
i

The development of an accurate MOC
algorithm without the computation of a

core reference point

KP Baruni

21508259

Dissertation submitted in fulfilment of the requirements for
the degree Master of Science in Computer and Electronic
Engineering at the Potchefstroom Campus of the North-

West University

Supervisor: Prof ASJ Helberg

Co-Supervisor: Johan Van der Merwe

Assistant Supervisor: Dr K Nair

October 2017

ii

Declaration

I declare that this research titled “The development of an accurate fingerprint Match-

on-Card (MoC) algorithm without the computation of the core reference point" is my

original research work, and it has never been presented by others. All the

information used in this work has been fully acknowledged both in text and in the

references.

iii

Editor’s certificate

iv

Acknowledgement

I would like to express my special thanks and gratitude to everyone who participated

in making this research successful. Firstly, I would like to thank the Lord Almighty for

giving me the potential and the strength to complete this research.

I am also grateful to my project supervisors: Prof: A.S.J. Helberg, Johan Van der

Merwe, and Dr. K. Nair, my mentor: M. Shabalala and the Council of Scientific and

Industrial Research (CSIR) for giving me an opportunity to do a Master’s degree with

them. Without their help and guidance this research would not have been completed.

I also want to extend my sincere thanks and appreciation to my parents, Kingsley

Sunday, my elder brother, younger brother and my son for their prayers,

encouragement, tremendous contributions and their moral support towards the

completion of this project.

Not forgetting to thank my fellow colleagues A. De kock, S. Ntshangase, M.

Ratsoma, P. Mabuza and T. Thejane for their ideas and support.

v

Publication derived from this dissertation

1. K.P Baruni, A. Helberg, K. Nair, “Fingerprint Matching on Smart Card: A

Review” International Conference on Computational Science and

Computational Intelligence (CSCI’16), 2016, IEEE, Published

2. M. Ratsoma, A. Helberg, K. Nair, K P Baruni “Effects of minutiae template

on accuracy of fingerprint matchers”, International Conference on

Computational Science and Computational Intelligence (CSCI’17), 2017,

IEEE, Submitted

3. K P Baruni, A. Helberg, K. Nair, M Ratsoma “The development of a

fingerprint Match-on-Card (MoC) algorithm without the computation of a

core reference minutia” Pattern Recognition (2017), Elsevier, Submitted

vi

Abstract

Fingerprint Match-on-Card (MoC) technology offers the highest degree of security

and privacy protection to cardholders as the fingerprint template never leaves the

secure environment of a smart card. The level of security of a fingerprint matching

system is evaluated by the type of the device which is used to compare the

fingerprints. Fingerprint MoC compares the fingerprints inside the secure

environment of a smart card and makes it possible for cardholders to verify

themselves without the use of the central database. However it is challenging to

implement an accurate fingerprint matching algorithm inside a smart card and

produce an acceptable matching speed. This is due to the limited working memory

and processing speed that the smart card provides. This research aimed at

implementing an accurate MoC algorithm without the computation of a core

reference point. This is because the core reference minutia is not reliably located in

poor quality images and is not present in plain arch fingerprint classification. The

research focus was on the matching accuracy and speed of the Match-on-Card

fingerprint algorithm. Although the accuracy of the minutiae extractor affects the

matching accuracy, minutiae extraction is out of the scope of this research. This

research deployed a minutiae-based matching algorithm using multiple reference

neighbourhood minutiae. The proposed algorithm used multiple reference minutiae

to create neighbourhood minutiae circular tessellations. The proposed algorithm

used circular tessellations to convert fingerprint features into finger codes. Finger

codes are used to compare the fingerprints. The main advantage of the proposed

algorithm is that it does not use the computationally intensive process of template

alignment. The proposed algorithm also offers the advantages of matching speed

with an Equal Error Rate (EER) of 5.5%. The experimental procedures of the

proposed MoC algorithm were carried out on the public database DB1-a of

Fingerprint Verification Competition 2002 (FVC2002) on a PC using MATLAB.

vii

Definition of Concepts

Terminology Definitions

Algorithm A set of unambiguous steps to be followed in calculations or other

problem-solving operations, especially by a computer.

Antenna An electric conductor which has the ability to send, transmit, and receive

signals such as microwaves, satellite, and radio signals

Authentication The process of identifying the individual in order to grant access

Biometrics Technology that is used to measure biological traits of an individual

Electrical Chip A tiny piece of semi-conductor (commonly silicon) which is embedded in

an integrated circuit

Clock generator

A circuit which is responsible for producing time signal for the purpose of

synchronizing the circuit operations

Co-processor

Computer processor which is used to process certain functions quickly in

order to assists the Central Processing Unit (CPU).

Core A centre area of a fingerprint.

Delta A triangular-shaped pattern where different fingerprint ridges converge.

Encryption A way of enhancing the security of messages by hiding the messages, so

that the message can be readable for those who have the unique key that

allows the information to be transformed to its readable form.

Euclidean distance Distance between two points in Euclidean space.

Fingerprint

Alignment

The process of positioning an image with its impression by rotating and/or

translating it.

Hamming distance

A metrics used to denote the difference between two binary strings of

equal length.

Loop A pattern where ridges make a backward turn without converging

MATLAB

A high-performance language which combines computation, visualization

and programming in an easy-to-use environment where problems and

solutions are expressed in familiar mathematical notation.

Microcontroller A small computer which is made up of CPU, Memory, system clock, and

input/output peripherals.

Off-card matching The matching process which is performed outside the smart card.

On-card matching The matching process which is performed inside the smart card.

viii

Plain arch A pattern where the ridges enters in one direction, make a rise in the

centre and flows out in the opposite direction.

Radio Frequency A frequency which is acceptable for use in telecommunications

Singularity point The area where the ridge curvature is at maximum than usual and where

the direction of the ridges changes swiftly.

Tented Arch A fingerprint pattern where ridges move to the same direction, make a

rise in the centre and flow out upon the opposite direction, with ridges in

the centre adjoining each other and intersecting with each other upwards.

Verification The process of proving the validity of something, truth or accuracy.

Whorl A fingerprint pattern which is composed of ridges of almost concentric

circles.

ix

Lists of Figures

Figure 1.1: Brief taxonomy of a smart card .. 1

Figure 1.2 : A core reference point (red) for a loop fingerprint [15] 3

Figure 1.4 : A core reference point (red) for a tented arch fingerprint [15].................. 3

Figure 1.5 : Fingerprint Template-on-Card process [19]... 4

Figure 1.6: Fingerprint Match-on-Card process [19] ... 5

Figure 2.1 : The typical architecture of a contact interface smart card [30] 11

Figure 2.2 : Fingerprint alignment process [40] .. 15

Figure 2.3: Architecture of Work Sharing on-Card [19]... 16

Figure 2.4 : A finger code with 16 rows and 30 columns .. 18

Figure 3.1 : a) Bounding box surrounding minutiae and a core reference point (red

circle) b) Spanning ordered tree which is created from the position of the minutiae

with respect to the core [47] ... 22

Figure 3.2 : Share-on-Card algorithm presented by Y Moon et al. [48] 23

Figure 3.3 : Modified MoC algorithm [22] ... 24

Figure 3.4 : (a) Core reference point (purple) surrounded by neighbourhood minutiae

(regions) (b) Binarized neighbourhood minutiae (regions) [50] 25

Figure 3.5: Circular tessellated image with “X” as a core minutia 26

Figure 3.6 : Local comparison feature [52] ... 28

Figure 3.7 : (a) Neighbourhood minutiae tessellation (b) Finger code 29

. Figure 4.1: Flow diagram of the proposed algorithm .. 36

Figure 4.2 : Ridge ending (red) and ridge bifurcation (blue) [63] 38

Figure 4.3: Six sectors (S1to S6) with the reference minutia point (red) and minutia

orientation with minutiae points (blue) .. 40

Figure 4.4 : (a) 5 ridge counts and reference minutia point and the minutia orientation

(b) cell numbers of the circular tessellation .. 41

Figure 4.5 : (a) A circular neighbourhood minutiae tessellation with six sectors and

five ridge counts (b) a circular neighbourhood minutiae tessellation with four sectors

and four ridge counts.. 41

Figure 4.6: (a) A reference minutia point (b) a non-reference minutia point 43

Figure 4.7 : The process of finger code construction ... 44

Figure 4.8 : Bit maps of neighbourhood minutiae circular tessellation in Figure 4.7 . 44

Figure 4.9 : Finger code which is made out of 16 reference minutiae points 45

x

Figure 4.10 : Reference minutiae comparisons using finger codes rows 46

Figure 5.1: illustration of the angle between that neighbourhood minutia and the

reference minutia point (green) .. 51

Figure 5.2 : Source code for obtaining the starting and the ending point of each

sector ... 55

Figure 5.3 : Radius of each ridge count in a circular tessellation 55

Figure 5.4: source code for calculating Euclidean distance and the angle between

the reference minutiae and their neighbourhood minutiae. 56

Figure 5.5: Source code for finding in which cell the minutia is located in a circular

tessellation. .. 57

Figure 5.6: Source code for declaring each row in a finger code 58

Figure 6.1: (a) Reference minutia (red) which is located at point (157,198,122.34°)

(b) Reference minutia (red) which is located at point (208,244,122.34°) 62

Figure 6.2: Query template with partial prints ... 63

Figure 6.3: Different impressions of the same finger with the effect on distortion in

the query template.. 64

Figure 6.4: Circular tessellation of the same reference minutia in different

impressions of the same finger. ... 65

Figure 6.5 : Two impressions of the same finger with rotation difference of 25.53

degrees .. 66

Figure 6.6 : Circular minutiae tessellations of the same reference point using the

templates in Figure 6-5 ... 66

Figure 6.7 : Two impressions of the same finger with different rotation difference of

37 degrees ... 67

Figure 6.8 : Circular minutiae tessellations of the same reference point using the

templates in figure 6.7 .. 68

Figure 6.9 : Discarded minutiae during minutiae pairing .. 69

Figure 6.10 : Error rate curves for the proposed algorithm 72

Figure 6.11 : Reference point (red) in a neighbourhood minutiae tessellation 74

xi

List of Tables

Table 1.1: The location and number of a core(s) in different fingerprint classifications

 ... 2

Table 3.1 Comparison of fingerprint MoC and WSoC algorithms 30

Table 4.1 : Different circular tessellations using different numbers of sectors and

circular tessellation ... 39

Table 5.1: Table for constructing a finger code. ... 49

Table 5.2 : Starting and end point for each sector .. 50

Table 5.3 : The starting and the end point of each ridge count in each circular

minutiae tessellation. .. 51

Table 5.4 : Finger code comparison ... 52

Table 6.1: FNMR analysis .. 70

Table 6.2: Comparison of the proposed algorithm on DB1-a 72

Table 6.3 : Time complexity classes... 73

xii

List of Acronyms

CPU Central Processing Unit

DB Database

EER Equal Error Rate

EPPROM Electrically Erasable Programmable Read-Only Memory

FMR False Matching Rate

FNMR False Non-Matching Rate

FTE Failure To Enrol rate

FVC Fingerprint Verification Competition

GAR Genuine Acceptance Rate

GN Ground

ID Identity

ISO/IEC International Organization for Standardization/International

Electro-technical Commission

MATLAB Matrix Laboratory

MB Megabyte

MoC Match-on-Card

NPU Network Processing Unit

PC Personal Computer

PIN Personal Identification Number

RAM Random Access Memory

ROC Receiver Operating Characteristic

ROM Read-Only Memory

RST Reset

ToC Template-on-Card

TMR True Match Rate

TRR True Rejection Rate

VCC Power Supply

1

Chapter 1

1. Introduction

Due to technological advancement and the need for stronger personal data security,

embedded devices such as tokens and smart cards are widely used for different

applications in identification and verification [1, 2]. Different applications include the

National Identity Document (ID), Government ID, Corporate ID, Electronic purse, and

health cards [1]. Smart cards are portable devices, which resemble a credit card in

size and shape. They are used to store personal data securely and to process

information through the microprocessor chip embedded in its plastic body [2]. Smart

cards usually hold information such as encryption keys, biometric data, and internal

functions such as mutual authentication, encryption, and cryptographic algorithms

which can also be executed inside the smart card [3]. Figure1.1 shown below

illustrates the taxonomy of a smart card:

Card

Chip Card (Smart
Card)

Card without a chip
(e.g. Magnetic Strip

Card)

Memory Card

Processor Card

Processor Card
without Coprocessor

Processor Card
with Coprocessor

Figure 1.1: Brief taxonomy of a smart card

A card can either be in the form of a chip card or a magnetic stripe card. Chip cards

implant the chip within the smart card and have the capability to store and process

data [4]. The processing of data can be either done with or without a co-processor.

Magnetic stripe cards store digital data using the magnetic stripe of a magnetic

material.

2

Smart cards are a reliable form of secure information repository. Smart cards can be

combined with biometric technologies to strengthen the data security when

compared to Personal Identification Number (PIN) codes. A PIN code can be easily

guessed, detected or stolen via fraudulent means [5, 6]. Biometric technologies

make use of a person’s unique biological traits and behavioural characteristics such

as signature, gait and speech to verify the identity of a person [1]. Biometric

modalities that are popularly used include fingerprint, face, voice and iris [5, 7].

Unlike other biometric modalities, fingerprints are mostly used because of their

acceptability, accuracy, performance, reliability, numerous sources (ten fingers)

available for collection, and their success in law enforcement [7-10].

A fingerprint impression is an image that consists of furrows and minutiae points,

which are extracted using ink on paper or by electronic sensors [11, 12]. Furrows are

spaces between ridge lines. Minutiae points are Cartesian co-ordinates of a ridge

bifurcation and/or ridge ending [8]. Minutiae-based fingerprint matching algorithms

are made up of minutiae extraction and minutiae matching algorithms [8, 13].

Singularity points can also be used to assists fingerprint matching processes [14].

There are two types of singularity points, namely: core and delta points [15]. A

fingerprint may have more than one, one, or no core reference point. Plain arch

fingerprint classification does not have a core point. The core point may be found in

whorl, loop, and tented arch fingerprint classification [16]. Table 1.1 illustrates the

number of core(s) that are found in the whorl, loop, and tented arch fingerprint

classification.

Table 1.1: The location and number of a core(s) in different fingerprint classifications

Fingerprint

classification

Number of

cores

Location of a core in a fingerprint

Whorl 2 Located at the centre of a spiral.

Loop 1 Located at the upper point area of an inner loop.

Tented arch 1 Located at the centre of a fingerprint

3

Figure 1.2, figure 1.3, and figure 1.4 illustrate the fingerprints with a core reference

point.

Figure 1.2 : A core reference point (red) for a loop fingerprint [15]

 Figure 1.3: A core reference point (red) for a whorl fingerprint [15]

 Figure 1.3 : A core reference point (red) for a tented arch fingerprint [15]

4

Core fingerprint matching algorithms are more efficient when compared to the non-

core fingerprint matching algorithms [15]. However, the core point is not reliably

extracted from a fingerprint in cases where the image is of poor quality and not all

fingerprint classification has a core minutia. Plain arch fingerprints, for example, do

not have core minutia [15].

In order to use fingerprint for verification of a person‘s claimed identity, the fingerprint

has to be enrolled/registered in a database or a smart card so that it can be used

later for comparison/matching [17]. The enrolled fingerprint is termed a reference

template whereas the live fingerprint to be compared to the enrolled fingerprint is the

query template. During the matching process the enrolled fingerprint will be

compared with the query fingerprint inside the terminal or inside the smart card. After

comparing/matching the fingerprints, the system rejects or accepts the query

fingerprint depending on the match score [17].

Fingerprint recognition systems can be used in two modes, namely verification and

identification [3]. In the verification mode, reference template in the database/smart

card is compared with the query fingerprint, whereas in identification mode the query

fingerprint is compared to the entire database until a suitable match is found [5].

The process of comparing two fingerprints in the terminal is called Template-on–

Card (ToC) and comparing the fingerprints in a smart card is called Match–on-Card

(MoC) [18].

