Synthesis and biological evaluation of hydrophilic derivatives of decoquinate

RM BETECK
25159194
BSc (UB), MSc (UEF)

Thesis submitted in fulfilment of the requirements for the degree

Doctor Philosophiae

in Pharmaceutical Chemistry

at the Potchefstroom Campus of the North-West University

Promoter: Prof D.D. N‘Da
Co-Promoter: Prof R.K. Haynes
Co-Promoter: Dr F.J. Smit

October 2016
Abstract

Malaria is a mosquito borne disease that is caused by a parasitic protozoan, belonging to the genus, *Plasmodium*. Five *Plasmodium* species are known to infect humans, of which *Plasmodium falciparium* is the most virulent. Malaria poses a global health threat, with 40% of the world's population at risk of contracting the disease. In 2015 alone, 216 million people were reportedly infected with malaria, of which 438,000 died from the disease. This renders malaria the third leading cause of deaths, following tuberculosis (TB) and acquired immunodeficiency syndrome (AIDS). Sub-Saharan Africa accounts for 90% of the total malarial burden.

Tuberculosis (TB) is caused by mycobacteria, with *Mycobacterium tuberculosis* (*Mtb*) being the most important. In 2015, 9.6 million cases of TB and 1.4 million related deaths were reported, making this disease the leading cause of human mortalities. Eastern Europe and the South-East Asia regions carry the highest TB burden and account for 58% of the total TB load, while sub-Saharan Africa accounts for 28% of all reported TB cases.

The troublesome fact about these two diseases is the development and spread of pathogenic strains that are resistant towards all drugs currently being used clinically for their treatment. *P. falciparum*, for example, had developed resistance towards prominent antimalarial drugs, like chloroquine, Fansidar and mefloquine. A *P. falciparum* strain that is resistant to artemisinin combination therapies (ACTs), which are currently used as frontline drugs for the treatment of malaria, has been reported in at least six different regions in Asia. *Mtb* strains that are resistant towards the first line TB treatment regimens, (i.e. rifampicin and isoniazid) and towards the last treatment option for TB (i.e. fluoroquinolones and injectable TB drugs, such as kanamycin, amikacin and capreomycin) have been documented worldwide.

Such growing development and spread of malaria and TB drug resistant pathogens emphasise the urgent need for identifying and developing new drugs that would help curb the spread of these diseases.

Decoquinate (DQ) is a safe and inexpensive drug that has been in use for over 30 years for the treatment of coccidiosis infections in livestock. DQ has also demonstrated potent anti-malarial activity *in vitro* against the liver, asexual blood stages and gametocytic stages of malaria parasites. Interestingly, DQ has a flexible and long alkyl chain, rendering it
highly lipophilic. This characteristic is expected to make DQ easily permeable to lipophilic layers, such as the mycolic acid wall that surrounds the *Mtb*. However, it is in fact its poor solubility that has hampered the development of DQ as a human therapeutic agent. DQ also has a metabolically susceptible ester group, which, if hydrolysed into a carboxylic acid *in vivo*, may reduce the bio-availability of DQ.

During this study, to address the poor solubility of DQ and its undesirable, metabolically susceptible ester, a total of seventy-seven derivatives of DQ were synthesised and evaluated *in vitro* for their anti-malarial activities against chloroquine sensitive (NF54) and multi-drug resistant (W2 and K1) strains of *P. falciparum*, for their anti-tubercular activities against a rifampicin sensitive strain of *Mtb* (H37RV) and for their cytotoxicities against normal human fetal lung fibroblast (WI-38) cell lines. These results are presented in chapters 4, 5 and 6.

Chapter 4: –“Straightforward conversion of decoquinate into inexpensive tractable new quinolones with significant anti-malarial activities”. This chapter presents the syntheses, cytotoxicity and anti-malarial evaluations of a series of thirty-five decoquinate derivatives. These compounds were prepared by using either simple aminolysis, during which the ethyl ester in DQ was converted into an amide in the presence of the corresponding amine reagent, and/or through acylation, during which the N-1 nitrogen atom of DQ was converted into an amide, upon reacting it with an acyl chloride. All reactions occurred in a basic medium in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). The most active compound among this series was a derivative, bearing an acetyl group attached to N-1 of decoquinate. This compound was found five times more active than decoquinate against the *Pf* NF54 and K1 strains, having an activity profile that was comparable to those of artemether and artesunate against these strains. The selectivity index for this compound was >6494 with respect to normal human fetal lung fibroblast (WI-38) cell lines, indicating that this compound was not toxic.

Chapter 5: –“Syntheses of new decoquinate derivatives with potent anti-mycobacterial activities”. This chapter presents the syntheses of twenty-five decoquinate derivatives, their anti-tubercular activities against the H37Rv strain of *Mtb* and their cytotoxicity profiles against the WI-38 cell line. These compounds were prepared, either through N-alkylation at N-1 of DQ with an alkyl bromide and aminolysis, or through N-acylation and aminolysis. Twenty-three of these compounds showed moderate to good activities against *Mtb*, with the most active compound having an MIC$_{99}$ of 1 µM. This compound, that contains an ethyl group attached to N-1, and an N-[2-(2-hydroxyethoxy)ethyl]acetamide group at C-3 of the
quinolone nucleus, had a selectivity index higher than 10, indicative of adequate selectively against *Mtb*.

Chapter 6: ―New decoquinate derivatives with improved solubilities and in vitro antimalarial activities‖. This chapter reports on the syntheses and anti-malarial activities of a series of seventeen decoquinate derivatives. The compounds in this series were synthesised in a manner similar to those described in chapters 4 and 5. The biological assessments were conducted, using the same strains and cell lines, as in those previous chapters. The most active compound in this part of the study was found to be the DQ derivative, bearing a sulfonyl containing group attached to N-1 of the quinolone. It possessed a twenty-six-fold higher activity than decoquinate against *Pf* NF54, with an overall activity profile (IC$_{50}$ ~1 nM) that was superior to those of artemether and artesunate, regardless of the *P. falciparum* strain used. This derivative showed no toxicity towards mammalian cells, as evidenced by its high selectivity index (SI) of 71428.

In summary, this study has uncovered a cost-effective anti-tubercular hit, synthesised from the non-active parent drug, decoquinate. Furthermore, this study has also led to the discovery of three new derivatives with superior anti-malarial activities in vitro, compared to decoquinate, artemether, artesunate and chloroquine against both chloroquine sensitive and - resistant strains of *P. falciparum*. It is anticipated that these promising compounds may qualify as potential candidates for further investigation in the search for new and effective anti-malarial and anti-tubercular drugs.

Keywords: Decoquinate, anti-malarial, anti-tubercular, decoquinate derivatives, resistance.
Opsomming

Malaria is 'n muskiet-oordraagbare siekte, wat veroorsaak word deur 'n parasiet wat deel uitmaak van die genus, *Plasmodium*. Vyf *Plasmodium*-spesies is daarvoor bekend dat hulle die mens infekteer, waarvan *Plasmodium falciparum* die mees gevaarlikste is. Malaria hou 'n globale gesondheidsbedreiging in, met 40% van die wêreld se bevolking wat die risiko dra om die siekte op te doen. In 2015 alleen, was 216,000,000 mense na bewering met malaria besmet, waarvan 438,000 daaraan gesterf het. Dit maak malaria die derde grootste oorsaak van sterfes, naas tuberkulose (TB) en verworwe immuniteitsgebreksindroom (VIGS). 90% van die totale malaria-las kom in Sub-Sahara-Afrika voor.

Tuberkulose (TB) word deur mikobakterieë veroorsaak, waaronder *Mycobacterium tuberculosis* (MTB) die belangrikste is. In 2015 is 9.6 miljoen gevalle van TB en 1,4 miljoen verwante sterfes aangemeld, wat hierdie siekte die grootste oorsaak van menslike sterfes maak. Oos-Europa en Suid-Oos-Asië dra die hoogste TB-las en maak 58% van die totale aantal gevalle uit, terwyl 28% van alle gerapporteerde TB-gevalle in Sub-Sahara-Afrika voorkom.

Die kommerwekkende feit aangaande hierdie twee siektes is die ontwikkeling en verspreiding van patogene stamme, wat bestand is teen alle middels wat tans klinies gebruik word vir die behandeling daarvan. *P. falciparum*, byvoorbeeld, het weerstand teen prominente teen-malaria-middels, soos chlorokien, Fansidar en mefloikien ontwikkel. *P. falciparum*-stam, wat bestand is teen artemisinien-kombinasie-terapieë (AKTs), wat tans as die voorste linie middels vir die behandeling van malaria gebruik word, is in minstens ses verskillende streke in Asië aangemeld. MTB-stamme, wat bestand is teen die eerste linie TB-behandelingsmiddels (nl. rifampisien en isoniasied) en teen die laaste behandelingsopsies vir TB (nl. fluorokinoloon en inspuitbare TB-middels, soos kanamisien, amikasien en kapreomisien), is wêreldwyd gedokumenteer.

Hierdie stygende ontwikkeling en verspreiding van malaria en TB-middel weerstandige patogene beklemtoon die dringende behoefte aan die identifisering en ontwikkeling van nuwe middels wat sal help om die verspreiding van hierdie siektes te bekamp.

Dekoquinaat (DQ) is 'n veilige en goedkoop middel, wat al vir meer as 30 jaar vir die behandeling van koksidiose-infeksies in vee gebruik word. DQ het ook krachtige *in vitro* teen-
malaria aktiwiteite getoon teen die lever-, ongeslagtelike bloed- en gametosiet-stadia van malaria-parasiete. Interessant genoeg, het DQ 'n buigsame en lang alkielketting, wat dit hoog lipofiel maak. Hierdie eienskap behoort DQ volgens verwagting maklik deurlaatbaar te maak vir lipofiele lae, soos die mikoliensuurwand, wat die MTB omring. Dit is egter in werklikheid sy swak oplosbaarheid wat die ontwikkeling van DQ, as 'n menslike terapeutiese agent, tot dusver belemmer het. DQ het ook 'n metabolies vatbare estergroep, wat, indien dit na 'n karboksielsuur \textit{in vivo} gehidroliseer word, sy bio-beskiebaarheid kan verlaag.

Tydens hierdie studie, in 'n poging om die swak oplosbaarheid van DQ en sy ongewenste, metabolies vatbare ester aan te spreek, is 'n totaal van sewe-en-sewentig derivate van DQ gesintetiseer en \textit{in vitro} geëvalueer vir hul teen-malaria aktiwiteite teen chlorokien-sensitiewe (NF54) en multi-middel-weerstandige (W2 en K1) stamme van \textit{P. falciparum}, vir hul anti-tuberkulêre aktiwiteite teen 'n rifampisien-sensitiewe stam van MTB (H37Rv) en vir hul sitotoksisiteit teen normale menslike fetale long fibroblaste (WL-38) sellyne. Hierdie resultate word in hoofstukke 4, 5 en 6 aangebied.

Hoofstuk 4: "Eenvoudige omskakeling van dekoquinaat in goedkoop, plooibare, nuwe kinolone met beduidende teen-malaria aktiwiteite". Hierdie hoofstuk bied die sintese, sitotoksisiteit en teen-malaria-evaluerings van 'n reeks van vyf-en-dertig dekoquinaat afgeleides aan. Hierdie verbindings is berei, deur óf gebruik te maak van eenvoudige aminolise, waartydens die etielester in DQ in die teenwoordigheid van die ooreenstemmende amienreagens in 'n amied omskep is, en/of deur asetilering, waartydens die N-1 stikstofatoom van DQ in 'n amied omskep is, deur dit met 'n asetielchloried te laat reageer. Alle reaksies het in 'n basiese medium plaasgevind in die teenwoordigheid van 1,8-diazabisiklo[5.4.0]undek-7-eeen (DBU). Die mees aktiewe verbinding in hierdie reeks was 'n afgeleide, wat die draer was van 'n asetielgroep, gekoppel aan N-1 van dekoquinaat. Hierdie verbinding is vyf keer meer aktief as dekoquinaat teen die \textit{Pf} NF54 en K1-stamme bevind, met 'n aktiwiteitsprofiel wat vergelykbaar is met artemeter en artesonaat teen hierdie stamme was. Die selektiwiteitsindeks vir hierdie verbinding was > 6494 met betrekking tot normale menslike fetale long fibroblaste (WL-38) sellyne, wat daarop beduidend was dat hierdie verbindings nie giftig was nie.

Hoofstuk 5: "Sintese van nuwe dekoquinaat-derivate met krachtige anti-mikobakteriële aktiwiteite". Hierdie hoofstuk bied die sintese van vyf-en-twintig dekoquinaat afgeleides, hul anti-tuberkulêre aktiwiteite teen die H37Rv-stam van MTB en hul sitotoksiiese profiele teen die W1-38 sellyne aan. Hierdie verbindings is berei, hetsy deur middel van N-alkilering op N-1 van DQ met 'n alkiel-bromied en aminolise, of deur middel van N-
asetilering en aminolise. Drie-en-twintig van hierdie verbindings het matige tot goeie aktiwiteite teen MTB getoon, met die mees aktiewe verbinding wat 'n MIC$_{99}$ van 1 μM opgelewer het. Hierdie verbinding, wat 'n etielgroep, gekoppel aan N-1 bevat het, sowel as 'n N-[2-(2-hidroksi-etoksie)etiel]asetamied-groep op C-3 van die kinolienkern, het 'n selektiwiteitsindeks van hoër as 10 opgelewer, wat beduidend was van voldoende selektiwiteit teen MTB.

Hoofstuk 6: "Nuwe dekoquinaat -derivate met verbeterde oplosbaarhede en in vitro teen-malaria aktiwiteite". Hierdie hoofstuk doen verslag oor die sintese en teen-malaria aktiwiteite van 'n reeks van sewentien dekoquinaat afgeleides. Die verbindings in hierdie reeks is op 'n soortgelyke wyse gesintetiseer, as daardie wat in hoofstukke IV en V beskryf word. Die biologiese evaluerings is uitgevoer deur van dieselfde stamme en sellyne gebruik te maak, as in daardie vorige hoofstukke. Die mees aktiewe verbinding in hierdie deel van die studie was _n DQ afgeleide, wat 'n sulfoniel bevattende groep, gebonde aan N-1 van die kinoloon, bevat het. Dit het oor 'n ses-en-twintig keer hoër aktiwiteit as dekoquinaat teen Pf NF54 beskik, met 'n algehele aktiwiteitsprofiel (IC$_{50}$ ~ 1 nm) wat beter was as dié van artemeter en artesonaat, ongeag die _P. falciparum_ -stam wat gebruik is. Hierdie afgeleide het geen toksisiteit teenoor soogdierselle getoon nie, soos uit sy hoë selektiwiteitsindeks van 71428 geblyk het.

Ter opsomming het hierdie studie 'n koste-effektiewe, anti-tuberkulêre treffer ontbloot, wat vanuit die onaktiewe stammiddel, dekoquinaat, gesintetiseer is. Hierdie studie het voorts ook aanleiding gegee tot die ontdekking van drie nuwe derivate met uitstaande teen-malaria aktiwiteite _in vitro_, in vergelyking met dekoquinaat, artemeter, artesonaat en chlorokien teen beide chlorokien-sensitiewe en -weerstandige stamme van _P. falciparum_. Daar word verwag dat hierdie belowende middels as potensiële kandidate mag kwalifiseer vir verdere ondersoek in die soeke na nuwe en doeltreffende teen-malaria en anti-tuberkulêre middels.

Sleutelwoorde: dekoquinaat, teen-malaria, anti-tuberkulêre, dekoquinaat -derivate, weerstand.
Preface

Decoquinate (DQ) is a quinolone based compound that is being used to prevent and treat coccidiosis in the digestive tract of farm animals. It has also been reported to have a wide safety margin, with no adverse effect noticed when given to calves at a dose forty times higher than the recommended dosage.

Studies carried out in 2011 and 2012 reported for the very first time very potent *in vitro* activity of DQ against the liver and gametocyte stages of malarial parasites. Activity against the foregoing stages is very crucial for malarial eradication. However, poor aqueous solubility makes DQ an unsuitable hit against systemic malaria parasites which are mainly located in liver cells and RBCs. This project saw the need to circumvent the poor solubility associated with DQ by synthesizing polar derivatives of DQ. It was also paramount to evaluate these derivatives for anti-TB activity as the present anti-TB quinolone based drugs (FQs) are not safe and are also witnessing increased resistance mediated by efflux pumps.

Acknowledgements

I like science and soccer- the two things that have the same language all over the world. I am intrigue by medicinal chemistry- a discipline that keeps you humble no matter how intelligent and hardworking you may be. I thank God for making my dreams of conducting my tertiary education in different parts of the world a reality.

I will forever remain grateful to my promoter- prof David N‘Da for accepting me into his research group, for guidance, directions and encouragement even when the outcome of my work seems not to be fruitful. His experience made the aims and objectives of this project a reality.

I very much appreciate my second promoter- prof Richard K Haynes the principal investigator of this project. I really feel privileged working with a man of such fame in these early days of my research career.

Special thanks to my assistant promoter- Dr Frans J Smit. His high commitment and desire to see me graduate on time will forever be a living memory.

I owe sincere gratitude to the Pharmacen cadre. Their smiling faces and readiness to always communicate with me in English language made me felt at home.

I am obliged to the Medical Research Concil (MRC) for funding this project, and the North West University for their financial support. The financial support I enjoyed during these years gave me nothing to worry about except my studies.

I am thankful to Dr Jordaan Johan, and Mr Andre Joubert for acquiring MS and NMR data for my compounds.

I will like to express my sincere gratitude to the CSIR for generating cytotoxicity and anti-cancer data for my compounds.
Contents

Abstract .. i
Opsomming .. iv
Preface .. vii
Acknowledgements .. viii
Contents ... ix
List of figures .. xiii
List of tables and schemes ... xv
Acronyms and abbreviations .. xv
Chapter 1 .. 1
Introduction and problem statement ... 1
1.1. Background ... 1
1.2. Aim of the study ... 4
1.3. Primary objectives .. 5
1.4. Secondary objective .. 5
Chapter 2 .. 6
Literature review ... 6
2.1. Historic discoveries ... 6
2.2. Life cycle of the malaria parasite ... 7
2.2.1. Schizogony ... 8
2.2.2. Gamogony/Sporogony ... 10
2.3. Signs and symptoms of malaria .. 11
2.4. Malaria diagnosis .. 11
2.5. Malaria vector control ... 12
2.6. Chemotherapy .. 12
In vitro antimalarial assays .. 144

In vitro cytotoxicity.. 147

NMR and HRMS spectra of key derivatives .. 149

Addendum B: 1H and 13C NMR and mass spectra for chapter 5 .. 163

Addendum C: 1H and 13C NMR and mass spectra for Chapter 6 213
List of figures

Chapter 1 .. 1

Introduction and problem statement ... 1

Figure 1: Graphical representation of the current demographics of endemic malaria regions worldwide .. 1

Figure 2: Chemical structures of some anti-malarial drugs in clinical use and the old anti-coccidiosis drug, decoquinate, which was the research focus of this thesis. 3

Chapter 2 .. 6

Literature review ... 6

Figure 3: Graphical representation of the life cycle of the malaria parasite 8

Figure 4: Chemical structure of haemozoin. ... 10

Figure 5: Chemical structures of arylamino alcohol anti-malarials: quinine (1), mefloquine (2), halofantrine (3) and lumefantrine (4) .. 13

Figure 7: Oxidation of amodiaquine to its toxic quinone imine metabolite..................... 15

Figure 8: Chemical structures of 8-aminoquinoline anti-malarials: primaquine (10) and tafenoquine (11). .. 18

Figure 10: Chemical structure of atovaquone. ... 20

Figure 11: Chemical structures of artemisinin (19) and its semi-synthetic derivatives, dihydro-artemisinin (20) arteether (21), arte-ether (22) and artesunate (23). Of these, only dihydro-artemisinin, arteether and artesunate are currently used in clinics. ... 23

Figure 12: Chemical structure of doxycycline. .. 23

Figure 13: Chemical structures of promising quinolone anti-malarials: ICI 56 780 (25) and decoquinate (26) .. 26

Chapter 5 .. 58

New decoquinate derivatives with potent anti-mycobacterial activities 58

Figure 1: Structures of 4-(1H)-quinolone, ciprofloxacin and decoquinate 63
Figure 2: Amides obtained from direct aminolysis of decoquinate (DQ) with primary and secondary amines in chloroform according to method a, Scheme 1..65

Figure 3: N-alkylated amide derivatives obtained from decoquinate (DQ) by treatment with K₂CO₃ and alkyl halides, followed by treatment with a primary amine and DBU in chloroform according to route II, Scheme 1. ...66

Figure 4: N-carbamoylated and N-acyl amide derivatives obtained from decoquinate (DQ) by treatment with DBU and carbamoyl or acyl chloride, followed by treatment with amine and DBU in chloroform according to route III, Scheme 1. ...67

Chapter 6..95

New decoquinate derivatives with improved solubilities and in vitro antimalarial activities ..95

Figure 1: N-alkylated amide derivatives obtained from decoquinate (DQ) by treatment with K₂CO₃ and alkyl halides, followed by treatment with a primary amine and DBU in chloroform according to route I, Scheme 1. ...102

Figure 2: N-Acylated and N-carbamoylated amide derivatives obtained from decoquinate (DQ) by treatment with DBU and the acyl or carbamoyl chloride, followed by treatment with amine and DBU in chloroform according to route II, Scheme 1. ..103

Figure 3: N-carbamoylated and acylated derivatives of decoquinate obtained from decoquinate (DQ) by treatment with DBU and acyl or carbamoyl chloride according to route III, Scheme 1 and transesterification (compounds 11-13). ...104
List of tables and schemes

Chapter 5 .. 58

New decoquinate derivatives with potent anti-mycobacterial activities 58

Graphical abstract .. 61

Scheme 1. Three synthetic routes (I, II, III) used for preparation of the derivatives. 64

Table 1. In vitro antimycobacterial, cytotoxicity values and selectivity indices of DQ derivatives. ... 69

Table 2. General procedure for synthesis of C-3 amide derivatives 3-10 of DQ 73

Table 3. General procedure for synthesis of N-alkylated amide derivatives 11-20 of DQ 78

Table 4. General procedure for synthesis of N-acylated amide derivatives 21-27 of DQ 85

Chapter 6 .. 95

New decoquinate derivatives with improved solubilities and in vitro antimalarial activities ...95

Scheme 1. Three synthetic routes (I, II, III) followed for preparation of the derivatives. 101

Table 1. In vitro biological data of comparator drugs, DQ and the new derivatives and calculated LogP data. Data are from at least three independent biological experiments each performed in triplicate ±S.E ...106

Table 2. General procedure for synthesis of N-alkylated amide derivatives 1-5 of DQ 111

Table 3. General procedure for synthesis of N-acylated amide derivatives 6-10 of DQ 115

Table 4. General procedure for synthesis of N-acylated DQ derivatives 11-15 118
Acronyms and abbreviations

<table>
<thead>
<tr>
<th>Acronym/Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µM</td>
<td>Micro molar</td>
</tr>
<tr>
<td>PfATPase6</td>
<td>Plasmodium falciparum adenosine triphosphatase 6</td>
</tr>
<tr>
<td>13CNMR</td>
<td>Carbon nuclear magnetic resonance</td>
</tr>
<tr>
<td>pfCRT</td>
<td>Plasmodium falciparum chloroquine resistance transporter</td>
</tr>
<tr>
<td>1HNR</td>
<td>Proton nuclear magnetic resonance</td>
</tr>
<tr>
<td>Pfmdr1</td>
<td>Plasmodium falciparum multi-drug resistant gene</td>
</tr>
<tr>
<td>ACT</td>
<td>Artemisinin combination therapy</td>
</tr>
<tr>
<td>PfTCTP</td>
<td>Plasmodium falciparum translationally controlled tumour protein</td>
</tr>
<tr>
<td>AQ</td>
<td>Amodiaquine</td>
</tr>
<tr>
<td>PND</td>
<td>Pyronaridine</td>
</tr>
<tr>
<td>AVQ</td>
<td>Atovaquone</td>
</tr>
<tr>
<td>PQ</td>
<td>Piperaquine</td>
</tr>
<tr>
<td>BC</td>
<td>Before Christ</td>
</tr>
<tr>
<td>QC</td>
<td>Quinacrine</td>
</tr>
<tr>
<td>CDC</td>
<td>Centre for disease control</td>
</tr>
<tr>
<td>QN</td>
<td>Quinine</td>
</tr>
<tr>
<td>cLogP</td>
<td>Calculated LogP</td>
</tr>
<tr>
<td>RBCs</td>
<td>Red blood cells</td>
</tr>
<tr>
<td>CQ</td>
<td>Chloroquine</td>
</tr>
<tr>
<td>RDTs</td>
<td>Rapid diagnostic tests</td>
</tr>
<tr>
<td>DEPT 135</td>
<td>Distortionless enhancement of polarization transfer using a 135 degree decoupler pulse</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>DHA</td>
<td>Dihydroartemisinin</td>
</tr>
<tr>
<td>SERCA</td>
<td>Sarco/endoplasmic reticulum Ca(^{2+}) ATPase</td>
</tr>
<tr>
<td>DHFR</td>
<td>Dihydrofolatereductase</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>DHPS</td>
<td>Dihydropteroate synthase</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofolate</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>TQ</td>
<td>Tafenoquine</td>
</tr>
<tr>
<td>DQ</td>
<td>Decoquinate</td>
</tr>
<tr>
<td>US</td>
<td>United states</td>
</tr>
<tr>
<td>DV</td>
<td>Digestive vacuole</td>
</tr>
<tr>
<td>WHO</td>
<td>World health organization</td>
</tr>
<tr>
<td>G6PD</td>
<td>Glucose-6-phosphate dehydrogenase deficiency</td>
</tr>
<tr>
<td>HRMS</td>
<td>High resolution mass spectrometry</td>
</tr>
<tr>
<td>i.e.</td>
<td>That is</td>
</tr>
<tr>
<td>IC(_{50})</td>
<td>50 % inhibitory concentration</td>
</tr>
<tr>
<td>IRS</td>
<td>Indoor residual spraying</td>
</tr>
<tr>
<td>IX</td>
<td>Nine</td>
</tr>
<tr>
<td>LLINs</td>
<td>Long lasting insecticidal nets</td>
</tr>
<tr>
<td>MIC(_{99})</td>
<td>99 % minimum inhibitory concentration</td>
</tr>
<tr>
<td>MMV</td>
<td>Medicines for malaria venture</td>
</tr>
</tbody>
</table>
\textit{Mtb} \hspace{1em} \textit{Mycobacterium tuberculosis}

nM \hspace{1em} \text{Nano molar}

NMR \hspace{1em} \text{Nuclear magnetic resonance}

\textit{P} \hspace{1em} \textit{Plasmodium}

pABA \hspace{1em} \textit{Para} \text{-aminobenzoic acid}
Chapter 1

Introduction and problem statement

1.1. Background

Malarial infection is the third leading cause of deaths worldwide. Over 40% of the world’s total population currently inhabit endemic malaria areas, including Sub-Saharan Africa, Asia, and South and Central America. 80% of the total endemic malaria region exist in Sub-Saharan Africa alone, according to the World Health Organization (WHO, 2015). These endemic areas are further divided into chloroquine resistant, chloroquine sensitive and multi-drug resistant zones (Arsic, 2012) (Fig. 1).

![Malaria Endemic Areas](image)

Figure 1: Graphical representation of the current demographics of endemic malaria regions worldwide (Arsic, 2012).
In 2014, 438,000 people reportedly died from the disease (WHO, 2015). Pregnant women and children under the age of five are the most vulnerable to malaria infection (Shetty, 2012), since they either have reduced immunity, or have not yet acquired any immunity against the disease (Roggelin and Cramer, 2014).

Malaria is caused by a parasitic protozoan that invades red blood cells (RBCs). This parasite, which belongs to the genus \textit{Plasmodium} (\textit{P}), is transmitted to humans following the bite of an infected female \textit{Anopheles} mosquito (Kesara and Juntra, 2009). Five species of \textit{Plasmodium}, namely \textit{P. falciparum}, \textit{P. ovale}, \textit{P. vivax}, \textit{P. malariae} and \textit{P. knowlesi} cause malaria in humans. Of these species, \textit{P. falciparum} is responsible for the most severe form of malaria and its prevalence is higher in Sub-Saharan Africa, than in any of the other endemic malaria regions (Guerra \textit{et al.}, 2010).

Hitherto, chemotherapy has remained the sole option for malaria treatment (Frevert, 2004). Quinine, an alkaloid that is present in the bark of cinchona trees, had been discovered as the first effective treatment for malaria (Meshnick and Dobson, 2001; Achan \textit{et al.}, 2011). Once its structure had been established by Rabe (Rabe, 1907), the syntheses of quinine analogues became the next focus. This has led to the discovery of the quinoline chloroquine (Fig. 2) and related drugs, such as amodiaquine and piperaquine. Other quinolines, bearing a benzylic hydroxyl group, as in the case of quinine, were also prepared, of which mefloquine was the most important (Gelb, 2007). Chloroquine turned out to be the most successful anti-malarial drug, as it was cheap, relatively safe, and remained effective for decades, before the parasite started to develop resistance against it. Structurally quite different drugs, as represented by Fansidar (a combination of sulfadoxine and pyrimethamine), were also introduced, but here also resistance has developed (Ridley, 2002).
Figure 2: Chemical structures of some anti-malarial drugs in clinical use and the old anticoecidiosis drug, decoquinate, which was the research focus of this thesis.

Artemisinin (Fig. 2) and its derivatives, referred to as artemisinins, are another important class of anti-malarial drugs. They are fast acting and potent against all resistant strains of the malaria parasite (O’Neill, 2004; Haynes et al., 2013). To avoid the artemisinins from suffering the same fate of other anti-malarial drugs, i.e. the development of parasite resistance, the World Health Organization (WHO) recommended the use of these drugs in combination, rather than in monotherapy. This led to the introduction and adoption of artemisinin-based combination therapy (ACT) for the treatment of uncomplicated malaria worldwide. ACT combines an artemisinin derivative with a longer half-life anti-malarial drug. Despite this measure, resistance to ACTs by the malaria parasite had already been reported in South-East Asia (Phyo et al., 2012; Makam et al., 2014). Resistance to ACTs has been ascribed to an emerging resistance to artemisinins. Although the mechanism through which artemisinin resistance develops is yet to be established, single nucleotide mutation in the \textit{K13}-propeller gene has been confirmed as one of the key factors (Mok et al., 2015).

