multicommodity flow problem and flow
variable are utilized in order to determine the appropriate amount
of flow to send over a path. Given two graphs, P = (N,E) and
L = (N,L), the network is considered multi layer and each graph

6.3 ethernet over dwdm 83

constitutes a layer. Note that the set of nodes is shared. The networks
considered here are opaque, that is, E contains the same set of edges
as L. We loosely use the term edge to refer to a physical edge e ∈ E,
and link to refer to a logical edge l ∈ L, outside of the usual graph
theoretic definitions.

The input graphs, P and L, are undirected, weighted and non-
cyclic. When demand is sent over an edge, we assume the same
amount can be sent in the opposite direction. This can be realized
practically by installing the same fiber configuration in the opposite
direction. The cost of installing a fiber is an aggregation of the for-
ward and backward fibers, and is already taken into account in ce.
The same is true for the lightpaths, with the additional wavelengths
installed in the separate backward fiber.

Multiple physical lightpaths may have the same terminal nodes,
which results in parallel logical links. In this model these parallel
links are aggregated into a single link. Thus the decision variable yl
indicates the number of wavelengths over all possible physical paths
which realize the logical link l.

Each lightpath in the network is assigned a wavelength. A light-
path must use the same wavelength on each physical fiber along its
path. Furthermore, all lightpaths traversing the same physical fiber,
must be assigned distinct wavelengths. The problem of assigning
wavelengths to lightpaths is solved separately, due to the high com-
putational capacity that it requires.

The set M contains available routers. At each node i ∈ N a single
router m ∈M may be installed. The router needs to be able to switch
all incoming and outgoing traffic.

For computational reasons the set of edges E only contains a undi-
rected edge once, and for each e = (i, j) ∈ E we have that i 6 j.
The same is true for the set of logical links L. When generating flow
variables, we omit flow variables on edges which do not exist. Thus

∑
w∈V

Qkv,w, ∀v ∈ V ,

can be simplified to

∑
w∈V :(w,v)∈L

Qkv,w, ∀v ∈ V

The same is done for the lightpath flow variables.
For the decision variables we have ze ∈ N0 indicating the number

of fibers to be installed on edge e, and yl indicating the number of
wavelengths to be installed on logical link l.

For this model we develop both a path-flow model and an arc-
based model. For the path model we apply the usual decompositions.

84 network models

6.3.1 Path model

min
∑
i∈V

∑
m∈Mi

cmx
m
i +
∑
l∈L

γyl +
∑
a∈E

caza (6.22)

s.t.

∑
p∈Pk

fLp = dk, ∀k ∈ K (6.23)

∑
p∈Pl

fLp 6 rδyl, ∀l ∈ L (6.24)

∑
p∈l

fEp = rδyl, ∀l ∈ L (6.25)

∑
l∈La

yl 6 Bza, ∀a ∈ E (6.26)

∑
m∈Mi

xmi 6 1, ∀i ∈ V (6.27)

∑
m∈Mi

kmx
m
i >

∑
l∈Li

rδyl +
∑

(a,b)∈K
a=i∨b=i

d(a,b), ∀i ∈ V (6.28)

6.3.2 Path model Decomposition

Bender’s decomposition is applied in order to separate EWDM into
a reduced master problem, and two subproblems.

For the reduced master problem, the objective function and the
routing constraints are obtained as:

RMP

min
∑
i∈V

∑
m∈Mi

cmx
m
i +
∑
l∈L

γyl +
∑
a∈E

caza (6.29)

s.t.

∑
m∈Mi

kmx
m
i >

∑
l∈Li

rδyl +
∑

(a,b)∈K
a=i∨b=i

d(a,b), ∀i ∈ V (6.30)

∑
m∈Mi

xmi 6 1, ∀i ∈ V (6.31)

6.3 ethernet over dwdm 85

The subproblems are separated into a logical- and physical sub-
problem.

The auxiliary variable α is introduced that serves as capacity short-
fall. The subproblems are solved when a feasible integer solution is
obtained during the branch and bound process. Thus the variables y∗l
and z∗l denote the current integer solution of the respective decision
variables.

For the logical subproblem we have:
LOG:

minα (6.32)

s.t.

