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ABSTRACT 

T ITLE :   Alternative method for equipment condition monitoring on South African mines 

AUTHOR:  GJ Cloete 

SUPERVISOR:  Prof M Kleingeld 

KEYW ORDS :  Condition monitoring; Fault detection; Autoregressive model 

The practicality of accurate condition monitoring and fault diagnostics depends on the type of 

parameter measured and the accuracy of the measurement. In the South African mining 

industry, it is common to find large electrical machines with limited logged parameters, which 

significantly decreases fault diagnostic capability.  

In this study, a condition monitoring methodology that incorporates an autoregressive fault 

detection model is developed to improve condition-based maintenance strategies on South 

African mines. Autoregressive models have shown to be able to detect and predict equipment 

defects with available temperature parameters. A method to determine the condition of 

equipment is developed by establishing an autoregressive model on the modal parameters of 

both healthy and unhealthy machines. The method was validated by comparing results with 

the mine’s maintenance reports.  

The model was implemented in two case studies which include large three-phase induction 

motors. Case Study 1 presents a large disturbance in the temperature of a non-drive end 

bearing of a multistage centrifugal compressor that was detected by the model. Case Study 2 

presents a gradually increasing motor winding temperature of a multistage centrifugal pump 

that was also successfully detected. 

The method is a viable alternative to the mines due to the capability of automatically detecting 

faults even within the mines’ alarm and trip limits. The model automatically adapts to the 

behaviour of the input parameters and monitors the mean and variance shifts. This allows the 

method to be interchangeable with different types of equipment. The method can continuously 

evaluate a system of multiple components and provide simple, actionable feedback if a fault 

is detected.  
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1. INTRODUCTION TO CONDITION MONITORING 

 INTRODUCTION 

Chapter 1 provides background on condition monitoring and the relevant information regarding 

condition monitoring. It will serve as motivation for the study and it will briefly explain the 

approach taken to achieve the aims of the study. 

Condition monitoring aids in the detection, diagnosis and prognosis of faults in industrial 

systems (Beebe, 2004). Potential economic and safety implications of early fault detection 

makes condition monitoring an appealing field of research (Fugate, Sohn & Farrar, 2001).   

Process industries are looking to reduce machine downtime and maintenance costs (Wasif et 

al., 2012). A reduction in machine downtime and maintenance costs can be achieved by 

implementing a condition monitoring strategy (Beebe, 2004).  Previous studies conducted by 

Chindondondo, et al. (2014) and Shafiee, et al. (2015) have reported a maintenance cost 

reduction of 8% - 30% by implementing a condition-based maintenance (CBM) strategy. 

This study will focus on large electric motor-driven machines used in deep-level mines in South 

Africa. Examples of these machines include compressors, dewatering pumps and ventilation 

fans.  These machines have a direct influence on the production of a mine (Karakurt et al., 

2011; Wilson et al., 1975). 

A condition monitoring methodology for the equipment is developed in this study. The 

methodology contains a model that aids to detect changes in developed signals. The 

developed model is implemented and verified on available case studies. 

 CONDITION MONITORING  

The process of monitoring the condition or state of machinery and processes is called 

condition monitoring. Condition monitoring is regarded as a type of maintenance inspection 

with the purpose to detect signs of degradation, diagnose cause of faults and predict when a 

fault may occur (Beebe, 2004). The aim of condition monitoring is to predict equipment and 

process failure before it occurs whereby the equipment availability is maximised and 

associated hazards are reduced.  

 MEASURED PARAMETERS  

Different parameters are used to measure the condition of equipment. Real-time condition 

monitoring makes use of non-destructive test methods. The following test methods are 

typically used as condition indicators (Zhou et al., 2007): 
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 Vibration monitoring 

 Temperature monitoring 

 Current monitoring 

 Acoustic emission monitoring 

 Sound pressure monitoring 

 Laser displacement monitoring 

 Chemical (oil) analysis 

 Operational performance monitoring 

Vibration and temperature are commonly logged parameters on large mining equipment. 

Usually, only a select few of these techniques are used to monitor the condition of the 

equipment. It is not always necessary to make use of all these techniques since the critical 

test methods are equipment specific.  

Key performance parameters include power consumption, flow(s), pressure(s) and calculated 

efficiency. Typical condition monitoring parameters include temperature and vibration.  The 

measured parameters along with their set alarms are usually displayed online on the 

supervisory control and data acquisition (SCADA) system for operators to monitor.  

If these monitored parameters exceed manufacturer’s/operator’s set limits an alarm triggered 

to indicate that a fault is imminent or has occurred. The equipment usually has a fail-safe 

programmed into the programmable logic controller (PLC) that will automatically trip the 

equipment. The SCADA will inform the operator that the equipment has tripped and the fault 

can be reported remotely by the client’s remote alarm monitoring system - if such a system 

exists.  

 CONDITION PREDICTION MODELS  

In literature, different modelling techniques are implemented to detect and predict equipment 

health (Jardine et al., 2006). These models make use of parameters divided into three main 

categories: waveform data analysis, value type data analysis and data analysis combining 

event data and condition monitoring data (Jardine et al., 2007).  

Three different domains are used to analyse a time series, namely: time-domain analysis, 

frequency-domain analysis and time-frequency analysis (Jardine et al., 2006).  This study will 

focus on the time-domain analysis of temperature and vibration profiles. 
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Condition prediction models analysing the time-domain parameters have been shown to 

successfully detect, predict and diagnose faults in industry (Baillie & Mathew, 1996). By 

predicting faults, the availability and reliability of machinery can be increased. 

 AVAILABILITY AND RELIABILITY  

One of the main aims of maximising equipment availability is to increase production of a mine. 

The production of a mining company is usually listed as a key performance indicator (KPI) 

(Harmony Gold Mining Company Limited, 2017; Lonmin Plc, 2017). In the mining industry, 

one of the main KPIs is the cost per amount of material retrieved from the earth (intensity).  A 

condition-based maintenance strategy can aid to increase the availability of production 

affecting equipment (Sitayeb et al., 2011).  

System availability, a fundamental measure for reliability is shown in Equation 1.1: 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑀𝑇𝑇𝐹)

𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 (𝑀𝑇𝑇𝐹) + 𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑟𝑒𝑝𝑎𝑖𝑟(𝑀𝑇𝑇𝑅)
(1.1) 

A machine with high availability is a machine that is only shut down for short periods of time 

due to maintenance or failure (Tavner, 2008). Availability is given as a percentage as 

calculated by using Equation 1.1. High availability is one of the main criteria for satisfactory 

performance (Davies, 1998). 

Reliability of a machine is the measure of the consistency that the machine can operate 

without failure for a set time. It can statistically be defined as the probability that a machine 

will remain online producing as required for the desired period (Beebe, 2004).  

Certain factors affect the reliability of the equipment. The design of the machine and the 

maintenance philosophy are the main contributors that affect the reliability of a machine 

(Beebe, 2004).  The design of the machine includes the materials used, quality of the design 

and the quality of construction. 

 EQUIPMENT FAILURE  

Equipment failures affects the reliability and availability. Bloch (1990) completed a root cause 

analysis on centrifugal pumps that experienced mechanical failure. The root cause analysis 

determined why the centrifugal pumps had failed. The failure cause distribution is shown in 

Figure 1-1. 
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FIGURE 1-1 CENTRIFUGAL PUMPS FAILURE CAUSE DISTRIBUTION 

Figure 1-1 shows that factors such as the materials used, the quality and design have an effect 

of the failure of pumps. Figure 1-1 also shows that the main source of pump failure is 

maintenance deficiencies. Maintenance deficiencies can be mitigated with a continuous 

condition monitoring strategy (Wasif et al., 2012; Chindondondo et al., 2014). 

The maintenance philosophy contributes to the reliability of the machine after construction.  

The reliability of a machine is proportional to the cost of making the machine and will likely 

influence the maintenance cost. Beebe (2004) states that only 10% – 20% of machines reach 

their design life.  Independent studies have shown that 15% – 20% of all equipment failures 

are age related (Amari & McLaughlin, 2006).  

Condition monitoring aids in detecting early damage of machines.  Damage to a machine can 

have potential economic and life-safety implications (Fugate et al., 2001).  The principle 

causes of major accidents are shown in Figure 1-2.  
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FIGURE 1-2: PRINCIPLE CAUSES BEHIND MAJOR ACCIDENTS  
(DAVIES, 1998) 

A survey completed by Davies (1998) reviewed 100 petrochemical plant accidents that took 

place between 1958 and 1987.  Figure 1-2 indicates that 38% of all accidents occurred due to 

mechanical failure which stresses the importance of condition monitoring practices.  In many 

of these cases, the accidents could have been prevented if the condition of the equipment 

was pro-actively monitored.  

 SOUTH AFRICAN MINING INDUSTRY 

To fully understand condition monitoring the challenges specific to the South African industry 

will be assessed. Factors specific to South Africa, such as the economic climate, deep level 

mining and existing data handling infrastructure all influence current condition monitoring 

methodologies and strategies. 

 ECONOMIC CLIMATE  

Mining companies are facing severe economic and financial challenges (Neingo & Tholana, 

2016). South Africa was the leading gold producer until 2009 when China exceeded South 

Africa, and is still the leading producer to date. South Africa is currently the seventh top gold 

producer in the world behind China, Australia, Russia, United States of America, Canada and 
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Peru (Jasinski, 2017). South Africa produced an estimated 140 metric tons in 2016 which is a 

decrease from 145 metric tons in 2015 (Jasinski, 2017).  

The monthly gold production index provides an indication of the extent that the production has 

fallen in South Africa from above 350 index points in January 1980 to less than 50 index points 

in January 2015  (Statistics South Africa, 2015). South Africa produced 87% less gold in 

January 2015 compared to January 1980 (Statistics South Africa, 2015).  

The number of employees in the mining and quarrying industry are declining (Statistics South 

Africa, 2016). The average wages in the South African mining and quarrying industries are 

increasing at a rate higher than inflation (Statistics South Africa, 2016). Both the decrease of 

gold production and the wage increases stress the fact that the mining industry must adapt to 

the changing economic climate. 

 DEEP-LEVEL OPERATIONS  

Monitoring and maintaining the condition of equipment in a South African underground mine 

is challenging due to the country’s unique reef formations, as well as depths to reach the ore 

bodies (Johansson, 2010). This leads to many operational obstacles that can affect condition 

monitoring. Monitoring the condition of underground equipment is more difficult than 

equipment on the surface. 

Underground conditions such as the temperature and humidity increase the difficulty of 

working underground. Virgin rock temperatures of 60°C are expected at 4000 m depths and 

are not uncommon in the deep gold mines of South Africa (Stephenson, 1983; Neingo & 

Tholana, 2016). In South African deep-level mines, it is common for a gold mine to be deeper 

than 3000 m below the surface.   

These conditions can have a degrading effect on both the equipment and on the employees’ 

performance thus increasing unplanned breakdowns and maintenance difficulty.  To cool the 

working environment to a more bearable climate, gold mines utilise ventilation and 

refrigeration systems which are among the cost drivers (Neingo & Tholana, 2016). 

Seismic activity can also have an impact on the availability and reliability of equipment. 

Seismicity mainly affects the production of the mine, but seldom affects the performance or 

condition of the large underground energy consumers such as pumps, fridge plants and other 

cooling auxiliaries (Neingo & Tholana, 2016). 
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 DATA HANDLING   

A mine is one large system that can be broken down into smaller subsystems to simplify data 

handling.  This increases the difficulty of stable transmission of data to a central database. 

The cost to install or upgrade the infrastructure to transmit the data required for condition 

monitoring depends on the mine’s existing infrastructure and long-term strategy. To make the 

study practical, the data collected by the mine’s existing infrastructure will be used to 

determine the condition of the equipment. 

To simplify the data collection methodology, it is divided into three main steps. The first step 

is the transmission of data between the PLC and SCADA system.  The next step is to obtain 

the data from the SCADA and process the data remotely while ensuring data integrity.  The 

third step is to report the results to the end user. The data obtained for this study is obtained 

remotely. The data transmission path is shown in Figure 1-3. 

  

Sensor PLC

Network switch SCADA EMS Mobile router

Secure mobile 

network

SMS recipient

Email recipient

Database & 

data 

processing

SMS recipient

Email recipient

 

FIGURE 1-3 DATA TRANSMISSION PATH INTO ALARM 

Using the data transmission path shown in Figure 1-3, the data is retrieved from the historian 

database in half hourly intervals to reduce data transmission cost. The transmitted data can 

include the following parameters, depending on what type of equipment is monitored: 

 Active power output 

 Reactive power 
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 Power factor 

 Current and voltages 

 Non-drive end (NDE) and drive end (DE) bearing temperatures of both the equipment 

and the motor 

 Gearbox bearing temperatures (for gear-drive motors) 

 NDE and DE vibration of the equipment and the motor 

 Gearbox bearing vibration (for gear-drive motors) 

 Motor winding temperatures 

 Equipment specific performance parameters 

Some South African mines have extensive logs of these parameters; up to millisecond 

intervals. Mines can improve its current fault detection abilities by implementing alternative 

and more effective detection and prognosis techniques. 

 IMPACT OF CONTINUOUS MONITORING IMPLEMENTATION  

The benefits of implementing a continuous condition monitoring strategy include a reduction 

in the number of unplanned shutdowns, increased system availability, potential to pre-order 

spare parts, increased safety in plant operations, increased process efficiency and more 

effective process control. 

By continuously monitoring and predicting the health of the process or equipment can 

decrease the number of unplanned shutdowns and mitigate production losses. If the condition 

of the system is declining and the responsible group is informed of the system’s state, a pre-

emptive strategy can be established to counter the risks. 

If the group or responsible person is informed of a possible breakdown, the risk can pre-

emptively be assessed and spare parts can be pre-ordered to reduce down time that would 

have been used to wait for parts to arrive. 

A part of condition monitoring includes efficiency monitoring.  One of the symptoms of a faulty 

electrical motor is the reduction of efficiency  (Nandi et al., 2005). If the equipment is powered 

by an electrical motor, the efficiency or performance of the machine is then also dependent 

on the condition of the electrical motor. This makes monitoring the performance a viable 

indicator of the condition of the equipment. There are many more benefits to condition 

monitoring Neale & Woodley (1975) summarised the benefits in Table 1-1. 

TABLE 1-1 THE BENEFITS OF CONDITION MONITORING  
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(ADAPTED FROM NEALE & WOODLEY, 1975) 
 

Benefits 

Methods by which condition monitoring gives these 

advantages 

Lead time Better machine knowledge 

S
a

fe
ty

 Reduces machinery 

related accidents, injuries 

and fatalities 

Enables safe planned plant 

stops when instant shut down 

is not permissible. 

Machine condition, as 

indicated by an alarm, is 

adequate if instant shut down 

is permitted. 

O
u

tp
u
t 

Increased 

machine 

availability 

Increased 

running time 

Enables machine shut down 

for maintenance to be related 

to required production or 

service, and various 

consequential losses from 

unexpected shut downs to be 

avoided. 

Possibility to increase 

availability by maximising 

time between planned 

machine overhauls and, if 

necessary, allows a machine 

to be nursed through to the 

next planned overhaul. 

Reduced 

maintenance 

time 

Enables machine to be shut 

down without destruction or 

major damage requiring a 

long repair time. 

Enables the maintenance 

team to be ready, with spare 

parts, to start work as soon 

as machine is shut down. 

Reduces inspection time after 

shutdown and speeds up the 

start of correct remedial 

action. 

Increased rate of nett 

output 
 

Allows some types of 

machine to be run at 

increased load and/or speed. 

Can detect reductions in 

machine efficiency or 

increased energy 

consumption. 

Improved quality of 

product or service 

Allows advanced planning to 

reduce the effect of 

impending breakdowns on 

the customer for the product 

or service and thereby 

enhances company 

reputation. 

Can be used to reduce the 

amount of product or service 

produced at substandard 

quality levels. 
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 CONDITION MONITORING APPROACH 

 MAKING CONDITION MONITORING PRACTICAL  

State of the art equipment produces tremendous amounts of data. Analysing this data can 

result in a large time and financial expense (Wiggelinkhuizen et al., 2007; Yang et al., 2014).  

Bauer et al. (1998) states that the measurement equipment in the mining environment must 

be robust because of the extreme conditions. To make condition monitoring practical, the 

method itself should be robust. It has to compensate for limited logged parameters and still 

result in an accurate fault detection estimate. 

The monitoring method should be cost effective. By using the mine’s current monitoring 

infrastructure, implementation cost can be minimal. If the infrastructure already includes 

condition monitoring functionality, the focus can be shifted to the data analysis. 