The anti-malarial drugs that are discussed above are most effective against the blood stage, than any other stage of the malaria parasite’s life cycle. The only clinically approved drug that
effectively kills hypnozoites (the liver stage of the *P. vivax* parasite) and that is also active against gametocytes (the transmission stage of the parasite), is primaquine (Fig. 2). However, since primaquine causes fatal haemolysis in patients with glucose-6-phosphate dehydrogenase deficiency, its use has been largely limited (Mazier, 2009).

Overall, resistance and the identified adverse side effects that are associated with currently available anti-malarial drugs, have created a driving force for the repurposing of known drugs, and for the search for new chemical entities that have novel modes of action, that are active against resistant strains and that are readily available. As an existing drug that is readily available, decoquinate (Fig. 2) was recently proven to have potent anti-malarial activities. Decoquinate has been used for a long time as an agent for the treatment of coccidiosis in poultry (Taylor and Bartram, 2012). It has gametocytocidal and schizontocidal activities, with a unique mode of action, involving the cytochrome *bc*₁ complex as target (da Cruz *et al*., 2012). Decoquinate also has potent activity against hypnozoites, both *in vivo* and *in vitro* (Bonamy *et al*., 2011). Decoquinate therefore meets the requirements of the Medicine for malarial venture (MMV) for a next generation of drugs that are desperately needed for the eradication of malaria (Burrows *et al*., 2013). The requirements of a suitable drug candidate for malaria eradication are that it should be able to kill gametocytes, hypnozoites and other liver stages, thereby inhibiting transmission and relapse, as well as providing prophylaxes for the disease.

1.2. Aim of the study

Although decoquinate (DQ) shows potent anti-malarial activity, it is very lipophilic, with a calculated Log P (cLogP) value of 8.45 ±1.37 (ACD, 2014). It is also very poorly soluble in water. These qualities severely restrict its use as an anti-malarial drug and as a therapeutic agent for several other systemic infectious diseases. To address the poor solubility of DQ, this project had as its aim the synthesis of more hydrophilic (less lipophilic) derivatives through modification at the C-3 ester and/or at the N-1 of the quinolone ring. It was necessary that these more hydrophilic derivatives retain the anti-malarial activity of DQ against different stages of the malaria parasite, as well as being potent against resistant strains of the parasite. A successful outcome to this project would lead to the potential availability of an affordable and efficacious anti-malarial drug candidate.

In light of the above considerations, this study focused on the synthesis, characterisation and *in vitro* evaluation of the anti-malarial activities and cytotoxicities of the new, more hydrophilic DQ derivatives.
1.3. Primary objectives
The primary objectives of this study were:

- The synthesis of new, more hydrophilic derivatives of decoquinate.
- The characterisation of all intermediates by means of infrared (IR), mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy.
- The determination of the *in vitro* anti-malarial and cytotoxicity activities of the newly synthesised decoquinate derivatives.

1.4. Secondary objective
The secondary objective of this study was:

- The determination of the *in vitro* activities of the decoquinate derivatives against *Mycobacterium tuberculosis*, the principal causative pathogen of tuberculosis.
Chapter 2
Literature review

This chapter summarises the historic discoveries that had led to our current understanding of the malaria patho-physiology and of the life cycle of the malarial parasite, the signs and symptoms of the disease, the modes of diagnoses, malaria vector control strategies, anti-malarial drugs in clinical usage, as well as a brief history of quinolones and their targets.

2.1. Historic discoveries

Malaria is a disease of antiquity. It had shown high prevalence and had been responsible for infecting humans in different geographical regions, including Egypt, Italy, India and Peru (Cox, 2010). Ancient documentaries, dating back to 400 BC, describe a disease that had evidently been a scourge to the population, with fever and enlarged spleens being mentioned as typical signs and symptoms of the disease. These documentaries also note that the disease had especially infected people living in marshy areas (Cox, 2010), which had evidently favoured the mosquito that we now know as being responsible for transmitting the disease.

Although different names were used in the different regions to refer to this disease, current knowledge of malaria pathogenesis, the vector of the disease and the life cycle of its causative agent, make it clear that such ancient documentaries were all making reference to malaria.

The word, malaria, is believed to originate from the Italian words, *mal aria*, meaning *bad air*. The Italians of the Renaissance believed that miasma evaporating from stagnant marshes had been the cause of malaria. With the discovery of bacteria and their implication in diseases and also with the coming of the germ theory of diseases in 1878 (Capanna, 2006), the idea of miasma from the stagnant wetlands being a possible cause of the diseases, had faded. In light of these new discoveries, people started searching for the possible causal agent(s) of malaria.

Malarial research had intensified, following the discovery of malaria parasites in the blood of malaria patients, by Charles Louis Alphonse Laveran in 1880. From the year 1880 onwards, several other discoveries had helped to clarify the role that the malaria parasite played in the disease and the life cycle of the parasite, as listed below (Cox, 2010; Kakkilaya, 2015):
The discovery of mosquitos as vector for avian malaria by Ronald Ross in 1897.

The discovery of gametocytes and sexual reproduction in crows by William MacCallum in 1897.

The discovery of mosquitos as vector for human malaria by Battista Grassi in 1898.

The discovery of exo-erythrocytic (liver) stages of malaria parasites in the livers of birds by William MacCallum in 1898.

The discovery of female Anopheles mosquitos as the sole vector for human malaria by Battista Grassi in 1900.

The discovery of exo-erythrocytic stages of the parasite in the livers of monkeys by Henry Shortt and Cyril Garnham in 1947.

The discovery of exo-erythrocytic stages of \(P. \text{ vivax} \) and \(P. \text{ falciparum} \) in the livers of human volunteers by Henry Shortt and Cyril Garnham in 1949.

The discovery of exo-erythrocytic stages of \(P. \text{ ovale} \) in the livers of human volunteers by Henry Shortt and Cyril Garnham in 1954.

The discovery of exo-erythrocytic stages of \(P. \text{ malariae} \) in the livers of chimpanzees by Robert Bray in 1960.

2.2. Life cycle of the malaria parasite

Malaria is a disease, caused by protozoa species, belonging to the genus \(\text{Plasmodium} \) and phylum \(\text{Apicomplexa} \). The disease is transmitted among humans by infected female Anopheles mosquitos (Painter et al., 2011). Other human diseases being caused by protozoans include trypanosomiasis, leishmaniasis, toxoplasmosis and cryptosporidiosis (Andrews et al., 2014).

The protozoan that causes malaria in humans has a very complex life cycle, which involves humans as the host and female Anopheles mosquitoes as the vector. The life cycle comprises of three phases, i.e. schizogony, gamogony and sporogony. Gamogony and sporogony occur within the mosquito, while schizogony occurs within humans. In each phase, different stages of the parasite are produced and in each stage, the parasite has a unique structure, shape and specialised proteins. These constant changes in shape, structure and specialised proteins throughout the life cycle pose big challenges to the development of effective vaccines and drugs for use against the parasite (Floren et al., 2002).
2.2.1. Schizogony

The malaria parasite life cycle (Fig. 3) starts when an infected female *Anopheles* mosquito bites a human for a blood meal. During feeding, sporozoites, along with saliva are injected into the skin of the victim. Some of the injected sporozoites find their way to nearby blood vessels from where they are transported to liver cells (hepatocytes) hours later. Within the hepatocytes, the pre-erythrocytic schizogony phase begins and progresses as follows: Each of the infective sporozoites develops into an actively feeding form, called a trophozoite. The feeding trophozoite develops into a schizont, which later undergoes multiple fissions to produce ten- to thirty-thousand merozoites. Merozoites are contained in a merosome, which conceals them from Kupffer cells that would otherwise destroy the merozoites. The budding off from the liver and subsequent rupturing of the merosome releases merozoites directly into the blood stream, where they initiate erythrocytic, or RBC schizogony (Baer et al., 2007).

Figure 3: Graphical representation of the life cycle of the malaria parasite (CDC, 2015).
The cycle starts from human liver cells (pre-erythrocytic schizogony) and progresses into the blood (erythrocytic schizogony), and finally into the mosquitoes (gamogony/sporogony). In humans, the parasite only multiples asexually, while it undergoes both sexual and asexual multiplication in the mosquito.

In *P. vivax* and *P. ovale*, some sporozoites remain dormant in the liver for months. These dormant species are called hypnozoites. Hypnozoites later develop into schizonts, which progress as described above, causing relapse of the disease months after being bitten by an infected mosquito (Janneck *et al.*, 2011).

Once released into the blood stream, the merozoites quickly invade red blood cells (RBCs). The invasion is made possible through ligand-receptor interaction, where specific ligands on the surfaces of merozoites interact with specific receptors on the surfaces of RBCs. For example, the Duffy antigen on RBCs acts as a sole receptor for ligands on the merozoites of *P. vivax* (Molina *et al.*, 2012), whereas ligands on the merozoites of *P. falciparum* recognise and interact with many receptors on the membranes of RBCs (Mayera *et al.*, 2009).

Inside RBCs, each merozoite develops into a ring stage, which catabolises haemoglobin. The ring stage develops into a mature trophozoite, which then develops into a schizont. The schizont undergoes multiple fissions to produce ten to eighteen merozoites, which are released back into the blood stream when the infected RBCs rupture. Some of these merozoites invade new RBCs and start the erythrocytic schizogony anew, while a few develop into micro-gametocytes (male) and macro-gametocytes (female) (Wykes and Horne-Debets, 2012).

The rupturing of infected RBCs occurs at regular intervals and the concomitant fever and other symptoms, typical of malaria, are due to immune response to waste materials resulting from the catabolic activities of the parasites. This interval is 24 hours for *P. knowlesi*, 48 hours for *P. falciparum*, *P. vivax* and *P. ovale* and 72 hours for *P. malariae* (Greenwood *et al.*, 2008).

During erythrocytic schizogony, almost 75% of the RBCs' cytoplasmic content, including haemoglobin, is digested to generate free amino acids. Digestion occurs within the parasite's food vacuole, where haemoglobin is first cleaved into haem and globin. Globin is digested further to release amino acids needed by the parasite for synthesis of its own proteins. Although free haem (Fe$^{2+}$- protoporphyrin IX) is toxic to the parasite, it undergoes rapid oxidation into heme-Fe (III) that spontaneously self-associates to generate haemozoin (Fig. 4). Haemozoin forms beta-haematin crystals, which precipitate within the food vacuole (Cross, 2010).
As the *P. falciparum* parasite progresses from the ring stage to the schizont, it causes infected RBCs to become spherical and less flexible. It also induces the formation of sticky knobs on the surfaces of infected RBCs (Quadt *et al.*, 2012). All of these cause the infected RBCs to adhere to walls of blood vessels, such as capillaries. The adherence to capillaries (sequestration) blocks blood flow to vital organs, such as the brain and kidney, leading to cerebral malaria and kidney failure, as characterised by a coma (Franke-Fayard *et al.*, 2010).

![Chemical structure of haemoglobin](image)

Haemoglobin

Figure 4: Chemical structure of haemoglobin.

2.2.2. Gamogony/Sporogony

During a blood meal by an *Anopheles* mosquito on an infected human, macro-gametocytes (female) and micro-gametocytes (male) are taken up along with blood. Within the mosquito’s midgut, each micro-gametocyte undergoes three mitotic divisions in a process called exflagellation, to produce a flagellated micro-gamete. At the same time, each macro-gametocyte develops into a macro-gamete. The flagellated micro-gamete swims to and fuses with the macro-gamete to produce a zygote. This fusion is called gamogony (Bogitsh *et al.*, 2012). Within 24 hours, the diploid zygote elongates into an ookinete, which penetrates the midgut wall of the mosquito and develops into an oocyst. The oocyst grows in size and develops several encapsulated sporoblasts. Each sporoblast in the oocyst undergoes multiple fissions (sporogony) to produce thousands of sporozoites. The oocyst finally ruptures to release sporozoites, which eventually invade the mosquito’s salivary gland, ready to be injected into humans, when the mosquito feeds again (Bogitsh *et al.*, 2012).
2.3. Signs and symptoms of malaria

Signs and symptoms of malaria occur between 10 - 30 days, following infection. They are due to either inflammatory immune responses, which are triggered by the release of parasitic waste materials and antigens, as mentioned above, or because of anaemia, following the lysis of RBCs. These signs and symptoms, non-specific to malaria, can easily be confused with those of other diseases, such as influenza, or gastro-intestinal infection. They include moderate to severe shaking, chills, high fever, profuse sweating, headaches, nausea, vomiting, diarrhoea, muscle pain, convulsions, coma and bloody stools (Bogitsh et al., 2012; Kakkilaya, 2015).

2.4. Malaria diagnosis

Malaria diagnosis involves the identification of signs and symptoms of the disease (clinical diagnosis) and/or identifying the presence of malaria parasites, or parasitic products in blood samples (laboratory diagnosis). As signs and symptoms of malaria are non-specific, clinical diagnosis should always be accompanied by laboratory diagnosis. This is to avoid unnecessary use of anti-malarial drugs and hence delay the onset of drug resistance (WHO, 2010). There are several types of laboratory diagnoses, of which the most routinely used tests are microscopy and rapid diagnostic tests (RDTs) (WHO, 2010).

Microscopy is the gold standard for malaria diagnoses. It involves visualising a thick blood smear to identify parasites and a thin blood smear to differentiate between the parasite species. Besides identification and differentiation, microscopy also determines the parasite load in patients. The disadvantages of microscopy are the need for an energy source and a trained technician (WHO, 2010; Tangpukdee et al., 2009).

RDTs rely on the interaction between parasite antigen and parasite anti-bodies. They detect the presence of parasite antigens. Although RDTs give qualitative results, they are simple, fast, do not require a trained technician, and can be deployed in remote settings (WHO, 2010; Tangpukdee et al., 2009).
2.5. Malaria vector control

The spread of malaria can be prevented through effective vector control strategies. Malaria vector control aims at avoiding contact between *Anopheles* mosquitoes and humans and hence stops malaria transmission. It also aims at reducing the life span of the vector. Among the WHO recommended malaria vector control strategies are indoor residual spraying (IRS) and the use of long lasting insecticidal nets (LLINs) (WHO, 2013).

IRS involves spraying long lasting, residual insecticides on surfaces of walls, ceilings and other potential resting places of the vector, before and after a blood meal. During resting, the vector absorbs the insecticide and eventually dies (WHO, 2013).

LLINs are insecticide-impregnated nets. They have dual working modes, i.e. the nets provide a physical barrier, which prevents mosquitos from reaching humans, while the impregnated insecticide repels, or kills the mosquitos (WHO, 2015).

2.6. Chemotherapy

Although the disease has long been known, the number of chemical agents approved for the treatment and prevention of this disease are relatively few. These agents generally belong to seven chemical classes (chemotypes), as outlined below. Agents belonging to the same chemotype are believed to have the same mode of action (Schlitzer, 2008).

2.6.1. Arylamino alcohols

Drugs belonging to this class include quinine (1), mefloquine (2), halofantrine (3) and lumefantrine (4) (Fig. 5). Quinine (1) is the first chemical agent used to treat malaria. It was introduced as a pure substance for the treatment of malaria in the early 19th Century (Achan *et al*., 2011). Although it has been used for such a long period of time, quinine is still effective against *P. falciparum* parasites. Widespread use of quinine stopped when chloroquine, an inexpensive and safer analogue of quinine, was introduced (Dinio *et al*., 2012). Quinine, in combination with tetracycline, is often used to treat malaria caused by quinine resistant malaria parasites. This combination is also recommended for cases where the first line treatment fails, or is unavailable (Achan *et al*., 2011). Although quinine causes hypoglycaemia and other serious side effects when administered intra-venously (Noubiap, 2014), it is still recommended for the treatment of severe malaria in high transmission areas (WHO, 2010; Dondorp *et al*., 2010; Kremsner *et al*., 2012).
Mefloquine (2) is a racemic mixture of two enantiomers that has a simplified structure, relative to quinine (Schlitzer et al., 2008). Before the advent of parasite resistance to mefloquine, it had been used as a prophylactic and a mainstay drug against chloroquine resistant *P. falciparum* (Wisedpanichkij et al., 2009). Presently, mefloquine is used in combination with artesunate to treat uncomplicated malaria (Bukirwa and Orton, 2012). Mefloquine use is associated with neurological and psychiatric side effects, such as insomnia and depression (Schlitzer, 2007).

The mechanism of action of arylamino alcohols is still unclear. They are active against the erythrocytic stages of malaria parasites and their most probable mode of action involves inhibition of haemoglobin formation, by forming a complex with Fe\(^{2+}\)- protoporphyrin IX, which ultimately leads to a build-up of haem in the parasite's digestive vacuole. This complex, just like free haem, is toxic to the parasite (Haynes et al., 2013).

Resistance to arylamino alcohols is associated with an increased number of *P. falciparum* multi-drug resistant (*Pfmdr1*) genes (Schlitzer, 2008). This gene codes for the P-glycoprotein transporter, *Pfmdr1*, which is located on the membrane of the digestive vacuole (Preechapornkul et al., 2009). How increase in *Pfmdr1* genes causes resistance, is not yet understood.

Figure 5: Chemical structures of arylamino alcohol anti-malarials: quinine (1), mefloquine (2), halofantrine (3) and lumefantrine (4).
2.6.2. 4-Aminoquinolines

Prominent in this class are chloroquine (5), piperaquine (6), amodiaquine (7), quinacrine (8) and pyronaridine (9) (Hobbs and Duffy, 2011).

Chloroquine (5) is the most successful anti-malarial drug ever used. After its development in the 1930s, chloroquine was the first anti-malarial drug used worldwide for the treatment and prevention of malaria (Jensen and Mehlhorn, 2009). This is because chloroquine was very effective, cheap and easily administered, even in non-clinical settings (Wells and Poll, 2010). Although widespread resistance by \textit{P. falciparum} strains currently exists towards chloroquine (Lehane \textit{et al.}, 2012), chloroquine is still effective in treating malaria caused by \textit{P. vivax} and \textit{P. ovale} (Jensen and Mehlhorn, 2009).

A re-introduction of chloroquine in areas where its usage had been stopped for at least 8 years (chloroquine re-cycling), seems to restore its original effectiveness against \textit{P. falciparum} strains. This is believed to be due to the fact that the phenotype of the resistant parasites had changed into a mild, or chloroquine sensitive phenotype (Jensen and Mehlhorn, 2009; Read and Huijben, 2009; Mangera \textit{et al.}, 2012).
Piperaquine (6) is a bisquinoline, having two 4-aminoquinoline units linked by a bispiperazine-propylene unit. It is equipotent with chloroquine against chloroquine sensitive strains of the malaria parasite and more potent than chloroquine against chloroquine resistant parasites (Kaur et al., 2010). Piperaquine activity against chloroquine resistant parasites may be attributed to its larger size, which prevents it from binding to the \textit{P. falciparum} chloroquine resistance transporter (\textit{pf}crt), a protein that pumps chloroquine out of the digestive food vacuole of the parasite (Schlitzer, 2007).

Piperaquine evidently is a safer drug than chloroquine (Davis et al., 2005). A combination of piperaquine and dihydro-artemisinin is more effective than artemether-lumefantrine in Africa, while it is better tolerated by malaria patients in Asia, than artesunate-mefloquine (Zani et al., 2014).

Amodiaquine (7) is a Mannich base, which is very potent compared to chloroquine (Obua et al., 2006). Despite this increased activity, its use as a treatment, or prophylactic for malaria is hampered by its hepatotoxicity and the induction of agranulocytosis (Cairns et al., 2010). Amodiaquine is metabolically oxidised into a reactive quinone imine metabolite (Fig. 6), which reacts with glutathione to form a conjugate. This conjugate further reacts with proteins and lipids present in cells, causing the side effects (Cairns et al., 2010). Despite the adverse effects associated with amodiaquine when used as a prophylactic, a fixed dose combination of artesunate-amodiaquine as combination therapy is potent and well tolerated (Schramm et al., 2013). This combination is adopted in many countries as the first line treatment against uncomplicated \textit{P. falciparum} malaria (Barroso et al., 2015).

\textbf{Figure 7:} Oxidation of amodiaquine to its toxic quinone imine metabolite.
Quinacrine (8) is an acridine derivative, which was widely used to treat malaria during World War II, but was later abandoned due to the fact that it caused bone marrow suppression, psoriasis and skin colouration (Clarke et al., 2001). Presently, quinacrine is the second line treatment option for treating malarial patients with retinal toxicity, resulting from the use of chloroquine (González-Sixto et al., 2010).

Pyronaridine (9) is an aza analogue of quinacrine. Pyronaridine, like amodiaquine, is a Mannich base. Hence, its metabolic oxidation also produces a quinone imine metabolite. However, unlike amodiaquine, the quinone imine from pyronaridine is not reactive towards glutathione. This is due to the steric barrier provided by the two N-methylpyrrolidine units located ortho to the quinone carbonyl group of the quinone methide of pyronaridine (Biagini et al., 2005). Pyronaridine is active against chloroquine resistant P. falciparum and P. vivax strains in both Asia and Africa (Vivas et al., 2008; Price et al., 2010). The first report on the phase III clinical studies of fixed dose pyronaridine-artesunate (3:1) suggests that this combination has a longer duration and a more rapid onset of activity against P. falciparum, compared to artemether-lumefantrine, the most widely used ACT for treating uncomplicated malaria (Tshefu et al., 2010; Croft et al., 2012).

Like many other anti-malarial drugs, several modes of action have been suggested for 4-aminoquinolines. It is worth noting that this class of anti-malarial drugs is very active against the erythrocytic stages of the malaria parasite, during which the parasite is degrading haemoglobin as a source of food. Most researchers believe that the probable mode of action of 4-aminoquinolines involves inhibition of haemozoin formation within the parasite’s digestive vacuole. They do this by forming a complex with haem (Fe²⁺- protoporphyrin IX), which ultimately leads to a build-up of haem in the parasite’s digestive vacuole. This complex, just like free haem, is toxic to the parasite (Schlitzer, 2008).

Resistance has been noted for all 4-aminoquinolines, although the extent thereof varies among the drugs. With respect to chloroquine, the most prominent drug in this class, resistance is associated with changes in Pfcrト and Pfmdr I, both of which are trans-membrane proteins, located in the membrane of the parasite’s digestive vacuole. Point mutation at amino acid 76, wherein a lysine is replaced by a threonine, seems to cause mutated Pfcrト to pump chloroquine out of the digestive vacuole (O’Neill et al., 2012). Similarly to the arylamino alcohols, an over expression of Pfmdr I gene has also been suggested to cause chloroquine resistance, although this is still controversial (Ibraheem et al., 2014).
2.6.3. 8-Aminoquinolines

Compounds in this class include pamaquine, primaquine (10) and tafenoquine (11) (Howes et al., 2013) (Fig. 8). These compounds are not very potent against erythrocytic stages of *P. falciparum*, but they are very active against all gametocytic and hypnozoitic stages of *P. vivax* and *P. ovale*. Pamaquine is the first synthetic anti-malarial drug developed for clinical use against *P. falciparum* gametocytes and *P. vivax* hypnozoites. Pamaquine, however, induces haemolytic reactions in patients with glucose-6-phosphate dehydrogenase deficiency, which has limited its use (Sweeney et al., 2004; Recht et al., 2014).

Primaquine (10), the only authorised compound in this class, plays a pivotal role in the radical cure and eradication of malaria, due to its potent activity against gametocytes and hypnozoites (Kondrashin et al., 2014). This pamaquine successor is more active against *P. falciparum* gametocytes and *P. vivax* hypnozoites, than pamaquine. Primaquine is less toxic than pamaquine, but it also causes formation of methaemoglobin and induces haemolytic anaemia in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency (Recht et al., 2014). Due to its short half-life of four hours, primaquine must be taken daily for fourteen days in order to achieve complete cure of malaria caused by *P. vivax* and *P. ovale* (Recht et al., 2014).

The shortcomings of primaquine necessitated the search for a new primaquine analogue, with a higher therapeutic index (safety window) and better pharmacokinetic profile. This led to the discovery of tafenoquine (11). However, unlike primaquine, tafenoquine is active against the erythrocytic stages of *P. falciparum*, more potent against gametocytes and hypnozoites of *P. vivax* and *P. ovale* and has a longer half-life of fourteen days. Despite the foregoing merits over primaquine, tafenoquine also causes haemolytic anaemia in patients with G6PD deficiency (Recht et al., 2014). Tafenoquine is currently undergoing phase III clinical studies as an anti-malarial drug (GSK, 2014).

Little is known about the mode of action of the 8-aminoquinoline class of anti-malarial drugs. However, they are metabolised *in vivo* into hydroxylated and carboxylated metabolites. It is thus assumed that these metabolites are responsible for both their anti-malarial activity, as well as their toxicity. Indeed, hydroxylated metabolites ultimately lead to increased H$_2$O$_2$ and methaemoglobin levels and decreased glutathione levels in RBCs, after a series of events. These changes increase oxidative stress, which ultimately kills the parasite (Vennerstrom et al., 1999; Vangapandu et al., 2007).
2.6.4. Anti-folates

Anti-folates, also known as anti-metabolites, are compounds that inhibit certain key enzymes along folate bio-synthetic pathway, thereby stopping *de novo* folate synthesis and/or blocking folate salvage pathways. Folate, a co-factor, comprising of pteridine, *para*-aminobenzoic acid (pABA) and L-glutamic acid, acts as a one carbon donor in the bio-synthesis of amino acids and in the methylation of nucleic acid (Wells *et al.*., 2009). Nucleic acid methylation and amino acid synthesis are essential for cell growth and differentiation (Salcedo-Sora and Ward, 2013). Anti-folates that are clinically deployed for the control and treatment of malaria are broadly classified into type I and type II anti-folates (Nzila, 2006).

Type I anti-folates include dapsone (12), sulphadoxine (13) and sulfalene. They inhibit dihydropteroate synthase (DHPS), an enzyme that catalyses the synthesis of dihydropteroate. Dihydropteroate is required for the synthesis of dihydrofolate (Nzila, 2006). Type II anti-folates include pyrimethamine (14), proguanil (15), chlorproguanil (16) and cycloguanil (17). Cycloguanil is the pro-drug of proguanil and chlorproguanil. Type II anti-folates inhibit dihydrofolatereductase (DHFR), an enzyme that converts dihydrofolate (DHF) and folates from exogenous sources into tetrahydrofolate (THF) (Nzila, 2006).

Anti-folates (Fig. 9) have never been very effective when used in mono-therapy, as the malaria parasites had easily developed resistance towards them (Peters, 1987). The most successful anti-folate to date in malaria chemotherapy has been Fansidar, a combination of sulphadoxine and pyrimethamine. Fansidar has been used instead of chloroquine in some parts of the world as a first line treatment for uncomplicated malaria. Where resistance to Fansidar has developed, it is used in
combination with artesunate as the first line treatment for uncomplicated malaria (Adeel, 2012). Other anti-folate drug combinations include dapsone-chlorproguanil (Lapdap) and cycloguanil-atovaquone (Malarone). Malarone is mainly used as a prophylactic (Hawkins et al., 2007). Lapdap was introduced in the late 1990s as an effective, low cost regimen for the treatment of uncomplicated malaria, following an increased resistance to Fansidar. It was, however, withdrawn in 2008, as a result of reports of haemolytic anaemia in patients with G6PD deficiency (Luzzatto, 2010).

Type I anti-folates work by competing with para-aminobenzoic acid for the active site of DHPS enzyme, while type II anti-folates compete with dihydrofolate for the active site of DHFR. When type I anti-folate inhibits DHPS, less dihydropteroate is produced, which culminates in less DHF being produced in the pathway. With less DHF, type II anti-folates face little, or no competition for the active site of DHFR. For this reason, their activity against the target increases. The reduced production of DHF, caused by type I anti-folates and the parallel increased activity of type II anti-folates, account for the synergistic action achieved with anti-folate combinations (Nzila, 2006). Resistance to anti-folates is due to several mutations on genes coding for DHPS and DHFR (Khatoon et al., 2013).

Figure 9: Chemical structures of anti-folate anti-malarial drugs: dapsone (12), sulphadoxine (13), pyrimethamine (14), proguanil (15), chlorproguanil (16) and cycloguanil (17).
2.6.5. Hydroxynapthoquinones

The only anti-malarial drug from this class (Fig. 10) in clinical use is atovaquone (18). Atovaquone is not very effective when used as mono-therapy and the malaria parasite easily develops resistance against it (Olliaro, 2001). As a result, the drug is always used in combination with proguanil. This combination is used for casual prophylaxis and treatment of uncomplicated *P. falciparum* malaria (Patel and Kain, 2005; Hawkins *et al*., 2007; Kimura *et al*., 2012).

Atovaquone acts by intercepting electron flow at cytochrome *bcl* complex, an enzyme located along the mitochondrial respiratory chain. The electron interception causes depolarization of parasite’s mitochondrial membrane potential and the subsequent death of the mitochondrion (Baggish and Hill, 2002; Kessl *et al*., 2007). The demise of the mitochondrion brings an end to pyrimidine bio-synthesis, followed by inhibition of DNA synthesis and replication, which ultimately causes death of the parasite (Hyde, 2002).

![Figure 10: Chemical structure of atovaquone.](image)

2.6.6. Artemisinins

This class of anti-malarial drugs includes artemisinin (19) and its semi-synthetic derivatives, i.e. artemether (21), arte-ether (22) and artesunate (23) (Woodrow *et al*., 2005). Artemisinin, a sesquiterpene lactone, containing an endo-peroxide bridge, is extracted from *Artemisia annua* (qinghao), a plant native to China and to temperate zones of Europe (Liao, 2009). In China, qinghao had been used as a traditional herb for treatment of fevers and chills. However, artemisinin (qinghaosu) and its anti-malarial properties were only discovered later in 1972 as a consequence of the Chinese government policy to screen herbs in search for new anti-malarial drugs (Li, 2012).

To date, *Artemisia annua* remains the only natural source of artemisinin, which is neither soluble in water, nor in oil. To improve the pharmacokinetics properties of artemisinin, semi-
synthetic derivatives that are either oil soluble (artemether (21) and arte-ether (22)), or water soluble (artesunate (23)), have been synthesised (Boareto et al., 2012).

Unlike the other anti-malarial drugs, artemisinins (Fig. 11) are fast acting (reducing parasite burden by 10,000-fold within 48 hours), are active against all *Plasmodium* species that infect humans and they are potent even against multi-drug resistant *P. falciparum* strains (Woodrow et al., 2005). These properties make artemisinins the most important drugs in the fight against malaria (Shakir et al., 2011).

Despite their superior drug properties, the artemisinins have short half-lives of less than three hours, which leads to recrudescence in patients, when used as mono-therapy (Rehman et al., 2014). To prevent parasite recrudescence in patients treated with artemisinins and also to slow down the spread of artemisinin resistant parasites, WHO recommended the use of artemisinins in combination with a long life partner drug (WHO, 2006), i.e. artemisinin combination therapy.

