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Abstract

E-mail is an important and convenient communication tool used by many people on a daily basis. For

individuals it is an inexpensive way to stay in contact with family and friends located around the

world. An e-mail address serves as an online identity when signing up for different online services

like social media (Facebook) and social networking (LinkedIn). Companies use e-mails to facilitate

communication between employees and to communicate with their clients by sending information such

as newsletters, invoice statements and promotional content. E-mails are also used for core business

marketing. Unfortunately, some of the benefits provided by the e-mail application like sending out mass

e-mails with little effort at a minimal cost to the sender, are abused by some e-mail users known as

spammers. A spammer’s incentive for sending unsolicited e-mails in large quantities to an indiscriminate

set of recipients is mostly driven by revenue generation. Most spam messages sent contain content

related to promotional products and services, which might be a scam or phishing attempt to steal

sensitive user information like banking details and passwords. Currently, more than 55.00% of all

e-mail network traffic comprises unsolicited spam e-mails which clutters users’ inboxes. Traditional

spam-filtering approaches have thus far been unsuccessful in solving the spam problem. This is partly

due to spammers who generate new spam message content on a regular basis making it difficult for

spam filters to classify spam according to a fixed pattern.

The main purpose of this study is to determine the feasibility of employing a Generalized additive neural

network (GANN) to filter spam e-mail messages with a specific automated construction algorithm.

The GANN is a relatively new supervised machine learning technique capable of recognising complex

patterns in data and able to adapt to changes over time. The use of GANN models is suggested for

classification problems where it might be important to understand the relationship between input

attributes and the expected target value. In this study the definition of spam, consequences of

unmanaged spam and current spam-filtering techniques are investigated. The current state of the

spam problem is summarised followed by a discussion on artificial neural networks that have pattern

recognition capabilities. Literature related to the GANN is reviewed with a discussion on both the

interactive and automated construction methodologies for the GANN. The latter will be considered as

a possible spam filter to try and mitigate the spam problem. A number of spam filtering experiments

are conducted on five publicly available spam corpora (Enron, GenSpam, PU1, SpamAssassin and

TREC2005) each with different pre-processing techniques and evaluation measures. The Bagging and

Boosting ensemble techniques which may improve on the GANN’s results are also considered. The

GANN and ensembles are then compared to other spam filtering techniques applied to the five corpora

before being compared to each other. Results show that the GANN is a feasible spam filter able to

mitigate spam e-mails. It compares well to other spam filter techniques found in the literature. In

addition, both ensemble methods are able to improve on the GANN’s results in most cases.

Keywords: artificial neural networks, AutoGANN, bagging, boosting, classification, e-mail, ensemble,

GANN, Generalized additive neural networks, MLP, multilayer perceptron, spam.



Opsomming

E-pos is ’n belangrike en gerieflike kommunikasiestelsel wat deur baie mense op ’n daaglikse basis

gebruik word. Vir individue is dit ’n goedkoop manier om in kontak te bly met familie en vriende

regoor die wêreld. ’n E-pos adres dien ook as aanlyn identiteit wanneer aangesluit word by verskillende

aanlyndienste soos sosiale media (Facebook) en sosiale netwerke (LinkedIn). Maatskappye gebruik e-pos

om kommunikasie tussen werknemers te fasiliteer en met kliënte te kommunikeer deur inligting soos

nuusbriewe, fakture en promosie-inhoud te stuur. E-posse word ook gebruik vir kernbesigheidbemarking.

Ongelukkig word sommige voordele wat die e-posstelsel bied, soos die uitstuur van massa e-posse met

min moeite teen ’n minimale koste aan die sender, misbruik deur sommige e-posgebruikers bekend as

spammers. Spammers se aansporing vir die stuur van ongevraagde e-posse in groot hoeveelhede na ’n

willekeurige stel ontvangers is meestal gedryf deur inkomstegenerering. Die meerderheid gemorspos-

boodskappe wat gestuur word, bevat inhoud wat verband hou met die bevordering van produkte en

dienste wat ’n bedrogspul of strikroofpoging is om sensitiewe gebruikersinligting soos bankbesonderhede

en wagwoorde te bekom. Tans bestaan meer as 55.00% van alle e-posnetwerkverkeer uit ongevraagde

gemorspos wat gebruikers se aanlyn posbusse oorlaai. Tradisionele gemorsposfilterstelselbenaderings is

tans onsuksesvol in die oplos van die gemorsposprobleem. Dit is deels te wyte aan spammers wat op ’n

gereelde basis nuwe inhoud vir gemorsposboodskappe genereer en dit moeilik maak vir gemorsposfilters

om gemorspos volgens ’n vaste patroon te klassifiseer.

Die hoofdoel van hierdie studie is om die geskiktheid van die gebruik van ’n Veralgemeende additiewe

neurale netwerk (VANN) om gemorspos te filtreer met ’n spesifieke outomatiese konstruksie-algoritme te

bepaal. Die VANN is ’n relatiewe nuwe gekontroleerde masjienleertegniek wat in staat is om komplekse

patrone in data te herken. Dit is ook in staat om aan te pas by veranderinge met die verloop van

tyd. Die gebruik van VANN-modelle word voorgestel vir klassifikasieprobleme waar dit belangrik

sou wees om die verhouding tussen insetveranderlikes en die verwagte teikenwaarde te verstaan. In

hierdie studie word die definisie van gemorspos, die gevolge van onbeheerde gemorspos en huidige

gemorsposfiltertegnieke ondersoek. Die huidige stand van die gemorsposprobleem word opgesom,

gevolg deur ’n bespreking oor kunsmatige neurale netwerke wat patroonherkenningvermoëns het. ’n

Literatuuroorsig met betrekking tot die VANN word gegee en bevat ’n bespreking van beide die

interaktiewe en outomatiese konstruksiemetodes vir die VANN. Laasgenoemde sal gebruik word as ’n

gemorsposfilter om die gemorsposprobleem te probeer verminder. ’n Aantal gemorsposeksperimente is

op vyf publieke gemorsposkorpusse (Enron, GenSpam, PU1, SpamAssassin en TREC2005) uitgevoer -

elk met verskillende voorbereidingstegnieke en evalueringmaatstawwe. Die Sakvorming- en Bevordering-

ensembletegnieke wat moontlik kan verbeter op die VANN-resultate word ook in ag geneem. Die

VANN en ensembles word dan vergelyk met ander gemorsposfiltertegnieke wat toegepas is op die

vyf korpusse voordat dit met mekaar vergelyk word. Resultate dui aan dat die VANN ’n geskikte

gemorsposfilter is wat gemorpos kan verminder. Dit vergelyk goed met ander gemorsposfiltertegnieke

wat in die literatuur voorkom. Beide ensemblemetodes is boonop in die meeste gevalle in staat om te

verbeter op die resultate van die VANN.



Sleutelwoorde: AutoGANN, bevordering, ensemble, e-pos, gemorspos, klassifikasie, kunsmatige neurale

netwerke, MLP, multilaagperseptrone, sakvorming, VANN, Veralgemeende additiewe neurale netwerke.
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CHAPTER 1

INTRODUCTION

The internet is expanding at a rapid pace as new devices are connected to this global network on a daily

basis. Although the amount of data being generated is staggering, present-day computers help humans

to understand and manage it better. The internet provides a variety of information and communication

services of which electronic mail (e-mail) is one of the most popular communication services. Other

services include voice over internet protocol like Skype, instant messaging like WhatsApp, social media

websites like Facebook, shopping portals like Takealot, online gaming like Steam and cloud storage like

Google Drive. Most online services require an e-mail address for user authentication, password recovery,

newsletter sign-up, linking of multiple services and overall communication. Unfortunately, users can

not be certain how secure these services are in keeping their e-mail addresses private or with which

third parties these services are sharing data. As a result, the users’ inboxes are likely to get cluttered

with unwanted messages from unknown sources which might lead to frustration when navigating the

inbox or can even compromise the user’s computer system if the messages are malicious. This study

focuses on e-mails and how a machine learning technique can be used to assist users in managing their

inboxes against unsolicited e-mail messages.

The spam e-mail problem has been unresolved for more than 20 years since the first spam e-mail message

was sent in 1994 (Singel, 2010; Cranor & LaMacchia, 1998). Many solutions have been proposed

to address the spam problem which include a variety of spam filtering techniques: content-based

filters, list-based filters and other filters like collaborative filters, support vector machine filters, näıve

Bayesian filters and artificial neural network (ANN) techniques. Since spammers (people who send

spam messages) regularly adapt their spamming patterns to outsmart filters, a more dynamic approach

is required to address the problem. One way of achieving this is through the use of ANNs as it is able

to recognise complex patterns and discover useful relationships in data. A supervised machine learning

technique will be used to address the spam e-mail classification problem. Supervised machine learning

1
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is the ability of a computer system to learn from example data and adapt to change when exposed to

new data without being explicitly programmed. A Generalized additive neural network (GANN) is a

predictive model that discovers patterns with supervised learning by mapping the input values to an

expected target value (Kotsiantis, Zaharakis & Pintelas, 2006). For a spam filter to be effective, it is

necessary to adapt over time. Fortunately, a GANN has this capability and can thus be regarded as a

possible candidate for spam filtering. In this study, a GANN is considered to classify spam e-mails

with an automated construction algorithm (Du Toit, 2006).

The problem statement for this study is presented in Section 1.1. A list of research objectives is

presented in Section 1.2. The method of investigation is discussed in Section 1.3 followed by the

dissertation outline in Section 1.4. Finally, a chapter summary is given in Section 1.5.

1.1 Problem statement

Currently, e-mail is an important, cost friendly and convenient medium for daily communications.

According to Alhadlaq (2016), e-mail is one of the most preferred communication methods with a

noteworthy technological influence on communication in general. Unfortunately, more than 55.00%

of all e-mail network traffic comprise unsolicited messages known as spam (Vergelis, Shcherbakova,

Demidova & Gudkova, 2016). The fact that spam contributes to so much of the overall percentage of

e-mail network traffic, makes it responsible for causing unnecessary network load. Other difficulties

caused by spam include financial problems, security issues and time constraints for users. The delivery

of important legitimate e-mails could get delayed as network congestion occurs due to spam messages.

Organisations are impacted in a financial manner since employees spend working time to manage their

inboxes. Spam e-mails might also pose a security risk as it could contain attachments infected with

viruses or spyware that can harm the recipients’ system (Lee, Kim, Kim & Park, 2010). It also impacts

each recipient in a nonproductive manner by claiming our precious time (Caliendo, Clement, Papies &

Scheel-Kopeinig, 2008). Spam can be perceived as intrusive and continues to be a constant annoyance.

Most internet service providers attempt to reduce the costs incurred from spam by implementing spam

filter systems. A spam filter is a software system that checks incoming messages for spam before

delivering it to the designated recipient. These filters require maintenance on a regular basis to perform

optimally (Goodman, Cormack & Heckerman, 2007). Researchers need to stay on the forefront of

this problem to counter-attack new tactics used by spammers. They periodically find new ways to

bypass existing spam filters and are able to distribute spam e-mail messages on a large scale because
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the distribution of spam e-mails is inexpensive and easy to execute. To date, spam is still an ongoing

problem with no solution.

The spam e-mail classification problem involves identifying the correct class (spam or nonspam) to

which an incoming e-mail message belongs. Previous research on the GANN related to spam e-mail

detection provided only preliminary investigations performed on either small or single spam data

sets in evaluating the GANN’s classification accuracy. In the next section the research objectives are

outlined.

1.2 Research objectives

The primary aim of this study is to determine the feasibility of employing a GANN to filter spam

e-mail messages with an automated construction algorithm for the GANNs. This study will contribute

to existing literature regarding the use of supervised machine learning techniques for spam e-mail

classification. The implementation of an automated construction algorithm for the GANN is tested

empirically as a possible solution to mitigate spam. Two ensemble techniques (Bagging and Boosting)

that might improve on the GANN’s results are also examined. The secondary objectives, which will

contribute to achieving the primary research objective, are as follows:

1. Define spam and describe literature relating to the problem of spam e-mails and the classification

thereof.

2. Investigate the impact spam e-mails could have on individuals and companies when left unman-

aged.

3. Discuss artificial neural networks in general and the Multilayer Perceptron (MLP) neural network

architecture which forms the basis of GANNs.

4. Describe the GANN model and the associated automated construction algorithm.

5. Give an overview of the Bagging and Boosting ensemble techniques that are applied to the GANN

which might improve on the results obtained by the GANN.

6. Discuss the experimental design used to compare the GANN to other spam filtering techniques

found in the literature based on a number of different metrics.

7. Apply the ensemble techniques to the results obtained by the GANN to possibly improve the

accuracy of the GANN model.
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8. Compare the GANN model and the ensemble techniques in terms of accuracy, model interpretabil-

ity and ease of construction.

The steps followed to achieve each secondary objective, which contributes to accomplishing the primary

research aim, are described next.

1.3 Method of investigation

A comprehensive literature study on the e-mail application, spam e-mails and the classification

thereof will be performed to provide background for this study. The need for a reliable spam filter

is determined by investigating the spam e-mail trend and lack of a solution over the past few years.

Next, the architecture of artificial neural networks, the Multilayer Perceptron (MLP) and the basic

GANN structure will be considered before the automated construction algorithm of the GANN is

discussed. The MLP architecture forms the basis of a GANN. The automated construction algorithm

was implemented by Du Toit (2006) in the AutoGANN system. The construction of GANNs will

be investigated prior to its application on five publicly available spam corpora. Experiments will be

conducted by building GANN models with the AutoGANN system which is integrated in the SAS R©

Enterprise MinerTM environment, to search for good models that classify spam e-mails. In addition, the

two ensemble techniques, Bagging (Breiman, 1996) and Boosting (Freund & Schapire, 1996), will also

be applied to the GANN model to try to improve on the GANN’s results. The five spam corpora used

in the experiments are Enron (Metsis, Androutsopoulos & Paliouras, 2006), GenSpam (Medlock, 2006),

PU1 (Androutsopoulos, Koutsias, Chandrinos & Spyropoulos, 2000), SpamAssassin (SA) (Tzortzis

& Likas, 2007) and TREC2005 (Cormack & Lynam, 2005). Different preprocessing techniques and

evaluation measures will be applied to each data set. The experimental design entails a detailed

description of each experiment performed and is discussed to ensure objective comparisons. This allows

researchers to replicate the experiments and obtain similar results, thus encouraging future research.

The implemented approach is scientific of nature and focuses on the use of experimental methods to

derive empirical evidence from careful observation. Results obtained from the experiments are analysed

in a quantitative manner. In the next section the dissertation outline is discussed.

1.4 Dissertation outline

The structure of the dissertation is outlined in this section and a brief overview of each chapter is

given. In Chapter 2 a general overview of spam e-mails is provided. The incentives for spamming and
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three consequences of unmanaged spam are discussed. The current state of the spam e-mail problem is

investigated to motivate the use of a relatively new supervised machine learning technique (the GANN)

to address the issue. Current anti-spamming techniques are also discussed.

In Chapter 3 a brief history on artificial neural networks is given. The neuron model and a layer of

neurons are described before the structure of the MLP is discussed. This type of neural network is

currently the most widely used. The Backpropagation algorithm, a learning technique for MLPs, is

discussed since this learning technique overcame the theoretical pitfalls of basic ANNs and criticism on

the Perceptron model’s training capabilities. With the Backpropagation algorithm it is possible to

train ANNs consisting of multiple layers of Perceptrons which could then solve nonlinearly separable

problems. Context is provided by the MLP for the description of the GANN architecture.

In Chapter 4 related literature on the GANN is considered. A discussion on Generalized additive

models (GAMs) and smoothing is presented since a GANN is the neural network implementation of a

GAM. The GANN architecture is discussed followed by a discussion on the interactive and automated

construction methodologies for the GANN. The Bagging and Boosting ensemble methods applied to

the GANN to possibly improve the classification accuracy obtained with the AutoGANN system are

also discussed. Next, the GANN and ensemble experiments on five publicly available corpora are

considered.

The experimental design, preprocessing steps, evaluation measures for testing the performance of the

GANN and experimental results obtained by each experiment are discussed in Chapter 5.

A comparison and detailed discussion on the results per measurement obtained by the GANN and the

Bagging and Boosting ensemble techniques, compared to other spam filtering techniques found in the

literature, are given in Chapter 6. Model comprehensibility and the ease of model construction for the

GANN and ensemble techniques will also be discussed.

In Chapter 7 a final conclusion on the GANN’s capabilities to mitigate spam e-mails is given. The

research limitations for this study and possible opportunities for further research are also considered.

1.5 Conclusions

This chapter gave an overview of the complete study. E-mail as an important and convenient means of

communication, as well as its use for most online services to function properly, was briefly discussed.

The problem statement for the spam e-mail classification problem was also provided. To address the

spam e-mail classification problem a supervised machine learning technique, the automated construction
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algorithm for the GANN, is considered in an attempt to mitigate the issue. Multiple research objectives

were stated that will contribute to accomplishing the primary research aim which is determining the

feasibility of a GANN to accurately classify spam e-mails. A series of experiments have been conducted

to reach a conclusion. A literature study on spam e-mails is discussed next in Chapter 2.



CHAPTER 2

SPAM E-MAIL

The technological world is rapidly evolving and improving on current technologies showing no sign

of slowing down. Information industries are expanding and becoming more information-intensive,

requiring a means for quick and easy communication. One of the most widely used communication tools

from the technological world is electronic mail more commonly known as e-mail (Alhadlaq, 2016; Aceto

& Pescapè, 2012; Gomez & Moens, 2012). An e-mail message is the virtual representation of a written

message with the exception of the option to add digital attachments consisting of various file types and

formats. The attachments enable the end users to share information easily and can be represented

as some of the following examples: documents, pictures, compressed archives and audio or video files.

E-mail is therefore a digital message transfer that occurs between a sender and one or more recipients.

The e-mail application was developed by Ray Tomlinson in 1971 (Tomlinson, n.d.). In the early stages

of development, the application provided primitive services to both researchers and military institutions

who had access to the Advanced Research Projects Agency Network (ARPANET). Established in 1969,

ARPANET was the first packet switching network to utilise the transmission control protocol/internet

protocol (TCP/IP) and revolutionised communication for basic data sharing. ARPANET became

the precursor of what we nowadays refer to as the internet (Hafner & Lyon, 1998). At the time, the

potential of the e-mail application was unknown as the internet was still in its early evolving stages.

As the internet expanded with thousands of computer clusters being interconnected with each other on

a global scale, it transformed data generation and information sharing techniques. It was not until

12 April 1994, when immigration lawyers Canter and Siegel from Phoenix decided to use the e-mail

application as a promotional tool to enhance business processes (Everett-Church, 1999), that e-mail

changed into a prevalent communication medium currently used worldwide by billions of people on

a regular basis. Present e-mail systems are sophisticated and provide the end user with numerous

advantages over other communication methods. These advantages can be compared to services which

7
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provide the end users with a convenient, affordable and immediate way of communicating with other

individuals or groups situated anywhere in the world.

For e-mail to continue as a functional application, internet standards have been defined. E-mail

messages with or without attachments, can be sent via the internet using the simple mail transport

protocol (SMTP) by adhering to internet standards adopted from the internet engineering task force

(IETF). Information regarding the IETF SMTP specifications, communications protocols, procedures

and events are described in the request for comments (RFC) publication 5321 (Klensin, 2008). The

feasibility of e-mails depends on these standards and ensure e-mail messages can be sent globally to

other devices capable of interpreting such digital messages. Unfortunately, there are e-mail users who

abuse the characteristics of e-mail systems creating an unpleasant experience for various users that in

actuality jeopardises the very utility of e-mails as a communication medium. These people are known as

spammers who aim to reach the masses with spam e-mail messages. Spam e-mail is commonly defined

as unsolicited bulk e-mail (UBE) messages sent to multiple recipients where the sender and receivers

have no known relationship (Cranor & LaMacchia, 1998). It is therefore irrelevant, inappropriate

and intrusive junk e-mail messages that provide recipients with unwanted content, claiming some of

their valuable time and resources. Examples may include any e-mail messages with content related

to a competition, chain mail where the recipient is asked to forward copies of the e-mail message to

multiple people to avoid misfortune, a newsletter and a mailing list. Other examples of spam include

phishing scams where spammers impersonate different institutions for the purpose of scamming the

user into giving up sensitive information that is used for identity theft, pornography or prostitution.

Commercial spam e-mails usually, but not always, focus their content on money-making techniques like

adverts of various products or services. These messages are referred to as unsolicited commercial e-mail

(UCE). An e-mail message with the opposite properties of junk mail is referred to as ham, legitimate or

nonspam. Spammers are adaptable to change, fooling anti-spamming e-mail systems with their pattern

changing techniques. By continually changing the spam content of e-mail messages, they avoid getting

easily detected by anti-spamming systems. Current content-based anti-spamming systems are faced

with a challenge where keeping up with new emerging patterns is getting more difficult.

In this chapter, background literature about the e-mail application is presented in Section 2.1. This will

give a better understanding of the origin of spam e-mails and why it is still an ongoing problem. The

need to optimise anti-spamming systems is also emphasised to ensure that communication channels are

not overwhelmed by spam. In Section 2.2 possible consequences of unmanaged spam e-mails for both

companies and individuals as a direct result of UBE and UCE are discussed. Current solutions to reduce

spam e-mails are discussed in Section 2.3. This includes a more dynamic anti-spamming approach
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which uses artificial neural networks. Section 2.4 summarises the current state of the spam problem

and progress made by research communities and practitioners in an attempt to reduce the amount of

global spam e-mail network traffic. A conclusion to the chapter will be presented in Section 2.5.

2.1 Background

The term spam originated from a 1970s British skit titled Monty Python’s Flying Circus (Ivey, 1998).

The comedy sketch depicted a cafe where almost every item listed on the menu included SPAM

(a canned precooked meat product). After the waitress received her customers’ orders, a group of

Vikings disrupt all other conversations by loudly singing “Spam, spam, spam, spam, lovely spam,

wonderful spam.” until told to “shut up” by the waitress. This continued several times, creating an

unsettled environment for other guests making it difficult for them to converse and enjoy their meal in

peace. Currently, SPAM R© refers to the meat product produced by Hormel Foods Corporation (USA).

According to the Oxford Dictionary of British & World English, the word spam is defined as “Irrelevant

or unsolicited messages sent over the internet, typically to large numbers of users, for the purposes of

advertising, phishing, spreading malware, etc.”

On 12 April 1994 Canter and Siegel are believed to have sent the first commercial spam e-mail message

(Figure 2.1) by advertising legal services on Usenet (Singel, 2010; Cranor & LaMacchia, 1998). Free

green cards where offered in the form of a lottery competition targeted at immigrants outside the

United States of America. The company made national headlines for introducing a new way of doing

global business through mass advertising. Not long after the first commercial spam e-mail message

was sent, the partners wrote a book titled How to make a fortune on the information superhighway:

everyone’s guerrilla guide to marketing on the internet and other on-line services (Canter & Siegel, 1994),

sharing business successes and encouraging other businesses to make use of e-mail as a marketing

tool (O’Connor, 2006). This resulted in frustration for many consumers who received these irrelevant

messages frequently.

The Canter and Siegel instance started the commercial spam evolution allowing e-mail to evolve from

a primitive service into a prevalent communication and advertising tool. According to The Radicati

Group (2015), more than 205.6 billion e-mails are sent daily around the world. A large portion of these

e-mails are business-related making e-mail the predominant form of communication in the business

sector. Ducker & Payne (2010) indicated that information and communication technologies are capable

of providing enterprises with a competitive advantage allowing businesses to move forward, improve on

current processes and compete against adversaries (Pavic, Koh, Simpson & Padmore, 2007; Fink &
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Green Card Lottery 1994 May Be The Last One!

The U.S. Government deadline for participation in the program is the end of
June. You must act now!

