THE ASTROPHYSICAL JOURNAL, 837:43 (17pp), 2017 March 1

© 2017. The American Astronomical Society. All rights reserved.

Perpendicular Diffusion of Solar Energetic Particles: Model Results and
Implications for Electrons

R. Du Toit Strauss'?, Nina Dresing3, and N. Eugene Engelbrecht1
! Center for Space Research, North-West University, Potchefstroom, 2522, South Africa; dutoit.strauss@nwu.ac.za
2 National Institute for Theoretical Physics (NITheP), Gauteng, South Africa
3 Institut fiir Experimentelle und Angewandte Physik, Christian-Albrechts-Universitit zu Kiel, Germany
Received 2016 October 23; revised 2017 January 16; accepted 2017 January 31; published 2017 March 1

Abstract

The processes responsible for the effective longitudinal transport of solar energetic particles (SEPs) are still not
completely understood. We address this issue by simulating SEP electron propagation using a spatially 2D
transport model that includes perpendicular diffusion. By implementing, as far as possible, the most reasonable
estimates of the transport (diffusion) coefficients, we compare our results, in a qualitative manner, to recent
observations at energies of 55-105keV, focusing on the longitudinal distribution of the peak intensity, the
maximum anisotropy, and the onset time. By using transport coefficients that are derived from first principles, we
limit the number of free parameters in the model to (i) the probability of SEPs following diffusing magnetic field
lines, quantified by a € [0, 1], and (ii) the broadness of the Gaussian injection function. It is found that the model
solutions are extremely sensitive to the magnitude of the perpendicular diffusion coefficient and relatively
insensitive to the form of the injection function as long as a reasonable value of a = 0.2 is used. We illustrate the
effects of perpendicular diffusion on the model solutions and discuss the viability of this process as a dominant
mechanism by which SEPs are transported in longitude. Lastly, we try to quantity the effectiveness of
perpendicular diffusion as an interplay between the magnitude of the relevant diffusion coefficient and the SEP
intensity gradient driving the diffusion process. It follows that perpendicular diffusion is extremely effective early
in an SEP event when large intensity gradients are present, while the effectiveness quickly decreases with time
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thereafter.
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1. Introduction

Transient solar phenomena are believed to be responsible for
the acceleration of solar energetic particles (SEPs), which are
usually grouped into two distinct classifications (Reames 1999)
according to where and how they were accelerated: smaller,
short-lived, impulsive electron-rich events are believed to be
accelerated close to the Sun and are generally associated with
solar flares, while the larger, so-called gradual proton-rich
events are associated with coronal mass ejections (see the
review by Reames 2013). However, recent studies have shown
that this classification might be too simple: the unexpected
observations of widespread *He and electron events (e.g.,
Dresing et al. 2012, 2014; Wiedenbeck et al. 2013) suggest that
further mechanisms may play a role, which were not taken into
account by the old classification. These mechanisms are,
among others, perpendicular transport close to the Sun or in the
interplanetary medium, and acceleration of *He and electrons in
shocks. In this study we assume an impulsive acceleration of
electrons, occurring in a compact region close to the Sun,
through, for instance, magnetic reconnection in the solar flares
themselves or shock acceleration occurring at coronal shocks.
After being accelerated to relativistic energies, these SEPs are
released and propagate along the interplanetary magnetic field
to reach the near-Earth environment, where they are observed
in situ by a fleet of spacecraft. We focus on the transport of
~85 keV electrons, which are, from a modeling point of view,
ideal test particles as they suffer little, if any, reacceleration by
traveling shocks (e.g., Dresing et al. 2016), adiabatic energy
losses are usually negligible for relativistic SEPs (e.g.,
Ruffolo 1995), and due to their high propagation speeds, drifts

(including corotation) are also usually negligible. These
assumptions allow us to simplify the modeling approach and
focus on a specific topic, the main topic of investigation in this
paper being the longitudinal spread of (impulsively accelerated)
energetic electron events. For some of these events, the so-
called widespread events, SEPs are observed to cover up to
360° in longitude at Earth (e.g., Dresing et al. 2012, 2014;
Wiedenbeck et al. 2013). Such an unexpectedly broad
distribution can be due to either a broad injection region, such
as an extended source (due to various processes; see, €.g.,
Cliver et al. 1995; Klein et al. 2008; Lario et al. 2016), or
effective diffusion perpendicular to the mean field, or, of
course, a combination of these processes. In this paper, we vary
the broadness of the source region and the effectiveness of
perpendicular diffusion to examine the effects thereof on
simulated intensities and compare the model results, in a
qualitative fashion, to observations. Perpendicular diffusion has
been included in previous transport models (e.g., Zhang
et al. 2009; Droge et al. 2010, 2014; He 2015), and these
authors have been able to explain the observed broadness of the
widespread events in terms of cross-field diffusion. A major
criticism of these models is, however, that they treat the
diffusion coefficients (especially those governing perpendicular
diffusion) as adjustable parameters that are tuned in an ad hoc
fashion to reproduce SEP observations without any theoretical
motivation (see, e.g., Reames 2015). In contrast to most
previous modeling studies, we therefore try, as far as possible,
to implement theoretically derived (i.e., derived from first
principles and not prescribed in an ad hoc manner) transport
coefficients in order to limit the number of free parameters in
the model and, in so doing, move away from the
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phenomenological method of prescribing perpendicular diffu-
sion, toward a self-consistent description of SEP transport.
2. Numerical Transport Model

The propagation of energetic electrons is described by the
so-called focused transport equation (e.g., Skilling 1971), given
by

N _ o iy O (L= O, 9
o =~V () aﬂ( i vf) * o (DM, (,M]
+ V- D - V) (1)

and solved by means of the numerical approach outlined by
Strauss & Fichtner (2015) to yield the gyrotropic particle
distribution function f. As we are simulating the propagation of
electrons over very short timescales (a single event may last a
few hours), we may safely neglect both adiabatic energy losses
and corotation of the magnetic field. In Equation (1), b is a unit
vector pointing along the mean heliospheric magnetic field
(HMF), v is the particle speed, p is the cosine of the pitch
angle, D contains the perpendicular diffusion coefficients and
is specified in spherical coordinates (radial distance, r, and
azimuthal angle, ¢), D, is the pitch-angle diffusion coefficient,
and the focusing length is calculated as

L'=V.b. )

Once Equation (1) is solved to obtain f, we also calculate the
omnidirectional intensity

