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Abstract 

Fingerprint Match-on-Card (MoC) technology offers the highest degree of security 

and privacy protection to cardholders as the fingerprint template never leaves the 

secure environment of a smart card. The level of security of a fingerprint matching 

system is evaluated by the type of the device which is used to compare the 

fingerprints. Fingerprint MoC compares the fingerprints inside the secure 

environment of a smart card and makes it possible for cardholders to verify 

themselves without the use of the central database. However it is challenging to 

implement an accurate fingerprint matching algorithm inside a smart card and 

produce an acceptable matching speed. This is due to the limited working memory 

and processing speed that the smart card provides. This research aimed at 

implementing an accurate MoC algorithm without the computation of a core 

reference point. This is because the core reference minutia is not reliably located in 

poor quality images and is not present in plain arch fingerprint classification. The 

research focus was on the matching accuracy and speed of the Match-on-Card 

fingerprint algorithm. Although the accuracy of the minutiae extractor affects the 

matching accuracy, minutiae extraction is out of the scope of this research. This 

research deployed a minutiae-based matching algorithm using multiple reference 

neighbourhood minutiae. The proposed algorithm used multiple reference minutiae 

to create neighbourhood minutiae circular tessellations. The proposed algorithm 

used circular tessellations to convert fingerprint features into finger codes. Finger 

codes are used to compare the fingerprints. The main advantage of the proposed 

algorithm is that it does not use the computationally intensive process of template 

alignment. The proposed algorithm also offers the advantages of matching speed 

with an Equal Error Rate (EER) of 5.5%. The experimental procedures of the 

proposed MoC algorithm were carried out on the public database DB1-a of 

Fingerprint Verification Competition 2002 (FVC2002) on a PC using MATLAB. 
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Definition of Concepts 

Terminology Definitions 

Algorithm A set of unambiguous steps to be followed in calculations or other 

problem-solving operations, especially by a computer. 

Antenna An electric conductor which has the ability to send, transmit, and receive 

signals such as microwaves, satellite, and radio signals 

Authentication The process of identifying the individual in order to grant access 

Biometrics Technology that is used to measure biological traits of an individual 

Electrical Chip A tiny piece of semi-conductor (commonly silicon) which is embedded in 

an integrated circuit 

Clock generator 

 

A circuit which is responsible for producing time signal for the purpose of 

synchronizing the circuit operations 

Co-processor 

 

Computer processor which is used to process certain functions quickly in 

order to assists the Central Processing Unit (CPU). 

Core A centre area of a fingerprint. 

Delta A triangular-shaped pattern where different fingerprint ridges converge. 

Encryption A way of enhancing the security of messages by hiding the messages, so 

that the message can be readable for those who have the unique key that 

allows the information to be transformed to its readable form. 

Euclidean distance Distance between two points in Euclidean space. 

Fingerprint 

Alignment 

The process of positioning an image with its impression by rotating and/or 

translating it. 

Hamming distance 

 

A metrics used to denote the difference between two binary strings of 

equal length. 

Loop A pattern where ridges make a backward turn without converging 

MATLAB 

 

A high-performance language which combines computation, visualization 

and programming in an easy-to-use environment where problems and 

solutions are expressed in familiar mathematical notation. 

Microcontroller A small computer which is made up of   CPU, Memory, system clock, and 

input/output peripherals. 

Off-card matching The matching process which is performed outside the smart card. 

On-card matching The matching process which is performed inside the smart card. 
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Plain arch A pattern where the ridges enters in one direction, make a rise in the 

centre and flows out in the opposite direction. 

Radio Frequency A frequency which is acceptable for use in telecommunications 

Singularity point The area where the ridge curvature is at maximum than usual and where 

the direction of the ridges changes swiftly. 

Tented Arch A fingerprint pattern where ridges move to the same direction, make a 

rise in the centre and flow out upon the opposite direction, with ridges in 

the centre adjoining each other and intersecting with each other upwards. 

Verification The process of proving the validity of something, truth or accuracy. 

Whorl A fingerprint pattern which is composed of ridges of almost concentric 

circles. 
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Chapter 1  

1. Introduction 

Due to technological advancement and the need for stronger personal data security, 

embedded devices such as tokens and smart cards are widely used for different 

applications in identification and verification [1, 2]. Different applications include the 

National Identity Document (ID), Government ID, Corporate ID, Electronic purse, and 

health cards [1]. Smart cards are portable devices, which resemble a credit card in 

size and shape. They are used to store personal data securely and to process 

information through the microprocessor chip embedded in its plastic body [2]. Smart 

cards usually hold information such as encryption keys, biometric data, and internal 

functions such as mutual authentication, encryption, and cryptographic algorithms 

which can also be executed inside the smart card [3]. Figure1.1 shown below 

illustrates the taxonomy of a smart card: 

Card

 

Chip Card (Smart 
Card)

 

Card without a chip
(e.g. Magnetic Strip 

Card)

Memory Card
 

Processor Card
 

Processor Card 
without Coprocessor

 

Processor Card 
with Coprocessor

 
 

Figure 1.1: Brief taxonomy of a smart card 

A card can either be in the form of a chip card or a magnetic stripe card. Chip cards 

implant the chip within the smart card and have the capability to store and process 

data [4]. The processing of data can be either done with or without a co-processor. 

Magnetic stripe cards store digital data using the magnetic stripe of a magnetic 

material. 
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Smart cards are a reliable form of secure information repository. Smart cards can be 

combined with biometric technologies to strengthen the data security when 

compared to Personal Identification Number (PIN) codes. A PIN code can be easily 

guessed, detected or stolen via fraudulent means [5, 6]. Biometric technologies 

make use of a person’s unique biological traits and behavioural characteristics such 

as signature, gait and speech to verify the identity of a person [1]. Biometric 

modalities that are popularly used include fingerprint, face, voice and iris [5, 7]. 

Unlike other biometric modalities, fingerprints are mostly used because of their 

acceptability, accuracy, performance, reliability, numerous sources (ten fingers) 

available for collection, and their success in law enforcement [7-10].  

A fingerprint impression is an image that consists of furrows and minutiae points, 

which are extracted using ink on paper or by electronic sensors [11, 12]. Furrows are 

spaces between ridge lines. Minutiae points are Cartesian co-ordinates of a ridge 

bifurcation and/or ridge ending [8]. Minutiae-based fingerprint matching algorithms 

are made up of minutiae extraction and minutiae matching algorithms [8, 13]. 

Singularity points can also be used to assists fingerprint matching processes [14]. 

There are two types of singularity points, namely: core and delta points [15]. A 

fingerprint may have more than one, one, or no core reference point. Plain arch 

fingerprint classification does not have a core point. The core point may be found in 

whorl, loop, and tented arch fingerprint classification [16]. Table 1.1 illustrates the 

number of core(s) that are found in the whorl, loop, and tented arch fingerprint 

classification. 

Table 1.1: The location and number of a core(s) in different fingerprint classifications 

Fingerprint 

classification 

Number of 

cores 

Location of a core in a fingerprint 

Whorl 2 Located at the centre of a spiral. 

Loop 1 Located at the upper point area of an inner loop. 

Tented arch 1 Located at the centre of a fingerprint 
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Figure 1.2, figure 1.3, and figure 1.4 illustrate the fingerprints with a core reference 

point. 

 

 

Figure 1.2 : A core reference point (red) for a loop fingerprint [15] 

 

   Figure 1.3: A core reference point (red) for a whorl fingerprint [15] 

 

           Figure 1.3 : A core reference point (red) for a tented arch fingerprint [15] 
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Core fingerprint matching algorithms are more efficient when compared to the non-

core fingerprint matching algorithms [15]. However, the core point is not reliably 

extracted from a fingerprint in cases where the image is of poor quality and not all 

fingerprint classification has a core minutia. Plain arch fingerprints, for example, do 

not  have core minutia [15]. 

In order to use fingerprint for verification of a person‘s claimed identity, the fingerprint 

has to be enrolled/registered in a database or a smart card so that it can be used 

later for comparison/matching [17]. The enrolled fingerprint is termed a reference 

template whereas the live fingerprint to be compared to the enrolled fingerprint is the 

query template. During the matching process the enrolled fingerprint will be 

compared with the query fingerprint inside the terminal or inside the smart card. After 

comparing/matching the fingerprints, the system rejects or accepts the query 

fingerprint depending on the match score [17].  

Fingerprint recognition systems can be used in two modes, namely verification and 

identification [3]. In the verification mode, reference template in the database/smart 

card is compared with the query fingerprint, whereas in identification mode the query 

fingerprint is compared to the entire database until a suitable match is found [5]. 

The process of comparing two fingerprints in the terminal is called Template-on–

Card (ToC) and comparing the fingerprints in a smart card is called Match–on-Card 

(MoC) [18]. 

Figure 1.5 illustrates a fingerprint Template-on-Card process. 

 

Figure 1.4 : Fingerprint Template-on-Card process [19] 
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ToC algorithms include the entire process of biometric data acquisition, feature 

extraction, feature comparison, and score computation on the terminal side. 

Figure 1.6 illustrates a fingerprint Match-on-Card process. 

 

Figure 1.5: Fingerprint Match-on-Card process [19] 

MoC algorithms include processes of biometric data acquisition and feature 

extraction inside the terminal and the comparison of templates inside the smart card 

[20]. The distinction between MoC and the traditional biometric process (ToC) is the 

location of where the matching takes place. In ToC algorithms, the smart card sends 

the enrolled template to the terminal for off-card matching. In MoC, the enrolled 

template never leaves the secure environment of a smart card. Fingerprint MoC 

algorithms offer higher data security when compared to ToC algorithms. However, it 

is quite challenging to develop a fingerprint algorithm which runs under the hardware 

constraint of a smart card and still produces an acceptable matching accuracy. MoC 

algorithms which are considered accurate have an Equal Error Rate (EER) which is 

less than 8% [21].  A fingerprint MoC algorithms which is considered to be fast has a 

constant, linear or quadratic time complexity. Fingerprint ToC algorithms introduce 

security concerns due to the template that is transmitted to the terminal via a 

communication channel during the comparison of the fingerprints. This approach 

allows the reference template information to be compromised when it is transmitted 

to the terminal [19]. 

The proposed algorithm uses minutiae-based matching techniques and multiple 

reference minutiae to compare the fingerprints. This algorithm uses binary 

representation for finger codes (minutiae information) and Hamming distances to 

measure the similarity between the two templates. 
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1.1. Motivation 

The motive behind this work is to prevent identity fraud by using Match-On-Card, 

which guarantees the physical presence of the user [22, 23]. This work intends to 

implement a fingerprint MoC algorithm which has a low EER. The fingerprint MoC 

algorithms makes it hard for an imposter to read the user’s fingerprint template as 

the template is stored in a secure environment of a smart card and also eliminates 

the need of using a central database [19]. Introducing a MoC fingerprint algorithm 

that accurately compares fingerprints and is fast, inside the smart card, has always 

been a challenge, due to the fact that smart cards have limited computational 

memory and processing capacity. This implies that there is more research that has 

to be done about the implementation of a fast and accurate MoC algorithm. The fact 

that passwords and PIN codes are no longer reliable further creates the need to 

come up with a fast and accurate MoC algorithm [20]. 

1.2. Problem statement 

The problem is that it is quite challenging to develop a fingerprint algorithm which 

runs under the hardware constraint of a smart card and still produce an acceptable 

matching accuracy and speed [24]. The proposed fingerprint MoC algorithm avoids 

using a core reference minutia to align the template. A core minutia is not reliably 

detected in a fingerprint. The inaccuracy of the MoC usually allows the imposter to 

access the system, hence promoting identity fraud. The speed of the fingerprint 

matcher is also important for its eventual success [25].  

1.3. Research questions 

This research project intends to answer the following questions: 

 How can all limited resources that are available inside the smart card be used 

to implement a light matching algorithm without the computation of the core 

reference minutia? 

 In which way can an accurate and fast fingerprint MoC algorithm be 

developed? 
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1.4. Research goal 

 Develop and implement an accurate and fast fingerprint MoC algorithm 

without the computation of a core minutia. 

1.5. Research objective 

In order to achieve the research goal, the following objectives will be set: 

 To investigate different existing fingerprint matching algorithms. 

 To implement the proposed fingerprint MoC algorithm. 

 To evaluate the speed and matching accuracy of the proposed algorithm. 

 To compare the matching accuracy and time complexity of the proposed 

algorithm with the work of Benhammadi and Bey [21].  

The proposed algorithm is compared to the work of Benhammadi and Bey due to 

the following reasons: 

 To prove that the proposed algorithm can obtain the matching accuracy that is 

comparable to a core-based matching algorithm. 

 The work of Bey and Benhammadi offers the advantage of simplicity. It does 

not use complex mathematics. Hence it makes it easy to be implemented on a 

smart card unlike other algorithms which are presented in chapter 3 (literature 

review). 

1.6. Delimitations, Limitations and Assumptions 

 It is assumed that the number of missing and false minutiae in the templates 

which are used to evaluate the performance of a matcher is less than the total 

number of the minutiae which are correctly extracted. This is due to the 

obtained matching accuracy of the proposed algorithm. After conducting the 

experiments, the experimental results showed that the matching accuracy of 

the proposed algorithm was only affected by 0.49% errors which are caused 

by the minutiae extractor.   

 The research focus is on implementing an accurate and fast fingerprint MoC 

algorithm. 
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 An algorithm will be implemented using the existing extracted templates. 

Extraction of minutiae points and the securing of the system are outside the 

scope of the proposed research. 

1.7. Contributions 

The research contributions envisaged are in what follows: 

 Reduce the effect of distortions by using more than one minutia point in the 

template as a reference minutia [26]. 

 The proposed algorithm can be deployed in different applications such as 

National ID, Electronic purse, banking, retail and insurance cards. 

1.8. Dissertation layout 

This dissertation layout is as follows: 

Chapter 1 gives an introduction about a problem to be solved. It also includes the 

motive behind this research, research goal, research objectives, research questions, 

research contributions, and the scope of this research. 

Chapter 2 gives a brief history of smart cards and a detailed background to this 

dissertation. It presents the brief history on the smart card and the biometric 

technologies. 

Chapter 3 conducts the literature review of the existing work done by other 

researchers. It describes how other authors presented fingerprint matching 

algorithms and the fingerprint matching accuracy of those fingerprint matching 

algorithms.  