The Green Card Lottery is a completely legal program giving away a certain
annual allotment of Green Cards to persons born in particular countries. The
lottery program was scheduled to continue on a permanent basis. However,
recently, Senator Alan J Simpson introduced a bill into the U. S. Congress
which could end any future lotteries. THE 1994 LOTTERY, WHICH WILL END SOON,
MAY BE THE VERY LAST ONE.

PERSONS BORN IN MOST COUNTRIES QUALIFY, MANY FOR FIRST TIME.

The only countries NOT qualifying are: Mexico; India; P.R. China; Taiwan,
Philippines, South Korea, Canada, United Kingdom (except Northern Ireland),
Jamaica, Dominican Republic, El Salvador and Vietnam.

Lottery registration will take place until the end of June, 1994. 55,000 Green
Cards will be given to those who register correctly. NO U.S. JOB IS REQUIRED.

ONCE AGAIN, THERE IS A STRICT JUNE DEADLINE. THE TIME TO START IS NOW!!

For FREE information contact us by :

Telephone: 602-661-3911

Fax: 602-451-7617

E-mail: cslaw@pericles.com

*********************************************
Canter & Siegel
Immigration Attorneys
3333 E Camelback Road, Ste 250, Phoenix AZ USA 85018
*********************************************
The law firm of Canter and Siegel has practiced immigration law for fifteen
years and has assisted clients in all previous Green Card lotteries. The firm
is authorized by federal regulation to handle immigration matters in all U.S.
states. Arizona practice limited to immigration matters. State license
Tennessee only.

Figure 2.1: First commercial spam e-mail: Green card lottery.

Disterer, 2006). Communication with the customers, suppliers, and stakeholders should be effortless

and hassle-free making e-mail the perfect communication method. Companies and small businesses

mainly rely on their consumers for financial support, brand establishment and the overall success of

making it in the competitive corporate world. E-mail is one of the most popular information-sharing

and communication technology tools available at an extremely low cost (Gomez & Moens, 2012). If

adopted and used wisely, the way products and services are marketed could be done more effectively

with less effort saving both time and money (Apulu & Latham, 2011). The competitive advantage could

entail better customer relations, increased profits from higher quality products and services offered
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as well as promote awareness of products and services advertised globally (Ongori & Migiro, 2010).

As storage media, sophisticated computer hardware and high speed internet services become more

affordable, it is almost no surprise that spam e-mails are thriving. Spammers are able to use these

technology advancements in sending millions of spam e-mail messages worldwide within a few minutes.

The internet provides them with the tools for content creation, distribution and publication which

ensures that the spam-based advertising businesses will continue to generate revenue. The digital age

of information generation and sharing has numerous advantages in taking the world forward. With this

came unforeseen problems like those associated with e-mail where the recipient’s inbox is flooded with

unwanted junk mail. This is due to the abuse of e-mail services by spammers who saw a money-making

opportunity. A few years ago no one anticipated the harm spam could cause. Presently, spam is still

an ongoing problem as the research community has not found a solution to the problem yet. Some

attempts have proven effective in reducing spam, but only for a certain time period until spammers

adapt to new anti-spamming techniques. When no action is taken against spam, there might be

unforeseen consequences for end users. Spammers do have motives behind e-mail spamming. According

to Hayati & Potdar (2008) the five incentives in order of importance for spamming are:

1. Revenue generation: The lucrative nature of the spamming business brings in about $200 million

revenue annually for spammers worldwide (Rao & Reiley, 2012). With little effort from the

spammers’ side and the overall low cost associated with sending bulk advertising messages, selling

a few products will result in profit. Another means for generating profit is spamming on behalf

of other businesses (Zhang, 2005).

2. Higher search engine ranking: Spammers send out mass e-mails containing ads and uniform

resource locator (URL) links that represents web addresses pointing to another website that could

represent a business website like an online store where products are for sale. With increasing

visitors being directed to these websites, search engine rankings increase with the extra traffic

letting the page show up more frequently in search engine results. This improves the chances of

more sales and income for the spammers via advertising.

3. Promoting products and services: Technology advancement makes it easy to distribute ads on

a global scale, expanding a business’s products and service range to a much bigger audience

(Ongori & Migiro, 2010). Spammers abuse this service by monetising synthetic content.

In contrast to the first three spamming motivations which are passive and do not intrude

on a user’s security or privacy, the last two motivations are actively aimed at malicious tasks and

obtaining user-specific information.
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4. Stealing information: A user’s online security is directly affected by means of hidden malicious

code on their system capable of executing actions like gathering keystrokes. These malicious

applications are embedded and transferred via spam e-mails. Once installed, malware loaded onto

the user’s computer could show annoying advertisement popups and when clicked on by the user

it opens a web browser and redirects them to a specific website managed by the spammer. It also

attempts to obtain the user’s e-mail address information to send out more e-mail spam on behalf

of the user making the spam messages appear to be from a secure known sender. The malicious

code gets distributed giving the spammer a back door entry point to multiple user computers.

5. Phishing: Spammers try to obtain personal and sensitive information like banking details,

passwords, etc. to get access to certain accounts. With the information they could steal money

and do online transactions by posing as the legitimate entity. Information could also be sold to

other spammers. A phishing attack is achieved by forging the identity of a trusted source and

posing as them. Most phishing scams are e-mails claiming to be from the bank, a social media

site, etc. asking the user to verify their personal information by logging in onto the hoax site

created by the spammer which is a URL link attached in the spam message.

Even though phishing is at the bottom of the list, it is gaining popularity with spammers and becoming

one of the preferred methods to generate revenue by scamming end users into giving up personal

information. The next section explores consequences of unmanaged spam e-mails followed by counteract

measures to reduce spam. By exploring various anti-spam methods, the current state of spam control

is determined.

2.2 Consequences of unmanaged spam e-mails

The internet is a global system of computer clusters put together by billions of devices that are

interconnected with each other (Vermesan & Friess, 2013). Sometimes referred to as the Internet of

Things, these smart devices allow people to share and manage information globally in an effective

manner at affordable prices and blazing speeds. The e-mail application was built upon this continuous

evolving architecture and became one of the preferred methods when facilitating information and

communication tasks. From the billions of e-mails sent daily, more than 55.00% of the e-mail network

traffic represent spam e-mails (Vergelis et al., 2016). Companies are impacted by the unresolved spam

problem to a greater extent than individual users, because they make use of e-mail on a much greater

scale (The Radicati Group, 2016). Siponen & Stucke (2006) stated that spam can lead to direct

financial losses and cause problems in different areas. This results from misused network traffic, and
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storage space and computational power being wasted on delivering, storing and analysing spam e-mails.

Those who receive spam are burdened by negative externalities and financial losses associated with the

distribution of spam messages (Subramaniam, Jalab & Taqa, 2010; Goodman et al., 2007; Melville,

Stevens, Plice & Pavlov, 2006; Keizer, 2005). A depiction of these external aspects which affects e-mail

users are presented in Figure 2.2. Each of these areas (time, finance and security) is discussed next

with emphasis on how the issues are interconnected.

 

SPAM 

TIME 

SECURITY FINANCE 

Figure 2.2: Three possible areas by which individuals and companies are impacted by as a result of
unmanaged spam e-mails.

2.2.1 Time impact

Sending single or multiple digital messages to a friend, relative or any other entity is made effortless by

clicking on a button. Users can decide when to reply to the e-mail messages, for example at a later

time when it is best suited and accommodated by one’s busy schedule. There is no doubt that e-mail

saves us a lot of time when it comes to communicating arrangements or sharing information. However,

as easy as it is to send and receive these messages, receiving too much e-mails have exactly the opposite

effect by evoking frustration (Siponen & Stucke, 2006). Several hours could be wasted to filter through

all the chain mail, promotions and social media notifications to get to important e-mail messages.

The most common negative effect from mismanaged spam is productive time loss (Caliendo et al., 2008).

Companies are greatly impacted by this and spend millions of dollars each year on damages incurred

by losses in employee productivity. Working time is spent to filter through spam in order to advance
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business goals. As a side effect, important tasks are put on hold and takes longer to complete. This may

introduce scope creep where project deadlines are not met because of increasing work backlog. Support

centres that rely greatly on e-mail communication for record keeping and user interaction will probably

be affected the most as finding the relevant user request could turn into a highly time-consuming task.

The possibility of accidentally deleting a user’s requests while cleaning up spam messages is also a

concern. Recovering from this requires time and might delay overall support and productivity in the

workplace.

Spam have numerous negative effects. New prevention measures being implemented in response to the

spam problem also takes up time. Filter configuring, training and necessary updates could contribute

to even more time losses. All these scenarios have one common factor which is productive time loss.

2.2.2 Financial impact

E-mail is very affordable, if not the most affordable communication option when taking certain factors

like time, distance and audience into consideration. Anyone can simply sign-up for multiple free

e-mail accounts from various providers such as Gmail, Yahoo and Hotmail. Transferring a message

around the world is free of charge, because postage service fees do not apply to e-mails as is the

case with traditional mail. The only cost incurred is the required internet connection where some

internet service providers (ISPs) may charge for bandwidth usage. When removing the human factor

from the delivery process, there is very little delay in message transfer times. Recipients are notified

immediately when new incoming messages enter their e-mail inboxes. The internet enables smart

devices to communicate with each other and pushes your notifications to multiple devices (Gubbi,

Buyya, Marusic & Palaniswami, 2013). These services are some of the main reasons why e-mail is such

a widely used communication tool, because e-mails can provide users with instant notifications on most

devices available today. However, most e-mail users do not even realise the amount of money service

providers spend on infrastructure and that e-mail services require domains, storage space and other

sophisticated hardware to operate and ensure an acceptable online experience.

In order to address the negative time impact spam e-mail has on productivity, financial support is

needed. Sustaining a stable, fast and reliable internet connection is part of a business’s core process.

The company and ISP are challenged with spam issues that create additional traffic overhead consuming

network resources. The sophisticated mail server hardware and software that filters out unwanted

messages are costly and requires regular maintenance from highly paid specialists. Caliendo et al.

(2008) pointed out that the cost incurred also depends on a filter’s installation procedure, training time
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and monitoring of the results regarding misclassifications. Expenses are bound to network data traffic

transfers, quality of service, infrastructure cost and time needed for training as well as educating staff.

As a direct result, damage to enterprises caused by spam can accumulate to about $20 billion annually

worldwide (Rao & Reiley, 2012). Neglecting any prevention measure against spam will result in the

amount being much higher.

According to Cisco (2014), maliciously intended spam remains constant. With social engineering

attacks, spammers present themselves as a trustworthy source whilst phishing for banking details and

personal information. When individuals or companies fall victim to these attacks, it could result great

financial losses that are irreversible. Spammers are always finding ways to exploit current prevention

techniques, hiding their identities by using zombie computers to do their bidding. Zombie computers

are used for malicious activities under remote direction without the knowledge of the owner, because

the computers were compromised with malware. It is difficult for authorities to identify the spammers

responsible for a fraudulent attack. These attacks could therefore be costly.

2.2.3 Security impact

E-mail is used for different purposes, depending on user requirements. The best known example for

business use is marketing (Apulu & Latham, 2011). Private use is taking the form of communication,

user identification and verification to obtain web services. Most websites require users to sign-up with

a valid e-mail address to obtain access to certain services like social media sites and cloud storage. In

exchange for the services provided by the website, website owners obtain valuable customer information

and are able to stay in touch and provide their clients with relevant information through newsletters.

Unfortunately, some website owners abuse this communication channel by bombarding clients with

product advertisements. Spam constantly evolve and adapt to new filters. It is even targeted at

country-specific activities like the South African Revenue Service’s eFiling system. SARS represents

the revenue service responsible for collecting tax in South Africa. Citizens are able to complete their

tax returns online by using the eFiling system. Spammers take advantage of this annual event by

posing as SARS and sending out phishing spam asking registered SARS eFiling users to verify their

banking details before SARS can refund them with a generous amount (SARS, 2015). The traditional

advertising role of spam is shifting towards malicious activities that include phishing scams and other

tasks punishable by law. Even with anti-spam laws in place, spammers are still finding ways to bypass

the system, go undetected and show little interest in complying with, for example, the CAN-SPAM Act

of 2003 (Yu, 2011; Grimes, 2007) and the European Union Privacy and Electronic Communications

Directive (ePrivacy Directive). Embedded code could be injected within e-mail attachments to infect a
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victim’s computer when opening the attachment. Certain URLs could also redirect users to unknown

malicious websites responsible for downloading more malware automatically. Some e-mail messages

contain sensitive personal information and private conversations that users want to keep secure. When

a user’s information is exposed on the world wide web it could become a discouraging task to identify all

the network servers and paths the data was routed along due to the network architecture of the internet

being so complex and dynamic in nature. This is mainly because the internet keeps on expanding

with new network clusters, creating different paths for data to be transmitted by. E-mail users should

therefore think twice about what they share with friends, be it via e-mail or a social media portal.

According to Ben-Itzhak (2008), the world wide web can be a dangerous place where cybercrime takes

on different forms. It, for example, hosted one of the biggest online black markets, namely the Silk Road,

where illegal drugs, products and services were for sale, but was shut down recently (Christin, 2013).

Preventing these computer crimes are costly and resource-intensive because cybercrime is done discretely.

The Silk Road was only accessible via The Onion Router which is an anonymous network that routes

all internet traffic through a volunteering network consisting of multiple relays making it extremely

difficult to identify its users and their activities (Jansen, Bauer, Hopper & Dingledine, 2012). The

same applies to e-mail spamming. Spammers use different techniques to hide their identity from law

enforcement by masking their IP addresses using proxies or virtual private networks. The proxy acts

as an intermediary for internet requests while a virtual private network encrypts traffic send over

public networks like the internet via virtual tunnelling where a dedicated connection path is established

between the host and destination server allowing for increased privacy. Companies like Google must

allocate resources (time, money and workforce capacity) to the development of anti-spamming software.

The anonymity that can be achieved with these services enable spammers to send spam messages more

freely knowing they will not get caught that easily.

Figure 2.2 clearly shows how the three areas (time, finance and security) are closely interconnected.

If spam is left unattended, it will escalate and cause problems in the neighbouring areas. In an

attempt to reduce spam and prevent unforeseen issues associated with it, researchers, organisations like

SPAMHAUS (SPAMHAUS, 2015b) and governments took action against spammers by implementing

counteract measures. This was necessary to take back more control of the world wide web and the

inbox. The following section explains how spam is being dealt with.
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2.3 Spam e-mail counteract measures

A number of spam e-mail counteract measures is available to minimise the amount of junk mail users

receive in their inbox. These counteract measures function in different ways and are categorised

into either filter or nonfilter solutions. By understanding the structure of an e-mail message the

implementation of these prevention techniques can be done more effectively to counteract spam e-mails.

An e-mail message is more complex than defining it as a block of text conveying a message. It has a

predefined structure that consists of two parts namely the header and body (Mir & Banday, 2010).

Each part contributes to the overall e-mail message design enabling senders to easily construct new

messages. Likewise, recipients benefit from this predefined structure because important information

relative to each message, like who the sender is and what the e-mail entails, is fairly easy to distinguish.

The framework of an e-mail message is depicted in Figure 2.3.

 

Message

Header

To, BC, CC

From, Subject

Body

Text in a natural 
language

HTML mark-up

Graphical 
Elements

Attachments

Figure 2.3: Framework of an e-mail message (adapted from Blanzieri & Bryl, 2008).

The header contains detailed and specific information about the e-mail message presented by multiple

fields. The most common fields are To, From, Subject, CC and BC although many other properties

also exist. Fields like To and From are self-explanatory while the CC field refers to a carbon copy

send to additional recipients who should take notice of the e-mail message’s contents. The BC field

also contains recipients, but they are hidden from the other recipients, thus BC refers to a blind copy.

The Subject field contains a short description of the e-mail contents which is sometimes referred to

as the body of the message. The message body is the actual content which the sender wants the

recipients to read and could include HTML or graphical elements other than text written in a natural

language. Other general characteristics of the message, like noncontent features such as the number of
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attachments included or overall message size, are also used by counteract measures (Hershkop, 2006).

In Figure 2.4 an example e-mail message (middle block) is represented with emphasis on the different

components of the e-mail framework (branching from the middle block) that can be used by different

counteract measures to help determine if the message is spam or nonspam.

 

From: <tom@gmail.com>

To: <linda@yahoo.com>

Received: from [192.168.120.145] by ...

Received: from [226.121.231.248] by ...

...

-----------------------------------------------------

Dear Linda,

Say hello to my pet: Herbit the frog.

Unstructured set of 
tokens: header

-----------------------------------

from, tom, gmail, com, to, 
linda, yahoo, received, by

Unstructured set of 
tokens: all

-----------------------------------

from, tom, gmail, com, to, 
linda, yahoo, received, by, 
dear, linda, say, hello, my, 

pet, herbit, the, frog

Unstructured set of 
tokens: body

----------------------------------

dear, linda, say, hello, to, 
my, pet, herbit, the, frog

Body as text in a 
natural language

---------------------------

Dear Linda,

Say hello to my pet: 
Herbit the frog.

Selected fields               
of the header

-------------------------------

IP1 = [192.168.120.145]

IP2 = [226.121.231.248]

General characteristics

-------------------------------
Size = 3,482

Attachments = 1

Graphical elements 
---------------------------

Figure 2.4: An example of what can be measured for analysis to determine the type of message
(adapted from Blanzieri & Bryl, 2008).

Figure 2.4 shows that a diverse number of message attributes can be used for data analysis when

conducting feature extraction. The process of feature extraction depends on the message attributes

needed for a specific counteract measure. The most popular message attributes used are the unstructured

sets of body tokens (bottom right) and header tokens (top right). Selected fields of the header like IP

addresses (top left) are more suitable for prevention techniques which implement an access control list.

Nearly all anti-spamming techniques rely on the contents of an e-mail message to determine its class.



Chapter 2. Spam E-mail 19

When it comes to data mining (analysis of data for meaningful significance), Fawcett (2003) identified

some problem areas where spam prevention techniques might struggle to perform optimally. The lack of

up-to-date real-world spam corpora causes the problem of insufficient training data which is necessary

for the algorithms to make accurate classification choices. Concept drift, where the underlying data

distribution changes over time, affects the performance of the classification function as current learning

concepts needs to be adjusted on a regular basis in order to stay current with new content generated

by reactive spammers. These spammers continuously try to outwit current prevention techniques by

adapting their methods using different tactics such as content obscuring to disguise their spam messages

as legitimate and safe (Guzella & Caminhas, 2009). The problem related to assigning error cost to

messages are also troublesome. All e-mail classification algorithms are prone to find the best trade-off

between ham and spam misclassifications. It is more acceptable to compromise on spam classification

accuracy because wrongly classifying nonspam messages as spam could result in the loss of valuable

information (Androutsopoulos, Koutsias, Chandrinos & Spyropoulos, 2000; Androutsopoulos, Koutsias,

Chandrinos, Paliouras & Spyropoulos, 2000). When spam is incorrectly labelled as nonspam it could

indicate a less effective solution regarding spam classification. Androutsopoulos, Paliouras & Michelakis

(2004) came forth with a suggested solution for determining a reasonable trade-off between these two

misclassification error costs which are elaborated on in Section 5.1.5. According to Androutsopoulos

et al. (2004) it is sensible to imply that the relative cost of these errors are based on user-defined

parameters, because users are diverse and have varying demands. What is defined as spam by one

person, could be nonspam for another person. SPAMHAUS (2015a) therefore defines spam as not

being “about content, it is about consent” although many filters still rely on the contents/attributes of

a message (header, subject, body, attachments, graphics) for detection and classification purposes as

depicted by Figure 2.4. The next sections explore different counteract measures which include nonfilter

approaches and different filter options. In addition, a description of how each one could be implemented

is given.

2.3.1 Nonfilter solutions

Nonfilter solutions use methods that implement legislation punishable by law (Moustakas, Ranganathan

& Duquenoy, 2005) or methods that result in recurring costs for the sender. Rules and regulations set

by ISPs regarding the use of their services eliminate most irrelevant and unnecessary e-mails. Examples

include the CAN-SPAM Act of 2003, the ePrivacy Directive (Blanzieri & Bryl, 2008), and ISP policies.
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2.3.1.1 CAN-SPAM Act of 2003

The CAN-SPAM Act of 2003 (Controlling the Assault of Nonsolicited Pornography and Marketing

Act of 2003) was enacted by the American federal government and signed by President Bush on 16

December 2003 (Lee, 2005). The act took effect since beginning January 2004 and undertakes to

effectively manage the spam problem by enforcing hefty penalties and restrictions on the sending of

unsolicited commercial e-mails (Clarke, Flaherty & Zugelder, 2005). A set of guidelines are stipulated

within the act that companies and salespeople must follow to ensure their commercial e-mails are

abiding the law:

• Deceptive headings: Header information like the subject, sender and date fields may not contain

misleading or false text. The recipients must not be tricked into opening messages that entail

content other than described in the heading field. It should be clear whether the messages are of

an advertisement nature or not. The penalty for this violation is about US$100-$250 per message.

• Opt-out feature: All commercial e-mail messages must provide the receiver with an unsubscribe

mechanism from future messages. This option should be clearly visible and operational for at

least 30 days from the time that the messages was first sent. The feature should work correctly

and prevent the recipients from receiving any future messages they’ve opt-out from. This offence

varies between US$25-$250 per message that does not adhere to or shows the opt-out mechanism.

• Transmission of commercial e-mails after objection: It is considered unlawful if the opt-out

request was not honoured within 10 days. Any messages sent after the 10-day period are subject

to penalties between US$25-$250 per e-mail address.

• Provide a physical mailing address: All commercial e-mails must include the sender’s (marketing

company or salesperson) valid physical postal address. Omitting the address is also considered

unlawful with penalties between US$25-$250 per message.

By enforcing these guidelines, e-mail users could benefit from less time spent managing e-mail, gain

improved network speeds, be less vulnerable to computer security threats and avoid unnecessary

frustration. Spammers are at a disadvantage risking jail time or hefty penalties and expected to see a

reduction in their annual revenue generation. Some criticise the act for promoting spam because the

guidelines enable spammers to legitimise spam and send spam legally. The act is only applicable to the

USA giving spammers the opportunity to send spam from abroad.
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2.3.1.2 ePrivacy Directive

Directive 2002/58/EC is a European Union Directive implemented on 31 October 2003 (Lugaresi, 2004).

It addresses several regulations concerning the distribution of data and how information must be

managed. The privacy of data, confidentiality of digital information, rules that must be followed when

cookies (stored web browser information like user credentials, page preferences, online search history,

etc.) are used and spamming regulations are all topics of interest. According to the directive the

recipient must give foregoing permission before any form of unsolicited commercial communication

transpire. The use of e-mail as a marketing tool is otherwise prohibited unless the recipient gives

consent via an opt-in (subscribe) agreement.

2.3.1.3 ISP policies

There are many ISPs, each with their own policies. These policies serve as an agreement between

the user and service provider regarding the usage of resources and services provided by the ISP. It is

accompanied by a fair usage policy and user acceptance policy whereby the user agrees and acknowledges

that if he/she abuse any resources or services granted to them which affects the performance of the

network or experience of other users in a negative way (like spamming), the ISP has the right to

terminate the service of the user in question without notice. This is an effective way of managing spam

and other illegal activities on the network that are in contrast with the ISP’s policies.

2.3.2 Filter solutions

One of a filter’s main functions is to save end users’ e-mail-reading time by limiting the number of

junk e-mail messages they receive. A spam filter can be represented by the following classifier function:

f(e, θ) =

{
cspam, if the e-mail message e is considered spam.

cham, if the e-mail message e is considered not spam.
(2.1)

where e is an e-mail message requiring classification, θ presents a vector of various parameters and

cspam, cham are e-mail message labels (Blanzieri & Bryl, 2008). Spam e-mail classification can be

regarded as a special case of the text categorisation problem (Meng, Lin & Yu, 2011) where messages are

automatically assigned to respective categories. Problems associated with text classification techniques
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include the lack of example data and the cost related in categorising unknown data (Kiritchenko &

Matwin, 2001).