Fion—+ [T )d 3
4 ’ t = = B > > t
r, ¢ 5 [ 6. D
and the first-order anisotropy
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as these quantities can be compared directly to observations.
As a boundary condition, the isotropic injection function

_ 2
f(r = 1o, (b’ t) = gexp[_E - L]exp[—w]
t t Te 20
%)

is prescribed at the inner boundary, located at ry = 0.05 au.
Gaussian injection in ¢ is assumed with ¢y = 7/2 and o
determining the broadness thereof. The value of ¢ is varied in
later sections. A Reid—Axford (Reid 1964) temporal profile is
specified with 7, = 1/10hr, 7, = 1 hr, and C a constant. Other
important quantities assumed in the model are a Parker (1958)
HMF normalized to 5 nT at Earth, a solar wind number density
of 5 particles cm > at Earth decreasing as r~2, and a constant
solar wind speed of Vg, = 400kms . The pitch-angle and
perpendicular diffusion coefficients, needed as input to
Equation (1), are discussed and calculated in the next section.

3. Transport Coefficients

Charged particles are scattered by turbulent irregularities
present in the solar wind, leading to diffusion both parallel and
perpendicular to the mean field. To include the effect of
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turbulence, it is useful to decompose the resulting magnetic
field, B, into a locally uniform background field, By, and a
random turbulent component, b (x, y, z), such that

B = B() + b(x, y, Z), (6)

where (B) = By over long periods and 6B* = (b?) is the
variance thereof. To correctly characterize the solar wind
turbulence and couple this to particle scattering remains one of
the biggest challenges in heliospheric physics.

Following Shalchi (2009), we assume the fluctuating field to
be separable into a slab and 2D component (to be defined later;
see also Matthaeus et al. 1995), so that the turbulence power
spectrum in wavenumber space for homogeneous composite
turbulence is

Pk, 1) = g (T (ky, 1) + &P kDT ki, 1), (7)

with I' being the dynamical correlation function, which may be
different for each turbulent component. For the total variance of
the fluctuations, it follows that

6B* = 6By, + 0B (8)

In order to calculate the transport coefficients, we make use
of the so-called Shalchi slab hypothesis, where it is assumed
that only slab turbulence will influence parallel particle
transport, while the 2D component will lead, exclusively, to
perpendicular diffusion (Shalchi 2006). This is motivated by
the simulations of Qin et al. (2002), showing that the slab
component does not contribute significantly to perpendicular
diffusion, while the contribution to pitch-angle scattering from
perpendicular waves (which can be modeled as part of the 2D
component) is usually considered to be small (e.g.,
Schlickeiser 2002).

3.1. Slab Turbulence and Pitch-angle Diffusion

For the slab component (fluctuations with wavevectors
parallel to the mean field, i.e., k), we use the plasma wave
model of slab turbulence (Schlickeiser 2002), where

L'k, 1) = exp (iwt — ). ©))

The wave damping rate is given by ~, and w is the wave
frequency, coupled to kj via the wave dispersion relation,
which for nondispersive Alfvén waves is

w :jVAk”, (10)

where j = £ labels forward (j=+1) or backward (j=—1)
propagating waves and V, is the Alfvén speed. The strength of
the slab component is calculated as

6By, = 87 fo g (ky) dky, (11)

with g*!%° (k) the omnidirectional one-sided slab spectrum. In
deriving Equation (11), the slab component was assumed to be
axisymmetric, and hence a zero cross-helicity is assumed
throughout. Following Teufel & Schlickeiser (2003), we
choose the spectral form of the slab spectrum as

min 0 < Ay < kmin

g (k) = gdv S Kyt kmin < Ky < kq,

TR T
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Table 1
Turbulence Quantities Employed in this Study

Value or Expression

Turbulence Quantity Adopted Reference

6B2(r = 1 au) 13.2nT? Bieber et al. (1994)

6B? ~r24 Engelbrecht & Burger
(2013)

s 5/3 Kolmogorov decay

p 2.6 Smith et al. (2006)

Komin 35 au™! Weygand et al. (2011)*

ky 21 (a + b)) / Vi Leamon et al. (2000)°

6B3,, 0.26B2 Bieber et al. (1994)

q 7 Matthaeus et al.
(2007)°

v 5/3 Kolmogorov decay

kop 135 au™! Weygand et al. (201 ¢

kout kop /100 Engelbrecht & Burger
(2015)°

6B, 0.86B2 Bieber et al. (1994)

Notes. See text for a description of the various quantities listed below.
% The value of ky;;, was chosen such that the resulting slab correlation length
compares to the values reported by Weygand et al. (2011).

Assuming ky o €);, where €2; is the proton gyrofrequency, and using the best-
fit regression values of @ = 0.2 Hz and b = 1.76.
¢ Matthaeus et al. (2007) show that g should be an odd integer and that ¢ > 1.
4 We assume, for the 2D correlation length (1), that {I,) = 1/ksp, and we use
the observations of Weygand et al. (2011) to constrain (/,).
¢ Engelbrecht & Burger (2015) consider this value a reasonable estimate, as no
in situ observations of the outer scale exist at present.

which contains an energy range that is independent of k;; below
kmin, an inertial range between k.,;, and k;, and a dissipation
range above k,, and gglab determined from the normalization
condition, Equation (11), to give

2 _ o)
gglab:%(s_l)k&mlls+ s P(@) ] . (12)

p— 1\ kq

The turbulence quantities used in this study are listed in
Table 1, while the resulting turbulence spectra, at 1 au, are
shown in Figure 1.

The resulting plasma wave pitch-angle diffusion coefficient
for vanishing cross-helicity and magnetic helicity is given by
(Schlickeiser 2002)

2
2m2 (1 — 1) W <
e | A

H Bozrf k||V 0 8 !