Figure 1.5 illustrates a fingerprint Template-on-Card process.

Figure 1.4 : Fingerprint Template-on-Card process [19]

5

ToC algorithms include the entire process of biometric data acquisition, feature

extraction, feature comparison, and score computation on the terminal side.

Figure 1.6 illustrates a fingerprint Match-on-Card process.

Figure 1.5: Fingerprint Match-on-Card process [19]

MoC algorithms include processes of biometric data acquisition and feature

extraction inside the terminal and the comparison of templates inside the smart card

[20]. The distinction between MoC and the traditional biometric process (ToC) is the

location of where the matching takes place. In ToC algorithms, the smart card sends

the enrolled template to the terminal for off-card matching. In MoC, the enrolled

template never leaves the secure environment of a smart card. Fingerprint MoC

algorithms offer higher data security when compared to ToC algorithms. However, it

is quite challenging to develop a fingerprint algorithm which runs under the hardware

constraint of a smart card and still produces an acceptable matching accuracy. MoC

algorithms which are considered accurate have an Equal Error Rate (EER) which is

less than 8% [21]. A fingerprint MoC algorithms which is considered to be fast has a

constant, linear or quadratic time complexity. Fingerprint ToC algorithms introduce

security concerns due to the template that is transmitted to the terminal via a

communication channel during the comparison of the fingerprints. This approach

allows the reference template information to be compromised when it is transmitted

to the terminal [19].

The proposed algorithm uses minutiae-based matching techniques and multiple

reference minutiae to compare the fingerprints. This algorithm uses binary

representation for finger codes (minutiae information) and Hamming distances to

measure the similarity between the two templates.

6

1.1. Motivation

The motive behind this work is to prevent identity fraud by using Match-On-Card,

which guarantees the physical presence of the user [22, 23]. This work intends to

implement a fingerprint MoC algorithm which has a low EER. The fingerprint MoC

algorithms makes it hard for an imposter to read the user’s fingerprint template as

the template is stored in a secure environment of a smart card and also eliminates

the need of using a central database [19]. Introducing a MoC fingerprint algorithm

that accurately compares fingerprints and is fast, inside the smart card, has always

been a challenge, due to the fact that smart cards have limited computational

memory and processing capacity. This implies that there is more research that has

to be done about the implementation of a fast and accurate MoC algorithm. The fact

that passwords and PIN codes are no longer reliable further creates the need to

come up with a fast and accurate MoC algorithm [20].

1.2. Problem statement

The problem is that it is quite challenging to develop a fingerprint algorithm which

runs under the hardware constraint of a smart card and still produce an acceptable

matching accuracy and speed [24]. The proposed fingerprint MoC algorithm avoids

using a core reference minutia to align the template. A core minutia is not reliably

detected in a fingerprint. The inaccuracy of the MoC usually allows the imposter to

access the system, hence promoting identity fraud. The speed of the fingerprint

matcher is also important for its eventual success [25].

1.3. Research questions

This research project intends to answer the following questions:

 How can all limited resources that are available inside the smart card be used

to implement a light matching algorithm without the computation of the core

reference minutia?

 In which way can an accurate and fast fingerprint MoC algorithm be

developed?

7

1.4. Research goal

 Develop and implement an accurate and fast fingerprint MoC algorithm

without the computation of a core minutia.

1.5. Research objective

In order to achieve the research goal, the following objectives will be set:

 To investigate different existing fingerprint matching algorithms.

 To implement the proposed fingerprint MoC algorithm.

 To evaluate the speed and matching accuracy of the proposed algorithm.

 To compare the matching accuracy and time complexity of the proposed

algorithm with the work of Benhammadi and Bey [21].

The proposed algorithm is compared to the work of Benhammadi and Bey due to

the following reasons:

 To prove that the proposed algorithm can obtain the matching accuracy that is

comparable to a core-based matching algorithm.

 The work of Bey and Benhammadi offers the advantage of simplicity. It does

not use complex mathematics. Hence it makes it easy to be implemented on a

smart card unlike other algorithms which are presented in chapter 3 (literature

review).

1.6. Delimitations, Limitations and Assumptions

 It is assumed that the number of missing and false minutiae in the templates

which are used to evaluate the performance of a matcher is less than the total

number of the minutiae which are correctly extracted. This is due to the

obtained matching accuracy of the proposed algorithm. After conducting the

experiments, the experimental results showed that the matching accuracy of

the proposed algorithm was only affected by 0.49% errors which are caused

by the minutiae extractor.

 The research focus is on implementing an accurate and fast fingerprint MoC

algorithm.

8

 An algorithm will be implemented using the existing extracted templates.

Extraction of minutiae points and the securing of the system are outside the

scope of the proposed research.

1.7. Contributions

The research contributions envisaged are in what follows:

 Reduce the effect of distortions by using more than one minutia point in the

template as a reference minutia [26].

 The proposed algorithm can be deployed in different applications such as

National ID, Electronic purse, banking, retail and insurance cards.

1.8. Dissertation layout

This dissertation layout is as follows:

Chapter 1 gives an introduction about a problem to be solved. It also includes the

motive behind this research, research goal, research objectives, research questions,

research contributions, and the scope of this research.

Chapter 2 gives a brief history of smart cards and a detailed background to this

dissertation. It presents the brief history on the smart card and the biometric

technologies.

Chapter 3 conducts the literature review of the existing work done by other

researchers. It describes how other authors presented fingerprint matching

algorithms and the fingerprint matching accuracy of those fingerprint matching

algorithms.

Chapter 4 gives details about how the problem was solved and how the experiments

were conducted. This chapter provides a detailed methodology that was used in this

research to achieve the aims and objectives of this study.

Chapter 5 explains how the methodology was implemented. This chapter discusses

the implementation environment of this research methodology.

Chapter 6 analyses and presents the experimental results of the approach. It also

provides the verification and the validation of this research methodology.

9

Chapter 7 gives a summary and the conclusion drawn from the previous chapters

and the future work of this research dissertation.

10

Chapter 2

2. Background

This chapter presents the background to the research for this dissertation. It begins

by briefly explaining the architecture of a smart card and how biometrics can be used

with smart cards. As the chapter proceeds it explores the concept of MoC and also

the traditional biometric process (ToC). Section 2.3 describes the features which can

be used to compare the fingerprints and how the features can be used. This chapter

concludes by describing different fingerprint matching techniques.

2.1. Smart cards technology

Smart cards were invented at the end of the mid-seventies by Michel Ugon [21].

Around that time there was a lot of discussion about standardization of the contact

location, the standardization of the signal, and protocols which resulted in the

ISO/IEC 7816 smart card standards [21]. Protecting the information was also

required; it was obvious that cryptography codes were required [22]. However, it was

challenging to implement some cryptography in a smart card environment due to

hardware constraints on the smart card processor.

Nowadays, smart cards can have 8, 16 or 32 bit processors with limited volatile

memory of 2-16 Kbytes of Random Access Memory (RAM), 64-300 Kbytes of Read-

Only Memory (ROM) and 32-150 Kbytes of Electrically Erasable Programmable

Read-Only Memory (EEPROM) with options of Flexible Architecture for Shared

Memory (FLASH) [27, 28]. RAM is a kind of storage where the data that is currently

used in a program is stored so that it can be quickly reached by the processor [29].

ROM is non-volatile and non-writable storage which contains the operating system

and encryption algorithms. EEPROM is a read/write non-volatile memory which

stores program data, user data, and operating system routines [28]. The processor is

embedded in a chip and it is connected to the outside world through eight contacts

as shown in figure 2.1.

11

Figure 2.1 illustrates the internal components of a smart card.

Figure 2.1 : The typical architecture of a contact interface smart card [30]

In figure 2.1, Vcc is the supply voltage that drives the chips. CLK is a clock signal

which is used to drive the logic of the integrated circuit and it is also used as a

reference to serial communication [31]. After the power is on, Reset (RST) is used to

initiate the state of the integrated circuit [31]. GND is the ground reference voltage.

Vpp connector supplies the programming voltage input in a smart card. Input/output

(I/O) provides a serial data communication between the interfacing device and the

smart card. RFU is reserved for future use [31].

Smart card usage has advanced tremendously over the past few years as well as

the use of biometric technology because smart cards can store data (biometric traits)

securely [2, 4, 21]. This is because according to ISO/IEC 24787 (2010) on-card

biometric comparison standard, there is no software that can be used to download

the stored template(s) inside the smart card [32]. Biometric technology has shifted

from research labs to real-world applications and can well be used with smart cards

[21, 23]. Since 1999 a variety of vendors have been developing MoC fingerprint

algorithms [24].

2.2. Different classes of fingerprint

Fingerprint matching can be done using texture (region) of a fingerprint, minutiae

points, image-based matching, and the combination of both fingerprint texture-based

matching and minutiae-based matching [33].

12

2.2.1 Image-based fingerprint representations

Image-based fingerprint matching algorithms make use of local orientation,

frequency, ridge shape, ridge count and texture information to compare the

fingerprints. Image-based fingerprint representation offers the following advantages:

 All the features that are used during the matching process are

extracted more reliably unlike the minutiae-based algorithms [34].

 They can be used with minutiae-based algorithms to enhance

matching accuracy [5].

 Invariance to affine transform1, hence they can be used to deal with

distinct input states [34].

The introduction of ridge counts was also used due to the difficulty to obtain the

exact measurements of the Euclidean distance between the minutiae [5]. The

disadvantage of these algorithms is that they do not have sufficient capability to track

down differences in position, scale, and rotational angle of the fingerprint. They are

affected by differences in image quality, scars, brightness variations, large amount

of global distortion in the fingerprint image and they also suffer from deformation of

fingerprints in the long run [5, 35]. These algorithms find the centre point or the

singularity point of the fingerprint to align the template, and then the reference

template is graphically matched with the query template to compute the matching

score. Detailed image-based fingerprint algorithms are often too large to be stored

on a smart card [36].

2.3. Minutiae-based fingerprint algorithms

Minutiae-based algorithms use point-to-point matching to identify the similarity

between two templates by using the minutiae [33]. The reference template (𝑇) and

the query template (I) are used in order to check whether the templates are from the

same finger by matching all the corresponding minutiae pairs from both 𝑇 and 𝐼.

Minutiae can be characterized by making use of the feature vector representation [5]:

𝑚𝑘= (𝑥𝑘, 𝑦𝑘 , 𝜃𝑘 , 𝑡𝑘)

where 𝑥𝑘 and 𝑦𝑘 represent the position of the x-coordinates and the y-coordinates of

the minutia respectively, 𝜃𝑘 indicates the minutia angle, 𝑡𝑘 indicates the minutia type

1
Affine transform is any transform that preserves collinearity

13

(ridge bifurcation and ridge ending), and 𝑘 represents the minutia number.

Characteristics which are related to points and their structural properties, such as

Euclidean distance between points are usually used in minutiae-based techniques to

reduce the exponential number of search paths. Most of the ordinary fingerprint

minutiae matching algorithms use only three feature vectors to represent the minutia

𝑚𝑘= (𝑥𝑘, 𝑦𝑘, ө𝑘) as illustrated below.

Each set of minutiae 𝑇 and 𝐼 can be represented as:

𝑇= {𝑚1,𝑚2,… . 𝑚𝑘} , 𝑚𝑖 = {𝑥𝑖,𝑦𝑖,𝜃𝑖}, 𝑖 = 1 … . 𝑘

𝐼 = {𝑚′
1,𝑚′

2,… 𝑚′
𝑝},𝑚′𝑗 = {𝑥′

𝑗,𝑦′
𝑗
,𝜃′

𝑗},𝑗 = 1 … . 𝑝

where 𝑘 and 𝑝 represent minutia number in 𝑇 and 𝐼, respectively. In order to

compare the minutia 𝑚𝑖 in 𝑇 and 𝑚′𝑗 in 𝐼, a matcher chooses a certain threshold for

the spatial distance (𝑠𝑑) and the minutia direction (𝑑𝑑) which is going to be used to

indicate whether the two minutiae match [5].

𝒔𝒅(𝒎𝒊, 𝒎𝒋)=√(𝒙′𝒋 − 𝒙𝒊)
𝟐

+ (𝒚′𝒋 − 𝒚𝒊)
𝟐
≤ 𝒓𝒌 and (2.1)

𝒅𝒅(𝒎𝒊, 𝒎′𝒋)=𝒎𝒊𝒏(𝜽𝒊 − 𝜽′
𝒋) , 360 – 𝜽𝒊 − 𝜽′

𝒋 ≤ 𝜽𝒌 (2.2)

The chosen thresholds 𝜃𝑘 and 𝑟𝑘 are required to compensate for the mistakes made

by feature extraction algorithms and to account for the small plastic distortions that

cause the minutiae positions to change [5].

Minutiae-based algorithms are mostly used for MoC fingerprint verification because

of their stronger matching accuracy due to the following reasons:

 It is unusual for a large amount of minutiae from different fingers to match

[37].

 Every set of minutiae is unique in each finger and is well extracted when

compared to other features such as pores, delta and ridge structures.

Moreover, they require low computational cost in smart card implementations

[35]. The delta structure is a triangular-shaped pattern where different

fingerprint ridges converge.

14

 Minutiae-based algorithms are responsive to different kinds of fingerprint

matching degradation (fingerprint distortion, rotation, translation) and they

usually use a small amount of memory [20].

The commonly used minutiae-based fingerprint matching algorithm is the Hough

transform (HT) method [35]. Minutia-based matching algorithms are usually initiated

by choosing a reference singular point or a reference minutia in a chosen

neighbourhood of minutiae.

Normally when minutiae-based representations are used in MoC, the extracted

minutiae are sent to the smart card for comparison by pairing all the corresponding

minutiae points between 𝑇 and 𝐼 and also to calculate the matching score. The final

stage is decision making by either accepting or rejecting the query tempate

according to the obtained matching score.

2.4. Combining minutiae-based algorithm with image-based

algorithms

During minutiae extraction, when a minutia is detected, it is recorded with its

position, direction, and minutia type (𝑥𝑘, 𝑦𝑘 , 𝜃𝑘, 𝑡𝑘). Minutiae-based algorithms can

be combined with image-based algorithms in order to enhance the matching

accuracy. However, this technique usually takes a long time to execute. It is largely

affected by noisy images and high amounts of distortion [21].

2.5. Fingerprints matching techniques

The following fingerprint matching techniques are used in biometric and smart card

technologies [38]:

 Alignment techniques

 Work sharing on-Card techniques (WSoC)

 Neighborhood Minutiae techniques

Fingerprint alignment is a very computationally intensive process. Due to the

memory and processing speed that the smart card provides, other researchers

presented WSoC algorithms [39]. WSoC algorithms make use of the terminal to

perform computationally intensive processes such as minutiae extraction and

template alignment in order to reduce the workload on the smart card. During the

matching process, the smart card sends the enrolled template to the terminal via a

15

communication channel to perform the most intensive computational steps. The

computed results are sent back to the smart card to calculate the final matching

score. Neighbourhood minutiae techniques are usually used in fingerprint MoC to

avoid template alignment and WSoC. Neighbourhood minutiae are local minutiae

structures of the fingerprint. Neighbourhood minutia structure is characterized by

attributes that are rotation and translation invariant.

2.5.1. Alignment techniques

Fingerprint alignment is the process of positioning a reference template with a query

template by rotating (𝜃) and translating (𝑥,𝑦) it. This kind of method increases the

number of matching minutiae in a different impressions of the same finger [2].

Minutia alignment involves matching 𝑛 minutiae points in the reference template

with 𝑚 minutiae points in the query template. This procedure has an exponential time

complexity O(𝑀𝑁) [40]. Pre-aligning the query template and the reference template

before the minutiae matching stage increases the matching accuracy of the

fingerprint algorithms. This method is able to handle noisy and insufficient data.

Nevertheless the method is very fast (e.g. 10 or more matches per second) [2].

Figure 2.2 illustrates a fingerprint alignment process.