Artemisinin combination therapies (ACTs) currently are the most important drugs in the treatment of uncomplicated malaria caused by *P. falciparum*. ACTs combine an artemisinin derivative with a longer half-life anti-malarial drug. The rationale is that the fast acting artemisinin clears a larger proportion of the parasites within its short pharmacological half-life, whilst the longer half-life partner drug then continues the clearance, as the artemisinin concentration falls to sub-therapeutic levels. Examples of ACTs in clinical use include artemether-lumefantrine, amodiaquine-artesunate, artesunate-mefloquine, artesunate-fansidar and artesunate-pyronaridine (Ding et al., 2011).

Clinically used semi-synthetic artemisinins are converted by cytochrome p-450, or through hydrolysis in the case of artesunate, into dihydro-artemisinin (DHA) (20), which is their active metabolite (Ho et al., 2014). The anti-malarial properties of artemisinins result from the presence of the endo-peroxide bridge (Woodrow et al., 2005). The mode of action of artemisinins is still controversial, as several modes are proposed in the literature, with no consensus between them. Although the target as such has not yet been definitively identified, several have been proposed to explain the mode of action of artemisinins (O’Neill et al., 2010; Ding et al., 2011) and they include:

- **Translationally controlled tumour protein (PfTCTP):** this protein is probably involved in cell growth. It has been suggested that artemisinin radicals alkylate PfTCTP and other proteins of the parasite, thereby interfering with the parasite’s growth.
• Sarco/endo-plasmic reticulum Ca\(^{2+}\) ATPase (SERCA) enzyme: this mammalian protein regulates intra-cellular calcium levels and it is inhibited by thapsigargin, a sesquiterpene lactone. By analogy, it is assumed that artemisinins being sesquiterpene lactones, work by inhibiting \(P. falciparum\) adenosine triphosphatase 6 (\(PfATPase6\)), a protein orthologous to SERCA.

• Haem: it has been surmised that heme-Fe\(^{2+}\) causes cleavage of the peroxide, leading to the formation of O-radicals, which are re-arranged to form C-radicals. These radicals covalently form adducts with haem, which are toxic to the parasite.

The above proposals have their problems (Haynes \textit{et al}., 2013). It has been demonstrated that artemisinin and its derivatives rapidly accept electrons from reduced flavin co-factors and related electron donors, for example, the reduced conjugates of flavin, i.e. adenine dinucleotide (FAD), flavine mono-nucleotide (FMN), riboflavin and others. They thereby prevent critical flavoenzymes from donating the electrons that are required for generating reduced glutathione (GSH) and related thiols, which regulate intra-cellular redox homeostasis and other effects. At the same time, the artemisinin is irreversibly reduced into an inactive product. Overall, the artemisinins abruptly interrupt the cellular mechanisms involved in redox homeostasis, an event that results in a rapid build-up of cytotoxic reactive oxygen species (ROS) (Haynes \textit{et al}., 2012).

Although at present, no widespread resistance towards the artemisinins yet exists, as is the case with most anti-malarial drugs, artemisinin resistance had been confirmed in Western Cambodia (where the number of treatment failure is still on the rise) and has now spread or emerged independently in other areas of South-East Asia, including Myanmar, Thailand and Southern Vietnam (Ashley \textit{et al}., 2014). Artemisinin resistance in these areas has been ascribed to mutations in \textit{K13}-propeller gene of \textit{P. falciparum} (Cravoa \textit{et al}., 2015). Although mutations akin to those observed in Asia are yet to be identified in Africa, several polymorphisms in the \textit{K13}-propeller gene have been noted in Africa and are yet to be associated with any form of artemisinin resistance in Africa (Taylor \textit{et al}., 2015).
2.6.7. Antibiotics

Antibiotics that have been used for malaria prophylaxis and treatment include doxycycline (24) (Fig. 12), clindamycin and azithromycin. They are effective as mono-therapies against *P. falciparum* parasites, but have a slow onset of action. For this reason, they are usually combined with quinine for the treatment of uncomplicated malaria (Obonyo and Juma, 2012; Andrews et al., 2014). The mode of action of antibiotics, for example doxycycline, against the malarial parasite, is still unknown. Doxycycline is the cheapest and safest antibiotic anti-malarial, making it the most clinically used (CDC, 2012).

Figure 12: Chemical structure of doxycycline.
2.6.8. Quinolones

Quinolones are synthetic compounds, containing the 4-oxo-1,4-dihydroquinoline skeleton that may be written as the tautomeric 4-hydroxyquinoline (Fig. 13). They are mostly used as antibiotics. The first anti-bacterial quinolone, nalidixic acid, was discovered as a by-product during the synthesis of chloroquine (Emmerson and Jones, 2003). Since the discovery of nalidixic acid and its anti-bacterial properties against gram negative bacteria, several structural modifications have been made to widen its spectrum of activity to also include gram positive bacteria (Cheng et al., 2013).

Besides possessing bactericidal properties, the quinolone scaffold is present in the structures of certain anti-cancer (Rajabalian et al., 2007) and anti-viral drugs (Tabarrini et al., 2008) and also in anti-oxidants (Greeff et al., 2012). The scaffold is also incorporated into compounds that display anti-malarial activity (Winter et al., 2008).

Reports on the anti-malarial properties of quinolones compared to reports on their anti-bacterial properties are relatively limited. Recent research involving the evaluation of anti-malarial properties of quinolones, indicates that these compounds demonstrate promising anti-malarial potential. They show very good efficacies, with 50% inhibitory concentration (IC$_{50}$) values of less than 10 nM, and target more than one stage in the malaria parasite’s life cycle, including the blood, liver and gametocyte stages. They also seem to have novel modes of action, different from those of most clinically used drugs (Pidathala et al., 2012).

Despite having good anti-malarial properties, there is just one quinolone based anti-malarial drug that has been patented in the US (Aymé et al., 2011). The second most advanced quinolone in this therapeutic area, ELQ-300, is undergoing formulation studies, due to its poor solubility in preparations required for clinical trials as an anti-malarial drug (MMV, 2013). A full literature account on the research of quinolones as anti-malarial agents is presented in Chapter 3.

2.6.8.1. Decoquinate

The first carboxyquinolone to show anti-malarial activity was ICI 56 780 (25). Since this compound was discovered and later abandoned, little subsequent research has been carried out to either optimise its activity, or to develop new carboxyquinolones with better anti-malarial activity (Winter et al., 2008). However, decoquinate (26), an old coccidiostat (Taylor and Bartram, 2012), is a carboxyquinolone that has recently shown to possess anti-malarial activity during a high
throughput screening programme conducted in search of compounds that are active against liver stage malaria parasites.

Decoquinate, like many carboxyquinolones, is prominent in veterinary medicines. It is useful in the treatment and prevention of protozoal diseases such as coccidiosis in poultry and toxoplasmosis in sheep (Taylor and Bartram, 2012).

Although malaria, like coccidiosis and toxoplasmosis, is caused by a protozoan, little interest had been shown in the past in promoting the use of decoquinate for the treatment and prophylaxis of malaria. Recently, decoquinate garnered more interest following the discovery of its picomolar activities against the liver stages of *P. falciparum* (Nam *et al*., 2011). This promoted more research that culminated in the findings that DQ has nano-molar activities against the blood and early gametocyte stages of *P. falciparum* (da Cruz *et al*., 2012). Besides its potent efficacy against different stages of the malarial parasite, it is also noteworthy that decoquinate is a very cheap compound. Indeed, with all of these attributes, decoquinate seems to have an anti-malarial potential that is superior to that of chloroquine.

DQ likely has low bio-availability. This is because decoquinate, like most hits discovered *via* high throughput screening (HTS) (Keseru and Makara, 2006), suffers from high lipophilicity and poor aqueous solubility (0.06 µg/L in purified water and <0.01 µg/L in buffered water pH 4–9) (Wang *et al*., 2013). This may in part be due to the lipophilic n-decyl chain attached to oxygen at position 6 of the quinolone ring. It also has a metabolically labile ester functional group, which, if hydrolysed into carboxylic acid, might reduce the ability of decoquinate to cross biological membranes.

Thus, this research project is aimed at improving the anti-malarial activity and aqueous solubility of DQ and at replacing the metabolically susceptible ester of DQ through the syntheses of new derivatives, using simple and cost-effective chemical transformations.
Figure 13: Chemical structures of promising quinolone anti-malarials: ICI 56 780 (25) and decoquinate (26).
References

Cross, R.M. (2010). "Lead discovery and optimization strategies towards the development of 4(1H)-quinolones and 1,2,3,4-tetrahydroacridone analogs with antimalarial activity. Department of chemistry, University of South Florida. Doctorate.

targeted at plasmodium liver stages identifies a potent multistage antimalarial drug." The Journal of Infectious Diseases 205(8): 1278-1286.

Chapter 3

Recent progress in the development of anti-malarial quinolones

This chapter contains a review article published in Malaria journal. It presents anti-malarial quinolone hits and their activities against malaria parasites.
Recent progress in the development of anti-malarial quinolones

Richard M Betek1, Frans J Smit2, Richard K Haynes3 and David D N'Da2*

Abstract
Available anti-malarial tools have over the ten-year period prior to 2012 dramatically reduced the number of fatalities due to malaria from one million to less than six-hundred and thirty thousand. Although fewer people now die from malaria, emerging resistance to the first-line anti-malarial drugs, namely artemisinins in combination with quinolines and arylmethanols, necessitates the urgent development of new anti-malarial drugs to curb the disease. The quinolones are a promising class of compounds, with some demonstrating potent in vitro activity against the malaria parasite. This review summarizes the progress made in the development of potential anti-malarial quinolones since 2008. The efficacy of these compounds against both asexual blood stages and other stages of the malaria parasite, the nature of putative targets, and a comparison of these properties with anti-malarial drugs currently in clinical use, are discussed.

Keywords: Endochin, Quinolone, Decoquinate

Background
Malaria represents a significant global health threat, with 40% of the world’s population being at risk of contracting this disease. During 2012, nearly six-hundred and thirty thousand people died from the disease [1], with pregnant women and children under the age of five being the most vulnerable to infection [2]. By far the most (around 90%) deaths occur in sub-tropical and tropical Africa south of the Sahara (representing 564,300 of the total 627,000 deaths reported in 2012) [1], indicative of the endemic proportions that malaria has reached in this region.

Malaria arises from the invasion of red blood cells (RBCs) by a protozoan of the genus, Plasmodium [3]. Five species of the Plasmodium genus, i.e. Plasmodium falciparum, Plasmodium ovale, Plasmodium vivax, Plasmodium malariae, and Plasmodium knowlesi cause human malaria. Of these species, P. falciparum is responsible for the most severe form of malaria [4]. The malaria parasite is transmitted to humans following the bite of an infected female Anopheles mosquito. The parasite has a complex life cycle, involving the vector and a vertebrate host. Figure 1 illustrates the malaria parasite life cycle that progresses through three different phases, with each phase comprising its own different stages.

The liver phase (A): following the bite of an infected Anopheles mosquito, sporozoites (1) (infectious stage) are introduced into the bloodstream of the victim (host), from where they migrate to the liver. In the liver, each sporozoite develops into a tissue schizont (3). In P. ovale and P. vivax, the sporozoites develop into hypnozoites (2), the dormant form responsible for the relapse of the disease, months after the initial infection.

The blood phase (B): when the tissue schizont (3) ruptures in the liver, merozoites are released into the bloodstream, where they invade the RBCs. Within the RBCs, each merozoite transforms into a trophozoite (6) and later into a blood schizont (7), which multiplies asexually, giving rise to 16–32 merozoites (4). When the infected RBCs rupture, merozoites are released into the bloodstream to further invade more RBCs and hence continue asexual multiplication. The clinical manifestations of the disease (e.g. fever and chills) appear during this phase. Some of these merozoites develop into gametocytes (8).

The mosquito phase (C): when a mosquito feeds on an infected person, it ingests gametocytes with the blood. The gametocytes undergo asexual reproduction within the mosquito’s mid-gut, producing thousands of sporozoites (1),
which then migrate into the salivary glands of the mosquito, from where they are injected into humans during a blood meal.

Hitherto, chemotherapy has remained the sole option for malaria treatment [5]. Quinine, an alkaloid present in the bark of Cinchona trees, was the first effective treatment for malaria [6]. Once the structure of quinine had been established by Rabe et al. [7], the syntheses of quinine analogues became the next focus. This led to the discovery of the quinoline chloroquine (CQ) (Figure 1) and related compounds, such as amodiaquine and piperaquine. Other quinolines bearing a benzylid hydroxyl group as in the case of quinine were also prepared, the most important of which was mefloquine [8]. CQ turned out to be the most successful drug; it was cheap, relatively safe and was used for decades, before the parasite developed resistance to the drug. Structurally quite different drugs, as represented by Fansidar (a combination of sulfadoxine and pyrimethamine), have since been introduced, but unfortunately efficacy has also been impeded by the development of resistance [9].

Artemisinin and its derivatives (2, 3–6, Figure 2), referred to as the ‘artemisinins’, are another class of antimalarial drugs that are fast acting and potent against all resistant strains of the malaria parasite [10]. In an attempt to protect the artemisinins against the development of parasite resistance, the World Health Organization (WHO) recommended the use of these drugs in combination with other drugs, rather than in monotherapy. This led to the adoption of artemisinin based combination therapy (ACT) for the treatment of uncomplicated malaria in endemic countries. ACT combines an artemisinin derivative with a longer half-life anti-malarial drug. The rationale is that the fast acting artemisinin clears a larger proportion of the parasites within its short pharmacological half-life, whilst the longer half-life partner drug then continues the clearance as the artemisinin concentration falls to subtherapeutic levels. In spite of this, tolerance to ACTs by the parasite has been reported in South-East Asia [11,12], which is indicative of emerging resistance to the artemisinins. With the recent identification of genetic markers of the resistant phenotype and the
The quinolone scaffold

Quinolones are synthetic compounds containing the 4-oxo-1,4-dihydroquinoline skeleton that may be written as the tautomeric 4-hydroxyquinoline (Figure 3). They are mostly used as antibiotics [16]. The first anti-bacterial quinolone, nalidixic acid, was discovered as a by-product during the synthesis of CQ [17]. Since the discovery of nalidixic acid and its anti-bacterial properties against gram negative bacteria, several structural modifications have been made to widen its spectrum of activity to also include gram positive bacteria [18].

Besides possessing bactericidal properties, the quinolone scaffold is present in the structures of certain
anti-cancer [19] and anti-viral drugs [20], and also in anti-oxidants [21]. The scaffold is also incorporated into compounds that display anti-malarial activity [22].

Reports on the anti-malarial properties of quinolones, compared to their anti-bacterial properties, are relatively limited. Recent research involving the evaluation of anti-malarial properties of quinolones, however, indicates that these compounds demonstrate promising potential. They show very good efficacies and target more than one stage of the malaria parasite life cycle, including the blood, liver and gametocyte stages. They also seem to have novel modes of action, different from those of most of the current, clinically used drugs. Thus, in this review are presented details of anti-malarial quinolones documented within the past six years.

Quinolones

Endochin and its analogues

The anti-malarial properties of endochin (8, Figure 4) have been known since 1948, when its activity against avian malaria was demonstrated [23]. Further research on this molecule has established that it is active against both the liver (phase A, Figure 1) and blood (phase B, Figure 1) stages of the parasites. It targets the cytochrome bc1 complex of the parasite [22]. However, endochin has proven to be ineffective in vivo against human malaria [24]. Its failure in humans has been ascribed to the fact that endochin is easily metabolized to inactive metabolites in the presence of cytochrome P450 (CYP450) enzymes [25].

Recent advances in understanding of both the drug mechanism of action and the manner in which resistance may arise suggest that previously abandoned lead molecules may in fact be viable anti-malarial drug candidates. This awareness has led to both a re-examination of many abandoned molecules, including quinolone endochin, and the activation of synthetic campaigns, aimed at generating more robust and potent analogues. These activities are exemplified by the development of the following new endochin analogues that have improved therapeutic properties, compared to the parent endochin.

2-Methyl-3-(n-heptyl)-5,7-difluorquinoline (ELQ-121)

Replacement of the methoxy group at C-7 by fluorine and the insertion of fluorine at C-5 result in the compound, ELQ-121 (9, Figure 4). It has a half-maximal inhibitory concentration (IC\textsubscript{50}) value of 0.1 nM against the CQ sensitive (D6) and CQ resistant (Dd2) strains of *P. falciparum*. It is stable in the presence of microsomal elements (CYP450). The parent endochin has an IC\textsubscript{50} value of 4 nM against the D6 and Dd2 strains and is unstable in the presence of CYP450 enzymes [25]. Thus, relative to endochin, the derivative ELQ-121 shows an approximate forty-fold improvement in IC\textsubscript{50} for the inhibition of *P. falciparum in vitro* and exhibits an enhanced metabolic stability.

2-Methyl-3-(n-heptyl)-6-chloroquinoline (ELQ-130)

Insertion of chlorine at C-6 results in the compound, ELQ-130 (10, Figure 4). It has an IC\textsubscript{50} value of 16 nM against the TM90-C2B strain of *P. falciparum*. Although

![Figure 4 Structures of endochin and its derivatives.](image-url)
this is a less potent IC_{50} value compared to endochin (IC_{50} value of 11 nM against the same strain). ELQ-130 has enhanced metabolic stability than endochin and is devoid of cross-resistance with atovaquone [25].

4-(2,5,8,11-Tetraoxatridecan-13-yl-carbonate)-2-methyl-3-(n-heptyl)-5,7-difluorquinolone (ELQ-125)
ELQ-125 (11, Figure 4) is a polyethylene glycol (PEG) conjugate of ELQ-121. It has, in addition to the two fluorine atoms at positions 5 and 7, a PEG moiety linked to the oxygen of the quinolone nucleus. It has an IC_{50} value of 0.4 nM against the D6 and Dd2 strains and is hence ten-fold (0.4 nM vs 4 nM) more active than the parent endochin. ELQ-125 displays higher oral bioavailability than both ELQ-121 and endochin. This property is attributed to the presence of the PEG moiety, which also enhances the aqueous solubility of the compound. As such, ELQ-125 does not have the solubility problem of endochin and its other analogues. ELQ-125 completely removed parasites from the blood stream of mice infected with *Plasmodium yoelii* on the third day of treatment, at a dose of 50 mg/kg/day, whereas endochin showed no activity in infected mice [25].

3-Phenyl-4(1H)-quinolone
This analogue (12, Figure 4) has the n-heptyl chain at C-3 of endochin replaced by a phenyl ring, whilst a chlorine atom replaces the H atom at C-6. These modifications confer better aqueous solubility and microsomal stability relative to the parent endochin. This compound has an EC_{50} value of 15.3 nM against the TM90-C2B strain of *P. falciparum* in vitro. Compound 12 is therefore more potent than endochin, with an EC_{50} value of 46.6 nM against the same strain. It is important to note that this analogue shows no cross-resistance with atovaquone, contrary to endochin [26]. More importantly, results from in vivo studies indicated that the compound completely prevented edgellation of microgametocytes at a dose of 10 μM, administered for fourteen days post infection. As such, this analogue has the same transmission blocking potential as primaquine [27].

6-Chloro-7-methoxy-2-methyl-3-[4-(trifluoromethyl)phenyl] quinolin-4(1H)-one (PQ-158)
In PQ-158 (13, Figure 4), the n-heptyl chain of endochin is replaced with a trifluorotoluene moiety at C-3, whereas a chlorine atom replaces the H atom at C-6. PQ-158 has potent anti-malarial activity in vitro, with an IC_{50} value of 3.07 nM against the liver stage of the *Plasmodium berghei* parasite. However, its potency is slightly less than that of atovaquone that has an IC_{50} value of 1.42 nM against the liver stage of *P. berghei*. PQ-158 also demonstrates strong activity against the liver stage of *P. berghei* in vivo, as mice treated with this compound at a dose of 10 mg/kg displayed a more than 60% survival rate, compared to untreated mice [28].

6-Chloro-7-methoxy-2-methyl-3-[4-(4-(trifluoromethyl)phenoxy)phenyl]quinolin-4(1H)-one (ELQ-300)
ELQ-300 (14, Figure 4) has a diaryl ether moiety replacing the C-3 n-heptyl substituent of endochin. Besides being metabolically more stable than endochin, ELQ-300 exhibits potent ex vivo anti-malarial activity against MDR *P. falciparum*, having IC_{50} values of 1.8 nM and 1.7 nM against the W2 and TM90-C2B strains, respectively. The drug is thus substantially more potent than CQ that has IC_{50} values of 126 nM and 96.2 nM against the W2 and TM90-C2B strains respectively.

Furthermore, ELQ-300 shows no cross-resistance with atovaquone, displays a high selectivity for the parasite respiratory bc_{1} complex (selectivity index ≥ 20,000), and is very potent against the early and late stages of *P. falciparum* gametocytes. At a concentration of 0.1 μM, ELQ-300 completely stopped further development of stage I and II gametocytes, and it is active against stage IV gametocytes, with an IC_{50} value of 79.1 nM. It also has an ED_{50} value of 0.02 mg/kg/day against murine *P. yoelii*. At a dose of 0.3 mg/kg/day, administered for 30 days post infection, ELQ-300 completely cleared parasites in infected murine models [29]. Presently, ELQ-300 is undergoing formulation studies in preparation for clinical studies [30].

Hydroxy-2-dodecyl-4(1H)-quinolone (HDQ) and its analogues
HDQ (15, Figure 5) is the only compound known to inhibit both the NADH:ubiquinone oxidoreductase enzyme (P450H2-2) and the bc_{1} complex in the respiratory chain of *P. falciparum*. This multi-target inhibition confers a benefit over the single target inhibition in that the former delays the onset of drug resistance [31]. Because of this advantage, HDQ had been used as a starting point for a drug discovery project that has led to several new quinolone analogues with promising anti-malarial activities. Examples of the most effective of these analogues are discussed next.

7-Chloro-3-methyl-2-[4-(3-trifluoromethoxy)benzyl]phenyl quinolin-4(1H)-one (CK-2-68)
This HDQ derivative (16, Figure 5) bears a [4-(3-trifluoromethoxy)benzyl]phenyl group at C-2 of the quinolone nucleus instead of the metabolically vulnerable n-dodecyl unit present in HDQ. This 2-bisaryl quinolone has an IC_{50} of 31 nM against the 3D7 strain of *P. falciparum* in vitro. When given orally at a concentration of 20 mg/kg, CK-2-68 completely cleared *P. berghei* parasites in mice. It is stable in the presence of human
microsomal elements. It inhibits NADH:ubiquinone oxidoreductase of *P. falciparum* with an IC₅₀ value of 16 nM. This compares to a value higher than 1,000 nM for atovaquone. CK-2-68 and its phosphate pro-drug (17, Figure 5) have activities against *P. falciparum* microgametocytes similar to that of atovaquone (IC₅₀ ~ 10 μM) [31-33].

7-Fluoro-3-methyl-2-(6-(4-trifluoromethoxy)phenyl)pyridin-3-ylquinolin-4(1H)-one (SL-2-64)

In SL-2-64 (18, Figure 5), a 2-((4-trifluoromethoxy)benzyl)pyridine moiety replaces the n-dodecyl unit at C-2 in HQD. The pyridine unit in this molecule lowers lipophilicity and increases aqueous solubility relative to CK-2-68. SL-2-64 has activity comparable to that of some clinically used anti-malarial drugs against the 3D7 strain of *P. falciparum*. *In vivo*, this derivative has an ED₅₀ value of 3.3 mg/kg against the 3D7 strain in murine models. This activity is similar to that of arteether, which has an ED₅₀ value of 3.1 mg/kg against the same strain. This HQD analogue is listed in the MMV discovery pipeline [31].

Acridinones

Acridinones are tricyclic compounds incorporating the 4-oxo-1,4-dihydroquinoline skeleton, and are thus structurally closely related to quinolones. The anti-malarial activity of a compound containing the acridinone scaffold (19, Figure 6) was reported in 1947 [34]. This compound garnered little interest until 1970 when the anti-malarial prophylactic property of fleroxacin came (an analogue of acridinone) was discovered [35]. Shortly after fleroxacin came, WR 243251 (20, Figure 6) with improved therapeutic properties. However, these compounds were not further evaluated, due to their poor aqueous solubility and metabolic instability [36]. Recent studies aimed at re-evaluating the acridinone scaffold through structure-property relationships (SPR) and optimization by using structure-activity relationships (SAR) have led to the discovery of promising anti-malarial analogues.

6-(4-(4-(Trifluoromethyl)phenoxo)phenyl)-1,3,4,4a,9a,10-hexahydroacridin-9(2H)-one (THA 118)

THA 118 (21, Figure 6) has a diphenyl ether moiety replacing the phenyl moiety at C-6 in WR 243251. THA 118 possesses more potent anti-malarial activity and has improved metabolic stability and solubility relative to WR 243251. Indeed, THA 118 displays anti-malarial activity *in vitro* with EC₅₀ values of 12.2 nM and 9.1 nM against the W2 and TM90-C2B strains of *P. falciparum* respectively, compared to WR 243251, which has EC₅₀ values of 25.0 nM and 300.0 nM against W2 and TM90-C2B strains [37].

7-Chloro-3-(2,4-dichlorophenyl)-3,4-dihydroacridine 1,9 (2H,10H)-di-one (WR 249685)

This analogue (22, Figure 6) possesses potent *in vitro* anti-malarial activity (IC₅₀ 15 nM) comparable to that of CQ (IC₅₀ 7.4 nM) against the D6 strain of *P. falciparum* [38]. WR 249685 has a higher selectivity index for the parasite bc₁ complex than does atovaquone. This was established by comparing their *in vitro* therapeutic indices (ITI) for the human bc₁ complex, i.e. ITI was 4,600 for WR 249685 and 24 for atovaquone. In addition to targeting the parasite bc₁ complex, WR 249685 also binds to haem, although it has a low affinity for haem compared to CQ [39]. Thus, it is unlikely to exert an anti-malarial effect in this manner relative to CQ.

Halooalkoxyacridinones

This is a relatively new class of acridinone [38]. The most active analogues in this class have at C-3 of the acridone ring an alkoxy moiety terminating in one or more trifluoromethyl units. The acridinone (23, Figure 6) is an example of such an analogue. It exhibits extraordinarily strong anti-malarial activity *in vitro*, with IC₅₀ values of 1 pM against both the D6 and Dd2 strains of *P. falciparum*. With such favourable IC₅₀ values, this compound appears to be the most effective anti-malarial ever synthesized and tested in a laboratory. Although its mode of action is still unknown, it is assumed that it

Figure 5 Structure of HQD and its derivatives.
binds to the bc1 complex due to its structural similarity with known anti-malarial drugs targeting that complex. This acridinone analogue has an in vitro therapeutic index higher than 100,000 [39] and has been patented in the US as an anti-malarial drug [40].

3-Chloro-6-(2-diethylamino-ethoxy)-10-(2-diethylamino-ethyl)-acridinone (T3.5) This 10-N substituted acridinone analogue (24, Figure 6) incorporates two potential anti-malarial features, namely, a haem-targeting unit through the tricyclic acridone core, and a quinoline resistance-reversal unit, due to the N-(2-diethylamino-ethyl) unit. T3.5 has in vitro IC50 values of 77.3 nM and 71.3 nM against the Dd2 and TM90-C2B strains of P. falciparum, respectively. In comparison, CQ has IC50 values of 124.7 nM and 122.7 nM against the same strains respectively. This acridinone analogue is non-toxic to mammalian cell lines both in vitro and in vivo and exhibits synergism with each of piperquine, CQ and amodiaquine against the D42 strain [41].

Carboxyquinolones

Since the discovery of the anti-malarial activity of ICI56-780 (25, Figure 7) [42], recent research on quinolone anti-malarial drugs has focused on carboxyl derivatives of quinolones. Due to the need for cheap anti-malarial drugs that have novel modes of action, commercially available compounds with antiparasitic activity had been screened for anti-malarial activity. This has led to the discovery of various 3-carboxyquinolones as potential anti-malarial drugs.

Ethyl 2-(1,3-benzodioxol-5-yl)-7-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylate (TDR 42098) This compound demonstrates improved potency against the blood stages of the CQ-R K1 and CQ-S NF54 strains of P. falciparum, and has better physicochemical properties, than endochin analogues, bearing a lipophilic side chain [43]. Derivatization of TDR 42098 (26, Figure 6) produced the analogue (27, Figure 7) bearing a meta-substituted aromatic ring at C-2. This derivative has mid-range IC50 values of 0.13 μM and 0.10 μM against the K1 and 3D7 strains of P. falciparum, respectively [44].

6-Deoxy-7-ethoxy-4-oxo-1H-quinoline-3-carboxylic acid ethyl ester (decoquinate (DQ)) The anti-malarial activities of this long used anticoccidial drug were recently discovered during screening conducted against the liver stages of P. falciparum. In vitro, decoquinate (DQ) (28, Figure 7) is potent against the liver (IC50 2.6 nM), blood (IC50 10 nM), and sexual (IC50 36 nM) stages of the malaria parasite. It reportedly
<table>
<thead>
<tr>
<th>Structure</th>
<th>IC_{50} (nM)</th>
<th>EC_{50} (nM)</th>
<th>EB_{50} (mg/kg)</th>
<th>Target</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
<td>0.1</td>
<td>-</td>
<td>Dd2</td>
<td>[25]</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>0.4</td>
<td>-</td>
<td>Dd2</td>
<td>[25]</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>2.0</td>
<td>-</td>
<td>TM90-C2B</td>
<td>[25,26]</td>
</tr>
<tr>
<td>11</td>
<td>3.07</td>
<td>-</td>
<td>-</td>
<td>P. berghei</td>
<td>[28]</td>
</tr>
<tr>
<td>12</td>
<td>5.1</td>
<td>-</td>
<td>-</td>
<td>TM90-C2B</td>
<td>[26,27]</td>
</tr>
<tr>
<td>13</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
<td>TM90-C2B</td>
<td>[27]</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>PyNDH-2</td>
<td>[29]</td>
</tr>
<tr>
<td>15</td>
<td>37</td>
<td>-</td>
<td>-</td>
<td>3D7</td>
<td>[31-33]</td>
</tr>
<tr>
<td>16</td>
<td>10,000</td>
<td>-</td>
<td>-</td>
<td>Microgametocytes of P. falciparum</td>
<td>[31-33]</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
<td>3D7</td>
<td>[31]</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>300</td>
<td>-</td>
<td>TM90-C2B</td>
<td>[36]</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>9.1</td>
<td>-</td>
<td>TM90-C2B</td>
<td>[37]</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>D6</td>
<td>[38,39]</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>0.001</td>
<td>-</td>
<td>D6</td>
<td>[38,40]</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>71</td>
<td>-</td>
<td>TM90-C2B</td>
<td>[41]</td>
</tr>
<tr>
<td>23</td>
<td>-</td>
<td>10,000</td>
<td>-</td>
<td>3D7</td>
<td>[44]</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>2.6</td>
<td>-</td>
<td>P. falciparum liver stages</td>
<td>[45,46]</td>
</tr>
</tbody>
</table>

Figure 8 All structures, and their potencies.
targets the bc1 complex of *P. falciparum* and shows no cross-resistance with atovaquone [45,46].