X [Ru=y1(ky) + Ru=_1(ky)1dky, (13)

where R,—; are resonance functions related to the two
possible polarization states of the wave turbulence component,

gl
Ry=r1lky) = , 14
a1 v+ pky — w £ Q) (1

and where we have assumed the damping rate to be the same
for both wave polarizations of Alfvén waves. For v > V,, we
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may drop the term

2 v o
[1 - “—w] - [1 - M_A] ~ 1. (15)
k”V 1%

We apply the fast-particle assumption in the form w < €2,
with Q) the particle gyrofrequency, so that

v
_ 1
v+ (vuk” + Q)z (16)

If damping is neglected, v — 0, Equation (16) reduces to
Rz — w6 (vprky £ ), (17

Rau=x1(k)) ~

which, together with Equation (13), leads to the well-known
quasi-linear theory (QLT) result for D, (Jokipii 1966; Qin &
Shalchi 2009),

QLT __ 27T2V(1 B M2) s[ab(k reS) (18)
GVE T

with the resonant wavenumber

k”res = ! . (19)
|elre
We will, however, evaluate the dynamical (or, damped)
turbulence scenario where v = 0 and use

2m2 (1 — u®) [,
DT _ lab
D;m - Bozrg L ng (k”)

v g
X + dky,
[”y + vk + D v+ vk — Q)z] !
(20)

where, for ease of calculation, the integral is evaluated
numerically. Following Bieber et al. (1994), we use a damping
rate with the form of

v = aw = aVik, (21)

where « € [0, 1] is a constant determining the level of
damping. Unless otherwise specified, we use o =1 for
maximum effects. The pitch-angle dependence of D, is shown
in Figure 2 at » = 0.05 au (left panel) and at r = 1 au (middle
panel) for the scenario with damping (solid lines) and standard
QLT (dashed lines). The effect of resonance broadening via a
damping process is clear: a finite value of D,, at u ~ 0 is
obtained as required by observations. Moreover, because V4
becomes increasingly larger near the Sun, the damping rate
increases, leading to increased resonance broadening in these
regions (as compared to QLT).

The parallel mean free path (MFP, ) is calculated from D,
following the usual definition of Hasselmann & Wibberenz
(1968),

_ 3y ot (4= )
8 J-1 D,,

The resulting A is shown in Figure 3 as a function of radial
distance. Also shown in the figure are “consensus” values of )\,
at Earth, ranging from )\ = 0.24 (Droge et al. 2010, 2014) to
A= lau (Bieber et al. 1994, and references therein) for
electrons with an energy of ~100keV. Newer estimates by
Droge et al. (2016) indicate A ~ 0.15-0.6 au. Our set of

Al du. (22)
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Figure 1. Turbulence spectra used in this study. The blue shaded regions show the inertial ranges, while the green region indicates the “outer range” of the 2D

spectrum.

assumed parameters result in X ~ 0.7 au, therefore falling
nicely into this range of accepted values. Also included in
Figure 3 is the focusing length (L; green line). Generally, in
regions where ) > L, anisotropic behavior is expected,
and hence our simulations near Earth are expected to give an
almost beam-like (i.e., highly anisotropic) distribution of
electrons. The radial dependence of ) does appear more
complex than generally thought: previous studies have
assumed that A should increase linearly with radial distance.
Although our calculated ) does exactly this beyond 1 au, we
note a large increase of A\ near the Sun. This complex radial
dependence is also seen in the estimates of Laitinen
et al. (2016).

3.2. 2D Turbulence and Perpendicular Diffusion

We assume a 2D component (that is, fluctuations with
wavevectors perpendicular to the mean field, k) that is
magnetostatic (in Equation (7) this implies TP (k, 1) = 1),
with the strength of the 2D component calculated as

B3 = 27 fo g2 (k) k. 23)

For the 2D spectrum we choose a form similar to that
employed by Engelbrecht & Burger (2015), given by

f q
kﬂ(k_l) 0 < kJ_ < kout

kout kout
o\
gzD(kL) = g()2D< (_l) kout < ki < k2D’
kap
(k—l) ki = kop
[\ k2p

with a so-called inner range below k., as required by
Matthaeus et al. (2007), an energy range that decreases as
k!, and an inertial range beyond k,p. Equation (23) is again
used to determine g02D and leads to
-1
1] . 24)

B3 1 k 1
g02D _ %p 4+ |22 4
2mkop | g + 1 kout v —
The turbulence quantities used in this study are summarized
in Table 1, while the resulting turbulence spectra at 1 au are
shown in Figure 1.
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Figure 2. Calculated D, at 0.05 au (left panel) and 1 au (Earth; middle panel) and D, at 1 au (Earth; right panel) as a function of y. For D, two scenarios are shown
at each radial position, namely, using the damping function (solid blue lines) and using standard QLT (dashed red lines).

For D, we implement the field-line random walk (FLRW)
model of Jokipii (1966), where

Dy = av|p|kpL, (25)

and the field-line diffusion coefficient kg is given by, e.g., Qin
& Shalchi (2014) as
T oo
who= 5 [ ke k) dk. (26)
By Jo
Qin & Shalchi (2014) note that the above result is equivalent to
the FLRW diffusion coefficient in the presence of pure 2D

axisymmetric turbulence. This is given by Matthaeus et al.
(2007) as

@7)

where ), denotes the 2D ultrascale, which can be calculated for
the spectral form used in this study using (Matthaeus et al.
2007)

. \/ [k28 (k) d?*

6B

_ \/ o R o8)

6By

with S(k) the 2D modal spectrum (see, e.g., Batchelor 1970;
Matthaeus et al. 2007). This then yields

2 g+1 2f(1-v
[kom (2q—2) + kap (2u+2)]
1 kap 1 '

[ﬁ + ln(kom) + u—l]

Either way, the resulting FLRW perpendicular diffusion
coefficient is then

1 (q+1 _~_L(1—I/)
o 16B3 | k2 \20-2 k2 \2w+2
FL — 5 D) .
2 B 1 kap 1
’ [m tin(E2) + H]

From D, we can calculate )\, the isotropic perpendicular
MEFP, as

Ay =

(29)

(30)

3 el Dd
Z_V . LA

The parameter a was originally introduced into the nonlinear
guiding center theory (NLGC) as part of an ansatz (see Shalchi
2009) to describe the components of the velocity of the particle
gyrocenter in terms of the velocity v, of the gyrocenter parallel
to the uniform background magnetic field By and the relevant
fluctuating component of the magnetic field, such that, for

AL = (3D
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Figure 3. Parallel (solid red line) and perpendicular (dashed blue line) MFP as
a function of radial distance. Also shown is the focusing length (solid green
line) and the ratio 7 (dot-dashed black line; note that this quantity does not have
any units). The vertical red and black error intervals show estimates for ), and
7, respectively. For the calculation of )\, we used a = 1/10.

example,

b
Ve = av, —. 32
“ By (32)

The exact interpretation of a, as well as its value, has been
somewhat unclear in the past, it being generally interpreted as
being related to the probability that particles follow field lines
(see, e.g., Shalchi 2010; Hussein & Shalchi 2014). Theoretical
calculations, most notably a derivation of NLGC from the
Newton-Lorentz equation by Shalchi & Dosch (2008),
indicated that 1 < @? < 2, whereas numerical test-particle
simulations such as those performed by Matthaeus et al.
(2003) required a value smaller than unity. Shalchi (2016),
however, by investigating the effects of the assumption of a
finite gyroradius on the analytical theory of perpendicular
diffusion, find that a* can be interpreted as a parameter
describing the finite gyroradius effects of turbulence on the
particle. Furthermore, Shalchi (2016) finds that these effects
lead to o° < 1. In this work, we treat a € [0, 1] as a free
parameter and illustrate the effect of this changing value on
modeled intensities of SEPs in later sections.