Figure 2.2 : Fingerprint alignment process [40]

In order to align the two templates, the matcher computes the pairwise similarity

between the minutiae in the reference template and the query template by

comparing minutiae discriptors which are translation and rotation invariant. Then the

two templates will be aligned with regard to the most simillar minutiae pair. The

obtained overlapping minutiae will be used to calculate the matching score. If the

16

amount of overlap is high, it implies that 𝑇 and 𝐼 belong to the same finger. Contrarily

a small overlap implies that there is higher possibility that 𝑇 and 𝐼 are not from the

same finger.

There are two types of pre-alignment techniques which are used, namely: the

absolute pre-alignment technique and the relative pre-alignment technique. The

relative pre-alignment pre-aligns the query template with regards to the reference

template. Relative pre-alignment technique is used commonly and it can be

executed by superimposing the singularities and comparing ridge features. In cases

of singularity based algorithms, if the core location and the core orientation is

detected accurately for the query and the reference template, it becomes easier for

the transformation to lead to a proper alignment. The absolute pre-alignment mode

pre-aligns each fingerprint indepedently of each other before it is stored.

2.5.2. Work Sharing On-card (WSoC) techniques

Work Sharing on-Card is a process of making use of the terminal and the smart card

to match the fingerprint. It is mostly used for smart cards as the majority of them do

not have sufficient computational power and memory to process fingerprint data [39].

Figure 2.3 illustrates the architecture of the Work Sharing on-Card.

Figure 2.3: Architecture of Work Sharing on-Card [19]

WSoC algorithms make use of the terminal to perform computationally intensive

processes such as minutiae extraction and template alignment in order to reduce the

workload on the smart card. During the matching process, the smart card sends the

enrolled template to the terminal via a communication channel to perform the most

17

computationally intensive steps. The computed results are sent back to the smart

card to compute the final matching score [15]. The advantage of WSoC algorithms is

that the Personal Computer (PC) relieves the computational load of aligning the

templates from the smart card. The existing pre-computations which are done

outside the smart card for MoC algorithms produce very accurate matching results.

However, this technique introduces security concerns, since the reference template

can be intercepted due to the reference template information which is sent out of the

smart card. WSoC requires secure communication between the smart card and the

terminal. However, it is a challenging to properly implement secure communication

between a smart card and the terminal.

The disadvantage of these algorithms is that they usually take too long to match the

fingerprint because of the communication delay between the PC and the smart card

during the verification process.

2.5.3. Neighbourhood minutiae techniques

In the fingerprint MoC, neighbourhood minutiae refer to the number of all the

minutiae points which are surrounding the reference singular point or the reference

minutia point which is going to be used to compare the fingerprint images.

Neighbourhood minutiae techniques often use geometric transformations in order to

compensate for alignment. In most cases using geometric transformation rather than

rotation and translation can result in a large number of new possible alignments

which can introduce the chances of getting false matches. Therefore, the method

needs to be carefully assessed [2]. Neighborhood minutiae can be used to construct

a finger code.

18

Figure 2.4 shown below illustrates a finger code.

Figure 2.4 : A finger code with 16 rows and 30 columns

Every white cell in a finger code represent a bit value one (1) and every black cell in

a finger code represent a bit value zero (0). Finger code makes use of binary codes

to match the fingerprints. The finger code matching method is very fast when

compared to the traditional neighborhood minutiae fingerprint matching. Finger

codes usage offers the advantage of matching speed and less processing inside the

smart card due to the usage of binary code. This is because the smart

card/computer uses binary code language. A smart card holds information in a form

of binary codes which make finger codes suitable for MoC.

2.6. Summary

Fingerprint MoC algorithms provide stronger template security in comparison to ToC

and WSoC algorithms. Minutiae-based techniques are usually used in MoC

algorithms because they are more accurate and robust than image-based

representations. Detailed image-based fingerprint algorithms are often too big to be

stored on a smart card. Neighbourhood minutiae matching techniques requires less

processing computations when compared to alignment matching techniques. Hence

neighbourhood minutiae matching techniques are suitable for MoC algorithms.

19

Chapter 3

3. Literature Review

This chapter presents distinct minutiae-based and image-based fingerprint Match-

on-Card (MoC) algorithms which are concerned with matching accuracy. The next

chapter describes processes that are used during the verification process and the

level of accuracy obtained for each fingerprint matcher depends on the kind of

algorithm used.

3.1 Alignment techniques

Fingerprint alignment is the process of positioning a reference template with the

query template by rotating and/or transforming it. The purpose of alignment is to

estimate the translation and rotation parameters between the query template and the

reference template. Using fingerprint alignment techniques to align minutiae usually

leads to the development of a robust algorithm, which can accurately compare noisy

fingerprints. However computing template alignment is time and resource consuming

[5].

3.1.1. Minutiae-based and image-based matching algorithms

Current MoC algorithms extremely underperform as compared to terminal or

personal computer matching algorithms in terms of accuracy due to limited

resources available inside the smart card [24]. J Feng et al. presented a personal

computer matching algorithm. This method make use of minutiae and ridges to

perform fingerprint matching [9]. This method used FVC2002 DB1, DB2, DB3 and

DB4 to evaluate the accuracy of the algorithm. The method improves the matching

accuracy for minutiae pairing. However it uses more time to execute the matching.

Jain and Feng proposed a hybrid approach to improve matching accuracy [41, 42].

These algorithms make use of minutiae points and texture-based (region) matching

to compare the fingerprints. Different templates from the same subject (finger) may

have a small region of overlap. Hence, minutiae-based matching has less probability

of performing well when dealing with these subjects. Therefore, the combination of

minutiae-based and texture-based algorithms was a solution. The algorithm [41]

showed a matching improvement when compared to the minutiae based algorithm

20

which uses ridge patterns for matching [14]. However, the algorithm did not account

for non-linear deformation present during fingerprint matching.

3.2. Minutiae-based algorithms for smart cards

Sanchez-Reillo et al. presented a minutiae-based MoC fingerprint algorithm [43, 44].

It uses an elastic matching algorithm, in order to handle fingerprint elasticity. The

algorithm introduced new variations, such as the distance between ridges. The

algorithm locates the reference minutia point for 𝑇 and 𝐼, and converts all the

neighbourhood minutiae points to polar coordinates with respect to the reference

minutia. Then feature vectors are further aligned to calculate the pairing minutiae

between the query template and the reference template. The results showed that the

implementation code was required to be optimized because of intensive processing

requirements.

Pan et al. presented an optimized fingerprint minutiae-based MoC algorithm [45].

The algorithm does not only focus on accuracy but also considers the memory

requirement and processing power which is used for every step during the matching

process. To minimize the memory requirements, a small-sized accumulator array

was employed to perform more computations at a course-grain to fine-grain

resolution on the accumulator array. The accumulator array is a matrix that is used to

store values (∆𝑥 (𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑥𝑎𝑥𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛), ∆𝑦 (𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑦𝑎𝑥𝑖𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛),

∆θ (𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑛 𝑎𝑔𝑙𝑒)) of the accumulated votes. According to the experimental

results, the algorithm obtained a comparable EER to typical algorithm with minimum

memory requirements.

A. S. Rikin et al. proposed a fast memory efficient fingerprint MoC algorithm [35].

This algorithm uses minutiae-based matching and use of HT for alignment [46].

However, this technique fails to perform alignment of two patterns with inadequate

overlapping matching minutiae. The algorithm offers the advantages of fast matching

time, reduced memory requirements, small template size over minutiae-based MoC

algorithms. The minutiae ridge shape matching technique offers the advantages of

providing more information per bit. Hence, it requires a smaller template size when

using minutiae ridge shape matching technique. The algorithm obtained the

minimum FMR of 2.97% using a template size of 64 bytes.

21

3.3. Singularity-based techniques

In cases where a core is located properly for two templates, the transformation

leading to the correct alignment becomes easy. It is difficult to reliably locate the core

point in noisy images.

Ishida et al. proposed an image based algorithm which computes the reference

singular point (core) and stores the reference template inside the smart card during

enrolment [4]. During verification the host sends the smart card only a certain portion

of the fingerprint sequentially in relation to the core. The smart card compares the

aligned portions from the query template with the corresponding portions from the

reference template using correlation. This algorithm saves computational time by

tracing the pseudo ridges to determine the fingerprint classification instead of

thinning and converting the fingerprint to binarized format. The algorithm also

improves the classification accuracy. However, the matching results of the algorithm

were required to be modified. This algorithm failed to obtain the exact directions of

ridges for poor quality images and detecting singular points.

Tommaso et al. proposed a fingerprint MoC algorithm which constructs a graph of

minutiae structure, encodes minutiae points and also uses a core in relation to its

neighbourhood minutia for fingerprint matching [47]. The graph is bounded by the in-

degree and out-degree to represent the limitation of all the neighbourhood minutiae

points. This algorithm uses minutiae points in the template to build spanning, ordered

tree touching as many nodes as possible, starting from the core from both the

reference template and the query template and going through the two graphs by

matching edges.

22

Figure 3.1 illustrates how this algorithm selects the minutiae for matching.

Figure 3.1 : a) Bounding box surrounding minutiae and a core reference point (red

circle) b) Spanning ordered tree which is created from the position of the minutiae

with respect to the core [47]

The core point from figure 3.1(a) is a reference point which is used to initiate the

matching process and a bounding box includes the region of a fingerprint that is

going to be used for the matching. In figure 3.1(b) the algorithm starts by drawing a

line from 𝑚0 (core) to the neighbourhood minutiae (𝑚1,𝑚2,𝑚3,…𝑚𝑘), in order to

construct a spanning ordered tree. The spanning ordered tree is used for minutiae

pairing. The critical factor of this algorithm is the computation of the location of the

core.

3.4. Work Sharing on Card (WSoC) algorithms

Due to the limited memory and processing speed that the smart card provides, other

researchers presented WSoC algorithms.

Moon et al. presented a pre-match computation in the host computer in order to

reduce the workload of the smart card [48]. The host is responsible for calculating

the average position and orientation of 𝑇 and 𝐼. Afterwards, the host computes the

average position differences and orientation between 𝑇 and 𝐼. All this information is

sent to the smart card. Even though not all computations are done inside the smart

card, the algorithm makes it hard for an imposter to get hold of the minutiae

23

information. This is due to the fact that information that is sent to the smart card can

only reveal the average position and the average orientation of the minutiae points,

but not the location and the orientation of the minutiae. The smart card is responsible

for performing the point-to-point matching and computing the matching score,

whereas the host is responsible for transforming the fingerprint.

Figure 3.2 below illustrates the Share-on-Card algorithm.

Figure 3.2 : Share-on-Card algorithm presented by Y Moon et al. [48]

In figure 3.2 illustrated above QP is the average position of a query template, QO is

the average orientation of the query template, RP is the average position of a

reference template and RO is the average orientation of the reference template.

In order to eliminate the security concerns of the information that goes in and out of

the smart card, Y. Moon et al. decided to do the entire fingerprint matching inside the

smart card [48]. The algorithm rotates the fingerprint by making use of the angular

difference between 𝑇 and 𝐼, which is computed from the polar angle of each minutia.

This algorithm is less computationally intensive than the two previous algorithms that

were previously introduced by Y Moon et al. Instead of using the mean position and

the mean orientation of the minutiae for pre-alignment, Moon et al. improved their

work by using a robust core to align the template [49]. This also has its own

24

disadvantages because there are cases where the core cannot be located

accurately. Moreover, it can lead to matching errors since the arch type fingerprint

does not have the core.

Figure 3.3 illustrates the modified MoC from the work of Moon et al.

Figure 3.3 : Modified MoC algorithm [22]

H.K. Lam also proposed a fingerprint pre-alignment matching algorithm which does

not utilise large amounts of memory inside the smart card [50]. This matcher

computes an off-card reference point and an off-card template alignment. The

algorithm computes the location of the reference singular point/core and extracts five

different regions from the reference template. The first region is located at the

reference singular point and the rest of the regions are located around the core. This

method extracts five regions of 35*35 pixels. The triple representation of the regions

is used during template alignment to bring into line the query template. The method

transfers only the triplet representation and normalized x-y coordinates of the five

regions out of the smart card. The terminal usually uses the core as an alignment

point to align the templates. This is because the core is highly unique, so the highest

correlation is usually found in first region (core). In cases where the image quality of

a fingerprint is bad and the core cannot be accurately detected, this method finds the

highest correlation between region 2, region 3, region 4, and region 5. Then the

25

region with the highest correlation score is used as a point of alignment. The

advantage of this algorithm is that, it can match the fingerprint even without the

computation of the core. Figure 3.4 illustrates five minutiae which are used to

perform the matching.

Figure 3.4 : (a) Core reference point (purple) surrounded by neighbourhood minutiae

(regions) (b) Binarized neighbourhood minutiae (regions) [50]

In T P Chen et al. proposed a minutiae-based fingerprint matching inside the smart

card using an 8-bit smartcard [39]. This method computes reference minutia

template alignment in the terminal and uses the smart card for comparison of

minutiae template. This method divides a template into two portions namely: open

portion and secure portion. The secure portion contains minutiae positions (x-y

coordinates), minutiae orientation, and minutiae type. The secure portion never

leaves the secure environment of a smart card. An open potion is sent to the

terminal to compute a reference minutia and template alignment to speed up the

matching process. Open portion contains relative minutiae with limited number of

nearest neighbourhood minutiae information. Hence it is not easy to use this

information to reverse engineer the original minutiae information. The communication

between the smart card and the terminal is encrypted using ISO/IEC7816-4. This

method obtained good average recognition rate. However, this method introduces

security vulnerabilities due to the template alignment which takes place outside the

secure environment of the smart card.

26

3.5 Neighbourhood Minutiae Techniques

Victor and Suandi [51] presented minutiae-based fingerprint matching algorithm

using finger codes. Finger codes make use of binary digits to compare the query

fingerprint. This method generates a circular tessellation by using a core as a centre

point. Then tessellate the neighborhood minutiae into 4 circular bands and 16

sectors. The radius of 20 pixels from the core reference minutia is excluded from the

finger code.

Figure 3.5: Circular tessellated image with “X” as a core minutia

After the tessellation is define and the core is extracted, the window size of 199*199

pixels which includes the entire circular tessellation image is cropped from the

fingerprint. This method only use the window size of 199*199 which contains a

circular tessellated for matching to speed up the matching process. The matcher

uses 8 finger codes to represent the local features of the fingerprint for higher

matching accuracy. Every finger code which is constructed is rotated 25° from the

previous finger code. This is used to make the fingerprint verification rotation

invariant. Each finger code has 64 pixel values which represent the sector. The 8

finger codes are concatenated into 1 dimensional vector to form a final finger code of

512 pixel values. Euclidean distance is used to compare the enrolled finger code and

the query finger code. If the Euclidean distance is more than the threshold, the nth

enrolled finger code (in the final enrolled finger code) is compared to the (n+1) query

finger code in the final query finger code. This loops 7 times to compare with the

other finger codes unless the match is found before the loop reaches the 7th

alteration. This method performs the smart card verification using the password and

27

PIN code. If the smart card verification is successful, the fingerprint verification

process is carried out. This method obtained True Acceptance Rate (TAR) of 90%

using 40 fingerprints of 10 different fingers, with each finger containing 4 impression

of the same finger. The disadvantage of this method is that it does not use a

standard database. Hence the matching accuracy of this method is not compared

fairly. The other disadvantage of this method is that it does not always accurately

detect the core reference minutia which degrades the matching accuracy of a

matcher. This method introduces security concerns. This is because the comparison

of the fingerprints is done in the terminal’s side and enrolled template is stored in the

terminal. In order to overcome security concerns, fingerprint WSoC and MoC

algorithms were presented.

T.P. Chen et al. presented a method which uses a smaller portion (clusters) of

minutiae instead of using all the minutiae in the template to reduce computational

load and increase the matching accuracy [32]. This method searches for the

corresponding cluster of minutiae in different locations between the query template

and enrolled template. To avoid false acceptance which is caused by the presence

of false minutiae inside the clusters, this method deploys mahalanobis distance to

measure the inter-class similarity and remove the incorrectly matched clusters. This

method uses the combination of matched minutiae in clusters and the geometrical

structure between clusters to calculate the overall matching score between the

enrolled template and the query template. The matcher computes the local similarity

score and the group similarity vector to find the matched clusters. This approach

sorts the minutiae according to ISO/IEC 24787 to increase searching speed for the

first cluster. This method uses a smaller portion of the fingerprint for matching to

reduce the computational load in the smart card. The method can also be

implemented in a lower cost smart card (8-bit smart card) and offers a good

recognition rate. However, accuracy of this method is mostly affected by minutiae

extractor (false minutiae).