Spam filter configurations can be implemented at three points during the delivering process. The first

being at routers (Agrawal, Kumar & Molle, 2005) where list-based filters are befitting. E-mail spam

blocked at this level will not be delivered to the recipient, thus sparing network resources. The next

point is at the designated mail server of the recipient’s ISP. Here a number of anti-spamming techniques,

such as content-based filters in compliance with legislation rules, particular ISP service usage policies,

and collaborative filters could be applied. The endpoint is the destination mailbox that belongs to

the recipient. Implementing filters at the user side requires more sophisticated solutions like artificial

neural networks capable of analysing a user’s e-mail preferences and adapting to continuous changes

of the spammers by altering its methods. It does not defend against resource abuse as all messages

will be delivered nonetheless by labelling each message as either spam or legitimate. Currently, spam

filters have proven to be the most effective measure against spam messages (Clark, 2008). According

to a study conducted by Siponen & Stucke (2006) about the practicality of various anti-spamming

tools and techniques within companies, spam filters are the best method to protect against spam.

Goodman et al. (2007) stated that machine learning components are present in most spam filtering

systems. Spam filtering is therefore expected to maintain an important role as a practical application

of machine learning.

Despite the fact that existing filters achieve high accuracy and are improving, the spam problem persists.

Spammers are reactive, making each message unique by personalising it with the recipient’s information

or including random blocks of text which increases the difficulty of filters to identify messages according

to a predefined pattern. Presenting an e-mail in graphic format makes it very difficult for content-based

filters to analyse, unless more sophisticated filtering techniques like optical character recognition is used

to help with the detection process. Another evading technique is to formulate the e-mail message using

HTML where various properties for the contents can be set. With continuous attempts by spammers

to outsmart spam filters, it is possible for these unwanted messages to reach the recipient’s inboxes

despite efforts made by the spam filter. When spam e-mails pass through the spam filter and are

misclassified as legitimate messages, it could affect the recipients (individuals as well as companies)

in several ways as portrayed by Figure 2.2. Depending on the filtering technique, spam filters can be

categorised into one of the following groups either for detecting or preventing spam: content-based

filters, list-based filters and other filters. Each of these groups is discussed next.
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2.3.2.1 Content-based filters

Content-based filters evaluate the authenticity of messages by using words or phrases found in the

different messages. Examples include word-based, heuristic (rule-based) and Bayesian filters. With this

technique the focus is on spam message detection by evaluating the contents of the message.

• Word-based filter: This is one of the most basic content-based filters where various words within

the message contribute to classifying the message type. This type of filter can be quite effective,

but is prone to false positives where legitimate messages are considered spam. Spammers easily

bypass this filter by spelling/misspelling words in a unique manner. Frequent updates to the list

of blocked terms are required for this filter to work optimally.

• Heuristic filter: This filter works in the same way as the word-based filter, but it also considers

phrases when trying to determine the type of message. A ranking system is used where suspicious

or unfamiliar words, not regularly found in standard e-mails are assigned a higher rank than

typical words. By adding up all the ranking points an overall score is obtained. If the score

is higher than a certain threshold as set by the user, the messages is regarded as spam. The

opposite is also true and a score below the threshold will be considered nonspam. Heuristic filters

are easy to configure but may also contribute to false positives. Spammers are able to bypass

this filter as well by determining what word combinations to avoid in their messages using trial

and error.

• Bayesian filter: Using a mathematical probability in determining whether a message is spam

or nonspam, the Bayesian filter is the most advanced content-based filter when compared to

word-based filters and heuristic filters. This filter improves over time but needs to be manually

trained to effectively identify spam. Two lists are generated to keep words or phrases found in

both spam and nonspam messages separate. If more words correspond with the words in the

spam list when analysing a message, the message is labelled as spam. If more words are from the

nonspam list, the message is labelled as nonspam. This technique works well for a single user to

suit his/her content interests, but requires dedicated training sessions before reaching optimal

performance.

2.3.2.2 List-based filters

List-based filters use different types of lists in an attempt to stop spam. E-mail senders are grouped as

trusted users or spammers which determine if their messages are blocked or allowed past the filter.
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Examples of this type of filter include blacklist, whitelist, greylist and real-time black hole list filters.

• Blacklist filter: A list containing multiple spam e-mail and IP addresses of the spammers and

computers sending spam messages. A blacklist needs to be maintained on a regular basis. When

an e-mail is received, the e-mail or IP address is searched on the list. If the list contains an entry,

the message is rejected from reaching the recipient. Spammers bypass this filter by using different

e-mail or IP addresses not yet added to the blacklist.

• Whitelist filter: The whitelist filter allows users to specify from which e-mail or IP addresses

of senders they are permitted to receive e-mails from. It performs in the opposite manner as a

blacklist which specifies a list of blocked senders. Maintenance is crucial as all messages from

senders not on the list will be blocked.

• Greylist filter: Relying on the assumption that spammers will only send a batch of spam messages

once, a greylist filter adds e-mail or IP addresses to the list of trusted senders if an unknown

message was sent a second time. Otherwise messages will be blocked from reaching the recipients’

inbox. This technique is not suited for time-sensitive messages as a delay in delivery time will

occur.

• Real-time black hole list filter: This filter is nearly the same as a blacklist filter with the exception

of less maintenance. The list is maintained by third parties saving setup time but offering users

less control over what the list contains.

2.3.2.3 Other filters

Other filters include the use of statistical and mathematical models to help distinguish between spam

and nonspam messages. Popular examples include collaborative filters, support vector machines, näıve

Bayesian classifiers, challenge and response systems, artificial neural networks and ensemble methods.

• Collaborative filter: The performance of this filter depends on its community base and is ISP

specific. Users are required to flag e-mails they receive into spam or nonspam groups. By doing

this they are contributing to a central database that keeps record of e-mail messages sent on the

network. The database is used by millions of people worldwide and the data integrity is related to

the judgement of its users. This technique is effective in preventing the distribution of mass spam

e-mails to other network users if a number of community users come to terms that a message is

indeed considered spam. The strength of this filter (its community base of active users) is also its
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weakness as a group of spammers could join the community and affect the integrity of the data

by flagging spam e-mail messages as legitimate messages.

• Support vector machine: As a learning process influenced by statistical learning theory, support

vector machines (SVMs) aim to generalise well to test data (Youn & McLeod, 2007). SVMs

are used by different applications including image classification and handwriting recognition. It

learns by examples and applies supervised learning to infer class labels from training data making

it a nonprobabilistic binary linear classifier. Data points are assigned to one of the two class

labels (spam or ham) when considering a SVM as a spam filter.

• Näıve Bayesian classifier: The näıve Bayesian classifier is a probabilistic classifier used in text

categorisation problems to determine to which category a document belongs (Sebastiani, 2002).

If used for e-mail classification these documents represent e-mail messages. It applies the Bayes’

theorem on training data to determine a document’s class by considering the frequencies of

the training dataset which could be determined by means of a bag-of-words representation

(Mitchell, 1997).

• Challenge and response system: This system is capable of blocking most spam e-mails generated

and sent via automated systems. Spammers use automated mailing programs to reach a large

audience. The completely automated public Turing test to tell computers and humans apart

(CAPTCHA) system is an online service available free of charge with the aim of protecting

various websites and online services for example e-mail, social media websites, blogs, forums and

cloud storage services from getting spammed. The majority of online services use and require

e-mail verification (some even implement two-step verification which asks for a generated code

or SMS code, known as a one-time pin, to ensure the authenticity of the user) after sign-up.

It is important to challenge the service request the account holder initiated to keep services

functioning optimal and prevent unauthorised access from an unknown entity. The purpose of

the CAPTCHA system regarding spam e-mails is to pose a challenging problem for automated

spamming techniques, like bots, that are easily solvable by humans but difficult for computers

(Gossweiler, Kamvar & Baluja, 2009).

Examples include optical character recognition (Figures 2.5 and 2.6) following an image-of-

fuzzy-text approach. Users are required to type in the characters represented by the distorted

image. An improved version of CAPTCHA, called reCAPTCHA was presented by Google to

help digitise books while solving the challenge. KittenAuth (Figure 2.7) works on the concept

of identifying animals (mostly cats) by selecting them from a group of images (Warner, 2006).

Mathematics CAPTCHA (Figure 2.8) requires basic human reasoning to solve a math problem.
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Social CAPTCHA (Figure 2.9) is commonly found on social media websites like Facebook.

Users must be able to identify their friends from a series of pictures. More examples include

Audio CAPTCHA that plays instructions for solving the problem and PlayThru CAPTCHA

(Figure 2.10) which is an alternative to the original CAPTCHA concept where users play a game

instead of deciphering text and solving mathematical problems. The use of these hard artificial

intelligence (AI) problems has contributed to significant advances in the field of AI, as was hoped

and believed by Von Ahn, Blum, Hopper & Langford (2003). Due to new developments in the field

of AI and improvements in computational power, some of these CAPTCHA techniques have been

solved by computer programs. Addressing this issue is an improved version of reCAPTCHA that

Shet (2014) refers to as “No CAPTCHA reCAPTCHA” (Figure 2.11). This new reCAPTCHA

technique requires users to simply check a box stating “I’m not a robot”. It is driven by an

advanced risk analysis system basing its decision on a user’s interaction with the CAPTCHA. If

for some reason the risk analysis system can not accurately make a decision, it will use current

CAPTCHAs to assist in its reasoning process.

Figure 2.5: CAPTCHA (Thoma, 2011).

Figure 2.6: reCAPTCHA (Thoma, 2011).

When a challenge and response system is implemented as a spam filter, the sender will receive

a response from the server and should proof he/she is not a computer but indeed a human.

The test must be completed successfully, and sometimes within a certain time frame, in order

for a message to successfully reach its destination, otherwise the message delivery process is
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Figure 2.7: KittenAuth CAPTCHA (Seopher, 2007).

Figure 2.8: Mathematics CAPTCHA (Ruder Bošković Institute, 2008).

Figure 2.9: Social CAPTCHA (Thoma, 2011).
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Figure 2.10: PlayThru CAPTCHA (Reynen, 2012).

Figure 2.11: No CAPTCHA reCAPTCHA (Shet, 2014).

terminated. To overcome frustration experienced by trusted senders, these systems are sometimes

accompanied with a whitelist filter to remember human senders. As a result, a sender only needs

to pass the test once. The downside of a challenge and response system is the possibility that

both sender and recipient may implement such a system resulting in a deadlock where e-mails are

never delivered, because the anti-spam systems are fighting against each other i.e. challenging

each other for human verification (Alkahtani, Gardner-Stephen & Goodwin, 2011). Legitimate

e-mail messages sent from automated systems, like newsletters signed-up for by the user, will

be rejected. It may also occur that the sender never completes the challenge due to the degree

of difficulty (Figure 2.8) and time allocated for completing the challenge. On the positive side

these systems are proactive in limiting the number of auto-generated spam messages one will

receive. The CAPTCHA system inherits characteristics of the Turing test based on hard artificial

intelligence problems (Von Ahn et al., 2003). For practical purposes these problems should be

easily solved by humans in a very short time and present a time consuming and difficult task

for computers or bots to figure out. These problems are represented in various formats and

demonstrate the comprehensiveness of spamming techniques, thus it should be accessible to most

users including those who are either visually or hearing impaired.

• Artificial neural network: Artificial neural networks, which is the focus of this study, and more

specifically Generalized additive neural networks (GANNs) (Du Toit, 2006) which is a special
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type of neural network, is discussed in Chapter 4. This technique is based on the functioning

of the human brain. Being good at pattern recognition and fitting nonlinear functions (Zhang,

Patuwo & Hu, 1998) this technique is worth considering as a spam e-mail classifier, because it

should be able to identify properties that distinguish nonspam messages from spam messages. In

this study this special type of artificial neural network is used to filter spam e-mails. Since none of

the aforementioned anti-spam methods are able to eradicate spam on its own the combination of

different anti-spamming techniques may provide improved detection capabilities. This is achieved

with ensemble methods.

• Ensemble method: The filter solutions that were mentioned can be used in combination with

each other. When multiple classifiers are used alongside another it is referred to as an ensemble

(Kuncheva, 2014). By applying more than one classifier to the spam e-mail problem the expected

outcomes may be an increase in spam detection accuracy, but may also result in a less favourable

outcome than those of the single optimised classifiers. When using too many of the various

individual classifiers alongside one another, for example combining a Bayesian filter with a

whitelist filter and challenge and response system, the filter could become too aggressive and

lose its effectiveness by either blocking too much or too few messages. It is therefore important

to have a balanced filter that is not too strict or too flexible, because many spam prevention

systems if implemented incorrectly, could result in the loss of important information and annoy

e-mail users. Filters all have the same function, but achieve the objective in different ways.

The Bootstrap aggregating (Bagging) (Breiman, 1996) and Boosting (Freund & Schapire, 1996)

ensemble algorithms are used in this study to determine the usefulness of ensemble methods on

the results obtained by the GANN classifier and are discussed in Chapter 4.

In the next section the current state of the spam problem, considering the last six years, is investigated.

The progress of finding a solution for the spam problem which uses the counteract measures previously

discussed is illustrated.

2.4 Current state of the spam problem

According to Kaspersky Lab statistics (Vergelis et al., 2016; Vergelis, Shcherbakova & Demidova, 2015;

Gudkova, 2014; Gudkova, 2013) as shown in Table 2.1, the fraction of overall worldwide spam e-mail

that is part of all e-mail network traffic is slowly decreasing. The last column in Table 2.1 represents

the decrease of spam in global e-mail traffic compared to the previous year. The table illustrates that
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the overall increased level of anti-spam protection applied throughout the last five years is indeed

paying off.

Spam in global Decrease of spam in

Year e-mail traffic global e-mail traffic

2010 82.20% 3.00%

2011 80.30% 1.90%

2012 72.10% 8.20%

2013 69.60% 2.50%

2014 66.76% 2.80%

2015 55.28% 11.48%

Table 2.1: Yearly decrease of spam in global e-mail traffic.

The reduction in spam e-mail shown in Table 2.1 indicates progress towards a solution. Over the past

six years, spam is down from 85.20% to 55.28%. Unfortunately, more than 55.00% of all e-mail network

traffic is still spam. Overall, progress in the right direction is made with worldwide spam for each of

the last six years being less than the previous year. This is an indication that people are becoming

more aware and willing to eradicate the issue at hand. Even though the spam e-mail problem will not

disappear overnight, researchers, communities and governments are trying various methods to stop the

billions of spam e-mails received each year. The profitable spamming business will continue and so will

prevention techniques keep on improving until the spam problem hopefully has been solved. In the

next section this chapter is concluded.

2.5 Conclusions

In this chapter spam was defined in the context of e-mail messages as being unsolicited bulk e-mails.

Background information regarding the origin of spam was given to help understand the context of the

spam problem. The motivation behind spamming was examined and it was concluded that revenue

generation, promoting of products or services and stealing of sensitive information by means of phishing

techniques are the success drivers behind spamming (Hayati & Potdar, 2008). Three externalities

(time, finance and security) influenced by spamming were discussed with emphasis on how they are

interconnected. Next, different anti-spamming techniques were investigated. Filtering and nonfiltering

solutions were mentioned and explained. It was found that filtering options currently provide the

most successful solutions. From the different solutions available it is evident that currently no single
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filter is capable of eradicating spam e-mails. Combinations of current methods provide a good overall

filter with high detection rates, but currently no solution exist. To better address the ever-changing

spamming techniques used by spammers, a dynamic automated spam filter is required. In this study a

filter that uses an artificial neural network capable of both identifying changes in spammers’ patterns

and adapting to change is considered. In Chapter 4 an automated construction algorithm for a GANN

that complies with these requirements is examined. The solution to be presented attempts to mitigate

the unresolved spam problem e-mail users are still facing. The next chapter elaborates on artificial

neural networks to provide background knowledge on how the GANN is constructed.



CHAPTER 3

ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs), also referred to as neural networks, are data-driven, rather flexible

self-adaptive models (Zhang et al., 1998), and generally constitutes a nonlinear function (Zhang, 2010).

The flexibility of a neural network to perform data analysis tasks, learn from experience, and generalise,

make it a popular solution in various fields of study. ANNs are well-known for its prediction, pattern

recognition and classification capabilities (Zhang et al., 1998). Implemented successfully in areas

like robotics, automotive, banking, oil and gas (Hagan, Demuth, Beale & De Jesús, 2014), neural

networks are capable of addressing problems for a variety of disciplines. This emphasises the adaptive

characteristics of these networks as they are not bound to a specific problem domain. In this study,

Generalized additive neural networks (GANNs) are applied to the spam problem to determine if it can

accurately classify spam e-mails. What constitutes spam differs for each e-mail user and depends in

part on their subject of interest. A GANN, which is a supervised machine learning technique, may be

flexible enough to model these patterns. This flexibility is desirable as spammers regularly challenge

spam filters by changing their spamming behaviour.

In this chapter a brief history on ANNs and how it mimics a biological human brain on a high level

is presented in Section 3.1. In Section 3.2 a simple ANN is considered. The mathematical model for

both the single-input and multiple-input neuron is described followed by a discussion on a layer of

neurons. In Section 3.3 the more complex Multilayer Perceptron (MLP) neural network, the most

common neural network which forms the basis for a GANN, is presented. A learning technique for

MLPs, known as the Backpropagation algorithm, is also discussed since this technique overcame some

of the theoretical pitfalls of basic ANNs. A conclusion of this chapter is given in Section 3.4.

32
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3.1 History

In the early 1940s, research about certain brain theories were conducted by Warren McCulloch, a

neurophysiologist, and his collaborator, Walter Pitts who was a logician (McCulloch & Pitts, 1943).

They conducted a study on neural activity by examining the operation of biological neurons. From their

research a model of artificial neurons was proposed that still stands as a theory on how the biological

brain performs cognitive functions. The proposed model is based on the human brain where linked

neurons form a network. They suggested that a neuron could be in one of two states triggered by an

activation switch. The activation switch was either on or off in response to stimulation of the adjacent

neurons. These neurons were based on the composition of the human brain which comprises a neural

network that has about 1011 interconnected neurons each consisting of a cell body, axon, dendrites and

synapses (the connection between multiple dendrites) (Hagan et al., 2014; Russell & Norvig, 2010).

An illustrated example of a biological neuron is given in Figure 3.1. Electrochemical reactions are

responsible for signal transfers between the connected neurons and control brain activity in charge of

cognition processes such as thought and knowledge advancements (Russell & Norvig, 2010).

 

Axon 

Cell body 

Synapse Dendrites 

Figure 3.1: Biological neuron (adapted from Jarosz, 2009).

In the composition of the biological neuron shown in Figure 3.1, each part has a specific function to

perform. The dendrites transfer signals to the cell body which sends out a new signal to neighbouring

neurons via the axon once it reaches a certain threshold. The synapse (connection between axons

and dendrites joining the neurons) is responsible for the electrochemical reaction causing a potential

difference at the cell body (Negnevitsky, 2005). As stated by Hagan et al. (2014), the arrangement of

neurons and the strength of each neuron connection driven by complex chemical reactions, establish

the function of the neural network.
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In 1947 McCulloch and Pitts proposed a way to use neural networks for recognising visual inputs (Pitts

& McCulloch, 1988). With their research they proved that with a fixed network of artificial neurons, a

Turing machine (Turing, 1936) could be simulated. This machine is an abstract device which can be

used to emulate the logic of any computer algorithm. It hypothetically represents a computer that

uses a set of rules to manipulate symbols. This realisation encouraged the application of the ANN

models for learning generalisation rules, as well as using the models for sensory perception in pattern

recognition and classification tasks. Thus, the manner in which the human brain processes information

and recognises patterns have contributed to the development of ANNs.

Research conducted on ANNs between the 1940s and 1960s were mostly based on mathematical models.

It was not until Rosenblatt (1958) introduced the Perceptron model that practical neural network

implementations commenced. The Perceptron model was based on the neuron proposed by McCulloch

& Pitts (1943). It is an artificial neuron that would classify given inputs into one of two distinct

classes. The approach used by the Perceptron is based on pattern recognition to decide the class type.

This is achieved with the Perceptron learning rule which was also introduced by Rosenblatt (1962).

This learning rule is still being used by modern neural networks as a machine learning technique for

predictive analysis (Kufandirimbwa & Gotora, 2012).

During the 1960s, advancements in ANNs were primarily focused on solving various classification

problems. This resulted in the construction of numerous neural network simulations in computers. It

addressed a vast collection of pattern recognition problems which ranged from speech and handwritten

text classification tasks to recognising visual shapes. The training process involved adjusting the

weights (the strength of connections between two nodes) according to a learning algorithm. The process

was repeated until the neural network produced the correct output pattern based on the given inputs.

When training was completed, the ANN would be capable of classifying other examples it was presented

with. However, the accuracy of the classifier was dependent in part on the total training time and the

diversity of samples used.

Research on ANNs progressed very slowly during the 1970s due to criticism on the training capabilities

of the Perceptron model. Minsky & Papert (1969), with Minsky a student of McCulloch, stated that

a single-layer Perceptron neural network could only solve linearly separable problems. According to

Hagan et al. (2014), this statement, the lack of institutional research funding and the need for more

powerful computers during that time resulted in less research being conducted on ANNs.

In the 1980s new computer advancements were introduced along with the backward propagation of

errors technique (Rumelhart & McClelland, 1986). The Backpropagation algorithm made it possible to

train ANNs consisting of multiple layers of Perceptrons which could then solve nonlinearly separable
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problems. These ANNs are referred to as Multilayer Perceptrons (MLPs). The distribution of published

results by Rumelhart & McClelland (1986), gradually promoted interest among researchers to further

investigate ANNs. Before elaborating on MLPs and its training process, the neuron model which forms

the structure of an ANN is considered in the next section. Note that Sections 3.2 and 3.3 were obtained

from Hagan et al. (2014).

3.2 The Neuron model

The first artificial neuron (Hagan et al., 2014) under discussion is the single-input neuron. A more

advanced extension of this artificial neuron, the multiple-input neuron, is then considered. After that,

Rosenblatt’s Perceptron model which represents a basic ANN, is considered followed by a discussion on

neuron layers.

3.2.1 The single-input neuron

The single-input neuron, depicted by Figure 3.2, has only one scalar input p. The transmission strength

(weighted input) is determined by the product wp, where w denotes the weight. The activation (transfer)

function produces the final output a. This function receives the net input n as argument, which is the

sum of the weighted input wp and the scalar bias b. The latter has a constant input value of 1.0. The

scalar parameters w and b are adjusted while training is performed to allow the network to adapt to

more accurate output.

Figure 3.2: Single-input neuron (Hagan et al., 2014).

As an example of calculating the final output a with input p = 2, consider the parameter values w = 4

and b = 1.5. The output a is then calculated as follows:
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a = f(n) = f(wp+ b) = f(4(2) + 1.5) = f(9.5), (3.1)

where f denotes the activation function. The brain is without doubt more complex than an ANN,

but they do share some similarities. Two analogies of networks of artificial neurons and biological

neurons are as follows: both networks have constituent parts that are highly interconnected and the

network function is subject to the connections between neurons (Hagan et al., 2014). In most real-world

problems multiple-input neurons are used instead of just one. This type of neuron is discussed next.

3.2.2 The multiple-input neuron

The multiple-input neuron is an extension of the single-input neuron. An example of the multiple-input

neuron is depicted in Figure 3.3.

Figure 3.3: Multiple-input neuron (Hagan et al., 2014).