The form of D, although important for modeling studies
(e.g., Strauss & Fichtner 2014, 2015), is, however, not well
known, as most studies have focused on deriving the isotropic
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perpendicular scattering coefficient (e.g., Matthaeus et al.
2003). Without a clear second-order, nonlinear framework for
D, , we opt to use the FLRW approach in this work. For low-
energy electrons, however, this is most likely not a bad
approximation: at Earth, for 100keV electrons, we have
rp~ 1077au, and ([,) ~ 0.001 au for the perpendicular
correlation length, so that we may comfortably work in the
limit of r; < (I,), for which the FLRW coefficient is a good
approximation (Strauss et al. 2016). A derivation of D, on the
pitch-angle level, is an ongoing topic of investigation (e.g.,
Fraschetti & Jokipii 2011; Qin & Shalchi 2014; Fraschetti
2016). When r; becomes comparable with or larger than (I, ), a
nonlinear theory is needed to correctly describe perpendicular
diffusion. Droge et al. (2016), using a phenomenological
approach, recently found A, to be independent of )| (see their
Figure 17), which is an additional indication that the FLRW
coefficient is a good approximation for low-energy electrons.

The pitch-angle dependence of D, is shown in the right
panel of Figure 2, while the radial dependence of ), is shown
in Figure 3 using a = 1/10. The effectiveness of perpendicular
diffusion is usually quantified by the ratio n = A, /A, which is
generally believed to be in the range of € (0.005, 0.05) (see,
among others, the discussion by Shalchi 2009). This ratio,
together with its consensus values, is also indicated in Figure 3.
Similarly to )y, the radial dependence of A, is much more
complex than originally thought, decreasing significantly
toward the Sun. Beyond 1au, A\ assumes approximately
constant levels. The ratio 7 is therefore also not a constant as
assumed in most modeling studies. Again, this complicated
radial dependence is similar to that implemented by Laitinen
et al. (2016).

4. Results

As described in the proceeding sections, our model setup
contains two free parameters, namely, the broadness of the
injected boundary condition (given by o) and the effectiveness
of perpendicular diffusion (determined by «). In this section,
we show modeled intensities of SEPs for various combinations
of these parameters.

4.1. General Results

We start by modeling the peak (maximum) omnidirectional
intensity as a function of longitude at Earth’s orbit (r =1 au).
The results, for a constant injection broadness of ¢ = 5° and
varying levels of perpendicular diffusion, are shown in Figure 4.
The value of o =5° is chosen purely for demonstration
purposes and can, of course, be changed in the future. In this
figure, the injected distribution (normalized to the resulting
maximum differential intensity at Earth) is shown as the narrow
Gaussian distribution peaking at ¢ = 90° (solid purple line) at
the inner model boundary. If perpendicular diffusion were to be
completely absent, this distribution would simply be shifted in
longitude, as it follows the curved interplanetary field, and be
observed at Earth at the dashed purple distribution, peaking at
¢ =~ 30°. In our model setup this corresponds to the longitude,
at Earth’s position, that is magnetically connected to the peak
of the injection function at the inner boundary. This so-called
“longitude of optimal magnetic connection” is indicated in this
and later figures by a vertical dashed line. Following our usual
definition ¢ (see Strauss & Fichtner 2015, especially their



THE ASTROPHYSICAL JOURNAL, 837:43 (17pp), 2017 March 1

Strauss, Dresing, & Engelbrecht

oc=5°
T T
1
103 | 1 i
1 )
east s 1 Wwest
1
1 o
1
(o) o 1
102 | ®0 1 |
> e -
£ 7, — a=10
c 7 11
o /il i\ -- a=05
£ 4 / / L Y \
= Y /i \ — a=0.2
c 1 ’ YN LIS _ —0.1
o 10" 7 9 K \ @ r a .
+ / a 1y \
o / LT vey N — a=0.05
= / ; 0ron oy \ °
9 ’ plaf te \ -- a=0.02
c ® 4 "oy ® —
£ / FHEEE N a=0.01
o 4 / . . . .
£ 10° L A A N * - - Injection function (shifted)
/ 1 . . r
g ¥ e 7 oo L — Injection function
< ~._ ® Ve / [ T \ ° :
) y / oo | e - - Best connection
= ° . // / [ T N
, /’ 'l [ \\
/ 1 1 \
107 . ' /l L \ \\o E
/ ; | 1 | \ N
,/ , [ T \
! 1 \ N
o,/ o / . ‘l s N \
° / \l
N /) / I 1 1
2 [ D / ! I' ;0 \
10' I L 1 1
-180 -90 0 90 180
6 (deg)

Figure 4. Modeled maximum omnidirectional intensity as a function of longitude for different levels of perpendicular diffusion (indicated by ). The solid purple line
shows the injection function, with o = 5°, specified at the inner boundary, while the dashed purple line shows this distribution shifted to the position of best magnetic
connection at Earth (¢ ~ 30°, indicated by the vertical dashed line). The gray symbols and band are observed electron peak intensities in the range of 55-105 keV and
the range of corresponding Gaussian fits of these multiple-spacecraft events taken from Dresing et al. (2014).

Figure 3), ¢ = 30° corresponds to western longitudes and
¢ < 30° to eastern longitudes (as also indicated in the figure).