Chapter 4 gives details about how the problem was solved and how the experiments 

were conducted. This chapter provides a detailed methodology that was used in this 

research to achieve the aims and objectives of this study. 

Chapter 5 explains how the methodology was implemented. This chapter discusses 

the implementation environment of this research methodology. 

Chapter 6 analyses and presents the experimental results of the approach. It also 

provides the verification and the validation of this research methodology. 
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Chapter 7 gives a summary and the conclusion drawn from the previous chapters 

and the future work of this research dissertation. 

 

  



  

10 
 

Chapter 2  

2. Background 

This chapter presents the background to the research for this dissertation. It begins 

by briefly explaining the architecture of a smart card and how biometrics can be used 

with smart cards. As the chapter proceeds it explores the concept of MoC and also 

the traditional biometric process (ToC). Section 2.3 describes the features which can 

be used to compare the fingerprints and how the features can be used. This chapter 

concludes by describing different fingerprint matching techniques. 

2.1. Smart cards technology 

Smart cards were invented at the end of the mid-seventies by Michel Ugon [21]. 

Around that time there was a lot of discussion about standardization of the contact 

location, the standardization of the signal, and protocols which resulted in the 

ISO/IEC 7816 smart card standards [21]. Protecting the information was also 

required; it was obvious that cryptography codes were required [22]. However, it was 

challenging to implement some cryptography in a smart card environment due to 

hardware constraints on the smart card processor. 

Nowadays, smart cards can have 8, 16 or 32 bit processors with limited volatile 

memory of 2-16 Kbytes of Random Access Memory (RAM), 64-300 Kbytes of Read-

Only Memory (ROM) and 32-150 Kbytes of Electrically Erasable Programmable 

Read-Only Memory (EEPROM) with options of Flexible Architecture for Shared 

Memory (FLASH) [27, 28]. RAM is a kind of storage where the data that is currently 

used in a program is stored so that it can be quickly reached by the processor [29]. 

ROM is non-volatile and non-writable storage which contains the operating system 

and encryption algorithms. EEPROM is a read/write non-volatile memory which 

stores program data, user data, and operating system routines [28]. The processor is 

embedded in a chip and it is connected to the outside world through eight contacts 

as shown in figure 2.1. 
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Figure 2.1 illustrates the internal components of a smart card. 

 

Figure 2.1 : The typical architecture of a contact interface smart card [30] 

In figure 2.1, Vcc is the supply voltage that drives the chips. CLK is a clock signal 

which is used to drive the logic of the integrated circuit and it is also used as a 

reference to serial communication [31]. After the power is on, Reset (RST) is used to 

initiate the state of the integrated circuit [31]. GND is the ground reference voltage. 

Vpp connector supplies the programming voltage input in a smart card. Input/output 

(I/O) provides a serial data communication between the interfacing device and the 

smart card. RFU is reserved for future use [31]. 

Smart card usage has advanced tremendously over the past few years as well as 

the use of biometric technology because smart cards can store data (biometric traits) 

securely [2, 4, 21]. This is because according to ISO/IEC 24787 (2010) on-card 

biometric comparison standard, there is no software that can be used to download 

the stored template(s) inside the smart card [32]. Biometric technology has shifted 

from research labs to real-world applications and can well be used with smart cards 

[21, 23]. Since 1999 a variety of vendors have been developing MoC fingerprint 

algorithms [24]. 

2.2. Different classes of fingerprint 

Fingerprint matching can be done using texture (region) of a fingerprint, minutiae 

points, image-based matching, and the combination of both fingerprint texture-based 

matching and minutiae-based matching [33]. 

 



  

12 
 

2.2.1 Image-based fingerprint representations 

Image-based fingerprint matching algorithms make use of local orientation, 

frequency, ridge shape, ridge count and texture information to compare the 

fingerprints. Image-based fingerprint representation offers the following advantages: 

 All the features that are used during the matching process are 

extracted more reliably unlike the minutiae-based algorithms [34]. 

 They can be used with minutiae-based algorithms to enhance 

matching accuracy [5]. 

 Invariance to affine transform1, hence they can be used to deal with 

distinct input states [34]. 

The introduction of ridge counts was also used due to the difficulty to obtain the 

exact measurements of the Euclidean distance between the minutiae [5]. The 

disadvantage of these algorithms is that they do not have sufficient capability to track 

down differences in position, scale, and rotational angle of the fingerprint. They are 

affected by differences in  image quality, scars, brightness variations, large amount 

of global distortion in the fingerprint image and they also suffer from deformation of 

fingerprints in the long run [5, 35]. These algorithms find the centre point or the 

singularity point of the fingerprint to align the template, and then the reference 

template is graphically matched with the query template to compute the matching 

score. Detailed image-based fingerprint algorithms are often too large to be stored 

on a smart card [36]. 

2.3. Minutiae-based fingerprint algorithms 

Minutiae-based algorithms use point-to-point matching to identify the similarity 

between two templates by using the minutiae [33]. The reference template (𝑇) and 

the query template (I) are used in order to check whether the templates are from the 

same finger by matching all the corresponding minutiae pairs from both 𝑇 and 𝐼. 

Minutiae can be characterized by making use of the feature vector representation [5]: 

𝑚𝑘= (𝑥𝑘, 𝑦𝑘 , 𝜃𝑘 , 𝑡𝑘) 

where 𝑥𝑘 and 𝑦𝑘 represent the position of the x-coordinates and the y-coordinates of 

the minutia respectively, 𝜃𝑘 indicates the minutia angle, 𝑡𝑘  indicates the minutia type 

                                                           
1
Affine transform is any transform that preserves collinearity 
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(ridge bifurcation and ridge ending), and 𝑘 represents the minutia number. 

Characteristics which are related to points and their structural properties, such as 

Euclidean distance between points are usually used in minutiae-based techniques to 

reduce the exponential number of search paths. Most of the ordinary fingerprint 

minutiae matching algorithms use only three feature vectors to represent the minutia 

𝑚𝑘= (𝑥𝑘, 𝑦𝑘, ө𝑘) as illustrated below. 

Each set of minutiae 𝑇 and 𝐼 can be represented as: 

𝑇= {𝑚1,𝑚2,… . 𝑚𝑘} , 𝑚𝑖 = {𝑥𝑖,𝑦𝑖,𝜃𝑖}, 𝑖 = 1 … . 𝑘 

𝐼 = {𝑚′
1,𝑚′

2,… 𝑚′
𝑝},𝑚′𝑗 = {𝑥′

𝑗,𝑦′
𝑗
,𝜃′

𝑗},𝑗 = 1 … . 𝑝 

where 𝑘 and 𝑝 represent minutia number in 𝑇 and 𝐼, respectively. In order to 

compare the minutia 𝑚𝑖 in 𝑇 and 𝑚′𝑗 in  𝐼, a matcher chooses a certain threshold for 

the spatial distance (𝑠𝑑) and the minutia direction (𝑑𝑑) which is going to be used to 

indicate whether the two minutiae match [5]. 

𝒔𝒅(𝒎𝒊, 𝒎𝒋 )=√(𝒙′𝒋 − 𝒙𝒊)
𝟐

+ (𝒚′𝒋 − 𝒚𝒊)
𝟐
≤ 𝒓𝒌 and                                  (2.1) 

𝒅𝒅(𝒎𝒊, 𝒎′𝒋 )=𝒎𝒊𝒏(𝜽𝒊 − 𝜽′
𝒋 ) , 360 –  𝜽𝒊 − 𝜽′

𝒋 ≤   𝜽𝒌                                               (2.2) 

The chosen thresholds 𝜃𝑘 and 𝑟𝑘 are required to compensate for the mistakes made 

by feature extraction algorithms and to account for the small plastic distortions that 

cause the minutiae positions to change [5]. 

Minutiae-based algorithms are mostly used for MoC fingerprint verification because 

of their stronger matching accuracy due to the following reasons: 

 It is unusual for a large amount of minutiae from different fingers to match 

[37]. 

 Every set of minutiae is unique in each finger and is well extracted when 

compared to other features such as pores, delta and ridge structures. 

Moreover, they require low computational cost in smart card implementations 

[35]. The delta structure is a triangular-shaped pattern where different 

fingerprint ridges converge. 
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 Minutiae-based algorithms are responsive to different kinds of fingerprint 

matching degradation (fingerprint distortion, rotation, translation)  and they 

usually use a small amount of memory [20]. 

The commonly used minutiae-based fingerprint matching algorithm is the Hough 

transform (HT) method [35]. Minutia-based matching algorithms are usually initiated 

by choosing a reference singular point or a reference minutia in a chosen 

neighbourhood of minutiae. 

Normally when minutiae-based representations are used in MoC, the extracted 

minutiae are sent to the smart card for comparison by pairing all the corresponding 

minutiae points between 𝑇 and 𝐼 and also to calculate the matching score. The final 

stage is decision making by either accepting or rejecting the query tempate 

according to the obtained matching score. 

2.4. Combining minutiae-based algorithm with image-based 

algorithms 

During minutiae extraction, when a minutia is detected, it is recorded with its 

position, direction, and minutia type  (𝑥𝑘, 𝑦𝑘 , 𝜃𝑘, 𝑡𝑘). Minutiae-based algorithms can 

be combined with image-based algorithms in order to enhance the matching 

accuracy. However, this technique usually takes a long time to execute. It is largely 

affected by noisy images and high amounts of distortion [21]. 

2.5. Fingerprints matching techniques 

The following fingerprint matching techniques are used in biometric and smart card 

technologies [38]: 

 Alignment techniques 

 Work sharing on-Card techniques (WSoC) 

 Neighborhood Minutiae techniques 

Fingerprint alignment is a very computationally intensive process. Due to the 

memory and processing speed that the smart card provides, other researchers 

presented WSoC algorithms [39]. WSoC algorithms make use of the terminal to 

perform computationally intensive processes such as minutiae extraction and 

template alignment in order to reduce the workload on the smart card. During the 

matching process, the smart card sends the enrolled template to the terminal via a 
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communication channel to perform the most intensive computational steps. The 

computed results are sent back to the smart card to calculate the final matching 

score. Neighbourhood minutiae techniques are usually used in fingerprint MoC to 

avoid template alignment and WSoC. Neighbourhood minutiae are local minutiae 

structures of the fingerprint. Neighbourhood minutia structure is characterized by 

attributes that are rotation and translation invariant. 

2.5.1.  Alignment techniques 

Fingerprint alignment is the process of positioning a reference template with a query 

template by rotating (𝜃) and translating (𝑥,𝑦) it. This kind of method increases the 

number of matching minutiae in a different impressions of the same finger [2]. 

Minutia alignment involves matching 𝑛 minutiae points in the reference template 

with 𝑚 minutiae points in the query template. This procedure has an exponential time 

complexity O(𝑀𝑁) [40]. Pre-aligning the query template and the reference template 

before the minutiae matching stage increases the matching accuracy of the 

fingerprint algorithms. This method is able to handle noisy and insufficient data. 

Nevertheless the method is very fast (e.g. 10 or more matches per second) [2]. 

Figure 2.2 illustrates a fingerprint alignment process. 

 

Figure 2.2 : Fingerprint alignment process [40] 

In order to align the two templates, the matcher computes the pairwise similarity 

between the minutiae in the reference template and the query template by 

comparing minutiae discriptors which are translation and rotation invariant. Then the 

two templates will be aligned with regard to the most simillar minutiae pair. The 

obtained overlapping minutiae will be used to calculate the matching score. If the 
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amount of overlap is high, it implies that 𝑇 and 𝐼 belong to the same finger. Contrarily 

a small overlap implies that there is higher possibility that 𝑇 and 𝐼 are not from the 

same finger. 

There are two types of pre-alignment techniques which are used, namely: the 

absolute pre-alignment technique and the relative pre-alignment technique. The 

relative pre-alignment pre-aligns the query template with regards to the reference 

template. Relative pre-alignment technique is used commonly and it can be 

executed by superimposing the singularities and comparing ridge features. In cases 

of singularity based algorithms, if the core location and the core orientation is 

detected accurately for the query and the reference template, it becomes easier for 

the transformation to lead to a proper alignment. The absolute pre-alignment mode 

pre-aligns each fingerprint indepedently of each other before it is stored. 

2.5.2.  Work Sharing On-card (WSoC) techniques 

Work Sharing on-Card is a process of making use of the terminal and the smart card 

to match the fingerprint. It is mostly used for smart cards as the majority of them do 

not have sufficient computational power and memory to process fingerprint data [39].  

Figure 2.3 illustrates the architecture of the Work Sharing on-Card. 

 

Figure 2.3: Architecture of Work Sharing on-Card [19] 

WSoC algorithms make use of the terminal to perform computationally intensive 

processes such as minutiae extraction and template alignment in order to reduce the 

workload on the smart card. During the matching process, the smart card sends the 

enrolled template to the terminal via a communication channel to perform the most 
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computationally intensive steps. The computed results are sent back to the smart 

card to compute the final matching score [15]. The advantage of WSoC algorithms is 

that the Personal Computer (PC) relieves the computational load of aligning the 

templates from the smart card. The existing pre-computations which are done 

outside the smart card for MoC algorithms produce very accurate matching results. 

However, this technique introduces security concerns, since the reference template 

can be intercepted due to the reference template information which is sent out of the 

smart card. WSoC requires secure communication between the smart card and the 

terminal. However, it is a challenging to properly implement secure communication 

between a smart card and the terminal. 

The disadvantage of these algorithms is that they usually take too long to match the 

fingerprint because of the communication delay between the PC and the smart card 

during the verification process. 

2.5.3.  Neighbourhood minutiae techniques 

In the fingerprint MoC, neighbourhood minutiae refer to the number of all the 

minutiae points which are surrounding the reference singular point or the reference 

minutia point which is going to be used to compare the fingerprint images. 

Neighbourhood minutiae techniques often use geometric transformations in order to 

compensate for alignment. In most cases using geometric transformation rather than 

rotation and translation can result in a large number of new possible alignments 

which can introduce the chances of getting false matches. Therefore, the method 

needs to be carefully assessed [2]. Neighborhood minutiae can be used to construct 

a finger code.  
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Figure 2.4 shown below illustrates a finger code. 