To increase the practicality of the condition monitoring method, performance parameters can 

be monitored. Performance monitoring is more practical because the performance parameters 

are more commonly measured. Performance monitoring is essentially a type of condition 

monitoring. Running machinery or processes in an unhealthy condition can have an adverse 

effect on the performance of the equipment. An example of such an effect is that the 

deterioration in the condition of the machine causes an increase in energy usage (Beebe, 

2004).  

The condition monitoring model, in this study, will be developed using data from South African 

mines. The study will focus on large electric motor-driven machines since most machines on 

the mine and in the mining industry are powered electrically. 

 APPROACH TO CONDITION MONITORING  

The aim of improving condition monitoring capabilities, is to improve the CBM. CBM process 

consists of many sub steps. The whole architecture of CBM is summarised into seven steps 

(Prakash Kumar & Srivastava, 2014). This study focusses on signal processing condition 

monitoring health assessment and prognostics step presented in Figure 1-4.  
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FIGURE 1-4 ARCHITECTURE OF CONDITION-BASED MAINTENANCE 
(PRAKASH KUMAR & SRIVASTAVA, 2014) 

A limiting step of this study is the data acquisition, therefore the focus shifts to the signal 

processing to improve condition monitoring, health assessment and prognostics steps of the 

equipment. The approach of this study will focus on reducing the difficulty of implementing a 

condition monitoring strategy. 

Presentation

This layer should contain data of the previous steps. It should contain the equipment 
health assessment, prognostic and decision.

Decision Support

The prognostics result should be assessed and an optimal maintenance actions should 
be proposed to the assessor.

Prognostics

Logistic data from previous steps are required to calculate the future health of equipment.

Health assessment

Prescribe if the health of the monitored equipment has degraded from installation. It also 
serves to generate diagnostics records to propose fault possibilities.

Condition monitoring

Compare on-line, real time data with set limits

Signal processing

Remove distortions to 
restore the signal to the 

underlying original shape

Remove data that is not 
indicative of equipment 

condition

Transform the signal to 
make relevant features 

more explicit

Data acquisition

The collection of data between the equipment and central database
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 CONCLUSION 

Condition monitoring is an appealing field of research because of its benefits (Fugate et al., 

2001). A list of problems concerning condition monitoring in the South African mining industry 

is presented in Section 1.5.1. The aims of the study are given in Section 1.5.2. 

 PROBLEM STATEMENT  

Many industries depend on a remote monitoring system built into the SCADA to indicate the 

condition of equipment. This method only triggers alarms when failures occur. This results in 

large failure-related cost such as production losses, consequential damage to other 

equipment, catastrophic failure replacement cost, unplanned maintenance overtime cost, etc. 

(Beebe, 2004; Wasif et al., 2012).  

South African mines only measure limited condition defining parameters. Gouws (2007) states 

that the connection of sensors for the purpose of condition monitoring is not always possible. 

Therefore, the need for a practical condition monitoring method increases that can assist with 

detection and prognosis using available data. 

Previous studies propose many complex solutions for condition monitoring. These solutions 

require a large amount of representative data for fault prognosis or diagnosis. In practice, a 

large amount of data is rarely available or accessible. 

Financial constraints limit many South African mining companies to effectively implement a 

condition monitoring system. Infrastructure to acquire and manage large amounts of data is 

imperative for the precise monitoring of equipment condition. An upgrade to the existing 

infrastructure can be required if the current infrastructure is not adequate to execute the 

specific maintenance strategy. 

A low sample rate of 30 minutes is available, which has been considered too low for accurate 

fault detection (Yang et al., 2014). Thus, a need for a condition monitoring method that is 

practical, robust and accurate for the low sample rates exists. 

 A IM OF THE STUDY  

 Develop a method to improve condition-based maintenance strategies on South 

African mines. 

 Develop and validate an alternative method that continuously predicts faults using 

readily available, measured parameters.  



 

Alternative method for equipment condition monitoring on South African mines 14 

 

 Develop a method to continuously predict the condition of equipment and display 

information in a practical and usable format. 

 OVERVIEW  OF THESIS  

Chapter 1 sets the overview of the study. Elements concerning condition monitoring are 

explained and a list of advantages concerning condition monitoring are given. It also includes 

the steps taken to reach the aims of the study. The problem statement is presented along with 

the aims of the study.  

Chapter 2 presents the literature on the topic of condition monitoring. To fully comprehend 

the state of the art the literature includes international studies and studies completed in South 

Africa. The literature search provides the basic concepts of condition monitoring.  It compares 

how condition monitoring techniques are implemented in other industries and which 

parameters are required to make use of these techniques. The parameters are assessed 

individually to ensure that the measured parameters will give an accurate estimation of 

equipment condition. 

Chapter 3 explains the development of the model. From the findings in Chapter 2, the 

technique is chosen to determine the condition of the equipment. The model is developed, 

trained and fine-tuned to suite the specific parameter and equipment. The method is compared 

to alternative techniques and critically evaluated. 

Chapter 4 shows how the available condition monitoring data from different mines and 

equipment is used to test the autoregressive model in two separate case studies. The results 

are given and discussed in this chapter. 

Chapter 5 reports the findings of the study. A summary of the study is given and a conclusion 

is drawn. The final condition monitoring methodology is reported. Recommendations for 

further studies are presented. 
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2. CONDITION MONITORING OVERVIEW 

 INTRODUCTION  

To fully comprehend condition monitoring methods, a literature review is done in Chapter 2. 

The literature study first provides the basic concepts of condition monitoring. Different 

condition monitoring techniques are presented and evaluated. The implementation of a 

condition monitoring technique is discussed. The common condition indicating parameters are 

listed and discussed. Different methods of how data is pre-processed and analysed is 

explained in this chapter. 

 CONDITION MONITORING BACKGROUND 

Condition monitoring focuses on detecting the failure while a root cause analysis focuses on 

the underlying root causes of the fault (Tavner, 2008). Figure 2-1 shows the difference 

between the failure sequence and root cause analysis. Figure 2-1 is constructed using an 

example failure; the failure of a main shaft on a rotating electrical machine.  

 

FIGURE 2-1 CAUSE-AND-EFFECT DIAGRAM OF A MAIN SHAFT FAILURE  
(TAVNER, 2008) 

According to Vas (Cited by Nandi et al., 2005), the most prevalent faults in rotating electrical 

machines are:  

Failure mode 

Root 

cause 

analysis 

Main shaft 
failure

Fracture

High cycle 
fatigue

Corrosion

Deformation

Low cycle 
fatigue or 
overload

Misalignment

Root causes 

Condition 

monitoring 

and fault 

detection 
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 bearing;  

 stator or armature faults;  

 the broken rotor bar and end ring faults of induction machines;  

 and the eccentricity-related faults. 

These faults are detected by monitoring various parameters. Beebe (2004) gives a table of 

symptoms or parameters that are relevant to pumps in Appendix A. Neale & Woodley (1975) 

summarised indications of machine or component deterioration in Appendix B.   

By identifying outliers or a change in the behaviour of these parameters can give an indication 

of the equipment condition (Beebe, 2004). If such a change is detected or predicted, it allows 

maintenance to be scheduled or other action to be taken to prevent failure.  

 MAINTENANCE PHILOSOPHIES  

Two important types of maintenance include corrective maintenance and preventive 

maintenance. According to European standards, Standard EN 13306, these maintenance 

types can be broken down as shown in Figure 2-2. 

 

FIGURE 2-2 MAINTENANCE BREAKDOWN 

Figure 2-2 illustrates that corrective maintenance includes planned corrective maintenance 

and emergency maintenance. The figure also illustrates that preventative maintenance 

includes CBM and predetermined maintenance. Moubray (1997) introduced a P-F curve as 

illustrated in Figure 2-3 (Wessels, 2003). 

Maintenance
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maintenance

Planned 
corrective

Emergency 
maintenance

Preventive 
maintenance

Condition-
based

Predetermined 
maintenance
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FIGURE 2-3 ASSET FAILURE CURVE  
(Adapted from Etchson, 2017) 

Figure 2-3 presents an asset failure curve, or in this case, a DIPF curve. Other variations 

include PF, IPF curves (Munion, 2017). The illustration provides context for the different 

maintenance types. The vertical axis (y) represents the asset condition and the horizontal axis 

(x) represents time.  

The curve in Figure 2-3 shows that the asset gradually deteriorates throughout time form point 

I, the date of installation. P on the curve, shows the point in the process at which it is first 

possible to detect a fault. If a fault remains undetected or unmitigated, the rate of deterioration 

accelerates until a functional failure occurs at point F (Munion, 2017).  

Failure symptoms and condition detection techniques are added to the curve to indicate the 

asset condition. Figure 2-3 also displays the different types of maintenance and in what 

regions they occur. The maintenance types after point P on the graph is explained, namely 

corrective maintenance and preventive maintenance which include predictive maintenance as 

described below. 
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2.2.1.1.  CORRECTIVE M AINTEN ANCE  

Corrective maintenance is also known as reactive maintenance, breakdown maintenance, 

operate to failure or run-to-failure (Beebe, 2004). This type of maintenance is performed after 

a breakdown or when a fault is detected. Early in a machine’s lifetime, a minimal number of 

incidents of failure is expected (Sullivan et al., 2010). Beebe (2004) states that corrective 

maintenance can sometimes be cost effective if the maintainability of the equipment is 

unproblematic.  

2.2.1.2.  PREVENTIVE  M AINTEN AN CE  

If a condition monitoring strategy detects a fault before it occurs, maintenance can pre-

emptively be scheduled to repair the fault. This process is called predictive maintenance. 

Preventive maintenance includes predictive maintenance. Preventive maintenance is the 

actions performed on a machine that can detect, prevent or mitigate the degradation of the 

machine with the aim to extend the machine’s lifetime (Beebe, 2004).   

A real-time, online, condition monitoring system aids in preventive and predictive maintenance 

strategies. Predicting a potential fault then allows for convenient repair scheduling (Beebe, 

2004).   

2.2.1.3.  M AINTEN ANCE STR ATEGY COMPARISON  

Studies have shown that corrective maintenance is the predominant mode of maintenance in 

the mining industry (Mkemai, 2011; Sullivan et al., 2010). More than 55% of maintenance 

resources and activities of an average facility are spent on corrective maintenance, 31% is 

spent on preventive maintenance, 12% is spent on predictive maintenance and 2% is spent 

on other methods (Sullivan et al., 2010). In addition to the predicted savings, preventive 

maintenance will effectively extend the life of the equipment (Beebe, 2004; Sullivan et al., 

2010).  

Louit & Knights (2001) state that implementing an adequate maintenance philosophy can 

result in reduced hidden costs, reduced unplanned and emergency work at a small cost of 

more planning, and higher preventive and planned maintenance expenses. A large part of the 

hidden costs and unplanned and emergency work are converted into cost savings (Louit & 

Knights, 2001).  

To understand how the different types of maintenance are performed, Costinas & Comanescu 

(2004) compiled a table that explains the different techniques used to successfully implement 

the maintenance plan. Table 2-1 is adapted to accommodate the mining industry’s monitoring 

systems and not only the monitoring of substations as was used in their study. 
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TABLE 2-1 DEVELOPING STRATEGIES FOR MAINTENANCE MANAGEMENT 
 (ADAPTED FROM COSTINAS & COMANESCU, 2004) 

Maintenance strategy Required techniques / tools 

Corrective 

maintenance 

Replacement or repair is performed only 

if a failure occurred. 

The spare parts and equipment 

themselves. 

Preventive 

maintenance 

Time based maintenance, 

recommendation from manufacturer and 

experience with same type of equipment; 

it has been practiced as the usual 

maintenance strategy in electrical power 

systems for many years.  

Waveform analysis: data sheets; 

periodic component replacement. 

Predictive 

maintenance 

In accordance with condition and 

importance; concept of availability & 

reliability and reliability centred 

maintenance (RCM); power supply 

monitoring. 

Waveform analysis: vibration 

monitoring; spectrographic oil 

analysis; thermographic analysis; 

infrared thermography; ultrasonic 

inspection; use of computers for 

analysis and trending. 

Proactive 

maintenance 

Proactive approach can be suited for 

equipment associated with the 

organisation's significant environmental 

aspects. 

Monitoring and correction of 

failure root cause; root cause 

analysis; failure mode effect and 

criticality analysis (FMECA). 

 

Mkemai (2011) compared the time spent on corrective maintenance and preventive 

maintenance of load haul dump machines in mines in Sweden. He found that corrective 

maintenance seems to dominate the maintenance activities in a mining environment. The 

study also showed that the time spent on corrective maintenance strategies increased if the 

machinery aged.  

 INDUSTRY APPROACH ,  STANDARDS AND STRATEGIES  

Many condition monitoring systems are available for implementation in South Africa (Siemens 

South Africa, 2009; Crystal Instruments, 2017a; Rockwell Automation, 2017a; SKF, 2017). An 

example of such a system is given in Figure 2-4. 
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FIGURE 2-4 SCADA CONDITION MONITORING PANEL 

Figure 2-4 shows a condition monitoring panel displayed on a mine’s SCADA interface. This 

specific example illustrates all the measured, condition-determining parameters of a 

multistage centrifugal compressor. The grey areas of each bar in the figure displays the trip 

limits. The SCADA system is developed by Rockwell Automation, but the condition monitoring 

of the equipment is handled by Siemens. 

To monitor the parameters, the International Organisation for Standardisation’s (ISO) 10816-

3 guideline is convenient to use for the process alarm and trip limits. Table 2-2 illustrates a 

recommended vibration velocity severity chart. According to Table 2-2, the vibration severity 

depends on the rated power and the foundation type of the motor. Machinery running with 

shaft speeds of more than 600 rpm should be analysed with a frequency of 10-1000 Hz (ISO 

10816-3, 2009). Machinery running at speeds of more than 200 rpm should be analysed with 

a frequency of 2-1000 Hz (ISO 10816-3, 2009).  

TABLE 2-2 VIBRATION SEVERITY CHART 
(ISO 10816-3) 

  Machinery groups 2 and 4 Machinery groups 1 and 3 

Velocity Rated Power 

mm/sec RMS Group 2: 15 kW – 300 kW Group 1: 300 kW – 50 MW 

11.0     

7.1  

4.5    

3.5    

2.8  

2.3  

1.4   

0.7  

0.0 

Foundation type Rigid Flexible Rigid Flexible 
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Referring to Table 2-2, the red cells indicates severe condition, and the green cells indicate 

an acceptable operating condition. The foundation type of the equipment depends on how the 

machine is mounted to the floor. The mine operates with a compressor vibration trip limit of 6 

mm/s and an alarm limit of 4 mm as shown in Figure 2-5. 

 

FIGURE 2-5 ALARM AND TRIP LIMITS OF A COMPRESSOR 

The parameter data shown in the SCADA screenshots, Figure 2-4 and Figure 2-5, are logged 

in a database that can be analysed internally or by specialist third party companies. A list of 

available online monitoring systems in South Africa is compiled in Table 2-3. 

TABLE 2-3 EXAMPLE OF AVAILABLE CONDITION MONITORING SYSTEMS 

Supplier 
Monitoring 

system 
Analysis type 

Online 

analysis 
Source 

Crystal 

instruments 

Engineering 

Data 

Management: 

Post Analyser 

Waveform analysis and value 

analysis: Fast Fourier 

transform (FFT) spectral 

analysis; octave and acoustic 

analysis; order tracking; orbit 

plot; sine reduction; basic 

signal conditioning 

Yes 

(Crystal 

Instruments, 

2017b) 

Siemens 

Simatic 

Maintenance 

Station 

Waveform analysis and value 

analysis which include oil 

analysis  

Yes/No 

(Siemens 

South Africa, 

2009) 
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Rockwell 

Automation 

Emonitor 

Condition 

Monitoring 

Software 

Waveform analysis and value 

analysis: Trend projection; 

FFT spectral analysis; 

automated diagnosis 

Yes 

(Rockwell 

Automation, 

2017b) 

SKF 
Surveyor 

NetEP 

Waveform analysis and value 

analysis 
Yes (SKF, 2017) 

TAS Online 
Remote 

monitoring 
Value analysis Yes 

(TAS Online, 

2017) 

WearCheck N/A 

Waveform analysis, value 

analysis and physical 

inspection: Operational 

deflection shape, transient 

analysis, resonances tests 

No 
(WearCheck, 

2017) 

Table 2-3 provides a list of available condition monitoring systems that is available for use in 

South Africa. The list only includes a small mumber of the available suppliers. The analysis 

technique is also included in Table 2-3 to show how the condition of the equipment is 

determined. The systems report on the current state of the equipment and give suggestions 

to what should be corrected. 