For each of the individual inputs there exists a corresponding weight. Let p1, p2, ..., pR represent the

different inputs and w1,1, w1,2, ..., w1,R the corresponding weights from the weight matrix W discussed

in Section 3.2.4. As in the case of the single-input neuron, the activation function f receives the net

input n as parameter and produces the final output a. The net input n is defined as:

n = Wp + b = [(w1,1)(p1) + (w1,2)(p2) + ...+ (w1,R)(pR)] + b. (3.2)

The final output of the multiple-input neuron can be written as

a = f(n) = f(Wp + b). (3.3)
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If, for example, there were three inputs p1, p2 and p3 with associated weights w1,1, w1,2 and w1,3 such

that p1 = 2, w1,1 = 4; p2 = 5, w1,2 = 3; p3 = 1, w1,3 = 3 and b = −2.5, then the final output can be

calculated as follows:

a = f [(4(2) + 3(5) + 3(1))− 2.5] = f(23.5). (3.4)

In the next section, the architecture of a Perceptron with a hard-limit activation function is taken as

an example of a multiple-input neuron.

3.2.3 The Perceptron

A Perceptron constitutes a simple ANN with an architecture that includes a single-layer (Section 3.2.4)

using the hard-limit transfer function (Hagan et al., 2014). This function is defined as

a = hardlim(n)


1 if n ≥ 0

0 otherwise,

(3.5)

where n is the net input. The function can be denoted graphically as in Figure 3.4.

Figure 3.4: Hard-limit activation function (Hagan et al., 2014).

The symbol used to represent the hard-limit activation function graphically is shown in Figure 3.5. In

order to illustrate a classification example for two categories, consider Rosenblatt’s (1958) Perceptron

shown in Figure 3.6.

Figure 3.5: Hard-limit activation function symbol (Hagan et al., 2014).
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Figure 3.6: The Perceptron (Hagan et al., 2014).

The Perceptron from Figure 3.6 has two inputs, namely p1 and p2. The weight matrix W , which

consists of a single row vector, contains the respective weights w1,1 and w1,2 for each of the inputs.

The subscript of 1w
T refers to the row of W . The output for the two-input single-output Perceptron

is determined by:

a = hardlim(n) = hardlim(Wp + b) = hardlim(1w
Tp + b)

= hardlim[(w1,1)(p1) + (w1,2)(p2)] + b. (3.6)

Using the input vectors, the decision boundary is placed where the net input n is zero:

n = 1w
Tp + b = [(w1,1)(p1) + (w1,2)(p2)] + b = 0. (3.7)

Let w1,1 = 1, w1,2 = 1 and b = -1. The decision boundary for the two-input single-output Perceptron

will be able to solve a linearly separable problem where each side of the dividing line represents an

output class a with a ∈ {0, 1} as illustrated in Figure 3.7.

Figure 3.7: Decision boundary for a two-input single-output Perceptron (Hagan et al., 2014).

Using the above-mentioned values, the decision boundary can be calculated as follows:

n = 1w
Tp + b = [(w1,1)(p1) + (w1,2)(p2)] + b = p1 + p2 − 1 = 0. (3.8)
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The boundary line for the input space in Figure 3.7 is derived from (3.8) by calculating the intercepts on

the axes. These intercepts are determined by setting one of the inputs equal to zero, while determining

the other. In the example, the intercepts on the axes for p1 and p2 are both 1 and calculated as follows:

If p2 = 0, p1 = − b

w1,1
= −−1

1
= 1. (3.9)

If p1 = 0, p2 = − b

w1,2
= −−1

1
= 1. (3.10)

Next, input values are tested for determining the side of the boundary that corresponds to an output

of 1. For example, if the input p =
[

1.5 4
]T
, the output of the network is:

a = hardlim(1w
Tp + b) = hardlim

([
1 1

] 1.5

4

− 1

)
= hardlim(4.5) = 1. (3.11)

As a result, the shaded region above the boundary line of Figure 3.7 represents all network outputs

equal to 1 for input vectors of that region. The area below the boundary line represents all network

outputs of 0 for input vectors found in the unshaded area. Let input p =
[

0.5 −1
]T
, then the

output will be:

a = hardlim(1w
Tp + b) = hardlim

([
1 1

] 0.5

−1

− 1

)
= hardlim(−1.5) = 0. (3.12)

The weight vector 1w is always orthogonal to the decision boundary pointing in the direction where

the output is 1. As stated by Minsky & Papert (1969), the single-layer Perceptron is capable of only

solving linearly separable problems where the input space can be divided into two distinct classes. A

linearly inseparable problem is shown in Figure 3.8. The black circles (•) indicate an output class of

1, while a clear circle (◦) indicates an output class of 0. Determining the decision boundary which

separates the input space for these classes is not feasible with a Perceptron.

To address more complex problems like the linearly inseparable problem shown in Figure 3.8 and

since using only a single neuron could produce insufficient results, the concept of a layer of neurons

is discussed next. The Multilayer Perceptron capable of solving arbitrary classification problems is

considered thereafter.



Chapter 3. Artificial Neural Networks 40

Figure 3.8: Linearly inseparable problem (Hagan et al., 2014).

3.2.4 A layer of neurons

A neural network could either contain a single-layer of neurons (Figure 3.9) or form a multilayer

network when multiple neurons are joined together.

Figure 3.9: A single-layer of neurons (Hagan et al., 2014).

In the single-layer of neurons depicted by Figure 3.9, there are S neurons and R inputs. Note that the

inputs do not represent a separate layer based on the view of Hagan et al. (2014). It is not uncommon

for the number of inputs to differ from the number of neurons, i.e., R 6= S. All the input elements of

vector p are connected to every neuron through the weight matrix W . Let p1, p2, ..., pR represent the

different inputs; w1,1, w1,2, ..., w1,R the corresponding weights from the weight matrix W ; b1, b2, ..., bS

the biases of the related neurons, n1, n2, ..., nS the net inputs and a1, a2, ..., aS the outputs of the

activation functions. Hence, the layers are formed by the following: the weight matrix W , the bias

vector b, summations of the weighted inputs and the corresponding biases which provides the net input

(defined in 3.2) to the different activation functions f , and an output vector a. The different neurons
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could each have a unique activation function generating part of the final output from the same input

values. According to Hagan et al. (2014), this is achievable with a single (composite) layer of neurons

where two networks from Figure 3.9 are combined in parallel. Each layer has its own weight matrix W .

The weight matrix of a network is the entry point through which the input elements of vector p enters

the network and can be defined as:

W =


w1,1 w1,2 . . . w1,R

w2,1 w2,2 . . . w2,R

...
...

...

wS,1 wS,2 . . . wS,R

 , (3.13)

where wi,j denotes the weight to target neuron i from source neuron j. Thus, w1,3 represents a

connection to neuron 1 from the input neuron 3. To obtain all vector elements from W for a specific

neuron i, represented by a single horizontal row in the weight matrix, the following is defined:

iw =


wi,1

wi,2

...

wi,R

 . (3.14)

Consequently, the weight matrix can also be represented as:

W =


1w

T

2w
T

...

Sw
T

 , (3.15)

where iw
T is the transpose of iw. The ith element of the output vector can be expressed as:

ai = f(ni) = f([iw
T (p)] + bi), (3.16)

where ni is the net input of the input vector p, weight vector iw
T , and the bias bi. In the next section

the Multilayer Perceptron neural network, which is more robust than a single-layer ANN is discussed.

The Multilayer Perceptron is also more powerful than a single-layer neural network and forms part of

the GANN architecture discussed in Chapter 4.
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3.3 The Multilayer Perceptron

The Multilayer Perceptron (MLP) is the most common artificial neural network, capable of pattern

recognition and used for supervised prediction (Potts, 1999; Zhang et al., 1998). It can identify trends or

anomalies within a data set making it one of the most popular predictive data analysis techniques. An

MLP is the preferred model for many problems concerning optimisation, classification and simplification

of complex models (Berry & Linoff, 1997). The topology of an MLP consists of two or more distinct

layers as shown in Figure 3.10 (Hagan et al., 2014). As with the single-layer network (Figure 3.9) the

inputs are not considered a layer on its own.

Figure 3.10: The Multilayer Perceptron neural network architecture (Hagan et al., 2014).

The MLP neural network of Figure 3.10, has R inputs, namely p1, p2, ..., pR. For each layer a superscript

is appended to the variables which presents the number of the corresponding layer. The first layer has

S1 neurons, while the number of neurons may vary for each layer. Every layer also has a weight matrix,

where, e.g., W 2 is the weight matrix for the second layer. In Figure 3.10, the two hidden layers are

represented as First layer and Second layer respectively. The third layer produces the network output

and is called the output layer. The last layer producing the final network output will always represent

the output layer. The layers are highly interconnected in a feed-forward manner: the input data is

passed through the network layer-by-layer (left-to-right) to the output layer. A network with M layers

will give the following output:

a = aM . (3.17)
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Weights are initially assigned random values by the neural network and adjusted to minimise misclassi-

fication of the training data set during supervised training. While training commences, the external

inputs are passed to the first hidden layer:

a0 = p. (3.18)

An activation function denoted as f1 defines the output a1. The type of activation function may differ

for each neuron. If for instance the hard-limit activation function (3.5) is used, the MLP is useful for

binary classification schemes, thus suitable to classify an input pattern into one of two groups like

spam or nonspam. The final output for the above mentioned MLP neural network is a3 and can be

defined as:

a3 = f3(W 3f2(W 2f1(W 1p + b1) + b2) + b3) = f3(W 3a2 + b3). (3.19)

The manner in which the data signal is progressed through the network can be defined as:

am+1 = fm+1(Wm+1am + bm+1) for m = 0, 1, ...,M − 1, (3.20)

where M is the total number of layers. Neural networks consisting of multiple layers and neurons could

learn complex classification models as long as enough training examples exist and sufficient training

time is given. With the Backpropagation algorithm, the weights are adjusted during learning to map

inputs to the desired output by minimising the mean squared error (MSE). This algorithm is discussed

next.

3.3.1 The Backpropagation algorithm

The Backpropagation algorithm is a learning technique used for Multilayer Perceptron neural network

training (Hagan et al., 2014). Given a data set which contains both input patterns and the known

target output values, the weights are optimised to map the inputs to the outputs. Let D represent

a data set containing {pq, tq} entries, where pq denotes the inputs and tq is the target value for the

corresponding pq input:

D = {p1, t1}, {p2, t2}, ..., {pQ, tQ}. (3.21)

By adjusting the weights, the MSE could be minimised for more accurate classification results. The
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MSE is used with Backpropagation training to determine the difference between network output data

and the target output data. A network is considered to have converged if the MSE is satisfactorily

small. This enables the neural network to generalise well and not overfit the model to the training

data. If the data was overfitted, then the classification accuracy of new data will be inadequate, since

the neural network memorised the data (Hagan et al., 2014; Russell & Norvig, 2010). The MSE for a

network which has only one output value is determined by:

F (X) = E[e2] = E[(t− a)2], (3.22)

where X represents a vector of network weights and biases, and e is the difference between the desired

target output t and the network output a. For networks with multiple output values (3.22) can further

be generalised as follows:

F (X) = E[eTe] = E[(t− a)T (t− a)]. (3.23)

Hence the MSE can be determined by:

F̂ (X) = (t(k)− a(k))T (t(k)− a(k)) = eT (k)e(k), (3.24)

where k denotes the iteration number. In (3.24) a squared error replaces the expectation of the squared

error. The steepest descent algorithm used to approximate the MSE is:

wm
i,j(k + 1) = wm

i,j(k)− α ∂F̂

∂wm
i,j

, (3.25)

bmi (k + 1) = bmi (k)− α ∂F̂
∂bmi

, (3.26)

where α denotes the learning rate of the network. Next, the partial derivatives must be calculated with

the Chain rule of calculus since the error is an indirect function of the hidden layer weights.

3.3.1.1 The Chain rule

In order to demonstrate the Chain rule, consider an explicit function f of the single variable n.

Calculating the derivative of f with respect to a third variable w, the Chain rule is defined as:
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df(n(w))

dw
=
df(n)

dn
× dn(w)

dw
. (3.27)

As an example let f(n) = en and n = 2w, so that f(n(w)) = e2w then:

df(n(w))

dw
=
df(n)

dn
× dn(w)

dw
= (en)(2). (3.28)

The Chain rule (3.27) will be used to determine the derivatives in (3.25) and (3.26):

∂F̂

∂wm
i,j

=
∂F̂

∂nmi
× ∂nmi
∂wm

i,j

, (3.29)

∂F̂

∂bmi
=

∂F̂

∂nmi
× ∂nmi
∂bmi

. (3.30)

Since the net input to layer m is an explicit function of the weights and bias in that layer, the second

term for (3.29) and (3.30) can respectively be computed as follows:

nmi =
Sm−1∑
j=1

wm
i,ja

m−1
j + bmi . (3.31)

Thus:

∂nmi
∂wm

i,j

= am−1j ,
∂nmi
∂bmi

= 1. (3.32)

Next, if the sensitivity of F̂ to changes made in the ith element of the net input at layer m is defined

as:

smi ≡
∂F̂

∂nmi
, (3.33)

then (3.29) and (3.30) can be simplified to

∂F̂

∂wm
i,j

= smi a
m−1
j and (3.34)
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∂F̂

∂bmi
= smi . (3.35)

This allows the steepest descent algorithm, (3.25) and (3.26), to be written as:

wm
i,j(k + 1) = wm

i,j(k)− αsmi am−1j and (3.36)

bmi (k + 1) = bmi (k)− αsmi . (3.37)

If (3.36) and (3.37) were to be expressed in matrix form, it becomes:

Wm(k + 1) = Wm(k)− αsm(am−1)T and (3.38)

bm(k + 1) = bm(k)− αsm, (3.39)

where

sm ≡ ∂F̂

∂nm
=



∂F̂

∂nm1

∂F̂

∂nm2
...

∂F̂

∂nmsm


. (3.40)

The next step in the Backpropagation algorithm involves the computation of the sensitivities sm.

3.3.1.2 Backpropagating the sensitivities

Backpropagating the sensitivities describes the recurrence relationship of sensitivities and the manner

in which they are calculated. The sensitivity at layer m is determined from the sensitivity at layer

m+ 1. The Jacobian matrix (3.41) is used to derive the recurrence relationship for the sensitivities:
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∂nm+1

∂nm
≡



∂nm+1
1

∂nm1

∂nm+1
1

∂nm2
. . .

∂nm+1
1

∂nmSm

∂nm+1
2

∂nm1

∂nm+1
2

∂nm2
. . .

∂nm+1
2

∂nmSm

...
...

...

∂nm+1
Sm+1

∂nm1

∂nm+1
Sm+1

∂nm2
. . .

∂nm+1
Sm+1

∂nmSm


. (3.41)

Next, an expression for this matrix must be found. Consider the i, j element of the matrix:

∂nm+1
i

∂nmj
=

∂

(
Sm∑
l=1

wm+1
i,l aml + bm+1

i

)
∂nmj

= wm+1
i,j

∂amj
∂nmj

= wm+1
i,j

∂fm(nmj )

∂nmj
= wm+1

i,j ḟm(nmj ), (3.42)

where

ḟm(nmj ) =
∂fm(nmj )

∂nmj
. (3.43)

Thus, the Jacobian matrix can be written as:

∂nm+1

∂nm
= Wm+1Ḟm(nm), (3.44)

where

Ḟm(nm) =



ḟm(nm1 ) 0 . . . 0

0 ḟm(nm2 ) . . . 0

...
...

...

0 0 . . . ḟm(nmSm)


. (3.45)
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Now, using the Chain rule (Section 3.3.1.1) in matrix form, the recurrence relation for the sensitivity

can be presented as:

sm =
∂F̂

∂nm
=

(
∂nm+1

∂nm

)T
∂F̂

∂nm+1
= Ḟm(nm)(Wm+1)T

∂F̂

∂nm+1

= Ḟm(nm)(Wm+1)Tsm+1. (3.46)

The latter expression depicts where the Backpropagation algorithm obtained its name from: by

propagating the sensitivities backward through the network starting at the last layer until the first

layer is reached as follows:

sM → sM−1 → · · · → s2 → s1. (3.47)

The final step for completing the Backpropagation process requires the starting point sM to be known

for the recurrence relation of (3.46). This is acquired at the final layer:

sMi =
∂F̂

∂nMi
=
∂(t− a)T (t− a)

∂nMi
=

∂
SM∑
j=1

(tj − aj)2

∂nMi
= −2(ti − ai)

∂ai

∂nMi
. (3.48)

As

∂ai

∂nMi
=
∂aMi
∂nMi

=
∂fM (nMi )

∂nMi
= ḟM (nMi ), (3.49)

sMi can now be expressed as:

sMi = −2(ti − ai)ḟM (nMi ). (3.50)

In matrix form, it is written as:

sM = −2ḞM (nM )(t− a). (3.51)

This concludes the Backpropagation algorithm, which provides a very efficient implementation of the

Chain rule (Hagan et al., 2014). The next section summarises the algorithm.
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3.3.1.3 Summary

The three steps involved when implementing the Backpropagation algorithm are the following:

1. Propagate the input in a feed-forward manner through the network:

a0 = p, (3.52)

am+1 = fm+1(Wm+1am + bm+1) for m = 0, 1, ...,M − 1, (3.53)

a = aM . (3.54)

2. Propagate the sensitivities backward through the network:

sM = −2ḞM (nM )(t− a), (3.55)

sm = Ḟm(nm)(Wm+1)Tsm+1, for m = M − 1, ..., 2, 1. (3.56)

3. Update the weights and biases utilising the approximate steepest descent rule:

Wm(k + 1) = Wm(k)− αsm(am−1)T, (3.57)

bm(k + 1) = bm(k)− αsm. (3.58)

In the next section this chapter is concluded.

3.4 Conclusions

A brief history on ANNs were presented in Section 3.1. This gave an overview of how the artificial

neural network is based on the functioning of a biological human brain. In Section 3.2 the neuron

model, Perceptron model and a layer of neurons were discussed. The architecture of the most widely

used neural network (MLP) and its training process, which make use of the Backpropagation algorithm,

has been presented in Section 3.3. Since MLPs are regarded as being universal approximators capable

of modelling any continuous function (Ripley, 1996), it can be utilised as the univariate functions of

Generalized additive models (GAMs). These models form the basis of GANNs which are discussed

next.



CHAPTER 4

GENERALIZED ADDITIVE NEURAL

NETWORKS

Computers are used in many real-world applications to solve complex pattern recognition problems.

The task of classifying spam e-mails can be automated by computers due to its fast processing abilities

and fewer computational errors compared to humans. In order to address the complexity of the

spam e-mail classification problem, a computer capable of executing parallel processes is desired over

a conventional sequential computer. Fortunately, artificial neural networks are well suited for this

type of problem because of its flexible nonlinear modelling and powerful pattern recognition abilities

(Du Toit, 2006).

In this chapter a neural network known as the Generalized additive neural network (GANN) is discussed

and is the focus of this study. In the next chapter this type of neural network is examined to detect

spam e-mail. The most common neural network used is known as the Multilayer Perceptron (MLP).

It is used by the GANN as univariate (basis) functions, since it is a universal approximator (Ripley,

1996). Related studies performed on the GANN is not limited to the following and include studies

done in recent years by Goosen (2011), Campher (2008), Du Toit (2006) and Potts (1999). Sarle

(1994) introduced GANNs when the relationship between neural network and statistical models were

discussed. He demonstrated that a nonlinear Generalized additive model (GAM) could be implemented

as a neural network. An interactive construction algorithm was then proposed by Potts (1999), based

on Sarle’s proposal, for building GANNs. Du Toit (2006)1 introduced an automated construction

algorithm that constructs GANNs in an attempt to improve on the interactive construction algorithm

proposed by Potts (1999). This technique uses model selection criteria supporting the model building

process which enables the algorithm to objectivity select the best GANN model. Campher (2008) did

1The literature presented in this chapter is primarily based on Potts (1999) and Du Toit (2006)

50
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a study where the GANN was compared with decision trees and alternating conditional expectations

as the two latter techniques were known to perform well in the field of predictive data mining. The

aim of the study was to better understand the GANN’s contribution to the data mining field. The

outcome of Campher’s study provided promising results and found that the GANN compared well to

the other techniques. Suggestions for future work included the implementation of Du Toit’s AutoGANN

system on classification problems to compare the performance with related methods. Du Toit (2006)

named the implementation of the automated construction algorithm AutoGANN. A study similar to

Campher’s was done by Goosen (2011), where the performance of GANN models was compared to

MLP models. The outcome provided insight in choosing between the two techniques depending on a

specific problem. Future work also suggested the application of AutoGANN to classification problems.

Other research done on the GANN automated construction algorithm includes predictive data mining

(De Waal & Du Toit, 2011), customer churn prediction (De Waal & Du Toit, 2008), credit scoring

(De Waal, Du Toit & De La Rey, 2005) and mortality prediction (Bras-Geraldes, Papoila, Xufre &

Diamantino, 2013). Previous research on the GANN related to spam e-mail detection (Labuschagne &

Du Toit, 2012; Du Toit & Kruger, 2012; Du Toit & De Waal, 2010; Goosen & Du Toit, 2009), provides

only preliminary investigations performed on either small or single spam data sets in evaluating a

GANN’s classification accuracy. In these studies, it was concluded that a more comprehensive approach

was needed to determine the feasibility of classifying spam with a GANN. This approach is the focus

of this study.

In this study, a GANN is considered as a potential modelling technique for the spam e-mail classification

problem. Since a GANN is the neural network implementation of a GAM, a discussion on GAMs and

the Backfitting algorithm is presented. GAMs and smoothing, which estimates additive models with the

Backfitting algorithm, are briefly discussed in Section 4.1. Next, the GANN is discussed in Section 4.2

which focuses on the GANN architecture that produces partial residual plots capable of providing

meaningful insight into the complexity of the univariate (basis) functions. Both the interactive and

automated construction of GANNs are considered. In Section 4.3 the Bagging and Boosting ensemble

techniques utilised to possibly improve on the GANN’s spam e-mail classification performance, are

discussed. A conclusion to this chapter is presented in Section 4.4.

4.1 Generalized additive models and smoothing

A linear regression model has a simple structure and can be interpreted by the user. It is applied to

supervised prediction problems where the relation between a dependant variable Y and the independent
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variable X is inspected and fitted by a model. Smoothing summarises the trend of a response

measurement as a function of one or more predictor measurements. A smoother creates an approximating

function used by multiple regression algorithms, like Generalized linear models (McCullagh & Nelder,

1989) which is the generalisation of linear regression models. These Generalized linear models are

defined as:

g−10 (E(Y )) = α0 + α1X1 + ...+ αpXp + ε, (4.1)

where E(ε) = 0 and var(ε) = σ2. The link function g−10 , which is the inverse of the activation function

g0, restricts the response values to a certain range. The logit link function,

g−10 (E(Y )) = ln

(
E(Y )

1− E(Y )

)
, (4.2)

can be used for probabilities where a response is expected between 0 and 1. If the expected response is

to be bound between -1 and 1, the hyperbolic tangent link function,

g−10 (E(Y )) = 1− 2

1 + ln(2E(Y ))
, (4.3)

is appropriate. Smoothers are nonparametric regression models and therefore do not have a fixed form

for the dependence of Y as a function of one or more predictor measurements X1, ..., Xp. Smoothing

attempts to reduce data noise (focuses less on irrelevant data) and captures important patterns found

in the data to estimate additive models utilising the Backfitting algorithm. An additive model (Hastie

& Tibshirani, 1990) consists of individual unspecified univariate functions (one for every input). The

linear function of these inputs are replaced by an unspecified smooth function which provides a good

predictive model, because the effect of each input can be analysed separately. A smoother is useful to

explore the relationship between variables in a nonlinear model, such as neural networks, where it can

be difficult to infer the relationship. Since MLPs are in theory universal approximators that can model

any continuous function (Ripley, 1996), it can be applied to the GAM as the univariate functions. With

this implementation, Backfitting is unnecessary since all training methods applicable to MLPs can also

be applied to GANN models for determining the model parameters. Therefore, GANN models suffer

from the same common optimisation and model complexity issues as MLPs. A detailed discussion on

GAMs and smoothing is beyond the scope of this study and can be found in Du Toit (2006). The

GANN architecture is subsequently discussed.
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4.2 The GANN architecture

When neural networks are applied to prediction problems there are three practical difficulties encountered

(Potts, 1999):

1. Model selection: Neural networks constitute a rather flexible nonlinear modelling function, which

makes it difficult to find the best model. The large number of network configurations which

includes the optimal number of hidden layers, the number of neurons per layer, the connections

between layers and the activation functions to use, contributes to the complexity of the model.