 

Figure 2.4 : A finger code with 16 rows and 30 columns 

Every white cell in a finger code represent a bit value one (1) and every black cell in 

a finger code represent a bit value zero (0). Finger code makes use of binary codes 

to match the fingerprints. The finger code matching method is very fast when 

compared to the traditional neighborhood minutiae fingerprint matching. Finger 

codes usage offers the advantage of matching speed and less processing inside the 

smart card due to the usage of binary code. This is because the smart 

card/computer uses binary code language. A smart card holds information in a form 

of binary codes which make finger codes suitable for MoC. 

2.6. Summary 

Fingerprint MoC algorithms provide stronger template security in comparison to ToC 

and WSoC algorithms. Minutiae-based techniques are usually used in MoC 

algorithms because they are more accurate and robust than image-based 

representations. Detailed image-based fingerprint algorithms are often too big to be 

stored on a smart card. Neighbourhood minutiae matching techniques requires less 

processing computations when compared to alignment matching techniques. Hence 

neighbourhood minutiae matching techniques are suitable for MoC algorithms. 
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Chapter 3  

3. Literature Review 

This chapter presents distinct minutiae-based and image-based fingerprint Match-

on-Card (MoC) algorithms which are concerned with matching accuracy. The next 

chapter describes processes that are used during the verification process and the 

level of accuracy obtained for each fingerprint matcher depends on the kind of 

algorithm used. 

3.1 Alignment techniques 

Fingerprint alignment is the process of positioning a reference template with the 

query template by rotating and/or transforming it. The purpose of alignment is to 

estimate the translation and rotation parameters between the query template and the 

reference template. Using fingerprint alignment techniques to align minutiae usually 

leads to the development of a robust algorithm, which can accurately compare noisy 

fingerprints. However computing template alignment is time and resource consuming 

[5].  

3.1.1. Minutiae-based and image-based matching algorithms 

Current MoC algorithms extremely underperform as compared to terminal or 

personal computer matching algorithms in terms of accuracy due to limited 

resources available inside the smart card [24]. J Feng et al. presented a personal 

computer matching algorithm. This method make use of minutiae and ridges to 

perform fingerprint matching [9]. This method used FVC2002 DB1, DB2, DB3 and 

DB4 to evaluate the accuracy of the algorithm. The method improves the matching 

accuracy for minutiae pairing. However it uses more time to execute the matching. 

Jain and Feng proposed a hybrid approach to improve matching accuracy [41, 42]. 

These algorithms make use of minutiae points and texture-based (region) matching 

to compare the fingerprints. Different templates from the same subject (finger) may 

have a small region of overlap. Hence, minutiae-based matching has less probability 

of performing well when dealing with these subjects. Therefore, the combination of 

minutiae-based and texture-based algorithms was a solution. The algorithm [41] 

showed a matching improvement when compared to the minutiae based algorithm 
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which uses ridge patterns for matching [14]. However, the algorithm did not account 

for non-linear deformation present during fingerprint matching. 

3.2. Minutiae-based algorithms for smart cards 

Sanchez-Reillo et al. presented a minutiae-based MoC fingerprint algorithm [43, 44]. 

It uses an elastic matching algorithm, in order to handle fingerprint elasticity. The 

algorithm introduced new variations, such as the distance between ridges.  The 

algorithm locates the reference minutia point for 𝑇 and 𝐼, and converts all the 

neighbourhood minutiae points to polar coordinates with respect to the reference 

minutia. Then feature vectors are further aligned to calculate the pairing minutiae 

between the query template and the reference template. The results showed that the 

implementation code was required to be optimized because of intensive processing 

requirements. 

Pan et al. presented an optimized fingerprint minutiae-based MoC algorithm [45]. 

The algorithm does not only focus on accuracy but also considers the memory 

requirement and processing power which is used for every step during the matching 

process. To minimize the memory requirements, a small-sized accumulator array 

was employed to perform more computations at a course-grain to fine-grain 

resolution on the accumulator array. The accumulator array is a matrix that is used to 

store values (∆𝑥 (𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑥𝑎𝑥𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛), ∆𝑦 (𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑦𝑎𝑥𝑖𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛), 

∆θ (𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑛 𝑎𝑔𝑙𝑒)) of the accumulated votes. According to the experimental 

results, the algorithm obtained a comparable EER to typical algorithm with minimum 

memory requirements. 

A. S. Rikin et al. proposed a fast memory efficient fingerprint MoC algorithm [35]. 

This algorithm uses minutiae-based matching and use of HT for alignment [46]. 

However, this technique fails to perform alignment of two patterns with inadequate 

overlapping matching minutiae. The algorithm offers the advantages of fast matching 

time, reduced memory requirements, small template size over minutiae-based MoC 

algorithms. The minutiae ridge shape matching technique offers the advantages of 

providing more information per bit. Hence, it requires a smaller template size when 

using minutiae ridge shape matching technique. The algorithm obtained the 

minimum FMR of 2.97% using a template size of 64 bytes. 
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3.3. Singularity-based techniques 

In cases where a core is located properly for two templates, the transformation 

leading to the correct alignment becomes easy. It is difficult to reliably locate the core 

point in noisy images.  

Ishida et al. proposed an image based algorithm which computes the reference 

singular point (core) and stores the reference template inside the smart card during 

enrolment [4]. During verification the host sends the smart card only a certain portion 

of the fingerprint sequentially in relation to the core. The smart card compares the 

aligned portions from the query template with the corresponding portions from the 

reference template using correlation. This algorithm saves computational time by 

tracing the pseudo ridges to determine the fingerprint classification instead of 

thinning and converting the fingerprint to binarized format. The algorithm also 

improves the classification accuracy. However, the matching results of the algorithm 

were required to be modified. This algorithm failed to obtain the exact directions of 

ridges for poor quality images and detecting singular points. 

Tommaso et al. proposed a fingerprint MoC algorithm which constructs a graph of 

minutiae structure, encodes minutiae points and also uses a core in relation to its 

neighbourhood minutia for fingerprint matching [47]. The graph is bounded by the in-

degree and out-degree to represent the limitation of all the neighbourhood minutiae 

points. This algorithm uses minutiae points in the template to build spanning, ordered 

tree touching as many nodes as possible, starting from the core from both the 

reference template and the query template and going through the two graphs by 

matching edges.  
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Figure 3.1 illustrates how this algorithm selects the minutiae for matching. 

 

Figure 3.1 : a) Bounding box surrounding minutiae and a core reference point (red 

circle) b) Spanning ordered tree which is created from the position of the minutiae 

with respect to the core [47] 

The core point from figure 3.1(a) is a reference point which is used to initiate the 

matching process and a bounding box includes the region of a fingerprint that is 

going to be used for the matching. In figure 3.1(b) the algorithm starts by drawing a 

line from 𝑚0 (core) to the neighbourhood minutiae (𝑚1,𝑚2,𝑚3,…𝑚𝑘), in order to 

construct a spanning ordered tree. The spanning ordered tree is used for minutiae 

pairing. The critical factor of this algorithm is the computation of the location of the 

core. 

3.4. Work Sharing on Card (WSoC) algorithms 

Due to the limited memory and processing speed that the smart card provides, other 

researchers presented WSoC algorithms. 

Moon et al. presented a pre-match computation in the host computer in order to 

reduce the workload of the smart card [48]. The host is responsible for calculating 

the average position and orientation of 𝑇 and 𝐼. Afterwards, the host computes the 

average position differences and orientation between 𝑇 and 𝐼. All this information is 

sent to the smart card. Even though not all computations are done inside the smart 

card, the algorithm makes it hard for an imposter to get hold of the minutiae 
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information. This is due to the fact that information that is sent to the smart card can 

only reveal the average position and the average orientation of the minutiae points, 

but not the location and the orientation of the minutiae. The smart card is responsible 

for performing the point-to-point matching and computing the matching score, 

whereas the host is responsible for transforming the fingerprint. 

Figure 3.2 below illustrates the Share-on-Card algorithm. 

 

Figure 3.2 : Share-on-Card algorithm presented by Y Moon et al. [48] 

In figure 3.2 illustrated above QP is the average position of a query template, QO is 

the average orientation of the query template, RP is the average position of a 

reference template and RO is the average orientation of the reference template. 

In order to eliminate the security concerns of the information that goes in and out of 

the smart card, Y. Moon et al. decided to do the entire fingerprint matching inside the 

smart card [48]. The algorithm rotates the fingerprint by making use of the angular 

difference between 𝑇  and 𝐼, which is computed from the polar angle of each minutia. 

This algorithm is less computationally intensive than the two previous algorithms that 

were previously introduced by Y Moon et al. Instead of using the mean position and 

the mean orientation of the minutiae for pre-alignment, Moon et al. improved their 

work by using a robust core to align the template [49]. This also has its own 
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disadvantages because there are cases where the core cannot be located 

accurately. Moreover, it can lead to matching errors since the arch type fingerprint 

does not have the core. 

Figure 3.3 illustrates the modified MoC from the work of Moon et al.  

 

Figure 3.3 : Modified MoC algorithm [22] 

H.K. Lam also proposed a fingerprint pre-alignment matching algorithm which does 

not utilise large amounts of memory inside the smart card [50]. This matcher 

computes an off-card reference point and an off-card template alignment. The 

algorithm computes the location of the reference singular point/core and extracts five 

different regions from the reference template. The first region is located at the 

reference singular point and the rest of the regions are located around the core. This 

method extracts five regions of 35*35 pixels. The triple representation of the regions 

is used during template alignment to bring into line the query template. The method 

transfers only the triplet representation and normalized x-y coordinates of the five 

regions out of the smart card. The terminal usually uses the core as an alignment 

point to align the templates. This is because the core is highly unique, so the highest 

correlation is usually found in first region (core). In cases where the image quality of 

a fingerprint is bad and the core cannot be accurately detected, this method finds the 

highest correlation between region 2, region 3, region 4, and region 5. Then the 
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region with the highest correlation score is used as a point of alignment. The 

advantage of this algorithm is that, it can match the fingerprint even without the 

computation of the core. Figure 3.4 illustrates five minutiae which are used to 

perform the matching. 

 

Figure 3.4 : (a) Core reference point (purple) surrounded by neighbourhood minutiae 

(regions) (b) Binarized neighbourhood minutiae (regions) [50] 

In T P Chen et al. proposed a minutiae-based fingerprint matching inside the smart 

card using an 8-bit smartcard [39]. This method computes reference minutia 

template alignment in the terminal and uses the smart card for comparison of 

minutiae template. This method divides a template into two portions namely: open 

portion and secure portion. The secure portion contains minutiae positions (x-y 

coordinates), minutiae orientation, and minutiae type. The secure portion never 

leaves the secure environment of a smart card.  An open potion is sent to the 

terminal to compute a reference minutia and template alignment to speed up the 

matching process. Open portion contains relative minutiae with limited number of 

nearest neighbourhood minutiae information. Hence it is not easy to use this 

information to reverse engineer the original minutiae information. The communication 

between the smart card and the terminal is encrypted using ISO/IEC7816-4. This 

method obtained good average recognition rate. However, this method introduces 

security vulnerabilities due to the template alignment which takes place outside the 

secure environment of the smart card. 
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3.5 Neighbourhood Minutiae Techniques 

Victor and Suandi [51] presented minutiae-based fingerprint matching algorithm 

using finger codes. Finger codes make use of binary digits to compare the query 

fingerprint. This method generates a circular tessellation by using a core as a centre 

point. Then tessellate the neighborhood minutiae into 4 circular bands and 16 

sectors. The radius of 20 pixels from the core reference minutia is excluded from the 

finger code. 

 

 

Figure 3.5: Circular tessellated image with “X” as a core minutia 

After the tessellation is define and the core is extracted, the window size of 199*199 

pixels which includes the entire circular tessellation image is cropped from the 

fingerprint. This method only use the window size of 199*199 which contains a 

circular tessellated for matching to speed up the matching process. The matcher 

uses 8 finger codes to represent the local features of the fingerprint for higher 

matching accuracy. Every finger code which is constructed is rotated 25° from the 

previous finger code. This is used to make the fingerprint verification rotation 

invariant. Each finger code has 64 pixel values which represent the sector. The 8 

finger codes are concatenated into 1 dimensional vector to form a final finger code of 

512 pixel values. Euclidean distance is used to compare the enrolled finger code and 

the query finger code.  If the Euclidean distance is more than the threshold, the nth 

enrolled finger code (in the final enrolled finger code) is compared to the (n+1) query 

finger code in the final query finger code. This loops 7 times to compare with the 

other finger codes unless the match is found before the loop reaches the 7th 

alteration. This method performs the smart card verification using the password and 
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PIN code. If the smart card verification is successful, the fingerprint verification 

process is carried out. This method obtained True Acceptance Rate (TAR) of 90% 

using 40 fingerprints of 10 different fingers, with each finger containing 4 impression 

of the same finger. The disadvantage of this method is that it does not use a 

standard database. Hence the matching accuracy of this method is not compared 

fairly. The other disadvantage of this method is that it does not always accurately 

detect the core reference minutia which degrades the matching accuracy of a 

matcher. This method introduces security concerns. This is because the comparison 

of the fingerprints is done in the terminal’s side and enrolled template is stored in the 

terminal. In order to overcome security concerns, fingerprint WSoC and MoC 

algorithms were presented. 

T.P. Chen et al. presented a method which uses a smaller portion (clusters) of 

minutiae instead of using all the minutiae in the template to reduce computational 

load and increase the matching accuracy [32]. This method searches for the 

corresponding cluster of minutiae in different locations between the query template 

and enrolled template. To avoid false acceptance which is caused by the presence 

of false minutiae inside the clusters, this method deploys mahalanobis distance to 

measure the inter-class similarity and remove the incorrectly matched clusters. This 

method uses the combination of matched minutiae in clusters and the geometrical 

structure between clusters to calculate the overall matching score between the 

enrolled template and the query template. The matcher computes the local similarity 

score and the group similarity vector to find the matched clusters. This approach 

sorts the minutiae according to ISO/IEC 24787 to increase searching speed for the 

first cluster. This method uses a smaller portion of the fingerprint for matching to 

reduce the computational load in the smart card. The method can also be 

implemented in a lower cost smart card (8-bit smart card) and offers a good 

recognition rate. However, accuracy of this method is mostly affected by minutiae 

extractor (false minutiae). 