 DATA EVALUATION AND ANALYSIS METHODOLOGY 

Raw data has to be pre-processed to ensure that the critical, representative data is analysed 

(Baillie & Mathew, 1996). Four main parts should be contained in a condition monitoring 

system, namely: the sensor, data acquisition, fault detection and diagnosis (Grimmelius, 1999; 

Tavner, 2008). This section will discuss the different sensors, how the data is stored and 

available data analysis methods. 

 SENSORS  

Vibration, shock and acceleration is measured using different types of accelerometers. Direct 

techniques include accelerometers of the following types (Brodgesell et al., 2003): 

A. Seismic (Inertial) 

B. Piezoelectric 

C. Piezoresistive and strain gauges 

D. Electromechanical sensors 

E. Capacitive and electrostatic  
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F. Velocity sensors 

G. Noncontact proximity sensors 

H. Mechanical switches 

I. Optical sensors 

The typical range of vibration frequency, in Hz, for the different accelerometer types are given 

below (Brodgesell et al., 2003): 

A. DC to 50 Hz 

B. From 1 to 15 000 Hz; special designs can go up to 30 000 Hz 

C. From 0 to about 1000 Hz 

D. Between 10 and 1000 Hz 

F. 0 to 3500 Hz 

H. 0 to 5000 Hz 

Most rotary equipment vibrates at frequencies of between 1 and 20 000 Hz (Brodgesell et al., 

2003). Overall vibration levels are monitored in analogous RMS detectors (Večeř et al., 2005). 

If the analogous vibration levels exceed the set trip limits, the machinery will trip. Special 

exceptions occur where a higher vibration set limit is set during the start-up of machinery. 

Specifics of a vibration sensor that is commonly used in the mining industry is attached in 

Appendix D. 

Many different classes of temperature sensors are available (Rall et al., 2003). The different 

classes have specific temperature ranges, accuracy and cost involved (Rall et al., 2003). The 

selection of a suitable sensor depends on the specific application (Rall et al., 2003). 

Temperature measurements are usually sampled at low sample rates (Ashlock & Warren, 

2015). 

 F ILTERING  

To ensure that the data is representative, it must be filtered. Filters reject unwanted noise 

within a certain frequency range (Rall et al., 2003; Ashlock & Warren, 2015). Filters are used 

to prevent aliasing from high-frequency signals (Rall et al., 2003; Ashlock & Warren, 2015). 

The aim of a filter is to obtain a better signal-to-noise ratio (Večeř et al., 2005).  Low-pass 

filters are commonly used to eliminate high-frequency noise and 60 Hz power line noise. 

Since temperature measurements are usually sampled at slow rates, it makes the 

measurements susceptible to high-frequency noise (Ashlock & Warren, 2015). Filtering the 

temperature signals increase the accuracy of the measurement.  



 

Alternative method for equipment condition monitoring on South African mines 25 

 

Regardless of the type of measured parameter, the data has to be evaluated. Examining the 

quality of the data is a critical step to mitigate fault detection errors. The aim of the data 

evaluation step is to ensure that the data is at a high level of quality before it is processed and 

assumed to be accurate. Guenel et al. (2013) states that the evaluation of multiple sensor data 

is often a major problem due to complex interdependencies between measured sensor data 

and the actual system condition.  

 DATA ANALYSIS  

Computation is required to analyse quantitative data for fault detection (Han & Song, 2003). 

Some high-frequency vibration monitoring systems analyse complete Fourier spectra (Jardine 

et al., 2006). The analysis of resulting condition indicators are computed and considered in 

the decision making process to trip the machine (Večeř et at., 2005). In this study, the high-

frequency signals are not available, so other data analysis methods are considered in this 

subsection. 

2.3.3.1.  CONTROL CH ARTS  

Control charts are one of the primary techniques used in statistical process control (SPC) and 

are typically used to monitor the mean shift of statistical distributions (Kullaa, 2003). Control 

charts indicate significant changes in a system operation thus it can be applied to detect 

changes in equipment condition.  

A control chart is a useful data analysis tool used to display the individual data points together 

with the mean and standard deviation of the dataset. Typical statistical calculations include 

the mean, standard deviation and frequency distribution. The mean is essentially the average 

of the filtered data. The standard deviation, or accuracy, measures the distribution of data 

point on either side of the mean. The control chart provides information about the consistency 

of the responses to help better understand the data. 

A Shewhart  �̅� control chart is used to monitor the mean of a quality characteristic of process 

variables. This control chart illustrates the basic trend of a process variable. It is simple to set 

up and easy for operators to understand. 

Page (1954) proposed a cumulative sum (CUSUM) control chart which is another method to 

detect a shift in process mean. Studies have shown that the CUSUM chart is more efficient in 

detecting small and moderate shifts in the process mean than the �̅� control chart (Reynolds 

et al., 1990; Zhang et al., 2004). The CUSUM chart is updated using fixed-length sampling 
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intervals. Reynolds et al. (1990) suggested a CUSUM scheme which is updated using varied 

time intervals. 

Exponentially weighted moving average (EWMA) is another statistic to monitor the mean shift 

of a quality characteristic. EWMA chart, just like the CUSUM chart, is commonly used for 

relatively small shift detection (Zhang et al., 2004). 

S and R charts are suitable for variance shift detection (Zhang et al., 2004).  To detect mean 

and variance shifts concurrently �̅� and 𝑆 (or 𝑅) charts can be plotted on a joint graph. Another 

more recent approach, control chart is the weighted loss CUSUM chart. The aim of this chart 

is to detect both mean and variance shifts in one chart (Zhang et al., 2004). 

A study performed by Reynolds & Lu (1997) states that using traditional control chart 

methodology on auto-correlated processes can result in a biased estimate for process 

parameters. The study evaluates various types of EWMA control charts that were fitted to 

original observations or on residuals from a fitted time series model. The study showed that 

moderate levels of autocorrelation can have a significant effect on the performance of control 

charts. When autocorrelation is present, traditional control chart methodology should not be 

applied without modification (Reynolds & Lu, 1997).  

Reynolds & Lu (1997) recommends that charts using residuals from a fitted time series model 

are not better unless the level of autocorrelation is high. So, for the condition monitoring 

method used in this study, it is critical that the residuals of the fitted time series model have a 

high level of autocorrelation. 

2.3.3.2.  MEAN AND V ARI ANCE SHIFT AN ALYSIS  STUDIES  

Jun & Suh (1999) monitored the mean shift of time-domain averaged vibration signals for tool 

breakage detection. The tool was used to detect breakage for numerical control (NC) milling 

operations. They made use of Shewart �̅�, EWMA and adaptive control charts to detect 

breakage.  

Kullaa (2003) made use of univariate and multivariate �̅�, CUSUM and EWMA charts to monitor 

the condition of the Z24 Bridge in Switzerland. The study monitored the mean shift of modal 

parameters such as stiffness, mass, damping, and boundary conditions. 

Wang & Wong (2002) proposed a technique to detect faults in the vibration signals of 

helicopter transmission gears. The technique first establishes an autoregressive (AR) model 

on healthy gears. The AR model is then used as a linear prediction error filter to predict the 
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future-state signal from the gear. The condition of the gear is diagnosed by characterising the 

error signal between the filtered and unfiltered signals. This technique was validated using 

numerical simulation and experimental data.  

Wang & Wong (2002) have shown that the AR modelling method is capable to detect a gear 

tooth crack earlier and with a higher level of confidence than with the traditional residual 

kurtosis method. 

Fugate et al. (2001)  also fitted an AR model to a healthy concrete bridge’s vibration signal. 

The residuals errors were seen as damage-sensitive features. Fugate et al. (2001) applied the 

residuals to �̅� and 𝑆 charts to monitor the mean and variance shifts. 

Multiple parameters indicate the condition of gearboxes, so Baydar et al. (2002) proposed a 

multivariate statistical analysis to detect faults in helical gears. 𝑄 and 𝑇2 statistics were 

adopted as the condition indicators. The study also predicted growing faults in the gearbox by 

monitoring the confidence regions based on kernel density estimations (KDE). 

 CONDITION PREDICTION MODEL  

Condition prediction models use state or condition indicating parameters to estimate the 

condition of equipment. The condition indicating parameters or state observers helps to 

measure the condition of equipment that can not necessarily be seen or be measured directly.  

 KEY MONITORED PARAMETERS  

The condition of machinery and processes affects certain parameters, such as vibration, 

temperature, acoustic emissions, etc. As mentioned in Section 2.4.1, the vibration, 

temperature and equipment specific performance parameters are the most commonly logged 

parameters. 

Equipment monitoring can be divided into two groups, namely condition monitoring and 

performance monitoring. According to Yates (2002), the performance monitoring is the 

monitoring of performance parameters that determines the efficiency of the equipment and 

condition monitoring reduces the risk of failure. The operating functions and benefits of the 

two groups are summarised in Figure 2-6. 
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FIGURE 2-6 PERFORMANCE MONITORING AND CONDITION MONITORING  
(YATES, 2002) 

An example of the measured parameters of a multistage centrifugal pump and a multistage 

centrifugal compressor are given in Figure 2-7 and Figure 2-8 respectively. The parameters 

shown in both figures are typical monitored parameters on compressors and pumps. The 

figures were constructed using available parameters from different sources from South African 

mines and only the common measured parameters are shown. The cooling systems of the 

compressors are excluded from the drawings. 

Mines make use of multistage centrifugal pumps that are essentially multiple pumps in series 

to obtain a desired performance (Beebe, 2004). The pumps are used in dewatering systems 

of underground mines, or to lower the water level in open pit mines. Deep mining operations 

have dams and pumping stations situated at different depths.  

The pumping station typically contains at least two or more pumps, of which at least one serves 

as a backup. The pumping capacity of the pumps should be more than the inlet flow to avoid 

flooding. Figure 2-7 gives an illustration of the typical monitored parameters of a multistage 

centrifugal pump. 
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FIGURE 2-7 MONITORED PARAMETERS OF A MULTISTAGE CENTRIFUGAL PUMP  
(Adapted from Oberholzer, 2014) 

Figure 2-7 illustrates the typical condition monitoring parameters of a multistage centrifugal 

pump. The illustration includes both the electrical motor and pump components. The list of 

measured parameters in the illustration is compiled from different sources in literature. 

The compressors deliver compressed atmospheric air to underground consumers. Examples 

of the underground compressed air consumers include rock drills, refuge bays and loading 

boxes. Some mines do not use pneumatic equipment but power the equipment hydraulically. 

Pressurised air, in deep-level mines, is required by law for the sole purpose of supplying air to 

underground refuge bays. 
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FIGURE 2-8 MONITORED PARAMETERS OF A MULTISTAGE CENTRIFUGAL COMPRESSOR 

Figure 2-8 illustrates the typical condition monitoring parameters of a multistage centrifugal 

compressor. The illustration includes the electrical motor, gearbox and compressor. The list 

of measured parameters in the illustration is compiled from different sources in literature. 

2.4.1.1.  CONDITION MONITORING PAR AMETERS  

Parameters such as temperature and vibration are considered as condition monitoring 

parameters (Yates, 2002). Willier (1971) as referenced by Murray (1989), developed an 

equation (Equation 2.1) that uses a rise in temperature across a pump to determine the pump’s 
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efficiency. This means that temperature can be considered a performance parameter because 

it is a measure of the energy losses on the machine (Murray, 1989). 

TABLE 2-4 KEY MONITORED PARAMETERS OF DIFFERENT STUDIES 

Component Technique 
Modelled 

parameters 
Reference Resolution 

Wind turbine 

generator 

Non-linear state 

estimation 

technique 

Temperature 
(Guo et al., 

2012) 

10 min (2 min 

verification) 

Electrical 

power 

transformers 

Artificial neural 

networks 
Vibration 

(Booth & 

McDonald, 

1998) 

10 minutes 

High sample rates 

Helicopter 

transmission 

gears 

Autoregressive 

modelling 

Gearbox vibration (Wang & 

Wong, 

2002) 

High 

Experimental 

test rig 

gearbox 

Meshing resonance 

and spectral 

kurtosis methods 

Gearbox vibration (Wang et 

al., 2017) 

Various (High) 

Experimental 

test rig 

Autoregressive 

modelling 

Bearing vibration (Baillie & 

Mathew, 

1996) 

High 

Other condition monitoring techniques 

Mine 

excavators:  

Failure mode, 

effects and 

criticality analysis 

Electric motors, 

bearing system and 

hydraulic system 

(Mkemai, 

2011) 

Non-random  

 

Table 2-4 shows the key monitored parameters of different studies. Table 2-4 also includes 

the sample resolution used in the specific study. And divides the studies accordingly. A 

FMECA on mine excavators is also added to the list.  
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2.4.1.2.  PERFORM ANCE MONITORING P AR AMETERS  

Murray (1989) states that monitoring a pump’s efficiency is complementary to other condition 

monitoring techniques such as vibration and lubrication oil monitoring. An advantage of 

performance parameters is that it is commonly logged on mining equipment, usually intended 

to be used specifically for performance monitoring. Performance parameters, for example, the 

flow, discharge pressure and power consumption of a pump, can be used to calculate the 

efficiency of the pump. Table 2-5 gives the fundamental terms and units used in pump 

performance monitoring with the SI units in bold. 

TABLE 2-5 FUNDAMENTAL TERMS AND UNITS IN PUMP PERFORMANCE  
(BEEBE, 2004) 

Quantity Other terms used Symbol Units 

Flow Volumetric flowrate, capacity, 

discharge, quantity 

𝑄 𝒎𝟑

𝒔
,
𝐿

𝑠
,
𝑚3

ℎ
,
𝑀𝐿

𝑑
 

Sometimes 
𝑘𝑔

𝑠
 

Head Total head, total dynamic head, 

generated pressure, generated 

head 

𝐻 𝒎, 𝑘𝑃𝑎 

Power Power absorbed 𝑃 𝑾, 𝑘𝑊 

Efficiency  𝜂 % 

 

There are two different ways to calculate the efficiency of a multistage centrifugal pump, 

namely the conventional method and the thermodynamic (or thermometric) method (Murray, 

1989; Beebe, 2004). The conventional method uses measured flow, head and power to 

calculate the efficiency. The thermodynamic method requires measuring the temperature and 

pressure rise across the machine. The temperature increase across a machine is a measure 

to determine the energy losses in the machine, while the pressure increase determines the 

useful work (Murray, 1989; Beebe, 2004). The thermodynamic method of calculating the 

efficiency is given by Equation 2.1. 

𝜂 =
1

1 − 𝛽𝑇 +
𝜌𝑐𝑝∆𝑇

∆𝑃

 (2.1) 
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Where: 

 𝜂  is the efficiency of the pump 

 𝑐𝑝 is the specific heat capacity of the fluid 

 ∆𝑇 is the measured temperature increase across the machine 

 ∆𝑃 is the measured pressure increase across the machine 

 𝑇 is the absolute temperature 

 𝛽 is the coefficient of cubical expansion of the liquid 

For compressors, the monitored performance and condition indicating parameters are similar 

to those of pumps. The fundamental terms and units to determine the performance of a 

compressor is given in Table 2-6. 

TABLE 2-6 FUNDAMENTAL TERMS AND UNITS IN COMPRESSOR PERFORMANCE 

Quantity Other terms used Symbol Units 

Flow 
Volumetric flowrate, discharge, quantity, 

mass flowrate 
𝑄 

𝑵𝒎𝟑

𝒔
,
𝑁𝑚3

ℎ
,
𝑆𝑡𝑑 𝑚3

ℎ
 

𝒌𝒈

𝒔
 

Power Power consumption 𝑃 𝑾, 𝑘𝑊 

Pressure 
Discharge pressure, delivery pressure, 

aftercooler pressure 
𝑝 𝑷𝒂, 𝑘𝑃𝑎, 𝑏𝑎𝑟 

Temperature 
Suction temperature, stage suction 

temperature, discharge temperature, 
aftercooler temperature 

 𝑲, °𝐶 

Position 
Guide vane position / blow off valve 

position 
 % 

Efficiency  𝜂 % 

 

For compressors, the monitored parameters are similar to those of the pumps. The 

fundamental terms and units to determine the performance of a compressor is given by Table 

2-6. 