According to the results of the above studies, it is apparent that DQ meets the MMV requirements for the next generation drugs needed for malaria eradication [15]. Despite demonstrating good anti-malarial activity, DQ has the major liability of poor aqueous solubility. It also undergoes facile metabolism to the free carboxylic acid. However, DQ is a very cheap compound and is readily available. Thus, it is apparent that new derivatives of DQ can be prepared through reducing the lipophilicity, enhancing both the solubility and metabolic stability by replacing the ester group by appropriate amide groups.

The important features of each compound are summarized in Figure 8.

Conclusion

The quinoline nucleus is a chemotype common to classes of chemotherapeutic agents including antibiotic, anti-viral and anti-cancer drugs. More recent research on the antimalarial activities of quinolones indicates that such compounds are relatively potent against the blood, liver and transmission stages of the malarial parasite and act on one or more targets of the parasite. These findings overall indicate the importance of the quinoline nucleus in the development of drugs aimed at eradicating malaria. Nevertheless, more research is required in order to address the specific difficulties associated with quinoline lead compounds, including those of relatively poor aqueous solubility and metabolic instability.

Abbreviations

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

RMB drafted this manuscript, and FJS, DDN and RRH critically reviewed it. All authors read and approved the final manuscript.

Acknowledgements

The authors wish to thank the North-West University for financial support. This research project was funded by the South African Medical Research Council (AMRC) with funds from National Treasury under its Economic Competitiveness and Support Package.

Author details

1. Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa. 2. Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.

Received: 21 July 2014 Accepted: 26 August 2014 Published: 30 August 2014

References

Chapter 4
Straightforward conversion of decoquinate into inexpensive tractable new derivatives with significant antimalarial activities.

This chapter contains a research article published in Bioorganic and Medicinal Chemistry Letters. It presents syntheses and anti-malarial activities of a series of decoquinate derivatives.
Straightforward conversion of decoquinate into inexpensive tractable new derivatives with significant antimalarial activities

Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa

Department of Biochemistry, Centre for Sustainable Malaria Control, University of Pretoria, Pretoria 0002, South Africa

Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa

ARTICLE INFO

Article history:
Received 12 April 2016
Revised 6 May 2016
Accepted 7 May 2016
Available online 9 May 2016

Keywords:
Malaria
Quinolone
Decoquinate
Derivatives
Antimalarial activity

ABSTRACT

As part of a programme aimed at identifying rational new triple drug combinations for treatment of malaria, tuberculosis and toxoplasmosis, we have selected quinolones as one component, given that selected examples exhibit exceptionally good activities against the causative pathogens of the foregoing diseases. The quinolone decoquinate (DQ), an old and inexpensive co-codamol, displays antimalarial activity in vitro against Plasmodium falciparum [7]. However, because of its exceedingly poor solubility in water or organic solvents, development of DQ as a drug is problematical. We have therefore converted DQ into a straightforward fashion into tractable new derivatives that display good activities in vitro against chloroquine-sensitive NF54 and multi-drug-resistant K1 and W2 [9] and relatively low toxicities against human fibroblast cells. The most active compound, the N-acetyl derivative 30, is 5-fold more active than DQ against NF54 and K1 and equipotent with DQ against W2. It possesses an activity profile against all strains comparable with that of the artemisinin derivative artemesin. Overall, this compound and the other accessible and active derivatives serve as an attractive template for development of new and economic lead quinolones.

© 2016 Elsevier Ltd. All rights reserved.

Under a programme designed to develop new triple drug combinations for the treatment of malaria, tuberculosis, and toxoplasmosis, we are preparing and evaluating efficacies of compound sets based on combinations of oxidant and redox drugs coupled with a third partner with a different mode of action. In the case of malaria, the need to develop new drug combinations is particularly pressing. Chemotherapy coupled with vector control and incultation of public awareness has reduced mortality due to malaria by over 60% since 2000. However, the emergence of malaria parasites resistant to the current clinically-used artemisinin derivatives mandates the urgent development of newer artemisinin derivatives. Such derivatives must be incapable of providing the active metabolite dihydroartemisinin (DHA) common to the current clinical artemisinins, and should be rationally combined with the reoxygen and a third combination partner to counter resistance and inhibit spread of resistant phenotypes by blocking transmission. The third partner is logically

Scheme 1. Conversion of decoquinate (DQ) into DQ amide derivatives. Reagents and conditions: (a) 1 or 2 + 1' amine (5 equiv), DBU (0.5 equiv), CHCl3, reflux 24-72 h.

[Diagram of chemical structure]

N-substituted decoquinate derivatives 30-35: R = allyl, carboxamido, sulfonyl, 60-84%.

N-substituted decoquinate amides 22-29: R = allyl, carboxamido, sulfonyl, 52-82%.
constructed about the 4(1H)-quinolone scaffold. In addition to being used clinically against a variety of infectious diseases including tuberculosis, certain quinolones have acquired lead status for the development of drugs for the treatment of toxoplasmosis8,9 and malaria10-12 respectively.

Our attention is drawn to decoquinate (DQ, 1) that has been used for many years in veterinary medicine largely co-administered with poultry feed for treatment of coccidiosis wherein it displays negligible toxicity.13,14 It is also used against other apicomplexan infections in animals15 and is highly active in a murine model against Toxoplasma gondii.16 Activity of DQ against malaria including Plasmodium berghii17 in mice and Plasmodium cynomolgi18 in monkeys has been known for some time. DQ is active in vitro against the liver, blood and gametocyte parasite stages of Plasmodium falciparum (Pf).19,20 Although such multistage activity matches the profile required for blocking transmission of the malaria parasite, DQ like other 4(1H)-quinolones including the advanced lead compound EQ030019,21 is highly lipophilic with a Log P of 8.19,21 has exceedingly low solubility in water (0.06 mg L-1)19 and other solvents,12 and has low bioavailability.12,22 The decisive benefit of DQ is its low cost, <$10 per kg23 which renders it substantially cheaper than the other 4(1H)-quinolones proposed for further development as antimalarial drugs. However, the poor solubility markedly complicates screening both in vitro and in vivo and hampers evaluation of pharmacokinetic parameters, thereby restricting its further development as a drug. Because of this, resort has been made to preparation of nanoparticle formulations that appear to enhance efficacy against malaria in an animal model.24 Our approach consistent with the overall aims of our work is to convert DQ into accessible and more tractable derivatives that in the first instance are amenable to screening in vitro. We report here the preparation and preliminary in vitro antimalarial activity and cytotoxicity of such derivatives.

\textbf{Chemistry.} The proposed steps involve conversion of the ethyl ester into the less readily metabolized amide25 and replacement of H-1 largely by acyl, carbamoyl or sulfonyl groups, operations that should improve physicochemical properties associated with enhanced polarity (Scheme 1). N-Alkyl derivatives are also prepared based on structure–activity considerations vis-à-vis the N-acetyl and N-sulfonyl derivatives.

For the ester aminolysis (step a, Scheme 1), DQ is acidic with a pK\textsubscript{a} of 9.81,21 and thus a basic amine nucleophile under standard aminolysis conditions is26 likely to undergo competitive equilibrating proton transfer with H-1 of the 4(1H)-quinolone (cf. Fig. 2 below). Whilst this problem may be countered by the use of Lewis acidic reagents,26 base-catalyzed aminolysis with an amine and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)27 attracts because of its economy. Although the reactions may be conducted with the neat reactants and reagents, the most expedient involved the heating of DQ and excess of primary or secondary amine with DBU in a solvent. We use chloroform here because of lack of solubility of DQ in other solvents, although it is emphasized that our initial concern is to obtain the new derivatives in the first place and then optimize preparation for hit compounds using industrially acceptable solvents. Amides 2-21 (Fig. 1) were obtained in

![Figure 1](image1.png)

\textbf{Figure 1.} Amides obtained from direct aminolysis of decoquinate 1 with primary and secondary amines in chloroform according to method a, Scheme 1; reaction time (h), overall yield given.

![Figure 2](image2.png)

\textbf{Figure 2.} N-Substituted amide derivatives obtained from decoquinate amide 2 by treatment with DBU in the presence of sulfonyl, acyl and alkyl halides in chloroform with a reaction time of 15 h according to method b, Scheme 1; overall yields given.
good yields. Characterization data for the compounds are given in the Supplementary material.

For functionalization at N-1 according to route b, Scheme 1, the decoquinate morpholino amide 2 was selected. Although the pKa of amide 2 with respect to deprotonation at N-1 is unknown, it is likely this will be efficiently deprotonated by DBU in aqueous solutions to give the conjugate base 2" that as an anion could react through N-1 or O-4. In the event, the reactions with various amines and sulfonyl chlorides, and amide halide proceeded smoothly through N-1 to give the products 22-29 in good yields (Fig. 2). Whereas the IR spectrum of compound 2 shows an absorption at 3162 cm⁻¹ due to the N-H stretching vibration in the quinolone nucleus, the peak is absent in derivatives 22-29, and a signal due to C=H bearing an oxo group is evident at ca. 170 ppm in the 1H NMR spectra.

Decoquinate 1 was also functionalized at N-1 according to Scheme 1 c to give the N-substituted decoquinate derivatives 30-35 in good yields (Fig. 3). Data for derivatives 30, 31 and 33 appear in the Supplementary Material. As above, reaction through N-1 occurs in all cases. This is evident from the 1H NMR spectra, which contain signals due to C=H bearing an oxo group at ca. 170 ppm and the ester carbonyl at 160-165 ppm.

In summary, decoquinate 1 is converted readily via aminolysis of the ethyl ester with primary and secondary amines in the presence of DBU in chloroform under reflux into the corresponding secondary and tertiary amines. Decoquinate 1 and the morpholinamine 2 under the foregoing conditions react with acyl and sulfonyl halides and acyl halides through N-1 to provide new N-substituted derivatives in good yields.

Antimalarial activities: Decoquinate and the new derivatives were screened in vitro for antimalarial activity with the SYBR Green I-based fluorescence assay against Pf NFPS4 and multidrug resistant K1 and W2. CQ, the artemisinin artemether and artesunate, and decoquinate 1 were used as controls. Cytotoxicity of the compounds was also evaluated with the sulforhodamine B (SRB) assay on the WI-38 cell line using emetine as reference standard. IC₅₀ values are summarized in Table 1. Of all compounds, only five, namely the decoquinate amides 3 and 6 (Fig. 1) and the N-substituted decoquinate derivatives 30, 31 and 33 (Fig. 3) showed near complete inhibition at 1 and 5 μM regardless of the parasite strain (Fig. S2, Supplementary material). Decoquinate 1 and the derivatives showed no appreciable toxicity to mammalian WI-38 cells, their IC₅₀ values are all substantially greater than the IC₅₀ of 0.05 μM of emetine. The derivatives are thus selective in their antimalarial action as evidenced by the SI values >400 (Table 1). The amides 3 and 6 (Fig. 1) are as active as DQ, but less active than both artemether and artesunate against all three parasite strains. The N-acyl derivative 30 (Fig. 3) on the other hand is equipotent with the two clinically used artemisinins against all strains, and is 5-fold more potent than DQ against Pf NFPS4 and K1, whilst being equipotent with DQ against W2. In general according to the resistance indices (Table 1), the other compounds are less active against K1 with respect to drug sensitive NFPS4, and essentially equipotent with DQ against W2. Although derivative 30 shows slight differences in activities between the three parasite strains, the selectivity indices indicate it is more selective than DQ in its antimalarial activity. Thus the balance between strain susceptibility, efficacy and safety favors derivative 30 over the parent decoquinate. It is to be noted that with the exception of compound 3, cLogP values indicate that all compounds are less lipophilic than decoquinate, and were able to be screened by preparing solutions in DMF.

Table 1: Calculated log P and in vitro biological data of selected derivatives

<table>
<thead>
<tr>
<th>Compound</th>
<th>cLog P</th>
<th>Antimalarial activity IC₅₀ ± SDM, nM</th>
<th>Resistance index</th>
<th>Cytotoxicity IC₅₀, μM</th>
<th>Selectivity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NFPS4 K1 W2</td>
<td>R¹</td>
<td>R²</td>
<td>R³</td>
</tr>
<tr>
<td>CQ</td>
<td>nd</td>
<td>10 ± 3</td>
<td>154.7 ± 14.96</td>
<td>233.18 ± 40.49</td>
<td>15.4 23.3</td>
</tr>
<tr>
<td>Artemether</td>
<td>nd</td>
<td>5.77 ± 1.33</td>
<td>7.20 ± 2.34</td>
<td>4.5 ± 0.78</td>
<td>1.3 0.8</td>
</tr>
<tr>
<td>Artemesate</td>
<td>nd</td>
<td>7.85 ± 1.35</td>
<td>8.97 ± 2.26</td>
<td>6.77 ± 1.13</td>
<td>1.4 0.8</td>
</tr>
<tr>
<td>DQ 1</td>
<td>0.2</td>
<td>26.6 ± 1.4</td>
<td>6.04 ± 0.8</td>
<td>15.4 ± 1.4</td>
<td>2.4 0.6</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>31.1 ± 2.5</td>
<td>6.01 ± 0.8</td>
<td>8.8 ± 4.3</td>
<td>1.9 0.2</td>
</tr>
<tr>
<td>6</td>
<td>6.0</td>
<td>40.4 ± 1.3</td>
<td>6.04 ± 1.2</td>
<td>13.5 ± 4.5</td>
<td>1.0 0.5</td>
</tr>
<tr>
<td>30</td>
<td>5.9</td>
<td>4.0 ± 0.9</td>
<td>12.0 ± 3.5</td>
<td>8.5 ± 6.3</td>
<td>2.5 1.7</td>
</tr>
<tr>
<td>31</td>
<td>6.5</td>
<td>15.4 ± 0.5</td>
<td>4.09 ± 0.9</td>
<td>11.5 ± 1.2</td>
<td>3.0 0.8</td>
</tr>
<tr>
<td>33</td>
<td>6.5</td>
<td>18.3 ± 4.8</td>
<td>8.51 ± 6.0</td>
<td>28.2 ± 11.7</td>
<td>4.9 1.5</td>
</tr>
<tr>
<td>Emetine</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

* cLog P values calculated with ACD/ChemSketch Version 14.02.
* Data from at least three independent biological repetitions, each performed in triplicate; CQ = Chloroquine; nd = not determined.
* Resistance index (R¹) = IC₅₀ W2/IC₅₀ NFPS4.
* Resistance index (R²) = IC₅₀ W1/IC₅₀ NFPS4.
* Resistance index (R³) = IC₅₀ K1/IC₅₀ NFPS4.
* IC₅₀ WI-38: IC₅₀ WI-38 cell line of normal human fetal lung fibroblast (HFLF).
* Selectivity index = IC₅₀ WI-38/IC₅₀ NFPS4.
57


Chapter 5

New decoquinate derivatives with potent anti-mycobacterial activities

Chapter 5 is a manuscript to be submitted to European journal of medicinal chemistry. The manuscript contains the background, aim, syntheses, in vitro anti-tubercular and cytotoxicity evaluation of all compounds synthesised. This manuscript is prepared according to author’s guidelines from the journal homepage at https://www.elsevier.com/journals/european-journal-of-medicinal-chemistry/0223-5234/guide-for-authors. Supporting data for chapter 5 are found in addendum B.
New decoquinate derivatives with potent anti-mycobacterial activities

Richard M Beteck¹, Frans J Smit², Ronnett Seldon³, Atica Moosa⁴, Digby Warner³, Richard K Haynes*² and David D N’Da*²

¹ Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa.
² Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
³ Molecular Mycobacteriology Research Unit, Division of Medical Microbiology, Department of Pathology, University of Cape Town, South Africa
⁴ H3D Drug Discovery and Development Centre, University of Cape Town, South Africa,
Abstract

Tuberculosis (TB) presents an enormous worldwide disease burden that is becoming even greater given that current TB drugs are fast losing their efficacy in the face of emergent multidrug resistant *Mycobacterium tuberculosis* (*Mtb*), the principal pathogen of TB. Newer drugs are therefore urgently needed, especially those that in some way may obviate the difficult and protracted treatment regimens required of the current drugs. That is, the new drugs should be economic to prepare and use, and above all be relatively non-toxic. Decoquinate (DQ), a coccidiostat that has long been used to treat coccidiosis and other important veterinary infections, is a cheap, non-toxic and lipophilic quinolone. However, DQ is insoluble in water and other solvents, and is inactive against *Mtb*. One strategy to render DQ active is to attach polar groups to generate derivatives that are less lipophilic and more soluble than DQ such that these may emulate certain physicochemical properties of the fluoroquinolone ciprofloxacin, a second-line TB drug. Thus, twenty five new DQ derivatives were prepared and evaluated *in vitro* for their anti-mycobacterial activity and cytotoxicity. Twenty-one active hits emerged from this series with the most active derivative 16 featuring an ethyl group attached to N-1 of the quinolone nucleus, and a (2-hydroxyethoxy)ethylamino group replacing the ethoxy of the ester at C-3 of DQ. This derivative has an MIC99 of 1 µM against rifampicin sensitive H37Rv *Mtb* and a selectivity index of 45 with respect to normal human fetal lung fibroblast cell lines. Thus, compound 16 represents a convenient starting point for preparation of economic new quinolones that have the potential to serve as safe and highly potent TB drugs.

Key words: Tuberculosis, TB drugs, fluoroquinolones, decoquinate, derivatives
Graphical abstract

Mtb H37Rv
MIC₉₀ >125 μM
MIC₉₀ >125 μM

Mtb H37Rv
MIC₉₀ 1.2 μM
MIC₉₀ 1.6 μM
Introduction

Tuberculosis (TB), caused principally by the bacterium *Mycobacterium tuberculosis* (*Mtb*),\(^1\) is one of the oldest known diseases.\(^2\) The number of deaths due to TB now outweighs that due to any other infectious disease including AIDS and malaria.\(^3\) In 2014, 9.6 million people were infected with TB of which 1.4 million succumbed to the disease.\(^3\) Unlike malaria, morbidity and mortality due to TB are not limited to tropical zones,\(^4\) but are even higher in temperate zones wherein Russia and Eastern Europe account for 58% of the total global TB burden.\(^3, 5\) In essence, TB is endemic to both temperate and tropical zones, with Russia, India, China, and South Africa being the hot spots for the disease.\(^6, 7\)

The first line treatment regimen for TB consists of a cocktail of four drugs, namely isoniazid, ethambutol, pyrazinamide, and rifampicin, which have to be administered daily at a total dose of 5 grams for two months followed by isoniazid and rifampicin daily for another four months.\(^5, 8\) The quantity and duration of administration of the drugs may lead to severe side effects.\(^9\) Isoniazid and rifampicin cause hepatotoxicity, renal failure, metabolic acidosis and coma.\(^10\) Not surprisingly, there has been poor patient compliance \(^11, 12\) that in turn has led to the emergence of resistant strains of *Mtb*.\(^13\) This has aggravated the control and management of TB.\(^14\) Three resistance types of *Mtb* based on drug susceptibility have been documented, namely multi-drug resistant (MDR),\(^15\) extensively drug resistant (XDR),\(^16\) and totally drug resistant (XXDR) TB.\(^17\) Overall in 2014 for MDR TB there were 480,000 cases and 190,000 mortalities, and for XDR TB, this was reported in 105 countries and comprised 9.7% of MDR TB infections; there were some 600 000 XDR TB cases in 2014.\(^11\) MDR strains are not susceptible to isoniazid and rifampicin, but are susceptible to fluoroquinolones used as second line anti-TB drugs.\(^18, 19\) XDR strains are resistant to isoniazid and rifampicin, fluoroquinolone and at least one of the three second line injectable TB drugs amikacin, kanamycin and capreomycin,\(^20\) while XXDR strains are resistant to all first and second line TB drugs.\(^21\) Overall, the intensive and cumbersome nature of first line treatment and the growing resistance to current TB drugs underscore the need for new drugs coupled with improved regimens for treatment of TB and especially to limit the spread of drug resistant TB.

A number of efficacious anti-bacterial agents have been constructed about the 4-(1H)-quinolone scaffold (Fig. 1).\(^22, 23\) The introduction of a fluorine atom at C-6 of the quinolone creates a unique subclass of quinolones called fluoroquinolones (FQs) exemplified by
ciprofloxacin (Fig. 1). The fluorine atom greatly enhances potency, as well as broadening the activity spectrum of FQs. FQs have proven to be effective in treating TB cases where the first line treatment regimen have failed. On-going studies suggest that using FQs in first line treatment against TB reduces the number of drugs and duration required to achieved an effective cure.

Figure 1: Structures of 4-(1H)-quinolone, ciprofloxacin and decoquinate

Despite the merits associated with the use of FQs to fight TB, these drugs suffer from two major setbacks. Firstly, there is reduced susceptibility of MDR \textit{Mtb} strains to FQs. This is evident through the increasing prevalence of XDR strains emerging to FQs. Secondly, FQs cause rapid onset of neuropathy, hepatotoxicity and other side effects which may last for years or become permanent. Both the merits and drawbacks of FQs suggest that an alternative drug based on the quinolone scaffold is urgently needed to treat both FQ-sensitive and resistant strains of \textit{Mtb}. In the search for such a drug, we have considered using decoquinate (DQ) (Fig. 1) as an incipient template. DQ is an FDA-approved quinolone that has been used in animal farming to treat coccidiosis for many years without any noticeable side effects. DQ has a good safety profile in livestock even at repeated dosing or at dose levels some five times higher than the effective curative dose. Thus, possibly, a DQ-based TB drug may be better tolerated during prolonged administration to humans. Although it appears to have a good safety profile, DQ is very lipophilic. Owing to this high lipophilicity, DQ should easily penetrate the outer lipophilic mycolic acid wall of \textit{Mtb}. However, DQ itself is inactive against \textit{Mtb}. Further, from a drug development perspective, it has the disadvantage of being almost insoluble in water (0.6 \(\mu \text{g/L} \)) and in other solvents. It is difficult to use this compound in screening, for example against the malaria parasite wherein resort has to be made to formulation to enhance efficacy. However, it should be possible to activate DQ by attaching polar groups that should enhance
aqueous solubility and antimycobacterial activity. We now report on the preparation of twenty five decoquinate derivatives and the results of the evaluation of their antimycobacterial activity against *Mtb* and cytotoxicity against the normal human fetal lung fibroblast WI-38 cell line (HFLF WI-38) *in vitro*.

Results

According to the methods outlined in Scheme 1, DQ was modified either at the C-3 carbethoxy group, or at both the C-3 carbethoxy group and N-1 in the quinolone nucleus to generate three series of compound sets I, II and III whose structures are depicted in Figures 2-4.

Scheme 1. Three synthetic routes (I, II, III) used for preparation of the derivatives.

Reagents and conditions: a. amine, DBU (0.9 equiv), CHCl₃, reflux, 24-72 h; b. alkyl halide, K₂CO₃ (5 equiv.), DMF, reflux, 10 h; c. carbamoyl or acyl chloride, DBU (0.7 mmol), CHCl₃, reflux, 15 h.

Aminolysis of the ester wherein DQ was treated with the appropriate amine and DBU as a base (route I, Scheme 1) gave amide derivatives 3-10 in good yields (Fig. 2). The secondary amides 3-9 contain a triplet ($J = 5.3$ Hz) at *ca* δ 11.0 ppm in their 1H NMR spectra, which is due to H-1' in the amide chain (Fig. 2). The tertiary amide 10 shows a nine-proton multiplet between 3.76 – 3.68 ppm due to the presence of the piperazinyl unit. Compounds 3-10 all show a singlet at *ca* 12.0 ppm in their 1H NMR spectra due to H-1 attached to N-1 in the quinolone nucleus.
Figure 2: Amides obtained from direct aminolysis of decoquinate (DQ) with primary and secondary amines in chloroform according to method a, Scheme 1.

DQ was treated with each of ethyl and propyl bromide in the presence of K$_2$CO$_3$ (route II, Scheme 1) to give the N-alkylated intermediates, which without further purification were submitted to aminolysis in the presence of the primary amine and DBU as a base to generate compound 11-20 (Fig. 3). The absence of a singlet at ca δ 12.0 ppm in the 1H NMR spectra (due to H-1 that appears in the spectra of 3-10) of compound 11-20 confirms N-1 was successfully alkylated. Moreover, the triplet ($J = 5.3$ Hz) at ca 11.0 ppm indicating the presence of H-1' confirms that the ester was successfully transformed to a secondary amide.
Figure 3: N-alkylated amide derivatives obtained from decoquinate (DQ) by treatment with K₂CO₃ and alkyl halides, followed by treatment with a primary amine and DBU in chloroform according to route II, Scheme 1.

DQ was treated with a carbamoyl chloride in the presence of DBU to generate the N-carbamoyl intermediate which was submitted to aminolysis with a primary amine (route III Scheme 1) to give derivatives 21-23, (Fig. 4). Besides the absence of a singlet at \(\text{ca } \delta 12.0 \text{ ppm} \) in the \(^1\text{H} \) NMR spectrum of compound 21-23, the \(^{13}\text{C} \) NMR spectra of these compounds show a signal at \(\text{ca. } 153 \text{ ppm} \), which is assigned to the carbonyl carbon (C-a) of the urea. This data indicates that N-carbamoylation, rather than formation of a carbamate via reaction through O-4 took place. DQ was treated with carbamoyl or acyl chlorides in the presence of DBU to generate the N-carbamoylated or N-acylated intermediates which were then treated with a cyclic secondary amine in the presence of DBU (route III Scheme 1) to give the tertiary amides 24-27.
That carbamoylation or acylation had taken place at N-1 in the quinolone nucleus was again indicated by the absence of the singlet due to H-1 *ca* 12.0 ppm (*cf.* compounds 3-10) in their 1H spectra.

![Figure 4: N-carbamoylated and N-acyl amide derivatives obtained from decoquinate (DQ) by treatment with DBU and carbamoyl or acyl chloride, followed by treatment with amine and DBU in chloroform according to route III, Scheme 1.](image)

The 1H spectra of the products show a singlet at *ca.* δ 8.2 ppm assigned to H-2, two singlets in the range δ 6.8 – 7.5 ppm assigned to H-5 and H-8 of the of the quinolone nucleus, two triplets ($J = 7.0, 6.9$ Hz) in the range 4.0 – 4.4 ppm ascribed to H-13 and H-12 in the two alkoxy chains attached to C-6 and C-7. The 13C NMR spectra of all compounds contain a signal
at ~175 ppm assigned to the ketone carbonyl at C-4 and a signal at ~165 ppm assigned to the carbonyl carbon atom C-23. The signals at ~ 69 and 65 ppm are due to C-13 and C-12 in the alkoxy chains attached to the quinolone nucleus. The identity of all compounds in this study was also confirmed by high resolution mass spectrometry (HRMS). All compounds were established to have greater than 95% purity using analytical HPLC methods. These were more soluble in common organic solvents such as ethanol, acetone or dimethyl sulfoxide and less lipophilic (cLogP < 8) than DQ.

All compounds were evaluated in vitro for antimycobacterial activity and cytotoxicity. They were screened in a broth microdilution assay against the rifampicin susceptible strain H37Rv of Mtb using rifampicin as the standard drug alongside the parent DQ. The sulforhodamine B (SRB) assay was used to assess the cytotoxicity against the normal human fetal lung fibroblast WI-38 cell line (HFLF WI-38) with emetine as standard. The antimycobacterial activities are reported as minimum inhibitory concentration (MIC) required to inhibit 90%, and 99% of the parasites while their cytotoxic activities are reported as IC₅₀ values - the concentration required to reduce the viability of the cell line by 50%. The selectivity index (SI) is obtained by dividing the IC₅₀ value by the MIC₉₀ value. The biological activities of all compounds are presented in Table 1 below.

Discussion

Whilst DQ showed no antimycobacterial activity (MIC₉₀>125 µM) and no cytotoxicity, compounds 3-10 (Fig. 2) showed antimycobacterial activity (MIC₉₀) in the range of 10-40 µM. A comparison within this series suggests that a flexible unit attached to the C-3 side chain promotes activity (e.g. 3, MIC₉₀ 17 µM) whereas a rigid unit does not (e.g. 7, MIC₉₀ >125 µM). The compounds 11-20 (Fig. 3) were active with MIC₉₀ values ranging between 1.2 – 72.3 µM. Structure-activity comparison within this series reveals that compounds with an ethyl group at N-1 (e.g. 17, MIC₉₀ 3 µM) are generally more active against Mtb H37Rv than those with a propyl group at N-1 (e.g. 12, MIC₉₀ 6 µM). The most active compounds of all are 15 (MIC₉₀ 1.44, MIC₉₀ 1.88 µM) and 16 (MIC₉₀ 1.25, MIC₉₀ 1.61 µM). Importantly, compounds 15 and 16 exhibited low cytotoxicities against the WI-38 cell line, with selectivity indices of 67 and 45 respectively. The compounds 22-27 (Fig. 4) are generally inactive against Mtb H37Rv, with compound 22 (MIC₉₀ 6.09 µM; MIC₉₀ 7.97 µM) and 25 (MIC₉₀ 3.32 µM; MIC₉₀ 4.89 µM) being
the only active compound in this sub-series. With respect to cytotoxicity against the normal human fetal lung fibroblast WI-38 cell line, emetine has an IC₅₀ value of 0.050 µM, whereas most decoquinate derivatives low to moderate cytotoxicity, having IC₅₀ value greater than 30 µM.

Table 1. In vitro antimycobacterial, cytotoxicity values and selectivity indices of DQ derivatives.