Stefano et al. proposed an asymmetric neighbourhood minutiae-based fingerprint 

MoC algorithm which makes use of the following local comparison features [52]: 

 Euclidean distance and the ridge count between the reference minutia and its 

neighbour.  
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 The difference angle between the reference minutia and the neighbour ridge 

orientation angle.  

 The angle between the segment D in figure 3.6 which is formed by the 

reference point and the neighbourhood minutia and the reference minutia 

ridge direction. 

 

Figure 3.6 : Local comparison feature [52] 

After making use of the above comparison features, the two neighbourhood minutiae 

with the lowest similarity value are discarded and the rest of the remaining matching 

neighbourhood minutiae are summed together. The summation of the minutiae is 

used to decide whether two templates match by making use of the threshold when 

computing the global score. During the verification, the algorithm exits the matching 

process as soon as a very good average similarity value is found. The approach 

offers the advantages of speed because of its asymmetric nature regarding 

execution time. The disadvantage of this approach is that it performs lots of 

computations to pair the minutiae.  

Govan et al. also proposed an asymmetric neighbourhood minutiae-based fingerprint 

MoC algorithm which is similar to Stefano et al. [52, 53]. This algorithm uses the 

entire local comparison feature that is used by Stefano et al. excluding using the 

ridge count between the reference minutia and its neighbour and the reference 

minutia ridge direction. In order to eradicate the use of alignment that is 

computationally intensive, the algorithm uses basic arithmetic functions [53]. The 

algorithm deals well with displacement, rotation and deformation. In some instances 

the algorithm encountered errors due to the partial overlap area between samples 

arising from noise in the templates. 
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 Benhammadi et al. proposed a fingerprint matching algorithm which makes use of a 

reference point/core to initiate the matching process and circular tessellate the 

templates starting from the core [21]. The algorithm constructs a finger code from a 

neighbourhood minutiae tessellation.  The matcher tessellates the fingerprint into 32 

sectors and 16 circular bands, using a core as a centre point. Once the circular 

tessellation is generated, the matcher constructs a finger code out of the tessellation. 

The circular tessellation consists of 512 bits (32 sectors *16 circular bands). Figure 

3.7 illustrates how the finger code is obtained from the circular neighbourhood 

minutiae tessellation. 

 

Figure 3.7 : (a) Neighbourhood minutiae tessellation (b) Finger code 

Figure 3.7 (a) illustrates the neighbourhood minutiae tessellation and figure 3.7 (b) 

illustrates a finger code. The white cell in the finger code represents the presence of 

minutiae and the black cell represents the absence of minutiae. Hamming distance is 

used to measure the similarity between the finger codes. It is a metric used to denote 

the difference between two binary strings of equal length. The proposed algorithm 

offers the advantages of matching speed, simplicity, and good recognition rate. The 

matching process relies on the minutiae neighbourhood near the singular reference 

minutia (core). The disadvantage of this algorithm is that, it depends entirely on the 

core minutia to compute the finger code. The core minutia is not present in every 

fingerprint (arch fingerprint classification). The core is not always reliably located in 

poor quality fingerprint images (such as arch fingerprint classifications), which can 

lead to matching errors. 

Cappelli et al. proposed a Minutiae Cylinder Code (MCC) for fingerprint matching 

[54]. The local minutiae model is based on 3D data structure (cylinder) which is 
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enclosed inside a cuboid that is divided into cells. Each minutia is represented by its 

location and its direction and the cylinders are bit oriented. The cylinders are divided 

into six sectors during the verification process for the purpose of comparing the 

query and the reference templates. The algorithm offers the advantages of speed, 

dealing with noisy fingerprint regions, local distortion tolerance, and missing spurious 

minutiae tolerance. The problem that can occur with MCC is that there are chances 

that the nearest minutiae might be exchanged due to the absence or spurious 

minutiae. The MCC approach makes use of the convex hull enlarged with the 

addition of the three offset variances in order to select only the important portions of 

the fingerprint. This approach defines the similarity between the two cylinders by 

making use of the vector correlation measure. It is said that this algorithm can be 

implemented inside smart cards and it can make use of XOR and the AND 

operations to compare the cylinders [24]. 

 

Table 3.1 Comparison of fingerprint MoC and WSoC algorithms 

MoC 
algorithms 

MoC Algorithms attributes 
Database 
used 

Smart card 
environment 

Average 
EER/ TAR  

 
Advantages 

 
Disadvantages 

Fast MoC 
techniques 
using in-
matcher 
with ISO 
minutiae 
template 
[32]  

Fingerprint 
Verification 
Competition 
(FVC) 
 FVC2000 
DB1,BD2, 
DB3, BD4 
FVC2002 
DB1,BD2, 
DB3, BD4 
FVC2004 
DB1,BD2, 
DB3, BD4 
FVC2006 
DB1,BD2, 
DB3, BD4 
 

8bit 
Microcontrol
ler Unit 
(MCU),6 
kilobyte, 78 
kilobyte 
Electrically 
Erasable 
Programma
ble Read-
Only 
Memory 
(EEPROM) 

 
 
<=5.1979 
EER% 

The method 
used large data 
(12 databases) 
to test the 
matching 
accuracy of the 
algorithm. Large 
data allows the 
researcher to 
test how the 
matcher 
performs when 
it encounters 
different kinds of 
fingerprint 
matching 
problems ( 
rotation, 
translation, 
partial prints 
and 
deformation)  

The 
performance of 
the this 
method is 
affected by 
false minutiae 
especially in 
low quality 
images  
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ISO/IEC 
standards 
for on-card 
biometric 
compariso
n [33]. 

FVC2000 
DB1, DB2 
and DB3 
FVC2002 
DB1 and 
DB2 

8 bit java 
smart card  

 
4.3 EER% 

The method 
obtained a good 
recognition rate 
and the 
matching 
accuracy of this 
method is 
comparable to 
the fingerprint 
minutiae-based 
matching 
algorithm 
running on the 
PC   

The method 
computes an 
off-card 
template 
alignment  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Embedded 
fingerprint 
matching 
on snart 
card [21] 

FVC2002 
DB1-a and 
DB2-a 

64 kilobyte 
EEPROM 
and 
1kilobyte 
Random 
Access 
Memory 
(RAM) 

 
5.385  
EER% 

The method 
offers the 
advantages of 
good 
recognition rate, 
simplicity, and 
speed 

The method 
does precisely  
compute the 
core reference 
minutia in poor 
quality images 

An 
asymmetri
c 
fingerprint 
matching 
algorithm 
for java 
card TM 
[52] 

FVC2002-a 
FVC2002 
DB2-b 
FVC2002 
DB1 
International 
DB 
Hybrid DB   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

72 
EEPROM 
and 4 
kilobyte 
RAM 

 
3.4 EER% 

The method 
obtained a good 
recognition rate 
and exits the 
matching 
process as soon 
as the good 
average 
similarity score 
is found 

The method 
requires lots of 
computations 
due to multiple 
reference 
minutiae in the 
template 
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3.6 Summary 

This chapter presented different approaches to fingerprint matching. Furthermore, 

the shortcomings of the existing algorithms were highlighted. Most of the literature 

reviewed for this study revealed that alignment techniques are not suitable for MoC 

algorithms because they are computationally intensive and require a lot of memory. 

The chapter also presented how other researchers filled the gaps in the existing 

algorithms. The next chapter is going to present the methodology of this research, 

which is derived from the work of F. Benhammadi and K. B. Bey [21]. F. 

Benhammadi and K. B. Bey make use of finger codes to compare the fingerprints. 

Finger codes (minutiae information) make use of binary representation, which is the 

primary language for the computers, and a distance matrix which leads to matching 

Fingerprint 
pre-
alighment 
for hybrid 
MoC 
systems 
[50]  

FVC2000 
DB1,BD2, 
and DB3 
FVC2002 
DB1,BD2, 
and DB3 
FVC2004 
DB1,BD2, 
and DB3 
 

This method 
does not 
disclose the 
smart card 
environment 

 
83 TAR% 

The method can 
still align the 
query template 
even if the core 
reference point 
is not found 
without 
sacrificing any 
speed and 
accuracy. This 
method also 
relieves the 
burned of the 
smart card in 
aligning the 
templates as 
fingerprint 
alignment is 
time and 
resource 
consuming  

The method is 
less tolerant to 
large amount 
of distortion. 
This method 
does not 
disclose the 
smart card 
environment. 

An ultra-
low 
fingerprint 
matching 
algorithm 
and 
implement
ation on a 
32-bit 
smart card 
[45] 

The 
database is 
not 
disclosed 

32 bit 
processor 
,64 kilobyte 
Read Only 
Memory 
(ROM), 8 
RAM, and 
32 kilobyte 
EEPROM 

 
This 
algorithm 
did not 
disclose 
the 
matching 
accuracy 

 
This method 
offers the 
advantage of 
speed 

This method 
use an 32-bit 
smart card 
which is too 
expensive for 
the market  
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speedup and the usage of less memory in a constrained environment of a smart 

card. The next chapter makes use of multiple reference minutiae to eliminate the use 

of a core reference point. This is due to inaccuracy of the location of the core 

reference point in noisy images and absence of a core in arch fingerprint 

classification [21]. 
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Chapter 4  

4. Methodology 

In the literature review, different techniques for fingerprint MoC algorithms have been 

presented. The literature review revealed that the usage of finger codes requires less 

processing than using the direct information of the minutia (minutia position (𝑥, 𝑦) 

and minutia direction (θ)). This study uses finger codes to implement a proposed 

fingerprint MoC algorithm. This chapter provides a detailed methodology that is used 

in this study to achieve its aims and objectives. It includes research instruments and 

the data evaluation method employed for accessing the accuracy of the proposed 

fingerprint MoC algorithm.  

4.1 Research design 

In order to achieve all the objectives which were discussed in section 1.5 of Chapter 

1, this research used a quantitative and experimental approach. Quantitative 

research explains events by collecting analysed numerical data using mathematically 

based methods [55]. Experimental studies take place in artificial settings, enabling 

researchers to access the relationship between one variable to another [56]. The 

experiments will be conducted using code implementation in MATLAB and the 

fingerprints which are collected from a public database.  

MATLAB offers the following advantages: 

 it has very good documentation and it is continuously being improved [57]. 

 MATLAB is an interpreted programming language with various toolboxes 

which allows the manipulation of complex problems [57]. 

 MATLAB is reliable and it is optimized to be fast when performing matrix 

operations [58]. 

Disadvantage of MATLAB  

 Execution of MATLAB programs is slow [59]. 

Experimental studies offer the following advantages: 

 It has control over variables. Hence, it eliminates unwanted variables. 
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 Manipulate independent variables to simply determine the cause and effect of 

the problem. 

 Tests/Experiments can be repeated with modified algorithms until accurate 

results are obtained. 

However, the experimental studies have the disadvantage of producing the results 

from the limited samples or variables that have been used. This is not always as 

accurate as the real world applications. 

A quantitative study has the advantage of dealing with large amounts of data 

(samples), which can lead to higher probability of accurate experimental results. It 

also provides exact, quantitative, numerical data [60]. 

This research design evaluates the proposed algorithm performance with regards to 

how it handles the rotation, translation, distortion, deformation present in templates, 

as well as missing and additional minutiae when two fingerprint images from the 

same finger are compared. Furthermore, the research design involves the process of 

collecting, analysing, interpreting and obtaining the matching accuracy of the 

proposed algorithm. The experimental studies were conducted using the following 

feature measures: 

 MoC matching accuracy – how often does the algorithm correctly and 

incorrectly compare the fingerprints. The algorithm used EER to evaluate or 

measure the matching accuracy. In addition, the accuracy of the fingerprint 

matching is often affected by rotation, translation, distortion and deformation 

in fingerprints. 

 Memory allocation – The memory usage of the proposed algorithm to 

determine whether the proposed algorithm fit into the smart card. 

 Time complexity – how long it takes for the algorithm to execute. 
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Figure 4.1 illustrates all the steps which are used in the proposed methodology. 

.  

Figure 4.1: Flow diagram of the proposed algorithm 

4.2 Research instruments 

This section explains all the steps in detail which are used in figure 4.1 

4.2.1. Fingerprint scanning 

Fingerprint scanning is the first step in Figure 4.1. It explains how the fingerprints 

were scanned. The experiments were carried out using fingerprint images from the 

FVC2002 database1-a [61]. FVC2002 is the second international fingerprint 

verification competition which is designed for fingerprint verification algorithms. It 

constitutes four fingerprint databases which are collected by using three 

commercially available scanners. The fourth database was synthetically generated 

by using SFinGE software. All these databases were used to collect fingerprints. 
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Table 4.1 illustrates the types of scanners, technology and resolution which were 

used to collect the four databases (DB). 

Table 4-1: Scanners, image size and technologies used for the collection of 

FVC2002 databases [61] 

Databases Technology Scanner Image size - Resolution 

Database 1 Optical Identix touch view 388*374-500dpi 

Database 2 Optical Biometrika 296*560-259dpi 

Database 3 Capacitive Precise biometrics 100SC 300*300-500dpi 

Database 4 Synthetic SFinGE v2.51 288*384-500dpi 

 

Database-1a from FVC2002 contains a total of 800 fingerprints of 100 different 

fingers, with each finger containing eight impressions of the same finger.  

The fingerprints were collected from twenty volunteers. The volunteers were 

randomly divided into three groups (30 volunteers each). Each group was collected 

using a different fingerprint scanner from each DB. A total of four fingers which 

include two index fingers and two middle fingers from both hands were collected in 

each DB to maximize the difference in fingerprint displacement. No efforts were 

made to control image quality and the sensor platens were not systematically 

cleaned. The fingerprints were captured from the volunteer in three distinct sections. 

Four impressions were captured from four fingers of each volunteer in each session. 

Throughout the second session were requested to exaggerate displacement 

(impression 1 and 2) and rotation (impression 3 and 4) of the finger, not to exceed 35 

degrees. Throughout the third session, fingers were alternatively dried (impression 1 

and 2) and moistened (impression 3 and 4). The fingerprints in each DB were sorted 

according to the quality index [61] . 

4.2.2. Minutiae extraction 

The minutiae were extracted using Minutiae Cylinder Code (MCC) feature extraction. 