We can now increase the effectiveness of perpendicular
diffusion in the model by increasing the value of a, up to its
maximum value of @ = 1. As shown in Figure 4, this results, as
expected, in broader particle distributions, with the broadness
increasing with the value of a. The modeled intensities are
compared to observations reported by Dresing et al. (2014),
these being shown as the gray symbols, while their Gaussian
fit, with a broadness of o = 35°-48°, is shown as the gray
filled band. Note that Dresing et al. (2014) only selected so-
called widespread events in their study. A similar study by
Lario et al. (2013), which studied multiple-spacecraft events
regardless of their longitudinal extent, estimates that o a2 49°,
which is consistent with the upper limits of the Dresing et al.
(2014) observations if we ignore any possible asymmetries in
the distribution (see Section 4.2 for a detailed discussion
regarding this topic). Although we do not attempt a detailed
reproduction of the observations, which show large interevent
variability, Figure 4 does illustrate the ability of the model to
reproduce the observed broadness of the SEP distribution
through fundamentally prescribed diffusion processes. More-
over, we note that a value of a = 0.2-0.5 seems to be
consistent with the observed band, while Figure 3 reveals that
these values of a result in \; values that are still well within the
consensus range thereof.

A second set of observable quantities are calculated and
shown in Figure 5 as a function of longitude at Earth’s position.
They are the maximum anisotropy (left panel) and the onset
time (also referred to as the onset delay; right panel). Again we
assume o = 5° and vary the value of a (the different solutions
correspond to the legend of Figure 4). In order to calculate both
of these quantities, we need to specify an artificial background
intensity in the model, mimicking an SEP event breaching such
a background level. For this study, we set the background level
as 1/1000 of the maximum intensity. A similar approach was
used by Wang & Qin (2015) and Strauss & Fichtner (2015).
The onset time is calculated as the time it took the modeled
intensities to breach this background level, while the maximum
anisotropy is only registered for times longer than the onset
time in order to be comparable with observations. The fact that
the onset times may depend on the assumed background is
definitely not optimal, but without a better way to quantify the
temporal shape of an SEP event, it remains the preferred
method to do so (this is, of course, also true in the experimental
case; see, e.g., Xie et al. 2016). In Figure 5, we compare our
results with the observations of Dresing et al. (2014), with only
the anisotropy values of the so-called “class 1” and “class 2”
events shown; these are widespread events where -either
perpendicular diffusion or an extended source is believed to
play a large role.

From Figure 5, we note that both of the calculated quantities
are extremely sensitive to the level of perpendicular diffusion,
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Figure 5. Computed maximum anisotropy (left panel) and onset time (right panel) for different levels of perpendicular diffusion (see again the legend of Figure 4,
where the lines correspond to different values of a). The observations from Dresing et al. (2014) are shown as gray symbols.

with the shortest onset times and largest anisotropies generally
seen at optimal magnetic connection to the source, the idea
being that these particles are basically “free-streaming” from
the source to the observer. Away from these longitudes,
perpendicular diffusion plays a more evident role in spreading
the SEPs in longitude, but, of course, taking a finite amount of
time to do so, resulting in much longer onset times. The longer
onset times, due to longer propagation times, generally result in
much more isotropic distributions away from best magnetic
connection. In the case of extremely effective perpendicular
diffusion (a=1), it is, however, possible to get large
anisotropies over almost all longitudes, due to the fact that
the FLRW coefficient, which scales as D, ~ |u|, transports a
beam-like distribution (a highly anisotropic distribution with
1~ 1) most effectively in longitude. The a = 1 case therefore
results in an SEP transport process that is entirely dominated by
perpendicular diffusion so that SEPs with pu = 1are trans-
ported effectively in longitude (i.e., perpendicular to the mean
field) without being scattered significantly in pitch-angle space.
This extreme case is, however, unrealistic: this is also evident
from, for example, the observed values of the onset time, which
show a much larger ¢ dependence than the modeling results
with a = 1, while the \| calculated for such a scenario will be
much larger than the consensus range (see again Figure 3). We
note that, for both quantities shown in Figure 5, a good fit is

once again obtained when a = 0.2 (the solid blue curve in both
panels).

4.2. Azimuthal Asymmetries

Much modeling and experimental work have recently
touched on the symmetry of the SEP distribution at Earth.
Naively, one would expect the distribution to approximate a
Gaussian form (in terms of longitude), peaking at the longitude
of best magnetic connection. Observationally, this has,
however, not been the case: Lario et al. (2013) have found
that, for electrons, the maximum is displaced, or shifted, by
~16° toward western longitudes. A similar shift was reported
for proton events by Lario et al. (2006) and He & Wan (2016).
In terms of modeling, such a shift can be explained in terms of
a combination of corotation and perpendicular diffusion
(Giacalone & Jokipii 2012) or by only implementing perpend-
icular diffusion (Strauss & Fichtner 2015). When examining
the results presented in Figure 4, we note a similar shift of the
peak intensity toward western longitudes, with the shift
increasing with increasing levels of perpendicular diffusion:
for a = 0.2, the shift is ~10°, increasing to ~40° for a = 1.0.
As discussed in detail by Strauss & Fichtner (2015), such a
shift in peak intensity can be explained in terms of
perpendicular diffusion along a curved magnetic field, where,
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close to Earth, the “perpendicular” direction also points radially
away from the Sun (but only when magnetically connected
toward the west of best connection to the source). This shift,
albeit small, must therefore be a characteristic of all diffusion
models. Indeed, subsequent models by He & Wan (2015) and
AblaBmayer et al. (2016) have also confirmed this idea.*

As already mentioned, additional processes may also
contribute to the asymmetrical nature of the SEP distribution,
such as corotation in long-lasting events (Lario et al. 2014) or
drift effects (Marsh et al. 2013), although the latter process
would result in electron and proton events shifting toward
different longitudes: an effect not yet observed. It is also
questionable whether these small shifts in the peak intensity are
actually observable given that the error in determining the
footpoint of magnetic field lines, using the simple Parker
model, is probably ~10° (Kahler et al. 2016) and could, at
times, be even worse (Li et al. 2016).

Finally, we note from the right panel of Figure 5 that the
modeled onset times are also not symmetric and somewhat
shorter for western longitudes, while the corresponding
anisotropy is marginally larger. This can again be explained
in terms of perpendicular diffusion, while observations from
Richardson et al. (2014) hint at such an asymmetry being
present in the observations.