∑
p∈P′k

fLp = dk, ∀k ∈ K (6.33)

∑
p∈P′l

fLp −α 6 rδy∗l , ∀l ∈ L (6.34)

For the physical subproblem we have:
PHYS

min α (6.35)

s.t.

∑
p∈l

fEp = rδy∗l , ∀l ∈ L (6.36)

∑
p∈P′a

fEp −α 6 Bz∗a, ∀a ∈ E (6.37)

Note that in the above constraints we are using a separate set of
paths, P′k ⊆ Pk, P′l ⊆ Pl and P′a ⊆ Pa. Initially |P′k| = 1,∀k ∈ K and
|p ∈ l| = 1, ∀l ∈ L, and only contain a single shortest path. We only
generate new paths as needed using column generation - we try to
find new flow variables in order to reduce the objective function by
identifying variables with negative reduced cost.

For the logical subproblem, we obtain the dual as:
LOGD

max
∑
k∈K

πkdk +
∑
l∈L

rδy∗lθl (6.38)

86 network models

s.t.

∑
l∈L

θl = −1 (6.39)

πk 6
∑
l∈Lk

−θl, ∀k ∈ K,p ∈ P ′k (6.40)

From (6.40), the pricing problem can be more clearly written as
(6.41), which can be seen as a shortest path problem.

πk = min
p∈Pk

{∑
l∈L

−θl

}
(6.41)

For every commodity k = (a,b) we calculate the shortest path from
a to b on graph L given edge weights −θl,∀l ∈ L.

We need to see if we can find a shorter path length than πk for
commodity k. If this is the case then constraint (6.40) is violated and
we need to add the path, and resolve the subproblem in order to see
if there are any additional variables to add.

Let SP(G,W,a,b) be a function returning the shortest path between
a and b on graph G given edge weightsW. Let (d,p) denote the result,
where d is the distance and p is the path.

For every commodity k we solve the shortest path using Dijkstra’s
algorithm, we add the resulting path p to P′k, if d < πk.

When there are no more variables to add, we add the Benders cut
(6.42) to the master problem.

∑
l∈L

rδylθ
∗
l 6
∑
k∈K

−π∗kdk (6.42)

Proceeding in the same manner, we obtain the dual of the physical
subproblem as:

PHYSD

max
∑
l∈L

ηlrδy
∗
l +
∑
a∈E

µaBz
∗
a (6.43)

s.t.

∑
a∈E

µa = −1 (6.44)

ηl +
∑
a∈El

µa 6 0 ∀l ∈ L,p ∈ P ′l (6.45)

6.3 ethernet over dwdm 87

With the Bender’s cut obtained as:

∑
l∈L

η∗lrδyl +
∑
a∈E

µ∗aBza 6 0 (6.46)

Variables are added as needed using column generation; in the
same manner variables are removed from the subproblems after a
certain number of iterations has passed and they have have not been
used in the basis.

6.3.3 Arc Model

The set Pk contains all logical paths for commodity k. The set Pl
contains all ogical paths that go over link l. Pa is a set containing
all lightpaths that go over edge a. The set Ma contains activatible
channels. V is a set containing all the graph nodes. The set E contains
all physical edges. The set L contains all logical links. K is the set
containing all commodities. Λ is the set of all wavelengths.

For the decision variables, Xmi ∈ {0, 1} indicates whether router m
installed at node i. Yl ∈ N0 indicates the number of lightpaths on
link l. Za ∈ N0 indicates the number of fibers installed at physical
edge e. Qkl ∈ R+ indicates the amount of flow for commodity k on
link l. Wl

e ∈ R+ indicates the amount of flow for link l on edge e.
λwp ∈ {0, 1} inndicates whether wavelength w is installed on path p.

For the problem parameters, we have a demand dk for each com-
modity k. b is the maximum number of wavelengths per fiber. ca
is the installation cost of fiber on physical edge a. cm is the cost of
router m. γl is the cost of installing a lightpath on link l. km is the
amount of wavelengths given by m. r is the capacity provided per
wavelength. km is the capacity provided by router m.

The model EWDMA describes the integrated approach.
EWDMA (Ethernet over WDM Arc):

min
∑
l∈L

γlYl +
∑
i∈V

∑
m∈M

cmX
m
i +

∑
a∈E

caZa (6.47)

s.t.