This method follows the ridge lines on the grey-scale image, by taking the direction 

of the fingerprint. The method superimposes a square meshed grid on a grey-scale 

image to determine a set of starting points. These ridges are kept until they terminate 
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(a ridge termination is found) or until the ridge divides to form two ridges (ridge 

bifurcation) [62].  

Figure 4.2 below illustrates minutiae points (ridge bifurcation and ridge ending).  

 

Figure 4.2 : Ridge ending (red) and ridge bifurcation (blue) [63] 

4.2.3. Minutiae neighbourhood circular tessellation 

Different minutiae neighbourhood circular tessellations were applied to investigate 

which circular tessellation offers the lowest EER. This was done by using different 

number of sectors and ridge counts in circular tessellations. The area of each cell in 

a circular tessellation is the same. The area of each cell in the circular tessellation 

was obtained using equation 4.1: 

                                             𝑨 =
𝝅𝒓𝟐

𝒔∗𝑹𝒄
                                                                                                    (4.1) 

where A, r, s, and Rc represent the area of a sector, radius of a circular tessellation, 

number of sectors, and the number of ridge counts in a circular tessellation 

respectively. Ridge counts are circular bands in a circular tessellation. In order to 

evaluate which circular tessellation performs better, EER was calculated using 25 

fingers, each finger has 8 impressions. This implies that 200 fingerprints were used 

to calculate the value of EER. The radius of a circular tessellation is 80 pixels. This is 

because when a radius of a circular tessellation becomes bigger than 80 pixels it get 

affected by distortion and when a circular tessellation is smaller than 80 pixels it can 

only include fewer minutiae which are not distinctive enough to represent 
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neighbourhood minutiae [64]. Table 4.2 illustrates different circular tessellations 

using different numbers of sectors and circular tessellation. 

Table 4.1 : Different circular tessellations using different numbers of sectors and 

circular tessellation 

Number of 

sectors 

Number of 

ridge counts 

Area  of each cell in a 

circular tessellation 

EER (%) 

8 6 628.32 13.33 

6 8 628.32 9.89 

6 4 837.76 7.21 

4 6 837.76 9.61 

8 5 502.66 4.21 

5 8 502.66 7.45 

6 5 670.208 3.23 

 

The proposed model used a circular tessellation of six equally sized sectors and five 

ridge counts because it obtained a lower EER when compared to other circular 

tessellations. This tessellation obtained an EER of 3.23 using 6 sectors and 5 ridge 

counts and when the area of each cell in a circular tessellation is the same and 3.02 

when the area of the each cell in a circular tessellation is not the same. The area of 

each cell in the circular tessellation of the proposed algorithm is not the same. 

The proposed fingerprint MoC is based on minutia-based algorithm and it does not 

use the ridge patterns to compare the fingerprints. It only uses the minutiae location 

and direction of the fingerprint. The proposed algorithm uses the following steps to 

compute a finger code: 

 Find the minutiae which can be used as a reference point in a template. This 

is illustrated in figure 4.6. 

 Circularly tessellate each reference minutia. 

 Convert each circular tessellation into binary codes in a template. Each binary 

string/row in a template is a representation of a reference minutia. This implies 

that the number rows in the binary code are equivalent to the number of 

reference minutiae. 
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 The binary codes are converted into binary maps to construct a finger code. 

The proposed methodology makes use of circular tessellation which is constructed 

from six equally spaced sectors with an angle of sixty degrees in each sector. The 

tessellation process starts from the minutia orientation while going clockwise to other 

sectors. The reference minutia is located at the centre of the circular tessellation. 

The first sector starts at the orientation/direction of the minutia for the purpose of 

making the algorithm rotation invariant. Figure 4.3 below illustrates 6 sectors (S1, 

S2, S3, S4, S5 and S6) which are used to construct a circular tessellation, minutia 

orientation and the reference minutia point.  

 

Figure 4.3: Six sectors (S1to S6) with the reference minutia point (red) and minutia 

orientation with minutiae points (blue) 

The circular tessellation has the radius of 80 pixels and is also constructed from five 

ridge counts. Each minutia point consists of its position (𝑥, 𝑦) and its minutia 

direction (θ). The first ridge (Rc1) count has a distance of 26 pixels from the centre, 

the second, third, and the fourth ridge count (Rc2, Rc3, and Rc4) have the ridge 

count spacing of 14.8 and the fifth ridge count (Rc5) has the ridge count spacing of 

9.6 pixels. Each circular tessellation has 30 cells, which is made out of 6 sectors and 

5 ridge counts (5*6=30). Figure 4.4 (a) illustrates the 5 ridge counts, reference 

minutia point and the minutia orientation (green). 
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Figure 4.4 (b) illustrates the cell numbers of the neighbourhood minutia tessellation. 

Figure 4.4 : (a) 5 ridge counts and reference minutia point and the minutia orientation 

(b) cell numbers of the circular tessellation 

Figure 4.4 (b) illustrated above portrays a neighbourhood minutiae tessellation of the 

proposed algorithm. The proposed algorithm uses the radius of 80 pixels because it 

can cover a reasonable number of minutiae. It can be used to compare the minutiae 

in the query template and the reference template, as shown above in Figure 4.4 (b). 

The ridge counts spacing were chosen not to be equally spaced because in cases 

where ridge counts are equally spaced, the area of a cells of the first ridge count 

(Rc1) becomes smaller than the area of the cells of other ridge counts (Rc2, Rc3, 

Rc4 and Rc5). Figure 4.5 illustrates different neighbourhood circular structures with 

different numbers of sectors and ridge counts.  

 

Figure 4.5 : (a) A circular neighbourhood minutiae tessellation with six sectors and 

five ridge counts (b) a circular neighbourhood minutiae tessellation with four sectors 

and four ridge counts 
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The reason for choosing the combination of six sectors and five ridge counts to 

generate the neighbourhood circular tessellation is because of the following reasons: 

 The tessellation minutiae structure (Figure 4.5 (a)) reduces the possibility of 

obtaining many minutiae in the same cell. This implies that when Figure 4.5 

(a) is compared to figure 4.5 (b), it has three cells which have more than one 

minutia inside the cell (S1 of Rc3 (blue), S2 of Rc4 (black), S6 of Rc5 (green) 

in Figure 4.5 (a)) 

  Using a smaller number of ridge counts and sectors produces a 

neighbourhood circular tessellation that is not distinctive enough to be used 

for comparison. This implies that figure 4.5 (a) when compared to Figure 4.5 

(b) has four cells, which has more than one minutia in the same cell (S1 of 

Rc3 (green), S1 of Rc4 (blue), S4 of Rc3 (purple) and S4 of Rc4 (black) as in 

Figure 4.5 (b))   

The proposed method is based on neighbourhood minutiae localization binary 

codes. It checks whether there is a minutia inside each cell in a neighbourhood 

minutiae tessellation. The presence of the minutia inside a cell is represented by one 

and the absence of the minutia point inside the cell is represented by zero. 

The following array represention is derived from Figure 4.4 (b). The first row is 

derived from the first sector (s1). 

                               [ S1         [ 1 0 1 0 0  

                                  S2  0 1 1 1 1 

                  Array S =   S3      =    0 0 0 0 0     (4.2) 

     S4 1 0 0 0 0 

    S5 0 0 0 1 0 

    S6] 0 0 1 1 1 ] 

The refence minutia point of Figure 4.4 (b) is represented by equation 4.2 which is 

the combination of all the rows in an Array S.  

Reference minutia =[1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1]( 4.3) 
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Every minutia which has more than five neighborhood minutiae inside the circular 

tesselation is used as reference minutia in a template. The reason for choosing this 

neighborhood minutiae is to avoid obtaining binary strings, which are not distinctive 

enough to be used for matching. Figure 4.6 illustrates a neighborhood minutiae 

tessellation with more than five minutiae (red) and a neighborhood minutiae 

tessellation with less than five minutiae. 

 

Figure 4.6: (a) A reference minutia point (b) a non-reference minutia point 

In the cases when a minutia is in between the ridge counts, it is moved to the first 

ridge count between the two ridge counts. For example, consider sector 5 in Figure 

4.5 (a), the minutia in this case lies between the fourth ridge count and fifth ridge 

count. This implies that the minutiae will be moved to the S5 in the fourth ridge 

count.  

4.2.4. Finger code construction 

A finger code is constructed from a neighbourhood minutiae tessellation. Each 

reference minutia is represented by binary codes. Figure 4.7 below illustrates the 

process of constructing the bit maps of a minutia according to the proposed 

algorithm. Bit maps are cells; each cell contains a colour value. The bit value one is 

represented by white and the bit value zero is represented by black.  
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Figure 4.7 illustrates the process of constructing a bit map. 

 

Figure 4.7 : The process of finger code construction 

A minutia is represented by the concatenation of all the binary rows (sectors) in 

figure 4.7(b) which results in the following scalar array. 

Minutiae= [1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1]          (4.4) 

Figure 4.8 illustrates the bit maps of the reference minutiae in figure 4.7. 

 

Figure 4.8 : Bit maps of neighbourhood minutiae circular tessellation in Figure 4.7 

A finger code is composed of all the bit maps that are constructed from all the 

reference minutiae in the template. The bit maps above in Figure 4.8 represent a 

single reference minutia. The number of rows in a finger code is not always the 

same. They are equivalent to the number of the reference minutiae present in a 

template. The number of columns in the finger code is always 30 which is the 

number of the cells in a neighbourhood minutiae tessellation. 
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 Figure 4.9 illustrates a finger code with 16 rows and 30 columns. 

 

Figure 4.9 : Finger code which is made out of 16 reference minutiae points 

(16 rows) 

4.2.5. Finger code comparison 

The proposed algorithm uses Hamming distance to compare the finger codes. Each 

row in a reference finger code is compared to every row in the query finger code. 

The predefined matching score for pairing the minutiae is 6. This means that, if a 

matching score between the compared minutiae has a Hamming distance of 6 or 

less than less 6, they match. Otherwise they do not match. The predefined matching 

score of 6 is chosen because if a Hamming distance of less than 6 is chosen the 

matcher tends to be too strict and rejects the genuine finger code. When a Hamming 

distance of greater than 6 is chosen the matcher tends to be too liberal and accept 

the imposter’s finger code. Let 𝑅 = {𝑅𝑖, 𝑖 = 1 … 𝑡} and 𝑄 = {𝑄𝑗, 𝑗 = 1 … 𝑝} be reference 

finger code and the query finger code respectively. Where 𝑡 the number of rows in 

the reference finger code and 𝑝 is the number of rows in the query finger code. 

Hamming distance 𝐻𝐷𝑖𝑗  between 𝑅 and 𝑄 is calculated using equation 4.5. 

                                                𝑯𝑫𝒊𝒋 𝑹𝒊 𝑿𝒐𝒓  𝑸𝒊                                                                 (4.5) 

Boolean exclusive-OR (Xor) measures the number of dissimilarity between the 

binary code 𝑄𝑗 and 𝑅𝑖. 
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Each row from a reference finger code is compared with every binary row from the 

query template.  

Figure 4.10 illustrates the reference minutiae comparisons using finger codes rows. 

 

Figure 4.10 : Reference minutiae comparisons using finger codes rows 

In figure 4.10 the first row of the reference finger code is compared to all the rows of 

query finger code to obtain the matching score. Each row in a finger code represents 

a reference minutia point. This process of comparing the finger code rows is done to 

the second row of the query finger code up until the last row of the query finger code. 

4.2.6. Matching score and decision making 

The proposed algorithm uses the following steps to calculate the matching score: 

 Calculate the number of matched minutiae.  

 Calculate the number of the reference minutiae in the reference template and 

in the query template using equation 4.5 and equation 4.6. 

                   𝐑𝐅𝐢 = 𝐉, 𝐉 = 𝟏, … … 𝐧                                                                              (4.5) 

 

                𝐑𝐅𝐣 = 𝐊, 𝐊 = 𝟏, … … 𝐦                                                                            (4.6) 

Where 𝐽=number of rows in a reference finger code and 𝐾= number of rows in 

a query finger code. 𝑅𝐹𝑖 is the number of reference minutiae in a reference 

finger code and 𝑅𝐹𝑗 is the number of reference minutiae in a query finger code. 

 Find the minimum number of the reference minutiae between the reference 

finger code and the query finger code using the following condition. 

𝑖𝑓      𝑅𝐹𝑖<𝑅𝐹𝑗 
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          𝑀𝑁𝑅𝐹 =  𝑅𝐹𝑖  else 

𝑀𝑁𝑅𝐹= 𝑅𝐹𝑗 

End; 

Where 𝑀𝑁𝑅𝐹 is the minimum number of the reference minutiae between the 

reference finger code and the query finger code. 

 Divide the number of matched minutiae by the minimum number of minutiae 

that is obtained in the previous step in order to get the total matching score 

using the equation 4.6. 

                        𝑻𝒐𝒕𝒂𝒍 𝒎𝒂𝒕𝒄𝒉𝒊𝒏𝒈 𝒔𝒄𝒐𝒓𝒆
𝑴𝑴

𝑴𝑵𝑹𝑭
                                                                              (4.7) 

where 𝑀𝑀 represent matched minutiae. All the matching score values that are 

obtained between the reference minutiae in and the query template are stored in an 

array. The algorithm selects all the scores that are under the threshold in an array to 

pair the minutiae. A threshold is a value that indicates that the minutiae which are 

compared either match or do not match. The reference template and the query 

template do not always have the same number of minutiae due to the inaccuracy of 

the minutiae extractor. The minimum number of minutiae between the reference 

template and the query template divides the number of matched minutiae. This is 

because it is the maximum number of minutiae which can match. For example, if ten 

minutiae is matched to fifteen minutiae. The maximum of the minutiae that can 

pair/match is ten minutiae.  

The proposed algorithm was derived from the work of F. Benhammadi and K. B. 

Bey. This relies on core reference minutia to initiate the circular tessellation. It is 

difficult to precisely locate the core and even when there is a small amount of 

distortion in the core reference minutia the overall performance of an algorithm is 

affected. The work of F. Benhammadi and K. B. Bey deploys a circular tessellation of 

32 sectors and 16 ridge counts. Each finger code is represented by 512 bits (16*32). 