Stefano et al. proposed an asymmetric neighbourhood minutiae-based fingerprint

MoC algorithm which makes use of the following local comparison features [52]:

 Euclidean distance and the ridge count between the reference minutia and its

neighbour.

28

 The difference angle between the reference minutia and the neighbour ridge

orientation angle.

 The angle between the segment D in figure 3.6 which is formed by the

reference point and the neighbourhood minutia and the reference minutia

ridge direction.

Figure 3.6 : Local comparison feature [52]

After making use of the above comparison features, the two neighbourhood minutiae

with the lowest similarity value are discarded and the rest of the remaining matching

neighbourhood minutiae are summed together. The summation of the minutiae is

used to decide whether two templates match by making use of the threshold when

computing the global score. During the verification, the algorithm exits the matching

process as soon as a very good average similarity value is found. The approach

offers the advantages of speed because of its asymmetric nature regarding

execution time. The disadvantage of this approach is that it performs lots of

computations to pair the minutiae.

Govan et al. also proposed an asymmetric neighbourhood minutiae-based fingerprint

MoC algorithm which is similar to Stefano et al. [52, 53]. This algorithm uses the

entire local comparison feature that is used by Stefano et al. excluding using the

ridge count between the reference minutia and its neighbour and the reference

minutia ridge direction. In order to eradicate the use of alignment that is

computationally intensive, the algorithm uses basic arithmetic functions [53]. The

algorithm deals well with displacement, rotation and deformation. In some instances

the algorithm encountered errors due to the partial overlap area between samples

arising from noise in the templates.

29

 Benhammadi et al. proposed a fingerprint matching algorithm which makes use of a

reference point/core to initiate the matching process and circular tessellate the

templates starting from the core [21]. The algorithm constructs a finger code from a

neighbourhood minutiae tessellation. The matcher tessellates the fingerprint into 32

sectors and 16 circular bands, using a core as a centre point. Once the circular

tessellation is generated, the matcher constructs a finger code out of the tessellation.

The circular tessellation consists of 512 bits (32 sectors *16 circular bands). Figure

3.7 illustrates how the finger code is obtained from the circular neighbourhood

minutiae tessellation.

Figure 3.7 : (a) Neighbourhood minutiae tessellation (b) Finger code

Figure 3.7 (a) illustrates the neighbourhood minutiae tessellation and figure 3.7 (b)

illustrates a finger code. The white cell in the finger code represents the presence of

minutiae and the black cell represents the absence of minutiae. Hamming distance is

used to measure the similarity between the finger codes. It is a metric used to denote

the difference between two binary strings of equal length. The proposed algorithm

offers the advantages of matching speed, simplicity, and good recognition rate. The

matching process relies on the minutiae neighbourhood near the singular reference

minutia (core). The disadvantage of this algorithm is that, it depends entirely on the

core minutia to compute the finger code. The core minutia is not present in every

fingerprint (arch fingerprint classification). The core is not always reliably located in

poor quality fingerprint images (such as arch fingerprint classifications), which can

lead to matching errors.

Cappelli et al. proposed a Minutiae Cylinder Code (MCC) for fingerprint matching

[54]. The local minutiae model is based on 3D data structure (cylinder) which is

30

enclosed inside a cuboid that is divided into cells. Each minutia is represented by its

location and its direction and the cylinders are bit oriented. The cylinders are divided

into six sectors during the verification process for the purpose of comparing the

query and the reference templates. The algorithm offers the advantages of speed,

dealing with noisy fingerprint regions, local distortion tolerance, and missing spurious

minutiae tolerance. The problem that can occur with MCC is that there are chances

that the nearest minutiae might be exchanged due to the absence or spurious

minutiae. The MCC approach makes use of the convex hull enlarged with the

addition of the three offset variances in order to select only the important portions of

the fingerprint. This approach defines the similarity between the two cylinders by

making use of the vector correlation measure. It is said that this algorithm can be

implemented inside smart cards and it can make use of XOR and the AND

operations to compare the cylinders [24].

Table 3.1 Comparison of fingerprint MoC and WSoC algorithms

MoC
algorithms

MoC Algorithms attributes
Database
used

Smart card
environment

Average
EER/ TAR

Advantages

Disadvantages

Fast MoC
techniques
using in-
matcher
with ISO
minutiae
template
[32]

Fingerprint
Verification
Competition
(FVC)
 FVC2000
DB1,BD2,
DB3, BD4
FVC2002
DB1,BD2,
DB3, BD4
FVC2004
DB1,BD2,
DB3, BD4
FVC2006
DB1,BD2,
DB3, BD4

8bit
Microcontrol
ler Unit
(MCU),6
kilobyte, 78
kilobyte
Electrically
Erasable
Programma
ble Read-
Only
Memory
(EEPROM)

<=5.1979
EER%

The method
used large data
(12 databases)
to test the
matching
accuracy of the
algorithm. Large
data allows the
researcher to
test how the
matcher
performs when
it encounters
different kinds of
fingerprint
matching
problems (
rotation,
translation,
partial prints
and
deformation)

The
performance of
the this
method is
affected by
false minutiae
especially in
low quality
images

31

ISO/IEC
standards
for on-card
biometric
compariso
n [33].

FVC2000
DB1, DB2
and DB3
FVC2002
DB1 and
DB2

8 bit java
smart card

4.3 EER%

The method
obtained a good
recognition rate
and the
matching
accuracy of this
method is
comparable to
the fingerprint
minutiae-based
matching
algorithm
running on the
PC

The method
computes an
off-card
template
alignment

Embedded
fingerprint
matching
on snart
card [21]

FVC2002
DB1-a and
DB2-a

64 kilobyte
EEPROM
and
1kilobyte
Random
Access
Memory
(RAM)

5.385
EER%

The method
offers the
advantages of
good
recognition rate,
simplicity, and
speed

The method
does precisely
compute the
core reference
minutia in poor
quality images

An
asymmetri
c
fingerprint
matching
algorithm
for java
card TM
[52]

FVC2002-a
FVC2002
DB2-b
FVC2002
DB1
International
DB
Hybrid DB

72
EEPROM
and 4
kilobyte
RAM

3.4 EER%

The method
obtained a good
recognition rate
and exits the
matching
process as soon
as the good
average
similarity score
is found

The method
requires lots of
computations
due to multiple
reference
minutiae in the
template

32

3.6 Summary

This chapter presented different approaches to fingerprint matching. Furthermore,

the shortcomings of the existing algorithms were highlighted. Most of the literature

reviewed for this study revealed that alignment techniques are not suitable for MoC

algorithms because they are computationally intensive and require a lot of memory.

The chapter also presented how other researchers filled the gaps in the existing

algorithms. The next chapter is going to present the methodology of this research,

which is derived from the work of F. Benhammadi and K. B. Bey [21]. F.

Benhammadi and K. B. Bey make use of finger codes to compare the fingerprints.

Finger codes (minutiae information) make use of binary representation, which is the

primary language for the computers, and a distance matrix which leads to matching

Fingerprint
pre-
alighment
for hybrid
MoC
systems
[50]

FVC2000
DB1,BD2,
and DB3
FVC2002
DB1,BD2,
and DB3
FVC2004
DB1,BD2,
and DB3

This method
does not
disclose the
smart card
environment

83 TAR%

The method can
still align the
query template
even if the core
reference point
is not found
without
sacrificing any
speed and
accuracy. This
method also
relieves the
burned of the
smart card in
aligning the
templates as
fingerprint
alignment is
time and
resource
consuming

The method is
less tolerant to
large amount
of distortion.
This method
does not
disclose the
smart card
environment.

An ultra-
low
fingerprint
matching
algorithm
and
implement
ation on a
32-bit
smart card
[45]

The
database is
not
disclosed

32 bit
processor
,64 kilobyte
Read Only
Memory
(ROM), 8
RAM, and
32 kilobyte
EEPROM

This
algorithm
did not
disclose
the
matching
accuracy

This method
offers the
advantage of
speed

This method
use an 32-bit
smart card
which is too
expensive for
the market

33

speedup and the usage of less memory in a constrained environment of a smart

card. The next chapter makes use of multiple reference minutiae to eliminate the use

of a core reference point. This is due to inaccuracy of the location of the core

reference point in noisy images and absence of a core in arch fingerprint

classification [21].

34

Chapter 4

4. Methodology

In the literature review, different techniques for fingerprint MoC algorithms have been

presented. The literature review revealed that the usage of finger codes requires less

processing than using the direct information of the minutia (minutia position (𝑥, 𝑦)

and minutia direction (θ)). This study uses finger codes to implement a proposed

fingerprint MoC algorithm. This chapter provides a detailed methodology that is used

in this study to achieve its aims and objectives. It includes research instruments and

the data evaluation method employed for accessing the accuracy of the proposed

fingerprint MoC algorithm.

4.1 Research design

In order to achieve all the objectives which were discussed in section 1.5 of Chapter

1, this research used a quantitative and experimental approach. Quantitative

research explains events by collecting analysed numerical data using mathematically

based methods [55]. Experimental studies take place in artificial settings, enabling

researchers to access the relationship between one variable to another [56]. The

experiments will be conducted using code implementation in MATLAB and the

fingerprints which are collected from a public database.

MATLAB offers the following advantages:

 it has very good documentation and it is continuously being improved [57].

 MATLAB is an interpreted programming language with various toolboxes

which allows the manipulation of complex problems [57].

 MATLAB is reliable and it is optimized to be fast when performing matrix

operations [58].

Disadvantage of MATLAB

 Execution of MATLAB programs is slow [59].

Experimental studies offer the following advantages:

 It has control over variables. Hence, it eliminates unwanted variables.

35

 Manipulate independent variables to simply determine the cause and effect of

the problem.

 Tests/Experiments can be repeated with modified algorithms until accurate

results are obtained.

However, the experimental studies have the disadvantage of producing the results

from the limited samples or variables that have been used. This is not always as

accurate as the real world applications.

A quantitative study has the advantage of dealing with large amounts of data

(samples), which can lead to higher probability of accurate experimental results. It

also provides exact, quantitative, numerical data [60].

This research design evaluates the proposed algorithm performance with regards to

how it handles the rotation, translation, distortion, deformation present in templates,

as well as missing and additional minutiae when two fingerprint images from the

same finger are compared. Furthermore, the research design involves the process of

collecting, analysing, interpreting and obtaining the matching accuracy of the

proposed algorithm. The experimental studies were conducted using the following

feature measures:

 MoC matching accuracy – how often does the algorithm correctly and

incorrectly compare the fingerprints. The algorithm used EER to evaluate or

measure the matching accuracy. In addition, the accuracy of the fingerprint

matching is often affected by rotation, translation, distortion and deformation

in fingerprints.

 Memory allocation – The memory usage of the proposed algorithm to

determine whether the proposed algorithm fit into the smart card.

 Time complexity – how long it takes for the algorithm to execute.

36

Figure 4.1 illustrates all the steps which are used in the proposed methodology.

.

Figure 4.1: Flow diagram of the proposed algorithm

4.2 Research instruments

This section explains all the steps in detail which are used in figure 4.1

4.2.1. Fingerprint scanning

Fingerprint scanning is the first step in Figure 4.1. It explains how the fingerprints

were scanned. The experiments were carried out using fingerprint images from the

FVC2002 database1-a [61]. FVC2002 is the second international fingerprint

verification competition which is designed for fingerprint verification algorithms. It

constitutes four fingerprint databases which are collected by using three

commercially available scanners. The fourth database was synthetically generated

by using SFinGE software. All these databases were used to collect fingerprints.

37

Table 4.1 illustrates the types of scanners, technology and resolution which were

used to collect the four databases (DB).

Table 4-1: Scanners, image size and technologies used for the collection of

FVC2002 databases [61]

Databases Technology Scanner Image size - Resolution

Database 1 Optical Identix touch view 388*374-500dpi

Database 2 Optical Biometrika 296*560-259dpi

Database 3 Capacitive Precise biometrics 100SC 300*300-500dpi

Database 4 Synthetic SFinGE v2.51 288*384-500dpi

Database-1a from FVC2002 contains a total of 800 fingerprints of 100 different

fingers, with each finger containing eight impressions of the same finger.

The fingerprints were collected from twenty volunteers. The volunteers were

randomly divided into three groups (30 volunteers each). Each group was collected

using a different fingerprint scanner from each DB. A total of four fingers which

include two index fingers and two middle fingers from both hands were collected in

each DB to maximize the difference in fingerprint displacement. No efforts were

made to control image quality and the sensor platens were not systematically

cleaned. The fingerprints were captured from the volunteer in three distinct sections.

Four impressions were captured from four fingers of each volunteer in each session.

Throughout the second session were requested to exaggerate displacement

(impression 1 and 2) and rotation (impression 3 and 4) of the finger, not to exceed 35

degrees. Throughout the third session, fingers were alternatively dried (impression 1

and 2) and moistened (impression 3 and 4). The fingerprints in each DB were sorted

according to the quality index [61] .

4.2.2. Minutiae extraction

The minutiae were extracted using Minutiae Cylinder Code (MCC) feature extraction.

This method follows the ridge lines on the grey-scale image, by taking the direction

of the fingerprint. The method superimposes a square meshed grid on a grey-scale

image to determine a set of starting points. These ridges are kept until they terminate

38

(a ridge termination is found) or until the ridge divides to form two ridges (ridge

bifurcation) [62].

Figure 4.2 below illustrates minutiae points (ridge bifurcation and ridge ending).

Figure 4.2 : Ridge ending (red) and ridge bifurcation (blue) [63]

4.2.3. Minutiae neighbourhood circular tessellation

Different minutiae neighbourhood circular tessellations were applied to investigate

which circular tessellation offers the lowest EER. This was done by using different

number of sectors and ridge counts in circular tessellations. The area of each cell in

a circular tessellation is the same. The area of each cell in the circular tessellation

was obtained using equation 4.1:

 𝑨 =
𝝅𝒓𝟐

𝒔∗𝑹𝒄
 (4.1)

where A, r, s, and Rc represent the area of a sector, radius of a circular tessellation,

number of sectors, and the number of ridge counts in a circular tessellation

respectively. Ridge counts are circular bands in a circular tessellation. In order to

evaluate which circular tessellation performs better, EER was calculated using 25

fingers, each finger has 8 impressions. This implies that 200 fingerprints were used

to calculate the value of EER. The radius of a circular tessellation is 80 pixels. This is

because when a radius of a circular tessellation becomes bigger than 80 pixels it get

affected by distortion and when a circular tessellation is smaller than 80 pixels it can

only include fewer minutiae which are not distinctive enough to represent

39

neighbourhood minutiae [64]. Table 4.2 illustrates different circular tessellations

using different numbers of sectors and circular tessellation.

Table 4.1 : Different circular tessellations using different numbers of sectors and

circular tessellation

Number of

sectors

Number of

ridge counts

Area of each cell in a

circular tessellation

EER (%)

8 6 628.32 13.33

6 8 628.32 9.89

6 4 837.76 7.21

4 6 837.76 9.61

8 5 502.66 4.21

5 8 502.66 7.45

6 5 670.208 3.23

The proposed model used a circular tessellation of six equally sized sectors and five

ridge counts because it obtained a lower EER when compared to other circular

tessellations. This tessellation obtained an EER of 3.23 using 6 sectors and 5 ridge

counts and when the area of each cell in a circular tessellation is the same and 3.02

when the area of the each cell in a circular tessellation is not the same. The area of

each cell in the circular tessellation of the proposed algorithm is not the same.