∑
w∈V

Qk(v,w) −
∑
w∈V

Qk(w,v) =


dk v = s

−dk v = t

0 otherwise

∀k = (s, t) ∈ K, v ∈ V

(6.48)

∑
k∈K

(
Qk(a,b) +Q

k
(b,a)

)
6 rYl, ∀l ∈ L (6.49)

88 network models

∑
w∈V

Wl
(v,w) −

∑
w∈V

Wl
(w,v) =


Yl v = s

−Yl v = t

0 otherwise

∀v ∈ V , l = (s, t) ∈ L

(6.50)

(
Wl

(s,t) +W
l
(t,s)

)
6
1

2
Yl, ∀(s, t) ∈ E, l ∈ L (6.51)

∑
l∈L

(
Wl

(s,t) +W
l
(t,s)

)
6 bZa, ∀a = (s, t) ∈ E (6.52)

∑
m∈M

Xmi 6 1, ∀i ∈ V (6.53)

∑
m∈M

kmX
m
i >

∑
l∈Li

rYl +
∑

k=(a,b)∈K
a=i∨b=i

dk, ∀i ∈ V (6.54)

The objective function (6.47) minimizes the total capital expendi-
ture cost of the network, which includes the wavelength costs, fiber
installation costs, and routing equipment costs.

Constraints (6.48) require the flow to match the demand of each
commodity; each commodity k = (s, t) has a certain bandwidth re-
quirement called the demand, all outgoing edges from node s send
dk flow and all incoming edges to node t absorb dk flow.

Constraints (6.49) require that a sufficient number of lightpaths are
installed on a link in order to satisfy capacity requirements.

Constraints (6.50) require that the physical flow be equal to the
logical capacity. The flow is sent in the same manner as for the com-
modities in constraints (6.48)n.

Constraints (6.51) provide survivability to the model by means of
physical diversification. For each l ∈ L, e ∈ E we require that the
total flow over Wl

e is less than or equal to half of the link capacity. In
the event that a physical edge fails, half of the required link capacity
can be routed over another physical path. Constraints (6.52) limit
the maximum number of wavelengths on an edge to B; additionally,
it indicates that a fiber should be installed on edge a if there are
wavelengths assigned to it. Constraints (6.53) state that only a single
router may be installed at a node. Constraints (6.54) require that the
router have sufficient capacity in order to route the traffic through the
node.

6.3 ethernet over dwdm 89

6.3.4 Top-down model

A top-down approach sequentially solves each layer from the top,
downwards. The top-down is similar to the integrated model, how-
ever, the problem is separated into two, due to its block-like structure.
The solved capacities from the top layer are solved in the model TD-
TOP and are used to solve for the capacities on the bottom layer in
model TDBOT. This simulates the design process commonly used by
network providers when planning a network sequentially.

The top-most layer is solved first for the lightpath capacities:
TDTOP (Top-down Top):

min
∑
l∈L

γlYl +
∑
i∈V

∑
m∈M

cmX
m
i (6.55)

s.t.

∑
w∈V

Qk(v,w) −
∑
w∈V

Qk(v,w) =


dk v = s

−dk v = t

0 otherwise

∀k = (s, t) ∈ K, v ∈ V

(6.56)

∑
k∈K

(
Qk(a,b) +Q

k
(b,a)

)
6 rYl, ∀l ∈ L (6.57)

∑
m∈M

Xmi 6 1, ∀i ∈ V (6.58)

∑
m∈M

kmX
m
i >

∑
l∈Li

rYl +
∑

k=(a,b)∈K
a=i∨b=i

dk, ∀i ∈ V (6.59)

Since the number of logical wavelengths Yl is already solved for,
it can be used in the subsequent bottom layer problem. The solved
fixed value is indicated by Y∗l .

TDBOT (Top-down bottom):

min
∑
a∈E

caZa (6.60)

s.t.