The proposed algorithm uses a circular tessellation of 6 sectors and 5 ridge counts in 

each reference minutia. The proposed algorithm uses a smaller number of sectors 

and ridge counts compare to the work of F. Benhammadi and K. B. Bey because it 

uses multiple reference minutiae. Each reference minutiae is represented by 30 bits 

in a finger code. 
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4.3 Summary 

This chapter presented the methodology that was used to match the finger codes 

and the research design. It also described how the finger codes were circularly 

tessellated and how the minutiae information was presented in the finger code. The 

next chapter is going to present how the methodology was implemented. 
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Chapter 5  

5. Implementations 

This chapter is going to discuss the implementation environment of the proposed 

MoC algorithm for this dissertation. It presents the complete pseudo code for 

constructing a finger code and matching the finger codes, neighbourhood minutiae 

localization binary codes structure and time complexity of the proposed MoC 

algorithm. 

5.1. Implementation Environment 

The MATLAB code for the proposed algorithm was implemented under the following 

environment: 

 Installed memory (RAM) of 8GB 

 Windows 7 Enterprise 64-bit Operating System 

5.2. Proposed algorithm 

The proposed MoC algorithm creates a function to construct a finger code and a 

function to match the finger codes. 

5.2.1. Pseudo code for constructing a finger code 

Table 5.1: Table for constructing a finger code. 

Constructing a finger code 

Input Reference fingerprint and query 

fingerprint. 

Output 

 

1. Feature vectors (minutiae points). 

2. Circular minutiae tessellation for 

each reference minutia point. 

3. Binary string for each reference 

minutiae point. 

4. Finger code 
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The proposed algorithm will read the fingerprint from FVC2002/DB1-a database and 

will extract the feature vectors from the fingerprint. Reference minutiae are used to 

generate circular minutiae tessellation. The binary output that is generated from each 

minutiae tessellation is deployed to construct a finger code.  

5.2.2. Neighbourhood minutia localization binary codes 

The proposed algorithm initiates the process of constructing a finger code by 

constructing an array A=[𝑠 ∗ 𝑅𝑐], where 𝑠 is the number of reference minutiae in the 

finger code and 𝑅𝑐 is the number of cells in each circular minutia tessellation 

containing only zero elements. It uses every neighbourhood minutiae circular 

tessellation for each reference minutia point to locate bit value one (1) in the finger 

code otherwise leave the bit value as zero (0). Table 5.2 illustrates the starting point 

and the ending point of each sector in a circular minutia tessellation. 

Table 5.2 : Starting and end point for each sector 

Sector number The stating point of the 

sectors in degrees 

The ending point of the 

sectors in degrees 

First sector 0  60  

Second sector 60 120 

Third sector 120 180 

Fourth sector 180 240 

Fifth sector 240 300 

Sixth sector 300 360 

 

The starting point of the first sector is aligned to each reference minutia orientation of 

its circular tessellation. This is done this way to make the proposed algorithm rotation 

invariant. The algorithm identifies sector number, where the neighbourhood minutiae 

are located by finding the angle between that neighbourhood minutia and the 

reference minutia point.  
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Figure 5.1 illustrates the angle between that neighbourhood minutia and the 

reference minutia point. 

 

Figure 0.1: illustration of the angle between that neighbourhood minutia and the 

reference minutia point (green) 

For example the angle between the reference minutia and the neighbourhood 

minutia in cell number 10 is 29 degrees, which means the neighbourhood minutia is 

in sector one. The proposed algorithm finds the angle between each neighbourhood 

minutia and the reference minutia point to find in which sectors the minutiae are 

located. The proposed algorithm identifies the distance between the reference 

minutia point and the neighbourhood minutia in order to find the ridge count number. 

Table 5.3 illustrates the starting and the ending point of each ridge count in each 

circular minutiae tessellation. 

Table 5.3 : The starting and the end point of each ridge count in each circular 

minutiae tessellation. 

Ridge count 

number 

The stating point of the 

ridge count in pixels 

The ending point of the 

ridge count in pixels 

First ridge count 0 26 

Second ridge count 26 40.8 

Third  ridge count 40.8 55.6 

Fourth ridge count 55.6 70.4 

Fifth ridge count 70.4 80 

 

When the algorithm detects a minutia inside the sector, it calculates the distance of 

the reference minutia point to that neighbourhood minutia point in order to obtain the 
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ridge count number. Whenever the sector number and the ridge count number of the 

neighbourhood minutia are found, the algorithm places one (1) in a finger code. The 

algorithm places zero (0) in the cell numbers where the minutiae are not found.  

5.2.3. Matching algorithm between two finger codes 

After circular tessellating a neighbourhood minutiae tessellation, the finger code is 

constructed from the circular tessellation.  Then the reference finger code is 

compared to a query finger code.  

Table 5.4 presented below illustrates the matching algorithm conceptualized for 

matching finger codes.  

Table 5.4 : Finger code comparison 

 

 

 

Input- 

process- 

output 

model 

Finger code comparison 

Input Reference finger code and query finger code 

 

 

Processing 

 

1. Take the minutia 𝑖 (binary string) from the reference 

finger code. 

where 𝑖=1,2,3,… and 

𝑚1,𝑚2,𝑚3,𝑚𝑖   is reference minutiae numbers for the 

reference finger code. 

2. Search for the pairing minutia 𝑗 in the query finger code  

for 𝑚𝑖 

where 𝑗=1,2,3,…and 

𝑚1,𝑚2,𝑚3,𝑚𝑗   is reference minutiae numbers for the query 

finger code. 

3. If a pairing reference minutia is found: 

Remove the reference minutia to avoid matching the 

same minutiae more than once. 

4. Calculate all the paired minutiae from the finger codes. 

5. Calculate the percentage match. 

 

 

The Hamming distance algorithm starts calculating the XOR value between the 

binary string 𝑚𝑖 to the binary string 𝑚𝑗 using equation in 4.5. 
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The algorithm finds the Hamming between two binary strings. This algorithm finds 

the Hamming distance between the first row of each binary string 𝑖 in the reference 

template and every binary string  𝑗 in the query template. When all the Hamming 

distances are obtained, the algorithm creates an array of all the Hamming distances 

which are obtained sequentially. For example the Hamming distance values between 

the reference minutia in the reference template and each reference minutia in the 

query template which has 25 reference minutiae has an array of [1, 𝑚𝑗]. 

The algorithm selects the minimum Hamming distance from all the Hamming 

distances that are obtained. In the proposed algorithm, the first reference minutia in 

reference template matches with the sixth reference minutia in the query template. 

The maximum Hamming distance of six or less than six indicates a match. In this 

algorithm every binary string indicates a minutia. As soon as a match is found the 

corresponding binary string is cancelled so that it does not have to be matched with 

another minutia again. 

5.3. Time complexity 

Time complexity is a way to formally measure the amount of time used to execute 

the program. Big O Notation is going to be used to evaluate the time complexity of 

the proposed algorithm and it is a way of measuring how the program/algorithm 

scales as the amount of time increases. It characterizes function according to the 

growth rates.  

 O - Represents the function/algorithm that is under evaluation. 

 N - Represents the number of elements that are present in the function. 

Time complexity is mainly affected by the following list of items: 

 Operations (+,/,-,*) 

 Comparisons (<,>,==) 

 Looping (such as for loop) 

 Function calls 

 Variables 



  

54 
 

5.3.1. Big O notation for constructing finger codes 

In the proposed algorithm the extraction of feature vectors is described by the 

function 𝑓(𝑛) =1.  Circularly tessellating each reference minutia is described by the 

function of 𝑓(𝑛)= 𝑛. Circular tessellating each feature vector into sectors is described 

by the function of 𝑓(𝑛)= 𝑛. Finding all the neighbourhood angles around each 

reference minutia, and creating a binary string for each reference minutia point is 

described by the function 𝑓(𝑛)= 𝑛. The entire function for constructing a finger code 

is described by the function 𝑓(𝑛)= 𝑛. Thus the complexity time of the algorithm is 

linear. Therefore it gives an indication that the proposed algorithm will be fast and 

hence makes it suitable to be used in MoC. The algorithm for constructing the finger 

code is linear because it uses the following steps: 

 The proposed algorithm circular tessellate each reference minutia into sectors 

by calculating the angle of each sector using equation 5.1, calculating the 

starting point of each sector using equation 5.2, calculating the ending point of 

each sector using equation 5.3. 

𝑨𝒏𝒈𝒍𝒆 𝒔𝒆𝒄𝒕𝒐𝒓 =  
𝝅

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒆𝒄𝒕𝒐𝒓𝒔
                                                                                              (0.1) 

𝒔𝒕𝒂𝒓𝒕 𝒔𝒆𝒄𝒕𝒐𝒓 𝒊𝒏 𝒔𝒏 = (
𝝅

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒆𝒄𝒕𝒐𝒓𝒔
∗ 𝒔𝒏) − 𝟔𝟎                                                              (0.2) 

Where 𝑠𝑛  is sector number 

𝑬𝒏𝒅 𝒔𝒆𝒄𝒕𝒐𝒓 𝒊𝒏 𝒔𝒏 = (
𝝅

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒆𝒄𝒕𝒐𝒓𝒔
∗ 𝒔𝒏)                                                                             (0.3) 

𝑠𝑛 represents a sector number where  𝑛 = 1,2,3,4,5,6 and number of sectors is 6. 

The proposed algorithm uses a constant time complexity to tessellate and find the 

angle of each sector, a starting point, and the ending point for each sector. 
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The proposed algorithm uses code in Figure 5.2 to find the starting point, and the 

ending point for each sector. 

 

Figure 0.2 : Source code for obtaining the starting and the ending point of each 

sector 

 The proposed algorithm circularly tessellates each reference minutia into ridge 

counts by inputting the radius of each ridge count using the following code. 

 

Figure 0.3 : Radius of each ridge count in a circular tessellation 

The time complexity of this algorithm is constant. 

 The proposed algorithm uses the following code to calculate Euclidean 

distance and the angle between the reference minutiae and their 

neighbourhood minutiae.  
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Figure 4.5 illustrates a code for generating the finger code 

 

Figure 0.4: source code for calculating Euclidean distance and the angle 

between the reference minutiae and their neighbourhood minutiae. 

 

The time complexity for calculating the Euclidean distance and the angle between 

the reference minutiae and their neighbourhood minutiae is linear. 

The proposed algorithm converts the circular tessellation into binary codes. This is 

done by searching for minutiae in sectors and ridge counts. The proposed algorithm 

uses equation 5.4 to check if the minutia is inside the circular tessellation. 

𝒙𝟐+𝒚𝟐 =<𝟖𝟎                                          (0.4) 

If the Equation 5.4 is satisfied, this implies that the minutia is inside the circular 

tessellation. Otherwise the minutia is out of the circular tessellation. The proposed 

algorithm uses the code in figure 5.5 to check in which cell the minutia is located in a 

circular tessellation. 
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Figure 5.5 illustrates a code which checks in which cell the minutiae is located  

 

Figure 0.5: Source code for finding in which cell the minutia is located in a circular 

tessellation. 

5.3.2. Big O notation for matching finger codes  

Loading the finger codes in the matching algorithm is described by the function 

𝑓(𝑛)=1. Searching for the pairing minutia is described as a function of 𝑓(𝑛) = 𝑛. 

Calculating all the paired minutiae and decision-making uses 𝑓(𝑛) =1. The entire 

complexity time of finger codes matching program is described by 𝑓(𝑛) = 𝑛. This 

indicates that the functions for matching the finger codes is also fast and concludes 

that the time complexity proposed MoC algorithm is linear. 

In order to make the matching algorithm linear the proposed algorithm avoids making 

the proposed algorithm quadratic by finding the maximum number of rows which can 

be present in a finger code (𝐹𝑐𝑜𝑑𝑒𝑀𝑎𝑥𝑟𝑜𝑤𝑠). The proposed algorithm extends a 

reference finger code with rows of zeros to add up the rows in the finger code to the 

maximum number which can be found in a finger code. This is because the matcher 

uses the single loop to loop through the rows in the query finger code and the 

matcher does not use loop to loop through rows in the reference finger code to avoid 

a nested loop. Hence the matcher extends the reference finger code with rows of 

zeros to add up the rows in the finger code to the maximum number which can be 

found in a finger code. 
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The proposed algorithm extends the reference finger code to make all the rows in a 

finger code add up to 𝐹𝑐𝑜𝑑𝑒𝑀𝑎𝑥𝑟𝑜𝑤𝑠. The proposed algorithm declares each row in a 

finger code using the following code: 

 

Figure 0.6: Source code for declaring each row in a finger code 

The time complexity of the source code for declaring each row in a finger code is 

linear.  

The proposed algorithm used a reference finger code with 20 rows. The last 10 rows 

are rows with binary strings of zeros. 

The proposed algorithm uses the for loop to match the reference finger codes and 

the query finger code.  

The proposed algorithm uses the following code to compare the reference finger 

code and each query finger code. 

 

Figure 0.7: The source code to compare the reference finger code and each query 

finger code 

After obtaining the Hamming distances, the proposed algorithm eliminates all the 

Hamming distance which was obtained using rows with binary strings of zeros in the 

reference template and stores all the Hamming distance in an array. The proposed 
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algorithm goes through the array to select all the Hamming distances which are less 

than 6. Immediately the matcher finds a Hamming distance that is less than 6, it 

cancels the entire row and the column from where that Hamming distance was 

found. This is done to avoid pairing the same minutia more than once. The proposed 

algorithm starts by finding the Hamming distance of zero first between the reference 

minutiae. Then find the Hamming distance of 0 up until 6 between the reference 

minutiae using the following code. 

 

 

Figure 0.8: Source code for finding index of where the Hamming distance is under 

the threshold was found 

The proposed algorithm uses the same code for the Hamming distance from 1 up 

until 6. Then the proposed algorithm adds all the matched minutiae and divides it by 

the minimum number of minutiae between the reference template and the query 

template to get a matching score. 

5.3.3. Analysis of best and worst scenario 

The time taken to compare a fingerprint depends on the number of minutiae present 

in the fingerprint. The algorithm will experience a worst case scenario when it is 

matching the finger codes with more minutiae and best case scenario with when 

fewer minutiae are compared. 