4.3. Temporal Evolution

In Figure 6 we illustrate the temporal evolution of the
normalized omnidirectional intensity, for o = 5° and a = 0.2,
by showing contour plots at different times after particle
injection. Panels (a)—(d) cover the first hour after injection,
while panels (e) and (f) are for later times. In the figure, the
circles show the orbit of Earth and the model boundary,
respectively, while different Parker magnetic field lines are
added to guide the eye: the solid field line corresponds to the
longitude where the injection function peaks (i.e., ¢o=90° at
the inner boundary), while the dashed lines are for
o = 90° £ 45°, showing the longitudinal extents of the
injection function on this scale. In panel (a) we note that the
SEP distribution has already spread significantly in longitude
during the first 15 minutes of the simulation, extending beyond
90° in longitude, and being much wider than the injected
function. In order to examine the effectiveness of perpendicular
diffusion, it is necessary to introduce the diffusive flux
resulting from this process, which can be approximated as

of
99

From this expression, it is clear that the effectiveness of
perpendicular diffusion depends not only on the magnitude of
the diffusion coefficient but also on the associated gradient in
the particle density. The latter quantity changes as a function of
time, and, as we will show, so does the effectiveness of
perpendicular diffusion. We injected SEPs over a very narrow
region, resulting in large spatial gradients, so that, initially,
perpendicular diffusion is very effective. In subsequent panels,
(b)—(f), the longitudinal spreading of the SEPs occurs at a much

|Ff ~ Dy (33)

4 Kahler (2016) mistakenly states that the results of Strauss & Fichtner (2015)
and He & Wan (2015) are not consistent and that the shifts are directed toward
different longitudes. We, however, confirm the consistency of previous model
results with the peak intensity shifting to western longitudes. The confusion is
probably related to the different definitions of longitude used in the different
models.
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slower rate, i.e., the effectiveness of perpendicular diffusion
decreases and the particle gradients get smaller.

We therefore find that the rate of particle spreading, i.e., the
effectiveness of perpendicular diffusion, is time dependent and,
due to our choice of a narrow injection function, the
effectiveness of perpendicular diffusion decreases with time,
as the particle gradients tend to smear out owing to a space-
filling reservoir effect. This implies very efficient perpendicular
diffusion early in an SEP event, even if D, is very small near
the Sun. Surprisingly, a similar conclusion was reached by
Laitinen et al. (2013), albeit on completely different grounds.
These authors have shown that, early in an SEP event, particles
follow wandering field lines almost in a ballistic fashion (i.e.,
not decoupling from the field lines), leading to very effective,
but nondiffusive, transport. The effective perpendicular diffu-
sion early in the event can also be seen from Figure 5, where
the onset times are relatively short over a wide range of
longitudes: for a = 0.2, a broad region, extending ~120° in
longitude, has small onset times of less than 30 minutes,
indicating that these particles must have diffused away from the
source early in the SEP event. However, these observations
could also be produced by a significantly broader source
region, which we will address in the next section.

4.4. Broadness of the Source Region

In the preceding sections, we have focused on the role of
perpendicular diffusion by keeping the injection broadness,
o = 5° constant in the model and varying the level of
diffusion via the parameter a. Here, we keep a fixed and vary
the broadness of our Gaussian injection function,
o € [5° 30°], to examine the effect thereof on SEP
propagation.

We start by assuming a value of a = 0.01, which
corresponds to very weak perpendicular diffusion. Such a
scenario, where SEPs are injected over a wide range of
longitudes and suffer little or no perpendicular diffusion, has
been proposed by, for example, Cliver et al. (1995) and
Reames et al. (1996) as an explanation for the observed
broadness of the SEP distribution. The calculated maximum
omnidirectional intensity, for this scenario, is shown in
Figure 7, as a function of longitude at Earth’s orbit, for
different choices of 0. As expected, when a broader source
function is introduced, the resulting distribution at Earth
broadens. However, it should be noted that, even for an
injection function with a broadness of o = 30°, the simulation
results are still well below the observed broadness of the
widespread events (the shaded gray region).

In Figure 8, which is similar to Figure 5, we calculate the
maximum anisotropy and the onset times for the scenario
where a = 0.01 is held fixed but the broadness of the injection
region is varied. Again, the results are mostly in the expected
form. The maximum anisotropy values are either high (around
a value of 1.5) when one is magnetically connected to the
source or essentially zero when not magnetically connected to
the source. Similarly, the onset times are either very short
(close to 20 minutes) when magnetically connected or exceed-
ingly long (the simulations were run for 75 model hr, and the
calculated intensity was still significantly below the assumed
background level). These results illustrate the “binary” nature
of assuming a broad source and no other perpendicular
transport mechanisms: you are either connected to the source
(high anisotropy values and short onset times) or not (no event
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Figure 6. Temporal evolution of the normalized omnidirectional intensity. For this simulation we used o = 5° and a = 0.2. See the text for additional details.
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Figure 7. Similar to Figure 4, but now for ¢ = 0.01 held fixed and varying the injection broadness o.

is observed). These simulation results are difficult to reconcile
with the observations, which show a clear distribution for both
of these quantities.

For the next simulations, we include perpendicular diffusion
in the model and choose a value of a = 0.2, as this results in
both reasonable values of A, and a fair comparison with
observations in preceding figures (see Figures 4 and 5). The
calculated maximum omnidirectional intensity is shown in
Figure 9, as a function of longitude at Earth’s orbit, for
different choices of 0. Rather unexpectedly, we note that the
intensities are not very sensitive to the broadness of the
injection function. This can, however, be explained by again
looking at Equation (33): for a narrow injection, large particle
gradients are present, resulting in very effective perpendicular
diffusion. By now increasing o, we are actually decreasing the
effectiveness of the diffusion process. The complex and
nonlinear interplay between the magnitude of the perpendicular
diffusion coefficient and the intensity gradient driving
perpendicular diffusion is therefore shown to be important
and must be kept in mind when interpreting these model
results.

In Figure 10, which is similar to Figure 5, we calculate the
maximum anisotropy and the onset times for the scenario
where a = 0.2 is held fixed, but the broadness of the injection
region is varied. As expected, a broader injection region leads
to a broader spreading of higher anisotropy values and shorter
onset times away from best magnetic connection. However,
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when comparing these to the results shown in Figures 5 and 8,
we note that the model results are much more sensitive to the
choice of a (the level of perpendicular diffusion) than to o (the
broadness of the injection region).