∑
w∈V

Wl
(v,w) −

∑
w∈V

Wl
(w,v) =


Y∗l v = s

−Y∗l v = t

0 otherwise

∀v ∈ V , l = (s, t) ∈ L

(6.61)

90 network models

(
Wl

(s,t) +W
l
(t,s)

)
6
1

2
Y∗l , ∀(s, t) ∈ E, l ∈ L (6.62)

∑
l∈L

(
Wl

(s,t) +W
l
(t,s)

)
6 bZa, ∀a = (s, t) ∈ E (6.63)

The overall objective value is then:

∑
l∈L

γlY
∗
l +
∑
i∈V

∑
m∈M

cmX
∗m
i +

∑
a∈E

caZ
∗
a (6.64)

The constraints are similar to those from the integrated approach,
EWDMA.

The top-down model solves the same problem as the integrated
approach, however it may be done sequentially. For this reason the
top-down solution is used as a warm-start for the integrated model.
This decreases the total computational time required.

6.3.5 Results

One focus of this work is to investigate the viability of an integrated
multilayer network model over a more traditional top-down model.
We evaluate these two approaches by comparing the objective value,
as this provides a method to gauge the possible capital expenditure
savings for network planners.

Thus we set up an experiment to compare these two approaches,
specifically for this Ethernet over WDM problem.

The physical topologies of the network instances were obtained
from SNDlib [36]. SNDlib network instances contain modules for
each edge. A module provides capacity for a certain cost. The highest
cost is taken as the cost of installing the fiber.

The logical layer is generated based on the physical layer. The same
nodes and edges are used, resulting in an opaque topology. The cost
of installing a wavelength γl is taken as the lowest module cost for
an edge and scaled down by a factor of ten.

The models were programmatically implemented and solved using
IBM ILOG CPLEX. The results were generated on an HP Z1 worksta-
tion with 16GB DDR3 Ram and Intel(R) Xeon(R) CPU E3-1245 proces-
sor.

The top-down and integrated model were run for each network
instance, the top-down result was used as a warm-start for the inte-
grated model. The parameters were kept constant, with b = 40 and r =
10.

Table 10 displays the list of network instances used to test the in-
tegrated and top-down models. The number of logical links |L| and
physical edges |E| is equal since an opaque topology is used.

6.3 ethernet over dwdm 91

Table 10: SNDlibs datasets

Dataset |V | |E| |L| |D|

pdh 11 34 34 24

polska 12 18 18 66

nobelus 14 21 21 91

nobelger 17 26 26 121

atlanta 15 22 22 210

abilene 12 16 16 132

geant 22 36 36 462

Table 11: Comparison between top-down and integrated approach

Integrated Top Down

Dataset Objective value Time Objective value Time q

pdh 1.77× 108 04:47 2.41× 108 01:31 1.36

polska 3.34× 107 01:39 3.66× 107 00:47 1.09

nobelus 6.11× 108 05:02 6.43× 108 01:05 1.05

nobelger 1.43× 108 09:20 1.53× 108 07:53 1.07

atlanta 2.16× 1011 05:02 2.34× 1011 00:07 1.08

abilene 5.85× 109 00:04 6.75× 109 00:02 1.15

geant 4.18× 109 17:36 4.39× 109 02:50 1.05

Table 11 shows the results obtained from the top-down and inte-
grated approach. For all cases, the integrated approach obtains an
improved objective value. The optimality factor is defined as: q = ŷ

y

where y is the optimal objective value obtained from the integrated
approach, and ŷ is the objective value from the top-down approach.
This factor indicates how far the optimal solution is from the top
down approach. The time is given as mm:ss. The Objective value col-
umn refers to the the total capital expenditure cost of the network.
From table 11 it is evident that the top-down approach performed
poorly when applied to the pdh- and abilene network instances.

This suggests that network providers may obtain significant cost
savings by utilizing an integrated approach for network planning. A
top-down approach, when compared to an integrated approach is
expected to perform even worse on larger network instances.

7 C O N C L U S I O N S

In this work we set out to cover the following:

1. Develop a flexible approach to solving multilayer network prob-
lems.

2. Apply the developed network model to a Ethernet over WDM
network

3. Improve scalability and performance.

For the first point we developed a general mutlilayer network model
(Chapter 4). This network model uses modules in order to encapsu-
late components that provide capacity to the network at a certain cost.
These modules can be installed on edges or nodes. Without extend-
ing the module to a specific network, these modules allow edges to
provide capacity at a certain cost, for example, an Ethernet line. On
a node this could be thought of as a router. We also advocate that a
integrated multilayer network model reduces the capital expenditure
costs compared to the traditional top-down approach (Section 6.3).