5.4. Summary 

This chapter presented the implementation environment of the proposed algorithm 

and the pseudo code that was used to construct and to match the finger codes. It 

also describes how the proposed algorithm uses the circular minutiae tessellation to 

identify binary structure in the finger code and calculate the time complexity of the 

proposed algorithm using the Big O notation. The following chapter is going to 

describe how the proposed algorithm performs in various challenges of fingerprint 
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matching. It will also describe the verification and validation of the proposed 

algorithm.   
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Chapter 6  

6. Verifications and validations 

The purpose of this research was to develop an accurate fingerprint MoC algorithm 

which is fast. This chapter portrays how the algorithm deals with challenges found in 

fingerprint matching algorithms (Rotation, translation and distortion, as well as false 

and missing minutiae in the template). The chapter also verifies and validates the 

implementation of the proposed fingerprint MoC algorithm. This chapter will also give 

the overall matching accuracy of the proposed algorithm.  

6.1. Accuracy evaluation and minutiae pairing 

The accuracy of a matcher can be affected by the following common errors: 

 Failure to correctly pair the corresponding minutiae between the query 

template and the reference template which leads to false non-match errors. 

This is because of the inconsistencies and variability in the same finger which 

is captured in different instances.  

 Incorrectly pairing minutiae from different fingers which lead to false match 

errors. 

False non-match errors are caused by deformation of fingerprints during fingerprint 

acquisition which causes the fingerprint to be inconsistent in all instances. False 

match errors are caused by similar features which are obtained between different 

fingers and false minutiae. The proposed algorithm used the threshold of 6 to pair 

the minutiae to compensate for fingerprint challenges which are found in fingerprint 

verification systems. This implies that if the Hamming distance between the 

reference minutiae and query minutia is 6 or less, the minutiae will pair, otherwise 

they do not pair. Challenges found in fingerprint matching involve rotation, translation 

and distortion, as well as false and missing minutiae in the template.  

6.1.1 Translation between minutiae 

The proposed algorithm is translation invariant because even if the location and the 

orientation of the minutiae change, the reference minutia will still have the same 

neighbourhood minutia structure. The proposed algorithm is proved to be translation 
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invariant based on the experimental results. Figure 6.1 illustrates how the algorithm 

performs when there is a translation difference between different impressions of the 

same finger during minutiae paring. 

 

Figure 0.1: (a) Reference minutia (red) which is located at point (157,198,122.34°) 

(b) Reference minutia (red) which is located at point (208,244,122.34°) 

The reference minutia in Figure 6.1 (a) is located at point (157,198,122.34°) and the 

reference minutia in Figure 6.1 (b) is located at point (208,244,122.34°). The angle of 

the two minutiae is the same from the minutiae file. The first sector starts from the 

minutia orientation in the circular minutiae tessellation (green). The translation 

difference between the two circular minutiae is (51, 46.0°). This algorithm is 

translation invariant because it uses multiple reference minutiae and each reference 

minutia is surrounded by the same minutiae neighbours with the same Euclidean 

distances between minutiae neighbours irrespective of whether the reference minutia 

is translated. The Euclidean distance between the neighbours can only vary when 

the fingerprints are distorted. Hence the translation of the minutia does not affect the 

accuracy of the matcher. However, distortion in fingerprints affects the matching 

accuracy of the proposed algorithm. The reference template and the query template 

from Figure 6.1 are two impressions of the same finger. The Hamming distance 

between reference minutia in Figure 6.1(a) and the reference minutia in Figure 6.1(b) 

is two. This Hamming distance value indicates that the two reference minutiae 
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perfectly match. The Hamming distance value is caused by deformation (distortion). 

In addition, the translation of the templates does not affect the matching accuracy. 

6.1.2. Partial prints/incomplete prints  

Matching partial prints is a challenge especially when there is a small overlap 

between the two templates.  

Figure 6.2 illustrates the same reference minutia from different impressions of the 

same fingerprint with different number of neighbourhood minutiae. 

 

Figure 0.2: Query template with partial prints 

In Figure 6.2, the reference template does not produce the same neighbourhood 

minutiae tessellation when comparing to the query template. This is due to partial 

prints found in the query template. The Hamming distance between the two 

templates is 5, which indicates a match between the reference minutiae. The 

Hamming distance between the two reference minutiae is caused by the following 

reasons: 

 S1 and S2 in the query template do not have all the neighbourhood minutiae 

that are found in the reference template.  
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 S4 in the reference template does not have a minutia which is present in the 

query template. This is as a result of the ridges that are not captured by the 

sensor during the enrolment phase. 

In addition, all the minutiae that appear in the query template do not appear in 

reference template and vice-versa. The reference minutiae are correctly paired 

because the majority of the minutiae that appear in reference template are also in 

the query template.  The proposed algorithm can only tolerate partial prints to a 

certain degree. It fails to pair the minutiae when there is a small overlap between the 

neighbourhood minutiae circular tessellation. 

6.1.3. Distortion 

Distortion is the change in the impression of the template which makes the template 

appears different. The proposed algorithm used more than one reference point to 

cater for distortion. In the algorithm, the effect of distortion in the acquired template 

(query template) results in the minutiae being located in a different cell number as 

compared to the reference template in the generated neighbourhood minutiae 

tessellation. This may result in failure to pair with the corresponding minutiae, which 

leads to false non-match errors.  

Figure 6.3 illustrates two different impressions of the same finger displaying the 

effect of distortion. 

 

Figure 0.3: Different impressions of the same finger with the effect on distortion in 

the query template. 
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In Figure 6.3, the query template has randomly disturbed minutiae location and 

minutiae orientation due to the effect of distortion. In this particular case, the 

reference template is wider than the query template. This introduces Euclidean 

distance change between minutiae because of distortion. 

Figure 6.4 illustrates circular tessellation of the same reference minutia using 

different impressions of the same finger. 

 

Figure 0.4: Circular tessellation of the same reference minutia in different 

impressions of the same finger. 

The Hamming distance between the circular minutiae tessellation in figure 6.4 (a) 

and in figure 6.4 is 5. These two circular tessellations from figure 6.4 used the same 

reference minutia from different impressions of the same finger to generate circular 

tessellations. A Hamming distance of 5 indicates that the reference minutia in the 

query template pairs with reference minutia in the reference template. This is 

because the proposed algorithm uses the threshold of hamming distance of 6 to pair 

the minutiae. This Hamming distance value is obtained due to the effect of distortion. 

The proposed algorithm can cater for distortion up to a certain degree. It fails to pair 

minutiae for templates with large amounts of distortion. 

6.1.4. Rotation, missing and false minutiae 

Comparing different impressions of the same finger with different rotation angles 

significantly affects the matching accuracy. In order to avoid this, the proposed 
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algorithm initiates the neighbourhood minutiae tessellation at the orientation of the 

reference minutia. This means that the first sector of the circular tessellation starts at 

the orientation of the reference minutia. Hence the proposed algorithm is rotation 

invariant. 

 Figure 6.5 illustrates two impressions of the same finger with different rotation angle. 

 

Figure 0.5 : Two impressions of the same finger with rotation difference of 25.53 

degrees 

Figure 6.6 illustrate circular tessellation of the same reference minutia using the 

same finger of different impressions. 

 

Figure 0.6 : Circular minutiae tessellations of the same reference point using the 

templates in Figure 6-5 
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In figure 6.6, the Hamming distance between the reference minutiae in the reference 

template and the query template is 4. This indicates that the reference minutia from 

the query template pairs with the reference minutia from the reference template. This 

Hamming distance value between the two reference minutiae is present due to the 

following reasons: 

 Minutiae extractor failed to extract the ridge ending in S1 of Rc5 in the 

reference template. 

 Minutiae extractor failed to extract the core reference point in S4 of Rc1 in the 

query template. 

 Minutiae extractor failed to extract the ridge bifurcation in S4 of Rc2 in the 

reference template. 

 The ridge line which creates ridge ending (minutia 8) in the query template 

does not exist in the reference template. 

 

Figure 0.7 : Two impressions of the same finger with different rotation difference of 

37 degrees 
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Figure 6.8 illustrate circular tessellation of the same reference minutia using the 

same finger of different impressions. 

 

Figure 0.8 : Circular minutiae tessellations of the same reference point using the 

templates in figure 6.7 

In Figure 6.8, the two circular minutiae tessellation of the reference minutiae from the 

two templates indicate that the reference minutiae correspond with a Hamming 

distance of 4. This Hamming distance value is present due to the following reasons: 

 False minutia point is extracted in S1 of Rc4 in the query template. 

 Distortion- the ridge bifurcation in S6 of Rc5 in the query template is outside 

the circular minutiae tessellation in the reference template. 

 The distances between the neighbourhood minutiae are different due to 

distortion. 

This concludes that minutiae extractor errors (missing and false minutiae) and 

distortion affect the matching accuracy of the proposed algorithm. Furthermore, it is 

also ascertained that the proposed algorithm rotation is invariant. 

6.2. Speed of execution 

Although the proposed algorithm uses more than one reference minutia point to 

generate circular minutiae tessellations, it does not compute an algorithm which 

selects reference minutiae. Since the proposed algorithm uses the minutiae which 
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are already extracted by the terminal, it only uses the minutiae that are distinctive 

enough to be used for matching to reduce computations. 

 Figure 6.9 illustrates minutiae that are discarded during minutiae comparison. 

 

Figure 0.9 : Discarded minutiae during minutiae pairing 

In Figure 6.9, some of the minutiae which appear in both templates have 

neighbourhood minutiae tessellations which have few minutiae. These minutiae 

cannot be used as reference minutiae, because this results into majority false pairing 

of minutiae. The proposed algorithm only uses minutiae points which have more than 

five neighbourhood minutiae. The algorithm is advantageous on matching speed 

because it reduces the computation by not developing an algorithm which has to 

compute a reference point before it generates a circular minutiae tessellation unlike 

a core-based fingerprint algorithm which was proposed by Bey. 

Table 6.1 illustrates the percentage of False Non-Match Rate (FNMR) and the 

causes of FNMR 
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Table 6.1: FNMR analysis 

FNMR analysis 

Fingerprints problems FNMR percentage 

Partial prints 0.91 

Distortion 2.04 

Missing and false minutiae 0.49 

Partial prints and distortion 0.82 

Distortion, missing and false minutiae 0.56 

Partial prints, distortion, missing and false minutiae 0.67 

 

These results show that the proposed algorithm is mainly affected by distortion in 

templates. The FMR is caused by the similarity in minutiae structure in the different 

fingerprints. 

6.3. Performance evaluation 

The performance of the proposed fingerprint matching algorithm is evaluated using 

the False Match Rate (FMR) and the False Non-Match Rate (FNMR). As explained 

in previous chapters, False Non-Match Rate is the probability of genuine attempts 

being wrongly not matched and FMR is the probability of the imposters being 

incorrectly matched. The proposed fingerprint matching algorithm uses EER to 

assess the accuracy of a matcher. EER is the error rate where FMR and the FNMR 

are assumed to have the same value. The FMR and the FNMR are predetermined 

by the threshold. The threshold2 is defined as a pre-requisite to decide whether the 

fingerprint should match or not match. The matcher may prefer to have more FNMR 

than FMR or vice versa, depending on the type of the application the algorithm is 

used for. The proposed algorithm has a Failure-To-Enrol (FTE) rate of 5%. FTE is 

the number of templates which were not successfully enrolled due to absence of 

reference minutiae points or poor quality fingerprint images. The proposed algorithm 

uses the True Acceptance Rate (TAR) and the True Rejection Rate to obtain the 

FMR and FNMR. The True acceptance rate (TAR) is the percentage of the times that 

                                                           
2
The threshold is a specific number that is set to indicate that a query template has to be accepted or rejected. 
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the system (correctly) verifies a true claim or identity. TAR is the synonym for 

Genuine Acceptance Rate (GAR). 

True Rejection Rate (TRR) is the percentage of times a system (correctly) rejects a 

false claim. The proposed algorithm used 𝑖𝑡ℎ fingers, each finger has 

𝑗𝑡ℎ impressions 𝑖 = 1,2,3 … … 100, 𝑗 = 1, … 8., where 𝑇 represent a reference template 

and 𝐼 represent the query template. 

The algorithm uses the following steps to calculate the TAR and the TRR: 

 TAR - Each fingerprint is compared to its remaining impression, avoiding 

the symmetric comparison (if the first finger of the first impression is 

compared to the first finger of the second impression, the first finger of the 

first impression is not supposed to be compared to the first finger of the 

second impression). Therefore, the total number of genuine recognition 

attempts is (100(8*7)/2) = 2800, if FTE rate is zero. 

 TRR - The first template of each finger is compared to the first template of 

the remaining impression, avoiding the symmetric comparison. The total 

number of imposter recognition attempts is ((100*99)/2) = 4950, if FTE rate 

is zero. 

In addition, 7750 comparisons were used to test the matching accuracy of the 

proposed algorithm. The proposed algorithm obtained the TAR and TRR of 94.5%, 

and FTE of 5%. The algorithm uses a threshold of 6 to pair the minutiae and a 

threshold of 0.179 to match the finger codes. The following equations were used to 

calculate FMR and FNMR 

𝐅𝐌𝐑 =  
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒎𝒑𝒐𝒔𝒕𝒆𝒓𝒔 𝒂𝒄𝒄𝒆𝒑𝒕𝒆𝒅

𝑻𝒐𝒕𝒂𝒍 𝑰𝒎𝒑𝒐𝒔𝒕𝒆𝒓𝒔
∗ 𝟏𝟎𝟎 =

𝟐𝟕𝟑

𝟒𝟗𝟓𝟎
= 𝟓. 𝟓                                           (0.1) 

 

𝐅𝐍𝐌𝐑 = 
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒈𝒆𝒏𝒖𝒊𝒏𝒆 𝒓𝒆𝒋𝒆𝒄𝒕𝒆𝒅

𝑻𝒐𝒕𝒂𝒍 𝒈𝒆𝒏𝒖𝒊𝒏𝒆𝒔
∗ 𝟏𝟎𝟎 =

𝟏𝟐𝟓

𝟐𝟐𝟔𝟎
= 𝟓. 𝟓                                    (0.2) 
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Figure 6.10 illustrates the error rates of the proposed algorithm. 

 

Figure 0.10 : Error rate curves for the proposed algorithm 

ZeroFMR, FMR100, FMR1000, FMR10000 describes the expected value of FNMR 

when FMR is 0.0, 01, 0.1, 0.01 respectively. Zero FNMR describes the value of 

imposters in the system when all the genuine attempts are not rejected. 