Table 2-6 provides a list of the parameters monitored to determine the performance of a 

compressor. The overall efficiency of a centrifugal compressor varies between 70% and 85% 

(Campbell et al., 1992). To determine the thermodynamic efficiency, 𝜂, for an individual 

multistage centrifugal compressor, the following data is required: 
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 Flow (Normalised or standardised) 

 Power consumption 

 Suction, stage suction and discharge temperatures of usually three to four stages on 

a centrifugal compressor 

 Aftercooler temperature and pressure 

 Pressures between stages  

 Guide vane position  

 Blow off valve position 

Apart from the performance parameters, a list of other condition monitoring methods are 

tabulated in Table 2-7. The list is adapted from Zhou et al., (2007). Table 2-7 shows the 

advantages and disadvantages of the specified monitoring scheme. 

TABLE 2-7 DIFFERENT CONDITION MONITORING METHODS  

Monitoring schemes Major advantages Major disadvantages 

Vibration monitoring Reliable; standardised 

(ISO standards 

available) 

Expensive; intrusive, subject to 

sensor failures 

Chemical analysis Physically monitoring 

the equipment 

Limited to closed loop oil supply; 

specialist knowledge required 

Temperature 

measurement 

Standard available in 

some industries (IEEE 

standards available) 

Embedded temperature detector 

required; other factors may 

cause same temperature rise 

Acoustic emission 

(ultrasonic frequency) 

High signal-to-noise 

ratio 

Acoustic emission sensor 

required; specialist knowledge 

required 

Sound measurement Easy to measure Background noise must be 

shielded 

Laser displacement 

measurement 

Alternative to vibration 

monitoring scheme 

Laser sensor required; difficult 

to implement 

Stator current 

monitoring 

Inexpensive; easy to 

implement 

Sometimes low signal-to-noise 

ratio; still in development stage 
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2.4.1.3.  SAMPLE INTERV ALS  

Representative input data intervals are required to accurately develop a model and monitor 

the disturbances in the system. The model will only be able to detect a disturbance if the input 

data gives an indication of a potential disturbance. For example, if one is to monitor equipment 

temperature in a daily interval at 24H00 every day, the only the seasonal sinusoidal 

temperature profile can be observed. If the temperature is measured hourly, the daily 

sinusoidal profiles as well as the yearly profile can be observed. Similarly, a fault may only be 

observed by monitoring a certain interval. Thus, it is imperative to monitor the correct intervals.  

Figure 2-9 to Figure 2-11 illustrates the effect of failure by plotting a normal distribution of the 

probability of a fault to occur vs. the reliability of a machine.  

 

FIGURE 2-9 RATE OF FAILING OPERABILITY AS TIME PROGRESSES: FAST SPEED FAULT 
(TAVNER, 2008) 
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FIGURE 2-10 RATE OF FAILING OPERABILITY AS TIME PROGRESSES: MEDIUM SPEED FAULT  
(TAVNER, 2008) 

 

FIGURE 2-11 RATE OF FAILING OPERABILITY AS TIME PROGRESSES: SLOW SPEED FAULT  
(TAVNER, 2008) 
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Figure 2-9 through to Figure 2-11 shows the progression from a reliable to non-reliable 

operation at different fault progression rates: fast fault (Figure 2-9), medium fault (Figure 2-10) 

and a slow fault (Figure 2-11). Figure 2-9 shows a rapid progression from reliable to non-

reliable at the 50% point. The probability of failure rises sharply at this point. The area under 

the normal distribution curve is equal to one, because there is 100% probability of failure 

throughout the life of a machine. The same graphing methodology is repeated for the medium 

and slow fault.  

The different rates of failure should be considered while developing a model to detect 

equipment faults. Analysing a set interval that does not represent the fault yields inaccurate 

results (Večeř et al., 2005; Yang et al., 2013). Therefore, the model should at least take the 

interval of the measured parameter into consideration. If possible, the model should be tested 

with different intervals, relevant to the parameter type. 

Inspection intervals parameters are vital to detect phased deterioration of equipment (Sherwin 

& Al-Najjar, 1999). Beebe (2004) states that the monitoring of vibration in monthly, quarterly 

and yearly intervals is unusual. Sherwin & Al-Najjar (1999) developed practical models for 

optimum condition monitoring inspection intervals using Markov models. Data sample 

intervals of 10 minutes have been considered too low for accurate fault diagnosis when 

conventional condition monitoring techniques are used (Večeř et al., 2005; Yang et al., 2013). 

 EXISTING METHODS  

Different condition monitoring techniques exist with specific inherent attributes and 

requirements. These techniques range from basic statistical analysis of the data to in-depth 

model-based condition monitoring methods.  

2.4.2.1.  STATISTIC AL MODELS  AND INDIC ATORS  

Guo et al. (1998) proposed an integrated real-time statistical monitoring scheme shown in 

Figure 2-12. This strategy is implemented in the semiconductor fabrication process, but the 

methodology of the strategy follows a generic structure that can be applied to other systems 

as well. The scheme requires tool data and process data as process variable inputs. Tool data 

includes different statistical indicators. 
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FIGURE 2-12 INTEGRATED REAL-TIME STATISTICAL MONITORING SCHEME 
(ADATTED FROM GUO ET AL., 1998) 

Referring to Figure 2-12, Guo et al. (1998) gives an illustration of how a statistical monitoring 

scheme works. The illustration shows that process data and tool data is required for data 

classification. After the data has been classified, patterns are fitted to the data. Using the fitted 

patterns, two methodologies are followed to analyse the equipment condition namely special 

cause detection and common cause detection. 

Special cause detection includes univariate and multivariate SPC methods to determine the 

condition of equipment. The univariate and multivariate SPC methods analyse the residuals 

of the fitted pattern to determine the state of the process. Common cause detection evaluates 

the raw or fitted values, and includes the standard trip and alarm level decisions. 

Guo et al. (1998) proposed a feature factor; a method to determine the condition of a process 

using multiple monitored parameters. The feature factor is a scalar factor between one and 

zero which normalises and reflects the state of the parameter (Guo et al., 1998).  

Večeř et al. (2005) compiled a list of statistical time-domain features used to analyse 

developed vibration signals. These vibration statistical indicators are calculated before it is 

sent to the data historian.  
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TABLE 2-8 STATISTICAL VIBRATION CONDITION INDICATORS  
VEČEŘ ET AL. (2005) 

Indicator Calculation Parameters 

Root mean 

square 

value 

(RMS) 

𝑣𝑟𝑚𝑠 = √
1

𝑇
∫ 𝑣2(𝑡)𝑑𝑡

𝑇𝑓

𝑇𝑖

 

𝑣𝑟𝑚𝑠 is the RMS value of the velocity of the 

vibration signal 

𝑇 is the integration time 

𝑣 is the velocity of the moving object 

Delta RMS 𝑣∆𝑟𝑚𝑠 = ∆𝑣𝑟𝑚𝑠 𝑣∆𝑟𝑚𝑠 is the delta RMS  

Peak value 
𝑣𝑃

= 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝑣𝑃 is the maximum value of the signal in the 

dataset 

Crest factor 𝐶𝐹 =
𝑠𝑝𝑒𝑎𝑘−𝑝𝑒𝑎𝑘 

𝑠𝑟𝑚𝑠
 

𝐶𝐹 is the crest factor 

𝑠𝑝𝑒𝑎𝑘−𝑝𝑒𝑎𝑘 is the peak to peak value of the signal 

𝑠𝑟𝑚𝑠 is the RMS value of the vibration signal 

Energy 

operator 

(EO) 

𝐸𝑂

=
𝑁2 ∙ ∑ (𝑥𝑖 − ∆�̅�)4𝑁

𝑖=1

(∑ ((∆𝑥𝑖 − ∆�̅�)2)𝑁
𝑖=1 )

2 

𝐸𝑂 is the energy operator 

∆�̅� is the mean value of signal ∆𝑥 

∆𝑥𝑖 =  𝑠𝑖+1
2 − 𝑠𝑖

2 

𝑁 is the number of points in the dataset 

Kurtosis 

𝐾𝑢𝑟𝑡

=
𝑁 ∙ ∑ (𝑠𝑖 − �̅�)4𝑁

𝑖=1

(∑ ((𝑠𝑖 − �̅�)2)𝑁
𝑖=1 )

2 

𝐾𝑢𝑟𝑡 is Kurtosis 

𝑁 is the number of points in in the history of 

signal s 

𝑠𝑖 is the 𝑖-th point in the time history of signal s 

Energy ratio 

(ER) 
𝐸𝑅 =

𝜎(𝑑)

𝜎(𝑟)
 

𝐸𝑅 is the energy ratio 

𝜎(𝑑) is the standard deviation of the difference 

signal 

𝜎(𝑟) is the standard deviation of the regular 

signal 

Table 2-8 shows the statistical condition indicators used when vibration is analysed. The same 

indicators can be applied to temperature. Gouws (2007) presents the time-domain features 

listed in Table 2-8 that can be applied to all other parameters. The EO and ER are not included 

Gouw's list (2007).  
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2.4.2.2.  UNIV ARI ATE TIME SERIES MODELS  

As explained in Section 1.2.2, the study will focus on analysing time series data. There are 

three main groups of univariate time-series models which are widely present in literature, 

namely, AR, moving average (MA) and autoregressive moving average (ARMA) processes. 

Another group is a non-stationary model, an autoregressive integrated moving average 

(ARIMA). 

Autoregressive models are used to approximate underlying parameter behaviour (Zhang et 

al., 2004).  An example of an AR model is given in Equation 2-2: 

𝑦(𝑡) = 𝑎0 + ∑ 𝑎𝑘𝑥(𝑡 − 𝑘) + ε

𝑝

𝑘=1

 (2.2) 

Where: 

 𝑦(𝑡) is the observed parameter, e.g., temperature and vibration 

 𝑝 is the order of the equation 

 𝑘 is the time delay 

 ε is the Gaussian white noise with zero mean and standard deviation 𝜎 

There are a few different methods available to determine the model coefficients, 𝑎𝑘, 𝑘 = 0,…𝑝. 

The Yule-Walker is one method used to determine the type of method and requires solving 

using the Levinson-Durbin recursion (LDR) (Wang & Wong, 2002). Selecting the appropriate 

order of 𝑝 is essential for a good model fit, because a large 𝑝 over-fits the data and a small 𝑝 

under-fits the data.  

An approach to determine the model order is the Akaike Information Criterion (AIC) (Zhang et 

al., 2004). The optimal model order can be obtained by minimising the AIC below:  

𝐴𝐼𝐶(𝑘) = log(𝜎𝑘
2) + 2𝑘  (2.3) 

In the LDR, the error powers (𝑝𝑘 = 𝜎𝑘
2) are for all AR models. This means Equation 2-3 is 

rewritten as Equation 2.4 below: 

𝐴𝐼𝐶(𝑘) = log(𝑝𝑘) + 2𝑘 (2.4) 
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The first term will decrease with an increase in the order (𝑘), while the second term will restrict 

an increasing order. The predicted signal can then be calculated with Equation 2-5: 

�̂�(𝑡) = 𝑎0 + ∑ 𝑎𝑘𝑦(𝑡 − 𝑘)

𝑝

𝑘=1

 (2.5) 

The difference between the actual and the model is calculated using the Equation 2.6: 

𝑒(𝑡) = 𝑦(𝑡) − �̂�(𝑡) (2.6)  

𝑒(𝑡) is the calculated residual that will follow an independent and identically distributed (IID) 

normal distribution. An estimated probability density function of the residual distribution can 

be plotted and be analysed. If the condition of the equipment changes, the change will result 

in a changed residual distribution, which will reflect in a change in variance or mean shift.  

Schlechtingen & Santos (2010) found that AR models yield accurate results for modelling 

temperature of bearings in wind turbines. The large mass of the motor casing around the 

bearings cause bearing temperature to have a high autocorrelation (Schlechtingen & Santos, 

2010). 

Wang & Wong (2002) states that an AR(p) (AR model with the order p) model built on a 

stationary process will be able to predict stationary processes that are of the same family. 

Thus, a model will be used to make accurate predictions for any processes that are not related.  

2.4.2.3.  AUTOREGRESSIVE RESIDU AL AN ALYSIS  

AR models are used to model stochastic data to detect changes and predict future values 

based on a weighted sum of past values (Wang & Wong, 2002; Zhang et al., 2004). The 

difference between the AR model’s prediction and the actual value is defined as the AR 

residual. AR residual analysis is a method used to analyse the natural disturbance of 

equipment (Guo et al., 1998).  

Baillie & Mathew (1996) compared three different AR modelling techniques namely, back-

propagation neural networks, radial basis functions and traditional linear AR models. The 

back-propagation neural network and radial basis functions are non-linear and the Box Jenkins 

model is linear. Baillie & Mathew (1996) fitted the models to a time series vibration of a rolling 

element bearing for various signal lengths. The study found that the back-propagation neural 

network outperformed both the radial basis functions and the linear regressive AR model. 
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Artificial neural networks (ANNs) are considered an attractive option for diagnostics as these 

networks offers excellent pattern recognition and classification abilities (Marais et al., 2015). 

Baillie & Mathew (1996) consider ANNs to be more complex than linear models. 

Statistical methods and ANNs are becoming commonly used to detect patterns that can aid in 

fault diagnosis and prognosis (Baillie & Mathew, 1996).  Schlechtingen & Santos (2010) did a 

comparative analysis of neural network and regression based, or AR, condition monitoring 

approaches for wind turbine fault detection. The study applied three different developed 

models to five measured faults and anomalies. The wind turbine’s monitoring system includes 

the following developed signals: 

 Power output 

 Generator bearing temperature 

 Generator stator temperature 

 Generator slip ring temperature 

 Shaft speed 

 Gearbox oil sump temperature 

 Gearbox bearing temperature 

 Nacelle temperature 

Two catastrophic generator bearing failures occurred on a 2 MW offshore wind turbine. The 

anomalies were detected on the bearing temperature parameter. Both failures occurred on 

the same machine and both occurrences required a bearing replacement. Figure 2-13 shows 

the monitored bearing temperature. The two catastrophic bearing damages and the period 

used to train the ANN are illustrated in Figure 2-13. 

Bansal et al. (2005) used neural networks in a predictive maintenance system. The study 

found that the accuracy of the predictive maintenance system is a direct function of the validity 

of the simulated data used to train the neural network. The neural network required a large 

amount of data to be trained (Bansal et al., 2005). This is a disadvantage for data infrastructure 

that cannot handle such an amount of data to train the model. 
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FIGURE 2-13 BEARING TEMPERATURE EVOLUTION WITH THE TWO DAMAGE OCCURRENCES AND THE PERIOD USED TO 

DEVELOP THE MODEL  
(SCHLECHTINGEN & SANTOS, 2010)  

 VERIFICATION AND VALIDATION  

To validate the aforementioned models, analysing the statistics have been shown to be an 

effective technique (Kleijnen, 1999; Sargent, 2012). Sargent (2012) defined a list of 17 

techniques used to validate simulation models. Examples of the proposed techniques that is 

used in this study include: comparison to other models, historical data validation, parameter 

variability-sensitivity analysis, internal validity and predictive validation. A combination of these 

techniques is generally used to verify and validate subsequent models and the overall model 

(Sargent, 2012). 

Five of the techniques that Sargent (2012) defined can be implemented for the verification and 

validation process to accommodate the available data and model used in this study. These 

techniques are: animation, historical data validation, parameter variability-sensitivity analysis 

and internal validity. The techniques are briefly described below: 

Animation: Graphically display the model’s operational behaviour. Kleijnen (1999) describes 

animation as the face validity of the statistical analysis. Face validity is the capability of an 

individual to determine if the model’s input and output relationship is reasonable. In this case, 

the developed model and the actual values can be shown on a control chart. Sargent (2012) 

classifies face validity as a separate validation technique. The animation of a real-time control 

chart will ease the face validation. 

Period used to 

develop the 

models 

Damage 
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Historical data validation: The model is applied to available historical data and is tested to the 

behaviour of the system. In this case, to test if the model can predict faults that were 

experienced in practice. 

Parameter variability - sensitivity analysis: This technique involves the changing of the values 

of the input and internal parameters of the model to determine the effect on the model’s 

behaviour. The observed behaviours of varying the parameters should be the same in both 

the model and real system. 

Internal validity: Replicating results of the chosen stochastic model and analysing the 

stochastic variability of the results. A large variability spread may cause the model’s results to 

be questionable. 

Predictive validation: Using the model to predict the system’s behaviour and comparing the 

model’s forecast to the actual system behaviour can give an indication of the model’s 

accuracy. 

The above-mentioned techniques are used in Chapter 3 to determine the operational validity 

of the model. Operational validation is the process of determining whether the model’s output 

is accurate enough for the intended purpose. 