For the third point we try to improve the computational perfor-
mance of the approach. We develop two models, an arc-based model
to serve as a reference, and a path-flow model. The path-flow model
lends itself to being decomposed, as such we apply Bender’s decom-
position and column generation. We furthermore develop a primal
heuristic to serve as a warm-start for the decomposition model, as
well as strengthen the cuts. In Section 5.4 we find that this approach
reduces the memory consumption, and provides a better optimality
gap for larger problem instances.

Finally we apply the general multilayer network model developed
in chapter 4 to different Ethernet over WDM topologies, in Chapter 6.
We demonstrate the flexible approach and show that modelling the
physical layer and logical layer separately allows the model to easily
translate to different network topologies and technologies.

7.1 results

The results are covered in Section 5.4, and indicate that it is possible
to improve the computational performance of the general multilayer
network model. In particular by decomposing the problem using
Bender’s decomposition and column generation the memory usage

93

94 conclusions

can be reduced. Furthermore adding a primal heuristic as a warm-
start solution with strengthened cuts, reduces the the time taken to
fully solve instances. The arc-based model has decent performance
as well, and this is due to the many optimization the CPLEX solver is
able to perform on this formulation.

When adding survivability to the network model, the memory us-
age and time taken to fully solve problem instances increase drasti-
cally. Furthermore, it is still difficult to solve larger problem instances
with this approach.

It should be noted that using the top-down approach as a warm-
start, and using the integrated model to solve the problem further
will improve the results, even if the computation is stopped before
fully solving the model. This is strictly better than only using a top-
down solution and we advocate that network planners incorporate
such an approach.

Still there is further work warranted to improve the performance
of these models.

7.2 future work

There are many areas still left to explore. These are covered below
(and is by no means an exhaustive list).

Heuristics are mentioned but not explored. We employ a simple
heuristic based on Bender’s decomposition and column generation,
where we limit the amount of variables generated. This functions
quite well as a warm-start for larger solutions, however more tradi-
tional local search algorithms can be applied to the problem. Possi-
bile avenues of enquiry would be genetic algorithms, particle swarm
optimization or a custom expert heuristic.

Additionally, heuristics could be developed that provide a warm-
start solution for the Bender’s decomposition subproblems.

Another interesting avenue would be to try and improve the lower
bound of the the master problem, as this would reduce the size of the
branch and bound tree.

The developed multilayer network model is general enough to be
extended to more than two layers. Most of the models covered in this
work are 2-layer network models. The general approach is the same
for n-layer networks and could be extended to practical n > 2 layer
networks. This will be difficult to scale computationally, and it may
be necessary to explicitely specify paths for upper level edges.

B I B L I O G R A P H Y

[1] E. Harstead and R. Sharpe, “Forecasting of access network band-
width demands for aggregated subscribers using monte carlo
methods,” IEEE Communications Magazine, vol. 53, no. 3, pp. 199–
207, 2015.

[2] K. G. Coffman and A. M. Odlyzko, “Internet growth: Is there
a moore’s law for data traffic?” in Handbook of massive data sets.
Springer, 2002, pp. 47–93.

[3] A. Tatar, M. D. de Amorim, S. Fdida, and P. Antoniadis, “A
survey on predicting the popularity of web content,” Journal of
Internet Services and Applications, vol. 5, no. 1, p. 8, 2014.

[4] Metro Ethernet Forum, MEF Technical Specifications.
[Online]. Available: https://www.mef.net/carrier-ethernet/
technical-specifications

[5] R. Santitoro, “Metro Ethernet Services‚ÄìA Technical Overview,”
in Metro Ethernet Forum, vol. 2006, 2003.

[6] HUAWEI, “Technical White Paper for Multi-Layer Network
Planning,” University of Zurich, Department of Informatics,
Tech. Rep.

[7] M. R. Garey and D. S. Johnson, Computers and intractability. wh
freeman New York, 2002, vol. 29.