<table>
<thead>
<tr>
<th>Compound<sup>a</sup></th>
<th>cLogP<sup>b</sup></th>
<th>Activity M<sub>tb</sub></th>
<th>H37Rv</th>
<th>Cytotoxicity WI-38, IC<sub>50</sub> µM</th>
<th>Selectivity Index SI<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>RIF</td>
<td>nd<sup>c</sup></td>
<td>0.00315</td>
<td>0.00386</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>DQ</td>
<td>8.0</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>nd</td>
</tr>
<tr>
<td>3</td>
<td>6.0</td>
<td>17.5</td>
<td>21</td>
<td>43.9</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>5.9</td>
<td>18</td>
<td>34.4</td>
<td>>100</td>
<td>>5.5</td>
</tr>
<tr>
<td>5</td>
<td>6.8</td>
<td>33.9</td>
<td>64.9</td>
<td>48.7</td>
<td>1.4</td>
</tr>
<tr>
<td>6</td>
<td>7.2</td>
<td>19</td>
<td>22.1</td>
<td>13.3</td>
<td>0.7</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>>125</td>
<td>>125</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>8</td>
<td>6.8</td>
<td>38.3</td>
<td>49</td>
<td>3.08</td>
<td>0.08</td>
</tr>
<tr>
<td>9</td>
<td>6.7</td>
<td>10.5</td>
<td>14.5</td>
<td>>100</td>
<td>>9.5</td>
</tr>
<tr>
<td>10</td>
<td>6.5</td>
<td>22.9</td>
<td>36.9</td>
<td>5.88</td>
<td>0.3</td>
</tr>
<tr>
<td>11</td>
<td>5.5</td>
<td>72.3</td>
<td>81.3</td>
<td>54.9</td>
<td>0.7</td>
</tr>
<tr>
<td>12</td>
<td>5.3</td>
<td>6.49</td>
<td>8.67</td>
<td>41.3</td>
<td>6.4</td>
</tr>
<tr>
<td>13</td>
<td>6.2</td>
<td>6.07</td>
<td>7.92</td>
<td>32.4</td>
<td>5.4</td>
</tr>
<tr>
<td>14</td>
<td>6.1</td>
<td>12.40</td>
<td>17.90</td>
<td>70.6</td>
<td>5.7</td>
</tr>
<tr>
<td>15</td>
<td>3.8</td>
<td>1.44</td>
<td>1.88</td>
<td>>100</td>
<td>>69.4</td>
</tr>
<tr>
<td>16</td>
<td>4.9</td>
<td>1.25</td>
<td>1.61</td>
<td>56.2</td>
<td>45.0</td>
</tr>
<tr>
<td>17</td>
<td>4.7</td>
<td>3.64</td>
<td>4.16</td>
<td>40.1</td>
<td>11.0</td>
</tr>
<tr>
<td>18</td>
<td>5.6</td>
<td>8.00</td>
<td>18.90</td>
<td>83.4</td>
<td>10.4</td>
</tr>
<tr>
<td>19</td>
<td>6.0</td>
<td>12.10</td>
<td>16.5</td>
<td>49.1</td>
<td>4.1</td>
</tr>
<tr>
<td>20</td>
<td>5.6</td>
<td>8.50</td>
<td>10.80</td>
<td>37.8</td>
<td>4.4</td>
</tr>
<tr>
<td>21</td>
<td>3.1</td>
<td>>125</td>
<td>>125</td>
<td>>100</td>
<td>nd</td>
</tr>
<tr>
<td>22</td>
<td>1.8</td>
<td>6.1</td>
<td>7.97</td>
<td>64.2</td>
<td>10.5</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th>Compound</th>
<th>cLogP</th>
<th>Activity Mtb H37Rv</th>
<th>Cytotoxicity WI-38, IC<sub>50</sub> µM</th>
<th>Selectivity Index SI<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>5.7</td>
<td>>125 >125 >100</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>24</td>
<td>3.2</td>
<td>15.20 20.30 40.1</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3.9</td>
<td>3.32 4.89 36.2</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4.3</td>
<td>>125 >125 nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>27</td>
<td>5.0</td>
<td>7.63 8.51 >100</td>
<td>>13</td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>nd</td>
<td>nd nd nd 0.05</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

^aRIF Rifampicin, DQ decoquinate, EM emetine; ^bcLogP values calculated with ACD/ChemSketch Version 14.02; ^cnd not determined, ^dSI Selectivity index = IC₅₀/MIC₉₀.

Conclusion

Twenty five new DQ derivatives bearing amido groups at C-3 and alkyl and acyl groups attached to N-1 were prepared using straightforward synthetic transformations. In contrast to DQ, all derivatives in this study were either soluble in chloroform, dimethyl sulfoxide, or ethanol. DQ has no antimycobacterial activity, whilst most of the derivatives showed antimycobacterial activity against *H37Rv Mtb*. A preliminary structure activity consideration suggests that the conversion of the carbethoxy group of DQ into an amide bearing a flexible chain, and/or an alkyl group at N-1 position are the most effective modifications for imprinting antimycobacterial activity on to DQ. On the other hand, conversion of the C-3 carbethoxy group into cyclic amides or introduction of a sulfonyl group at N-1 failed to impart appreciable antimycobacterial activity. Overall, derivatives 15, 16 and 17 are the most active compounds, of which compound 16 featuring an ethyl group at N-1 and an *N*-[2-(2-hydroxyethoxy)ethyl]acetamido group at C-3 is the most active. These compounds will be taken forward for more advanced screening *in vitro*, for example against MDR and XDR *Mtb*, and will be used as a template upon which to base the preparation of newer DQ derivatives in the search for new TB drugs.
Experimental section

General procedures

Amines, acyl/carbamoyl/alkyl halides in this study were bought from either Sigma Aldrich or AKSci and were used as supplied, decoquinate was bought from Hohance chemical. All NMR spectra of synthesized compounds were obtained on a 600 MHz Bruker Avance™ III spectrometers as solutions in deuterated solvents (CDCl$_3$, or DMSO-d_6). All chemical shifts (δ) are reported in parts per million (ppm) values. 1H chemical shifts are reported downfield of tetramethylsilane (TMS), and were internally referenced to the residual proton in CDCl$_3$ (7.26 ppm), or DMSO-d_6 (2.50 ppm). 13C chemical shifts were internally referenced to resonances in CDCl$_3$ (δ 77.16 ppm), or DMSO-d_6 (δ 39.51 ppm). Peak multiplicities are abbreviated as follows: s (singlet), d (doublet), dd(doublet of doublet), t (triplet), q (quartet), and m (multiplet). Coupling constant (J) are reported in Hz. NMR data were analyzed using MestReNova Software, version 5.3.2-4936.

Exact mass measurements were recorded on Bruker MicroTOF Q II mass spectrometer that has an APCI/ESI source set at 300°C, using Bruker Compass Data analysis 4.0 software. A full scan, ranging between 50–1500 m/z, was generated at a capillary voltage of 4500 V, end plate offset voltage of -500 V, and a collision cell RF voltage of 100 V. Melting points (mp) were determined with a BÜCHI melting point B-545 instrument and were uncorrected. Thin layer chromatography (TLC) was performed using silica gel plates (60F$_{254}$), acquired from Merck, and components were visualized by ultraviolet light (254 nm). Silica gel 230-400 (particle size 40-63μm) mesh was used for all flash column chromatography. Purity was determined by HPLC using a solvent gradient of 30% ACN/ 70% 0.1% H$_3$PO$_4$ and a Venusil XBP C18 column of size 150 × 4.6 mm.

In vitro antmycobacterial assay

Determination of minimum inhibitory concentration (MIC$_{90}$)

The broth microdilution method was used to assess the MIC$_{90}$ - the minimum concentration of the compound that is required to inhibit 90% of the bacterial population growth. This procedure involves using a range of concentrations of the test compound in one 96-well microtitre plate. Here a culture of mutant Mtb (H37RvMA::gfp) strain expressing recombinant green fluorescent protein (GFP) off a plasmid integrated at the $attB$ locus is grown to OD$_{600}$
between 0.6 and 0.7. This culture is diluted 1:100 in GAST/Fe medium. A total volume of 50 µL of the GAST/Fe medium is added to rows 2-12 of the plate. To row 1, 640 µM of the compound is added in duplicate. In addition to the test compound in row 1, other wells contain GAST/Fe medium, 5% DMSO, rifampicin and kanamycin as controls. From there two-fold serial dilution will be performed by transferring 50 µL solution from each preceding row to the next ensuring that all the wells contain 50 µL (the dilution is exclusively for compound containing wells from row 1 and not controls). Then this plate is incubated at 37 °C (humid conditions) for 14 days. MIC₉₀ values are scored by quantitative fluorescence using a Fluostar Optima microplate reader (BMG Labtech) at 7-days and 14-days post inoculation. Digital images are captured and stored. Furthermore, the efficacy of the compounds can be determined as required during growth in different carbon sources.

In vitro cytotoxicity

The WI-38 cell line (normal human fetal lung fibroblast) from ECACC was routinely maintained as a monolayer cell culture at 37 °C, 5% CO₂, 95% air and 100% relative humidity in EMEM containing 10% fetal bovine serum, 2 mM L-glutamine and 50 µg/mL gentamicin. For this screening experiment, the cells (21 - 50 passages) were inoculated in 96-well microtiter plates at plating densities of 10 000 cells/well and incubated for 24 hours. After 24 hours, the cells were treated with the experimental drugs; which had previously been dissolved in DMSO and diluted in medium to produce five concentrations. Neat cells served as the control. The blank contained complete medium without cells. Parthenolide was used as a standard. The plates were incubated for 48 hours after addition of the compounds. Viable cells were fixed to the bottom of each well with cold 50% trichloroacetic acid, washed, dried and dyed by SRB. Unbound dye was removed and protein bound dye was extracted with 10 mM Tris base for optical density determination at a wavelength of 540 nm using a multiwell spectrophotometer. Data analysis was performed using GraphPad Prism software. 50% of cell growth inhibition (IC₅₀) was determined by non-linear regression.
Table 2. General procedure for synthesis of C-3 amide derivatives 3-10 of DQ

<table>
<thead>
<tr>
<th>Cpd</th>
<th>R'</th>
<th>Cpd</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$\text{H}_7\text{O}_5\text{N}_4$</td>
<td>7</td>
<td>$\text{H}_7\text{O}_5\text{N}_4\text{N}_7\text{F}_6$</td>
</tr>
<tr>
<td>4</td>
<td>$\text{H}_7\text{O}_5\text{N}_4\text{N}_7\text{F}_6$</td>
<td>8</td>
<td>$\text{H}_7\text{O}_5\text{N}_4\text{N}_7\text{F}_6$</td>
</tr>
<tr>
<td>5</td>
<td>$\text{H}_7\text{O}_5\text{N}_4\text{N}_7\text{F}_6$</td>
<td>9</td>
<td>$\text{H}_7\text{O}_5\text{N}_4\text{N}_7\text{F}_6$</td>
</tr>
<tr>
<td>6</td>
<td>$\text{H}_7\text{O}_5\text{N}_4\text{N}_7\text{F}_6$</td>
<td>10</td>
<td>$\text{H}_7\text{O}_5\text{N}_4\text{N}_7\text{F}_6$</td>
</tr>
</tbody>
</table>

To a 100 mL two neck flask containing decoquinate 1 (1 g, 2.34 mmol) and DBU (320 µL, 0.33 g, 2.1 mmol, 0.9 eq.) in chloroform (25 mL) was added the primary or secondary amine (5 eq.). The resulting mixture was stirred under reflux for 24-72 h. Progress of the reactions was monitored by TLC. Upon completion, the reaction mixture was concentrated in vacuo. The concentrated residue was dissolved in chloroform (20 mL) and washed with distilled water (4 x 20 mL). The organic layer was dried (Na$_2$SO$_4$), filtered and the filtrate was evaporated to dryness to leave the crude product. This was submitted to chromatography on silica gel. Elution with dichloromethane/methanol (10:1, v/v) provided the fraction containing the product that was isolated by evaporation of solvent. The product was recrystallized from ethyl acetate and air dried.
6-Decoxy-7-ethoxy-N-[2-(2-hydroxyethoxy)ethyl]-4-oxo-1,4-dihydroquinoline-3-carboxamide (3)

White powder, 0.680 g (68%), m.p. 133-136 °C; HPLC 30% ACN 70% 0.1% H₃PO₄ gradient elution > 96% pure, RT 8.79 min; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 11.99 (s, 1H, H-1), 10.73 (t, J = 5.3 Hz, 1H, H-1'), 8.64 (s, 1H, H-2), 7.39 (s, 1H, H-5), 6.80 (s, 1H, H-8), 4.43 (s, 1H, H-7'), 4.01 (q, J = 7.0 Hz, 2H, H-13), 3.86 (s, 1H, H-12), 3.83 – 3.78 (t, J = 5.3 Hz, 2H, H-2'), 3.71 – 3.60 (m, 6H, H-3', H-5', H-6'), 1.76 (p, J = 4.2 Hz, 2H, H-14), 1.46 – 1.19 (m, 17H, H-11, H-15, H-21), 0.87 (dt, J = 21.8, 7.3 Hz, 3H, H-22). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 175.76 (C-4), 166.62 (C-23), 153.66 (C-6), 147.86 (C-7), 141.49 (C-2), 134.73 (C-9), 120.40 (C-10), 110.13 (C-3), 105.39 (C-5), 99.88 (C-8), 72.38 (C-6'), 69.80 (C-5'), 68.54 (C-5'), 64.63 (C-13), 61.73 (C-12), 31.96 (C-2'), 31.90 (C-14), 29.65 (C-15, C-16), 29.27 (C-17, C-18), 28.92 (C-19, C-20), 22.67 (C-21), 14.44 (C-11), 14.10 (C-22). APCI-HRMS m/z calcd for C₂₆H₄₁N₂O₆ 477.2956, found 477.2911 [M+H]^+.

6-Decoxy-7-ethoxy-N-{2-[(2-hydroxyethyl)amino]ethyl}-4-oxo-1,4-dihydroquinoline-3-carboxamide (4)

White powder, 0.506 g (50%), m.p. 122.4-125.1 °C; HPLC 30% ACN/ 70% 0.1% H₃PO₄ gradient elution > 95% pure, RT 2 min; ¹H NMR (600 MHz, DMSO-d6) δ (ppm): 10.27 (t, J = 5.6 Hz, 1H, H-1'), 8.58 (s, 1H, H-2), 7.55 (s, 1H, H-5), 7.08 (s, 1H, H-8), 4.62 (s, 1H, H-7'), 4.12 (q, J = 6.9 Hz, 2H, H-13), 4.03 (t, J = 6.6 Hz, 2H, H-12), 3.48 (dt, J = 5.6, 6.2 Hz, 2H, H-2'), 3.41 (q, J = 6.2 Hz, 3H, H-6' overlap with HDO peak), 2.75 (t, J = 6.2 Hz, 2H, H-3'), 2.67 (t, J = 6.2 Hz, 2H, H-5'), 1.74 (p, J = 6.8 Hz, 2H, H-14), 1.41 (dt, J = 17.4, 6.8 Hz, 5H, H-11, H-15), 1.36 – 1.17 (m, 15H, H-16, H-22). ¹³C NMR (151 MHz, DMSO-d6) δ (ppm): 174.74 (C-4), 165.05 (C-23), 152.91 (C-6), 146.99 (C-7), 141.98 (C-2), 137.50 (C-9), 134.34 (C-10), 109.99 (C-3), 107.61 (C-5), 105.61 (C-8) 68.39 (C-13), 64.20 (C-12), 59.72 (C-6'), 48.54 (C-3'), 40.04 (C-5'), 31.96 (C-2'), 31.34 (C-14), 29.03 (C-15) 28.99 (C-16), 28.74 (C-17), 28.46 (C-18), 25.49 (C-19), 22.14 (C-20), 22.14 (C-21), 14.41 (C-11), 14.00 (C-22). APCI-HRMS m/z calcd for C₂₆H₄₁N₂O₆ 477.3119, found 477.3048 [M+H]^+.
6-Decoxy-7-ethoxy-N-(2-methoxyethyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (5)

Light yellow powder, 0.620 g (62%), m.p. 167-170 °C; HPLC 30% ACN/ 70% 0.1% H₃PO₄ gradient elution > 97% pure, RT 11.4 min; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 12.01 (s, 1H, H-1), 10.83 (t, J = 5.6 Hz, 1H, H-1'), 8.67 (s, 1H, H-2), 7.68 (s, 1H, H-5), 6.89 (s, 1H, H-8), 4.11 – 4.01 (m, 4H, H-13, H-12), 3.70 (dd, J = 5.6, 5.6 Hz, 2H, H-2'), 3.56 (t, J = 5.6 Hz, 2H, H-3'), 3.33 (s, 3H, H-5'), 1.83 (p, J = 7.1 Hz, 2H, H-14), 1.44 (dt, J = 24.6, 7.1 Hz, 4H, H-15, H-16), 1.36 – 1.19 (m, 13H, H-11, H-17,-H-21), 0.85 (t, J = 6.9 Hz, 3H, H-22). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 176.06 (C-4), 166.97 (C-10), 110.16 (C-3), 105.93 (C-5), 99.98 (C-8), 71.18 (C-3'), 69.22 (C-13), 64.76 (C-12), 58.91 (C-5'), 39.30 (C-2'), 31.88 (C-14), 29.54 (C-15), 29.53 (C-16). 6-Decoxy-N-[2-(dimethylamino)ethyl]-7-ethoxy-4-oxo-1,4-dihydroquinoline-3-carboxamide (6)

White powder, 0.928 g (92.8%), m.p. 151.-155 °C; HPLC 30% ACN/ 70% 0.1% H₃PO₄ gradient elution > 95% pure, RT 4.9 min; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 12.01 (s, 1H, H-1), 10.64 (t, J = 5.6 Hz, 1H, H-1'), 8.47 (s, 1H, H-2), 7.36 (s, 1H, H-5), 6.73 (s, 1H, H-8), 4.15 – 4.06 (m, 2H, H-13), 3.90 (q, J = 7.2 Hz, 2H, H-12), 3.65 (dt, J = 5.6, 6.0 Hz, 2H, H-2'), 2.60 (t, J = 6.0 Hz, 2H, H-3'), 2.32 (s, 6H, H-5'), 1.90 – 1.76 (m, 2H, H-14), 1.53 – 1.42 (m, 2H, H-15), 1.30 – 1.19 (m, 15H, H-11, H-16,-H-21), 0.87 (dt, J = 14.0, 7.3 Hz, 3H, H-22). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 175.63 (C-4), 166.52 (C-10), 110.01 (C-3), 105.26 (C-5), 99.93 (C-8), 68.92 (C-13), 64.60 (C-12), 58.99 (C-3'), 45.28 (C-5', C-6'), 36.64 (C-2'), 31.88 (C-14), 29.54 (C-15), 29.53 (C-16), 29.32 (C-17), 28.92 (C-18), 28.92 (C-19), 25.91 (C-20), 22.66 (C-21), 14.44 (C-11), 14.10 (C-22). APCI-HRMS m/z calcld for C₂₅H₃₉N₂O₄ 447.2853, found 447.2814 [M+H]⁺.

6-Decoxy-7-ethoxy-N-(4-fluorobenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (7)

White powder, 0.82 g (80%), m.p. 202-203 °C; HPLC 30% ACN/ 70% 0.1% H₃PO₄ gradient elution >96% pure, RT 16.5 min; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 11.85 (s, 1H, H-1), 11.11 (t, J = 5.8 Hz, 1H, H-1'), 8.67 (s, 1H, H-2), 7.67 (s, 1H, H-5), 7.28 (dd, J = 8.4, 5.3 Hz, 2H, H-5'), 6.94 (t, J = 8.5 Hz, 2H, H-4'), 6.81 (s, 1H, H-8), 4.66 (d, J = 5.8 Hz, 2H, H-2'), 6-Decoxy-7-ethoxy-N-(4-fluorobenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (7)
4.05 (t, $J = 6.9$ Hz, 2H, H-13), 3.92 (t, $J = 6.9$ Hz, 2H, H-12), 1.84 (dd, $J = 7.4$, 6.9 Hz, 2H, H-14), 1.47 – 1.18 (m, 17H, H-11, H-15,-H-21), 0.92 – 0.82 (m, 3H, H-22). 13C NMR (151 MHz, CDCl$_3$) δ (ppm): 176.11 (C-4), 166.87 (C-23), 162.83 (C-6'), 153.82 (C-6), 148.18 (C-7), 141.18 (C-2), 134.77 (C-9), 133.94 (C-3'), 128.93 (C-4'), 120.70 (C-10), 115.51 (C-5'), 110.05 (C-3), 105.92 (C-5), 99.85 (C-8), 69.26 (C-13), 64.70 (C-12), 42.72 (C-2'), 31.87 (C-14), 29.53 (C-15, C-16), 29.31 (C-17, C-18), 28.85 (C-19), 25.90 (C-20), 22.66 (C-21), 14.38 (C-11), 14.10 (C-22). APCI-HRMS m/z calcd for C$_{29}$H$_{38}$FN$_2$O$_4$ 497.2810, found 497.2734 [M+H]$^+$.

6-Decoxy-7-ethoxy-N-[3-(1H-imidazol-1-yl)propyl]-4-oxo-1,4-dihydroquinoline-3-carboxamide (8)

White powder, 0.956 g (95.6%), m.p. 124.-127 °C; HPLC 30% ACN/ 70% 0.1% H$_3$PO$_4$ gradient elution > 96% pure, RT 5.0 min; 1H NMR (600 MHz, DMSO-d$_6$) δ (ppm): 12.01 (s, 1H, H-1), 10.29 (t, $J = 5.8$ Hz, 1H, H-1'), 7.65 (s, 1H, H-6'), 7.56 (s, 1H, H-5), 7.21 (s, 1H, H-9'), 7.08 (s, 1H, H-8), 4.12 (q, $J = 7.0$ Hz, 2H, H-4'), 4.02 (dt, $J = 13.7, 6.7$ Hz, 2H, H-12), 3.27 (dt, $J = 5.8, 6.9$ Hz, 2H, H-2'), 1.95 (dt, $J = 6.9$, 7.0 Hz, 2H, H-3'), 1.74 (p, $J = 13.7$ Hz, 2H, H-14), 1.46 – 1.17 (m, 17H, H-11, H-15,-H-21), 0.87 – 0.81 (m, 3H, H-22). 13C NMR (151 MHz, DMSO-d$_6$) δ (ppm): 174.84 (C-4), 165.04 (C-23), 152.94 (C-6), 147.03 (C-7), 141.75 (C-2), 134.45 (C-9), 128.43 (C-9), 120.84 (C-10), 119.35 (C-8'), 109.89 (C-3), 105.57 (C-5), 100.53 (C-8), 68.38 (C-13), 64.19 (C-12), 43.76 (C-4'), 39.08 (C-2'), 35.42 (C-3'), 31.32 (C-14), 31.03 (C-15), 29.02 (C-16), 28.98 (C-17), 28.73 (C-18), 28.44 (C-19), 25.48 (C-10), 22.12 (C-21), 14.39 (C-11), 13.98 (C-22). APCI-HRMS m/z calcd for C$_{29}$H$_{41}$N$_4$O$_4$ 497.3170, found 497.3081[M+H]$^+$.

6-Decoxy-7-ethoxy-4-oxo-N-[2-(piperazin-1-yl)ethyl]-1,4-dihydroquinoline-3-carboxamide (9)

Off white powder, 0.750 g (75%), m.p. 168.-169 °C; HPLC 30% ACN/ 70% 0.1% H$_3$PO$_4$ gradient elution > 96% pure, RT 4.8 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 12.01 (s, 1H, H-1), 10.62 (t, $J = 5.6$ Hz, 1H, H-1'), 7.58 (s, 1H, H-5), 4.12 – 3.97 (m, 4H, H-13, H-12), 2.62 (t, $J = 6.4$ Hz, 2H, H-3'), 1.83 (p, $J = 7.0$ Hz, 2H, H-14), 1.49 – 1.18 (m, 17H, H-11, H-15,-H-21), 0.92 – 0.83 (m, 3H, H-22). 13C NMR (151 MHz, CDCl$_3$) δ (ppm): 175.94 (C-4), 166.60 (C-23), 153.72 (C-6), 147.95 (C-7), 141.15 (C-2), 134.71 (C-9), 120.65 (C-10), 110.26 (C-3), 105.84 (C-5), 99.91 (C-8), 69.16 (C-13), 64.74 (C-12), 58.03 (C-3'), 54.15 (C-4'), 45.76 (C-5'), 42.72 (C-2'), 35.42 (C-3'), 31.32 (C-14), 31.03 (C-15), 29.02 (C-16), 28.98 (C-17), 28.73 (C-18), 28.44 (C-19), 25.48 (C-10), 22.12 (C-21), 14.39 (C-11), 13.98 (C-22). APCI-HRMS m/z calcd for C$_{29}$H$_{41}$N$_4$O$_4$ 497.3170, found 497.3081[M+H]$^+$.
36.34 (C-2'), 31.88 (C-14), 29.56 (C-15), 29.54 (C-16), 29.38 (C-17), 29.32 (C-18), 28.91 (C-19), 25.93 (C-20), 22.66 (C-21), 14.50 (C-11), 14.11 (C-22). APCI-HRMS m/z calcd for C_{28}H_{45}N_{4}O_{4} 501.3435, found 501.3360[M+H]^+.

6- Decoxy -7-ethoxy-3-(piperazin-1-ylcarbonyl)quinolin-4(1H)-one (10)

Yellow powder, 0.28 g (28%), m.p. 182-184 °C; HPLC 30% ACN/ 70% 0.1% H_{3}PO_{4} gradient elution > 98% pure, RT 4.38 min; ^{1}H NMR (600 MHz, CDCl_{3}) δ (ppm) : 12.00 (m, 1H, H-1), 7.67 (s, 1H, H-2), 7.52 (s, 1H, H-5), 6.70 (s, 1H, H-8), 4.01 – 3.92 (m, 4H, H-13, H-12), 3.76 – 3.68 (m, 9H, H-2',-H-4'), 1.81 (m, 2H, H-14), 1.45 – 1.35 (m, 4H, H-15, H-16), 1.37 – 1.18 (m, 7H, H-11, H-17,-H-21), 0.85 – 0.68 (m, 3H, H-22). ^{13}C NMR (151 MHz, CDCl_{3}) δ (ppm) : 172.75 (C-4), 167.79 (C-23), 153.61 (C-6), 147.80 (C-7), 138.63 (C-2), 135.00 (C-9), 120.22 (C-10), 115.47 (C-3), 105.57 (C-5), 99.84 (C-8), 69.17 (C-13), 67.23 (C-2'), 64.61 (C-12), 48.08 (C-3'), 31.88 (C-14), 29.54 (C-15, C-16), 29.35 (C-17, C-18), 28.97 (C-19), 25.93 (C-20), 22.66 (C-21), 14.45 (C-11), 14.10 (C-22). APCI-HRMS m/z calcd for C_{26}H_{40}N_{4}O_{4} 458.3013, found 458.2942 [M+H]^+.
Table 3. General procedure for synthesis of N-alkylated amide derivatives 11-20 of DQ

<table>
<thead>
<tr>
<th>Cpds</th>
<th>R</th>
<th>R'</th>
<th>Cpds</th>
<th>R</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>a</td>
<td>b,c</td>
<td>16</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>12</td>
<td>a</td>
<td>b,c</td>
<td>17</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>13</td>
<td>a</td>
<td>b,c</td>
<td>18</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>14</td>
<td>a</td>
<td>b,c</td>
<td>19</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>15</td>
<td>a</td>
<td>b,c</td>
<td>20</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

N-alkylation: A mixture of DQ (1.19 mmol, 0.5 g, 1 eq), K₂CO₃ (5.0 mmol, 0.69 g), alkyl halide (5 eq.) in DMF (10 mL) was refluxed for 15 h, after which the mixture was evaporated to dryness, dissolved in chloroform and washed with distilled water (20 mL × 4). The organic phase was evaporated to dryness to obtain the crude N-alkylated product which was used in the ensuing step without purification.

Carboxyamidation: A mixture of the crude N-alkylated product (0.5 g, 1 eq.), DBU (320 µL, 0.33 g, 2.1 mmol), the appropriate amine (5 eq.), and chloroform (15 mL) in a 100 mL round bottom flask was stirred under reflux for 24-72 h. Progress of the reaction was monitored by
TLC. Upon completion, the reaction mixture was treated with additional chloroform (20 mL) and washed with distilled water (20 mL × 4). The organic layer was dried (Na$_2$SO$_4$), filtered and the filtrate was evaporated to dryness to leave the crude product. This was submitted to chromatography on silica gel. Elution with CH$_2$Cl$_2$/methanol (10:1, v/v) provided the fraction containing the product that was isolated by evaporation of solvent. The product was recrystallized from ethyl acetate and air dried.

6-Decoxy-7-ethoxy-N-[2-(2-hydroxyethoxy)ethyl]-4-oxo-1-propyl-1,4-dihydroquinoline-3-carboxamide (11)

White powder, 0.38 g (76%), m.p. 162-164 °C; HPLC 30% ACN/ 70% 0.1% H$_3$PO$_4$ gradient elution > 98% pure, RT 4.30 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 10.45 (t, J = 5.4 Hz, 1H, H-1'), 8.61 (s, 1H, H-2), 7.80 (s, 1H, H-5), 6.76 (s, 1H, H-8), 4.33 – 3.96 (m, 6H, H-12, H-13, H-a), 3.74 – 3.48 (m, 4H, H-6', H-2'), 2.95 – 2.75 (m, 4H, H-5', H-3'), 2.37 (s, 1H, H-7'), 2.00 – 1.76 (m, 4H, H-b, H-14), 1.59 – 1.37 (m, 4H, H-15, H-16), 1.35 – 1.17 (m, 13H, H-c, H-17 - H-21), 0.98 (t, J = 7.4 Hz, 3H, H-11), 0.91 – 0.67 (m, 3H, H-22). 13C NMR (151 MHz, CDCl$_3$) δ (ppm): 175.35 (C-4), 165.77 (C-23), 153.54 (C-6), 147.78 (C-7), 145.88 (C-2), 134.32 (C-9), 122.22 (C-10), 110.87 (C-3), 107.40 (C-5), 98.59 (C-8), 69.60 (C-13), 64.98 (C-12), 60.94 (C-6'), 55.79 (C-a), 50.66 (C-5'), 48.49 (C-3'), 38.89 (C-2'), 31.86 (C-b), 29.52 (C-14), 29.49 (C-15), 29.30 (C-16), 29.28 (C-17), 28.87 (C-18), 25.92 (C-19), 22.64 (C-20), 22.09 (C-21), 14.51 (C-11), 14.08 (C-c), 11.08 (C-22). APCI-HRMS m/z calcd for C$_{29}$H$_{47}$N$_2$O$_6$ 519.3429, found 519.3431 [M+H]$^+$.