According to Potts (1999) a trial and error approach is the most reliable way to determine the

best network configurations for a neural network, but is subjective to human judgement.

2. Inscrutability: There exist criticism towards the use of MLPs, because it is considered a black

box when it comes to the reasoning, interpretation and understanding of underlying relationships

in the data (Potts, 1999). Explaining the reason behind certain input to output mappings is

complex, because of the flexible and nonlinear nature of the model.

3. Troublesome training: Parameter search on a relative large dataset could result in a resource

intensive task. Optimisation of many different weights and biases requires a lot of computational

power. Methods for parameter optimisation include the Backpropagation algorithm (Section 3.3.1).

Considering a large search space, local minima solutions can be found and are troublesome since

various starting points could converge to suboptimal solutions. Potts (1999) suggests multiple

runs from different starting points as a possible solution.

Some of the GANN’s attributes are inherited from MLPs like the univariate functions that are universal

approximators. Fortunately, since a GANN has constraints on its architecture (Potts, 1999) it is able

to address these practical difficulties (Potts, 2000). The architecture of a GANN (Potts, 1999) is built

upon the neural network implementation of a GAM (Wood, 2006; Hastie & Tibshirani, 1990; Hastie &

Tibshirani, 1986). A GAM can be expressed as follows:

g−10

[
E(y)

]
= β0 + f1(x1) + f2(x2) + · · ·+ fk(xk), (4.4)

where g−10 is the inverse of the output activation function, E(y) the expected target value, β0 the bias,

fj the individual univariate functions and xj the inputs. With a GANN, the univariate functions of

the GAM are MLPs since they are universal approximators (Potts, 1999). An MLP has the form:
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g−10

[
E(y)

]
= w0 + w1 tanh

(
w01 +

k∑
j=1

wj1xj

)
+ · · ·+ wh tanh

(
w0h +

k∑
j=1

wjhxj

)
, (4.5)

where g−10 is the inverse activation function, E(y) the expected target value, tanh the hyperbolic tangent

activation function, w0, wh, w0h and wjh the weights and xj the inputs. In (4.5) the link-transformed

expected target value is expressed as a linear combination of nonlinear functions of linear combinations

of all the inputs (Du Toit, 2006). The GANN architecture has a separate MLP with a single hidden

layer of h units for each input variable. Consequently, the GANN’s univariate functions can be stated

as follows:

fj(xj) = w1j tanh(w01j + w11jxj) + · · ·+ whj tanh(w0hj + w1hjxj). (4.6)

In Figure 4.1 an example of the GANN architecture with two inputs, x1 and x2, is shown. The

inputs have MLPs with three- and two neurons in the hidden layers respectively. The consolidation

layer contains the neurons which correspond to the univariate functions. The weights between the

consolidation layer and the output layer is fixed at 1.0. The first univariate function of the network in

Figure 4.1 can be defined as:

f1(x1) = w11 tanh(w011 + w111x1) + w21 tanh(w021 + w121x1) + w31 tanh(w031 + w131x1), (4.7)

and the second univariate function can be expressed as:

f2(x2) = w12 tanh(w012 + w112x2) + w22 tanh(w022 + w122x2). (4.8)

Potts (2000) stated that the GANN architecture has a less complex structure as opposed to the more

widely used MLP neural network. It is possible to enhance this architecture and include a skip layer

which allows for a direct connection between the input and output layers. When enhancing the GANN

architecture in this way, the Generalized linear model, w0jxj , can be regarded a special case. The

enhanced univariate function is formulated as:

fj(xj) = w0jxj + w1j tanh(w01j + w11jxj) + · · ·+ whj tanh(w0hj + w1hjxj), (4.9)

where w0jxj represents the skip layer.
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Figure 4.1: GANN architecture (adapted from Du Toit, 2006).

Figure 4.2 shows an example of an enhanced GANN architecture which includes a skip layer for inputs

x1 and x3. All the inputs have an MLP where the number of neurons in the hidden layer differs. The

first input has three neurons in the hidden layer with a skip layer. The second input has two neurons

in the hidden layer, but no associated skip layer. The last input has only one neuron in the hidden

layer as well as a skip layer.

The first univariate function can be defined as:

f1(x1) = w01x1 + w11 tanh(w011 + w111x1) + w21 tanh(w021 + w121x1)

+ w31 tanh(w031 + w131x1), (4.10)

and the second univariate function can be defined as:

f2(x2) = w12 tanh(w012 + w112x2) + w22 tanh(w022 + w122x2). (4.11)

The last univariate function can be defined as:

f3(x3) = w03x3 + w13 tanh(w013 + w113x3). (4.12)
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Figure 4.2: Enhanced GANN architecture (adapted from Du Toit, 2006).

Du Toit (2006), proposed another way of representing the GANN architectures by using subarchitecture

identifiers. Table 4.1 depicts the GANN sub-architecture identifiers which starts from 0 and ends with 9.

These identifiers are used in the description of the automated construction algorithm in Section 4.2.2.

GANN subarchitecture identifier GANN subarchitecture description

0 Input removed from the model

1 MLP with a skip layer and 0 hidden nodes

2 MLP with a skip layer and 1 hidden node

3 MLP with a skip layer and 2 hidden nodes

4 MLP with a skip layer and 3 hidden nodes

5 MLP with a skip layer and 4 hidden nodes

6 MLP with no skip layer and 1 hidden node

7 MLP with no skip layer and 2 hidden nodes

8 MLP with no skip layer and 3 hidden nodes

9 MLP with no skip layer and 4 hidden nodes

Table 4.1: GANN subarchitecture identifiers.



Chapter 4. Generalized Additive Neural Networks 57

Identifier 0 indicates that the input was removed from the model. Identifiers 1 to 5 include a skip layer

while 6 to 9 do not have a skip layer. The number of hidden nodes vary. The GANN architecture of

Figure 4.1 and Figure 4.2 can be represented using this representation as [8,7] and [4,7,2] respectively.

The interactive construction methodology of the GANN is discussed in the next section. This

methodology was first used to build GANN models and will help in visualising the complexity for each

of the univariate functions.

4.2.1 Interactive construction methodology

Potts (1999) proposed Algorithm 4.1 with six steps for constructing a GANN interactively. The

interactive construction process starts with a GANN architecture consisting of a single MLP which has

one hidden neuron and a skip layer for every input rather than a linear model. The linear fit (skip

layer) is merely used for initialisation. The constrained form of the GANN is used to simplify model

selection and optimisation.

For over half a century a distinct number of diagnostic plots have been adopted to examine the nonlinear

relationships between the input and target variables in multiple regression models (Potts, 1999). Two

collective approaches to investigate the assumption of linearity include formal tests and informal

graphical methods (Cai & Tsai, 1999). An informal graphical method was introduced by Ezekiel (1924),

which is still regularly used and was termed the partial residual plot by Larsen & McCleary (1972).

The interactive model selection process for the GANN uses this visual diagnostic method that are plots

of the fitted univariate functions, f̂j(xj), overlaid on the partial residuals, prj , versus the corresponding

jth input (Potts, 1999). Partial residuals are defined as follows:

prj = g−10 (y)− α−
∑
l 6=j

f̂l(xl) = (g−10 (y)− g−10 (ŷ)) + f̂j(xj). (4.13)

When g−10 is nonlinear, a first order estimate is commonly used:

prj =
∂g−10 (y)

∂y
(y − ŷ) + f̂j(xj). (4.14)

These partial residual plots help to reduce the black box effect of MLPs to some degree (Du Toit, 2006).

Utilising graphical methods, the relationship between inputs and the target can be explored to interpret

the significance of each input on the fitted model (Potts, 1999). The jth partial residual is the
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discrepancy among the actual values and the fitted model portion that does not involve xj . According

to Berk & Booth (1995) partial residuals based on the GAM fit is more reliable than those that are

based on a linear fit when visualising the underlying curve of the partial residual plots. They also

showed that it is common practice to begin with four parameters when GAM estimation is performed.

1. Construct a GANN with a skip layer for every input (assuming inputs are already
standardised) and include one neuron in the hidden layer. From

fj(xj) = w0jxj + w1j tanh(w01j + w11jxj) + · · ·+ whj tanh(w0hj + w1hjxj) (4.15)

the univariate functions are initialised to

fj(xj) = w0jxj + w1j tanh(w01j + w11jxj), (4.16)

for this specific step.

2. Determine initial estimates of β0 and w0j by fitting a Generalized linear model.

3. Initialise the remaining three parameters in each hidden layer as random values from a
normal distribution with mean zero and variance equal to 0.1.

4. Fit the full GANN model.

5. For each of the fitted univariate functions, inspect the functions overlaid on their partial
residuals.

6. Prune (remove) neurons from the hidden layers with evidently linear effects and grow (add)
neurons to the hidden layers where the nonlinear trend appears to be underfitted. The final
estimates from previous fits can be used as initial values if this step is repeated.

Algorithm 4.1: Interactive construction algorithm of the GANN.

In the next section the automated construction methodology of the GANN is considered. This

methodology is based on the creation of a search space of possible GANN models in combination with

an effective search procedure to find “good” models by utilising some model selection criteria.

4.2.2 Automated construction methodology

The automated construction of GANNs (Du Toit, 2006) is an improvement in comparison to the

interactive construction algorithm proposed by Potts (1999). For one, no human interaction is required

to build the GANN models. The modeller is presented with more time to focus on the results rather

than subjectively interpreting the partial residual plots. With the automated approach, partial residual

plots are mostly used to gain insight into the models constructed rather than building the models. In

this study partial residual plots were not considered since the focus was on the results obtained by the

GANN. The automated construction of GANNs also alleviates the problems associated when working
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with a large numbers of inputs, which is the complexity of the problem and the time constraint. A

model selection criterion is used to automatically search for models in an objective manner through a

formal measure of fit process. During this process the predictive accuracy of the models are evaluated

to determine the “good” models. Since neural networks are sometimes prone to overfitting of the

data, because of a large number of parameters that needs to be estimated, it can result in the training

(or in-sample) data to be fitted well but poorly for test (or out-of-sample) data. Overfitting could

occur for various reasons, for example when having a small data set the modelling technique could

quickly memorise the data and might lead to inconclusive solutions. Another reason might be the

redundancy of specific target values, where the target values are not varying enough to properly

make a distinct conclusion. To alleviate the effect of overfitting, two model selection approaches are

commonly adopted in the neural network literature (Qi & Zhang, 2001). These are a cross-validation

approach (Stone, 1974) and an in-sample model selection criterion method. A combination of the two

approaches were applied to this study and is discussed in Section 5.1.1. With cross-validation, the

data is divided into three sets, namely training, validation and test. Models are tested on the test

data set if such a set is present. With the automated construction algorithm, feature selection (Guyon

& Elisseeff, 2003; Blum & Langey, 1997) is automatically performed. The automated construction

algorithm (Du Toit, 2006) uses a best-first search strategy (Rich & Knight, 1991) and consists of seven

steps as presented by Algorithm 4.2. Note that in Steps 5 and 6 of Algorithm 4.2, sub(xi) denotes the

subarchitecture of input xi as described in Table 4.1. A more detailed description of the automated

construction algorithm can be found in Du Toit (2006).

In the next section the ensemble techniques applied to the GANN are considered. These techniques

are used to possibly improve the classification accuracy obtained with the AutoGANN system.

4.3 Ensemble techniques

Thus far, supervised learning has been considered to predict the class type of an e-mail message

based on a single hypothesis function h. In this section ensemble methods which use a group of

hypotheses functions that determine a final decision are discussed. Ensemble algorithms usually obtain

better predictive performance than a single technique by combining classifiers or by changing the

underlying distribution of training data (Aggarwal & Zhai, 2012). Although combining classifiers

may improve classification performance, ensembles are time-consuming and models become hard to

interpret. Bootstrap aggregating (Bagging) (Breiman, 1996) and Boosting (Freund & Schapire, 1996)

are both powerful ensemble algorithms used in machine learning to improve the prediction accuracy of
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1. Construct a GANN with a skip layer for every input. Initialise the univariate functions to

fj(xji) = w0jxji, (4.17)

which gives a single parameter for each input.

2. Determine initial estimates of the constant term and w0j by fitting a Generalized linear
model.

3. Fit the full GANN model and evaluate it by using the model selection criterion. Indicate
that the model is available for expansion by setting the expanded flag to false (i.e. indicate
the model’s successors have not yet been generated). Next, denote this model as the root of
the tree.

4. Perform a search on the tree for the best GANN model m where the expanded flag is set to
false using the model selection criterion. If such a model is found, indicate that the model is
expanded by setting the expanded flag to true. If no such model is found when the expanded
flag is still false, the tree is searched for the best model. Finally, report the model and
terminate the program.

5. For each input xi from the model m identified in Step 4: If 1 ≤ sub(xi) ≤ 9, create a GANN
model (node) n with the subarchitecture of xi set to sub(xi)− 1 and leave the remaining
subarchitectures of m unmodified. Determine whether node n was previously created in the
tree. If not, use the model selection criterion to evaluate n. Add n, to the parent node m, as
a child and set its expanded flag to false.

6. For each input xi from the model m identified in Step 4: If 0 ≤ sub(xi) ≤ 8, create a GANN
model (node) n with the subarchitecture of xi set to sub(xi) + 1 and leave the remaining
subarchitectures of m unmodified. Determine whether node n was previously created in the
tree. If not, use the model selection criterion to evaluate n. Add n, to the parent node m, as
a child and set its expanded flag to false.

7. Return to Step 4.

Algorithm 4.2: Automated construction algorithm of the GANN.

classifier learning systems. These two ensemble techniques are described and utilised to determine the

performance gain over ordinary GANNs in the context of spam e-mail classification accuracy. The

only research that could be found on the effect of Bagging and Boosting ensemble methods applied to

the results obtained by a GANN was that of Labuschagne & Du Toit (2014). In their research they

applied the ensemble methods to improve spam e-mail classification results. The results obtained are

presented and discussed in Chapter 5.

According to Dietterich (2000), single classifiers may perform weaker, in terms of classification accuracy,

than an ensemble, because of three underlying problems not addressed. These problems include the

following:

1. The statistical problem: This problem arises when insufficient training data in correlation with

the size of the hypothesis space H exists. The situation is depicted in Figure 4.3(a). Finding
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the true hypothesis is difficult since the lack of training data could cause the learning algorithm

to find several hypotheses hi which fits the data equally well. By averaging the outputs of the

individual hypotheses, a more accurate approximation of the true function f can be achieved.

2. The computational problem: When a parameter search algorithm needs to find the global optimal

solution in a large hypothesis space H, it is prone to construct local optimal solutions. Even with

sufficient training data it could still prove computationally difficult for the learning algorithm to

find the best hypothesis since many different starting points exist. Numerous hypotheses hi, each

representing a distinct local optimal solution, can be fitted to the training data. By combining

the outputs of the different hypotheses, a better generalisation of the global optimal solution f

can be provided compared to a single local optimal solution, as shown in Figure 4.3(b).

3. The representational problem: This problem occurs when the true function f does not reside

in the hypothesis search space H as depicted by Figure 4.3(c). The learning algorithm will

continue to search through partial training samples until a hypothesis hi fits the training data.

Constructing an ensemble of the different hypotheses taken from the hypothesis space, therefore

increasing the overall search space, may provide a better approximation of the true function f .

 

(a) Statistical. (c) Representational. (b) Computational. 

Figure 4.3: Fundamental reasons for enhanced ensemble performance over a single classifier (adapted
from Dietterich, 2000).

Ensembles have the advantage to overcome (or even exclude) these three shortcomings existing learning

algorithms are prone to (Dietterich, 2000). For this fundamental reason, it is possible to construct

rather good ensembles. Bagging and Boosting are data-centred methods, as they aggregate multiple

hypotheses from the same learning algorithm over different distributions of the training data to train a

classifier. It creates distinctive models rather than combining different types of classifiers. The results

reported are a combination or average of these models’ output. Individual hypotheses are likely to

have a larger error than a combination of multiple hypotheses, thus ensembles normally generate a
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classifier with a smaller error on the training data. Next, the Bagging and Boosting ensemble methods

are discussed.

4.3.1 Bagging

Bagging (Breiman, 1996) is a meta-algorithm that was initially designed for classification. It is a special

case of model averaging and the first effective method of ensemble learning (Opitz & Maclin, 1999).

Although it is mostly applied to decision tree models, it can be utilised to any model for regression or

classification, i.e. neural networks.

In Bagging sampling with replacement is used to randomly construct different versions of a training set

from the original training set S. The newly constructed training sets (called bootstrap samples) are

each unique because some versions may include overlapping sample data from the original training

set, while some sample data from the original training set might not even be present in any of the

constructed training set versions. Each training set is used to train a different model. The results of

these models are aggregated through averaging (in the case of regression) or voting (in the case of

classification) to produce the final output C∗ (Sewell, 2011). Algorithm 4.3 (Bauer & Kohavi, 1999)

presents the Bagging algorithm followed by Figure 4.4 which illustrates how voting would determine

the class type from three different bootstrap samples.

Input: training set S, model I, integer T (number of bootstrap samples)

1. for i = 1 to T {

2. S′ = bootstrap sample from S (independent and identically distributed sample with
replacement).

3. Ci = I(S′)

4. }

5. C∗(x) = arg max
y∈Y

∑
1

i:C1(x)=y

(the most often prediction label y)

Output: classifier C∗.

Algorithm 4.3: The Bagging algorithm.

In Figure 4.4, the generated bootstrap samples, S1, S2 and S3, are aggregated to build a final classifier

C∗. The output of this classifier is determined by the class predicted most often.
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Figure 4.4: Example of Bagging voting.

Each dotted line indicates a random portion of the bootstrap samples which are used to perform a

vote. The majority class of each random portion contributes to the final classifier C∗ as indicated by

the arrows. The final output for the newly build classifier will be yes, as demonstrated by Figure 4.4

since the predominant class is yes. Boosting is discussed in the next section.

4.3.2 Boosting

Boosting (Freund & Schapire, 1996), is a meta-algorithm and a widely used ensemble method (Sewell,

2011). Similar steps as Bagging are performed but it differs by building the ensemble incrementally

rather than constructing the training models independently (Aggarwal & Zhai, 2012). The construction

of sequential training models helps in adjusting the samples to accommodate previously computed

inaccuracies by applying heavier weights on misclassified observations.

In Boosting a weight wi is maintained for every instance hi in the training set S. The training set

for successive classifiers depend upon the performance of the previous classifier(s). A final classifier

C∗ is constructed using a weighted voting schema. Higher weights have a greater influence on the

next hypothesis to be learned. With each iteration, the weights of misclassified instances are increased

while those of correctly classified instances are decreased (Opitz & Maclin, 1999). The resampling of

data ensures that each consecutive classifier is provided with the most informative training data. The

objective is to minimise the expected error over different input distributions (Bauer & Kohavi, 1999).

According to Patel & Patel (2015), there are no combination rule or single ensemble generation algorithm

that is universally better than others. They also concluded that the effectiveness on real-world data

depends on the diversity of the classifier and characteristics of the data. In the next section the

conclusions to the chapter are presented.
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4.4 Conclusions

This chapter mentioned some of the earlier work performed on the GANN. A brief discussion on

Generalized additive models and smoothing were presented in Section 4.1. Since the neural network

implementation of a GAM is a GANN, a discussion on GAMs and smoothing were necessary. The

GANN architecture was discussed in Section 4.2. A GANN has the ability to recognise patterns

giving it the advantage to adapt to new spamming techniques. It can also perform variable selection

to ensure only the most important inputs are selected as part of the modelling process. When the

interactive construction algorithm is used for building GANN models, the interpretation of partial

residual plots relies on human judgement which is subjective. This may lead to suboptimal models

being constructed. The automated construction algorithm overcame the reliance on human judgement

by using an objective model selection criterion to build the GANN models. Section 4.3 described the

Bagging and Boosting ensemble techniques. The two ensemble methods are implemented for spam

e-mail classification in an attempt to improve on the results obtained by the AutoGANN system.

In the next chapter the application of the automated construction algorithm of the GANN on five

spam corpora is considered. With a model selection criterion, objectivity is ensured when models are

constructed. In addition, cross-validation is performed to reduce the risk of overfitting the training

data which ensures accurate results. From the results obtained, partial residual plots may be generated

providing graphical results that aid the researcher in obtaining insight into the constructed models.

This ability of a GANN also helps overcome the black box effect commonly associated with neural

networks, to some degree. The experimental design and results obtained are discussed next.



CHAPTER 5

EXPERIMENTAL DESIGN AND RESULTS

The automated construction algorithm for the GANN was applied to five publicly available spam

corpora to determine how accurately it could classify spam e-mails. Due to numerous privacy and legal

restrictions applied to most private e-mails containing sensitive information not intended for public

use, publicly available spam corpora were used. The use of publicly available spam corpora is well-

documented in various spam filtering literature reviews and surveys (Guzella & Caminhas, 2009; Blanzieri

& Bryl, 2008; Méndez, Fdez-Riverola, Glez-Peña, Dı́az & Corchado, 2007; Cormack, 2007). The privacy

concerns of e-mail users who feel uncomfortable publicising their private e-mails are the main cause

for scarce benchmarking corpora of late (Cormack, 2007; Méndez, Fdez-Riverola, Dı́az, Iglesias &

Corchado, 2006). Continuing with this tendency will restrict the creation of more recent corpora

(Méndez et al., 2007). Unfortunately, most of these public spam corpora are outdated and do not

conform to current spamming trends or real-world e-mail data. This introduces the problem of

generalising the performance estimates observed from filters since it is difficult to predict how well

a filter will perform once implemented in a realistic online setting. A plausible reason for the use of

these less up-to-date corpora is prior research presenting a means for comparative filter benchmarking.

Diverse methods are able to use similar circumstances for evaluation purposes by following the same

preprocessing procedures.

The five different corpora used in this study for experimental purposes are the Enron (Metsis et al., 2006),

GenSpam (Medlock, 2006), PU1 (Androutsopoulos, Koutsias, Chandrinos, Paliouras & Spyropoulos,

2000), SpamAssassin (SA) (Tzortzis & Likas, 2007) and the Text REtrieval Conference 2005 (TREC2005)

(Cormack & Lynam, 2005) data sets. Different classifiers found in the literature were applied to these

corpora and the results obtained are compared to the performance of the automated construction

algorithm for GANNs in Chapter 6.

65
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This chapter describes the experiments conducted using the implementation of the automated construc-

tion algorithm, called the AutoGANN system (Du Toit, 2006). The different experiments performed

on each of the five mentioned data sets are subsequently described. In Section 5.1 an introduction

to the GANN and ensemble experiments are provided. In addition, the preprocessing techniques as

well as the evaluation measures applied to the different data sets are considered. The Enron data

set and its experimental results are discussed in Section 5.2. In Section 5.3 the GenSpam data set is

considered along with the results of the experiments performed on this data. The PU1 data set is

presented in Section 5.4 and the experimental results are discussed. In Section 5.5 the SpamAssassin

(SA) data set and the results of the experiments performed are presented and discussed. The last data

set, TREC2005, and the experiments conducted on this data are discussed in Section 5.6. Finally, the

chapter is concluded in Section 5.7

5.1 Experimental design

All experiments were performed with SAS R© Enterprise MinerTM 5.3 software on a HP Compaq Elite

8300 CMT system running Windows XP SP3 (32-bit) with 4GB DDR2 memory and an Intel R© CoreTM

i5-3470 CPU at 3.20GHz. A custom-built application was used for preprocessing of the corpora. An in

depth discussion of the GANN experiments follows.