[8] CPLEX Optimization Studio. [Online]. Avail-
able: http://www-01.ibm.com/software/integration/
optimization/cplex-optimization-studio/

[9] S. Orlowski and R. Wessäly, An integer programming model for
multi-layer network design. Konrad-Zuse-Zentrum für Informa-
tionstechnik, 2004.

[10] S. Orlowski, “Optimal design of survivable multi-layer telecom-
munication networks,” 2009.

[11] J. S. Carson, “Model verification and validation,” in Simulation
Conference, 2002. Proceedings of the Winter, vol. 1. IEEE, 2002, pp.
52–58.

[12] R. G. Sargent, “Verification and validation of simulation models,”
in Proceedings of the 37th conference on Winter simulation. winter
simulation conference, 2005, pp. 130–143.

95

https://www.mef.net/carrier-ethernet/technical-specifications
https://www.mef.net/carrier-ethernet/technical-specifications
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/

96 Bibliography

[13] S. Jacholke, M. Grobler, and S. Terblanche, “Development of a
multi-layer model for optimal core ethernet resource planning,”
in Southern Africa Telecommunication Networks and Applications
Conference, 2016.

[14] ——, “A multilayer approach for solving the ethernet over wdm
network design problem,” in Southern Africa Telecommunication
Networks and Applications Conference, 2017.

[15] K. Lai and M. Goemans, “The knapsack problem and fully poly-
nomial time approximation schemes (fptas),” Retrieved November,
vol. 3, p. 2012, 2006.

[16] S. Aaronson, G. Kuperberg, and C. Granade, “The complexity
zoo,” 2005.

[17] G. Sierksma, Linear and integer programming: theory and practice.
CRC Press, 2001.

[18] A. Schrijver, Theory of linear and integer programming. John Wiley
& Sons, 1998.

[19] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization.
Athena Scientific Belmont, MA, 1997, vol. 6.

[20] D. G. Luenberger, Introduction to linear and nonlinear programming.
Addison-Wesley Reading, MA, 1973, vol. 28.

[21] K. G. Murty, “Linear programming,” 1983.

[22] G. B. Dantzig, “Maximization of a linear function of variables
subject to linear inequalities,” The Basic George B. Dantzig, pp.
24–32, 2003.

[23] L. G. Khachiyan, “Polynomial algorithms in linear program-
ming,” USSR Computational Mathematics and Mathematical Physics,
vol. 20, no. 1, pp. 53–72, 1980.

[24] A. H. Land and A. G. Doig, “An automatic method of solv-
ing discrete programming problems,” Econometrica: Journal of the
Econometric Society, pp. 497–520, 1960.

[25] E. Kalvelagen, “Benders decomposition with gams,” web. stan-
ford. edu/class/msande348/papers/bendersingams. pdf, vol. 7, 2002.

[26] J. Snyman, Practical mathematical optimization: an introduction to
basic optimization theory and classical and new gradient-based algo-
rithms. Springer Science & Business Media, 2005, vol. 97.

[27] E. H. Aarts and J. H. Korst, “Simulated annealing,” ISSUES,
vol. 1, p. 16, 1988.

Bibliography 97

[28] D. Whitley, “A genetic algorithm tutorial,” Statistics and comput-
ing, vol. 4, no. 2, pp. 65–85, 1994.

[29] T. H. Cormen, Introduction to algorithms. MIT press, 2009.

[30] M. Ali, G. Chiruvolu, and A. Ge, “Traffic engineering in metro
Ethernet,” vol. 19, no. 2, pp. 10–17, 2005.

[31] S. Keshav, “An engineering approach to computer networking:
Atm networks, the internet, and the telephone network,” Reading
MA, vol. 11997, 1997.

[32] A. Zapata, M. Duser, J. Spencer, P. Bayvel, I. de Miguel, D. Breuer,
N. Hanik, and A. Gladisch, “Next-generation 100-gigabit metro
ethernet (100 gbme) using multiwavelength optical rings,” Jour-
nal of lightwave technology, vol. 22, no. 11, pp. 2420–2434, 2004.

[33] Lucient Technologies, “Carrier Ethernet Defined,” 2005.