6-Decoxy-7-ethoxy-N-[2-(2-hydroxyethoxy)ethyl]-1-(2-hydroxyethyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (12)

White powder, 0.4 g (80%), m.p. 160-162 °C; HPLC 30% ACN/ 70% 0.1% H$_3$PO$_4$ gradient elution > 98% pure, RT 4.00 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 10.46 (t, J = 5.4 Hz, 1H, H-1'), 8.62 (s, 1H, H-2), 7.64 (s, 1H, H-5), 6.83 (s, 1H, H-8), 4.35 (s, 2H, H-c, H-7'), 4.22 – 4.09 (m, 2H, H-13), 4.06 – 3.97 (m, J = 6.9 Hz, 4H, H-12, H-a), 3.73 (d, J = 6.5, 2H, H-6'), 3.63 – 3.57 (m, J = 6.5, 6H, H-3', H-5', H-b), 3.44 (dd, J = 5.4, 6.5 Hz, 2H, H-2'), 1.88 – 1.78 (m, 2H, H-14), 1.56 – 1.42 (m, 6H, H-15 - H-17), 1.32 – 1.20 (m, 11H, H-18 - H-22), 0.85 (t, J = 6.9 Hz, 3H, H-11). 13C NMR (151 MHz, CDCl$_3$) δ 175.12 (C-4), 166.27 (C-23), 153.58 (C-6),
147.69 (C-7), 146.69 (C-2), 134.75 (C-9), 121.79 (C-10), 110.34 (C-3), 107.12 (C-5), 98.56 (C-8), 72.62 (C-6'), 69.66 (C-b), 69.16 (C-14), 29.49 (C-15), 29.30 (C-16), 29.28 (C-17), 28.87 (C-18), 25.92 (C-19), 22.64 (C-20), 22.09 (C-21), 14.50 (C-11), 14.09 (C-22). APCI-HRMS m/z calcd for C_{28}H_{45}N_{2}O_{7} 521.3221, found 521.3168 [M+H]^+.

6-Decoxy-7-ethoxy-N-(2-methoxyethyl)-4-oxo-1-propyl-1,4-dihydroquinoline-3-carboxamide (13)

White powder, 0.45 g (90%), m.p. 152-153 °C; HPLC 30% ACN/ 70% 0.1% H_{3}PO_{4} gradient elution > 97% pure, RT 6.70 min; \(^1\)H NMR (600 MHz, CDCl\(_3\)) δ (ppm): 10.35 (t, J = 5.3 Hz, 1H, H-1'), 8.62 (s, 1H, H-2), 7.84 (s, 1H, H-5), 6.77 (s, 1H, H-8), 4.21 – 4.00 (m, 6H, H-13, H-12, H-a), 3.66 (dt, J = 5.3, 5.5 Hz, 2H, H-2'), 3.56 (t, J = 5.5 Hz, 2H, H-3'), 3.38 (s, 3H, H-4'), 2.00 – 1.86 (m, 2H, H-b), 1.86 – 1.82 (m, 2H, H-14), 1.49 (dt, J = 16.2, 5.1 Hz, 4H, H-15, H-16), 1.48 – 1.37 (m, 2H, H-17), 1.30 – 1.17 (m, 11H, H-c, H-18 - H-21), 0.98 (t, J = 7.4 Hz, 3H, H-11), 0.91 – 0.71 (m, 3H, H-22). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) δ (ppm): 175.35 (C-4), 165.53 (C-23), 153.54 (C-6), 147.71 (C-7), 145.92 (C-2), 134.31 (C-9), 122.31 (C-10), 110.84 (C-3), 107.52 (C-5), 98.55 (C-8), 71.35 (C-3') 69.19 (C-13), 64.99 (C-12), 58.82 (C-4'), 55.74 (C-a), 38.91 (C-2'), 31.86 (C-14), 29.52 (C-15), 29.49 (C-16), 29.30 (C-17), 29.28 (C-18), 28.87 (C-b), 25.92 (C-19), 22.64 (C-20), 22.09 (C-21), 14.51 (C-11), 14.08 (C-c), 11.08 (C-22). APCI-HRMS m/z calcd for C_{28}H_{45}N_{2}O_{5} 489.3323, found 489.3302 [M+H]^+.

6-Decoxy-7-ethoxy-4-oxo-N-[2-(piperazin-1-yl)ethyl]-1-propyl-1,4-dihydroquinoline-3-carboxamide (14)

White powder, 0.47 g (94%), m.p. 168-169 °C; HPLC 30% ACN/ 70% 0.1% H_{3}PO_{4} gradient elution > 96% pure, RT 5.18 min; \(^1\)H NMR (600 MHz, CDCl\(_3\)) δ (ppm): 10.32 (t, J = 5.8 Hz, 1H, H-1'), 8.61 (s, 1H, H-2), 7.82 (s, 1H, H-5), 6.77 (s, 1H, H-8), 4.13 (ddd, J = 21.8, 13.9, 6.9 Hz, 6H, H-13, H-12, H-a), 3.58 (dd, J = 5.8, 4.8 Hz, 2H, H-2'), 2.90 (t, J = 4.8 Hz, 2H, H-3'), 2.71 – 2.36 (m, 9H, H-4', H-5', H-6'), 1.94 – 1.72 (m, 4H, H-b, H-14), 1.48 (dt, J = 33.4, 7.3 Hz, 4H, H-15, H-16), 1.50 – 1.37 (m, 2H, H-17), 1.27 – 1.21 (m, 11H, H-c, H-18 - H-21), 0.97 (t, J = 6.9 Hz, 3H, H-11), 0.84 (t, J = 7.0 Hz, 3H, H-22). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) δ (ppm): 175.33 (C-4), 165.40 (C-23), 153.45 (C-6), 147.70 (C-7), 145.88 (C-2), 134.31 (C-9),
122.27 (C-10), 110.96 (C-3), 107.49 (C-5), 98.52 (C-8), 69.17 (C-13), 64.97 (C-12), 58.01 (C-4'), 55.73 (C-a), 54.37 (C-5'), 45.95 (C-3'), 36.34 (C-2'), 31.83 (C-b), 29.50 (C-14), 29.47 (C-15), 29.27 (C-16), 29.26 (C-17), 28.84 (C-18), 25.89 (C-19), 22.61 (C-20), 22.19 (C-21), 14.50 (C-11), 14.06 (C-c), 11.06 (C-22). APCI-HRMS m/z calcd for C₃₁H₅₁N₄O₄ 543.3905, found 543.3872 [M+H]^+.

6-Decoxy-7-ethoxy-1-(2-hydroxyethyl)-N-[2-(2-hydroxyethoxy)ethyl]-4-oxo-1,4-dihydroquinoline-3-carboxamide (15)

White powder, 0.47 g (94%), m.p. 155-157 °C; HPLC 30% ACN/ 70% 0.1% H₃PO₄ gradient elution > 96% pure, RT 4.02 min; 1H NMR (600 MHz, CDCl₃) δ 10.46 (t, 1H, H-1'), 8.62 (s, 1H, H-2), 7.64 (s, 1H, H-5), 6.83 (s, 1H, H-8), 4.35 (s, 2H, H-c, H-7'), 4.22 – 4.09 (m, 2H, H-13), 4.06 – 3.97 (m, J = 6.9 Hz, 4H, H-12, H-a), 3.73 (d, J = 16.5, 2H, H-6'), 3.63 – 3.57 (m, J = 16.5, 6H, H-3', H-5', H-b), 3.44 (dd, 2H, H-2'), 1.88 – 1.78 (m, 2H, H-14), 1.56 – 1.42 (m, 6H, H-15 - H-17), 1.32 – 1.20 (m, 11H, H-18 - H-22), 0.85 (t, J = 6.9 Hz, 3H, H-11). 13C NMR (151 MHz, CDCl₃) δ 175.12 (C-4), 166.27 (C-23), 153.58 (C-6), 147.69 (C-7), 146.69 (C-2), 134.75 (C-9), 121.79 (C-10), 110.34 (C-3), 107.12 (C-5), 98.56 (C-8), 72.62 (C-6'), 69.66 (C-b), 69.16 (C-13), 65.02 (C-12), 61.67 (C-5'), 59.78 (C-3'), 54.42 (C-a), 38.87 (C-2'), 31.86 (C-14), 29.49 (C-15), 29.30 (C-16), 29.28 (C-17), 28.87 (C-18), 25.92 (C-19), 22.64 (C-20), 22.09 (C-21), 14.50 (C-11), 14.09 (C-22). APCI-HRMS m/z calcd for C₂₈H₄₅N₂O₇ 521.3221, found 521.3168 [M+H]^+.
6-Decoxy-7-ethoxy-1-ethyl-N-[2-(2-hydroxyethoxy)ethyl]-4-oxo-1,4-dihydroquinoline-3-carboxamide (16)

White powder, 0.42 g (84%), m.p. 158-160 °C; HPLC 30% ACN/ 70% 0.1% H$_3$PO$_4$ gradient elution > 96% pure, RT 4.18 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 10.50 (t, J = 5.8 Hz, 1H, H-1'), 8.65 (s, 1H, H-2), 7.81 (s, 1H, H-5), 6.78 (s, 1H, H-8), 4.18- 4.00 (ddd, J = 21.9, 13.0, 6.9 Hz, 6H, H-a, H-13, H-12), 3.86 – 3.71 (m, 2H, H-6'), 3.69 – 3.53 (m, 6H, H-2', H-3', H-5'), 3.30 (s, 1H, H-7'), 1.92 – 1.72 (m, 2H, H-14), 1.56 – 1.38 (m, 8H, H-11, H-22, H-15), 1.36 – 1.16 (m, 12H, H-16 - H-21), 0.84 (t, J = 6.9 Hz, 3H, H-b). 13C NMR (151 MHz, CDCl$_3$) δ (ppm): 175.33 (C-4), 165.50 (C-23), 153.64 (C-6), 147.79 (C-7), 145.26 (C-2), 134.15 (C-9), 122.28 (C-10), 111.31 (C-3), 107.56 (C-5), 98.27 (C-8), 72.51 (C-5'), 69.85 (C-3'), 69.18 (C-13), 65.01 (C-12), 61.79 (C-6'), 49.11 (C-a), 38.81 (C-2'), 31.86 (C-14), 29.52 (C-15), 29.49 (C-16), 29.30 (C-17), 29.28 (C-18), 28.87 (C-19), 25.92 (C-20), 22.63 (C-21), 14.54 (C-b), 14.50 (C-11), 14.07 (C-22). APCI-HRMS m/z calcd for C$_{28}$H$_{45}$N$_5$O$_5$ 505.3272, found 505.3254 [M+H]$^+$.

6-Decoxy-7-ethoxy-1-ethyl-N-[2-[(2-hydroxyethyl)amino]ethyl]-4-oxo-1,4-dihydroquinoline-3-carboxamide (17)

White powder, 0.38 g (76%), m.p. 154-156 °C; HPLC 30% ACN/ 70% 0.1% H$_3$PO$_4$ gradient elution > 96% pure, RT 4.09 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 10.50 (t, J = 5.8 Hz, 1H, H-1'), 8.65 (s, 1H, H-2), 7.81 (s, 1H, H-5), 6.78 (s, 1H, H-8), 4.18- 4.00 (ddd, J = 28.9, 13.0, 6.9 Hz, 6H, H-a, H-13, H-12), 3.86 – 3.71 (m, 2H, H-6'), 3.69 – 3.53 (m, 6H, H-2', H-3', H-5'), 3.30 (s, 1H, H-7'), 1.92 – 1.72 (m, 2H, H-14), 1.56 – 1.38 (m, 8H, H-11, H-22, H-15), 1.36 – 1.16 (m, 12H, H-16 - H-21), 0.84 (t, J = 6.9 Hz, 3H, H-b). 13C NMR (151 MHz, CDCl$_3$) δ (ppm): 175.33 (C-4), 165.50 (C-23), 153.64 (C-6), 147.79 (C-7), 145.26 (C-2), 134.15 (C-9), 122.28 (C-10), 111.31 (C-3), 107.56 (C-5), 98.27 (C-8), 72.51 (C-5'), 69.85 (C-3'), 69.18 (C-13), 65.01 (C-12), 61.79 (C-6'), 49.11 (C-a), 38.81 (C-2'), 31.86 (C-14), 29.52 (C-15), 29.49 (C-16), 29.30 (C-17), 29.28 (C-18), 28.87 (C-19), 25.92 (C-20), 22.63 (C-21), 14.54 (C-b), 14.50 (C-11), 14.07 (C-22). APCI-HRMS m/z calcd for C$_{28}$H$_{46}$N$_5$O$_5$ 504.3432, found 504.3426 [M+H]$^+$.

82
6-Decoxy-7-ethoxy-1-ethyl-N-(2-methoxyethyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (18)

White powder, 0.4 g (80%), m.p. 157-159 °C; HPLC 30% ACN/ 70% 0.1% H₃PO₄ gradient elution > 96% pure, RT 4.33 min; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 10.35 (t, J = 5.5 Hz, 1H, H-1'), 8.66 (s, 1H, H-2), 7.84 (s, 1H, H-5), 6.79 (s, 1H, H-8), 4.32 – 4.20 (m, 2H, H-a), 4.17 (q, J = 6.9 Hz, 2H, H-12), 4.10 (t, J = 6.8 Hz, 2H, H-13), 3.64 (t, J = 5.5 Hz, 2H, H-3'), 3.56 (dt, J = 5.5, 5.5 Hz, 2H, H-2'), 3.38 (s, 3H, H-5'), 1.90 – 1.80 (m, 2H, H-14), 1.60 – 1.40 (m, 10H, H-15-H-19), 1.30 – 1.18 (m, 10H, H-a, H-20-H-22), 0.85 (t, J = 6.9 Hz, 3H, H-11). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 175.34 (C-4), 165.55 (C-23), 153.54 (C-6), 147.70 (C-7), 145.30 (C-2), 134.13 (C-9), 122.30 (C-10), 111.29 (C-3), 107.57 (C-5), 98.30 (C-8), 71.34 (C-4'), 69.19 (C-13), 65.05 (C-12), 58.82 (C-3'), 49.06 (C-a), 38.93 (C-2'), 31.86 (C-14), 29.52 (C-15), 29.49 (C-16), 29.30 (C-17), 29.28 (C-18), 28.87 (C-19), 25.92 (C-20), 22.63 (C-21), 14.54 (C-b), 14.51 (C-11), 14.08 (C-22). APCI-HRMS m/z calcd for C₂₇H₄₃N₂O₅ 475.3166, found 475.3169 [M+H]^+.

6-Decoxy-N-[2-(dimethylamino)ethyl]-7-ethoxy-1-ethyl-4-oxo-1,4-dihydroquinoline-3-carboxamide (19)

White powder, 0.25 g (51%), m.p. 155-156 °C; HPLC 30% ACN/ 70% 0.1% H₃PO₄ gradient elution > 96% pure, RT 4.11 min; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 10.35 (t, J = 5.8 Hz, 1H, H-1'), 8.65 (s, 1H, H-2), 7.83 (s, 1H, H-5), 6.80 (s, 1H, H-8), 4.25 (q, J = 7.2 Hz, 2H, H-a), 4.18 (q, J = 7.0 Hz, 2H, H-13), 4.11 (t, J = 6.8 Hz, 2H, H-12), 3.70 (dt, J = 5.8, 6.1 Hz, 2H, H-2'), 2.73 (t, J = 6.1 Hz, 2H, H-3'), 2.44 (s, 6H, H-5'), 1.90 – 1.82 (m, 2H, H-14), 1.60 – 1.42 (m, 8H, H-15-H-18), 1.34 – 1.16 (m, 12H, H-b, H-19-H-22), 0.93 – 0.75 (m, J = 6.8 Hz, 3H, H-11). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 175.34 (C-4), 165.55 (C-23), 153.54 (C-6), 147.70 (C-7), 145.30 (C-2), 134.13 (C-9), 122.30 (C-10), 111.29 (C-3), 107.57 (C-5), 98.33 (C-8), 69.23 (C-13), 65.04 (C-12), 58.13 (C-3'), 49.13 (C-a), 44.93 (C-5', C-6'), 36.44 (C-2'), 31.87 (C-14), 29.52 (C-15), 29.49 (C-16), 29.30 (C-17), 29.28 (C-18), 28.87 (C-19), 25.92 (C-20), 22.63 (C-21), 14.54 (C-b), 14.51 (C-11), 14.08 (C-22). APCI-HRMS m/z calcd for C₂₇H₄₆N₂O₅ 488.3483, found 488.3490 [M+H]^+.
6-Decoxy-7-ethoxy-1-ethyl-4-oxo-N-[2-(piperazin-1-yl)ethyl]-1,4-dihydroquinoline-3-carboxamide (20)

Yellow pellet, 0.3 g (60%), m.p. 145-147 °C; HPLC 30% ACN/ 70% 0.1% H₃PO₄ gradient elution > 97% pure, RT 3.96 min; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 10.35 (t, J = 5.8 Hz, 1H, H-1’), 8.64 (s, 1H, H-2), 7.83 (s, 1H, H-5), 6.79 (s, 1H, H-8), 4.32 – 4.20 (m, 2H, H-a), 4.17 (q, J = 6.9 Hz, 2H, H-12), 4.10 (t, J = 6.8 Hz, 2H, H-13), 3.64 (t, J = 5.5 Hz, 2H, H-3’), 3.56 (dt, J = 5.5, 5.8 Hz, 2H, H-2’), 3.38 – 2.86 (m, 9H, H-4’- H-6’), 1.90 – 1.80 (m, 2H, H-14), 1.60 – 1.40 (m, 10H, H-15- H-19), 1.30 – 1.18 (m, 10H, H-a, H-20 - H-22), 0.85 (t, J = 6.9 Hz, 3H, H-11). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 175.34 (C-4), 165.55 (C-23), 153.54 (C-6), 147.70 (C-7), 145.30 (C-2), 134.13 (C-9), 122.30 (C-10), 111.29 (C-3), 107.57 (C-5), 98.30 (C-8), 69.19 (C-13), 65.05 (C-12), 58.82 (C-4’), 55.73 (C-a), 54.37 (C-5’), 38.93 (C-3’), 36.43 (C-2’), 31.86 (C-14), 29.52 (C-15), 29.49 (C-16), 29.30 (C-17), 29.28 (C-18), 28.87 (C-19), 25.92 (C-20), 22.63 (C-21), 14.54 (C-b), 14.51 (C-11), 14.08 (C-22). APCI-HRMS m/z calcd for C₃₀H₄₉N₄O₄ 529.3748, found 529.3760 [M+H]^+.
Table 4: General procedure for synthesis of N-acylated amide derivatives 21-27 of DQ

Aminolysis: To a 100 mL two neck flask containing decoquinate (0.5 g, 1.19 mmol) and DBU (320 µL, 0.33 g, 2.1 mmol, 0.9 eq.) in chloroform (25 mL) was added the amine (5 eq.). The resulting mixture was stirred under reflux for 72 h. Progress of the reactions was monitored by TLC. Upon completion, the reaction mixture was treated with additional chloroform (20 mL) and washed with distilled water (20 mL × 4). The organic layer was dried (Na₂SO₄), filtered and the filtrate was evaporated to dryness to leave the crude product, which was used in the next step without further purification.

N-acylation: To a 100 mL two neck flask was added 0.5 g of the above crude product, chloroform (15 mL), DBU (0.7 mmol, 100 µL), and the acyl or carbamoyl chloride (5 eq.). The mixture was stirred under reflux for 15 h, and then washed with aqueous saturated NH₄Cl
solution (20 mL × 3). The organic layer was dried (Na$_2$SO$_4$), filtered and the filtrate was evaporated to dryness to obtain the crude product which was purified by silica gel column chromatography. Elution with CH$_2$Cl$_2$/methanol (20:1, v/v) provided the fraction containing the product that was isolated by evaporation of solvent. Derivatives 9-12 were thereby obtained in 50-80% yield.

6-Decoxy-7-ethoxy-N-[2-(2-hydroxyethoxy)ethyl]-1-(morpholin-4-ylcarbonyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (21)

White powder, 0.25 g (48%), m.p. 143-146 °C; HPLC 30% ACN/ 70% 0.1% H$_3$PO$_4$ gradient elution > 96% pure, RT 6.97 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 10.73 (t, J = 5.3 Hz, 1H, H-1'), 8.64 (s, 1H, H-2), 7.39 (s, 1H, H-5), 6.80 (s, 1H, H-8), 4.43 (s, 1H, H-7'), 4.22–4.17 (m, 8H, H-c, H-d), 4.01 (q, J = 7.0 Hz, 2H, H-13), 3.86 (t, J = 6.8 Hz, 2H, H-12), 3.83 (t, J = 5.3 Hz, 2H, H-2'), 3.71 – 3.60 (m, 6H, H-3', H-5', H-6'), 1.76 (p, J = 7.0 Hz, 2H, H-14), 1.46 – 1.19 (m, 17H, H-22, H-15,-H-21), 0.87 (t, J = 6.8 Hz, 3H, H-11). 13C NMR (151 MHz, CDCl$_3$) δ (ppm): 175.76 (C-4), 166.62 (C-23), 153.59 (C-a) 153.46 (C-6), 147.86 (C-7), 141.49 (C-2), 134.73 (C-9), 120.40 (C-10), 110.13 (C-3), 105.39 (C-5), 99.88 (C-8), 72.38 (C-6'), 69.80 (C-d), 68.54 (C-3', C-5'), 66.46 (C-c), 64.63 (C-13), 61.73 (C-12), 31.96 (C-2'), 31.90 (C-14), 29.65 (C-15, C-16), 29.27 (C-17, C-18), 28.92 (C-19, C-20), 22.67 (C-21), 14.44 (C-11), 14.10 (C-22). ESI-HRMS m/z calcd for C$_{31}$H$_{48}$N$_3$O$_8$ 590.3436, 590.3380 [M+H]$^+$.

6-Decoxy-7-ethoxy-N-[2-(2-hydroxyethoxy)ethyl]-1-[3-(methylsulfonyl)-2-oxoimidazolidin-1-yl]carbonyl]-4-oxo-1,4-dihydroquinoline-3-carboxamide (22)

Yellow powder, 0.29 g (58%), m.p. 143-146 °C; HPLC 30% ACN/ 70% 0.1% H$_3$PO$_4$ gradient elution > 96% pure, RT 6.42 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 10.73 (t, J = 5.3 Hz, 1H, H-1'), 8.64 (s, 1H, H-2), 7.39 (s, 1H, H-5), 6.80 (s, 1H, H-8), 4.43 (s, 1H, H-7'), 4.12 (d, J = 6.6 Hz, 2H, H-c), 4.08 (d, J = 6.6 Hz, 2H, H-d), 4.01 (q, J = 7.0 Hz, 2H, H-13), 3.86 (t, J = 6.8 Hz, 2H, H-12), 3.83 (t, J = 5.3 Hz, 2H, H-2'), 3.71 – 3.60 (m, 6H, H-3', H-5', H-6'), 3.39 (s, 3H, H-g), 1.76 (p, J = 6.9 Hz, 2H, H-14), 1.46 – 1.19 (m, 17H, H-22, H-15,-H-21), 0.87 (t, J = 6.8, Hz, 3H, H-11). 13C NMR (151 MHz, CDCl$_3$) δ (ppm): 175.76 (C-4), 166.62 (C-23), 153.59 (C-a) 153.46 (C-6), 150.92 (C-f), 147.86 (C-7), 141.49 (C-2), 134.73 (C-9), 120.40 (C-10), 110.13 (C-3), 105.39 (C-5), 99.88 (C-8), 72.38 (C-6'), 68.54 (C-3', C-5'), 66.46 (C-c), 64.63 (C-13), 61.73 (C-12), 31.96 (C-2'), 31.90 (C-14), 29.65 (C-15, C-16), 29.27 (C-17, C-18), 28.92 (C-19, C-20), 22.67 (C-21), 14.44 (C-11), 14.10 (C-22). ESI-HRMS m/z calcd for C$_{31}$H$_{48}$N$_3$O$_8$ 590.3436, 590.3380 [M+H]$^+$.
6-Decoxy-7-ethoxy-N-(4-fluorobenzyl)-1-(morpholin-4-ylcarbonyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (23)

Yellow powder, 0.25 g (50%), m.p. 187-200 °C; HPLC 30% ACN/ 70% 0.1% H₃PO₄ gradient elution >95% pure, RT 13.15 min; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 11.11 (t, J = 5.8 Hz, 1H, H-1'), 8.67 (s, 1H, H-2), 7.67 (s, 1H, H-5), 7.28 (dd, J = 8.4, 5.3 Hz, 2H, H-5'), 6.94 (t, J = 8.5 Hz, 2H, H-4'), 6.81 (s, 1H, H-8), 4.66 (d, J = 5.8 Hz, 2H, H-2'), 4.55 (t, J = 6.9 Hz, 2H, H-13), 3.40 (t, J = 6.9 Hz, 2H, H-12), 4.12– 4.01 (m, 8H, H-c, H-d), 1.84 (q, J = 7.4, 6.7 Hz, 4H, H-14,-15), 1.47 – 1.18 (m, 15H, H-11, H-16,-H-21,), 0.92 – 0.82 (m, 3H, H-22). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 176.11 (C-4), 166.87 (C-23), 162.83 (C-6'), 153.82 (C-6), 153.59 (C-a), 148.18 (C-7), 141.18 (C-2), 134.77 (C-9), 133.94 (C-3'), 128.93 (C-4'), 120.70 (C-10), 115.51 (C-5'), 110.05 (C-3), 105.92 (C-5), 99.85 (C-8), 69.26 (C-13), 69.19 (C-d), 66.46 (C-c), 64.70 (C-12), 42.72 (C-2'), 31.87 (C-14), 29.53 (C-15, C-16), 29.31 (C-17, C-18), 28.85 (C-19), 25.90 (C-20), 22.66 (C-21), 14.38 (C-11), 14.10 (C-22). ESI-HRMS m/z calcd for C₃₁H₄₇N₄O₁₀S 667.3007, found 667.2959 [M+H]+.

6-Decoxy-7-ethoxy-N-{[4-(morpholin-4-ylcarbonyl)piperazin-1-yl]carbonyl}-1-(morpholin-4-ylcarbonyl)quinolin-4(1H)-one (24)

Yellow pellet, 0.37 g (74%), m.p. 167-169 °C; HPLC 30% ACN/ 70% 0.1% H₃PO₄ gradient elution >95% pure, RT 10.02 min; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.99 (s, 1H, H-2), 7.24 (s, 1H, H-5), 6.74 (s, 1H, H-8), 4.26 – 4.20 (m, 2H, H-13), 4.09 (t, J = 6.8, 2H, H-12), 3.85 – 3.20 (m, 24H, H-2', H-3', H-5', H-6', H-c, H-d), 1.88 – 1.80 (m, 2H, H-14), 1.54 – 1.42 (m, 6H, H-15 - H-17), 1.30 – 1.16 (m, 11H, H-18 - H-21), 0.91 – 0.79 (m, J = 6.8, 3H, H-11). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 172.63 (C-4), 165.28 (C-23), 163.53 (C-a), 155.86 (C-4'), 153.82 (C-6), 152.14 (C-7), 138.86 (C-2), 132.52 (C-9), 120.42 (C-10), 118.38 (C-3), 107.22 (C-5), 100.05 (C-8), 69.59 (C-13), 69.25 (C-12), 66.57 (C-c), 66.46 (C-d), 65.94 (C-6'), 49.42 (C-2'), 46.45 (C-3'), 44.65 (C-5'), 31.85 (C-14), 29.67 (C-15), 29.54 (C-16), 29.50 (C-17), 29.34 (C-19), 29.05 (C-20), 22.66 (C-21), 14.38 (C-11), 14.10 (C-22). ESI-HRMS m/z calcd for C₃₄H₄₅FN₃O₆ 610.3287, found 610.3235 [M+H]+.
6-Decoxy-7-ethoxy-3-[(4-methylpiperazin-1-yl)carbonyl]-1-(morpholin-4-ylcarbonyl)quinolin-4(1H)-one (25)

Brown powder, 0.3 g (60%), m.p. 172-174 °C; HPLC 30% ACN/ 70% 0.1% H₃PO₄ gradient elution >95% pure, RT 7.24 min; ^1H NMR (600 MHz, CDCl₃) δ (ppm): 8.48 (s, 1H, H-2), 7.24 (s, 1H, H-5), 6.74 (s, 1H, H-8), 4.26 – 4.20 (m, 2H, H-13), 4.09 (t, J = 6.8, 2H, H-12), 3.65 – 3.20 (m, 8H, H-2', H-3'), 2.59 – 2.31 (m, 8H, H-c, H-d), 2.10 (s, 3H, H-5') 1.88 – 1.80 (m, 2H, H-14), 1.54 – 1.42 (m, 6H, H-15 - H-17), 1.30 – 1.16 (m, 11H, H-18 - H-21), 0.91 – 0.79 (m, J = 6.8, 3H, H-11). ^13C NMR (151 MHz, CDCl₃) δ (ppm): 172.68 (C-4), 165.57 (C-23), 153.59 (C-a), 152.54 (C-6), 151.91 (C-7), 145.82 (C-2), 138.72 (C-9), 120.49 (C-10), 117.94 (C-3), 108.59 (C-5), 100.25 (C-8), 69.30 (C-13), 69.19 (C-d), 66.46 (C-c), 64.51 (C-12), 54.49 (C-2'), 46.98 (C-3'), 41.90 (C-5'), 31.85 (C-14), 29.67 (C-15), 29.54 (C-16), 29.50 (C-17), 29.34 (C-18), 28.81 (C-19), 25.98 (C-20), 22.65 (C-21), 14.49 (C-22), 14.09 (C-11). ESI-HRMS m/z calcd for C₃₂H₄₉N₄O₆ 585.3647, 585.3604 [M+H]^+.