5.1.1 GANN experiments

Cross-validation and an in-sample model selection approach were implemented where the complete

data set was used for both training and validation. Each data set was divided into k-folds where

in-sample model section was applied to each fold. The AutoGANN system would search for a good

model during the 12 hours it was executed, which is considered enough time to determine a good

model (Du Toit, 2006). The initial architecture of all GANN experiments were determined with an

intelligent start method. With this method a subset of the available subarchitectures was used to

set the search space to {0, 1, 2, 3, 4, 5} in order to reduce the search space size (Du Toit, 2006). The

evaluation measures used for model performance in this study are considered in Section 5.1.5. A

description of the ensemble experiments is discussed next.

5.1.2 Ensemble experiments

In order to determine the effect of ensembles on the GANN, two well-known ensemble methods, Bagging
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and Boosting (Section 4.3) were considered. Both these ensembles are supported by SAS R© Enterprise

MinerTM (Maldonado, Dean, Czika & Haller, 2014) by using the Start Groups and End Groups nodes.

In the Start Groups node, the preferred model property was set to either Bagging or Boosting. The

index count property determines the number of iterations that will be executed. For the experiments

an index count equal to the number of cross-validation folds was selected. The Ensemble node combines

the posterior probabilities of different model nodes while the Model Comparison node was used to

compare the two ensemble methods.

Figure 5.1 illustrates how this network of experiments would appear in the SAS R© Enterprise MinerTM

software environment.

Figure 5.1: Bagging and Boosting ensembles in SAS R© Enterprise MinerTM.

The left node represents the data set used. From Figure 5.1 it is the TREC2005 data set in a specific

format. Columns in this file represent words and the rows individual e-mails (Section 5.1.4). A one (1)

indicates that a word is present in the e-mail message while zero (0) indicates it is not. The last column

in this file indicates the message class type (spam or nonspam). There is a Start Group node, an

AutoGANN node, an End Group node and Ensemble node for each ensemble method. The Start Group

node receives the data set. The Ensemble node calculates an average from the different iterations and

the Model Comparison node gives the output. Next, different preprocessing techniques are discussed.

5.1.3 Preprocessing of corpora

Most of the data sets mentioned are in raw format consisting of many e-mail messages. In order to use

these data sets in any of the experiments, preprocessing is performed. The raw data is transformed

into an understandable format for use by the models. Commonly used procedures include character

encoding, HTML removal, cut-off values, stop-word removal, lemmatisation and stemming. Character

encoding entails the encryption of content where e.g. the word “apple” is represented in a numerical

form as 73364. HTML removal is the removal of all mark-up language code found in the data. A

cut-off value could indicate that only words longer than 5 characters are allowed while shorter words

are discarded. Stop-word removal, lemmatisation and stemming are explained in more detail next.
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5.1.3.1 Stop-word removal

Stop-word removal is the process of discarding words commonly found in a text corpus. These words

are generally neutral and contribute little meaning for determining the class of an e-mail. Examples

of common stop-words include words such as a, and, the, is, or, etc. which is found in both spam

and nonspam messages. There are several approaches to stop-word removal, where the easiest way

of implementation is to use a language-specific stop-word dictionary. A different approach involves

constructing a list of stop-words specific to the text corpus under consideration by determining the term

frequency of each unique word found in the corpus. Once the stop-list is populated with high-frequency

words, n of the most frequent words can be removed from the text corpus. An example of stop-word

removal is presented in Figure 5.2. This preprocessing step in effect reduces computational overhead

and ensures only informative input terms are used by the classifier to determine the class label.

 

Adapted text corpus

Drugs alcohol bad health

Stop-list

a and the your is are for or

Text corpus

Drugs and alcohol are bad for your health.

Figure 5.2: Stop-word removal example.

From Figure 5.2, the text corpus is reduced by half of its original size. The removal of the stop-words,

highlighted in red, resulted in four words remaining. These words (Drugs, alcohol, bad, health) will

contribute the most information for determining the message type.

5.1.3.2 Lemmatisation and stemming

The lemma (base form) of a word is determined through a process called lemmatisation (lemm) where

the different inflected forms of a word within the same context is grouped together. This preprocessing

technique should not be confused with a similar technique known as stemming. Stemming does not

take into consideration the meaning and context of a word like lemm does. Lemm is a much more

computationally intensive technique to perform than stemming. The benefit is a reduction in the
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number of input terms and model complexity since only the lemma is used. According to Toman,

Tesar & Jezek (2006), the performance impact of these techniques on text classification tasks are barely

noticeable. In Figure 5.3, examples of the two techniques are shown.

 

Auto

Vehicle

Motor

Car

Automobile Auto

Vehicle

Motor

Car

Automobile

Lemmatisation Stemming 

Figure 5.3: Lemmatisation and stemming examples.

From Figure 5.3, the lemmatisation technique depicts a relationship between the different inflected

forms of the word Auto which represents the lemma. Considering the stemming technique, only Auto

and Automobile will match. The other three words will be seen as separate terms with no relationship

between them. This will result in four words (Auto, Motor, Car and Vehicle) when stemmed compared

to the one word (Auto) with lemmatisation.

5.1.4 Representation of data

One part of the preprocessing steps is the transformation of data into a usable format for conducting

experiments. Some representation techniques include tokenising, bag-of-words and feature selection.

With tokenising, individual elements (words) are obtained from a large text corpus (e-mails) and

divided into separate words. These words are represented by a binary bag-of-words which removes

duplicates and is used to determine word occurrences. The split usually occurs on the white spaces

between each word. If, for example, the phrase, “Drugs and alcohol are bad for your health”, was

tokenised after stop-word removal was performed, as shown in Figure 5.2, four tokens would remain.

The four tokens would be represented by the words drugs, alcohol, bad and health respectively.
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Once the e-mail messages were converted into a bag-of-words representation (Mitchell, 1997), feature

selection by mutual information (MI) (Sahami, Dumais, Heckerman & Horvitz, 1998) was performed

to identify the top 100 word attributes (Du Toit, 2006) contributing the most information for use by

the classifiers. When applying feature selection each word has the same probability of being chosen.

MI(X,C) is defined as:

∑
P (X = x,C = c) log

(
P (X = x,C = c)

P (X = x)P (C = c)

)
, (5.1)

where X is the candidate word, C the category, x ∈ {0, 1} where 0 indicates the absence of a word

and 1 the presence of a word, c ∈ {Spam,Legitimate}, P (X,C) is the joint probability distribution

function of X and C, and P (X) and P (C) are the marginal probability distribution functions of X and

C respectively (Piedra-Fernandez, Cantón-Garb́ın & Wang, 2010). A data set is then constructed with

the top 100 words for use in the GANN. The outcome of these experiments are evaluated by certain

measures discussed in the next section.

5.1.5 Evaluation measures

The accuracy, effectiveness and safety of the automated construction algorithm of a GANN, as a spam

filter, are measured through the use of evaluation measures. To evaluate the classification performance

of a spam filter based on text classification tasks, measurements such as accuracy and error rate are

commonly used. In this section, evaluation measures that report on the performance and effectiveness

of a spam classifier are briefly discussed. The solution proposed by Androutsopoulos et al. (2004)

regarding the error cost calculation between the trade-off of misclassified nonspam and spam messages,

is also explained.

Let NL and NS denote the entire data set of legitimate and spam messages respectively, that the filter

must classify, and nX→C the number of messages associated with category X which is classified by the

filter as belonging to category C. In Table 5.1 the four possible ways to classify the e-mail messages

are shown.

Class Classification Notation

False positives Legit → Spam nL→S

False negatives Spam → Legit nS→L

True positives Spam → Spam nS→S

True negatives Legit → Legit nL→L

Table 5.1: E-mail classification classes.
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With the help of a confusion matrix it is possible to evaluate the different prediction classes. The

confusion matrix (Table 5.2) consists of rows that represents instances of a predicted class as well

as columns representing the instances of an actual class. Below Table 5.2 are the definitions of the

evaluation metrics used in this study.

XXXXXXXXXXXPredicted
Actual

Spam Legit

Spam
True positive False negative

nS→S nS→L

Legit
False positive True negative

nL→S nL→L

Table 5.2: Confusion matrix.

Spam recall (SR) measures the percentage of spam messages that the filter manages to block and is an

indication of the effectiveness of the filter. SR is defined as:

SR =
nS→S

nS→L + nS→S
. (5.2)

Ham recall (HR) measures the percentage of legitimate messages that successfully pass through the

filter and is an indication of the filter’s effectiveness. HR is defined as:

HR =
nL→L

nL→S + nL→L
. (5.3)

Spam precision (SP) measures the degree to which the blocked messages are indeed spam, indicating

the filter’s safety. SP is defined as:

SP =
nS→S

nL→S + nS→S
. (5.4)

Ham precision (HP) measures the degree to which the messages that passed through the filter are

indeed ham, indicating the filter’s safety. HP is defined as:

HP =
nL→L

nS→L + nL→L
. (5.5)

Spam misclassification (SM) measures the percentage of spam messages that the filter failed to block.

SM is defined as:
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SM = 1 - SR. (5.6)

Ham misclassification (HM) measures the percentage of ham messages that the filter block. HM is

defined as:

HM = 1 - HR. (5.7)

Weighted accuracy (WACC) (Androutsopoulos, Koutsias, Chandrinos & Spyropoulos, 2000) makes

the accuracy sensitive to the cost of misclassification errors. For this case, each legitimate message

is treated as λ messages. Every false positive counts as λ errors and as λ successes when classified

correctly. If λ is set to 1, all legitimate and spam messages are weighed the same. More realistic

results are obtained when using the WACC cost-sensitive measure, because λ assigns a higher cost

to false positives (Clark, 2008). Misclassifying legitimate messages as spam can be more severe than

letting a spam message pass through the filter. In this study λ is set to 1 based on the scenario where

spam messages are only flagged and remains in the recipient’s inbox. This is therefore equivalent to

measuring the accuracy (ACC). WACC is defined as:

WACC =
λ·nL→L + nS→S

λ· (nL→L + nL→S) + nS→L + nS→S
. (5.8)

Finally, total cost ratio (TCR) (Androutsopoulos, Koutsias, Chandrinos & Spyropoulos, 2000) is an

indicator of spam filter performance. The filter is compared to the baseline where no filter is present and

all spam and ham are allowed. Higher TCR values are desired as it measures the average performance

of the filter. If TCR values are smaller or equal to 1 (baseline), it is better not to use a filter. TCR is

defined as:

TCR =
nS→L + nS→S

λ·nL→S + nS→L
. (5.9)

In the sections to follow the experiments conducted on the five different data sets are discussed. Each

experiment uses different preprocessing steps and evaluation measures as described in the corresponding

literature. The results obtained with the GANN and ensemble experiments are presented. The first

experiment discussed is performed on the Enron data set.



Chapter 5. Experimental Design and Results 73

5.2 The Enron data set

The Enron corpus (Metsis et al., 2006) is one of the few mass e-mail collections available to the

research community which replicates real-world e-mail data. The Enron corpus consists of six subsets

representing the messages from six different users respectively. Each subset contains legitimate and

spam messages accumulated over a fixed time period. These time periods are presented in a month/year

format. The six subsets are labelled as Enron 1 to Enron 6 and summarised in Table 5.3. The spam

ratio column indicates what percentage of the subset consists of spam messages. Since Enron is publicly

available, none of the data sets were encrypted to protect the privacy of the users whose e-mails were

included in the corpus. Each message is represented in the form of a text file with a prefix number

in its name corresponding to the order in which the messages were received. There are two versions

available. A raw version containing the original messages (including duplicates) and the preprocessed

version which the authors provided (Metsis et al., 2006). In this study the latter version, which consists

of only the body and subject sections, excluding the header part as indicated by the headers column,

was used. With the preprocessing all duplicate messages (including those sent by the corresponding

subset owner) were removed. Spam messages written in non-Latin character sets and HTML tags

found in all messages were also removed.

# Messages Metadata Accumulation period

Subset Legit Spam Total Spam ratio Encrypted Headers Creation year Legit Spam

Enron 1 3672 1500 5172 29.00% No No 2006 12/99 - 01/02 12/03 - 09/05

Enron 2 4361 1496 5857 26.00% No No 2006 12/99 - 05/01 05/01 - 07/05

Enron 3 4012 1500 5512 27.00% No No 2006 02/01 - 02/02 08/04 - 07/05

Enron 4 1500 4500 6000 75.00% No No 2006 04/01 - 02/02 12/03 - 09/05

Enron 5 1500 3675 5175 71.00% No No 2006 01/00 - 05/01 05/01 - 07/05

Enron 6 1500 4500 6000 75.00% No No 2006 06/00 - 03/02 08/04 - 07/05

Enron 16545 17171 33716 51.00% No No 2006 12/99 - 03/02 12/03 - 07/05

Table 5.3: Enron corpora description.

The Enron corpus was used by Metsis et al. (2006) for analysing five variations of the näıve Bayes filter.

Two of the models, flexible Bayes (FB) and multivariate Gauss (MV Gauss), use normalised frequency

representation. The multinomial model (MN TF) was considered for terms using the frequency-based

representation. The remaining two models, multivariate Bernoulli (MV Bern) and multinomial Binary

(MN Bool) were used for binary attributes. A detailed discussion on the different variations of näıve

Bayes is beyond the scope of this study and can be found in Metsis et al. (2006). The results obtained

by the GANN and ensembles are discussed next.
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5.2.1 GANN and ensemble results

Tables 5.4 to 5.9 summarises the results obtained by the GANN with a 6-fold cross-validation and the

ensemble techniques for the six Enron subsets respectively.

Measure GANN Bagging Boosting

Accuracy 88.23% 93.96% 94.59%

Spam recall 87.27% 94.18% 94.51%

Spam precision 75.80% 86.28% 87.79%

Spam misclassification 12.73% 5.82% 5.49%

Ham recall 88.62% 93.88% 94.63%

Ham precision 94.46% 97.53% 97.68%

Ham misclassification 11.38% 6.12% 5.37%

Total cost ratio 2.46 4.81 5.37

Table 5.4: GANN and ensemble results for the Enron 1 subset.

The GANN filter obtained an accuracy of 88.23% on the Enron 1 subset. The number of blocked spam

messages is 87.27% with a precision of 75.80% as indicated by SR and SP respectively. For this subset,

12.73% of spam messages were misclassified. Considering ham classification, 88.62% of ham messages

passed through the GANN filter (indicated by HR) with a HP of 94.46%. Ham misclassification was

11.38%. A TCR value of 2.46 was obtained indicating that it is better to use the GANN filter than

no filter at all. Both ensemble methods improved on the GANNs results. The Boosting technique

performed the best with the highest TCR value of 5.37. The Enron 2 subset is discussed next.

Measure GANN Bagging Boosting

Accuracy 86.48% 96.54% 96.54%

Spam recall 97.46% 95.82% 95.15%

Spam precision 65.91% 91.10% 91.63%

Spam misclassification 2.54% 4.18% 4.85%

Ham recall 82.71% 96.79% 97.02%

Ham precision 98.96% 98.54% 98.32%

Ham misclassification 17.29% 3.21% 2.98%

Total cost ratio 1.89 7.38 7.38

Table 5.5: GANN and ensemble results for the Enron 2 subset.
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For the Enron 2 subset an accuracy result of 86.48% was obtained by the GANN. A high SP value of

97.46% was obtained which is an indication of the filter’s effectiveness. According to the low SP value

of 65.91% which indicates the degree to which the blocked messages are indeed spam, the GANN filter’s

safety was unsatisfactory. The GANN filter also misclassified 2.54% of spam messages. Regarding ham

classification, the GANN performed better with a HR and HP of 82.71% and 98.96% respectively. The

HM value of 17.29% is not good since important nonspam messages might have been blocked by the

GANN filter. Regardless, the GANN still obtained a TCR value of 1.89 which is higher than 1.00 and

indicates that the GANN is a feasible solution. The Bagging and Boosting ensembles greatly improved

on the GANNs results and performed equally well with TCR values of 7.38 each. Next, the Enron 3

subset is considered.

Measure GANN Bagging Boosting

Accuracy 88.55% 95.74% 96.06%

Spam recall 89.07% 93.18% 94.18%

Spam precision 74.10% 91.35% 91.59%

Spam misclassification 10.93% 6.82% 5.82%

Ham recall 88.36% 96.70% 96.76%

Ham precision 95.58% 97.43% 97.80%

Ham misclassification 11.64% 3.30% 3.24%

Total cost ratio 2.38 6.39 6.91

Table 5.6: GANN and ensemble results for the Enron 3 subset.

The GANN filter performed relatively the same on the Enron 3 subset as it did on the Enron 1 subset.

On this subset an accuracy of 88.55% was obtained, with the filter being 89.07% effective as indicated

by SR. The GANN filter’s safety (SP) was lower at 74.10%. The number of misclassified spam messages

is 10.93%. An HR and HP value of 88.36% and 95.58% were obtained respectively. The GANN filter

blocked 11.64% of nonspam messages and has a TCR value of 2.38. The GANN is therefore a feasible

spam filter compared to not using a filter. Both the ensemble methods improved on the GANNs results.

The Boosting ensemble technique performed the best as indicated by the highest TCR value of 6.91.

The Enron 4 subset (Table 5.7) will be discussed next.

The GANN obtained an accuracy of 72.27% on the Enron 4 subset. The SR and SP values were 72.38%

and 88.55% respectively. The number of misclassified spam messages which the GANN filter failed

to block was 27.62%. Considering ham classification, HR and HP values of 71.93% and 46.47% were

obtained respectively. The HM was 28.07% where nonspam messages were classified as spam messages.
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Measure GANN Bagging Boosting

Accuracy 72.27% 97.54% 97.79%

Spam recall 72.38% 99.00% 99.28%

Spam precision 88.55% 97.75% 97.81%

Spam misclassification 27.62% 1.00% 0.72%

Ham recall 71.93% 93.18% 93.34%

Ham precision 46.47% 96.89% 97.74%

Ham misclassification 28.07% 6.82% 6.66%

Total cost ratio 2.70 30.51 33.96

Table 5.7: GANN and ensemble results for the Enron 4 subset.

Fortunately, the GANN is still a feasibly solution for classifying spam as indicated by TCR (2.70) which

is greater than 1.00. Both the ensemble techniques improved on the GANNs results. The Boosting

ensemble performing the best with the highest TCR value of 33.69. The results obtained on the Enron

5 subset are considered next.

Measure GANN Bagging Boosting

Accuracy 88.99% 96.72% 97.20%

Spam recall 91.70% 98.57% 98.91%

Spam precision 92.71% 96.86% 97.19%

Spam misclassification 8.30% 1.43% 1.09%

Ham recall 82.33% 92.18% 93.01%

Ham precision 80.19% 96.35% 97.22%

Ham misclassification 17.67% 7.82% 6.99%

Total cost ratio 6.45 21.62 25.34

Table 5.8: GANN and ensemble results for the Enron 5 subset.

The GANN showed promising results on the Enron 5 subset with an accuracy of 88.99%. Both the

SR and SP results are good. The GANN filter was effective in blocking 91.70% of spam messages

as indicated by SR. The GANN filter is considered safe since the degree to which the blocked spam

messages were indeed spam is 92.71% as indicated by SP. The number of misclassified spam messages

is 8.30%. The HR and HP values were 82.33% and 80.19% respectively. An HM value of 17.67%

was obtained indicating the percentage of nonspam messages incorrectly classified as spam messages.

The TCR is above 1.00 with a value of 6.45 indicating that the GANN filter is a feasible solution
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for classifying spam. The Bagging and Boosting ensembles greatly improved on the GANNs results

with TCR values of 21.62 and 25.34 respectively. The Boosting ensemble performed the best since it

obtained the highest TCR value. The Enron 6 subset results are presented next.

Measure GANN Bagging Boosting

Accuracy 83.25% 95.96% 95.96%

Spam recall 96.33% 98.83% 99.06%

Spam precision 83.77% 95.90% 95.71%

Spam misclassification 3.67% 1.17% 0.94%

Ham recall 44.00% 87.35% 86.69%

Ham precision 80.00% 96.15% 96.84%

Ham misclassification 56.00% 12.65% 13.31%

Total cost ratio 4.48 18.56 18.56

Table 5.9: GANN and ensemble results for the Enron 6 subset.

The GANN filter obtained an accuracy of 83.25% on the Enron 6 subset. The percentage of blocked

spam messages (SR) is 96.33% which is good with a precision of 83.77%. For this subset, 3.67% of

spam messages were misclassified. Considering ham classification, 44.00% of ham messages passed

through the GANN filter (indicated by HR) with a HP of 80.00%. Ham misclassification was 56.00%. A

TCR value of 4.48 was obtained indicating that it is better to use the GANN filter than no filter at all.

Both the ensemble methods improved on the GANNs results. The Bagging and Boosting techniques

performed equally well with TCR values of 18.56 each.

Of the six Enron subsets the GANN’s best performance was on the Enron 5 subset with a TCR value

of 6.45. The ensemble techniques improved on the GANN’s results for all six Enron subsets. The

ensembles performed equally well on the Enron 2 and Enron 6 subsets with TCR values of 7.38 and

18.56 respectively. Of the two ensemble techniques, the Boosting technique performed the best. The

GANN is still a recommended filter with TCR values of more than 1.00. In the next section the

experiments conducted on the GenSpam corpus are considered.

5.3 The GenSpam data set

The GenSpam corpus (Medlock, 2006) was created to provide a more recent collection of e-mails since

other corpora were getting outdated. The study conducted by Medlock (2006), used the GenSpam
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corpus to classify messages using an interpolated language model. The corpus consists of three

subsets named GenSpam Training, GenSpam Adaption and GenSpam Test. Three experiments were

conducted by using the GenSpam Training subset, GenSpam Adaption subset and a combination of

both (GenSpam Combination) as training data. The classifier was evaluated on the GenSpam Test

subset. Detailed information on the three subsets is presented in Table 5.10.

# Messages Metadata

Subset Legit Spam Total Spam ratio Encrypted Headers Creation year

GenSpam Training 8158 30088 38246 79.00% Partially No 2005

GenSpam Adaption 300 300 600 50.00% Partially No 2005

GenSpam Test 754 797 1551 51.00% Partially No 2005

GenSpam 9212 31185 40397 77.00% Partially No 2005

Table 5.10: GenSpam corpora description.

The average spam ratio for the complete GenSpam data set is 77.00%, indicating that 23.00% of the

messages are legitimate messages. Preprocessing included partially encrypted entries which refer to the

following five token types (Table 5.11) that were encrypted or replaced for privacy reasons in order to

protect the users whose ham messages are included in the subsets. None of the subsets used headers in

determining the message class.

Token type Encryption value

Proper names &NAME

Individual characters &CHAR

Numbers &NUM

E-mail addresses &E-MAIL

Internet URLs &URL

Table 5.11: GenSpam encryption types.

Figure 5.4 illustrates how a GenSpam message is represented with encryption values. The results

obtained by the automated construction algorithm of the GANN and the two ensemble techniques on

the GenSpam subsets are discussed next.
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Figure 5.4: GenSpam message representation (adapted from Medlock, 2006).

5.3.1 GANN and ensemble results

Table 5.12 shows the GANN and ensemble results obtained with the GenSpam Training subset.

Measure GANN Bagging Boosting

Accuracy 82.85% 83.17% 82.59%

Spam recall 93.60% 93.85% 93.60%

Spam precision 77.63% 77.92% 77.31%

Spam misclassification 6.40% 6.15% 6.40%

Ham recall 71.49% 71.88% 70.95%

Ham precision 91.36% 97.71% 91.30%

Ham misclassification 28.51% 28.12% 29.05%

Total cost ratio 3.00 3.05 2.95

Table 5.12: GANN and ensemble results for the GenSpam Training subset.