[34] H. Schmidtke and A. Gibbemeyer, “Five reasons to adopt layer
2 Ethernet switching over DWDM networks now,” Rapport tech-
nique, Siemens Networks, 2006.

[35] G. Rizzelli, A. Morea, M. Tornatore, and O. Rival, “Energy effi-
cient traffic-aware design of on–off multi-layer translucent opti-
cal networks,” Computer Networks, vol. 56, no. 10, pp. 2443–2455,
2012.

[36] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “Sndlib
1.0 survivable network design library,” Networks, vol. 55, no. 3,
pp. 276–286, 2010.

[37] S. Orlowski and M. Pioro, “On the complexity of column genera-
tion in survivable network design with path-based survivability
mechanisms,” Zuse Institute Berlin and Warsaw University of Tech-
nology, Tech. Rep, 2008.

[38] S. Terblanche, R. Wessäly, and J. M. Hattingh, “Survivable net-
work design with demand uncertainty,” vol. 210, no. 1, pp. 10–26,
2011.

[39] Y. Lee, Y. Seok, Y. Choi, and C. Kim, “A constrained multi-
path traffic engineering scheme for mpls networks,” in Commu-
nications, 2002. ICC 2002. IEEE International Conference on, vol. 4.
IEEE, 2002, pp. 2431–2436.

[40] A. Bley and T. Koch, “Integer programming approaches to access
and backbone ip network planning,” in Modeling, Simulation and
Optimization of Complex Processes. Springer, 2008, pp. 87–110.

98 Bibliography

[41] B. Gendron, T. G. Crainic, and A. Frangioni, “Multicommodity
capacitated network design,” in Telecommunications network plan-
ning. Springer, 1999, pp. 1–19.

[42] F. Idzikowski, L. Chiaraviglio, and F. Portoso, “Optimal design
of green multi-layer core networks,” in Future Energy Systems:
Where Energy, Computing and Communication Meet (e-Energy), 2012
Third International Conference on. IEEE, 2012, pp. 1–9.

[43] T. Engel, A. Autenrieth, and J.-C. Bischoff, “Packet layer topolo-
gies of cost optimized transport networks multi-layer netwok op-
timization,” in Optical Network Design and Modeling, 2009. ONDM
2009. International Conference on. IEEE, 2009, pp. 1–7.

[44] E. Kubilinskas, P. Nilsson, and M. Pióro, “Design models for ro-
bust multi-layer next generation internet core networks carrying
elastic traffic,” Journal of Network and Systems Management, vol. 13,
no. 1, pp. 57–76, 2005.

[45] G. Baier, T. Engel, and A. Autenrieth, “Evaluation of surviv-
able ethernet over WDM network architectures in metro ring
networks,” in Design and Reliable Communication Networks, 2007.
DRCN 2007. 6th International Workshop on. IEEE, 2007, pp. 1–8.

[46] G. Dahl and M. Stoer, “A cutting plane algorithm for multicom-
modity survivable network design problems,” INFORMS Journal
on Computing, vol. 10, no. 1, pp. 1–11, 1998.

[47] C. H. Papadimitriou, “On the complexity of integer program-
ming,” Journal of the ACM (JACM), vol. 28, no. 4, pp. 765–768,
1981.

[48] L. S. Lasdon, Optimization theory for large systems. Courier Cor-
poration, 1970.

[49] J. F. Benders, “Partitioning procedures for solving mixed-
variables programming problems,” Numerische mathematik, vol. 4,
no. 1, pp. 238–252, 1962.

[50] G. L. Nemhauser, “Column generation for linear and integer pro-
gramming,” Optimization Stories, vol. 20, p. 64, 2012.

[51] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh,
and P. H. Vance, “Branch-and-price: Column generation for solv-
ing huge integer programs,” Operations research, vol. 46, no. 3, pp.
316–329, 1998.

[52]

[53] L. Ford Jr and D. Fulkerson, “Maximal flow through a network,”
in Classic papers in combinatorics. Springer, 2009, pp. 243–248.

Bibliography 99

[54] C. Raack, “Capacitated network design-multi-commodity flow
formulations, cutting planes, and demand uncertainty,” 2012.