6-Decoxy-7-ethoxy-3-(morpholin-4-ylcarbonyl)-1-methylsulfonyl-4(1H)-one (26)

Yellow powder, 0.2 g (50%), m.p. 142-144 °C; HPLC 30% ACN/ 70% 0.1% H₃PO₄ gradient elution > 97% pure, RT 7.2 min; ^1H NMR (600 MHz, CDCl₃) δ (ppm): 8.00 (s, 1H, H-2), 7.71 (s, 1H, H-5), 6.92 (s, 1H, H-8), 4.18 – 4.11 (m, 4H, H-13, H-12), 4.03 (s, 3H, H-b), 3.74 – 3.03 (m, 8H, H-2', H-3'), 1.88 – 1.73 (m, 2H, H-14), 1.57 – 1.45 (m, 4H, H-15, H-16), 1.43 – 1.37 (m, 2H, H-17), 1.33 – 1.17 (m, 11H, H-18,-H-21), 0.87 (m, 3H, H-22). ^13C NMR (151 MHz, CDCl₃) δ (ppm):172.83 (C-4), 165.61 (C-23), 153.25 (C-6), 147.71 (C-7), 144.17 (C-2), 140.83 (C-9), 134.49 (C-10), 120.37 (C-3), 107.01 (C-5), 99.63 (C-8), 69.24 (C-13), 67.32 (C-12), 66.79 (C-3'), 47.94 (C-2'), 38.67 (C-b), 31.86 (C-14), 29.52 (C-15), 29.49 (C-16), 29.31 (C-17), 29.28 (C-18), 28.88 (C-19), 25.89 (C-20), 22.64 (C-21), 14.49 (C-11), 14.08 (C-22). APCI-HRMS m/z calcd for C₂₇H₄₁N₂O₇S 537.2629, found 537.2549 [M+H]^+.
Yellow powder, 0.2 g (50%), m.p. 144-146 °C; HPLC 30% ACN/ 70% 0.1% H₃PO₄
gradient elution > 97% pure, RT 8.2 min; 1H NMR (600 MHz, CDCl₃) δ (ppm): 8.00 (s, 1H, H-2), 7.71 (s, 1H, H-5), 6.92 (s, 1H, H-8), 5.75 (p, J = 6.9 Hz, 2H, H-b), 4.18 – 4.11 (m, 2H, H-13), 4.13 – 4.03 (m, 2H, H-12), 3.74 – 3.03 (m, 8H, H-2’, H-3’), 2.47 – 2.38 (m, 3H, H-c), 1.88 – 1.73 (m, 2H, H-14), 1.57 – 1.45 (m, 4H, H-15, H-16), 1.43 – 1.37 (m, 2H, H-17), 1.33 – 1.17 (m, 11H, H-11, H-18,-H-21), 0.87 (m, 3H, H-22). 13C NMR (151 MHz, CDCl₃) δ (ppm) :172.83 (C-4), 171.24 (C-a), 165.61 (C-23), 153.25 (C-6), 147.71 (C-7), 144.17 (C-2), 140.83 (C-9), 134.49 (C-10), 120.37 (C-3), 107.01 (C-5), 99.63 (C-8), 69.24 (C-13), 67.32 (C-12), 66.79 (C-3’), 47.94 (C-2’), 38.67 (C-b), 31.86 (C-14), 29.52 (C-15), 29.49 (C-16), 29.31 (C-17), 29.28 (C-18), 28.88 (C-19), 27.03 (C-c), 25.89 (C-20), 22.64 (C-21), 14.41 (C-11), 14.08 (C-22). APCI-HRMS m/z calcd for C$_{29}$H$_{43}$N$_2$O$_6$ 515.3024, found 515.3116 [M+H]$^+$.

Abbreviations

FDA Food and Drug Administration; DBU 1,8-diazabicycloundec-7-ene; DCM dichloromethane; TLC thin layer chromatography; MS mass spectrometry; NMR nuclear magnetic resonance; eq. equivalents; HRMS high resolution mass spectrometry; APCI atomic pressure chemical ionization; ESI electrospray ionization.

Acknowledgements

This research project was funded by the South African Medical Research Council (MRC) with funds from National Treasury under its Economic Competitiveness and Support Package. The South African National Research Foundation is thanked for financial support to LMB (UID 84627) and RKH (Grant No. 90682). Any opinion, finding and conclusion or recommendation expressed in this material is that of the author(s) and the NRF does not accept any liability in this regard. RMB, FS, RKH, and DDN thank the North-West University for financial support.
References

Chapter 6

New decoquinate derivatives with improved solubilities and in vitro antimalarial activities

Chapter 6 is a manuscript to be submitted to European journal of medicinal chemistry. The manuscript contains the background, aim, syntheses, in vitro anti-malarial and cytotoxicity evaluation of all compounds synthesised. This manuscript is prepared according to author's guidelines from the journal homepage at https://www.elsevier.com/journals/european-journal-of-medicinal-chemistry/0223-5234/guide-for-authors. Supporting data for chapter 6 are found in addendum C.
New decoquinate derivatives with improved solubilities and \textit{in vitro} antimalarial activities
Richard M. Beteck1, Dina Coertzen2, Frans J. Smit3, Lyn-Marie Birkholtz2, Richard K. Haynes3,
David D. N'Da3

1 Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa.
2 Department of Biochemistry, Centre for Sustainable Malaria Control, University of Pretoria, Pretoria 0002, South Africa
3 Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
Abstract

Although the old coccidiostat decoquinate (DQ) possesses good anti-malarial activity both in vitro and in vivo, it suffers from very low solubility, a property that militates against development as an anti-malarial drug. We herewith report on the synthesis of new decoquinate derivatives that have improved solubilities and anti-malarial activities. Polar functional groups were incorporated into DQ in straightforward fashion to generate derivatives that are less lipophilic than DQ, and soluble in ethanol. These derivatives were screened in vitro against chloroquine-sensitive NF54 and multidrug-resistant K1 and W2 Plasmodium falciparum. Cytotoxicity was assessed by using the human fibroblast cell line (WI-38). The new DQ derivatives had in vitro anti-malarial activities superior to those of DQ, chloroquine, artemether, and artesunate. Compound 15, featuring a 3-(methylsulfonyl)imidazolidin-2-one attached to N-1, is the most active with IC\textsubscript{50} values of 1-1.4 nM against all three P. falciparum strains, a resistance index of less than 1 between all strains and a selectivity index greater than 7 x 105. This compound therefore will likely show no cross resistance with chloroquine and mefloquine.

Key word: malaria, anti-malarial drugs, quinolones, decoquinate, derivatives,
Graphical abstract

Decoquinate (DQ) → DBU, carbamoyl chloride, CHCl₃, reflux → 3-(methylsulfonyl)-imidazolidin-2-one derivative 15

IC₅₀ nM: P. falciparum 26.6; K1 64.9; W2 15.4
IC₅₀ μM: WI-38 >100; Sl >3759

IC₅₀ nM: P. falciparum 1.4; K1 1.3; W2 1.1
IC₅₀ μM: WI-38 >100; Sl >7 x 10⁵
Introduction

There were 214 million malarial cases, and 438,000 reported deaths attributed to malaria in 2015. 88% of these cases and 90% of the deaths occurred in Sub-Sahara Africa, where a child under the age of five is lost to malaria every two minutes.1 Although the number of people dying from malaria has reduced over the past fifteen years,1-3 this disease still presents a great global health burden that has been aggravated with the emergence and spread of parasites resistant to all current treatment options, including artemisinins.4-7

The global malaria eradication program launched by WHO in 1955 and based essentially on the use of chloroquine (CQ)8, resulted in substantial reduction of incidence of malaria. However, the emergence and spread of CQ resistant malaria parasites by 1970s greatly jeopardised the efficacy of this drug, leading to a resurgence of mortality and morbidity.9-11 In a bid to overcome CQ resistance, piperaquine, an analogue of CQ, was later developed,12 but resistance has also emerged against this analogue.13 Newer drugs including mefloquine, pyronaridine, atovaquone, pyrimethamine/sulfadoxine were introduced, but here also, resistance has developed.14-16

Artemisinin and its derivatives, referred to as artemisinins, are highly active anti-malarial agents that are fast acting, also against parasites resistant to other drugs.17 However, artemisinins have half-lives of less than three hours; this results in recrudescence of the disease if treatment regimens are too short to remove residual parasites.18 To overcome this problem, and also to avoid the development of malaria parasites resistant to artemisinins, the WHO adopted and introduced artemisinins combined with partner drugs that have longer half-lives, so-called artemisinin combination therapies (ACTs) as the standard for malaria treatment.19, 20, 21 There is now well documented resistance for most partner drugs in ACTs, most of which act on the asexual blood stages of the malaria parasite, which are prone to mutations.22 Artemisinin derivatives on the other hand act by generating reactive oxygen species (ROS).23 It is important to note that ROS causes dormancy of ring stage malaria parasites, which has also been linked to the development of malaria parasites resistant to ACTs.24 Therefore, the deep-seated resistance against established drugs like chloroquine and fansidar and the reduced susceptibility of the parasite to ACTs place urgent demand upon the development of new drugs to control the disease.

It is important to adopt measures that assist in the elimination and eradication of malaria. Chemotherapeutic agents with activity against the liver and gametocyte stages have been
highlighted as tools necessary for malaria elimination and eradication. The malaria eradication agenda put forth in 2007 by the Bill and Melinda Gates Foundation highlighted the liver and gametocyte stages as important targets which need to be considered in malarial drug discovery projects aimed at complete eradication of the disease.25 As hepatic stage parasites are less numerous and less rapidly replicating than the blood phase, it is assumed a drug that kills the liver stages parasites will prevent development of the ensuing blood stage parasites including gametocytes. This approach might prevent development of the disease and its transmission. The profile of such a drug is termed target candidate profile (TCP) 4 or 3a by the Medicines for Malaria Venture (MMV), Geneva.26 As gametocytes are stages transmitted from infected humans to mosquitos, drugs that kill gametocytes will prevent transmission of the disease. The profile of such a candidate drug is termed target candidate profile 3b.26 It is also been recommended that any new candidate drug be cheap (less than $5 per dose), safe, and have a novel structure and mode of action that differ from other anti-malarial drugs currently used in the clinic.27, 28

Decoquinate (DQ) is a 4(1\textsubscript{H})-quinolone that has been used for many years in veterinary medicine to treat coccidiosis.29 DQ is relatively non-toxic, is cheap, ≤$10 per kg,30 and should be more affordable than other quinolones proposed for further development as anti-malarial drugs. It has potent activity \textit{in vitro} against the liver, blood, and gametocytes stages of the malaria parasite.31, 32 With this activity profile, DQ essentially meets the criteria for a drug candidate required for malaria eradication. However, DQ like other anti-malarial quinolone hit and lead compounds including ELQ 300,33 suffers from exceedingly poor aqueous solubility (0.06 µg L-1).34 We therefore have embarked on an exploratory programme evaluating the effects of acylation of N-1 through attachment of polar groups, and through modification of the ester group in the C-3 carbethoxy group of DQ on the solubility and anti-malarial activity of DQ. We herein report the preparation, \textit{in vitro} anti-malarial activities against the blood stages of the malaria parasite, and cytotoxicity of the new DQ derivatives.
Results

Chemistry

The three routes used for conversion of DQ into the new derivatives 1-15 are summarized in Scheme 1.

Scheme 1. Three synthetic routes (I, II, III) followed for preparation of the derivatives.

Reagents and conditions: a. alkyl halide, K$_2$CO$_3$, CHCl$_3$/THF (3:1 v/v), reflux, 10 h; b: amine, DBU, CHCl$_3$, reflux, 24 h; c: acyl chloride, DBU, CHCl$_3$, reflux, 24h.

DQ was treated with each of ethyl and propyl bromides in the presence of potassium carbonate (route I, Scheme 1) to give the N-alkylated intermediates, which without purification were submitted to ester aminolysis by the primary amine in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to provide the derivatives 1-5 (Fig. 1) in yields greater than 80%. The presence of the N-alkyl group and the secondary amide were readily recognized from spectroscopic data; in particular the presence of the secondary amide was confirmed by the presence of the triplet ($J = 5.3$ Hz) at δ ca 11.0 ppm in their 1H NMR spectra.
Figure 1: N-alkylated amide derivatives obtained from decoquinate (DQ) by treatment with K$_2$CO$_3$ and alkyl halides, followed by treatment with a primary amine and DBU in chloroform according to route I, Scheme 1.

Next, compounds 6-10 were prepared via route II (Scheme 1). Ester aminolysis of DQ with primary or secondary amines in the presence of DBU generated the secondary or tertiary amide intermediates that upon treatment with an acyl or carbamoyl chloride in the presence of DBU were converted into the products 6-10 in moderate overall yields (to 60%) (Fig. 2). Whilst compounds were readily characterized by spectroscopic data, it is noted that the 13C NMR spectra of these compounds show a signal at $ca. \delta$ 153 ppm. This is assigned to the carbonyl carbon (C-a) of the acyl or carbamoyl derivative; this indicates that N-acylation or carbamoylation, rather than formation of an ester or carbamate via reaction through O-4 took

<table>
<thead>
<tr>
<th>Cpd</th>
<th>R</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
place. Unlike the secondary amides 1-7, the tertiary amides 8-10 lack the signal at 11.3 ppm in their 1H NMR spectra.

![Chemical structure of DQ and derivatives](image)

<table>
<thead>
<tr>
<th>Cpd</th>
<th>R</th>
<th>R'</th>
<th>Cpd</th>
<th>R</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>O</td>
<td></td>
<td>8</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>7</td>
<td>O</td>
<td>F</td>
<td>9</td>
<td>N</td>
<td>O-S</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>11-13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: N-Acylated and N-carbamoylated amide derivatives obtained from decoquinate (DQ) by treatment with DBU and the acyl or carbamoyl chloride, followed by treatment with amine and DBU in chloroform according to route II, Scheme 1.

DQ was treated with 2- methoxyethanol in the presence of sulfuric acid to generate the transesterified intermediates. Without purification, these were treated with a carbamoyl chloride in the presence of DBU according to route III (Scheme 1) to give derivatives 11-13 (Fig. 3) in overall yields of approximately 50%. Alternatively, DQ itself was submitted to carbamoylation under the foregoing condition to generate derivatives 14 and 15 in yields greater than 75%. Once
again, the derivatives were readily characterized by spectroscopic data. Compounds 11-13 contain a singlet at approximately 3.4 ppm in their 1H NMR spectra due to the methoxyl group at C-5' in the ester side chain. The 13C NMR spectra of all compounds show a signal at δ ca. 153 ppm assigned to the carbonyl carbon (C-a) of the N-acyl or -carbamoyl derivative. As above, N-acylation or carbamoylation, rather than formation of an ester or carbamate via reaction through O-4 took place.

Figure 3: N-carbamoylated and acylated derivatives of decoquinate obtained from decoquinate (DQ) by treatment with DBU and acyl or carbamoyl chloride according to route III, Scheme 1 and transesterification (compounds 11-13).

For all derivatives, the 1H spectra display a singlet at $ca. \delta$ 8.2 ppm assigned to H-2, two singlets at δ 6.8-7.5 ppm assigned to H-5 and H-8 of the quinolone nucleus, two triplets (J...
= 7.0, 6.9 Hz) at 4.0-4.4 ppm ascribed to H-13 and H-12 in the alkoxy chains attached to C-6 and C-7 respectively. The 13C NMR spectra contain a signal at ~175 ppm assigned to the ketone carbonyl at C-4 and a signal at ~165 ppm assigned to the carbonyl carbon atom C-23. The signals at ~ 65 and 69 ppm are due to C-12 and C-13 in the alkoxy chains attached to the quinolone nucleus. All compounds were established to have greater than 95% purity using analytical HPLC methods.

In notably straightforward fashion, we have transformed DQ into new derivatives by aminolysis or ester exchange of the C-3 carbethoxy group and attachment of substituents to N-1. All derivatives, as adjudged by their ability to dissolve in common solvents like dichloromethane, ethanol and dimethyl sulfoxide are more tractable than DQ.

In vitro anti-malarial activity and cytotoxicity

All compounds were screened *in vitro* against the intraerythrocytic stages of CQ sensitive NF54, CQ and antifolate resistant K1, and CQ and mefloquine resistant W2 *P. falciparum (Pf)*. The IC$_{50}$ values (concentrations resulting in 50% inhibition of parasite proliferation over 96 h) are presented in Table 1. Alkylated amide derivatives 1-7 of DQ were generally less active than DQ, while acylated tertiary amide derivatives 8-10 have activities comparable to that of DQ but were less active than artemether and artesunate. The N-acylated derivatives 11-15 retaining the carbethoxy group of DQ show anti-malarial activity superior to DQ, artemether, artesunate against sensitive and multi-drug resistant *Pf*. Cytotoxicity of the compounds was evaluated using a sulforhodamine B (SRB) assay on the WI-38 cell line with emetine as control. Biological data are summarized in Table 1. Also included in Table 1 are calculated Log P data for DQ and the new derivatives. It can be seen that all derivatives are appreciably less lipophilic than DQ.
Table 1. In vitro biological data of comparator drugs, DQ and the new derivatives and calculated LogP data. Data are from at least three independent biological experiments each performed in triplicate ±S.E.

<table>
<thead>
<tr>
<th>Compd</th>
<th>ClogP</th>
<th>Antimalarial activity IC₅₀±SEM (nM)</th>
<th>Resistanc e Index</th>
<th>Cytotoxicity, IC₅₀ (µM) WI-38</th>
<th>Selectivity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NF54</td>
<td>K1</td>
<td>W2</td>
<td>RIᵃ</td>
</tr>
<tr>
<td>ARM</td>
<td>nd</td>
<td>5.77±1.33</td>
<td>7.26±2.34</td>
<td>4.5±0.78</td>
<td>1.3</td>
</tr>
<tr>
<td>ARS</td>
<td>nd</td>
<td>7.88±1.35</td>
<td>8.97±2.26</td>
<td>6.77±1.13</td>
<td>1.4</td>
</tr>
<tr>
<td>CQ</td>
<td>nd</td>
<td>139±13.5</td>
<td>154.7±14.9</td>
<td>233.18±4.9</td>
<td>1.1</td>
</tr>
<tr>
<td>DQ</td>
<td>8.19</td>
<td>26.6±1.4</td>
<td>64.9±8.8</td>
<td>15.4±3.4</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>5.5</td>
<td>>200</td>
<td>>200</td>
<td>>200</td>
<td>nd</td>
</tr>
<tr>
<td>2</td>
<td>5.3</td>
<td>156.9±10.6</td>
<td>197.7±41.4</td>
<td>194.5±48.3</td>
<td>1.3</td>
</tr>
<tr>
<td>3</td>
<td>6.3</td>
<td>159.6±20.3</td>
<td>>200</td>
<td>189.9±51.6</td>
<td>1.9</td>
</tr>
<tr>
<td>4</td>
<td>4.7</td>
<td>>200</td>
<td>>200</td>
<td>>200</td>
<td>nd</td>
</tr>
<tr>
<td>5</td>
<td>5.6</td>
<td>>200</td>
<td>>200</td>
<td>>200</td>
<td>nd</td>
</tr>
<tr>
<td>6</td>
<td>6.0</td>
<td>>200</td>
<td>>200</td>
<td>>200</td>
<td>nd</td>
</tr>
<tr>
<td>7</td>
<td>5.0</td>
<td>>200</td>
<td>>200</td>
<td>>200</td>
<td>nd</td>
</tr>
<tr>
<td>8</td>
<td>3.2</td>
<td>92.1±49.3</td>
<td>65.35±22.3</td>
<td>19.8±1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>9</td>
<td>2.7</td>
<td>21.9±11.7</td>
<td>16.8±5.9</td>
<td>9.1±1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>10</td>
<td>4.9</td>
<td>90.8±31.3</td>
<td>128.1±48.5</td>
<td>67.7±25.8</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Table 1: Antimalarial Activity and Cytotoxicity of Compounds

<table>
<thead>
<tr>
<th>Compd</th>
<th>ClogP</th>
<th>Antimalarial activity IC$_{50}$±SEM (nM)</th>
<th>Resistance Index</th>
<th>Cytotoxicity, IC$_{50}$ (µM)</th>
<th>Selectivity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NF54</td>
<td>K1</td>
<td>W2</td>
<td>RIa</td>
</tr>
<tr>
<td>11</td>
<td>3.5</td>
<td>93.1±35.4</td>
<td>80.5±34.1</td>
<td>47.1±2.9</td>
<td>0.8</td>
</tr>
<tr>
<td>12</td>
<td>2.9</td>
<td>9.6±2.9</td>
<td>15.0±5.6</td>
<td>7.4±1.9</td>
<td>1.5</td>
</tr>
<tr>
<td>13</td>
<td>5.2</td>
<td>136.0±41.9</td>
<td>>200</td>
<td>84.4±28.1</td>
<td>2.0</td>
</tr>
<tr>
<td>14</td>
<td>5.0</td>
<td>6.8±3.9</td>
<td>14.4±6.3</td>
<td>5.7±3.5</td>
<td>2.0</td>
</tr>
<tr>
<td>15</td>
<td>3.8</td>
<td>1.4±0.5</td>
<td>1.3±0.6</td>
<td>1.1±0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Emetine</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

ARM = artemether; ARS = artesunate; CQ= chloroquine; DQ = decoquinate;

a resistance index (RI) = IC$_{50}$ K1/IC$_{50}$ NF54;

b resistance index (RI) = IC$_{50}$ W2/IC$_{50}$ NF54;

c WI-38 cell line of normal human fetal lung fibroblast;

d Selectivity index (SI) = (IC$_{50}$ WI-38-HFLF/IC$_{50}$ NF54).

Discussion

In vitro anti-malarial activity and cytotoxicity

Initial screens were conducted against asexual NF54 *P. falciparum* parasites to determine their respective % inhibition at 5 µM and 1 µM. Compounds showing the highest % inhibition against parasite proliferation (>50% inhibition at 5 µM and >70% inhibition at 1 µM) were submitted for further screening with second dual point assay at 500 nM and 100 nM. At these concentrations, compounds showing near complete inhibition of parasite proliferation were selected for IC$_{50}$ determination against asexual CQ-sensitive (NF54), and multidrug resistant–K1 (chloroquine, pyrimethamine, mefloquine, and cycloguanil) and W2 (chloroquine, quinine,
pyrimethamine, cycloguanil) stages of *P. falciparum*. Chloroquine, artemether, artesunate and decoquinate served as controls.

Despite the fact that *N*-alkylation coupled with conversion of DQ into an amide provides compounds having lower lipophicity (as expressed in cLogP values) than DQ (*e.g.* 2 and 4, Table 1), these were generally less active than DQ against all of the *P. falciparum* strains. On the contrary, conversion of DQ into a tertiary amide and acylation at N-1 resulted in derivatives that are less lipophilic, and have varied anti-malarial activities in comparison with DQ. For example compound 8 was less active than DQ against NF54, but was equipotent with DQ against K1 and W2. Compound 9 was equipotent with DQ against NF54 but was superior against K1 and W2. *N*-Acylated derivatives retaining the C-3 carbethoxy group were generally more active than both DQ and the amides. Compound 15 (IC$_{50}$ 1 nM) displayed superior activity against all strains, being 26-fold more active than DQ and five fold more potent than artesunate and artemether against NF54 (Table 1). Additionally, compounds with cLogP values <3.8 (Table 1) displayed overall the highest anti-malarial activity (9, 12 and 15).

Compounds 8, 9 and 15 all have resistant indices below 1 indicating that these compounds display higher activity against multi-drug resistant *Pf* than CQ sensitive *Pf*. All active compounds (2, 3, 8-15) in this study have resistant indices below 2. This suggests that these compounds may have low propensity to develop cross resistance with chloroquine, mefloquine and the antifolates currently in clinical use.

Decoquinate and the active hits showed no appreciable toxicity to mammalian WI-38 cells. Their IC$_{50}$ values are all substantially greater than the IC$_{50}$ of 0.05 μM of emetine. The compounds are thus selective in their anti-malarial action as evidenced by the SI values ≥400 (Table 2). More importantly, the optimum compound 15 exhibits a selectivity index of >7 x 105, a potentially important result in relation to future development of this compound as a potent and highly selective antimalarial drug.

Conclusion

Decoquinate shows potent activity against different stages of the malaria parasite. However, poor aqueous solubility of this compound prevents routine screening and evaluation of pharmacokinetic parameters. In an effort to circumvent the poor aqueous solubility and optimize anti-malarial activity, fifteen new decoquinate derivatives were prepared and screened *in vitro*
for anti-malarial activity and cytotoxicity. To summarize, all N-alkylated amide derivatives 1-5 are less active than decoquinate; the N-acylated amide derivatives 6-10 are generally more soluble in polar solvents and more active than decoquinate against all malaria parasite strains; the N-acylated esters 11-15 are soluble and generally the most active in this series. N-Carbamoylation with a sulfonyl containing moiety increases anti-malarial activities. Compounds 9, 12, 14, and 15 will be evaluated for activity against liver and gametocytes stages of the malarial parasite and in vivo in rodent malarial models.
Experimental section

General procedures

Amines, 2-methoxyethanol, the acyl, carbamoyl and alkyl halides in this study were bought from either Sigma Aldrich or AKSci and were used as supplied, decoquinate was bought from Hohance chemical. NMR spectra were obtained on a 600 MHz Bruker Avance™ III spectrometer as solutions in deuterated solvents (CDCl₃, or DMSO-d₆). All chemical shifts (δ) are reported in parts per million (ppm) values. ¹H chemical shifts are reported downfield of tetramethylsilane (TMS), and were internally referenced to the residual proton in CDCl₃ (7.26 ppm), or DMSO-d₆ (2.50 ppm). ¹³C chemical shifts were internally referenced to resonances in CDCl₃ (δ 77.16 ppm), or DMSO-d₆ (δ 39.51 ppm). Peak multiplicities are abbreviated as follows: s (singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet), and m (multiplet). Coupling constant (J) are reported in Hz. NMR data were analyzed using MestReNova Software, version 5.3.2-4936.

Exact mass measurements were recorded on Bruker MicroTOF Q II mass spectrometer with an APCI/ESI source set at 300 °C, using Bruker Compass Data analysis 4.0 software. A full scan, ranging between 50–1500 m/z, was generated at a capillary voltage of 4500 V, end plate offset voltage of -500 V, and a collision cell RF voltage of 100 V. Melting points (mp) were determined with a Büchi melting point B-545 instrument and are uncorrected.

Thin layer chromatography (TLC) was performed using silica gel plates (60F₂₅₄), acquired from Merck, and components were visualized by ultraviolet light (254 nm). Silica gel 230-400 (particle size 40-63μm) mesh was used for all flash column chromatography. Calculated LogP (cLogP) values were generated using ACD/ChemSketch free ware version 14.02. Purity was determined by HPLC using a solvent gradient of 30% ACN/ 70% 0.1% H₃PO₄ and a Venusil XBP C18 column of size 150 × 4.6 mm.
Table 2. General procedure for synthesis of N-alkylated amide derivatives 1-5 of DQ

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N-alkylation: A mixture of DQ (1.19 mmol, 0.5 g, 1 eq), K$_2$CO$_3$ (5.0 mmol, 0.69 g), alkyl halide (5 eq.) in DMF (10 mL) was refluxed for 15 h, after which the mixture was evaporated to dryness, dissolved in chloroform and washed with distilled water (20 mL × 4). The organic phase was evaporated to dryness to obtain the crude N-alkylated product which was used in the ensuing step without purification.

Carboxyamidation: A mixture of the crude N-alkylated product (0.5 g, 1 eq.), DBU (320 µL, 0.33 g, 2.1 mmol), the appropriate amine (5 eq.), and chloroform (15 mL) in a 100 mL round bottom flask was stirred under reflux for 24-72 h. Progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was treated with additional chloroform (20 mL) and washed with distilled water (20 mL × 4). The organic layer was dried (Na$_2$SO$_4$), filtered and the filtrate was evaporated to dryness to leave the crude product. This was submitted to
chromatography on silica gel. Elution with CH$_2$Cl$_2$/methanol (10:1, v/v) provided the fraction containing the product that was isolated by evaporation of solvent. The product was recrystallized from ethyl acetate and air dried.

6-Decoxy-7-ethoxy-N-[2-(2-hydroxyethoxy)ethyl]-4-oxo-1-propyl-1,4-dihydroquinoline-3-carboxamide (1)

White powder, 0.38 g (76%), m.p. 162-164 °C; Purity > 98%, RT 4.30 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 10.45 (t, $J = 5.4$ Hz, 1H, H-1'), 8.61 (s, 1H, H-2), 7.80 (s, 1H, H-5), 6.76 (s, 1H, H-8), 4.33 – 3.96 (m, 6H, H-12, H-13, H-a), 3.74 – 3.48 (m, 4H, H-6', H-2'), 2.95 – 2.75 (m, 4H, H-5', H-3'), 2.37 (s, 1H, H-7'), 2.00 – 1.76 (m, 4H, H-b, H-14), 1.59 – 1.37 (m, 4H, H-15, H-16), 1.35 – 1.17 (m, 13H, H-c, H-17 - H-21), 0.98 (t, $J = 7.4$ Hz, 3H, H-11), 0.91 – 0.67 (m, 3H, H-22). 13C NMR (151 MHz, CDCl$_3$) δ (ppm): 175.35 (C-4), 165.77 (C-23), 153.54 (C-6), 147.78 (C-7), 145.88 (C-2), 134.32 (C-9), 122.22 (C-10), 110.87 (C-3), 107.40 (C-5), 98.59 (C-8), 69.60 (C-13), 64.98 (C-12), 60.94 (C-6'), 55.79 (C-a), 50.66 (C-5'), 48.49 (C-3'), 38.89 (C-2'), 31.86 (C-b), 29.52 (C-14), 29.49 (C-15), 29.30 (C-16), 29.28 (C-17), 28.87 (C-18), 25.92 (C-19), 22.64 (C-20), 22.09 (C-21), 14.51 (C-11), 14.08 (C-c), 11.08 (C-22). APCI-HRMS m/z calcd for C$_{29}$H$_{47}$N$_2$O$_6$ 519.3429, found 519.3431 [M+H]$^+$.

6-Decoxy-7-ethoxy-N-{2-[2-hydroxyethyl]amino}ethyl]-4-oxo-1-propyl-1,4-dihydroquinoline-3-carboxamide (2)

White powder, 0.4 g (80%), m.p. 152-153 °C; Purity > 98% , RT 4.70 min; 1H NMR (600 MHz, DMSO-d_6) δ (ppm): 10.21 (t, $J = 5.5$ Hz, 1H, H-1'), 8.68 (s, 1H, H-2), 7.66 (s, 1H, H-5), 7.13 (s, 1H, H-8), 4.47 (s, 1H, H-7'), 4.41 (t, $J = 7.0$ Hz, 2H, H-13), 4.23 (t, $J = 6.9$ Hz, 2H, H-12), 4.08 – 3.98 (m, 2H, H-a), 3.46 (dt, 2H, $J = 5.5$, 6.2 Hz, H-2'), 3.38 (t, $J = 5.7$ Hz, 2H, H-6'), 2.68 (t, $J = 6.2$ Hz, 2H, H-3'), 2.60 (t, $J = 5.7$ Hz, 2H, H-5'), 2.37 (s, 1H, H-4'), 1.83 – 1.71 (m, 4H, H-b, H-14), 1.49 – 1.33 (m, 4H, H-15, H-16), 1.30 – 1.18 (m, 13H, H-c, H-17 - H-21), 0.85 (dt, $J = 13.8$, 6.9 Hz, 6H, H-11, H-22). 13C NMR (151 MHz, DMSO-d_6) δ (ppm): 175.35 (C-4), 165.77 (C-23), 153.54 (C-6), 147.78 (C-7), 145.88 (C-2), 134.32 (C-9), 122.22 (C-10), 110.87 (C-3), 107.40 (C-5), 98.59 (C-8), 69.60 (C-13), 64.98 (C-12), 60.94 (C-6'), 55.79 (C-a), 50.66 (C-5'), 48.49 (C-3'), 38.89 (C-2'), 31.86 (C-b), 29.52 (C-14), 29.49 (C-15), 29.30 (C-16), 29.28 (C-17), 28.87 (C-18), 25.92 (C-19), 22.64 (C-20), 22.09 (C-21), 14.51 (C-11), 14.08 (C-c), 11.08 (C-22). APCI-HRMS m/z calcd for C$_{29}$H$_{47}$N$_2$O$_6$ 519.3429, found 519.3431 [M+H]$^+$.