The proposed fingerprint MoC is based on minutia-based algorithm and it does not

use the ridge patterns to compare the fingerprints. It only uses the minutiae location

and direction of the fingerprint. The proposed algorithm uses the following steps to

compute a finger code:

 Find the minutiae which can be used as a reference point in a template. This

is illustrated in figure 4.6.

 Circularly tessellate each reference minutia.

 Convert each circular tessellation into binary codes in a template. Each binary

string/row in a template is a representation of a reference minutia. This implies

that the number rows in the binary code are equivalent to the number of

reference minutiae.

40

 The binary codes are converted into binary maps to construct a finger code.

The proposed methodology makes use of circular tessellation which is constructed

from six equally spaced sectors with an angle of sixty degrees in each sector. The

tessellation process starts from the minutia orientation while going clockwise to other

sectors. The reference minutia is located at the centre of the circular tessellation.

The first sector starts at the orientation/direction of the minutia for the purpose of

making the algorithm rotation invariant. Figure 4.3 below illustrates 6 sectors (S1,

S2, S3, S4, S5 and S6) which are used to construct a circular tessellation, minutia

orientation and the reference minutia point.

Figure 4.3: Six sectors (S1to S6) with the reference minutia point (red) and minutia

orientation with minutiae points (blue)

The circular tessellation has the radius of 80 pixels and is also constructed from five

ridge counts. Each minutia point consists of its position (𝑥, 𝑦) and its minutia

direction (θ). The first ridge (Rc1) count has a distance of 26 pixels from the centre,

the second, third, and the fourth ridge count (Rc2, Rc3, and Rc4) have the ridge

count spacing of 14.8 and the fifth ridge count (Rc5) has the ridge count spacing of

9.6 pixels. Each circular tessellation has 30 cells, which is made out of 6 sectors and

5 ridge counts (5*6=30). Figure 4.4 (a) illustrates the 5 ridge counts, reference

minutia point and the minutia orientation (green).

41

Figure 4.4 (b) illustrates the cell numbers of the neighbourhood minutia tessellation.

Figure 4.4 : (a) 5 ridge counts and reference minutia point and the minutia orientation

(b) cell numbers of the circular tessellation

Figure 4.4 (b) illustrated above portrays a neighbourhood minutiae tessellation of the

proposed algorithm. The proposed algorithm uses the radius of 80 pixels because it

can cover a reasonable number of minutiae. It can be used to compare the minutiae

in the query template and the reference template, as shown above in Figure 4.4 (b).

The ridge counts spacing were chosen not to be equally spaced because in cases

where ridge counts are equally spaced, the area of a cells of the first ridge count

(Rc1) becomes smaller than the area of the cells of other ridge counts (Rc2, Rc3,

Rc4 and Rc5). Figure 4.5 illustrates different neighbourhood circular structures with

different numbers of sectors and ridge counts.

Figure 4.5 : (a) A circular neighbourhood minutiae tessellation with six sectors and

five ridge counts (b) a circular neighbourhood minutiae tessellation with four sectors

and four ridge counts

42

The reason for choosing the combination of six sectors and five ridge counts to

generate the neighbourhood circular tessellation is because of the following reasons:

 The tessellation minutiae structure (Figure 4.5 (a)) reduces the possibility of

obtaining many minutiae in the same cell. This implies that when Figure 4.5

(a) is compared to figure 4.5 (b), it has three cells which have more than one

minutia inside the cell (S1 of Rc3 (blue), S2 of Rc4 (black), S6 of Rc5 (green)

in Figure 4.5 (a))

 Using a smaller number of ridge counts and sectors produces a

neighbourhood circular tessellation that is not distinctive enough to be used

for comparison. This implies that figure 4.5 (a) when compared to Figure 4.5

(b) has four cells, which has more than one minutia in the same cell (S1 of

Rc3 (green), S1 of Rc4 (blue), S4 of Rc3 (purple) and S4 of Rc4 (black) as in

Figure 4.5 (b))

The proposed method is based on neighbourhood minutiae localization binary

codes. It checks whether there is a minutia inside each cell in a neighbourhood

minutiae tessellation. The presence of the minutia inside a cell is represented by one

and the absence of the minutia point inside the cell is represented by zero.

The following array represention is derived from Figure 4.4 (b). The first row is

derived from the first sector (s1).

 [S1 [1 0 1 0 0

 S2 0 1 1 1 1

 Array S = S3 = 0 0 0 0 0 (4.2)

 S4 1 0 0 0 0

 S5 0 0 0 1 0

 S6] 0 0 1 1 1]

The refence minutia point of Figure 4.4 (b) is represented by equation 4.2 which is

the combination of all the rows in an Array S.

Reference minutia =[1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1](4.3)

43

Every minutia which has more than five neighborhood minutiae inside the circular

tesselation is used as reference minutia in a template. The reason for choosing this

neighborhood minutiae is to avoid obtaining binary strings, which are not distinctive

enough to be used for matching. Figure 4.6 illustrates a neighborhood minutiae

tessellation with more than five minutiae (red) and a neighborhood minutiae

tessellation with less than five minutiae.

Figure 4.6: (a) A reference minutia point (b) a non-reference minutia point

In the cases when a minutia is in between the ridge counts, it is moved to the first

ridge count between the two ridge counts. For example, consider sector 5 in Figure

4.5 (a), the minutia in this case lies between the fourth ridge count and fifth ridge

count. This implies that the minutiae will be moved to the S5 in the fourth ridge

count.

4.2.4. Finger code construction

A finger code is constructed from a neighbourhood minutiae tessellation. Each

reference minutia is represented by binary codes. Figure 4.7 below illustrates the

process of constructing the bit maps of a minutia according to the proposed

algorithm. Bit maps are cells; each cell contains a colour value. The bit value one is

represented by white and the bit value zero is represented by black.

44

Figure 4.7 illustrates the process of constructing a bit map.

Figure 4.7 : The process of finger code construction

A minutia is represented by the concatenation of all the binary rows (sectors) in

figure 4.7(b) which results in the following scalar array.

Minutiae= [1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1] (4.4)

Figure 4.8 illustrates the bit maps of the reference minutiae in figure 4.7.

Figure 4.8 : Bit maps of neighbourhood minutiae circular tessellation in Figure 4.7

A finger code is composed of all the bit maps that are constructed from all the

reference minutiae in the template. The bit maps above in Figure 4.8 represent a

single reference minutia. The number of rows in a finger code is not always the

same. They are equivalent to the number of the reference minutiae present in a

template. The number of columns in the finger code is always 30 which is the

number of the cells in a neighbourhood minutiae tessellation.

45

 Figure 4.9 illustrates a finger code with 16 rows and 30 columns.

Figure 4.9 : Finger code which is made out of 16 reference minutiae points

(16 rows)

4.2.5. Finger code comparison

The proposed algorithm uses Hamming distance to compare the finger codes. Each

row in a reference finger code is compared to every row in the query finger code.

The predefined matching score for pairing the minutiae is 6. This means that, if a

matching score between the compared minutiae has a Hamming distance of 6 or

less than less 6, they match. Otherwise they do not match. The predefined matching

score of 6 is chosen because if a Hamming distance of less than 6 is chosen the

matcher tends to be too strict and rejects the genuine finger code. When a Hamming

distance of greater than 6 is chosen the matcher tends to be too liberal and accept

the imposter’s finger code. Let 𝑅 = {𝑅𝑖, 𝑖 = 1 … 𝑡} and 𝑄 = {𝑄𝑗, 𝑗 = 1 … 𝑝} be reference

finger code and the query finger code respectively. Where 𝑡 the number of rows in

the reference finger code and 𝑝 is the number of rows in the query finger code.

Hamming distance 𝐻𝐷𝑖𝑗 between 𝑅 and 𝑄 is calculated using equation 4.5.

 𝑯𝑫𝒊𝒋 𝑹𝒊 𝑿𝒐𝒓 𝑸𝒊 (4.5)

Boolean exclusive-OR (Xor) measures the number of dissimilarity between the

binary code 𝑄𝑗 and 𝑅𝑖.

46

Each row from a reference finger code is compared with every binary row from the

query template.

Figure 4.10 illustrates the reference minutiae comparisons using finger codes rows.

Figure 4.10 : Reference minutiae comparisons using finger codes rows

In figure 4.10 the first row of the reference finger code is compared to all the rows of

query finger code to obtain the matching score. Each row in a finger code represents

a reference minutia point. This process of comparing the finger code rows is done to

the second row of the query finger code up until the last row of the query finger code.

4.2.6. Matching score and decision making

The proposed algorithm uses the following steps to calculate the matching score:

 Calculate the number of matched minutiae.

 Calculate the number of the reference minutiae in the reference template and

in the query template using equation 4.5 and equation 4.6.

 𝐑𝐅𝐢 = 𝐉, 𝐉 = 𝟏, … … 𝐧 (4.5)

 𝐑𝐅𝐣 = 𝐊, 𝐊 = 𝟏, … … 𝐦 (4.6)

Where 𝐽=number of rows in a reference finger code and 𝐾= number of rows in

a query finger code. 𝑅𝐹𝑖 is the number of reference minutiae in a reference

finger code and 𝑅𝐹𝑗 is the number of reference minutiae in a query finger code.

 Find the minimum number of the reference minutiae between the reference

finger code and the query finger code using the following condition.

𝑖𝑓 𝑅𝐹𝑖<𝑅𝐹𝑗

47

 𝑀𝑁𝑅𝐹 = 𝑅𝐹𝑖 else

𝑀𝑁𝑅𝐹= 𝑅𝐹𝑗

End;

Where 𝑀𝑁𝑅𝐹 is the minimum number of the reference minutiae between the

reference finger code and the query finger code.

 Divide the number of matched minutiae by the minimum number of minutiae

that is obtained in the previous step in order to get the total matching score

using the equation 4.6.

 𝑻𝒐𝒕𝒂𝒍 𝒎𝒂𝒕𝒄𝒉𝒊𝒏𝒈 𝒔𝒄𝒐𝒓𝒆
𝑴𝑴

𝑴𝑵𝑹𝑭
 (4.7)

where 𝑀𝑀 represent matched minutiae. All the matching score values that are

obtained between the reference minutiae in and the query template are stored in an

array. The algorithm selects all the scores that are under the threshold in an array to

pair the minutiae. A threshold is a value that indicates that the minutiae which are

compared either match or do not match. The reference template and the query

template do not always have the same number of minutiae due to the inaccuracy of

the minutiae extractor. The minimum number of minutiae between the reference

template and the query template divides the number of matched minutiae. This is

because it is the maximum number of minutiae which can match. For example, if ten

minutiae is matched to fifteen minutiae. The maximum of the minutiae that can

pair/match is ten minutiae.

The proposed algorithm was derived from the work of F. Benhammadi and K. B.

Bey. This relies on core reference minutia to initiate the circular tessellation. It is

difficult to precisely locate the core and even when there is a small amount of

distortion in the core reference minutia the overall performance of an algorithm is

affected. The work of F. Benhammadi and K. B. Bey deploys a circular tessellation of

32 sectors and 16 ridge counts. Each finger code is represented by 512 bits (16*32).

The proposed algorithm uses a circular tessellation of 6 sectors and 5 ridge counts in

each reference minutia. The proposed algorithm uses a smaller number of sectors

and ridge counts compare to the work of F. Benhammadi and K. B. Bey because it

uses multiple reference minutiae. Each reference minutiae is represented by 30 bits

in a finger code.

48

4.3 Summary

This chapter presented the methodology that was used to match the finger codes

and the research design. It also described how the finger codes were circularly

tessellated and how the minutiae information was presented in the finger code. The

next chapter is going to present how the methodology was implemented.

49

Chapter 5

5. Implementations

This chapter is going to discuss the implementation environment of the proposed

MoC algorithm for this dissertation. It presents the complete pseudo code for

constructing a finger code and matching the finger codes, neighbourhood minutiae

localization binary codes structure and time complexity of the proposed MoC

algorithm.

5.1. Implementation Environment

The MATLAB code for the proposed algorithm was implemented under the following

environment:

 Installed memory (RAM) of 8GB

 Windows 7 Enterprise 64-bit Operating System

5.2. Proposed algorithm

The proposed MoC algorithm creates a function to construct a finger code and a

function to match the finger codes.

5.2.1. Pseudo code for constructing a finger code

Table 5.1: Table for constructing a finger code.

Constructing a finger code

Input Reference fingerprint and query

fingerprint.

Output

1. Feature vectors (minutiae points).

2. Circular minutiae tessellation for

each reference minutia point.

3. Binary string for each reference

minutiae point.

4. Finger code

50

The proposed algorithm will read the fingerprint from FVC2002/DB1-a database and

will extract the feature vectors from the fingerprint. Reference minutiae are used to

generate circular minutiae tessellation. The binary output that is generated from each

minutiae tessellation is deployed to construct a finger code.

5.2.2. Neighbourhood minutia localization binary codes

The proposed algorithm initiates the process of constructing a finger code by

constructing an array A=[𝑠 ∗ 𝑅𝑐], where 𝑠 is the number of reference minutiae in the

finger code and 𝑅𝑐 is the number of cells in each circular minutia tessellation

containing only zero elements. It uses every neighbourhood minutiae circular

tessellation for each reference minutia point to locate bit value one (1) in the finger

code otherwise leave the bit value as zero (0). Table 5.2 illustrates the starting point

and the ending point of each sector in a circular minutia tessellation.

Table 5.2 : Starting and end point for each sector

Sector number The stating point of the

sectors in degrees

The ending point of the

sectors in degrees

First sector 0 60

Second sector 60 120

Third sector 120 180

Fourth sector 180 240

Fifth sector 240 300

Sixth sector 300 360

The starting point of the first sector is aligned to each reference minutia orientation of

its circular tessellation. This is done this way to make the proposed algorithm rotation

invariant. The algorithm identifies sector number, where the neighbourhood minutiae

are located by finding the angle between that neighbourhood minutia and the

reference minutia point.

51

Figure 5.1 illustrates the angle between that neighbourhood minutia and the

reference minutia point.

Figure 0.1: illustration of the angle between that neighbourhood minutia and the

reference minutia point (green)

For example the angle between the reference minutia and the neighbourhood

minutia in cell number 10 is 29 degrees, which means the neighbourhood minutia is

in sector one. The proposed algorithm finds the angle between each neighbourhood

minutia and the reference minutia point to find in which sectors the minutiae are

located. The proposed algorithm identifies the distance between the reference

minutia point and the neighbourhood minutia in order to find the ridge count number.

Table 5.3 illustrates the starting and the ending point of each ridge count in each

circular minutiae tessellation.

Table 5.3 : The starting and the end point of each ridge count in each circular

minutiae tessellation.

Ridge count

number

The stating point of the

ridge count in pixels

The ending point of the

ridge count in pixels

First ridge count 0 26

Second ridge count 26 40.8

Third ridge count 40.8 55.6

Fourth ridge count 55.6 70.4

Fifth ridge count 70.4 80

When the algorithm detects a minutia inside the sector, it calculates the distance of

the reference minutia point to that neighbourhood minutia point in order to obtain the

52

ridge count number. Whenever the sector number and the ridge count number of the

neighbourhood minutia are found, the algorithm places one (1) in a finger code. The

algorithm places zero (0) in the cell numbers where the minutiae are not found.

5.2.3. Matching algorithm between two finger codes

After circular tessellating a neighbourhood minutiae tessellation, the finger code is

constructed from the circular tessellation. Then the reference finger code is

compared to a query finger code.

Table 5.4 presented below illustrates the matching algorithm conceptualized for

matching finger codes.

Table 5.4 : Finger code comparison

Input-

process-

output

model

Finger code comparison

Input Reference finger code and query finger code

Processing

1. Take the minutia 𝑖 (binary string) from the reference

finger code.

where 𝑖=1,2,3,… and

𝑚1,𝑚2,𝑚3,𝑚𝑖 is reference minutiae numbers for the

reference finger code.

2. Search for the pairing minutia 𝑗 in the query finger code

for 𝑚𝑖

where 𝑗=1,2,3,…and

𝑚1,𝑚2,𝑚3,𝑚𝑗 is reference minutiae numbers for the query

finger code.