The GANN obtained an accuracy of 82.85% on the GenSpam Training subset. The SR value of 93.60%

indicates the percentage of spam messages the GANN filter managed to block, but according to the SP

value only 77.63% of blocked spam messages were indeed spam. Overall, 6.40% of all spam messages

were misclassified. The HR value is rather low at 71.49% but with 91.36% precision as shown by the

HP value. A low HR value indicates that the GANN has a high false negative rate which is why HM

is 28.51%. Higher TCR values indicates a better filter. As depicted by the TCR values, it is better

to implement the GANN as a spam filter rather than not having a filter, since the TCR values are
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all greater than 1.00. The Bagging ensemble performed slightly better than the GANN with a TCR

value of 3.05. Unfortunately, the Boosting ensemble was unable to improve on the GANN’s results.

Nonetheless, an ensemble was able to improve the GANN’s results on the GenSpam Training subset.

The second experiment used the GenSpam Adaption subset. The GANN and ensemble results for this

experiment are presented in Table 5.13.

Measure GANN Bagging Boosting

Accuracy 86.72% 81.37% 83.49%

Spam recall 88.46% 80.43% 87.20%

Spam precision 86.08% 82.82% 81.86%

Spam misclassification 11.54% 19.57% 12.80%

Ham recall 84.88% 82.36% 79.58%

Ham precision 87.43% 79.92% 85.47%

Ham misclassification 15.12% 17.64% 20.42%

Total cost ratio 3.87 2.76 3.11

Table 5.13: GANN and ensemble results for the GenSpam Adaption subset.

An accuracy result of 86.72% was obtained with the GANN on the GenSpam Adaption subset. The

SR and SP values are very similar with 88.46% and 86.08% respectively. A SM value of 11.54% was

obtained indicating the percentage of spam messages the filter failed to block. The HR value shows

that 84.88% of legitimate messages pass through the filter with a precision of 87.43% as indicated

by the HP value. The false positives (when ham messages are misclassified as spam messages) are

indicated by the HM value of 15.12%. Using the GANN filter is better than no filter with a TCR value

of 3.87. Both ensemble methods performed well with TCR values greater than 1.00, but was unable

to improve on the GANN’s results. Of the three techniques the GANN performed the best on the

GenSpam Adaption subset.

The third and last experiment combines the GenSpam Training and GenSpam Adaption subsets into

one subset (GenSpam Combination subset) used for training. The results obtained by the GANN for

the GenSpam Combination subset is shown in Table 5.14.

The GANN obtained an accuracy of 84.01% on the GenSpam Combination subset. A SR value of 93.73%

was obtained, indicating the percentage of spam messages blocked by the GANN filter. According

to the SP value 79.05% of the blocked messages were in fact spam. The SM value of 6.27% is good,

indicating low false negatives (when spam messages are misclassified as ham messages). A HR value of



Chapter 5. Experimental Design and Results 81

Measure GANN Bagging Boosting

Accuracy 84.01% 83.17% 83.24%

Spam recall 93.73% 93.22% 93.60%

Spam precision 79.05% 78.21% 78.12%

Spam misclassification 6.27% 6.78% 6.40%

Ham recall 73.74% 72.55% 72.28%

Ham precision 91.75% 91.01% 91.44%

Ham misclassification 26.26% 27.45% 27.72%

Total cost ratio 3.21 3.05 3.07

Table 5.14: GANN and ensemble results for the GenSpam Combination subset.

73.74% was obtained with a precision of 91.75% as indicated by HP. The HM value is high with 26.26%

of legitimate messages blocked by the GANN filter. This indicates a high false positive rate where

ham messages are misclassified as spam messages. Overall the GANN performed well with a TCR

value of 3.21 and is thus better than not using a spam filter. Both ensemble methods achieved similar

results with TCR values greater than 1.00. Unfortunately, the ensembles were unable to improve

on the GANN’s results. The GANN was the best classifier of the three techniques on the GenSpam

Combination subset.

Overall the GANN filter performed better than the Bagging and Boosting ensemble techniques on the

GenSpam Adaption and GenSpam Combination subsets when considering TCR values. Its TCR value

was only 0.05 lower on the GenSpam Training subset compared to the Bagging technique with a TCR

value of 3.05. On all three GenSpam subsets the HM values were much higher than the SM values

which indicates that the GANN performed well as a spam filter. The PU1 corpus and the experiments

performed are considered in the next section.

5.4 The PU1 data set

The PU1 corpus (Androutsopoulos, Koutsias, Chandrinos & Spyropoulos, 2000) was analysed using

the näıve Bayesian (NB) filter and has four subsets, each consisting of 1099 messages, with different

preprocessing steps performed. The preprocessing techniques include no preprocessing (Bare), stop-word

removal (Stop), lemmatization (Lemm) or both techniques (Lemm and Stop). Legitimate (nonspam)

and spam messages were collected over periods of 22 and 36 months respectively. The PU1 corpus has

a spam ratio of 44.00% and each subset is summarised in Table 5.15.
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# Messages Metadata

Subset Legit Spam Total Spam ratio Encrypted Preprocessing

PU1 Bare 618 481 1099 44.00% Yes None

PU1 Stop 618 481 1099 44.00% Yes Stop

PU1 Lemm 618 481 1099 44.00% Yes Lemm

PU1 Lemm Stop 618 481 1099 44.00% Yes Lemm and Stop

Table 5.15: PU1 subset description.

Each of the four subsets were encrypted to protect the privacy of the individuals it belongs to. To

achieve anonymity, the content (words, punctuation symbols, numbers, etc.) of these messages were

obfuscated by substituting the content with an arbitrarily chosen integer. The four different subsets

were also subjected to the preprocessing steps of HTML and attachment removal, duplicate messages

and header removal except for the subject field. Thus, only the subject field and message body of an

e-mail message were used. An e-mail message before and after encryption are shown in Figures 5.5 and

5.6 respectively.

From: spammer@spamcompany.com
To: spamtarget@provider.com
Subject: Get rich now!

Click here to get rich! Try it now!

Figure 5.5: PU1 message before encryption (adapted from Androutsopoulos et al., 2000).

Subject: 1 2 3 4
5 6 7 1 2 4 8 9 3 4

Figure 5.6: PU1 message after encryption (adapted from Androutsopoulos et al., 2000).

All experiments used 10-fold cross-validation. Only the top 100 words calculated with mutual infor-

mation (MI) were used by the AutoGANN system as suggested by Du Toit (2006). The GANN and

ensemble results are discussed next.
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5.4.1 GANN and ensemble results

The GANN and ensemble results obtained on the PU1 Bare subset is presented in Table 5.16.

Measure GANN Bagging Boosting

Accuracy 95.50% 97.28% 96.60%

Spam recall 94.98% 98.45% 96.89%

Spam precision 94.81% 95.48% 95.41%

Spam misclassification 5.02% 1.55% 3.11%

Ham recall 95.92% 96.37% 96.37%

Ham precision 96.04% 98.76% 97.55%

Ham misclassification 4.08% 3.63% 3.63%

Total cost ratio 9.79 16.08 12.87

Table 5.16: GANN and ensemble results for the PU1 Bare subset.

The GANN achieved an accuracy value of 95.50%. Both the SR and SP values were above 90.00% at

94.98% and 94.81% respectively. The SM value of 5.02% is good, indicating very few spam messages

passed through the GANN filter. Regarding ham classification, the GANN filter also achieved good

results with a HR value of 95.92% and a HP value of 96.04%. False negatives were low with a HM

value of 4.08%. With a TCR value of 9.79 the GANN is recommended over not using a filter. Both

ensemble techniques were able to improve on the GANN’s results. The Bagging ensemble performed

the best with the highest accuracy and TCR values of 97.28% and 16.08 respectively. The GANN and

ensemble results on the PU1 Stop subset are presented in Table 5.17 and discussed next.

Measure GANN Bagging Boosting

Accuracy 95.35% 95.68% 95.91%

Spam recall 94.83% 95.34% 93.78%

Spam precision 94.50% 94.85% 96.79%

Spam misclassification 5.17% 4.66% 6.22%

Ham recall 95.74% 95.95% 97.57%

Ham precision 96.00% 96.34% 95.26%

Ham misclassification 4.26% 4.05% 2.43%

Total cost ratio 9.36 10.16 10.72

Table 5.17: GANN and ensemble results for the PU1 Stop subset.
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An accuracy result of 95.35% was obtained with the GANN filter. According to the SR value, 94.83%

of spam messages were blocked at a precision of 94.50% as indicated by the SP value. Only 5.17%

of spam messages were misclassified. For ham classification similar results were obtained. The HR

value is 95.74% with a HP value of 96.00%. The percentage of misclassified ham messages is 4.26%.

The GANN filter achieved a TCR value of 9.36 indicating it would perform better compared to not

using a filter. The Bagging and Boosting ensembles were able to improve on the GANN results with

TCR values of 10.16 and 10.72 respectively. The Boosting technique performed the best on the PU1

Stop subset of the three techniques. Next, the GANN and ensemble results on the PU1 Lemm subset

are discussed. In Table 5.18 the results obtained by the GANN and ensembles techniques on the PU1

Lemm subset are presented.

Measure GANN Bagging Boosting

Accuracy 93.98% 95.45% 95.00%

Spam recall 92.05% 92.71% 95.31%

Spam precision 93.92% 96.74% 93.37%

Spam misclassification 7.95% 7.29% 4.69%

Ham recall 95.46% 97.58% 94.76%

Ham precision 94.03% 94.53% 96.31%

Ham misclassification 4.54% 2.42% 5.24%

Total cost ratio 7.19 7.29 8.73

Table 5.18: GANN and ensemble results for the PU1 Lemm subset.

The GANN filter obtained an accuracy value of 93.98%. A SR value of 92.05% indicates the percentage

of spam messages blocked by the filter while SP suggest that 93.92% of the spam messages were indeed

spam. Nearly 8.00% of spam messages were misclassified. For HR and HP values the GANN showed

promising results of 95.46% and 94.03 respectively. Only 4.54% of ham messages were misclassified as

spam messages. A TCR value of 7.19 is better than the baseline of 1.00. Using a GANN filter is thus

better than not using a filter. Both ensemble methods improved on the GANN’s results. Boosting

performed the best with a TCR value of 8.73. The last PU1 experiment was conducted on the PU1

Lemm Stop subset. In Table 5.19 the results obtained by the GANN and the ensemble techniques for

the PU1 Lemm Stop subset are presented.

An accuracy value of 95.08% was obtained with the GANN filter. Both SR and SP values were similar

at 94.47% and 94.31% respectively. The SM value was 5.53%. The GANN obtained good results for

ham classification with HR and HP values of 95.55% and 95.68% respectively. Only a few ham mess-
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Measure GANN Bagging Boosting

Accuracy 95.08% 95.91% 95.45%

Spam recall 94.47% 94.79% 92.71%

Spam precision 94.31% 95.79% 96.74%

Spam misclassification 5.53% 5.21% 7.29%

Ham recall 95.55% 96.77% 97.58%

Ham precision 95.68% 96.00% 94.53%

Ham misclassification 4.45% 3.23% 2.42%

Total cost ratio 8.91 10.67 9.60

Table 5.19: GANN and ensemble results for the PU1 Lemm Stop subset.

ages were misclassified as indicated by HM with a value of 4.45%. The TCR value obtained is 8.91,

indicating it is better to use a GANN filter compared to not using a filter. The Bagging and Boosting

ensemble techniques were able to improve on the GANN’s results. Bagging achieved the highest

accuracy and TCR values of 95.91% and 10.67 respectively, thus performing the best on the PU1 Lemm

Stop subset of the three techniques.

Overall the GANN performed well as a spam filter. The SM values were higher than the HM values on

all four PU1 subsets. This indicates that the GANN did not block too many nonspam messages, which

is good. Although the ensembles performed better than the GANN, the GANN is still a recommended

filter with a TCR value higher than 8.00. The next corpus to be considered is the SpamAssassin (SA)

data set.

5.5 The SpamAssassin data set

In Table 5.20 a summary of the SpamAssassin (SA) corpus is given.

# Messages Metadata

Corpus Legit Spam Total Spam ratio Encrypted Creation year

SpamAssassin (SA) 4150 1897 6047 31.00% No 2003

Table 5.20: SpamAssassin corpus description.

The SA corpus contains 4150 legitimate messages and 1897 spam messages. In total the SA corpus

consists of 6047 messages with a 31.00% spam ratio. A spam-filtering approach with Deep Belief
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Networks (DBN) (a type of feedforward neural network with many hidden layers), which used the

SA corpus, was proposed by Tzortzis & Likas (2007). Preprocessing of the corpus included stop-word

removal, HTML tag removal and random splitting of the SA corpus into ten partitions for use with

10-fold cross-validation. Only the top 100 words calculated with mutual information (MI) were used.

In the next section the GANN and ensemble results obtained are discussed.

5.5.1 GANN and ensemble results

Table 5.21 shows the GANN and ensemble results obtained with the SA corpus.

Measure GANN Bagging Boosting

Accuracy 94.24% 93.76% 94.17%

Spam recall 87.85% 87.24% 87.63%

Spam precision 93.39% 92.47% 93.41%

Spam misclassification 12.15% 12.76% 12.37%

Ham recall 97.16% 96.75% 97.17%

Ham precision 94.60% 94.30% 94.49%

Ham misclassification 2.84% 3.25% 2.83%

Total cost ratio 5.45 5.03 5.39

Table 5.21: GANN and ensemble results for the SA corpus.

An accuracy result of 94.24% was obtained with the GANN filter. According to the SR value, 87.85%

of spam messages were blocked by the filter at a precision of 93.39% as indicated by SP. The percentage

of misclassified spam messages is 12.15%. Considering ham classification, the GANN obtained a good

HR value of 97.16% with a HP value of 94.60%. False negatives are low with an HM value of 2.84%. A

TCR value greater than 1.00 was achieved (5.45) indicating that the use of a GANN filter is better

than not using a filter. The Bagging and Boosting ensemble techniques performed well with TCR

values greater than 5.00. Unfortunately, the ensemble techniques were unsuccessful in improving on

the GANN’s results. The GANN performed the best of the three techniques when considering TCR

values. The GANN also performed well with a lower HM value compared to the SM value.

The last experiment conducted with the automated construction algorithm for the GANN was on the

TREC2005 corpus which is discussed next.
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5.6 The TREC2005 data set

The TREC2005 corpus (Cormack & Lynam, 2005), also referred to as trec05p-1/full, provides a large

collection of e-mails. The data set was part of the Text REtrieval Conference (TREC) 2005 Spam Track

which provided one of the most realistic data sets for laboratory evaluation. The purpose of Spam

Track is to measure an e-mail filter’s effectiveness by considering the ham and spam misclassification

rates and model its intended usage as close as possible. Table 5.22 describes the TREC2005 corpus.

# Messages Metadata

Corpus Legit Spam Total Spam ratio Encrypted Creation year

trec05p-1/full (TREC2005) 39399 52790 92189 57.00% No 2005

Table 5.22: TREC2005 corpus description.

The TREC2005 corpus consists of 92189 messages of which 39399 messages are ham (legitimate) and

52790 messages are spam. The data set has a spam ratio of 57.00%. None of the messages are encrypted

and is in a raw format like it was when originally provided. Preprocessing involved attachment removal,

tokenisation of the messages, stop-word removal, and feature selection by mutual information (MI)

to determine the top 100 words contributing the most information gain for use by the classifier. The

GANN and ensemble results obtained with the TREC2005 corpus are discussed next.

5.6.1 GANN and ensemble results

Table 5.23 shows the GANN results obtained with the TREC2005 corpus.

Measure GANN Bagging Boosting

Accuracy 64.37% 64.43% 64.43%

Spam recall 99.44% 99.44% 99.46%

Spam precision 64.71% 61.76% 61.76%

Spam misclassification 0.56% 0.56% 0.54%

Ham recall 17.43% 17.51% 17.50%

Ham precision 95.90% 95.90% 96.03%

Ham misclassification 82.57% 82.49% 82.50%

Total cost ratio 1.61 1.61 1.61

Table 5.23: GANN and ensemble results for the TREC2005 corpus.



Chapter 5. Experimental Design and Results 88

The GANN filter obtained an accuracy of 64.37%. According to the SR value, 99.44% of spam messages

were blocked. However, 64.71% of the blocked messages were indeed spam as indicated by the SP

value. The SM value is very good with only 0.56% of spam messages misclassified as ham messages.

Considering ham classification, the GANN filter obtained a HR value of 17.43% and a HP value of

95.90%. The low HR value resulted in many false negatives as depicted by the HM value of 82.57%.

The GANN was still able to obtain a TCR value greater than 1.00 which indicates the GANN filter is

better than no filter. Overall, both ensembles performed the same as the GANN with TCR values

of 1.61. The HM value for the GANN was much higher than the SM value which indicates that the

GANN performed well as a spam filter. However, the high HM value indicates a high false positive

rate which results in a large number of ham messages mistakenly classified as spam. As a consequence,

the TCR value is very low. In the next section this chapter is concluded.

5.7 Conclusions

In this chapter five experiments using the automated construction algorithm of the GANN were

discussed. Each experiment used a different public spam corpus (Enron, GenSpam, PU1, SpamAssassin

or TREC2005) which adhered to different preprocessing techniques. The GANN and ensemble

experiments for each data set were outlined in Section 5.1 and a general discussion on the preprocessing

techniques and data representation was given. In Sections 5.2 to 5.6 the GANN and ensemble results

for the Enron, GenSpam, PU1, SA and TREC2005 experiments were discussed respectively. For all the

experiments, the GANN filter is recommended compared to not using a filter, since the TCR values

were always above 1.00. In some cases, the SM values were lower than the HM values and vice versa,

indicating that the corpus used could have an impact on the GANN models which affect these values.

In Chapter 6 a discussion on the GANN’s overall performance is given. The GANN is compared to

techniques found in the literature that were applied to each corpus.



CHAPTER 6

DISCUSSION

In Chapter 5 the experimental design and results obtained, together with the GANN and two ensemble

techniques, applied to five publicly available spam corpora were each presented and discussed. This

chapter focuses on the overall performance of the GANN. A comparison between the GANN, the

Bagging and Boosting ensemble techniques and the spam filters found in the literature (mentioned

in Chapter 5) are discussed in Section 6.1. The GANN and ensemble techniques are then compared

in terms of accuracy in Section 6.2. The comprehensibility of the results obtained by these models

is considered in Section 6.3. Next, model construction and ease of use with the SAS R© Enterprise

MinerTM system for the three techniques are discussed in Section 6.4. A conclusion to this chapter is

presented in Section 6.5.

6.1 Comparison to other techniques

In this section the GANN and ensemble techniques are compared to different spam filtering methods

found in the literature. In Section 6.1.1 the techniques applied to the Enron corpus are discussed

followed by the techniques used on the GenSpam corpus (Section 6.1.2), PU1 corpus (Section 6.1.3),

SpamAssassin corpus (Section 6.1.4), and the TREC2005 corpus (Section 6.1.5).

6.1.1 Enron corpus

Metsis et al. (2006) applied five variations of the näıve Bayes technique (flexible Bayes (FB); multivariate

Gauss (MV Gauss); multinomial term frequency model (MN TF); multivariate Bernoulli (MV Bern)

and a multinomial binary model (MN Bool)) to the Enron corpus which consists of six subsets (Enron

1, Enron 2, . . . , Enron 6). The results compared to the GANN and the ensemble techniques for each
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subset are presented by Tables 6.1 (Enron 1), 6.2 (Enron 2), 6.3 (Enron 3), 6.4 (Enron 4), 6.5 (Enron

5) and 6.6 (Enron 6) respectively. The best result per measurement (ham recall and spam recall) is

indicated in bold.

Measure FB MV Gauss MN TF MV Bern MN Bool GANN Bagging Boosting

Ham recall 97.64% 94.83% 94.00% 93.19% 95.25% 88.62% 93.88% 94.63%

Spam recall 90.50% 93.08% 95.66% 97.08% 96.00% 87.27% 94.18% 94.51%

Table 6.1: GANN and ensemble techniques compared to the five NB techniques applied to the Enron
1 subset.

Measure FB MV Gauss MN TF MV Bern MN Bool GANN Bagging Boosting

Ham recall 98.83% 96.97% 96.78% 97.22% 97.83% 82.71% 96.79% 97.02%

Spam recall 93.63% 95.80% 96.81% 91.05% 96.68% 97.46% 95.82% 95.15%

Table 6.2: GANN and ensemble techniques compared to the five NB techniques applied to the Enron
2 subset.

Measure FB MV Gauss MN TF MV Bern MN Bool GANN Bagging Boosting

Ham recall 95.36% 88.81% 98.83% 75.41% 99.88% 88.36% 96.70% 96.76%

Spam recall 96.94% 97.55% 95.04% 97.42% 96.94% 89.07% 93.18% 94.18%

Table 6.3: GANN and ensemble techniques compared to the five NB techniques applied to the Enron
3 subset.

Measure FB MV Gauss MN TF MV Bern MN Bool GANN Bagging Boosting

Ham recall 96.61% 99.39% 98.30% 95.86% 99.05% 71.93% 93.18% 93.34%

Spam recall 95.78% 80.14% 97.79% 97.70% 97.79% 72.38% 99.00% 99.28%

Table 6.4: GANN and ensemble techniques compared to the five NB techniques applied to the Enron
4 subset.

Measure FB MV Gauss MN TF MV Bern MN Bool GANN Bagging Boosting

Ham recall 90.76% 97.28% 95.65% 90.08% 95.65% 82.33% 92.18% 93.01%

Spam recall 99.56% 95.42% 99.42% 97.95% 99.69% 91.70% 98.57% 98.91%

Table 6.5: GANN and ensemble techniques compared to the five NB techniques applied to the Enron
5 subset.
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Measure FB MV Gauss MN TF MV Bern MN Bool GANN Bagging Boosting

Ham recall 89.97% 95.87% 95.12% 82.52% 96.88% 44.00% 87.35% 86.69%

Spam recall 99.55% 91.95% 98.08% 97.92% 98.10% 96.33% 98.83% 99.06%

Table 6.6: GANN and ensemble techniques compared to the five NB techniques applied to the Enron
6 subset.

For the ham recall measurement, the best GANN performance of 88.62% was achieved on the Enron 1

subset while the worst GANN performance of 44.00% was achieved on the Enron 6 subset. The GANN

was only able to improve on the MV Bern technique of the Enron 3 subset. The Bagging and Boosting

ensembles were able to improve on eight and ten NB techniques respectively of the thirty NB spam

filters in all of the six Enron subsets. Both ensembles were able to improve on the GANN’s results in

terms of ham recall.

Considering the spam recall measurement, the best (97.46%) and worst (72.38%) GANN performances

were obtained on the Enron 2 and Enron 4 subsets respectively. The GANN achieved greater results

on the Enron 2 subset than all NB techniques and performed better than the MV Gauss technique on

the Enron 6 subset. The ensembles were able to improve on the GANN’s results except for the Enron

2 subset. The ensembles outperformed all the NB techniques on the Enron 4 subset. The Bagging and

Boosting ensembles performed better on sixteen and fifteen NB techniques respectively of the thirty

NB spam filters in all of the six Enron subsets. Next, the techniques applied to the GenSpam corpus

are compared to the GANN and ensemble methods.

6.1.2 GenSpam corpus

The GenSpam corpus consists of three subsets (Training, Adaption and Combination). For each of these

sets the following five classification models were applied: multinomial näıve Bayes (MNB), support

vector machine (SVM), Bayesian logistic regression (BLR) and a unigram and bigram interpolated

language model (ILM) (Medlock, 2006). The results obtained by the GANN and the ensemble

techniques, for each data set, are presented by Tables 6.7, 6.8 and 6.9 respectively. The performance

measures applied were accuracy, ham recall and spam recall. Values in bold represent the best result

per measurement.