Two approaches can be followed to assess the operational validity of the model, namely a 

subjective approach or an objective approach. Sargent (2012) classifies the two approaches 

into an observable and non-observable systems in Table 2-9.  

TABLE 2-9 OPERATIONAL VALIDITY CLASSIFICATION 

Decision approach Observable system Non-observable system 

Subjective approach  Comparison using graphical 

displays 

 Explore model behaviour 

 Explore model behaviour 

 Comparison to other models 

Objective approach  Comparison using statistical 

tests and procedures. 

 Comparison to other models 

using statistical tests 

 

Referring to Table 2-9, an observable system means that it is possible to collect data on the 

operational behaviour of the problem entity. ‘Comparison’ means the comparison to either the 

model and the system output or another model or statistical tests and procedures. ‘Explore 
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model behaviour’ means to analyse the output behaviour of the model using a sensitivity 

analysis. 

To determine accuracy of the AR model, the model’s prediction is statistically compared to the 

actual value. Common statistical measures are used indicate the model’s accuracy include 

(Devore & Farnum, 2005): 

 Residuals or explained variance (EV) 

 Root mean square error (RMSE) 

 Mean absolute error (MAE) 

 Residual sum of square (RSS) 

 Coefficient of multiple determination (𝑅2) 

The calculation methodology of the above-mentioned statistical evaluation parameters is 

provided in Appendix C. Another statistic used the p-value, or observed significance level, 

which aids to determine the significance of a variable in a model. The null hypothesis, 𝐻0, is 

the hypothesis that the modelled data is a representation of the actual data. If the desired 

significance level, 𝛼, is the probability of a type I error to occur then the following applies: 

 Reject 𝐻0 if p-value ≤ 𝛼 

 Do not reject 𝐻0 if p- value > 𝛼 

Thus, a smaller p-value indicates a more statistically significant model. Statistically a condition 

monitoring system can give two types of errors, type I error and type II error. A type I error 

occurs if a fault is triggered under healthy conditions and a type II error occurs if a healthy 

condition is reported when a fault exists. If one of these errors occur, the integrity of the 

condition prediction system is questioned.  

Another statistic proposed by Yang et al. (2013), the condition monitoring criterion, c, is 

calculated using Equation 2.7. 

𝑐 =
∫ ∑ |(𝑎𝑗 − 𝑏𝑗)𝑥𝑗|𝑘

𝑗=0
𝑥𝑚𝑎𝑥  

𝑥𝑚𝑖𝑛
𝑑𝑥

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
   (2.7) 

Where: 

 𝑎𝑗 and 𝑏𝑗 represent the coefficients of the models derived respectively from present 

and historic data. 

 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are respectively the maximum and the minimum values of x. 
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From Equation 2.7 it can be inferred that 𝑐 ≈ 0 when the equipment is healthy while 𝑐 > 0 if 

there is fault. The more serious the fault the larger the value of 𝑐 tends to be.  

Yang, et al. (2013) states that the significance of the fault-related features (temperature, 

vibration, etc.) is dependent on the load of the equipment. By using the evaluation criterion, 𝑐, 

the issue has been mitigated by the integral calculation. Defining the threshold for 𝑐 is 

imperative to good fault detection (Yang et al., 2013). 

 CONCLUSION 

Minimal literature concerning the implementation or methodology of a condition monitoring of 

equipment in the South African mining industry is available. The South African mines from the 

two case studies have the necessary infrastructure to implement a preventative maintenance 

strategy, or already have a preventative maintenance strategy in place. The data is not readily 

processed to automatically detect changes and have to be pre-processed. 

AR residual analysis detects the natural disturbance of  process (Guo et al., 1998). This 

analysis method has been shown to be effective to predict faults in helicopter transmission 

gears and to detect unusual vibrations in bridges. Wang & Wong (2002) states that an AR(p) 

(AR model with the order p) model built on a stationary process will be able to predict stationary 

processes that are of the same family. Hence it can be used to develop a generic baseline to 

accommodate different machines and sizes.  

The AIC is an estimator used to determine the best fit models. The best fit model is determined 

by calculating the AIC for different model orders and by choosing the smallest result. The AIC 

makes use of the MLE statistical method. 

Only a few studies considered low sample rates as input parameter to the model. Low sample 

rates of 10 minutes  are considered  A low sample rate of 10 minutes is considered too low for 

accurate fault detection (Večeř, Kreidl & Šmíd, 2005; Yang et al., 2014). These studies did not 

evaluate changes over a longer period. 

Analysing statistics has been shown to be an effective technique to validate a model (Kleijnen, 

1999; Sargent, 2012). Five techniques are chosen for the validation, namely: Animation (face 

validation), sensitivity analysis, historical data validation, internal validity and predictive 

validation. An objective approach will be followed by using statistical test procedures. 
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3. METHOD DEVELOPMENT 

 INTRODUCTION  

The methodology and reasoning behind the method development is presented in Chapter 3. 

The data acquisition and evaluation is explained in Section 3.2. A method to analyse 

equipment’s idling, or resting, temperature is proposed. The model choice and AR residual 

analysis methodology is explained in Section 3.3. The model verification and validation is 

discussed in Section 3.4. 

 DATA ACQUISITION AND EVALUATION 

Pre-processing of data includes the classification into three different states: operational, idling 

and erroneous data. The classification allows for more accurate data analysis of the available 

data. The acquisition and evaluation of the data will be explained using example case studies.  

 OVERVIEW  

As an example case study, a typical data sample of a 1.8 MW centrifugal pump is used to 

evaluate the quality of the data. Figure 3-1 and Figure 3-2 shows the half hourly averaged 

vibration and temperature of the multistage centrifugal pump. 

 

FIGURE 3-1 DEVELOPED VIBRATION SIGNALS OF A MULTISTAGE CENTRIFUGAL PUMP 
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FIGURE 3-2 RAW BEARING TEMPERATURE DATA FOR A MULTISTAGE CENTRIFUGAL PUMP 

Figure 3-1 and Figure 3-2 shows the half hourly RMS vibration and temperature respectively. 

From both figures, vibration and temperature spikes are observed. The pump is switched off 

during Eskom’s peak demand periods to reduce the cost of electricity, which is the cause of 

the spikes.  

 ACQUISITION AND EVALUATION  

Data acquisition is a basic requirement of condition monitoring. The lack of data can be a hind 

hindrance to monitor the condition of equipment and processes. Large amounts of data have 

to be analysed over different time intervals for accurate fault detection and condition 

monitoring. The data capturing methodology described in Section 1.3.3, which states that the 

data is only available in half hourly intervals.  

SCADA historians can store data to an accuracy of 1 ms (Schneider Electric Software, 2016). 

All historian databases in this study use the delta storage method which stores the data values 

only if a change occurs. For this study, the data is retrieved from the historian using the cyclic 

retrieval mode which only retrieves data values that occur at a specific time interval (Schneider 

Electric Software, 2016).  

The half hourly data for this study is retrieved from the historian using the cyclic method 

described by Schneider Electric Software (2016). In short, cyclic retrieval is the retrieval of 

stored data based on the specific cycle resolution of the stored data. The retrieved data may 
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not correspond to the actual stored data but is an adequate representation for the retrieval 

interval.  

Half hourly data extraction intervals make the acquisition of the data practical with the 

disadvantage of losing detail information. An advantage of using larger sample intervals is that 

data that is available in smaller intervals can be processed to larger intervals. By doing so, the 

data processing using the larger intervals can be standardised and will be easy to implement 

on different types of equipment. The data acquisition interval constraint is unfavourable for the 

purpose of immediate fault detection, so the aim of the model is to detect changes in the 

shortest time possible. 

For the example case study, 0.3% of the data has been lost. The lost data is excluded in the 

model fitting procedure. Data loss can have an effect on the AR model output and order 

selection. The model order is determined by minimising the AIC. The calculation of the AIC is 

described in Section 2.4.2.2. Since the AR model is dependent on the previous time step 

value, the prediction of the future value will be affected.  

To ensure the data is representative, it is classified into three modes: operational, idling and 

disregarded data. The equipment’s operating status is required for the classification 

procedure. The operation status classifier is illustrated in Figure 3-3.  

Data loss?

Running 

status 

digital

Raw 

temperature 

digital

Raw 

vibration 

digital

Disregard 

data
Idling analysis

Is the equipment 

operational?

No

Operational 

analysis 

Yes
Yes

No

 

FIGURE 3-3 RUNNING STATUS CLASSIFIER 
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Referring to Figure 3-3, the classifier splits the data into operational and idling modes and 

disregards the lost data. The running status is retrieved from the historian database using the 

cyclic retrieval mode, resulting in a returned value between or equal to one or zero. If the value 

falls between zero and one, the data is disregarded. Using the proposed running status 

classifier, it is expected that the number of type I errors is reduced. 

 IDLING ANALYSIS  

Analysing the idling temperature and vibration of the machine can give information of the 

specific temperatures and vibrations while the equipment is in idle mode or not in working 

order. In underground operations, the temperatures of air surrounding the pumps in the same 

pump station can vary significantly if the ventilation is insufficient. This means that the normal 

operating conditions vary for each specific pump and should be taken into consideration in the 

fault detection step. 

The temperature, after the rate of cooling is equal to or less than a specified amount, can give 

an indication of the ambient temperature. The method to estimate the ambient air temperature 

will only be feasible if there is no external cooling source. The method is illustrated in Figure 

3-4.  

Is cooling rate > Desired 

cooling rate 

Running 

status 

history

Running 

status filtered 

temperature

Running 

status 

filtered

vibration 

Disregard data

Idling analysisYes

No

 

FIGURE 3-4 DETERMINING IDLE TEMPERATURE OF THE EQUIPMENT 
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By specifying a desired cooling rate, the temperature data can either be ignored or be 

analysed in the idling analysis. This classification process will only be significant for 

temperature analysis. The idling analysis will reveal information of the ambient condition of 

the equipment. It will be useful in underground mines to passively determine if the ventilation 

or cooling mechanisms are sufficient.  

Figure 3-5 shows the relationship of a bearing temperature of a wind turbine generator bearing 

to the ambient temperature and active power (Wiggelinkhuizen et al., 2007). 

 

FIGURE 3-5 TEMPERATURE OF A WIND TURBINE GENERATOR BEARING VS. AMBIENT TEMPERATURE AND ACTIVE POWER  
(WIGGELINKHUIZEN ET AL., 2007) 

Figure 3-5 shows that the ambient temperature and power output affects the temperature of a 

wind turbine generator bearing. Hence, if the ambient temperature is monitored, a more 

accurate prediction of the losses to heat losses can be estimated. If the ambient conditions 

are not monitored, the temperature of an idling machine can be used to estimate the idling 

temperature. An example of the temperature of a machine that is not running is presented in 

Figure 3-6. Figure 3-6 shows NDE bearing temperatures of a centrifugal pump after has been 

stopped.  
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FIGURE 3-6 COOLING RATE OF A MULTISTAGE CENTRIFUGAL PUMP 

Figure 3-6 illustrates the declining temperature of the pump and motor when the pump is 

switched off at 18:00 on 28 March 2017. The motor is only cooled by ambient air if the pump 

is switched off. The minimum temperature of all the data points is 22.3 °C, thus, it can be 

assumed that the ambient air temperature for the measured period is lower than 22.3 °C for 

this specific pump. Using this information, the specific pump alarm limit can be adjusted 

accordingly to accommodate abnormal ambient temperatures.  

 DEVELOPMENT OF METHOD 

 DESIGN REQUIREMENTS  

The method has certain criteria that needs to be adhered to in order to ensure practicality and 

accuracy as mentioned in the problem statement described in Section 1.5.1. The design 

requirements are given below and will allow the implementation of the model to be practical 

and cost effective. The method should: 

 Operate automatically 

 Analyse multiple systems 

 Make use of existing infrastructure 

 Continuously evaluate the system 

 Provides simple feedback that leads to swift actions being taken 
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In order to reach these design requirements, the key parameters are evaluated to ensure an 

accurate and practical method is implemented.  

 KEY PARAMETER SELECTION  

According to Zhang et al. (2004) the selection of parameters sensitive to the condition of the 

equipment is critical for condition diagnosis and prognosis. Only the core parameters will be 

used to develop the method to keep the method as simple and generic as possible while 

keeping it applicable to different machines. A list of monitored parameters is given in Figure 

3-7 and Figure 3-8.  

 

FIGURE 3-7 MULTISTAGE CENTRIFUGAL COMPRESSORS MEASURED PARAMETERS 
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FIGURE 3-8 MULTISTAGE CENTRIFUGAL PUMP MEASURED PARAMETERS 

Figure 3-7 and Figure 3-8 shows the available parameters that are monitored of the equipment 

in the case study. In this study, the parameters used include temperature, vibration and 

performance parameters. The selection of the AR model input parameters are discussed in 

Sections 3.3.2.1 to 3.3.2.3. 

3.3.2.1.  TEMPERATURE  

Temperature logs are not required at such a high sample rate as vibration because the heat 

transfer rate is slow in comparison to the rate of vibration energy change.  Temperature has 

been shown to have high autocorrelation with machines that have large mass that surrounds 

the measured component (Schlechtingen & Santos, 2010), hereby motivating the use of 

temperature as a key parameter for AR modelling.  

3.3.2.2.  V IBR ATION  

Vibration is usually analysed at high frequencies.  A maximum RMS vibration value is available 

in a half hourly resolution for this study. Many studies use vibration analysis methods to 

determine the condition of rotating machinery. These analysis methods use high sample rates 

which is not available in this study and therefore those techniques cannot be used (Jardine et 

al., 2006; Krauel & Weishäupl, 2016).  

Krauel & Weishäupl (2016) states that Fourier transformations are used to describe oscillating 

behaviour and can easily give erroneous results if the sample rates are too low. Yang et al. 
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(2014) also considers a sample rate of ten minutes too low for accurate fault diagnosis on a 

similar rotating machine. 

3.3.2.3.  PERFORM ANCE P AR AMETER S  

Performance parameters also give an indication of the condition of the equipment and how it 

can also be used as an input parameter to the monitoring method (Murray, 1989; Yates, 2002; 

Beebe, 2004). The efficiency of compressors and pumps can be calculated using the 

parameters listed from the illustrations in Figure 3-7 and Figure 3-8. 

To determine if there is a correlation of the performance between the condition and 

performance indicators the vibration of the machine is plotted versus the power consumption 

in Figure 3-9. The compressor in the example is one compressor in a series of five 

compressors that has a common discharge manifold. The measured performance parameters 

include the guide vane position, power and the manifold’s flow, and pressure which are 

available. 

The guide vane position and compressor combination is constant. The outlet manifold 

pressure varied between 240 and 376 kPa. In this case, the performance parameter is chosen 

to be power. The vibration of the compressor motor is plotted versus the power consumption 

in Figure 3-9. 

 

FIGURE 3-9 COMPRESSOR VIBRATION VERSUS POWER CONSUMPTION 

Figure 3-9 shows the relationship of vibration versus the power. According to Devore & 

Farnum (2005) the correlation coefficient, 𝑅 = 0.722, or coefficient of determination, 𝑅2 =

0.5213 suggests a moderate positive relationship between the power and the vibration.   
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Another vibration-performance correlation example is shown in Figure 3-10. The NDE 

vibration is plotted versus the efficiency of the pump. The efficiency of the pump is calculated 

using the Equation 2-1 which is a function of the temperature and pressure increases over the 

pump (Murray, 1989; Beebe, 2004).  

 

FIGURE 3-10 CORRELATION BETWEEN PUMP EFFICIENCY AND VIBRATION 

Figure 3-10 shows the vibration plotted versus the efficiency. The data consists of 3327 data 

points. The high coefficient of correlation 𝑅2 = 0.84 suggests a strong positive relationship 

(Devore & Farnum, 2005). The collected data points only show the machine under normal 

operating conditions. 

Correlation is a measure of association, but association does not imply causation (Devore & 

Farnum, 2005). Factors such as the number of start-up and shutdown, cavitation can have an 

effect on the linearity of the data. No definitive conclusion is drawn from the correlation of the 

condition monitoring parameters and that the performance parameters. 