3. If a pairing reference minutia is found:

Remove the reference minutia to avoid matching the

same minutiae more than once.

4. Calculate all the paired minutiae from the finger codes.

5. Calculate the percentage match.

The Hamming distance algorithm starts calculating the XOR value between the

binary string 𝑚𝑖 to the binary string 𝑚𝑗 using equation in 4.5.

53

The algorithm finds the Hamming between two binary strings. This algorithm finds

the Hamming distance between the first row of each binary string 𝑖 in the reference

template and every binary string 𝑗 in the query template. When all the Hamming

distances are obtained, the algorithm creates an array of all the Hamming distances

which are obtained sequentially. For example the Hamming distance values between

the reference minutia in the reference template and each reference minutia in the

query template which has 25 reference minutiae has an array of [1, 𝑚𝑗].

The algorithm selects the minimum Hamming distance from all the Hamming

distances that are obtained. In the proposed algorithm, the first reference minutia in

reference template matches with the sixth reference minutia in the query template.

The maximum Hamming distance of six or less than six indicates a match. In this

algorithm every binary string indicates a minutia. As soon as a match is found the

corresponding binary string is cancelled so that it does not have to be matched with

another minutia again.

5.3. Time complexity

Time complexity is a way to formally measure the amount of time used to execute

the program. Big O Notation is going to be used to evaluate the time complexity of

the proposed algorithm and it is a way of measuring how the program/algorithm

scales as the amount of time increases. It characterizes function according to the

growth rates.

 O - Represents the function/algorithm that is under evaluation.

 N - Represents the number of elements that are present in the function.

Time complexity is mainly affected by the following list of items:

 Operations (+,/,-,*)

 Comparisons (<,>,==)

 Looping (such as for loop)

 Function calls

 Variables

54

5.3.1. Big O notation for constructing finger codes

In the proposed algorithm the extraction of feature vectors is described by the

function 𝑓(𝑛) =1. Circularly tessellating each reference minutia is described by the

function of 𝑓(𝑛)= 𝑛. Circular tessellating each feature vector into sectors is described

by the function of 𝑓(𝑛)= 𝑛. Finding all the neighbourhood angles around each

reference minutia, and creating a binary string for each reference minutia point is

described by the function 𝑓(𝑛)= 𝑛. The entire function for constructing a finger code

is described by the function 𝑓(𝑛)= 𝑛. Thus the complexity time of the algorithm is

linear. Therefore it gives an indication that the proposed algorithm will be fast and

hence makes it suitable to be used in MoC. The algorithm for constructing the finger

code is linear because it uses the following steps:

 The proposed algorithm circular tessellate each reference minutia into sectors

by calculating the angle of each sector using equation 5.1, calculating the

starting point of each sector using equation 5.2, calculating the ending point of

each sector using equation 5.3.

𝑨𝒏𝒈𝒍𝒆 𝒔𝒆𝒄𝒕𝒐𝒓 =
𝝅

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒆𝒄𝒕𝒐𝒓𝒔
 (0.1)

𝒔𝒕𝒂𝒓𝒕 𝒔𝒆𝒄𝒕𝒐𝒓 𝒊𝒏 𝒔𝒏 = (
𝝅

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒆𝒄𝒕𝒐𝒓𝒔
∗ 𝒔𝒏) − 𝟔𝟎 (0.2)

Where 𝑠𝑛 is sector number

𝑬𝒏𝒅 𝒔𝒆𝒄𝒕𝒐𝒓 𝒊𝒏 𝒔𝒏 = (
𝝅

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒆𝒄𝒕𝒐𝒓𝒔
∗ 𝒔𝒏) (0.3)

𝑠𝑛 represents a sector number where 𝑛 = 1,2,3,4,5,6 and number of sectors is 6.

The proposed algorithm uses a constant time complexity to tessellate and find the

angle of each sector, a starting point, and the ending point for each sector.

55

The proposed algorithm uses code in Figure 5.2 to find the starting point, and the

ending point for each sector.

Figure 0.2 : Source code for obtaining the starting and the ending point of each

sector

 The proposed algorithm circularly tessellates each reference minutia into ridge

counts by inputting the radius of each ridge count using the following code.

Figure 0.3 : Radius of each ridge count in a circular tessellation

The time complexity of this algorithm is constant.

 The proposed algorithm uses the following code to calculate Euclidean

distance and the angle between the reference minutiae and their

neighbourhood minutiae.

56

Figure 4.5 illustrates a code for generating the finger code

Figure 0.4: source code for calculating Euclidean distance and the angle

between the reference minutiae and their neighbourhood minutiae.

The time complexity for calculating the Euclidean distance and the angle between

the reference minutiae and their neighbourhood minutiae is linear.

The proposed algorithm converts the circular tessellation into binary codes. This is

done by searching for minutiae in sectors and ridge counts. The proposed algorithm

uses equation 5.4 to check if the minutia is inside the circular tessellation.

𝒙𝟐+𝒚𝟐 =<𝟖𝟎 (0.4)

If the Equation 5.4 is satisfied, this implies that the minutia is inside the circular

tessellation. Otherwise the minutia is out of the circular tessellation. The proposed

algorithm uses the code in figure 5.5 to check in which cell the minutia is located in a

circular tessellation.

57

Figure 5.5 illustrates a code which checks in which cell the minutiae is located

Figure 0.5: Source code for finding in which cell the minutia is located in a circular

tessellation.

5.3.2. Big O notation for matching finger codes

Loading the finger codes in the matching algorithm is described by the function

𝑓(𝑛)=1. Searching for the pairing minutia is described as a function of 𝑓(𝑛) = 𝑛.

Calculating all the paired minutiae and decision-making uses 𝑓(𝑛) =1. The entire

complexity time of finger codes matching program is described by 𝑓(𝑛) = 𝑛. This

indicates that the functions for matching the finger codes is also fast and concludes

that the time complexity proposed MoC algorithm is linear.

In order to make the matching algorithm linear the proposed algorithm avoids making

the proposed algorithm quadratic by finding the maximum number of rows which can

be present in a finger code (𝐹𝑐𝑜𝑑𝑒𝑀𝑎𝑥𝑟𝑜𝑤𝑠). The proposed algorithm extends a

reference finger code with rows of zeros to add up the rows in the finger code to the

maximum number which can be found in a finger code. This is because the matcher

uses the single loop to loop through the rows in the query finger code and the

matcher does not use loop to loop through rows in the reference finger code to avoid

a nested loop. Hence the matcher extends the reference finger code with rows of

zeros to add up the rows in the finger code to the maximum number which can be

found in a finger code.

58

The proposed algorithm extends the reference finger code to make all the rows in a

finger code add up to 𝐹𝑐𝑜𝑑𝑒𝑀𝑎𝑥𝑟𝑜𝑤𝑠. The proposed algorithm declares each row in a

finger code using the following code:

Figure 0.6: Source code for declaring each row in a finger code

The time complexity of the source code for declaring each row in a finger code is

linear.

The proposed algorithm used a reference finger code with 20 rows. The last 10 rows

are rows with binary strings of zeros.

The proposed algorithm uses the for loop to match the reference finger codes and

the query finger code.

The proposed algorithm uses the following code to compare the reference finger

code and each query finger code.

Figure 0.7: The source code to compare the reference finger code and each query

finger code

After obtaining the Hamming distances, the proposed algorithm eliminates all the

Hamming distance which was obtained using rows with binary strings of zeros in the

reference template and stores all the Hamming distance in an array. The proposed

59

algorithm goes through the array to select all the Hamming distances which are less

than 6. Immediately the matcher finds a Hamming distance that is less than 6, it

cancels the entire row and the column from where that Hamming distance was

found. This is done to avoid pairing the same minutia more than once. The proposed

algorithm starts by finding the Hamming distance of zero first between the reference

minutiae. Then find the Hamming distance of 0 up until 6 between the reference

minutiae using the following code.

Figure 0.8: Source code for finding index of where the Hamming distance is under

the threshold was found

The proposed algorithm uses the same code for the Hamming distance from 1 up

until 6. Then the proposed algorithm adds all the matched minutiae and divides it by

the minimum number of minutiae between the reference template and the query

template to get a matching score.

5.3.3. Analysis of best and worst scenario

The time taken to compare a fingerprint depends on the number of minutiae present

in the fingerprint. The algorithm will experience a worst case scenario when it is

matching the finger codes with more minutiae and best case scenario with when

fewer minutiae are compared.

5.4. Summary

This chapter presented the implementation environment of the proposed algorithm

and the pseudo code that was used to construct and to match the finger codes. It

also describes how the proposed algorithm uses the circular minutiae tessellation to

identify binary structure in the finger code and calculate the time complexity of the

proposed algorithm using the Big O notation. The following chapter is going to

describe how the proposed algorithm performs in various challenges of fingerprint

60

matching. It will also describe the verification and validation of the proposed

algorithm.

61

Chapter 6

6. Verifications and validations

The purpose of this research was to develop an accurate fingerprint MoC algorithm

which is fast. This chapter portrays how the algorithm deals with challenges found in

fingerprint matching algorithms (Rotation, translation and distortion, as well as false

and missing minutiae in the template). The chapter also verifies and validates the

implementation of the proposed fingerprint MoC algorithm. This chapter will also give

the overall matching accuracy of the proposed algorithm.

6.1. Accuracy evaluation and minutiae pairing

The accuracy of a matcher can be affected by the following common errors:

 Failure to correctly pair the corresponding minutiae between the query

template and the reference template which leads to false non-match errors.

This is because of the inconsistencies and variability in the same finger which

is captured in different instances.

 Incorrectly pairing minutiae from different fingers which lead to false match

errors.

False non-match errors are caused by deformation of fingerprints during fingerprint

acquisition which causes the fingerprint to be inconsistent in all instances. False

match errors are caused by similar features which are obtained between different

fingers and false minutiae. The proposed algorithm used the threshold of 6 to pair

the minutiae to compensate for fingerprint challenges which are found in fingerprint

verification systems. This implies that if the Hamming distance between the

reference minutiae and query minutia is 6 or less, the minutiae will pair, otherwise

they do not pair. Challenges found in fingerprint matching involve rotation, translation

and distortion, as well as false and missing minutiae in the template.

6.1.1 Translation between minutiae

The proposed algorithm is translation invariant because even if the location and the

orientation of the minutiae change, the reference minutia will still have the same

neighbourhood minutia structure. The proposed algorithm is proved to be translation

62

invariant based on the experimental results. Figure 6.1 illustrates how the algorithm

performs when there is a translation difference between different impressions of the

same finger during minutiae paring.

Figure 0.1: (a) Reference minutia (red) which is located at point (157,198,122.34°)

(b) Reference minutia (red) which is located at point (208,244,122.34°)

The reference minutia in Figure 6.1 (a) is located at point (157,198,122.34°) and the

reference minutia in Figure 6.1 (b) is located at point (208,244,122.34°). The angle of

the two minutiae is the same from the minutiae file. The first sector starts from the

minutia orientation in the circular minutiae tessellation (green). The translation

difference between the two circular minutiae is (51, 46.0°). This algorithm is

translation invariant because it uses multiple reference minutiae and each reference

minutia is surrounded by the same minutiae neighbours with the same Euclidean

distances between minutiae neighbours irrespective of whether the reference minutia

is translated. The Euclidean distance between the neighbours can only vary when

the fingerprints are distorted. Hence the translation of the minutia does not affect the

accuracy of the matcher. However, distortion in fingerprints affects the matching

accuracy of the proposed algorithm. The reference template and the query template

from Figure 6.1 are two impressions of the same finger. The Hamming distance

between reference minutia in Figure 6.1(a) and the reference minutia in Figure 6.1(b)

is two. This Hamming distance value indicates that the two reference minutiae

63

perfectly match. The Hamming distance value is caused by deformation (distortion).

In addition, the translation of the templates does not affect the matching accuracy.

6.1.2. Partial prints/incomplete prints

Matching partial prints is a challenge especially when there is a small overlap

between the two templates.

Figure 6.2 illustrates the same reference minutia from different impressions of the

same fingerprint with different number of neighbourhood minutiae.

Figure 0.2: Query template with partial prints

In Figure 6.2, the reference template does not produce the same neighbourhood

minutiae tessellation when comparing to the query template. This is due to partial

prints found in the query template. The Hamming distance between the two

templates is 5, which indicates a match between the reference minutiae. The

Hamming distance between the two reference minutiae is caused by the following

reasons:

 S1 and S2 in the query template do not have all the neighbourhood minutiae

that are found in the reference template.

64

 S4 in the reference template does not have a minutia which is present in the

query template. This is as a result of the ridges that are not captured by the

sensor during the enrolment phase.

In addition, all the minutiae that appear in the query template do not appear in

reference template and vice-versa. The reference minutiae are correctly paired

because the majority of the minutiae that appear in reference template are also in

the query template. The proposed algorithm can only tolerate partial prints to a

certain degree. It fails to pair the minutiae when there is a small overlap between the

neighbourhood minutiae circular tessellation.

6.1.3. Distortion

Distortion is the change in the impression of the template which makes the template

appears different. The proposed algorithm used more than one reference point to

cater for distortion. In the algorithm, the effect of distortion in the acquired template

(query template) results in the minutiae being located in a different cell number as

compared to the reference template in the generated neighbourhood minutiae

tessellation. This may result in failure to pair with the corresponding minutiae, which

leads to false non-match errors.

Figure 6.3 illustrates two different impressions of the same finger displaying the

effect of distortion.

Figure 0.3: Different impressions of the same finger with the effect on distortion in

the query template.

65

In Figure 6.3, the query template has randomly disturbed minutiae location and

minutiae orientation due to the effect of distortion. In this particular case, the

reference template is wider than the query template. This introduces Euclidean

distance change between minutiae because of distortion.

Figure 6.4 illustrates circular tessellation of the same reference minutia using

different impressions of the same finger.

Figure 0.4: Circular tessellation of the same reference minutia in different

impressions of the same finger.

The Hamming distance between the circular minutiae tessellation in figure 6.4 (a)

and in figure 6.4 is 5. These two circular tessellations from figure 6.4 used the same

reference minutia from different impressions of the same finger to generate circular

tessellations. A Hamming distance of 5 indicates that the reference minutia in the

query template pairs with reference minutia in the reference template. This is

because the proposed algorithm uses the threshold of hamming distance of 6 to pair

the minutiae. This Hamming distance value is obtained due to the effect of distortion.

The proposed algorithm can cater for distortion up to a certain degree. It fails to pair

minutiae for templates with large amounts of distortion.

6.1.4. Rotation, missing and false minutiae

Comparing different impressions of the same finger with different rotation angles

significantly affects the matching accuracy. In order to avoid this, the proposed

66

algorithm initiates the neighbourhood minutiae tessellation at the orientation of the

reference minutia. This means that the first sector of the circular tessellation starts at

the orientation of the reference minutia. Hence the proposed algorithm is rotation

invariant.

 Figure 6.5 illustrates two impressions of the same finger with different rotation angle.

Figure 0.5 : Two impressions of the same finger with rotation difference of 25.53

degrees

Figure 6.6 illustrate circular tessellation of the same reference minutia using the

same finger of different impressions.

Figure 0.6 : Circular minutiae tessellations of the same reference point using the

templates in Figure 6-5

67

In figure 6.6, the Hamming distance between the reference minutiae in the reference

template and the query template is 4. This indicates that the reference minutia from

the query template pairs with the reference minutia from the reference template. This

Hamming distance value between the two reference minutiae is present due to the

following reasons:

 Minutiae extractor failed to extract the ridge ending in S1 of Rc5 in the

reference template.

 Minutiae extractor failed to extract the core reference point in S4 of Rc1 in the

query template.

 Minutiae extractor failed to extract the ridge bifurcation in S4 of Rc2 in the

reference template.

 The ridge line which creates ridge ending (minutia 8) in the query template

does not exist in the reference template.

Figure 0.7 : Two impressions of the same finger with different rotation difference of

37 degrees

68

Figure 6.8 illustrate circular tessellation of the same reference minutia using the

same finger of different impressions.