[55] S. Chopra, I. Gilboa, and S. T. Sastry, “Source sink flows with
capacity installation in batches,” Discrete Applied Mathematics,
vol. 85, no. 3, pp. 165–192, 1998.

[56] R. M. Karp, “Reducibility among combinatorial problems,” in
Complexity of computer computations. Springer, 1972, pp. 85–103.

[57] S. Even, A. Itai, and A. Shamir, “On the complexity of time ta-
ble and multi-commodity flow problems,” in Foundations of Com-
puter Science, 1975., 16th Annual Symposium on. IEEE, 1975, pp.
184–193.

[58] M. P. Kleeman, B. A. Seibert, G. B. Lamont, K. M. Hopkinson,
and S. R. Graham, “Solving multicommodity capacitated net-
work design problems using multiobjective evolutionary algo-
rithms,” IEEE Transactions on Evolutionary Computation, vol. 16,
no. 4, pp. 449–471, 2012.

[59] A. M. Alvarez, J. L. González-Velarde, and K. De-Alba, “Grasp
embedded scatter search for the multicommodity capacitated
network design problem,” Journal of Heuristics, vol. 11, no. 3, pp.
233–257, 2005.

[60] D. S. Johnson, J. K. Lenstra, and A. Kan, “The complexity of the
network design problem,” Networks, vol. 8, no. 4, pp. 279–285,
1978.

[61] R. Hinze, “A simple implementation technique for priority
search queues,” in ACM SIGPLAN Notices, vol. 36, no. 10. ACM,
2001, pp. 110–121.

	Titlepage
	Abstract
	Contents
	Acronyms

	1 Introduction
	1.1 Introduction
	1.2 Motivation
	1.3 Methodology
	1.4 Validation and Verification
	1.5 Contributions
	1.6 Overview

	2 Preliminaries
	2.1 Graph Theory
	2.2 Time complexity
	2.3 Linear Programming
	2.4 Simplex method
	2.5 Mixed Integer Programming
	2.6 Branch and Bound
	2.7 Benders Decomposition
	2.7.1 Example

	2.8 Local Search
	2.9 Algorithmic Implementation
	2.9.1 Graph data structures
	2.9.2 Lookup
	2.9.3 Graph search

	3 Background and Literature
	3.1 Background
	3.1.1 Ethernet
	3.1.2 Carrier Ethernet
	3.1.3 Metro Ethernet Services
	3.1.4 Architectures
	3.1.5 WDM
	3.1.6 Multiprotocol Label Switching

	3.2 Literature
	3.2.1 Network Planning
	3.2.2 Mutlilayer Networks
	3.2.3 Survivability
	3.2.4 Decomposition and Heuristics

	4 Basic Mathematical Model
	4.1 Introduction
	4.2 Single-commmodity flow problems
	4.3 Multicommodity flow problem
	4.4 Capacitated Network Design
	4.4.1 The general flow problem
	4.4.2 Example formulations

	4.5 Travelling Salesman Problem
	4.6 Basic multilayer formulation
	4.7 Decomposition using Benders
	4.8 Column generation
	4.9 Path flow module based formulation
	4.9.1 Example

	4.10 Arc-flow module based formulation
	4.11 Survivability
	4.11.1 Single layer diversification
	4.11.2 Multilayer diversification: Path formulation
	4.11.3 Multilayer diversification: Arc model

	5 Computation
	5.1 Heuristics
	5.1.1 Limited paths

	5.2 Strengthening cuts
	5.3 Column generation improvements
	5.3.1 Dijkstra
	5.3.2 Removal of paths

	5.4 Results
	5.4.1 General model verification
	5.4.2 Benders and column generation comparison with arc-based
	5.4.3 Benders decomposition with- and without warm-start
	5.4.4 Benders decomposition with- and without rounding cuts
	5.4.5 Survivability
	5.4.6 Larger problem instances

	6 Network Models
	6.1 Survivable DWDM
	6.2 DWDM RWA
	6.3 Ethernet over DWDM
	6.3.1 Path model
	6.3.2 Path model Decomposition
	6.3.3 Arc Model
	6.3.4 Top-down model
	6.3.5 Results

	7 Conclusions
	7.1 Results
	7.2 Future Work