 MODEL TYPE  

Baillie & Mathew (1996)  recommend linear AR models for when data is freely available and if 

a simple system is desired. Schlechtingen & Santos (2010) found that AR models yield 

accurate results for modelling temperature of bearings in wind turbines. The large mass of the 

motor casing around the bearings cause a high autocorrelation of the bearing temperature 

signal (Schlechtingen & Santos, 2010). Assuming most large electrical equipment such as 

compressors, pumps and fans have similar heat dissipation rates, an AR model can be used 

to model the temperatures of the equipment. The performance of AR residual analysis with 

the temperatures of different types of equipment will be analysed in this study.  
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 METHOD DEVELOPMENT  

3.3.4.1.  METHOD OVERVIEW  

An overview of the condition monitoring method is given in Figure 3-11. The method 

development will follow the flowchart provided in Figure 3-11. The overview is based on the 

work of Ogidi et al. (2016) developed for the monitoring of the condition of wind turbines. This 

method is based on the real-time condition analysis. It prioritises the comparison of parameter 

data to set alarm and trip limits and employs the condition analysis method.  
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FIGURE 3-11 FLOWCHART FOR FAULT DETECTION AND CONDITION PREDICTION  
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3.3.4.2.  TRIP AND AL ARM LIM ITS  

Referring to the flowchart in Figure 3-11, the first step is to set alarm criteria for the pump. The 

alarm and criteria for a centrifugal pump on Mine A is given in Table 3-1. The pump trip values 

are added to Table 3-1 as a reference to show what is considered too high.  

TABLE 3-1 ALARM AND TRIP LIMITS OF A CENTRIFUGAL PUMP 

Instrument Input Alarm Trip Unit 

Motor NDE Bearing Temperature Analogue 76 80 °C 

Motor DE Bearing Temperature Analogue 76 80 °C 

Motor DE Bearing Vibration Analogue 4 8 mm/s 

Pump NDE Bearing Temperature Analogue 76 80 °C 

Pump DE Bearing Temperature Analogue 76 80 °C 

Pump DE Bearing Vibration Analogue 4 8 mm/s 

Pump Inlet Pressure Analogue N/A 1 600 kPa 

Pump Outlet Pressure Analogue N/A 16 000 kPa 

Motor Winding U Temperature Analogue 115 120 °C 

Motor Winding V Temperature Analogue 115 120 °C 

Motor Winding W Temperature Analogue 115 120 °C 

Impeller Displacement Digital Manual Setup: 3 mm Proximity 

Balance Disc Flow Analogue 40 45 l/s 

Motor Air Temperature Analogue 115 120 °C 

Motor Shaft Displacement 
Analogue 

N/A 
<2 

>8 
mm 

Column Flow Analogue N/A  l/s 

 

Table 3-1 shows the upper trip and alarm limits of the different measured parameters of the 

pumps in the example. After the alarm criteria has been set, the parameter data is compared 

to the alarm criteria for an instantaneous check; this check serves as face validation for the 

alarm criteria. Thereafter a filter is added to ensure that the quality of the data is acceptable.  
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If the parameter does not exceed the alarm criteria, then the condition is accepted. If the 

parameter exceeds the trip limit, a confirmatory and discriminatory check is recommended. 

When the alarm level is exceeded, the condition analysis and prediction model is 

implemented. 

3.3.4.3.  MODEL -BASED CONDITION PREDICTION SYSTEM  

A flow chart of the AR condition prediction system is given in Figure 3-12. It is adapted from 

work done by Baillie & Mathew (1996). Baillie & Mathew (1996) illustrates the methodology of 

the AR model as seen in Figure 3-12. 
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FIGURE 3-12 A MODEL-BASED CONDITION PREDICTION SYSTEM  
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Referring to Figure 3-12, the model-based prediction system shows how the machine 

diagnosis is determined. For a first order AR model, AR(1), only one previous data point, 

namely 𝑦(𝑡 − 1), is considered. For a second order AR model, two previous data points are 

used, namely: 𝑦(𝑡 − 1) and 𝑦(𝑡 − 2), and so forth. Thus, if the AR model is updated in real-

time, the 𝑦(𝑡 − 𝑖) values have to be stored in memory and read to update the model to 

determine the future value.  

Figure 3-12 shows that the residuals, or errors, 𝑒𝐼𝑅𝐹 and 𝑒𝑁𝑂𝐹, are analysed in the classifier to 

make a machine diagnosis. The error behaviour for temperature is expected to be similar for 

machines with similar amount of mass around the probe, depending on how the probe is 

installed.  

The AR model is applied in a dewatering pump case study. The AR model was fitted to data 

developed while the equipment was under normal operation conditions. The temperature of 

the NDE bearings was modelled for with data of the most reliable pump. A first, second and 

third order linear AR model was fitted to the temperature data. The three models are shown 

below: 

�̂�(𝑡) = 0.97 ∙ 𝑦(𝑡 − 1) + 1.54 (3.1) 

�̂�(𝑡) = 1.30 ∙ 𝑦(𝑡 − 1) − 0.34 ∙ 𝑦(𝑡 − 2) + 2.06 (3.2) 

�̂�(𝑡) = 1.33 ∙ 𝑦(𝑡 − 1) − 0.51 ∙ 𝑦(𝑡 − 2) + 0.14 ∙ 𝑦(𝑡 − 3) + 1.75 (3.3) 

The calculated AIC, RSS, MLE and the p-value for the AR(1), AR(2) and AR(3) models are 

given in Table 3-2.  

TABLE 3-2 AUTOREGRESSIVE MODEL RESULTS ON CONTINUOUS DATA 

 AIC RSS MLE p-value 

AR(1) 0.88 25683 12.9 1.50E-09 

AR(2) 1.12 22875 11.5 1.23E-71 

AR(3) -1.54 86623 43.4 1.09E-14 

 

From Table 3-2 it is observed that the p-values are small which means that the AR model is 

statistically significant. The AIC should be minimised to find the best fit. In this case the third 

order model has the lowest AIC, therefore the third order model is used to model the 
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temperatures. The actual temperature signal versus the predicted signal is plotted in Figure 

3-13. The residuals are plotted Figure 3-14. 

 

FIGURE 3-13 ACTUAL TEMPERATURE VERSUS AR(3) PREDICTED TEMPERATURE 

 

 

FIGURE 3-14 RESIDUALS OF THE AR MODEL 
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Referring to Figure 3-13, the AR model follows the trend of the actual temperature. The 

model’s resulting statistics are shown in Table 3-3. Figure 3-14 shows the difference between 

the actual temperature and the predicted temperature. By comparing Figure 3-13 and Figure 

3-14, it is seen that the outlier residuals correlate with the sudden drop and rise of 

temperatures.  

TABLE 3-3 AR(3) REGRESSION STATISTICS OF UNFILTERED TEMPERATURE RESIDUALS 

Multiple R 0.975 

𝑅2 0.950 

Adjusted 𝑅2 0.950 

Standard deviation 3.073 

Root mean square error 9.430 

Observations 2600 

 

Referring to Table 3-3, the regression statistics is given. The regression model uses the data 

for the whole month of March, therefore the number of observations are 2600 and not 336 for 

a week’s data as plotted in the figures. The next step is to plot the residuals on a control chart 

shown in Figure 3-15. If a disturbance occurs, it will be detected by the control chart.  

 

FIGURE 3-15 RESIDUAL DISTURBANCES WITH CONTROL LIMITS 
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Referring to Figure 3-15, the residuals are plotted with a Shewhart chart with three upper 

control limits (UCL) and three lower control limits (LCL). The UCLs are added to the chart to 

monitor the underestimated temperatures whereas the LCLs are added to monitor the 

overestimated temperatures. The UCLs and the LCLs are calculated using Equation 3.4 and 

Equation 3.5 respectively. 

 𝑈𝐶𝐿 𝑖 = 𝜇𝑆𝑎𝑚𝑝𝑙𝑒 + 𝑖 ∙ 𝜎𝑆𝑎𝑚𝑝𝑙𝑒 (3.4) 

and 

 𝐿𝐶𝐿 𝑖 = 𝜇𝑆𝑎𝑚𝑝𝑙𝑒 − 𝑖 ∙ 𝜎𝑆𝑎𝑚𝑝𝑙𝑒 (3.5) 

Where: 

 𝑈𝐶𝐿 𝑖 is the upper control limit of iteration 𝑖 

 𝐿𝐶𝐿 𝑖 is the lower control limit of iteration 𝑖 

 𝑖 is the iteration number of the limit 

 𝜇𝑆𝑎𝑚𝑝𝑙𝑒 is the sample mean 

 𝜎𝑆𝑎𝑚𝑝𝑙𝑒 is the sample standard deviation 

Control limits are usually set at three times above and below the standard deviation for the 

UCL and LCL respectively. If the residuals follow a normal distribution around the mean, the 

area bracketed by the control limits, UCL 3 and LCL 3, will on average contain 99.73% of all 

the plot points on the chart. Figure 3-15 shows many instances where the third upper control 

limit (UCL 3) is exceeded.  

From the correlation observed by comparing Figure 3-13 and Figure 3-14, it is noted that the 

residual outliers are caused by the increase and decrease of temperature. The outliers can be 

reduced by filtering the bearing temperature the running status. The AR model is updated and 

trained using the running status filtered raw data. The equations for the AR(1), AR(2) and 

AR(3) are given in Equations 3.6, 3.7 and 3.8. 

�̂�(𝑡) = 0.65 ∙ 𝑦(𝑡 − 1) + 25.5 (3.6) 

�̂�(𝑡) = 0.54 ∙ 𝑦(𝑡 − 1) − 0.16 ∙ 𝑦(𝑡 − 2) + 21.37 (3.7) 

�̂�(𝑡) = 0.52 ∙ 𝑦(𝑡 − 1) + 0.072 ∙ 𝑦(𝑡 − 2) + 0.17 ∙ 𝑦(𝑡 − 3) + 17.92 (3.8) 
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TABLE 3-4 AUTOREGRESSIVE MODEL RESULTS ON DISCONTINUOUS DATA 

 AIC RSS MLE p - value 

AR(1) -2.52 23269 70.9 1.35E-41 

AR(2) -2.52 23196 70.7 2.71E-03 

AR(3) -2.51 23123 70.5 2.41E-03 

 

Referring to Table 3-4, the AIC for the models are similar. The p-values are small which means 

the models are significant. The AIC for the AR(1) models is the smallest, therefore the actual 

temperature is plotted together with the predicted temperature in Figure 3-16. The residuals 

are plotted in Figure 3-17 and the model statistics are given in Table 3-5. 

 

FIGURE 3-16 STATUS FILTERED, ACTUAL TEMPERATURE VERSUS AR(1) PREDICTED TEMPERATURE 

30

40

50

60

70

80

90

B
e

a
ri
n

g
 N

D
E

 t
e

m
p

e
ra

tu
re

, 
°C

Actual Predicted



 

Alternative method for equipment condition monitoring on South African mines 66 

 

 

FIGURE 3-17 STATUS FILTERED, RESIDUAL DISTURBANCES 

From Figure 3-16, it is observed that the predicted temperature follows the trend of the actual 

temperatures. From Figure 3-17, it is observed that the disturbances of the pump do not 

exceed UCL 2 or UCL 3.  

TABLE 3-5 AR(1) REGRESSION STATISTICS OF STATUS FILTERED TEMPERATURE RESIDUALS 

Multiple R 0.655 

𝑅2 0.429 

Adjusted 𝑅2 0.427 

Standard deviation 2.865 

Root mean square error 8.16 

Observations 328 

 

By comparing Table 3-3 and Table 3-4, a clear difference between the filtered and unfiltered 

data is that there are only 328 data points in a month when the pump was running throughout 

the whole half-hour. For this specific pump, throughout the month of March, only 13% of the 

data is classified as operational data. The standard deviation of the filtered data (𝜎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 =

 2.865) is less than that of the unfiltered data (𝜎𝑢𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 3.073). The residuals of both cases 

are plotted on a normal distribution curve in Figure 3-18. 

-15

-10

-5

0

5

10

15
T

e
m

p
e

ra
tu

re
  
re

s
id

u
a

l,
 °

C

Residual UCL 1 UCL 2 UCL 3 LCL 1 LCL 2 LCL 3



 

Alternative method for equipment condition monitoring on South African mines 67 

 

 

FIGURE 3-18 NORMAL DISTRIBUTION OF FILTERED AND UNFILTERED DATA 

Figure 3-18 shows the normal distribution of both the filtered and unfiltered cases. Figure 3-18 

validates that the residuals of both cases form an independent and identical distribution IID. 

The Figure 3-18 shows that the filtered data, which is predicted with the AR(1) model, gives a 

more accurate prediction than the unfiltered data which is predicted with the AR(3) model. 

Thus, in this case, the filtered data shows a better prediction of the data points.  

 MODEL VERIFICATION AND VALIDATION  

To test the AR model methodology, AR models are fitted to different input signals which are 

presented in Figure 3-19 through to Figure 3-24. The best fit AR model will result in a more 

accurate natural disturbance detection; thus the signals are chosen to imitate probable 

temperature signals. Six different signals are included in the test they include: 

 Linear function: to imitate a steady increase. 

 Random function between two values: to simulate process noise. 

 Sine function: to imitate usual variation. 

 Combination of a two sine functions: to imitate usual variation in a slow process 

change. 

 Linear random increase: To imitate a steady increase with process noise. 

 Linear random increase with a simulated fault: To simulate a fault through noise. 

The equations of the simulated signals are displayed on their respective figures.  
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FIGURE 3-19 LINEAR FUNCTION 

 

FIGURE 3-20 RANDOM BETWEEN FUNCTION 

 

FIGURE 3-21 SINE FUNCTION 

 

FIGURE 3-22 DOUBLE SINE FUNCTION 

 

FIGURE 3-23 LINEAR AND RANDOM 

 

FIGURE 3-24 LINEAR, RANDOM WITH FAULT 
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𝑇(𝑡) = 0.1(𝑡) + 45 𝑇(𝑡) = 50 +  𝑟𝑎𝑛𝑑𝑜𝑚𝑏𝑒𝑡𝑤𝑒𝑒𝑛(−5,5) 𝑇(𝑡) = 𝑠𝑖𝑛(𝑡) ∗ 5 + 50 

𝑇(𝑡) = 50 + sin(𝑡) + 

𝑠𝑖𝑛(𝑡 + 45) ∗ 5 

𝑇(𝑡) = 45 +  0.1(𝑡) +  

𝑟𝑎𝑛𝑑𝑜𝑚𝑏𝑒𝑡𝑤𝑒𝑒𝑛(−5,5) 
𝑇(𝑡) = {

𝐿𝑖𝑛𝑒𝑎𝑟 𝑎𝑛𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓(𝑡)             if 𝑡 < 50

𝐿𝑖𝑛𝑒𝑎𝑟 𝑎𝑛𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓(𝑡) + 10 if 𝑡 ≥ 50
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Figure 3 19 to Figure 3 24 illustrates the simulated temperature signals AR(1), AR(2) and 

AR(3) models were fitted to all the equivalent temperature signals. The regression statistics 

for the models are given in Table 3-6. 

TABLE 3-6 REGRESSION STATISTICS OF SIMULATED SIGNALS 

 

Multiple R R2 Adjusted R2 Standard Error RSS MLE AIC p-value

AR(3) 1.000 1.000 0.979 ~0 27720 282.85 -5.290 ~0

AR(2) 1.000 1.000 0.990 ~0 27720 282.85 -5.290 ~0

AR(1) 1.000 1.000 1.000 ~0 27720 282.85 -5.290 ~0

Multiple R R2 Adjusted R2 Standard Error RSS MLE AIC p-value

AR(3) 0.148 0.022 -0.009 3.019 31004 316.37 -5.514 0.8898462

AR(2) 0.148 0.022 0.001 3.003 31007 316.39 -5.514 0.1519779

AR(1) 0.019 0.000 -0.010 3.020 31024 316.57 -5.515 0.8512709

Multiple R R2 Adjusted R2 Standard Error RSS MLE AIC p-value

AR(3) 1.000 1.000 0.989 3.634E-15 30150 307.65 -5.458 ~0

AR(2) 1.000 1.000 1.000 4.419E-15 30150 307.65 -5.458 ~0

AR(1) 0.541 0.293 0.285 2.995 31011 316.44 -5.514 8.975E-09

Multiple R R2 Adjusted R2 Standard Error RSS MLE AIC p-value

AR(3) 0.998 0.996 0.996 0.308 30163 307.78 -5.459 1.287E-81

AR(2) 0.906 0.822 0.818 2.167 30596 312.20 -5.487 2.386E-18

AR(1) 0.774 0.600 0.596 3.228 31150 317.86 -5.523 8.425E-21

Multiple R R2 Adjusted R2 Standard Error RSS MLE AIC p-value

AR(3) 0.494 0.244 0.220 3.419 31234 318.72 -5.529 0.0061

AR(2) 0.426 0.181 0.164 3.541 31328 319.67 -5.535 0.0647

AR(1) 0.389 0.151 0.142 3.586 31384 320.24 -5.538 7.71E-05

Multiple R R2 Adjusted R2 Standard Error RSS MLE AIC p-value

AR(3) 0.890 0.793 0.786 3.661 31400 682.62 -7.052 0.0002

AR(2) 0.871 0.759 0.754 3.928 31523 685.29 -7.060 0.0001

AR(1) 0.845 0.714 0.711 4.256 31644 687.91 -7.067 7.44E-28

Linear and random function

Random and fault function

Linear function

Random between

Sine function

Double sine function
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Table 3-6.shows the multiple correlation coefficient (𝑅), multiple coefficient of determination 

(𝑅2), adjusted 𝑅2, standard error (or standard deviation), RSS, MLE, AIC and p-values of the 

different signal’s respective models.  