Figure 0.8 : Circular minutiae tessellations of the same reference point using the

templates in figure 6.7

In Figure 6.8, the two circular minutiae tessellation of the reference minutiae from the

two templates indicate that the reference minutiae correspond with a Hamming

distance of 4. This Hamming distance value is present due to the following reasons:

 False minutia point is extracted in S1 of Rc4 in the query template.

 Distortion- the ridge bifurcation in S6 of Rc5 in the query template is outside

the circular minutiae tessellation in the reference template.

 The distances between the neighbourhood minutiae are different due to

distortion.

This concludes that minutiae extractor errors (missing and false minutiae) and

distortion affect the matching accuracy of the proposed algorithm. Furthermore, it is

also ascertained that the proposed algorithm rotation is invariant.

6.2. Speed of execution

Although the proposed algorithm uses more than one reference minutia point to

generate circular minutiae tessellations, it does not compute an algorithm which

selects reference minutiae. Since the proposed algorithm uses the minutiae which

69

are already extracted by the terminal, it only uses the minutiae that are distinctive

enough to be used for matching to reduce computations.

 Figure 6.9 illustrates minutiae that are discarded during minutiae comparison.

Figure 0.9 : Discarded minutiae during minutiae pairing

In Figure 6.9, some of the minutiae which appear in both templates have

neighbourhood minutiae tessellations which have few minutiae. These minutiae

cannot be used as reference minutiae, because this results into majority false pairing

of minutiae. The proposed algorithm only uses minutiae points which have more than

five neighbourhood minutiae. The algorithm is advantageous on matching speed

because it reduces the computation by not developing an algorithm which has to

compute a reference point before it generates a circular minutiae tessellation unlike

a core-based fingerprint algorithm which was proposed by Bey.

Table 6.1 illustrates the percentage of False Non-Match Rate (FNMR) and the

causes of FNMR

70

Table 6.1: FNMR analysis

FNMR analysis

Fingerprints problems FNMR percentage

Partial prints 0.91

Distortion 2.04

Missing and false minutiae 0.49

Partial prints and distortion 0.82

Distortion, missing and false minutiae 0.56

Partial prints, distortion, missing and false minutiae 0.67

These results show that the proposed algorithm is mainly affected by distortion in

templates. The FMR is caused by the similarity in minutiae structure in the different

fingerprints.

6.3. Performance evaluation

The performance of the proposed fingerprint matching algorithm is evaluated using

the False Match Rate (FMR) and the False Non-Match Rate (FNMR). As explained

in previous chapters, False Non-Match Rate is the probability of genuine attempts

being wrongly not matched and FMR is the probability of the imposters being

incorrectly matched. The proposed fingerprint matching algorithm uses EER to

assess the accuracy of a matcher. EER is the error rate where FMR and the FNMR

are assumed to have the same value. The FMR and the FNMR are predetermined

by the threshold. The threshold2 is defined as a pre-requisite to decide whether the

fingerprint should match or not match. The matcher may prefer to have more FNMR

than FMR or vice versa, depending on the type of the application the algorithm is

used for. The proposed algorithm has a Failure-To-Enrol (FTE) rate of 5%. FTE is

the number of templates which were not successfully enrolled due to absence of

reference minutiae points or poor quality fingerprint images. The proposed algorithm

uses the True Acceptance Rate (TAR) and the True Rejection Rate to obtain the

FMR and FNMR. The True acceptance rate (TAR) is the percentage of the times that

2
The threshold is a specific number that is set to indicate that a query template has to be accepted or rejected.

71

the system (correctly) verifies a true claim or identity. TAR is the synonym for

Genuine Acceptance Rate (GAR).

True Rejection Rate (TRR) is the percentage of times a system (correctly) rejects a

false claim. The proposed algorithm used 𝑖𝑡ℎ fingers, each finger has

𝑗𝑡ℎ impressions 𝑖 = 1,2,3 … … 100, 𝑗 = 1, … 8., where 𝑇 represent a reference template

and 𝐼 represent the query template.

The algorithm uses the following steps to calculate the TAR and the TRR:

 TAR - Each fingerprint is compared to its remaining impression, avoiding

the symmetric comparison (if the first finger of the first impression is

compared to the first finger of the second impression, the first finger of the

first impression is not supposed to be compared to the first finger of the

second impression). Therefore, the total number of genuine recognition

attempts is (100(8*7)/2) = 2800, if FTE rate is zero.

 TRR - The first template of each finger is compared to the first template of

the remaining impression, avoiding the symmetric comparison. The total

number of imposter recognition attempts is ((100*99)/2) = 4950, if FTE rate

is zero.

In addition, 7750 comparisons were used to test the matching accuracy of the

proposed algorithm. The proposed algorithm obtained the TAR and TRR of 94.5%,

and FTE of 5%. The algorithm uses a threshold of 6 to pair the minutiae and a

threshold of 0.179 to match the finger codes. The following equations were used to

calculate FMR and FNMR

𝐅𝐌𝐑 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒎𝒑𝒐𝒔𝒕𝒆𝒓𝒔 𝒂𝒄𝒄𝒆𝒑𝒕𝒆𝒅

𝑻𝒐𝒕𝒂𝒍 𝑰𝒎𝒑𝒐𝒔𝒕𝒆𝒓𝒔
∗ 𝟏𝟎𝟎 =

𝟐𝟕𝟑

𝟒𝟗𝟓𝟎
= 𝟓. 𝟓 (0.1)

𝐅𝐍𝐌𝐑 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒈𝒆𝒏𝒖𝒊𝒏𝒆 𝒓𝒆𝒋𝒆𝒄𝒕𝒆𝒅

𝑻𝒐𝒕𝒂𝒍 𝒈𝒆𝒏𝒖𝒊𝒏𝒆𝒔
∗ 𝟏𝟎𝟎 =

𝟏𝟐𝟓

𝟐𝟐𝟔𝟎
= 𝟓. 𝟓 (0.2)

72

Figure 6.10 illustrates the error rates of the proposed algorithm.

Figure 0.10 : Error rate curves for the proposed algorithm

ZeroFMR, FMR100, FMR1000, FMR10000 describes the expected value of FNMR

when FMR is 0.0, 01, 0.1, 0.01 respectively. Zero FNMR describes the value of

imposters in the system when all the genuine attempts are not rejected.

Table 6.1 below illustrates the comparison of the proposed algorithm with the work of

[21].

Table 6.2: Comparison of the proposed algorithm on DB1-a

Validation is the process of assessing the proposed algorithm to check whether it

meets all the requirements. Validation ensures that the model/algorithm is built

correctly [65]. This research validates and verifies that the requirements of this study

Criteria Proposed algorithm Core-based algorithm in

[21]

EER (%) 5.5 6.28

Time Complexity 𝑓(𝑛) = 𝑛 or O(n) 𝑓(𝑛) = 𝑛2 or O(𝑛2)

73

have been meet. The goal of this research was to implement an accurate fingerprint

MoC algorithm which can execute in a constrained smart card platform quickly

(linear time complexity). Nevertheless some fingerprint algorithms compromise

speed for accuracy or vice versa, especially in MoC algorithms. In contrast, the

proposed algorithm focuses on both matching accuracy and matching speed. The

problem statement of this research was solved due to the following reasons:

 The proposed algorithm was implemented without using a core as a

reference minutia with an acceptable recognition rate.

 The algorithm provides an acceptable matching speed.

 The proposed algorithm offers the advantage of matching accuracy.

Verification ensures that the simulation or the experimental procedures were

performed correctly [65]. This research verifies that the proposed algorithm can

execute in a short period of time. This is because the time complexity of the

proposed algorithm is linear. Time complexity is the time that it takes for the

algorithm to finish.

Table 6.3 illustrates time complexity classes.

Table 6.3 : Time complexity classes

Time complexity classes

Name Running time

(T(n))

Definition

Constant time 𝑂(1) The algorithm always takes roughly the same

amount of time irrespective of the input size (n).

Linear time 𝑂(𝑛) The time varies directly with the size of the

input size.

Quadratic time 𝑂(𝑛2) The time varies by 𝑛2 according to the size

input.

Linear complexity algorithms are the most preferred algorithms as compared to

quadratic complexity algorithms. This is because quadratic algorithms are time

consuming because they take too much time to process data when compared to

74

linear algorithms. This implies that the proposed algorithm is faster when compared

to the work of Bey as illustrated in table 6.2.

This research also verifies that the algorithm was computed without using a core

reference minutia and obtained an acceptable recognition rate. This is because of

the proposed algorithm obtained the TAR of 94.5% and the matcher uses extracted

minutiae as reference minutiae. Equation 6.3 illustrates how the TAR was calculated.

𝑻𝑨𝑹 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒈𝒆𝒏𝒖𝒊𝒏𝒆 𝒂𝒄𝒄𝒆𝒑𝒕𝒆𝒅

𝑻𝒐𝒕𝒂𝒍 𝒈𝒆𝒏𝒖𝒊𝒏𝒆𝒔
∗ 𝟏𝟎𝟎 =

𝟐𝟏𝟑𝟔

𝟐𝟐𝟔𝟎
= 𝟗𝟒. 𝟓 (0.3)

Figure 6.11 illustrates a reference point of the proposed algorithm.

Figure 0.11 : Reference point (red) in a neighbourhood minutiae tessellation

According to the proposed algorithm, every minutia in a template which has more

than five closest minutiae neighbours which are not further than 80 pixels from that

minutia is a reference minutia. The algorithm outputs the expected binary codes and

bit maps out of the circular minutiae tessellation.

This research also verified that the proposed algorithm offered a good matching

accuracy. The algorithm performed 7210 comparisons, with 4950 imposter attempts

and 2260 genuine attempts. The algorithm obtained TAR and TRR of 94.5%, with an

EER of 5.5% using DB1-a as illustrated in Figure 6.10. This implies that the

proposed algorithm offers a good recognition rate as compared to the work of Bey

(2013).

6.4. Summary

This chapter presented the matching results, which evaluated how the proposed

algorithm performed with fingerprint challenges (rotation, translation and distortion as

well as missing and additional minutiae) during minutiae pairing. It also explained

75

how these challenges affect the proposed algorithm. The experimental results

illustrated that the matching errors which are found in the algorithm are caused by

partial prints, distortion and minutiae extractor errors. However the algorithm caters

for these challenges but only up to a certain degree. This chapter also presented the

performance evaluation of the proposed MoC verification algorithm in terms of

accuracy and compared the proposed approach with the work of Bey (2013). The

following chapter is going to give a conclusion and the possible future work.

76

Chapter 7

7. Conclusion

This chapter presents the conclusion drawn from the previous chapters of this

research dissertation. This chapter presents a brief summary, future work and

conclusion of this study.

7.1. Summary

The goal of this research was to develop and implement a fingerprint MoC algorithm

which can accurately compare the fingerprints very rapidly (less than a second).

Fingerprint MoC algorithms provide a superior secure authentication system when

compared to PIN codes, ToC algorithms, and Work Sharing on-Card algorithms due

to the following reasons:

 PIN codes can easily be guessed, detected or stolen via fraudulent means;

 ToC algorithms introduce security vulnerabilities due to the reference template

that is sent to the terminal via communication channels during the verification

process. This approach allows the imposter to steal the reference template

along the communication channel;

 Although work sharing on-card techniques relieve the computational load in

the smart card by performing computationally intensive processes such as

template alignment at the terminal’s site, this approach also introduces

security vulnerabilities due to the template information that is sent out of the

smart card. This is because even if the communication channel between the

smart card and the terminal is encrypted, it is not guaranteed that the

template cannot be stolen;

 In MoC technology, the minutiae extraction and the data acquisition is done at

the terminal’s site and the template comparison is done inside the secure

environment of a smart card, the template never leaves the secure

environment of a smart card. MoC technology makes it very difficult for the

imposter to read the user’s fingerprint template.

77

In this study the smart card was considered as a secure environment because

according to ISO/IEC 24787 (2010) on-card biometric comparison standard, there is

no software that can be used to download the stored template(s) inside the smart

card. This means that even if the user loses the smart card, it will be very difficult for

the imposter to extract the reference template stored on the smart card as all the

data in the environment of a smart card is encrypted [32].

MoC technology provides the highest degree of security and privacy protection to the

cardholders. However, it is challenging to implement an accurate and fast matching

MoC algorithm inside the restricted environment of a smart cart. This is because

smart cards offer limited memory and processing speed. Implementing a fingerprint

MoC algorithm inside a smart card requires a light weight matching algorithm. This

research reviewed that the matching accuracy and the speed of PC-based fingerprint

algorithms outperforms MoC algorithms. This is because PCs are not resource

restricted (have less memory and processing speed) like smart cards.

The methodology of this research was derived from the work of Bey (2013). The

difference between the work of Bey (2013) and the proposed algorithm is the

reference minutia in a template. The work of Bey (2013) uses a core as a reference

minutia, instead of using the core reference point which is not always accurately

computed, the proposed algorithm uses every minutia which has more than 5 closest

minutiae surrounding the minutiae with an increasing distance of 80 pixels as

reference point. The proposed method uses minutiae based-matching to find the

similarity between the reference template and the query template. Minutiae-based

matching technique requires two steps namely: minutiae extraction and template

comparison. Although the accuracy of a minutiae extractor affects the accuracy of a

matcher, minutiae extraction is a fairly complex process which is not investigated or

analysed in this study. The proposed algorithm used the previously extracted

template from FVC2002 DB1-a to compare the templates. The templates were

extracted using Minutiae Cylinder Code (MCC). This method uses more than one

reference minutia to cater for distortion. The proposed matching algorithm is based

on neighbourhood minutiae. Neighbourhood minutiae represent the nearest minutiae

from a reference point, provided that the minutiae are inside the circular tessellation.

The neighbourhood minutiae structure is characterized by attributes that are rotation

and translation invariant.

78

Each reference minutia is circularly tessellated in every neighbourhood minutiae.

This method uses the tessellated neighbourhood minutiae to construct a finger code.

The number of rows in each finger code depends on the number of reference

minutiae present in a template. The proposed approach offers the advantages of

speed due to the binary codes that it utilizes to construct the finger codes.

7.2. Significance of the research

This research fills a gap in data security systems by developing and implementing an

accurate and fast MoC algorithm. The proposed algorithm offers the following

advantages:

 It avoids the computationally intensive procedure of template alignment by

using neighbourhood minutiae structure.

 It does not depend on a core reference minutia to initiate the matching

process. A core reference point is not always accurately detected.

 This method is rotation and translation invariant.

 It uses binary representation for finger codes which results in speeded up

matching and a small template size.

 This method offers a good recognition rate, speed and simplicity (does not

use complex mathematics for calculations).

7.3. Specific Contributions

This work offers an efficient MoC algorithm which can be used for identity

verification. The proposed algorithm can also be used as secure application software

in different devices such as mobiles, Automated Teller Machine (ATM), laptop, PCs

and smart cards for different applications such as banking, National ID, and door

access control. The proposed approach can also be used as a stimulus for further

research involving finger code MoC algorithm matching accuracy and speed. This

study addresses the current MoC shortfalls which can further be used to implement

various MoC algorithms in the future. It also opens up the following research

questions regarding finger codes matching algorithms:

 How to construct a finger code that cannot be revised to obtain the

information of the minutiae?

79

 Which circular tessellation offers a higher matching accuracy regarding the

circular tessellation size, number of sectors and number of circular bands?

 How to order the finger code rows in order to speed-up the matching process?

 How to construct the circular tessellation in order to obtain the finger code

which has less effect of distortion?