4.5. Different Forms of the Source Region

In this section we examine what effect the form of the
injection function may have on particle intensities. This is
motivated by the observations of Klassen et al. (2016),
suggesting that during some SEP events the SEPs may be
injected into different flux tubes, resulting in a longitudinal
distribution having multiple, finger-like peaks (see their Figure
16). We introduce such a complex injection function in the
model and show the results in Figure 11. Here, the injection
function (red line) consists of a combination of five Gaussian
functions (each with o = 10°), spread 45° apart. If we assume
weak levels of perpendicular diffusion (@ =0.02; blue curve),
the complexity of the injection function is preserved at Earth,
but for “normal” levels of diffusion (¢ = 0.2; green curve), the
complexity is simply smeared out and a rather featureless
distribution is obtained. Therefore, in order to reproduce an
SEP event at Earth showing multiple finger-like peaks, we not
only need injection of particles into different flux tubes, as
suggested by Klassen et al. (2016), but we would also
somehow need to considerably reduce the level of perpend-
icular diffusion from “normal” levels.
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Figure 8. Similar to Figure 5, but now for ¢ = 0.01 held fixed and varying the injection broadness o.

4.6. Multiple Injections from the Same Active Region

In a recent paper, Agueda & Lario (2016) investigated an
SEP event that was simultaneously observed by the Helios-1
and IMP-8 spacecraft and showed multiple SEP events within a
~20 hr period. Interestingly, they showed that the amplitude of
the time-dependent SEP flux varied significantly at Helios-1
(which is, of course, much nearer to the Sun), while a more
gradual and isotropic distribution was recorded at Earth.
Interpreting this in terms of only pitch-angle scattering along
a single magnetic field line is difficult (see the modeling results
and discussion by Agueda & Lario 2016); hence, we
reinvestigate such a scenario in our present model, where
perpendicular diffusion is included. Instead of a single injection
at t = 0, as was done up to now in the model, we repeatedly
inject four isotropic distributions at the inner boundary at r = 0,
1, 3, and 7 hr using the same profile as given in Equation (5),
except that 7, = 0.5hr. The temporal profile of this new
combined injection profile is shown in Figure 12 at
¢ =¢y=m7/2 and r=r, For all injections, we assume
o = 5° and keep C, the magnitude of the injection function,
constant, but we could, in future, vary all of these parameters
independently. For the subsequent simulations we keep
a = 0.2 fixed.

Figure 13, which is similar to Figure 6, shows the modeled
distribution at # = 5 hr. In the figure, we have also included the
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approximate orbits of the Helios-1 (~0.3au) and IMP-8
spacecraft (Earth, ~1au) and the position of six virtual
spacecraft at which we will track the temporal evolution of
the SEP distribution (these are indicated by the labeled
squares). A and C are magnetically connected to the source
function’s maximum, while B and D are A¢ = 45° away
(toward the west), but still relatively well connected. E and F
are definitely not magnetically connected to the source,
A¢ = +90°, and SEPs reaching these positions must therefore
experience significant perpendicular diffusion. The calculated
omnidirectional intensities at these spacecraft positions are
shown in Figure 14 as a function of time. For spacecraft A and
B, both being within ~0.3 au of the source and relatively well
connected to it, the intensity profile follows that of the injection
function: four well-defined peaks are noted. This behavior is
expected, as A\ > L close to the Sun (see again Figure 3), and
these particles propagate almost ballistically from the source to
the Helios-1 orbit. At the positions of C and D (at Earth, but
still relatively well connected to the SEP source), we again note
four well-defined peaks, albeit with a smaller amplitude. Pitch-
angle scattering between ~0.3 and 1 au therefore seems to be
able to somewhat reduce the amplitudes of the different peaks,
but cannot produce a single gradual SEP event at Earth (a
similar conclusion was made by Agueda & Lario 2016). Lastly,
at positions E and F (again at Earth’s orbit, not magnetically
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Figure 9. Similar to Figure 7, but now for a = 0.2.

connected to the source), we note an almost featureless gradual
SEP event. We therefore conclude that a combination of pitch-
angle scattering and perpendicular diffusion is able to
reproduce the Kallenrode & Wibberenz (1991) observations,
as discussed by Agueda & Lario (2016), by smearing out the
temporal profile of the injection function very effectively.

The corresponding anisotropies at the positions of the six
virtual spacecraft are shown in Figure 15. As expected, the
anisotropies are very large close to the Sun (A and B), decrease
to moderate values at Earth’s orbit when SEPs reach these
positions mainly by parallel transport (C and D), and are very
small at large radial distances where perpendicular diffusion
played an important transport role (E and F; this is true for
injections 2—4, while the anisotropy corresponding to the first
injection events is still large at all positions).

The behavior of both the modeled SEP intensity and
anisotropy is in general agreement with the results presented
by Agueda & Lario (2016): when SEPs propagate mainly
through perpendicular diffusion to reach Earth, their resulting
intensities are relatively independent of the temporal form of
the injection function, and such an observer (e.g., being at
either point E or F) would register only a gradual, and isotropic,
SEP event. This is related to the reservoir, or space-filling,
effect described by, for example, He & Wan (2015), where
perpendicular diffusion results in a nearly constant SEP flux
throughout the inner heliosphere at late times.
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5. Discussion

In this paper we have tried, as far as possible, to model SEP
electron propagation by implementing theoretically derived
transport coefficients. For D,,, we implemented a variation of
the well-known plasma wave model for slab turbulence, and for
D, we assumed that the 2D fluctuations will scatter the
electrons via the FLRW process. Both of these coefficients are
not dependent on any ad hoc free parameters, but rather related
to the underlying turbulence in the magnetic field, which, in
turn, can be determined (or at least, constrained) by further
observations. Our choices of these fundamental turbulence
quantities are in line with those used by, for example,
Engelbrecht & Burger (2013) for radial distances of 0.3 au
and larger. The validity of these assumptions closer to the Sun,
which is of extreme importance for SEP transport, can only be
confirmed by future space missions, most notably the
upcoming Solar Probe Plus mission. The only remaining free
parameters in the model are o (the broadness of the injection
function) and a (related to the probability of SEPs following
turbulent field lines), and these are varied in the model.