Referring to Table 3-6, it is observed that the multiple coefficient of determination, 𝑅2, suggests 

a strong relationship between the predicted and actual temperatures in all cases where the 

random function was not used. The standard errors show that the AR model accurately 

predicts the linear and sine functions except for the random cases. A small p-value indicates 

a more statistically significant model. The p-values are small for the linear and sine functions, 

except for the random functions. 

The sine function was accurately predicted with the AR(2) and AR(3) models. Since the AR(1) 

model only takes the previous step value into account, it is not an accurate prediction with this 

time interval. Ultimately, if the time interval is large enough and the data points are calculated 

using an average function, the resulting dataset will seem linear and an AR(1) model will be 

sufficiently predict the next value.  

By following the developed method, the AR model order is chosen by selecting the model with 

the lowest AIC value. The results show that the order of the AR model is dependent on the 

type of signal and the degree of randomness. 

 CONCLUSION 

It is possible, with the help of a Shewhart �̅� control chart, to detect mean and variance outliers 

of developed residual temperature signals. Thus, this fault detection method is feasible without 

having any additional information about the alarm limits. This makes the developed fault 

detection method generic and is expected to apply to other components of similar heat 

capacities. 

Vibration is usually analysed in the frequency domain. With the half hourly data, the high 

frequency analysis is not possible, so a test was performed to analyse the correlation between 

vibration and performance. Previous studies show a relationship between performance 

parameters and vibration (Zhang et al., 2014). No obvious correlation was found with the 

available data.  

The ambient temperature of equipment has an effect on the overall machine temperature.  A 

method to determine the ambient temperature of idling equipment is developed. By analysing 

the idling temperature, the cooling method of the equipment can be monitored without a 

supplementary ambient temperature measurement. 
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A running status filter was implemented to reduce the residual standard deviation which 

proved to be successful, herewith improving the accuracy of the AR model. The model-based 

fault detection method is implemented; the use of a filter should be justified. If the machine is 

constantly running, a filter is not required. 

The condition monitoring method was developed and mainly consists of four parts: a static 

limit check, a best fit model choice, a displayed result and a dynamic limit check. 

 The static limit check refers to the comparison of the input signal to alarm limits. If the 

alarm limits are exceeded, the event should be noted and reported in a table format. 

 The best fit model choice consists of fitting different AR models to the data and picking 

one that best represents the data. The choice is made by minimising the AIC.  

 The displayed result consists of a control chart of the parameter trend and the static 

alarm and trip limits. The residuals of the fitted models along with the upper and lower 

limits are given to detect any shifts. 

 The dynamic limit checks refer to the comparison of the generated residuals to the 

UCLs and LCLs.  

Maintenance and breakdown reports are to validate the condition prediction model. The 

reports can be difficult to obtain, and if there are reports available they do not necessarily 

contain the useful or relevant information. An example of such a log is given in Appendix E. 

The model is further tested and validated in Chapter 4 where the model is applied to different 

case studies. 
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4. EVALUATION OF THE ALTERNATIVE CONDITION 

MONITORING METHOD (CASE STUDIES)  

 INTRODUCTION  

The focus of Chapter 4 is to evaluate the developed method. The model is implemented in 

two case studies and tested if a mean and variance shift can be detected with AR residual 

analysis. If such a shift is observed the method will identify the component as faulty. 

The developed method is implemented on a multistage centrifugal pump of a dewatering 

system and multistage compressors. The implementation of the model on the dewatering 

system and compressed air section is discussed in Section 4.2 and Section 4.3 respectively. 

Section 3.4 discusses the method verification and validation. The results of the developed 

method are discussed and compared in Section 4.4. 

 CASE STUDY 1:  DEWATERING SYSTEM  

 CASE STUDY OVERVIEW  

This case study focuses on the detection of a large sudden change in a bearing temperature 

of a 1.8 MW multistage centrifugal pump. An excessive temperature on the NDE motor of the 

pump on level 66 of Mine A was identified and repaired. The maintenance report is attached 

in Appendix F. 

In a period of eight days from 15 to 23 March 2017, twenty alarms were triggered with the 

company’s implemented condition monitoring method. The method notifies responsible 

personnel if the parameter exceeds the alarm limit for more than five minutes.  

The period where the alarm was triggered, before maintenance was done, is plotted Figure 

4-1. The defective bearing temperature along with the alarm and trip limits are shown. The 

running status of the pump is included to indicate whether the pump is operational. The trip 

limit of the motor NDE was set at 80°C and the alarm level was set at 76°C.  
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FIGURE 4-1 CASE STUDY 1: NDE BEARING TEMPERATURE BEFORE MAINTENANCE 

The developed NDE motor bearing temperature and the pump running status is plotted of the 

primary and secondary y-axis respectively in Figure 4-1. The alarm and trip limits, 76°C and 

80°C respectively, are also shown in Figure 4-1. Figure 4-1 shows that the motor bearing 

temperature exceeded the alarm limit numerous times during this period. The correlation of 

the running status and the temperature spikes which crosses the trip limits indicate that the 

pump had tripped due to the excessive temperatures.  

The maintenance report, attached in Appendix F, states that the unit was isolated and locked 

out for the inspection upon arrival. The coupling and NDE bearing was opened for 

investigation. It was noted that the coupling gap was about 2 mm and the rotor thrusted on the 

bearing. Before the maintenance, the pump was installed incorrectly and the motor alignment, 

coupling gap and magnetic centre was not determined correctly. 

The problem was corrected by moving the motor away from the pump, removing and scraping 

the bearing thrust face, and installing the bearing back into position. Magnetic centre was 

established and the coupling gap set to 8 mm. Re-alignment was completed and the unit 

started. The bearing temperatures were then monitored on the motor and settled after an hour 

of operation at 63˚C at both the motor bearings. 
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 MODEL IMPLEMENTATION  

The AIC was determined for first, second and third order models which were fitted to the 

unfiltered NDE bearing temperature signal. The AIC of the third order AR model was found to 

be the minimum as determined in Section 3.3.4.3 on the same dataset. The available 

temperature data before the maintenance period was used to construct a third order AR 

model. This period is shown in Figure 4-2. The AR(3) model is fitted to actual NDE bearing 

temperature in Figure 4-3. 

 

FIGURE 4-2 PERIOD USED TO DETERMINE THE AR(3) MODEL 

 

FIGURE 4-3 AR(3) MODEL FITTED TO THE TEMPERATURE BEFORE THE MAINTENANCE PERIOD. 

0

10

20

30

40

50

60

70

80

90

N
D

E
 b

e
a

ri
n
g

 t
e

m
p

e
ra

tu
re

, 
°C

Actual

0

10

20

30

40

50

60

70

80

90

100

N
D

E
 b

e
a

ri
n
g

 t
e

m
p

e
ra

tu
re

, 
°C

Actual Model

Period before maintenance used to 

determine the model order 



 

Alternative method for equipment condition monitoring on South African mines 76 

 

Figure 4-2 shows the NDE bearing temperature during and after the maintenance period. The 

period before the maintenance was chosen to determine the AR model order. Figure 4-3 

shows the fitted AR(3) model to the NDE bearing temperature. It is observed that the model’s 

movement corresponds to the actual temperature signal. The fitted AR(3) model is shown in 

Equation 4.1 with the regression statistics in Table 4-1. 

�̂�(𝑡) = 0.20 ∙ 𝑦(𝑡 − 1) − 0.69 ∙ 𝑦(𝑡 − 2) + 1.43 ∙ 𝑦(𝑡 − 3) + 1.88 (4.1) 

 TABLE 4-1 AR(3) REGRESSION STATISTICS AR(3) MODEL 

 

 

 

 

Table 4-1 gives the regression statistics for the period before the maintenance. The coefficient 

of multiple determination (𝑅2), indicates a strong relationship between the model and the 

actual data points. The residuals for the period before and after the maintenance period is 

plotted in Figure 4-4. 

 

FIGURE 4-4 RESIDUALS BEFORE AND AFTER MAINTENANCE 

-20

-15

-10

-5

0

5

10

15

20

R
e

s
id

u
a

l 
te

m
p

e
ra

tu
re

, 
°C

Residual UCL 1 UCL 2 UCL 3 LCL 1 LCL 2 LCL 3

Multiple R 0.934 

𝑅2 0.872 

Adjusted 𝑅2 0.872 

Standard deviation 3.815 

Root mean square error 14.502 

Observations 1098 

Before maintenance After maintenance 



 

Alternative method for equipment condition monitoring on South African mines 77 

 

Figure 4-4 shows the residuals of the AR(3) model along with the UCL and LCL. From Figure 

4-4, it is clearly observed that the residuals of the model are more concentrated around the 

mean after the bearing temperatures have been maintained on 31 March 2017. Table 4-2 

gives the residual distribution before and after maintenance periods. 

TABLE 4-2 RESIDUAL DISTRIBUTION COMPARISON BEFORE AND AFTER MAINTENANCE 

 Before maintenance  

1 to 31 March 2017 

After maintenance 

9 to 24 April 2017 

Above UCL 3 4% 0% 

Above UCL 2 9% 0% 

Above UCL 1 15% 4% 

Below LCL 1 12% 3% 

Below LCL 2 3% 0% 

Below LCL 3 1% 0% 

 

From Table 4-2 it is observed that there is a significant change in the percentage of data points 

exceeding the UCL and LCL. The data points are more concentrated around the mean; thus, 

a variance shift is observed.  

 D ISCUSSION  

In the modelling stage of the method development it was shown that the data used to train the 

model affects the accuracy of the prediction. In this case study, the AIC was minimised and 

thereby showed that the AR(3) model is the best prediction for the dataset. The dataset used 

to minimise the AR model contained the data before the maintenance was performed.  

Even though the model was trained with the temperature before the maintenance, the model 

was able to detect the variance shift, shown in Table 4-2. This suggests that the model can 

be applied to already faulty equipment and still be able to detect mean and variance shifts. By 

observing the linear trend of the percentages exceeding the control limits of the AR residuals, 

it is possible to predict faults and estimate the failure date. 
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FIGURE 4-5 CASE STUDY 1: TEMPERATURE RESIDUALS BEFORE AND AFTER MAINTENANCE 

Figure 4-5 illustrates how the model is able to detect faults. The control limits are specified to 

be static in Case Study 1, if dynamic control limits are implemented, the system can 

automatically update itself, and recognise even smaller changes specific to the system. A 

slow, continuous change is analysed in Case Study 2. 

 CASE STUDY 2:  COMPRESSORS 

 CASE STUDY OVERVIEW  

This case study determines if the method can detect a slow and continuous change. The AR 

model is implemented on the compressor system where the cooling system lost effectivity. 

The case study is performed on temperature signals of a 1.8 MW compressor that serves as 

a backup to increase the pressure if the compressed air demand is too high, hence the many 

start-ups and shutdowns. 
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FIGURE 4-6 COMPRESSOR MOTOR BEARING AND WINDING TEMPERATURES 

Figure 4-6 shows the rise of the motor temperatures along with the motor bearing temperature. 

The main motor winding temperature U, increased from a normal operating temperature of 

less than 100°C to 110°C.  

 MODEL IMPLEMENTATION  

Evaluating the data shows 1% data loss throughout the observed period of 1 December 2016 

to 28 February 2017. The lost data points were excluded in the model fit procedure. The whole 

sample period from 1 December 2017 to 28 February 2017 was used to construct the AR 

models. The results of the AR models are presented in Table 4-3. 

TABLE 4-3 AUTOREGRESSIVE MODEL RESULTS 

 AIC RSS MLE p - value 

AR(1) -0.99 65777 33.0 ~0 

AR(2) -0.86 61467 30.8 ~0 

AR(3) -0.85 61413 30.8 0.037 
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Table 4-3 shows the AIC for the AR(1) model is the smallest, thus the AR(1) model is used to 

predict the winding temperature. The model is fitted to the actual temperature of the main 

motor winding temperature U and presented in  Figure 4-7. The regression statistics for the 

model is given in Table 4-1. 

 

 FIGURE 4-7 AR(1) MODEL RESULTS 

TABLE 4-4 REGRESSION STATISTICS OF AR(1) MODEL 

Multiple R 0.981 

𝑅2 0.962 

Adjusted 𝑅2 0.962 

Standard deviation 4.983 

Root mean square error 0.487 

Observations 4278 

 

Table 4-4 shows that the AR(1) model’s regression statistics. The multiple coefficient of 

determination, 𝑅2, suggests a strong correlation relationship between the model’s prediction 

and the actual values. Comparing the regression statistics of both case studies shows that the 

AR(1) model in Case Study 1, 𝑅2 = 0.981  is larger than that of the AR(3) model in Case Study 

2, 𝑅2 =  0.934. 
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FIGURE 4-8 RESIDUALS WITH CONTROL LIMITS 

Figure 4-8 shows the residuals of the AR(1) model. 2.7% of the residuals exceed the third 

UCL. Two data points from a sample of 4278 data points exceeds the third LCL. Table 4-5 

shows the variance shift before and after the shutdown.  

TABLE 4-5 RESIDUAL DISTRIBUTION COMPARISON BEFORE AND AFTER SHUTDOWN 

 Before shutdown  

1 to 25 December 2016 

After shutdown 

1 January to 19 

February 2017 

Above UCL 3 2% 3% 

Above UCL 2 4% 5% 

Above UCL 1 7% 8% 

Below LCL 1 3% 5% 

Below LCL 2 0% 1% 

Below LCL 3 0% 0% 
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Table 4-5 shows that there is an increase in change in the percentage of data points exceeding 

the UCL and LCL. The data points spread out further around the mean; thus, a variance shift 

is observed. This means that the natural disturbance before the shutdown is less than the 

natural disturbance after the shutdown. Figure 4-9 is added to show the small mean residual 

change. 

 

FIGURE 4-9 WEEKLY MEAN RESIDUAL 

Figure 4-9 shows the weekly mean residual change, that fell to 𝜇 = −0.82 °𝐶 during the 

shutdown. This means that the model overpredicted the temperature during the shutdown 

period. The mean shift of the shutdown is detected. A larger mean shift is observed after the 

shutdown reached a maximum of 𝜇 = 0.3 °𝐶. 

 D ISCUSSION  

From the residual analysis, an increase in the variance is observed. The mean difference 

before and after the shutdown also showed an increase. The slow increase of the motor 

winding temperature residuals could not be observed from the control chart in Figure 4-8. The 

increase was observed by calculating the weekly average mean residuals, as shown in Figure 

4-9. 

The mean shift change suggests a disturbance in the system. The means shift analysis also 

detected the shutdown period, where the AR(1) model under predicts the temperatures. If the 
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mean shifts during a disturbance such as presented in Case Study 2, is benchmarked, a 

specific fault can be matched in future occurrences. 

 CONCLUSION 

The temperature signal of a defected component was analysed in this chapter. The AR 

residual analysis has shown that it is able to detect a mean and variance shift. Guo et al., 

(1998) states that the AR residuals represent the natural disturbance of the system. The 

results prove that the AR model can detect an unnatural disturbance, which suggests that a 

fault has occurred.  

In Case Study 1, the model has shown the capability of detecting a variance shift in the 

operating temperature of the NDE bearing of the compressor motor. In Case Study 2, the 

model has shown the capability of detecting a small mean shift change in the operating 

temperature of a motor winding temperature. 

The model is validated throughout the development and case studies, by implementing the 

model with historical data from real machines. Sargent (2012) defines historical data validation 

as one of the techniques used to validate a model. The data is shown on a control chart that 

graphically displays the model’s output that validates the model’s operational behaviour. The 

illustration of the control chart eases the face validation process of the analyst (Kleijnen, 1999). 

The model is validated using the parameter variability technique by using two different types 

of changes to the inputs. Case Study 1 presented a large change in temperature after 

maintenance was performed on the pump, and Case Study 2 presented a small change over 

time. The model’s behaviour was validated by using Case Study 1 and Case Study 2 as 

different subjects. The observed behaviour of the model was proven to detect a sudden 

change as well as a uniform change over time. 