 How to identify finger code rows with partial neighbourhood minutiae (circular

tessellation which contains the information about the entire tessellation due to

partial prints)

7.4. Feasibility of implementation

Implementing a fast and accurate fingerprint matching algorithm inside a smart card

requires careful monitoring of processing and memory usage. A matching algorithm

has to be sufficiently light-weight to be implemented in a smart card. The proposed

fingerprint MoC algorithm was implemented on a PC using MATLAB. The current

smart cards contain 8, 16, or 32 bit processors with the memory size of 2-16 Kbytes

of RAM, 64-300 Kbytes of ROM and 32-150 Kbytes of EEPROM. The 32 bit smart

cards are classified as high end smart card mainly based on their price and 8 bit

smart cards are classified as low cost smart cards. This research calculates the

memory used to allocate the variables in the proposed algorithm to measure the

feasibility of implementation of the proposed algorithm inside the smart card. The

reference template is stored in the EEPROM memory and the query template is

stored in the RAM memory. Using a template with 20 reference minutiae, the

MATLAB code requires 4.8 Kbyte to store the reference template. The code requires

4.8 Kbytes because it treats each bit as a character. The template with 20 reference

minutiae in a smart card can require a memory of approximately 0.6 Kbytes. All the

static variables in the smart card are stored in the EEPROM and the dynamic

variables in the smart card are stored in the RAM. The memory allocation of the

variables in the RAM is approximately 15 Kbyte using MATLAB code on a PC. The

memory allocation of the variables in the RAM is approximately 2.5 Kbyte using a

smart card. The memory allocation of the variables in the EEPROM is approximately

20 Kbyte using a MATLAB code on a PC. The memory allocation of the variables in

the EEPROM is approximately 1.875 Kbyte using a smart card. This implies that it is

80

feasible to implement the proposed algorithm inside the smart card. It is feasible to

implement the proposed algorithm in the smart card due to the following reasons:

 The implementation of the proposed algorithm is simple, it uses four

mathematical operations (*, /, +, - and XOR operator). It does not include

complex mathematics such as trigonometry.

 The time complexity of the proposed algorithm is linear.

 The memory used in the proposed algorithm is less than the memory

available on the smart card.

The proposed algorithm used linear time complexity to match the finger codes. It

uses the following steps to match the finger codes:

 Load the reference template and the query template. Loading the whole files

from start to the end uses the time complexity of O(n) where n is the file size.

 If a number of rows in the query template are less than 50, fill the query

template with rows of zeros until the query template has 50 rows. Fifty is the

maximum number of rows that a template can contain. This is done to make

the size of the all the query template the same and also to avoid using a

nested loop to count the number of reference template and the number of the

query template during the matching process. This is step uses make use of

constant time complexity.

 Create a loop which is going to take each row in a query template and make it

a variable𝑣𝑞. 𝑣𝑞={𝑣1, 𝑣2,𝑣3, ….𝑣𝑙},𝑣𝑞 is the number of variables and 𝑙 represent

the number of a variable. This step makes use of linear time complexity.

 Create a for loop to compare the each row in the reference template with the

all 𝑣𝑞 . This process makes use of linear time complexity

 Calculate the number of matched rows. This step is down inside the loop of

the previous step.

 Decline or accept the query template. This step makes use of linear time

complexity.

81

7.5. Conclusion

This work concludes that the accuracy of the proposed algorithm is affected by the

accuracy of the minutiae extractor, distortion and partial prints. In contrast the

algorithm performs well when it encounters challenges such as rotation and

translation. This research develops a fingerprint MoC algorithm without a

computation of a core. The proposed algorithm uses circular neighbourhood

minutiae tessellation to construct the finger codes. The proposed algorithm uses

multiple reference minutiae to cater for distortion present in templates during

fingerprint matching. The experimental results showed that the proposed algorithm

offers the advantages of speed and good recognition rate. The experimental results

also showed the proposed algorithm is comparable with existing MoC algorithms and

that it can fit into a smart card. The proposed algorithm obtained a better matching

accuracy and speed when compared to the work of Bey (2013).

7.6. Future work

As future work, properties of fingerprint image distortion and partial/incomplete

fingerprints will be studied. In order to use a different minutiae extractor that is more

accurate than the one which is used for the proposed algorithm to improve the

accuracy of the matcher, further study on different minutiae extractors will be done.

The proposed algorithm will also be implemented inside the platform of the smart

card.

82

Bibliography

[1] M. Yildiz and M. Gokturk, "Combining Biometric ID Cards and Online Credit Card

Transactions," in Digital Society, 2010. ICDS'10. Fourth International Conference on,

2010, pp. 20-24.

[2] N. S. Udoh, O. T. Eluwole, and A. O. Ologunde, "Ethical responsibilities: The smart

card engineer," in Ethics in Science, Technology and Engineering, 2014 IEEE

International Symposium on, 2014, pp. 1-5.

[3] K. Markantonakis, Smart cards, tokens, security and applications: Springer, 2007.

[4] O. Henniger and K. Franke, "Biometric user authentication on smart cards by means

of handwritten signatures," in Biometric Authentication, ed: Springer, 2004, pp. 547-

554.

[5] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of fingerprint

recognition: Springer Science & Business Media, 2009.

[6] A. K. Jain and A. Kumar, "Biometrics of next generation: An overview," Second

Generation Biometrics, 2010.

[7] R. A. Rahim, N. Ali, M. I. Idris, D. F. Yap, and M. M. Ismail, "Fingerprint

Enhancement for Minutiae Matching."

[8] C. Fanglin, Z. Jie, and Y. Chunyu, "Reconstructing Orientation Field From Fingerprint

Minutiae to Improve Minutiae-Matching Accuracy," Image Processing, IEEE

Transactions on, vol. 18, pp. 1665-1670, 2009.

[9] J. Feng, Z. Ouyang, and A. Cai, "Fingerprint matching using ridges," Pattern

Recognition, vol. 39, pp. 2131-2140, 2006.

[10] S. Pankanti, S. Prabhakar, and A. K. Jain, "On the individuality of fingerprints,"

Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, pp. 1010-

1025, 2002.

[11] A. Ross, J. Shah, and A. K. Jain, "From Template to Image: Reconstructing

Fingerprints from Minutiae Points," Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 29, pp. 544-560, 2007.

[12] P. Arora, "Fingerprint Recognition Using Minutiae Score Matching."

[13] Ł. Więcław, "A minutiae-based matching algorithms in fingerprint recognition

systems," Journal of Medical Informatics & Technologies, vol. 13, pp. 65-71, 2009.

[14] J. Zhou, F. Chen, and J. Gu, "A novel algorithm for detecting singular points from

fingerprint images," Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 31, pp. 1239-1250, 2009.

83

[15] W. Zhang and Y. Wang, "Core-based structure matching algorithm of fingerprint

verification," in Pattern Recognition, 2002. Proceedings. 16th International

Conference on, 2002, pp. 70-74.

[16] Q. Zhang and H. Yan, "Fingerprint classification based on extraction and analysis of

singularities and pseudo ridges," Pattern Recognition, vol. 37, pp. 2233-2243, 2004.

[17] B. Vibert, C. Rosenberger, and A. Ninassi, "Security and performance evaluation

platform of biometric match on card," in Computer and Information Technology

(WCCIT), 2013 World Congress on, 2013, pp. 1-6.

[18] C. T. Pang, Y. W. Yun, and X. Jiang, "On-Card Matching," in Encyclopedia of

Biometrics, ed: Springer, 2009, pp. 1014-1021.

[19] C. T. pang, "On-card matching," vol. 14, p. 8, 2009.

[20] Y. H. Yahaya, M. R. M. Isa, and M. I. Aziz, "Fingerprint Biometrics Authentication on

Smart Card," in Computer and Electrical Engineering, 2009. ICCEE'09. Second

International Conference on, 2009, pp. 671-673.

[21] F. Benhammadi and K. B. Bey, "EMBEDDED FINGERPRINT MATCHING ON

SMART CARD," International Journal of Pattern Recognition and Artificial

Intelligence, vol. 27, 2013.

[22] P. Grother, W. Salamon, and R. Chandramouli, "Biometric Specifications for

Personal Identity Verification," NIST Special Publication, vol. 800, pp. 76-2, 2013.

[23] J. Bringer, H. Chabanne, T. A. Kevenaar, and B. Kindarji, "Extending match-on-card

to local biometric identification," in Biometric ID Management and Multimodal

Communication, ed: Springer, 2009, pp. 178-186.

[24] T. M. a. J. v. d. M. M.B. Shabalala, "Fingerprint Match-On-Card: Review and

Outlook," 24 – 25 March 2015.

[25] A. S. Patrick, "Fingerprint Concerns: Performance, Usability, and Acceptance of

Fingerprint Biometric Systems," National Research Council of Canada.[Online].

Available http://www. andrewpatrick. ca/essays/fingerprint-concerns-

performanceusability-and-acceptance-of-fingerprint-biometric-systems (Accessed

July 24, 2014), 2008.

[26] E. Zhu, J. Yin, and G. Zhang, "Fingerprint matching based on global alignment of

multiple reference minutiae," Pattern Recognition, vol. 38, pp. 1685-1694, 2005.

[27] K. M. Shelfer and J. D. Procaccino, "Smart card evolution," Communications of the

ACM, vol. 45, pp. 83-88, 2002.

[28] A. Boorghany and R. Jalili, "Implementation and Comparison of Lattice-based

Identification Protocols on Smart Cards and Microcontrollers," IACR Cryptology

ePrint Archive, vol. 2014, p. 78, 2014.

http://www/

84

[29] M. W. Webster, "Utilizing destructive features as RAM code for a storage device," ed:

Google Patents, 2016.

[30] K. Mayes and K. Markantonakis, Smart cards, tokens, security and applications:

Springer Science & Business Media, 2007.

[31] U. Hansmann, M. S. Nicklous, T. Schäck, A. Schneider, and F. Seliger, Smart card

application development using Java: Springer Science & Business Media, 2012.

[32] T.-P. Chen, W.-Y. Yau, and X. Jiang, "Fast match-on-card technique using in-

matcher clustering with ISO minutia template," International Journal of Biometrics,

vol. 7, pp. 119-146, 2015.

[33] T.-p. C. a. W.-y. Yau, "ISO/IEC standards for On-card biometric comparison," Int .J.

Biometrics, vol. 5, pp. 30-52, 2013.

[34] J. C. Yang and D. S. Park, "A fingerprint verification algorithm using tessellated

invariant moment features," Neurocomputing, vol. 71, pp. 1939-1946, 2008.

[35] A. S. Rikin, L. Dongju, T. Isshiki, and H. Kunieda, "A fingerprint matching using

minutia ridge shape for low cost match-on-card systems," IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences, vol. 88, pp.

1305-1312, 2005.

[36] D. Brown and K. Bradshaw, "Improved Fingercode alignment for accurate and

compact fingerprint recognition," in Technologies for Homeland Security (HST), 2016

IEEE Symposium on, 2016, pp. 1-6.

[37] D. A. Kumar and T. U. S. Begum, "A Comparative Study on Fingerprint Matching

Algorithms for EVM," Journal of Computer Sciences and Applications, vol. 1, pp. 55-

60, 2013.

[38] M. Shabalala, T. Moabalobelo, and J. van der Merwe, "Fingerprint Match-on-Card:

Review and Outlook," in Iccws 2015-The Proceedings of the 10th International

Conference on Cyber Warfare and Security, 2015, p. 286.

[39] T.-P. Chen, W.-Y. Yau, and X. Jiang, "ISO/IEC standards for on-card biometric

comparison," International Journal of Biometrics, vol. 5, pp. 30-52, 2013.

[40] J. F. A. K. Jain, and K. Nandakumar, "Fingerprint matching," Computer (Long.

Beach. Calif), vol. 43, pp. 36-44, 2010.

[41] A. Jain, A. Ross, and S. Prabhakar, "Fingerprint matching using minutiae and texture

features," in Image Processing, 2001. Proceedings. 2001 International Conference

on, 2001, pp. 282-285.

[42] J. Feng, "Combining minutiae descriptors for fingerprint matching," Pattern

Recognition, vol. 41, pp. 342-352, 2008.

85

[43] R. Sanchez-Reillo and C. Sanchez-Avila, "Fingerprint verification using smart cards

for access control systems," in Security Technology, 2001 IEEE 35th International

Carnahan Conference on, 2001, pp. 250-253.

[44] R. Sanchez-Reillo, L. Mengibar-Pozo, and C. Sanchez-Avila, "Microprocessor smart

cards with fingerprint user authentication," Aerospace and Electronic Systems

Magazine, IEEE, vol. 18, pp. 22-24, 2003.

[45] S. B. Pan, D. Moon, Y. Gil, D. Ahn, and Y. Chung, "An ultra-low memory fingerprint

matching algorithm and its implementation on a 32-bit smart card," Consumer

Electronics, IEEE Transactions on, vol. 49, pp. 453-459, 2003.

[46] C. Liu, T. Xia, and H. Li, "A hierarchical hough transform for fingerprint matching," in

Biometric Authentication, ed: Springer, 2004, pp. 373-379.

[47] T. Cucinotta, M. Di Natale, and R. Brigo, "A fingerprint matching algorithm for

programmable smart cards," in Information Security Bulletin Journal, 2005.

[48] Y. Moon, H. Ho, K. Ng, S. Wan, and S. Wong, "Collaborative fingerprint

authentication by smart card and a trusted host," in Electrical and Computer

Engineering, 2000 Canadian Conference on, 2000, pp. 108-112.

[49] H. W. Yeung, Y. S. Moon, J. Chen, F. Chan, Y. M. Ng, H. S. Chung, et al., "A

comprehensive and real-time fingerprint verification system for embedded devices,"

in Defense and Security, 2005, pp. 438-446.

[50] H. Lam, W. Yau, T. Chen, Z. Hou, and H. Wang, "Fingerprint pre-alignment for hybrid

match-on-card system," in Information, Communications & Signal Processing, 2007

6th International Conference on, 2007, pp. 1-4.

[51] V. T. De Zhi and S. A. Suandi, "Fingercode for identity verification using fingerprint

and smart card," in Control Conference (ASCC), 2015 10th Asian, 2015, pp. 1-6.

[52] S. Bistarelli, F. Santini, and A. Vaccarelli, "An asymmetric fingerprint matching

algorithm for Java Card TM," Pattern analysis and applications, vol. 9, pp. 359-376,

2006.

[53] M. Govan and T. Buggy, "A computationally efficient fingerprint matching algorithm

for implementation on smartcards," in Biometrics: Theory, Applications, and Systems,

2007. BTAS 2007. First IEEE International Conference on, 2007, pp. 1-6.

[54] R. Cappelli, M. Ferrara, and D. Maltoni, "Minutia Cylinder-Code: A New

Representation and Matching Technique for Fingerprint Recognition," Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 32, pp. 2128-2141,

2010.

[55] J. W. Creswell, Research design: Qualitative, quantitative, and mixed methods

approaches: Sage publications, 2013.

[56] D. E. Gray, Doing research in the real world: Sage, 2013.

86

[57] B. R. Hunt, R. L. Lipsman, and J. M. Rosenberg, A guide to MATLAB: for beginners

and experienced users: Cambridge University Press, 2014.

[58] J. Kiusalaas, Numerical methods in engineering with MATLAB®: Cambridge

University Press, 2010.

[59] R. Grepl, "Real-Time Control Prototyping in MATLAB/Simulink: Review of tools for

research and education in mechatronics," in Mechatronics (ICM), 2011 IEEE

International Conference on, 2011, pp. 881-886.

[60] D. Madrigal and B. McClain, "Strengths and weaknesses of quantitative and

qualitative research," UX Matters, 2012.

[61] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain, "FVC2002: Second

fingerprint verification competition," in Pattern recognition, 2002. Proceedings. 16th

international conference on, 2002, pp. 811-814.

[62] M. C.-C. SDK, "Biometric System Laboratory, DISI–University of Bologna. 2014," ed.

[63] E. Marasco and A. Ross, "A survey on antispoofing schemes for fingerprint

recognition systems," ACM Computing Surveys (CSUR), vol. 47, p. 28, 2015.

[64] Z. Jin, A. B. J. Teoh, T. S. Ong, and C. Tee, "Fingerprint template protection with

minutiae-based bit-string for security and privacy preserving," Expert systems with

applications, vol. 39, pp. 6157-6167, 2012.

[65] A. Tolk, "Verification and Validation‖," Engineering Principles of Combat Modeling

and Distributed Simulation, John Wiley & Sons, Hoboken NJ, pp. 263-294, 2012.