We find that the resulting coefficients, especially the radial
dependence of )\ and A, are probably much more complex
than previously thought and would be difficult to describe
phenomenologically. Of special interest is the dependence of
AL, which decreases toward the Sun, leading to a ratio A, /)
that varies in the range of A /) ~ 0.001-0.03 in the model
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Figure 10. Similar to Figure 8, but now for a = 0.2.

when choosing a reasonable estimate of a = 1/10. Although
this would imply very weak perpendicular diffusion close to
the Sun (i.e., early in an SEP event), we still, however, find
effective diffusion in this regime, due to the large particle
gradients present here (see again Equation (33)). We emphasize
that the effectiveness of perpendicular diffusion is determined
by both the magnitude of the diffusion coefficient and the
magnitude of the particle gradient that drives perpendicular
diffusion. The effectiveness of perpendicular diffusion in our
model thus changes in a time-dependent manner, being
extremely effective early in the event. This behavior is
especially evident when looking at the calculated onset times:
centered at best magnetic connection, extending almost ~120°
in longitude, we find short onset times for narrow injection
scenarios, indicating that these particles propagated very
effectively in longitude early in the SEP event close to the
Sun. The onset times increase farther away from best
connection, and as perpendicular diffusion becomes an
increasingly slower process, it takes increasingly longer to fill
the entire computational regime with SEPs late in the event.
Generally, we also find that longer onset times correspond to
smaller anisotropies, confirming the general belief that longer
propagation times lead to more scattering and a more isotropic
SEP distribution.
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The model solutions are, as expected, very sensitive to the
choice of a, as illustrated in Figure 4. We believe, however,
that the extreme case of a = 1 is unreasonable, and a rough
comparison with observations suggests that a value of a = 0.2
seems plausible and would be a reasonable estimate of this
quantity. Our estimate of a, unsurprisingly, differs from the
generally used value of a = 1/4/3 ~ 0.6 used mainly for
protons (Matthaeus et al. 2003). Additional numerical simula-
tions of the transport coefficients, focusing especially on
electrons (small gyroradii), such as those presented by Hussein
& Shalchi (2016), are needed to further constrain this quantity
and its possible energy dependence.

For a “reasonable” choice of a = 0.2, our results are very
insensitive to the form (longitudinal dependence) of the
injection function. Different choices of o, which determines
the broadness of the injected function, seemingly lead to the
same longitudinal distribution at Earth. This is, however, again
explainable through the effectiveness of perpendicular diffu-
sion (see again Equation (33)). Moreover, by assuming more
exotic forms of the injection function, as in Figure 11,
perpendicular diffusion seems to smear away any small-scale
features of the injected distribution, leading to a rather
featureless Gaussian-like distribution at Earth. This is, how-
ever, based on the assumption of perpendicular diffusion in a
regular large-scale background Parker field and would not be
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a = 0.2 correspond to the blue and green model solutions, respectively).
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Figure 12. Four injection functions introduced in the model at the inner
boundary.

valid if diffusion barriers or magnetic structures were to impede
the diffusion process (see, e.g., Strauss et al. 2016).

By examining our calculated transport coefficients (see again
Figure 3), we note that, near the Sun at the approximate
position of the Helios-1 spacecraft, A > L, indicating that
SEPs would propagate almost ballistically from their source to
such a spacecraft. This is consistent with the findings of Kunow
et al. (1991).

Motivated by the observations presented by Agueda & Lario
(2016), we investigated the effect of multiple injections of
SEPs from the same active region in Section 4.6. Our results
show that an SEP event, having a very complex temporal
profile near the Sun, can be observed to be rather featureless,
and nearly isotropic, at Earth’s orbit when SEPs are transported
to the latter position mainly via perpendicular diffusion.
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Figure 13. Resulting SEP intensities at = 5 hr when multiple sources are
injected at different times. Also shown, as the small squares, are the positions
of six virtual spacecraft at which we will calculate the SEP intensity as a
function of time.
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Figure 14. Resulting omnidirectional intensity, as a function of time, at the
different spacecraft positions indicated in Figure 13.
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Figure 15. Similar to Figure 14, but now showing the calculated anisotropy.
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Our results suggest that perpendicular diffusion remains a
viable process to explain the large longitudinal spread of SEP
electrons. We expand on previous work that has included
perpendicular diffusion (e.g., those of Zhang et al. 2009; Droge
et al. 2010, 2014; He 2015, among others), by including a
theoretical treatment of the transport parameters rather than
adopting ad hoc expressions. We are able to reproduce not only
the observed spread of particle intensities but also the
longitudinal dependence of the onset times and maximum
anisotropies. Although the contribution of other processes to
the longitudinal spread of SEPs cannot be neglected, the
important role of perpendicular diffusion should be clear. It
should be kept in mind that some authors favor a scenario
where SEPs are injected over a wide range of longitudes and
suffer little or no perpendicular diffusion (e.g., Cliver
et al. 1995; Reames et al. 1996; Kahler 2016), in contrast to
the findings presented here, which largely exclude this
scenario. However, some fundamental questions remain
unanswered, such as, what perpendicular diffusion process is
actually dominant, and which energies? We have assumed that
the FLRW process is a good approximation for the diffusion of
low-energy electrons with energies ~100keV, but this is
unlikely to be the case for high-energy electrons or SEP
protons of any energy. Therefore, before extending our present
model to simulate proton or high-energy electron transport, we
would need to include corotation, drifts, and energy losses in
the model, while a theoretical D, based on a nonlinear theory
(which is required for particles with large Larmor radii) and
containing a p-dependence, still does not exist. Moreover, the
connection between the FLRW coefficient and so-called field-
line meandering (as introduced by Laitinen et al. 2016) remains
vague. In the latter process, particles follow wandering
(meandering) field lines without decoupling from them, leading
to very effective, but nondiffusive, cross-field transport.
Recently, Laitinen & Dalla (2017) have presented simulations
that suggest that field-line meandering may only be the initial
phase of the cross-field diffusion process, where, at later times
when the particles decouple from their initial field lines, the
FLRW diffusion process is recovered. It is unclear whether
electron cross-field transport between the Sun and Earth is
governed by the initial or late phase of diffusion. This is
connected to the assumption that perpendicular transport can be
described as a diffusive process close to the Sun, as we have
done here, or if we need to model it through deterministic
means (see again Laitinen et al. 2016), or more fundamentally,
by following particle orbits (see the model of Ablamayer
et al. 2016). These questions cannot be easily answered and
would need much more modeling and observational input.
Here, future space missions (such as Solar Probe Plus and
Solar Orbiter) may play an important role: by simultaneously
observing an SEP event, a constellation of spacecraft, at
different longitudes and radial positions, may give us an idea of
how the broadness of the SEP intensity varies, in addition to
other observables. These spacecraft may also help constrain the
levels and forms of the turbulence spectra, which are the main
input parameters to this and other transport models.
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