Using the model to predict the system’s behaviour and comparing the model’s forecast to the 

actual system behaviour can give an indication of the model’s accuracy. The regression 

analysis shows the accuracy of the estimation. The calculated the multiple coefficient of 

determination, or 𝑅2, and the mean square error, or MSE, statistics used to validate models. 

In both case studies, the multiple coefficient of determination suggested a strong correlation.  

Overall it was shown that temperature in thirty minute intervals shows high autocorrelation in 

large three-phase induction machines. A mean and variance shift alarm has to be developed 

for the specific equipment, setup and sample rate.  
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5. CONCLUSION 

 INTRODUCTION 

Chapter 5 provides the summary and recommendations of the study. In the study, problems 

regarding condition monitoring in the South African mining industry and presented an 

alternative condition monitoring method. The method includes a model to analyse underlying 

information of available condition-indicative parameters.  

 SUMMARY  

A need for a condition monitoring system that can operate automatically, analyse multiple 

systems, continuously evaluate the system while making use of existing infrastructure exists. 

This study proposed a method to turn an existing preventative maintenance strategy into a 

predictive maintenance strategy, with the aim to increase equipment availability and reduce 

maintenance costs. 

The study has shown that the developed method can be implemented using the mines’ 

existing infrastructure. Even with the constraint of half hourly sample rates, the system was 

able to detect the mean and variance shifts. Unfortunately, with the low sample rates, fault 

diagnosis is deemed not viable for in-depth vibration analysis. Vibration is preferably analysed 

in the frequency domain with high sample rates using Fourier spectral analysis. Since only 

half hourly averaged data is available, the analysis is restricted to the time-domain.  

Literature has shown that AR models can accurately predict temperatures in cases where the 

measured component is surrounded by a large metal mass (Schlechtingen & Santos, 2010). 

South African mines make use of large electrical machines that showed adequate temperature 

autocorrelation to detect the natural disturbance in the system. AR residual analysis was 

chosen to be used as the condition prediction model.  

The developed method mainly consists of four parts: a static limit check, a best fit model 

choice, a displayed result and a dynamic limit check. 

 The static limit check refers to the comparison of the input signal to alarm limits. If the 

alarm limits are exceeded, the event should be noted and reported in a table format. 

 The best fit model choice consists of fitting first, second and third order AR models to 

the data and selecting one that best represents the data. The choice is made by 

minimising the AIC.  
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 The displayed result consists of a parameter trend control chart of the and the static 

alarm and trip limits. The residuals of the fitted models along with the upper and lower 

limits are given to detect any significant signal shifts. 

 The dynamic limit check refers to the comparison of the generated residuals to the 

UCL and LCL.  

In Case Study 1, the model was trained on a machine in an unhealthy state and displayed an 

adequate fit to detect the mean and variance changes. A large variance shift was observed 

that indicated an unusual disturbance. In Case Study 2, the model was trained on a healthy 

machine and was also detecting the mean shift changes successfully. 

An advantage of the proposed fault detection model is to detect changes that occur due to 

factors outside normal operation. With this model, faults can be detected within the specified 

alarm and trip limits. Another advantage is that the model can be applied generically to 

different machinery without additional information about the alarm or trip limits. 

 RECOMMENDATIONS  

The recommendations for future studies are as follows: 

 The extent of interchangeability of the method should be determined in future studies. 

Wang & Wong (2002) states that an AR model with the order p, AR(p), built on a 

stationary process will be able to predict stationary processes that are of the same 

family. The extent of the statement should be tested to determine if the model only 

applies to similar equipment such as different sizes of pumps, or different models of 

the same size pump. 

 The effect of the model training period should be examined. Future studies should 

determine if the AR model should be trained on healthy equipment, or to what extent 

the model will be accurate if it is trained using unhealthy equipment.  

 Linear AR models with larger orders should be evaluated. 

 Other AR analysis techniques such as ANNs and radial basis functions have to be 

evaluated and compared to linear regression models.  

 By benchmarking the AR residuals for various types of equipment, the mean and 

variance shift trends can be compared to previous test results. Thereby, the fault 

detection probability can be increased. 
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Appendix A  SYMPTOMS OR PARAMETERS THAT ARE RELEVANT TO PUMPS 
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Damaged impeller  S S S S S S S S   

Damaged external 

seals 

S S  S  S S     

Eroded casing  S          

Worn sealing rings   S S S       

Eccentric impeller   S S  S S S S   

Bearing damage  S S   S S S S S S 

Bearing wear  S     S S S S  

Mounting fault       S S    

Unbalance       S     

Misalignment  S     S     

S: Symptoms that may occur, or parameter change with fault, according to pump design 

FIGURE A-1 SYMPTOMS OR PARAMETERS THAT ARE RELEVANT TO PUMPS 
(BEEBE, 2004) 
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Appendix B  THE INDICATORS OF MACHINE AND COMPONENT DETERIORATION 

Detecting changes in the complete 

machine

Detecting defects in the machine 

components

Structural components Fixed joints Moving joints

 Borescopes

 Acoustic emission

 Resonance change

 Strain gauges and brittle 

coats

 Crack detection

- Ultrasonics

- Mag.flux

- Penetrants

 Rattle/Noise

 Staining

- Fretting 

- Leaks

 Visual inspection

 Noise 

- Sonic

- Ultrasonic

 Snifting

Seals
Performance 

measurement

Changes in component 

surfaces

Detecting debris lost 

from component 

surfaces

Performance trends

Overall vibration and 

noise levels

Leaks

 Wear debris

 Noise
 Power loss

- Friction

- Temperature

 Noise vibration 

spectral analysis

 Surface casts

 Witness indents

 Movement or 

clearance change

 Shock pulse 

measurement

 Vibration signal 

averaging

Large particles 

Ferrous chip 

detectors

Non-ferrous filter 

checks

Small and 

dissolved 

particles

Oil analysis

 

FIGURE B-1 THE INDICATIONS OF COMPONENT DETERIORATION  
(NEALE & WOODLEY, 1975) 
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Appendix C  REGRESSION ANALYSIS 

The statistical calculations in the study were using the equations presented in Appendix C. 

Figure C-1 provides a supplementary illustration of how the actual and modelled values are 

used to determine the explained and unexplained variance. 

 

FIGURE C-1 MODELLED DATA STATISTICS 

The MSE is calculated using Equation C.1 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

(𝐶. 1) 

Where: 

 𝑛 is the number of observations 

 𝑦𝑖 is the actual value for data point 𝑖 

 �̂�𝑖 is the predicted or fitted value  

The residuals or EV are calculated using Equation C.2 

𝐸𝑉 =  𝑦𝑖 − �̂�𝑖  (C. 2) 

Where: 

 𝑦𝑖 is the actual value for data point 𝑖 

 �̂�𝑖 is the predicted or fitted value  
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The mean MAE is calculated using Equation C.3. 

𝑀𝐴𝐸 = ∑|�̂�𝑖 − �̅�|

𝑛

𝑖=1

 (𝐶. 3) 

Where: 

 �̅� is the value returned by the model 

 �̂�𝑖 is the actual value for data point 𝑖 

The variance (𝜎2) is calculated using Equation C.4. 

𝜎2 = ∑
(𝑋 − 𝜇)2

𝑁
(𝐶. 4) 

Where: 

 𝑋 is the measured quantity variable 

 𝜇 is the mean of the sample 

 𝑁 is the number of terms in the distribution 

The standard deviation, 𝜎, is the positive square root of the variance, 𝜎2. 

For the analysis of the AR model, a different set of regression statistics are used.  

The coefficient of multiple determination, 𝑅2, is calculated with Equation C.5. 

𝑅2 = 1 −
𝑆𝑆𝑅𝑒𝑠𝑖𝑑

𝑆𝑆𝑇𝑜
 (𝐶. 5) 

Where: 

 SSResid is the sum of the squared residuals 

 SSTo the total sum of squares defined in Equation C.6 

𝑆𝑆𝑇𝑜 = ∑(𝑦𝑖 − �̅�)2  (𝐶. 6) 

The adjusted 𝑅2 for multiple regression is calculated with Equation C.7. 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −
𝑆𝑆𝑅𝑒𝑠𝑖𝑑 [𝑛 − (𝑘 + 1)]⁄

𝑆𝑆𝑇𝑜 (𝑛 − 1)⁄
 = 1 − [

𝑛 − 1

𝑛 − (𝑘 + 1)

𝑆𝑆𝑅𝑒𝑠𝑖𝑑

𝑆𝑆𝑇𝑜
 ] (𝐶. 7) 
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Appendix D  VIBRATION INSTRUMENT SPECIFICATIONS 
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Appendix E  MONTHLY FEEDBACK REPORT 
 

A list of all the equipment breakdowns, trips and related problems during the month of April 

2017 are presented in the Table E-1 below: 

TABLE E-1 MONTHLY FEEDBACK REPORT 

Date Report 
time 

Equip 
descri
ption 

Breakdown Remarks Root 
cause 

01 April 
2017 

01h34 Winch 55E 108x/c P2 Center 
g/winch tripped 

Informed n/s Elect Anna, Tripped 

01 April 
2017 

00h50 Winch 69D/L 78x/c P15 G/winch 
tripped 

 Tripped 

01 April 
2017 

02h39 Pump 45L Pump5 tripped Call Warren.  Reset O/L 
condition 

 

02 April 
2017 

22h25 Winch 66E 78x/c P15 winch trip Informed n/s Elect 
Robert to check. 

Tripped 

03 April 
2017 

23h54 Winch 55w 91x/c P15 G/winch 
trip 

informed n/s Elect 
Anna.03h00 cable need 
50mtr. 

Cable 
damage 

03 April 
2017 

02h22 Winch 57w 91x/c P3 g/winch 
starter o/o/o 

Morning shift to check. Starter 

03 April 
2017 

01h32 Winch 55E 104x/c P5A G/winch 
trip 

 Tripped 

03 April 
2017 

11h02 Compr
essor 

Comp no.3 tripped Inform Anton - wait for 
shutdown and start 
again at 11h25 

 

04 April 
2017 

22h03 Winch 55w 91x/c P15 G/winch 
stop/start button o/o/o 

informed n/s Elect Anna. Starter 

04 April 
2017 

00h53 Winch 55E 107x/c sect 113 
center g/winch trip 

 Tripped 

05 April 
2017 

19h44 Winch 55E 107x/c c/gully winch 
cable damaged 

Call out Agnes -  Cable 
damage 

05 April 
2017 

03h20 Winch 55w 91x/c P17 G/box 
tripped 

 Gully box 
tripped 

05 April 
2017 

18h10 Pump 66L 2nd dirty water dam 
overflow pump no.2 flow = 
0L/s 

Call out Simon - closed 
water to dam - report at 
20h00 overflow running 
into tip - inform Curt 

 

05 April 
2017 

17h55 Pump Surf supply pump tripped Call out Kobus - reset 
and start at 18h24 

 

06 April 
2017 

01h25 Winch 66E 78x/c sect114 P19 
g/winch keep on tripping 

morning shift will check Tripped 

06 April 
2017 

23h14 Winch 55E 108x/c P6 C,g/winch 
tripped 

wait for n/s Elect Anna 
to call. 

Tripped 

07 April 
2017 

23h06 Winch 57w1 126x/c center 
g/winch cable damage 

Call s/by Elect 
Bonang.at 23h30 Pina 
report back c/g.winch is 
okay,informed F/man,& 
Elect. 

Cable 
damage 

07 April 
2017 

22h17 Winch 73L 82x/c race winch no 
power 

Nandipha confirm that 
winch is okay 

Tripped 
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08 April 
2017 

22h40 Winch 69D/L 77x/c P11 G/winch 
no power 

Informed n/s Elect 
Felix,00h41 restor 
power. 

Tripped 

08 April 
2017 

04h52 Pump 45L Pumps tripped,and 
66L Pumps tripped 

informed Neo,Ben-
Running at 08h00 

 

08 April 
2017 

04h52 Pump 45L Pumps tripped,and 
66L Pumps tripped 

informed Neo,Ben-
Running at 08h00 

 

10 April 
2017 

23h35 Fan 75L HLG South fan 
tripped 

Call s/by Elect 
Nandipha.F/n is off 
informed F/man. 

 

11 April 
2017 

23h53 Fan 71L 102x/c Fan tripped ask n/s Elect Felix to 
reset, 

 

12 April 
2017 

21h03 Winch 57w 91x/c P3A Center 
g/winch starter button 
o/o/o 

Ask Elect to check. Starter 

14 April 
2017 

02h16 Winder East winder tripped DC 
breaker when he tried to 
move 

Call out Bertus - running  

15 April 
2017 

09h45 Pump 66 pump no1 motor NDE 
vibration high 

Call out Thabo  

17 April 
2017 

22h31 Winch 52E 104x/c slusher winch 
fail to start 

Report to Anna - report 
back at 01h22 that it is 
running 

Tripped 

18 April 
2017 

09h30 Pump 66 & 72 dams overflowing 
due to rx2 pump faulty 

Informed 
Jona,Fred,Curt& 
Bernard 

 

18 April 
2017 

00h42 Fan 55W 89x/c B/reef 45kW 
fan tripped 

Anna went to 52E 
104x/c - got report at 
03h21 at 52L station 

 

19 April 
2017 

02h11 Winch Sub 71L 93x/c c/g winch 
has no power 

Inform Thomas that he 
will have to go get elect 
at 69L elect shop 
(phones are not 
working) 

Tripped 

19 April 
2017 

02h17 Fan Sub 69L 77x/c T/way fan 
tripped 

Inform Felix at 02h25 - 
reset mini sub - report 
back at 04h31 

 

20 April 
2017 

04h30 Winch 69 77 slusher winch no 
power 

Morning shift to check Tripped 

21 April 
2017 

22h35 Fan 55E 104E fan tripped Morning shift to check  

22 April 
2017 

01h00 Winch 52E 104x/c center gully 
winch cable damaged 

Morning shift to check Cable 
damage 

22 April 
2017 

01h38 Winch 66 78 P19 winch trips Morning shift to check Tripped 

23 April 
2017 

01h00 Winch 57w3 90 P4 g/winch 
tripped 

Informed Mabusela-In 
order at 02h25 

Tripped 

23 April 
2017 

00h05 Winch 71 93 center gully winch 
tripped 

Informed Ncobile,Filix- Tripped 

23 April 
2017 

23h50 Fan 57w 87 B/Reef fan tripped Informed Mabusela-In 
order at 01h25 

Tripped 

24 April 
2017 

22h25 Winch 57w3 91 raise winch 
tripped 

Informed Mabusela-
Reported back at 00h30 
that the cable was 
damaged-in order 

Cable 
damage 

24 April 
2017 

15h57 Pump Sub 78L dirty water dam 
pump no.1 of set 2, 
tripped 

Call out Johan and 
inform Eldrid - restart 
pumps 

Tripped 
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26 April 
2017 

23h25 Winch 57w3 90x/c P4 g/winch 
doesn’t start 

Informed Mabusela-
reported back at 01h45 
that the drums are not 
turning 

Pinion 
gear 

26 April 
2017 

03h50 Winch 55E 104x/c P3 g/winch 
pin gear loose 

Morning shift to check Pinion 
Gear 

26 April 
2017 

05h00 Winch 55E 108 center gully raise 
winch trips 

Morning shift to check Tripped 

27 April 
2017 

22h35 Winch 55w 91x/c P21 face winch 
no current 

Informed Anna-reported 
back at 02h40 motor 
needs to be replaced 
due to no fan 

Motor 

27 April 
2017 

01h55 Winch 57W 91x/c P7 face winch 
no current 

  Tripped 

27 April 
2017 

11h42 Winch 57W3 90x/c mac winch 
keeps triping 

Coenie will send 
somebody to fix -  

Tripped 

27 April 
2017 

21h25 Winch 55E 108x/c P2 winch 
tripped 

Informed Anna-In order 
at 01h00 

Tripped 

27 April 
2017 

22h55 Winch 57w 91 wide raise g/winch 
tripped 

Informed Timothy-In 
order at 01h40 

Tripped 

27 April 
2017 

00h10 Winch 71 77x/c P1A g/winch 
tripped 

Informed Hennie Tripped 

28 April 
2017 

23h00 Winch 71E 102x/c center gully 
no current 

Informed Hennie-In 
order at 04h40 

Gully box 
tripped 
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Appendix F  CASE STUDY 1:  MAINTENANCE REPORT 
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