The GANN and both ensemble techniques performed worse for accuracy and ham recall than the five

techniques applied to all three GenSpam subsets. Improvements were seen for the GANN and the

Bagging and Boosting methods regarding spam recall on the GenSpam Training and Combination sets

when compared to the SVM and BLR techniques. The GANN and ensemble methods were unable to
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Measure MNB SVM BLR ILM Unigram ILM Bigram GANN Bagging Boosting

Accuracy 94.52% 94.33% 94.07% 95.87% 96.84% 82.85% 83.17% 82.59%

Ham recall 93.22% 98.37% 98.62% 96.74% 96.36% 71.49% 71.88% 70.95%

Spam recall 95.89% 90.05% 89.26% 94.96% 97.35% 93.60% 93.85% 93.60%

Table 6.7: GANN and ensemble techniques compared to the five techniques applied to the GenSpam
Training subset.

Measure MNB SVM BLR ILM Unigram ILM Bigram GANN Bagging Boosting

Accuracy 95.04% 97.87% 96.91% 95.68% 96.65% 86.72% 79.58% 83.49%

Ham recall 93.35% 97.24% 97.37% 93.73% 96.49% 84.88% 82.36% 79.58%

Spam recall 96.82% 98.54% 96.42% 97.75% 96.82% 88.46% 80.43% 87.20%

Table 6.8: GANN and ensemble techniques compared to the five techniques applied to the GenSpam
Adaption subset.

Measure MNB SVM BLR ILM Unigram ILM Bigram GANN Bagging Boosting

Accuracy 94.58% 96.07% 95.74% 97.87% 97.94% 84.01% 83.17% 83.24%

Ham recall 92.97% 98.87% 98.87% 96.74% 97.37% 73.74% 72.55% 72.28%

Spam recall 96.29% 93.10% 92.44% 99.07% 98.54% 93.73% 93.22% 93.60%

Table 6.9: GANN and ensemble techniques compared to the five techniques applied to the GenSpam
Combination subset.

improve on any of the other techniques (MNB, ILM unigram and ILM bigram) when considering

accuracy, ham recall and spam recall. The GANN was thus outperformed by these three techniques

applied to the GenSpam corpus when classifying spam e-mails. Next, the GANN and ensembles are

compared to the techniques applied to the PU1 corpus.

6.1.3 PU1 corpus

The PU1 data set was divided into four subsets (PU1 Bare, PU1 Stop, PU1 Lemm and PU1 Lemm Stop),

each with different preprocessing techniques applied to them. The filtering technique applied to each

subset was the näıve Bayesian (NB) filter (Androutsopoulos, Koutsias, Chandrinos & Spyropoulos, 2000).

The GANN and ensemble techniques were compared to the NB filter in terms of accuracy, spam precision,

spam recall and the total cost ratio measurement with λ = 1. When λ = 1, legitimate and spam

messages are weighed the same i.e. misclassifying legitimate messages as spam is considered the same as

letting a spam message pass through the filter. The results are shown in Tables 6.10 (PU1 Bare), 6.11
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(PU1 Stop), 6.12 (PU1 Lemm) and 6.13 (PU1 Lemm Stop). The best result per measurement is

indicated in bold.

Measure NB GANN Bagging Boosting

Accuracy 91.08% 95.50% 97.28% 96.60%

Spam precision 95.11% 94.81% 95.48% 95.41%

Spam recall 83.98% 94.98% 98.45% 96.89%

Total cost ratio 4.90 9.79 16.08 12.87

Table 6.10: GANN and ensemble techniques compared to the NB technique applied to the PU1 Bare
subset.

Measure NB GANN Bagging Boosting

Accuracy 91.17% 95.35% 95.68% 95.91%

Spam precision 96.76% 94.50% 94.85% 96.79%

Spam recall 84.19% 94.83% 95.34% 93.78%

Total cost ratio 4.95 9.36 10.16 10.72

Table 6.11: GANN and ensemble techniques compared to the NB technique applied to the PU1 Stop
subset.

Measure NB GANN Bagging Boosting

Accuracy 89.80% 93.98% 95.45% 95.00%

Spam precision 98.25% 93.92% 96.74% 93.37%

Spam recall 78.14% 92.05% 92.71% 95.31%

Total cost ratio 4.29 7.19 9.60 8.73

Table 6.12: GANN and ensemble techniques compared to the NB technique applied to the PU1 Lemm
subset.

Measure NB GANN Bagging Boosting

Accuracy 90.34% 95.08% 95.91% 95.45%

Spam precision 97.96% 94.31% 95.79% 96.74%

Spam recall 79.60% 94.47% 94.79% 92.71%

Total cost ratio 4.53 8.91 10.67 9.60

Table 6.13: GANN and ensemble results compared to the NB technique applied to the PU1 Lemm
Stop subset.
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The GANN was able to outperform the NB filter in terms of accuracy, spam recall and total cost ratio

(TCR) on all four subsets. The Bagging ensemble improved on the GANN’s results for all four subsets

on all measurements. The Boosting ensemble improved on the GANN results regarding the accuracy

and TCR measurements on all four subsets. Of the four techniques the Bagging ensemble performed

the best with the highest TCR value on three subsets except the PU1 Stop subset where the Boosting

ensemble obtained the highest TCR value. Implementing any of the four techniques is better than

not having a filter, since the TCR values are greater than 1.00. The SpamAssassin data set and two

filtering techniques are considered next for comparison to the GANN and the ensembles.

6.1.4 SpamAssassin corpus

The Deep Belief Network (DBN) and support vector machine (SVM) spam filtering approaches were

applied to the SpamAssassin (SA) data set (Tzortzis & Likas, 2007). The performance measures

applied were accuracy, ham recall, ham precision, spam recall and spam precision. The GANN and the

ensemble models’ results compared to the DBN filter and the SVM filter are presented in Table 6.14.

Bold values show the best result obtained per measurement.

Measure DBN SVM GANN Bagging Boosting

Accuracy 97.50% 97.32% 94.24% 93.76% 94.17%

Ham recall 98.39% 98.24% 97.16% 96.75% 97.17%

Ham precision 98.02% 97.89% 94.60% 94.30% 94.49%

Spam recall 95.51% 95.24% 87.85% 87.24% 87.63%

Spam precision 96.40% 96.14% 93.39% 92.47% 93.41%

Table 6.14: GANN and ensemble techniques compared to the DBN and SVM techniques applied to
the SpamAssassin data set.

The GANN and both the Bagging and Boosting ensemble methods were unable to improve on any

of the five performance measures for either the DBN nor the SVM spam-filtering techniques. The

DBN filter outperformed the other filters. The Boosting ensemble was the only ensemble method to

improve on the GANN’s results in terms of ham recall and spam precision. The techniques applied to

the TREC2005 corpus are considered next.

6.1.5 TREC2005 corpus

Four k-nearest neighbour (kNN) filters were applied to the TREC2005 data set, namely yorSPAM1,
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yorSPAM2, yorSPAM3 and yorSPAM4 (Cormack & Lynam, 2005). The results compared to the GANN

and the ensemble methods are presented in Table 6.15. In this table the GANN misclassification results

are shown. Note that lower values are considered better and the best (lowest) value is indicated in

bold per measurement.

Measure yorSPAM1 yorSPAM2 yorSPAM3 yorSPAM4 GANN Bagging Boosting

Ham misclassification 2.44% 0.92% 1.29% 2.99% 82.57% 82.49% 82.50%

Spam misclassification 2.43% 1.74% 1.20% 1.36% 0.56% 0.56% 0.54%

Table 6.15: GANN and ensemble techniques compared to the four yorSPAM techniques applied to
the TREC2005 data set.

The four different kNN variations outperformed the GANN and ensemble methods when considering

ham misclassification. However, the GANN and ensemble techniques outperformed the kNN methods

when spam misclassification was considered. The ensemble techniques were able to slightly improve on

the GANN’s results except for the Bagging ensemble result obtained with the spam misclassification

measurement that was the same as the GANN’s result of 0.56%. For this experiment the GANN was

better in classifying spam than any of the four kNN techniques. A comparison between the GANN and

the Bagging and Boosting ensemble techniques, based only on accuracy, is discussed next.

6.2 Model accuracy

The accuracy measurement gives an indication of how well each of the models performed when classifying

spam messages. In Table 6.16 the accuracy results obtained by each experiment is summarised. The

best results when the GANN and ensemble techniques are compared, are indicated in bold. Table 6.17

shows the method which obtained the best accuracy for the corresponding experiment. This table is

derived from the results of Table 6.16. In Table 6.18 the best overall method is presented based on the

number of accuracy wins.

From Table 6.16 the best accuracy result for the GANN was obtained by the PU1 Bare experiment with

a value of 95.50%. The lowest accuracy value of 64.37% was obtained by the TREC2005 experiment.

The Bagging technique performed best on the Enron 4 experiment, with an accuracy value of 97.54%.

The Boosting ensemble technique achieved the best accuracy result of the three methods with an

accuracy value of 97.79% also on the Enron 4 experiment. Both the ensemble methods performed

equally poor on the TREC2005 experiment with accuracy values of 64.43%.



Chapter 6. Discussion 96

Experiment GANN Bagging Boosting

Enron 1 88.23% 93.96% 94.59%

Enron 2 86.48% 96.54% 96.54%

Enron 3 88.55% 95.74% 96.06%

Enron 4 72.27% 97.54% 97.79%

Enron 5 88.99% 96.72% 97.20%

Enron 6 83.25% 95.96% 95.96%

GenSpam Training 82.85% 83.17% 82.59%

GenSpam Adaption 86.72% 79.58% 83.49%

GenSpam Combination 84.01% 83.17% 83.24%

PU1 Bare 95.50% 97.28% 96.60%

PU1 Stop 95.35% 95.68% 95.91%

PU1 Lemm 93.98% 95.45% 95.00%

PU1 Lemm Stop 95.08% 95.91% 95.45%

SpamAssassin 94.24% 93.76% 94.17%

TREC2005 64.37% 64.43% 64.43%

Table 6.16: GANN and ensemble accuracy results for the fifteen experiments on the five data sets.

Experiment Best method

Enron 1 Boosting

Enron 2 Bagging & Boosting equal

Enron 3 Boosting

Enron 4 Boosting

Enron 5 Boosting

Enron 6 Bagging & Boosting equal

GenSpam Training Bagging

GenSpam Adaption GANN

GenSpam Combination GANN

PU1 Bare Bagging

PU1 Stop Boosting

PU1 Lemm Bagging

PU1 Lemm Stop Bagging

SpamAssassin GANN

TREC2005 Bagging & Boosting equal

Table 6.17: Best accuracy method for each of the fifteen experiments on the five data sets.
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The best method column in Table 6.17 was derived from the results obtained in Table 6.16 depending on

the technique or techniques that performed the best regarding accuracy. For the TREC2005 experiment

the Bagging and Boosting ensembles performed equally well with an accuracy of 64.43% and will

therefore not contribute to the total wins in Table 6.18. The same is applicable for the Enron 2 and

Enron 6 experiments where Bagging and Boosting accuracy values were the same (96.54% and 95.96%

respectively).

Method Accuracy wins

GANN 3

Bagging 4

Boosting 5

Table 6.18: Best overall method for accuracy.

All the other experiments had one method that outperformed the rest. According to Table 6.18 the

Boosting ensemble performed the best, achieving the highest accuracy results on five of the experiments

(Enron 1, Enron 3, Enron 4, Enron 5 and PU1 Stop). The Bagging ensemble method achieved

four accuracy wins (GenSpam Training, PU1 Bare, PU1 Lemm and PU1 Lemm Stop experiments).

The GANN achieved the best accuracy results on three experiments (GenSpam Adaption, GenSpam

Combination and SpamAssassin).

Overall the ensemble methods performed better than the GANN with a combined nine accuracy wins

compared to the GANN’s three accuracy wins. The ensemble methods were mostly able to improve

on the results obtained by the single GANN model which was the expected result as suggested by

Aggarwal & Zhai (2012) and Dietterich (2000). Dietterich (2000) referred to three underlying problems

which a single classifier does not address and might cause worse classification accuracy results than an

ensemble method. The overall low accuracy values for the TREC2005 experiment might be due to the

extremely large data set which according to Dietterich (2000) is subjective to the computational and

representational problems. The global optimal solution is in a large hypothesis space H and the true

function f is possibly not present in the hypothesis search space H. Since the other data sets were

smaller, higher accuracy results might be achieved (found to be above 72.00% in the experiments) since

the only problem to consider was the statistical problem where insufficient training data in correlation

with the size of the hypothesis space H could cause lower accuracy results (Dietterich, 2000). In the

next section the comprehensibility of the GANN and ensemble models are considered.
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6.3 Model comprehensibility

Depending on the problem that needs solving, interpretation and understanding of the results produced

by the model are quite important. The GANN is able to produce partial residual plots overcoming, to

some degree, the black box effect posed by MLPs and more complex models like ensembles. The partial

residual plots provide meaningful insight into the complexity of the model. The relationship between

inputs and the target can be explored to interpret the significance of each input on the fitted model

(Potts, 1999) (Sections 4.2.1 and 4.2.2). Since ensembles have a more complex architecture than the

GANN, it is difficult to interpret and understand the relationships between the input attributes and

the target value. Examples of problems, where it is important to understand the relationship between

attributes and a target value, include credit scoring or customer churn prediction. The construction

and ease of use by the GANN and ensemble models are considered next.

6.4 Model construction and ease of use

In this study all models were constructed with the SAS R© Enterprise MinerTM system. The ensemble

models were assembled with the built-in Start Groups and End Groups Nodes (Maldonado et al., 2014)

while the GANN models were built with the AutoGANN system represented by a model node. For the

GANN and both ensemble techniques only a few parameters need to be set before the search for a good

model is initiated. No user input is required while the search is taking place. The SAS R© Enterprise

MinerTM system provides a graphical user interface for both the AutoGANN system and ensemble

methods, making it very user-friendly to construct these models.

With the AutoGANN system (Du Toit, 2006) a time must be allocated beforehand which determines

how long the search process will take. With no guidelines of how long it will take to find good models,

Du Toit (2006) suggested 12 hours, which was followed in this study. The AutoGANN system can

identify good models in a relatively short time (Du Toit, 2006) and proved to have high predictive

accuracy. This system is relatively easy to use and is capable of addressing different problems like

predictive data mining and credit scoring. It integrates numerous heuristic features capable of decreasing

the time it takes to find the best GANN model. The GANN model can then be compared to other

models found in the literature using various fit statistics (Du Toit, 2006). The SAS R© software also

includes a number of ensemble methods like Bagging and Boosting. A SAS R© software license is required

to use the AutoGANN system which is relatively expensive. However, there are exceptions where

free licenses can be obtained when attending an academic institution. A conclusion to this chapter is

presented in the next section.
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6.5 Conclusions

In this chapter the GANN and the Bagging and Boosting ensemble methods were compared to different

spam filtering techniques applied to each of the five public spam corpora (Chapter 5) in Section 6.1.

The GANN and ensemble techniques were compared with each other with regard to accuracy in

Section 6.2. The comprehensibility of the GANN and ensemble results were considered in Section 6.3.

The construction and ease of use for the GANN and ensemble models using the SAS R© Enterprise

MinerTM system were discussed in Section 6.4. With the SAS R© software, implementing these models

is relatively easy via the user-friendly graphical interface. Time is saved as most of the processes

are automated and require no user interaction. In the final chapter, the conclusion to this study is

presented.



CHAPTER 7

CONCLUSIONS

The purpose of this study was to investigate the use of a GANN as feasible spam filter to accurately

classify spam and reducing it. Spam e-mail is still an ongoing problem with no solution to solve the

issue. The automated construction algorithm for the GANN was implemented by the AutoGANN

system and investigated to perform this classification task. The GANN was discussed and evaluated

with regard to its spam e-mail classification capabilities. It was compared to a number of spam filtering

techniques found in the literature and two ensembles methods, namely Bagging and Boosting.

In this chapter the research objectives are reviewed in Section 7.1. The research results and research

limitations are presented in Section 7.2 and Section 7.3 respectively. Future work is discussed in

Section 7.4 before concluding this chapter in Section 7.5.

7.1 Research objectives

The primary research aim of this study was to investigate the GANN’s capabilities to accurately

classify spam and therefore reducing it. A list of research objectives was defined in Section 1.2 which

contributes to accomplishing the primary research aim. These objectives and how they were addressed

in this study are summarised next:

1. Define spam and describe literature relating to the problem of spam e-mails and the classification

thereof:

The definition of spam e-mails and a history of the e-mail application was presented in Chapter 2.

Spam e-mails were defined as unsolicited bulk e-mail messages sent to multiple recipients where

the sender and receivers have no known relationship. In Section 2.1 the origin of the word “spam”

100
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was described and the first spam message sent (Figure 2.1) was shown. The five incentives for

spamming (revenue generation, higher search engine rankings, promoting products and services,

stealing information and phishing) were also discussed. Chapter 2 provided context for this

study by emphasising the spam e-mail classification problem (Section 2.4) which is still ongoing.

This chapter also guided the experimentation for this study by suggesting a relatively new spam

e-mail classification approach in which the automated construction algorithm for the GANN

implemented by the AutoGANN system is considered as a possible solution to mitigate spam

e-mails.

2. Investigate the impact spam e-mails could have on individuals and companies when left unman-

aged:

Three areas of possible consequences (time, finance and security) of unmanaged spam, which

impacts both individuals and companies, were identified in Section 2.2. Figure 2.2 illustrated

how these areas are interconnected and showed that spam is responsible for problems in all three

these areas. Available counteract measures (filter and nonfilter solutions) that might prevent

these consequences and also help mitigate spam e-mails were discussed in Section 2.3. Neural

networks were considered as one of the more dynamic counteract measures to address the spam

problem since it is good at pattern recognition and fitting of nonlinear functions.

3. Discuss artificial neural networks in general and the Multilayer Perceptron (MLP) neural network

architecture which forms the basis of GANNs:

A brief history on artificial neural networks (ANNs) and how it mimics a biological human brain

on a high level was given in Section 3.1. The neuron model was described for both the single-input

and multiple-input neuron in Sections 3.2.1 and 3.2.2 respectively. A discussion on Perceptrons

(Section 3.2.3), which constitutes a simple ANN and a layer of neurons (Section 3.2.4), was

needed to provide context for the discussion and construction of the most common artificial neural

network used, known as the Multilayer Perceptron (MLP) (Section 3.3). Within this section the

Backpropagation algorithm (Section 3.3.1), a learning technique for MLPs, was explained since it

overcame the theoretical pitfalls of basic ANNs and criticism on the training capabilities of the

Perceptron model. Not only did Chapter 3 provide context about artificial neural networks, it

also showed on what basis the GANN is constructed.

4. Describe the GANN model and the associated automated construction algorithm:

Related studies that used the GANN were considered in Chapter 4 to show that it is a powerful

modelling technique. A discussion on Generalized additive models (GAMs) and smoothing were

presented (Section 4.1) since a GANN is the neural network implementation of a GAM. This
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provided the needed background information to discuss the GANN’s architecture (Section 4.2).

This section included examples of the construction of the GANN’s architecture. The interactive

and automated construction methodologies for the GANN were both considered in Sections 4.2.1

and 4.2.2 respectively. The latter is an improvement on the former by automating most of the

processes needed to build a GANN model.

5. Give an overview of the Bagging and Boosting ensemble techniques that are applied to the GANN

which might improve on the results obtained by the GANN:

The GANN was discussed in Section 4.2 and ensemble techniques were considered in Section 4.3.

More specifically, the Bagging ensemble was discussed in Section 4.3.1 and the Boosting ensemble

was explained in Section 4.3.2. It was noted that a set of classifiers might theoretically perform

better than an individual classifier as explained in Section 4.3.

6. Discuss the experimental design used to compare the GANN to other spam filtering techniques

found in the literature based on a number of different metrics:

Chapter 5 gave an overview of the methodology followed in the empirical investigation presented in

this study where the GANN and ensemble experiments were discussed in Sections 5.1.1 and 5.1.2

respectively. The various preprocessing steps (Section 5.1.3), and representation techniques

(Section 5.1.4) like tokenising, bag-of-words and feature selection by mutual information, applied

to the corpora, were considered. The different evaluation measures that were used to evaluate

each experiment were outlined in Section 5.1.5. All experiments conducted were presented

in detail in Sections 5.2 (Enron), 5.3 (GenSpam), 5.4 (PU1), 5.5 (SpamAssassin) and 5.6

(TREC2005) respectively. Results obtained by the GANN and ensemble techniques were compared

to techniques found in the literature in Sections 6.1.1 (Enron), 6.1.2 (GenSpam), 6.1.3 (PU1),

6.1.4 (SpamAssassin) and 6.1.5 (TREC2005).

7. Apply the ensemble techniques to the results obtained by the GANN to possibly improve the

accuracy of the GANN model:

For each experiment the GANN and ensemble results were presented in Chapter 5 and Chapter 6.

A detailed discussion of the accuracy results was provided in Chapter 6.

8. Compare the GANN model and the ensemble techniques in terms of accuracy, model interpretabil-

ity and ease of construction:

In Chapter 6 the GANN was compared to the Bagging and Boosting ensembles in terms of how

well it performed regarding accuracy (Section 6.2). The model comprehensibility (Section 6.3)

and model construction and ease of use (Section 6.4) for the GANN and ensemble methods were

also discussed.
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Considering the above objectives and what has been observed, the final research results can be derived

and is discussed next.

7.2 Research results

As a supervised machine learning technique the GANN has accurate pattern recognition capabilities and

the ability to adapt to change when exposed to new training data. A GANN’s models are also relatively

easy to construct and comprehend. The use of GANN models is suggested for classification problems

where it might be important to understand the relationship between input attributes and the expected

target value. In this study these relationships were not considered important, and consequently not

explored any further.

The primary research aim for this study was to determine the feasibility of employing a GANN to filter

spam e-mail messages with an automated construction algorithm for the GANNs. Empirical evidence

was obtained using experiments. The GANN was tested on five publicly available spam corpora (Enron,

GenSpam, PU1, SpamAssassin (SA) and TREC2005) as a possible solution to mitigate spam. In all

cases it was found that the GANN is a feasible spam filter based on total cost ratio values greater than

1.00. For these five corpora the GANN mostly compared well to the techniques found in the literature

that were applied to the respective data sets. From the results obtained it was observed that the

GANN is able to very accurately classify spam e-mails on certain spam corpora and therefore mitigate

the issue. The primary research aim of this study was therefore achieved. The secondary objectives

were also achieved and by comparing the GANN to the ensembles methods, it was shown that both

ensemble methods performed better than the single GANN classifier (Table 6.18) in most cases. The

Boosting ensemble performed the best when considering classification accuracy to filter spam e-mails.

Overall, the GANN provided comparable results to other techniques found in the literature. In the

next section the research limitations are discussed.

7.3 Research limitations

Spam is still an ongoing problem as the research community has not found a solution yet. There

currently is no solution to solve the spam problem, however, over the past five years, researchers

and practitioners have managed to decrease the amount of spam in e-mail traffic by nearly 30.00%.

Some solutions have proven to mitigate the issue. Unfortunately, outdated spam data sets are limiting

research findings. It is understandable that users are concerned about their privacy and thus do not
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contribute to the release of more recent spam corpora. Recommendations for future work are discussed

next.

7.4 Recommendations for future work

The following may be opportunities for further research:

1. Investigate the feasibility of the proposed method by comparing it to present-day spam-filtering

solutions (commercial or otherwise).

2. Collect or construct a more recent spam corpus that can be used to train the GANN, thus

providing more recent results.

3. Consider other ensemble approaches and focus on classification accuracy. Only three different

approaches (GANN, Bagging and Boosting) were tested in this study, therefore further research

is needed to generalise. Determine the ensemble combinations working best for the GANN which

achieves the overall highest accuracy results.

4. Perform an e-mail classification accuracy survey. Consider the most popular spam-filtering

techniques proposed in the literature and compare it to the GANN. This might provide results

suitable for generalisation.

This chapter is concluded in the next section.

7.5 Conclusions

The initial objectives for this study and how it was addressed were summarised in Section 7.1. In

Section 7.2 the final research findings were presented. Limitations to this study were discussed in

Section 7.3 followed by possible future research opportunities outlined in Section 7.4. This chapter

concludes the study on classifying spam with Generalized additive neural networks.
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