Table 6.1 below illustrates the comparison of the proposed algorithm with the work of 

[21]. 

Table 6.2: Comparison of the proposed algorithm on DB1-a 

 

Validation is the process of assessing the proposed algorithm to check whether it 

meets all the requirements. Validation ensures that the model/algorithm is built 

correctly [65]. This research validates and verifies that the requirements of this study 

Criteria Proposed algorithm Core-based algorithm in 

[21] 

EER (%) 5.5 6.28 

Time Complexity 𝑓(𝑛) = 𝑛  or O(n) 𝑓(𝑛) = 𝑛2 or O(𝑛2) 
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have been meet. The goal of this research was to implement an accurate fingerprint 

MoC algorithm which can execute in a constrained smart card platform quickly 

(linear time complexity). Nevertheless some fingerprint algorithms compromise 

speed for accuracy or vice versa, especially in MoC algorithms. In contrast, the 

proposed algorithm focuses on both matching accuracy and matching speed. The 

problem statement of this research was solved due to the following reasons: 

 The proposed algorithm was implemented without using a core as a 

reference minutia with an acceptable recognition rate. 

 The algorithm provides an acceptable matching speed. 

 The proposed algorithm offers the advantage of matching accuracy. 

Verification ensures that the simulation or the experimental procedures were 

performed correctly [65]. This research verifies that the proposed algorithm can 

execute in a short period of time. This is because the time complexity of the 

proposed algorithm is linear. Time complexity is the time that it takes for the 

algorithm to finish. 

Table 6.3 illustrates time complexity classes. 

Table 6.3 : Time complexity classes 

Time complexity classes 

Name Running time 

(T(n)) 

Definition 

Constant time 𝑂(1) The algorithm always takes roughly the same 

amount of time irrespective of the input size (n). 

Linear time 𝑂(𝑛) The time varies directly with the size of the 

input size. 

Quadratic time 𝑂(𝑛2) The time varies by 𝑛2 according to the size 

input. 

 

Linear complexity algorithms are the most preferred algorithms as compared to 

quadratic complexity algorithms. This is because quadratic algorithms are time 

consuming because they take too much time to process data when compared to 
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linear algorithms.  This implies that the proposed algorithm is faster when compared 

to the work of Bey as illustrated in table 6.2. 

This research also verifies that the algorithm was computed without using a core 

reference minutia and obtained an acceptable recognition rate. This is because of 

the proposed algorithm obtained the TAR of 94.5% and the matcher uses extracted 

minutiae as reference minutiae. Equation 6.3 illustrates how the TAR was calculated. 

𝑻𝑨𝑹 = 
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒈𝒆𝒏𝒖𝒊𝒏𝒆 𝒂𝒄𝒄𝒆𝒑𝒕𝒆𝒅

𝑻𝒐𝒕𝒂𝒍 𝒈𝒆𝒏𝒖𝒊𝒏𝒆𝒔
∗ 𝟏𝟎𝟎 =

𝟐𝟏𝟑𝟔 

𝟐𝟐𝟔𝟎
= 𝟗𝟒. 𝟓                                                        (0.3) 

Figure 6.11 illustrates a reference point of the proposed algorithm. 

 

Figure 0.11 : Reference point (red) in a neighbourhood minutiae tessellation 

According to the proposed algorithm, every minutia in a template which has more 

than five closest minutiae neighbours which are not further than 80 pixels from that 

minutia is a reference minutia. The algorithm outputs the expected binary codes and 

bit maps out of the circular minutiae tessellation. 

This research also verified that the proposed algorithm offered a good matching 

accuracy. The algorithm performed 7210 comparisons, with 4950 imposter attempts 

and 2260 genuine attempts. The algorithm obtained TAR and TRR of 94.5%, with an 

EER of 5.5% using DB1-a as illustrated in Figure 6.10. This implies that the 

proposed algorithm offers a good recognition rate as compared to the work of Bey 

(2013). 

6.4. Summary 

This chapter presented the matching results, which evaluated how the proposed 

algorithm performed with fingerprint challenges (rotation, translation and distortion as 

well as missing and additional minutiae) during minutiae pairing.  It also explained 
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how these challenges affect the proposed algorithm. The experimental results 

illustrated that the matching errors which are found in the algorithm are caused by 

partial prints, distortion and minutiae extractor errors. However the algorithm caters 

for these challenges but only up to a certain degree. This chapter also presented the 

performance evaluation of the proposed MoC verification algorithm in terms of 

accuracy and compared the proposed approach with the work of Bey (2013). The 

following chapter is going to give a conclusion and the possible future work.  
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Chapter 7  

7. Conclusion 

This chapter presents the conclusion drawn from the previous chapters of this 

research dissertation. This chapter presents a brief summary, future work and 

conclusion of this study. 

7.1. Summary 

The goal of this research was to develop and implement a fingerprint MoC algorithm 

which can accurately compare the fingerprints very rapidly (less than a second). 

Fingerprint MoC algorithms provide a superior secure authentication system when 

compared to PIN codes, ToC algorithms, and Work Sharing on-Card algorithms due 

to the following reasons: 

 PIN codes can easily be guessed, detected or stolen via fraudulent means; 

 ToC algorithms introduce security vulnerabilities due to the reference template 

that is sent to the terminal via communication channels during the verification 

process. This approach allows the imposter to steal the reference template 

along the communication channel; 

 Although work sharing on-card techniques relieve the computational load in 

the smart card by performing computationally intensive processes such as 

template alignment at the terminal’s site, this approach also introduces 

security vulnerabilities due to the template information that is sent out of the 

smart card. This is because even if the communication channel between the 

smart card and the terminal is encrypted, it is not guaranteed that the 

template cannot be stolen;  

 In MoC technology, the minutiae extraction and the data acquisition is done at 

the terminal’s site and the template comparison is done inside the secure 

environment of a smart card, the template never leaves the secure 

environment of a smart card. MoC technology makes it very difficult for the 

imposter to read the user’s fingerprint template. 
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In this study the smart card was considered as a secure environment because 

according to ISO/IEC 24787 (2010) on-card biometric comparison standard, there is 

no software that can be used to download the stored template(s) inside the smart 

card. This means that even if the user loses the smart card, it will be very difficult for 

the imposter to extract the reference template stored on the smart card as all the 

data in the environment of a smart card is encrypted [32]. 

MoC technology provides the highest degree of security and privacy protection to the 

cardholders. However, it is challenging to implement an accurate and fast matching 

MoC algorithm inside the restricted environment of a smart cart. This is because 

smart cards offer limited memory and processing speed. Implementing a fingerprint 

MoC algorithm inside a smart card requires a light weight matching algorithm.  This 

research reviewed that the matching accuracy and the speed of PC-based fingerprint 

algorithms outperforms MoC algorithms. This is because PCs are not resource 

restricted (have less memory and processing speed) like smart cards. 

The methodology of this research was derived from the work of Bey (2013).  The 

difference between the work of Bey (2013) and the proposed algorithm is the 

reference minutia in a template. The work of Bey (2013) uses a core as a reference 

minutia, instead of using the core reference point which is not always accurately 

computed, the proposed algorithm uses every minutia which has more than 5 closest 

minutiae surrounding the minutiae with an increasing distance of 80 pixels as 

reference point. The proposed method uses minutiae based-matching to find the 

similarity between the reference template and the query template.  Minutiae-based 

matching technique requires two steps namely: minutiae extraction and template 

comparison. Although the accuracy of a minutiae extractor affects the accuracy of a 

matcher, minutiae extraction is a fairly complex process which is not investigated or 

analysed in this study. The proposed algorithm used the previously extracted 

template from FVC2002 DB1-a to compare the templates. The templates were 

extracted using Minutiae Cylinder Code (MCC). This method uses more than one 

reference minutia to cater for distortion. The proposed matching algorithm is based 

on neighbourhood minutiae. Neighbourhood minutiae represent the nearest minutiae 

from a reference point, provided that the minutiae are inside the circular tessellation. 

The neighbourhood minutiae structure is characterized by attributes that are rotation 

and translation invariant. 
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Each reference minutia is circularly tessellated in every neighbourhood minutiae.  

This method uses the tessellated neighbourhood minutiae to construct a finger code.  

The number of rows in each finger code depends on the number of reference 

minutiae present in a template. The proposed approach offers the advantages of 

speed due to the binary codes that it utilizes to construct the finger codes.  

7.2. Significance of the research 

This research fills a gap in data security systems by developing and implementing an 

accurate and fast MoC algorithm. The proposed algorithm offers the following 

advantages: 

 It avoids the computationally intensive procedure of template alignment by 

using neighbourhood minutiae structure. 

 It does not depend on a core reference minutia to initiate the matching 

process. A core reference point is not always accurately detected. 

 This method is rotation and translation invariant. 

 It uses binary representation for finger codes which results in speeded up 

matching and a small template size. 

 This method offers a good recognition rate, speed and simplicity (does not 

use complex mathematics for calculations). 

 

7.3. Specific Contributions 

This work offers an efficient MoC algorithm which can be used for identity 

verification. The proposed algorithm can also be used as secure application software 

in different devices such as mobiles, Automated Teller Machine (ATM), laptop, PCs 

and smart cards for different applications such as banking, National ID, and door 

access control. The proposed approach can also be used as a stimulus for further 

research involving finger code MoC algorithm matching accuracy and speed. This 

study addresses the current MoC shortfalls which can further be used to implement 

various MoC algorithms in the future. It also opens up the following research 

questions regarding finger codes matching algorithms: 

 How to construct a finger code that cannot be revised to obtain the 

information of the minutiae? 
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 Which circular tessellation offers a higher matching accuracy regarding the 

circular tessellation size, number of sectors and number of circular bands? 

 How to order the finger code rows in order to speed-up the matching process? 

 How to construct the circular tessellation in order to obtain the finger code 

which has less effect of distortion? 

 How to identify finger code rows with partial neighbourhood minutiae (circular 

tessellation which contains the information about the entire tessellation due to 

partial prints) 

7.4. Feasibility of implementation 

Implementing a fast and accurate fingerprint matching algorithm inside a smart card 

requires careful monitoring of processing and memory usage. A matching algorithm 

has to be sufficiently light-weight to be implemented in a smart card. The proposed 

fingerprint MoC algorithm was implemented on a PC using MATLAB. The current 

smart cards contain 8, 16, or 32 bit processors with the memory size of 2-16 Kbytes 

of RAM, 64-300 Kbytes of ROM and 32-150 Kbytes of EEPROM. The 32 bit smart 

cards are classified as high end smart card mainly based on their price and 8 bit 

smart cards are classified as low cost smart cards. This research calculates the 

memory used to allocate the variables in the proposed algorithm to measure the 

feasibility of implementation of the proposed algorithm inside the smart card. The 

reference template is stored in the EEPROM memory and the query template is 

stored in the RAM memory. Using a template with 20 reference minutiae, the 

MATLAB code requires 4.8 Kbyte to store the reference template. The code requires 

4.8 Kbytes because it treats each bit as a character. The template with 20 reference 

minutiae in a smart card can require a memory of approximately 0.6 Kbytes. All the 

static variables in the smart card are stored in the EEPROM and the dynamic 

variables in the smart card are stored in the RAM.  The memory allocation of the 

variables in the RAM is approximately 15 Kbyte using MATLAB code on a PC. The 

memory allocation of the variables in the RAM is approximately 2.5 Kbyte using a 

smart card. The memory allocation of the variables in the EEPROM is approximately 

20 Kbyte using a MATLAB code on a PC. The memory allocation of the variables in 

the EEPROM is approximately 1.875 Kbyte using a smart card. This implies that it is 
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feasible to implement the proposed algorithm inside the smart card. It is feasible to 

implement the proposed algorithm in the smart card due to the following reasons: 

 The implementation of the proposed algorithm is simple, it uses four 

mathematical operations (*, /, +, - and XOR operator). It does not include 

complex mathematics such as trigonometry. 

 The time complexity of the proposed algorithm is linear. 

 The memory used in the proposed algorithm is less than the memory 

available on the smart card. 

The proposed algorithm used linear time complexity to match the finger codes. It 

uses the following steps to match the finger codes: 

 Load the reference template and the query template. Loading the whole files 

from start to the end uses the time complexity of O(n) where n is the file size. 

 If a number of rows in the query template are less than 50, fill the query 

template with rows of zeros until the query template has 50 rows. Fifty is the 

maximum number of rows that a template can contain. This is done to make 

the size of the all the query template the same and also to avoid using a 

nested loop to count the number of reference template and the number of the 

query template during the matching process. This is step uses make use of 

constant time complexity. 

 Create a loop which is going to take each row in a query template and make it 

a variable𝑣𝑞. 𝑣𝑞={𝑣1, 𝑣2,𝑣3, ….𝑣𝑙},𝑣𝑞  is the number of variables and 𝑙 represent 

the number of a variable. This step makes use of linear time complexity. 

 Create a for loop to compare the each row in the reference template with the 

all 𝑣𝑞 . This process makes use of linear time complexity 

 Calculate the number of matched rows. This step is down inside the loop of 

the previous step. 

 Decline or accept the query template. This step makes use of linear time 

complexity.  
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7.5. Conclusion 

This work concludes that the accuracy of the proposed algorithm is affected by the 

accuracy of the minutiae extractor, distortion and partial prints. In contrast the 

algorithm performs well when it encounters challenges such as rotation and 

translation. This research develops a fingerprint MoC algorithm without a 

computation of a core.  The proposed algorithm uses circular neighbourhood 

minutiae tessellation to construct the finger codes. The proposed algorithm uses 

multiple reference minutiae to cater for distortion present in templates during 

fingerprint matching. The experimental results showed that the proposed algorithm 

offers the advantages of speed and good recognition rate. The experimental results 

also showed the proposed algorithm is comparable with existing MoC algorithms and 

that it can fit into a smart card. The proposed algorithm obtained a better matching 

accuracy and speed when compared to the work of Bey (2013).  

7.6. Future work 

As future work, properties of fingerprint image distortion and partial/incomplete 

fingerprints will be studied. In order to use a different minutiae extractor that is more 

accurate than the one which is used for the proposed algorithm to improve the 

accuracy of the matcher, further study on different minutiae extractors will be done. 

The proposed algorithm will also be implemented inside the platform of the smart 

card. 
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