112
29.28 (C-17), 28.87 (C-18), 25.92 (C-19), 22.64 (C-20), 22.09 (C-21), 14.51 (C-11), 14.08 (C-c), 11.08 (C-22). APCI-HRMS m/z calcd for C_{29}H_{48}N_{5}O_{5} 518.3588, found 518.3573 [M+H]^+.

6-Decoxy-7-ethoxy-N-[3-(1H-imidazol-1-yl)propyl]-4-oxo-1-propyl-1,4-dihydroquinoline-3-carboxamide (3)

White powder, 0.25 g (50%), m.p. 168-169 °C; Purity > 96% , RT 7.10 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 10.39 (t, $J = 5.8$ Hz, 1H, H-1’), 8.72 (s, 1H, H-2), 7.82 (s, 1H, H-5’), 7.24 (s, 1H, H-6’), 7.03 (s, 1H, H-5), 6.79 (s, 1H, H-8), 408 – 4.30 (dt, $J = 13.2$, 7.4 Hz, 6H, H-13, H-12, H-a), 4.04 (t, $J = 7.1$ Hz, 2H, H-4’), 3.46 (dt, $J = 5.8$, 5.8 Hz, 2H, H-2’), 2.16 – 2.04 (dt, $J = 7.1$, 5.8 Hz, 2H, H-3’), 1.96 – 1.80 (m, 4H, H-b, H-14), 1.62 – 1.46 (m, 4H, H-15, H-16), 1.39 – 1.31 (m, 2H, H-17), 1.24–1.03 (m, 11H, H-c, H-18 - H-21), 0.99 (t, $J = 7.4$ Hz, 3H, H-11), 0.91 – 0.72 (m, 3H, H-22). 13C NMR (151 MHz, CDCl$_3$) δ (ppm): 175.41 (C-4), 165.80 (C-23), 153.64 (C-6), 147.89 (C-7), 145.87 (C-2), 137.14 (C-5’), 129.37 (C-7’), 122.17 (C-10), 118.91 (C-6’) 110.67 (C-3), 107.26 (C-5), 98.55 (C-8), 69.21 (C-13), 65.03 (C-12), 55.85 (C-a), 44.54 (C-4’), 35.87 (C-2’), 31.44 (C-3’), 29.51 (C-15), 29.49 (C-16), 29.28 (C-17), 29.27 (C-18), 28.83 (C-b), 25.90 (C-19), 22.63 (C-20), 22.24 (C-21), 14.50 (C-11), 14.07 (C-c), 11.08 (C-22). APCI-HRMS m/z calcd for C$_{31}$H$_{47}$N$_{4}$O$_{4}$ 539.3592, found 539.3551 [M+H]$^+$.

6-Decoxy-7-ethoxy-1-ethyl-N-[2-[(2-hydroxyethyl)amino]ethyl]-4-oxo-1,4-dihydroquinoline-3-carboxamide (4)

White powder, 0.38 g (76%), m.p. 154-156 °C; Purity > 96% , RT 4.09 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 10.50 (t, $J = 5.8$ Hz, 1H, H-1’), 8.65 (s, 1H, H-2), 7.81 (s, 1H, H-5), 6.78 (s, 1H, H-8), 4.18- 4.00 (ddd, $J = 28.9$, 13.0, 6.9 Hz, 6H, H-a, H-13, H-12), 3.86 – 3.71 (m, 2H, H-6’), 3.69 – 3.53 (m, 6H, H-2’, H-3’, H-5’), 3.30 (s, 1H, H-7’), 1.92 – 1.72 (m, 2H, H-14), 1.56 – 1.38 (m, 8H, H-11, H-22, H-15), 1.36 – 1.16 (m, 12H, H-16 - H-21), 0.84 (t, $J = 6.9$ Hz, 3H, H-b). 13C NMR (151 MHz, CDCl$_3$) δ (ppm): 175.33 (C-4), 165.50 (C-23), 153.64 (C-6), 147.79 (C-7), 145.26 (C-2), 134.15 (C-3), 122.28 (C-10), 111.31 (C-3), 107.56 (C-5), 98.27 (C-8), 72.51 (C-5’), 69.85 (C-3’), 69.18 (C-13), 65.01 (C-12), 61.79 (C-6’), 49.11 (C-a), 38.81 (C-2’), 31.86 (C-14), 29.52 (C-15), 29.49 (C-16), 29.30 (C-17), 29.28 (C-18), 28.87 (C-19), 25.92 (C-
20), 22.63 (C-21), 14.54 (C-b), 14.50 (C-11), 14.07 (C-22). APCI-HRMS m/z calcld for C_{28}H_{46}N_{3}O_{5} 504.3432, found 504.3426 [M+H]^+.

6-Decoxy-7-ethoxy-1-ethyl-N-(2-methoxyethyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (5)

White powder, 0.4 g (80%), m.p. 157-159 °C; Purity > 96%, RT 4.33 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 10.35 (t, $J = 5.5$ Hz, 1H, H-1'), 8.66 (s, 1H, H-2), 7.84 (s, 1H, H-5), 6.79 (s, 1H, H-8), 4.32 – 4.20 (m, 2H, H-a), 4.17 (q, $J = 6.9$ Hz, 2H, H-12), 4.10 (t, $J = 6.8$ Hz, 2H, H-13), 3.64 (t, $J = 5.5$ Hz, 2H, H-3'), 3.56 (dt, $J = 5.5, 5.5$ Hz, 2H, H-2'), 3.38 (s, 3H, H-5'), 1.90 – 1.80 (m, 2H, H-14), 1.60 – 1.40 (m, 10H, H-15-H-19), 1.30 – 1.18 (m, 10H, H-a, H-20 - H-22), 0.85 (t, $J = 6.9$ Hz, 3H, H-11). 13C NMR (151 MHz, CDCl$_3$) δ (ppm): 175.34 (C-4), 165.55 (C-23), 153.54 (C-6), 147.70 (C-7), 145.30 (C-2), 134.13 (C-9), 122.30 (C-10), 111.29 (C-3), 107.57 (C-5), 98.30 (C-8), 71.34 (C-4'), 69.19 (C-13), 65.05 (C-12), 58.82 (C-3'), 49.06 (C-a), 38.93 (C-2'), 31.86 (C-14), 29.52 (C-15), 29.49 (C-16), 29.30 (C-17), 29.28 (C-18), 28.87 (C-19), 25.92 (C-20), 22.63 (C-21), 14.54 (C-b), 14.51 (C-11), 14.08 (C-22). APCI-HRMS m/z calcld for C_{27}H_{43}N_{2}O_{5} 475.3166, found 475.3169 [M+H]^+.
Table 3. General procedure for synthesis of N-acylated amide derivatives 6-10 of DQ

![Diagram showing the synthesis of N-acylated amide derivatives 6-10 of DQ](image)

<table>
<thead>
<tr>
<th>Cpd</th>
<th>R</th>
<th>R'</th>
<th>Cpd</th>
<th>R</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>Structure</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carboxyamidation: To a 100 mL two neck flask containing decoquinate (0.5 g, 1.19 mmol) and DBU (320 µL, 0.33 g, 2.1 mmol, 0.9 eq.) in chloroform (25 mL) was added the amine (5 eq.). The resulting mixture was stirred under reflux for 72 h. Progress of the reactions was monitored by TLC. Upon completion, the reaction mixture was treated with additional chloroform (20 mL) and washed with distilled water (20 mL × 4). The organic layer was dried (Na₂SO₄), filtered and the filtrate was evaporated to dryness to leave the crude product, which was used in the next step without further purification.

N-acylation: To a 100 mL two neck flask was added 0.5 g of the above crude product, chloroform (15 mL), DBU (0.7 mmol, 100 µL), and the acyl or carbamoyl chloride (5 eq.). The mixture was stirred under reflux for 15 h, and then washed with aqueous saturated NH₄Cl solution (20 mL × 3). The organic layer was dried (Na₂SO₄), filtered and the filtrate was evaporated to dryness to obtain the crude product which was purified by silica gel column.
chromatography. Elution with CH$_2$Cl$_2$/methanol (20:1, v/v) provided the fraction containing the product that was isolated by evaporation of solvent. Derivatives 6-10 were thereby obtained in 50-80% yield.

6-Decoxy-7-ethoxy-1-(4-methoxybenzoyl)-N-(2-methoxyethyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (6)

White powder, 0.4 g (80%), m.p. 162-164 °C; Purity > 96%, RT 6.04 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 10.35 (t, $J = 5.5$ Hz, 1H, H-1'), 8.89 (s, 1H, H-2), 7.89 (s, 1H, H-8), 4.17 (q, $J = 6.9$ Hz, 2H, H-12), 4.10 (t, $J = 6.8$ Hz, 2H, H-13), 3.90 (s, 3H, H-f), 3.64 (t, $J = 5.5$ Hz, 2H, H-3'), 3.56 (dt, $J = 5.5, 5.5$ Hz, 2H, H-2'), 3.40 (s, 3H, H-5'), 1.90 – 1.80 (m, 2H, H-14), 1.60 – 1.40 (m, 10H, H-15- H-19), 1.30 – 1.18 (m, 7H, H-20 - H-22), 0.85 (t, $J = 6.9$ Hz, 3H, H-11). 13C NMR (151 MHz, CDCl$_3$) δ (ppm): 176.38 (C-4), 169.87 (C-a), 165.30 (C-23), 164.42 (C-b), 153.54 (C-6), 148.70 (C-7), 143.30 (C-2), 138.06 (C-7), 133.72 (C-9), 133.49 (C-c), 132.11 (C-d), 122.30 (C-10), 111.29 (C-3), 107.57 (C-5), 98.30 (C-8), 71.34 (C-4'), 69.19 (C-13), 65.05 (C-12), 58.86 (C-f), 55.81 (C-3'), 38.93 (C-2'), 31.86 (C-14), 29.52 (C-15), 29.49 (C-16), 29.30 (C-17), 29.28 (C-18), 28.87 (C-19), 25.92 (C-20), 22.63 (C-21), 14.51 (C-11), 14.08 (C-22). ESI-HRMS m/z calcd for C$_{33}$H$_{45}$N$_2$O$_7$ 581.3221, found 581.3208 [M+H]$^+$.

6-Decoxy-7-ethoxy-1-[(4-ethyl-2,3-dioxopiperazin-1-yl)carbonyl]-N-(4-fluorobenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (7)

Yellow powder, 0.25 g (50%), m.p. 182-184 °C; Purity > 95%, RT11.05 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 11.11 (t, $J = 5.8$ Hz, 1H, H-1'), 8.67 (s, 1H, H-2), 7.67 (s, 1H, H-5), 7.28 (dd, $J = 8.4$, 5.3 Hz, 2H, H-5'), 6.94 (t, $J = 8.5$ Hz, 2H, H-4'), 6.81 (s, 1H, H-8), 4.66 (d, $J = 5.8$ Hz, 2H, H-2'), 4.55 (t, $J = 6.9$ Hz, 2H, H-13), 3.40 (t, $J = 6.9$ Hz, 2H, H-12), 3.89– 3.61 (m, 4H, H-c, H-d), 3.51 (t, $J = 6.0$ Hz, 2H, H-h), 1.84 (q, $J = 7.4$, 6.7 Hz, 4H, H-14, H-15), 1.47 – 1.18 (m, 18H, H-11, H-i, H-16,-H-21), 0.92 – 0.82 (m, 3H, H-22). 13C NMR (151 MHz, CDCl$_3$) δ (ppm): 176.11 (C-4), 166.87 (C-23), 162.83 (C-6'), 157.72 (C-a), 155.11 (C-g), 153.82 (C-f), 153.59 (C-6), 148.18 (C-7), 141.18 (C-2), 134.77 (C-9), 133.94 (C-3'), 128.93 (C-4'), 120.70 (C-10), 115.51 (C-5'), 110.05 (C-3), 105.92 (C-5), 99.85 (C-8), 69.26 (C-13), 64.70 (C-12), 48.79 (C-2'), 45.50 (C-d), 44.88 (C-c), 39.10 (C-h), 31.87 (C-14), 29.53 (C-15, C-16), 29.31 (C-17, C-
18), 28.85 (C-19), 25.90 (C-20), 22.66 (C-21), 14.32 (C-i), 14.38 (C-11), 14.10 (C-22). ESI-HRMS m/z calcd for C_{36}H_{46}FN_{4}O_{7} 665.3345, found 665.3282 [M+H]^+.

6-Decoxy-7-ethoxy-3-[[4-(morpholin-4-ylcarbonyl)piperazin-1-yl]carbonyl]-1-(morpholin-4-ylcarbonyl)quinolin-4(1H)-one (8)

Yellow viscous gum, 0.37 g (74%), m.p. 167-169 °C; Purity > 95%, RT 10.02 min; 1H NMR (600 MHz, CDCl\textsubscript{3}) δ (ppm): 7.99 (s, 1H, H-2), 7.24 (s, 1H, H-5), 6.74 (s, 1H, H-8), 4.26 – 4.20 (m, 2H, H-13), 4.09 (t, J = 6.8, 2H, H-12), 3.85 – 3.20 (m, 24H, H-2', H-3', H-5', H-6', H-c, H-d), 1.88 – 1.80 (m, 2H, H-14), 1.54 – 1.42 (m, 6H, H-15 - H-17), 1.30 – 1.16 (m, 11H, H-18 - H-21), 0.91 – 0.79 (m, J = 6.8, 3H, H-11). 13C NMR (151 MHz, CDCl\textsubscript{3}) δ (ppm): 172.63 (C-4), 165.28 (C-23), 163.53 (C-a), 155.86 (C-4'), 153.82 (C-6), 152.14 (C-7), 138.86 (C-2), 132.52 (C-9), 120.42 (C-10), 118.38 (C-3), 107.22 (C-5), 100.05 (C-8), 69.59 (C-13), 69.25 (C-12), 66.57 (C-d), 66.46 (C-6'), 65.94 (C-c). 49.42 (C-2'), 48.73 (C-5'), 46.45 (C-3'), 31.85 (C-14), 29.67 (C-15), 29.54 (C-16), 29.50 (C-17), 29.34 (C-18), 28.81 (C-19), 25.98 (C-20), 22.65 (C-21), 14.49 (C-22), 14.09 (C-11). ESI-HRMS m/z calcd for C_{36}H_{46}FN_{4}O_{7} 684.3967, found 684.3926 [M+H]^+.

6-Decoxy-7-ethoxy-3-[(4-methylpiperazin-1-yl)carbonyl]-1-[[3-(methylsulfonyl)-2-oxoimidazolidin-1-yl]carbonyl]quinolin-4(1H)-one (9)

Brown powder, 0.28 g (56%), m.p. 170-173 °C; Purity > 96%, RT 6.94 min; 1H NMR (600 MHz, CDCl\textsubscript{3}) δ (ppm): 8.48 (s, 1H, H-2), 7.24 (s, 1H, H-5), 6.74 (s, 1H, H-8), 4.26 – 4.20 (m, 2H, H-13), 4.09 (t, J = 6.8, 2H, H-12), 3.65 – 3.20 (m, 8H, H-2', H-3'), 3.09 (s, 3H, H-g), 2.59 – 2.31 (m, 4H, H-c, H-d), 2.10 (s, 3H, H-5') 1.88 – 1.80 (m, 2H, H-14), 1.54 – 1.42 (m, 6H, H-15 - H-17), 1.30 – 1.16 (m, 11H, H-18 - H-21), 0.91 – 0.79 (m, J = 6.8, 3H, H-11). 13C NMR (151 MHz, CDCl\textsubscript{3}) δ (ppm): 172.68 (C-4), 165.57 (C-23), 153.59 (C-a), 152.54 (C-f), 151.91 (C-6), 150.92 (C-7), 145.82 (C-2), 138.72 (C-9), 120.49 (C-10), 117.94 (C-3), 108.59 (C-5), 100.25 (C-8), 69.30 (C-13), 69.19 (C-g), 66.46 (C-c), 65.04 (C-d), 64.51 (C-12), 54.49 (C-2'), 46.98 (C-3'), 41.90 (C-5'), 31.85 (C-14), 29.67 (C-15), 29.54 (C-16), 29.50 (C-17), 29.34 (C-18), 28.81 (C-19), 25.98 (C-20), 22.65 (C-21), 14.49 (C-22), 14.09 (C-11). ESI-HRMS m/z calcd for C_{32}H_{48}N_{5}O_{8}S 662.3218, found 662.3193 [M+H]^+.
1-Acetyl-6-Decoxy-7-ethoxy-3-[(4-methylpiperazin-1-yl)carbonyl]quinolin-4(1H)-one (10)

Brown powder, 0.28 g (56%), m.p. 175-177 °C; Purity > 96%, RT 8.71 min; \(^1\)H NMR (600 MHz, CDCl\textsubscript{3}) \(\delta\) (ppm): 7.98 (s, 1H, H-2), 7.51 (s, 1H, H-5), 7.25 (s, 1H, H-8), 4.20 – 3.93 (m, 2H, H-13), 3.44 (t, \(J = 6.7\) Hz, 2H, H-12), 3.39 – 3.26 (m, 8H, H-2', H-3', H-5', H-6'), 2.87 (s, 3H, H-7'), 2.10 (s, 3H, H-b), 2.02 – 1.90 (m, 2H, H-14), 1.63 – 1.46 (m, 6H, H-15 - H-17), 1.46 – 1.08 (m, 11H, H-18 - H-22), 0.82 – 0.77 (m, \(J = 6.7\) Hz, 3H, H-11). \(^{13}\)C NMR (151 MHz, CDCl\textsubscript{3}) \(\delta\) (ppm): 169.47 (C-4), 164.88 (C-23), 155.13 (C-a), 154.24 (C-6), 151.43 (C-7), 149.14 (C-2), 147.74 (C-9), 116.85 (C-10), 112.19 (C-3), 107.61 (C-5), 100.62 (C-8), 69.09 (C-13), 64.79 (C-12), 54.42 (C-2'), 48.63 (C-6'), 37.87 (C-3'), 32.20 (C-5'), 30.84 (C-b), 30.20 (C-14), 29.67 (C-15), 29.54 (C-16), 29.50 (C-17), 29.34 (C-18), 28.81 (C-19), 25.98 (C-20), 22.65 (C-21), 19.39 (C-7'), 14.49 (C-22), 14.09 (C-11). ESI-HRMS \(m/z\) calcd for C\textsubscript{29}H\textsubscript{44}N\textsubscript{3}O\textsubscript{5} 514.6692, found 514.6688 [M+H]\(^+\).

Table 4. General procedure for synthesis of N-acylated DQ derivatives 11-15

<table>
<thead>
<tr>
<th>Cpd</th>
<th>R</th>
<th>R'</th>
<th>Cpd</th>
<th>R</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A mixture of DQ (2.34 mmol, 1 g, 1 eq.) in chloroform (20 mL) containing conc. \(\text{H}_2\text{SO}_4 \) (320 µL, 0.33 g, 2.1 mmol, 0.9 eq) and 2-methoxyethanol (1 mL, 5 eq.) in a 100 mL round bottom flask was stirred under reflux for 72 h. The reaction mixture was washed with aqueous saturated \(\text{NaHCO}_3 \) solution (20 mL × 3). The organic layer was dried (\(\text{Na}_2\text{SO}_4 \)), filtered and the filtrate was evaporated to dryness to leave the crude product. This was submitted to chromatography on silica gel. Elution with \(\text{CH}_2\text{Cl}_2/\text{methanol} \) (20:1, \(\text{v/v} \)) provided the fraction containing the intermediate that was isolated by evaporation of solvent. This transesterified intermediate was submitted to N-acylation without further purification.

To a 100 mL two neck flask containing DQ (0.5 g, 1.19 mmol., 1 eq) or the transesterified intermediate as prepared above (0.54 g 1.19 mmol., 1 eq) in chloroform (15 mL) and DBU (0.7 mmol, 0.6 eq) was added the acyl chloride (5 eq). The mixture was stirred under reflux for 15 h, and then washed with aqueous saturated \(\text{NH}_4\text{Cl} \) solution (20 mL × 3). The organic layer was dried (\(\text{Na}_2\text{SO}_4 \)), filtered and the filtrate was evaporated to dryness to leave the crude product. This was submitted to chromatography on silica gel. Elution with \(\text{CH}_2\text{Cl}_2/\text{methanol} \) (20:1, \(\text{v/v} \)) provided the fraction containing the product that was isolated by evaporation of solvent. The product was recrystallized from acetone and air dried overnight. Derivatives 11-15 were thereby obtained in 50-80% yield.

(2'-Methoxy)ethyl 6-decoxy-7-ethoxy-1-[(4-ethyl-2,3-dioxopiperazin-1-yl)carbonyl]-4-oxo-1,4-dihydroquinoline-3-carboxylate (11)

Yellow powder, 0.30 g (60%), m.p. 182-183 °C; Purity > 95%, RT 12.58 min; \(^1\text{H NMR} \) (600 MHz, \(\text{CDCl}_3 \)) \(\delta \) 9.05 (s, 1H, H-2), 7.40 (s, 1H, H-5), 7.11 (s, 1H, H-8), 4.46 (d, \(J = 5.3 \) Hz, 2H, H-2'), 4.24 (q, \(J = 7.0 \) Hz, 2H, H-13), 4.10 (t, \(J = 6.7 \) Hz, 2H, H-12), 3.67 (d, \(J = 5.3 \) Hz, 2H, H-3'), 3.57 – 3.49 (m, 4H, H-c, H-d), 3.41 (s, 3H, H-5'), 1.92 – 1.82 (m, 2H, H-14), 1.58 – 1.46 (m, 6H, H-15 - H-17), 1.40 – 1.20 (m, 16H, H-h, H-i, H-18 - H-22), 0.93 (t, \(J = 6.7 \) Hz, 3H, H-11). \(^{13}\text{C NMR} \) (151 MHz, \(\text{CDCl}_3 \)) \(\delta \) 169.47 (C-4), 163.99 (C-23), 158.85 (C-a), 157.07 (C-f, C-g), 155.07 (C-7), 151.50 (C-6), 146.38 (C-2), 128.74 (C-9), 122.21 (C-10), 120.29 (C-3), 106.97 (C-5), 103.58 (C-8), 70.17 (C-3'), 69.40 (C-13), 68.09 (C-12), 64.82 (C-2'), 59.05 (C-5'), 48.55 (C-c), 44.87 (C-d), 43.73 (C-h), 31.87 (C-14), 29.67 (C-15), 29.54 (C-16), 29.50 (C-17), 29.34 (C-18), 28.81 (C-19), 25.98 (C-20), 22.65 (C-21), 14.49 (C-22), 14.31 (C-i), 14.09 (C-11). HRMS-ESI \(m/z \) calcd for \(\text{C}_{36}\text{H}_{54}\text{N}_{5}\text{O}_{6} \) 684.3967, found 684.3926 [M+H]+.
(2'-Methoxy)ethyl 6-deoxy-7-ethoxy-1-[[3-(methylsulfonyl)-2-oxoimidazolidin-1-yl]carbonyl]-4-oxo-1,4-dihydroquinoline-3-carboxylate (12)

White powder, 0.20 g (40%), m.p. 170-173 °C; Purity > 96%, RT 10.13 min; 1H NMR (600 MHz, CDCl$_3$) δ 9.03 (s, 1H, H-2), 7.50 (s, 1H, H-5), 7.23 (s, 1H, H-8), 4.58 – 4.50 (d, $J = 5.3$ Hz, 2H, H-2'), 4.24 (q, $J = 7.0$ Hz, 2H, H-13), 4.16 – 4.12 (t, $J = 6.7$ Hz, 2H, H-12), 3.95 – 3.90 (d, $J = 5.3$ Hz, 2H, H-3'), 3.79 – 3.71 (m, 4H, H-c, H-d), 3.42 (s, 3H, H-5'), 3.31 (s, 3H, H-g), 1.94 – 1.86 (m, 2H, H-14), 1.60 – 1.46 (m, 6H, H-15 - H-17), 1.38 – 1.23 (m, 11H, H-18 - H-22), 0.88 – 0.85 (t, $J = 6.7$ Hz, 3H, H-11). 13C NMR (151 MHz, CDCl$_3$) δ 167.74(C-4), 164.76(C-23), 154.20(C-7), 151.01(C-6), 148.08(C-2), 147.05(C-a), 141.21(C-f) 128.77(C-9), 121.71(C-10), 120.35(C-3), 108.59(C-5), 103.64(C-8), 70.31(C-3'), 69.28(C-13), 68.12(C-12), 64.62(C-2'), 59.05(C-5'), 40.80(C-c), 40.52(C-d), 39.92(C-h), 31.87(C-14), 29.67(C-15), 29.54(C-16), 29.50(C-17), 29.34(C-18), 28.81(C-19), 25.98(C-20), 22.65(C-21), 14.49(C-22), 14.09(C-11). HRMS-ESI m/ζ calcd for C$_{32}$H$_{48}$N$_5$O$_8$S 662.3218, found 662.3193 [M+H]$^+$.

(2'-Methoxy)ethyl 1-acetyl-6-Decoxy-7-ethoxy-4-oxo-1,4-dihydroquinoline-3-carboxylate (13)

White powder, 0.26 g (52%), m.p. 175-178 °C; Purity > 96% , RT 12.8 min; 1H NMR (600 MHz, CDCl$_3$) δ 9.21 (s, 1H, H-2), 7.40 (s, 1H, H-5), 7.11 (s, 1H, H-8), 4.46 (d, $J = 5.3$ Hz, 2H, H-2'), 4.24 (q, $J = 7.0$ Hz, 2H, H-13), 4.10 (t, $J = 6.7$ Hz, 2H, H-12), 3.77 – 3.67 (d, $J = 5.3$ Hz, 2H, H-3'), 3.41 (s, 3H, H-5'), 2.51 (s, 3H, H-b), 1.92 – 1.82 (m, 2H, H-14), 1.58 – 1.46 (m, 6H, H-15 - H-17), 1.40 – 1.20 (m, 11H, H-18 - H-22), 0.93 – 0.75 (m, $J = 6.7$ Hz, 3H, H-11). 13C NMR (151 MHz, CDCl$_3$) δ 169.47(C-4), 164.88(C-23), 155.13(C-a), 154.24(C-6), 151.43(C-7), 149.14(C-2), 147.74(C-9), 116.85(C-10), 112.19(C-3), 107.61(C-5), 100.62(C-8), 70.36(C-3'), 69.21(C-13), 64.72(C-12), 64.28(C-2'), 58.98(C-5'), 31.87(C-14), 29.67(C-15), 29.54(C-16), 29.50(C-17), 29.34(C-18), 28.81(C-19), 25.98(C-20), 22.65(C-21), 21.01(C-b), 14.49(C-22), 14.09(C-11). HRMS-ESI m/ζ calcd for C$_{27}$H$_{48}$N$_5$O$_7$ 490.2799, found 490.2818 [M+H]$^+$.
Ethyl 6-decoxy-7-ethoxy-1-(morpholin-4-ylcarbonyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (14)

White powder, 0.46 g (92%), m.p. 164-166 °C; Purity > 97%, RT 10.3 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 9.19 (s, 1H, H-2), 7.40 (s, 1H, H-5), 7.23 (s, 1H, H-8), 4.35 (d, $J = 15.6$ Hz, 2H, H-24), 4.25 – 4.20 (m, 2H, H-13), 4.20 – 4.16 (t, $J = 6.6$ Hz, 2H, H-12), 4.12 – 4.01 (m, 8H, H-c, H-d.), 1.96 – 1.82 (m, 2H, H-14), 1.51 (t, $J = 15.5$ Hz, 3H, H-25), 1.42 – 1.36 (m, 6H, H-15 - H-17), 1.30 – 1.18 (m, 11H, H-18 - H-22), 0.91 – 0.79 (t, 3H, $J = 6.6$ Hz, H-11). 13C NMR (151 MHz, CDCl$_3$) δ (ppm): 172.68 (C-4), 165.57 (C-23), 153.59 (C-a), 152.54 (C-6), 151.91 (C-7), 145.82 (C-2), 138.72 (C-9), 120.49 (C-10), 117.94 (C-3), 108.59 (C-5), 100.25 (C-8), 69.30 (C-13), 69.19 (C-d), 66.46 (C-c), 64.51 (C-12), 61.40 (C-24), 31.85 (C-14), 29.67 (C-15), 29.54 (C-16), 29.50 (C-17), 29.34 (C-18), 28.81 (C-19), 25.98 (C-20), 22.65 (C-21), 14.37 (C-25), 14.49 (C-22), 14.09 (C-11). ESI-HRMS m/z calcd for C$_{29}$H$_{43}$N$_2$O$_7$ 531.3065, found 531.3035 [M+H]$^+$.

Ethyl 6-decoxy-7-ethoxy-1-[[3-(methylsulfonyl)-2-oximidazolidin-1-yl]carbonyl]-4-oxo-1,4-dihydroquinoline-3-carboxylate (15)

White powder, 0.46 g (92%), m.p. 160-162 °C; Purity > 97%, RT 9.8 min; 1H NMR (600 MHz, CDCl$_3$) δ (ppm): 9.19 (s, 1H, H-2), 7.40 (s, 1H, H-5), 7.23 (s, 1H, H-8), 4.35 (d, $J = 15.6$ Hz, 2H, H-24), 4.25 – 4.20 (m, 2H, H-13), 4.20 – 4.16 (t, $J = 6.6$ Hz, 2H, H-12), 4.12 (d, $J = 6.6$ Hz, 2H, H-c), 4.01 (d, $J = 6.6$ Hz, 2H, H-d), 3.39 (s, 3H, H-g), 1.96 – 1.82 (m, 2H, H-14), 1.51 (t, $J = 15.5$ Hz, 3H, H-25), 1.42 – 1.36 (m, 6H, H-15 - H-17), 1.30 – 1.18 (m, 11H, H-18 - H-22), 0.91 – 0.79 (m, 3H, $J = 6.6$ Hz, H-11). 13C NMR (151 MHz, CDCl$_3$) δ (ppm) 16.74 (C-4), 154.82 (C-23), 153.23 (C-a), 150.92 (C-f), 149.74 (C-6), 149.28 (C-7), 148.85 (C-2), 148.15 (C-9), 117.32 (C-10), 112.31 (C-3), 108.50 (C-5), 100.35 (C-8), 69.41 (C-13), 64.76 (C-12), 61.40 (C-24), 41.25 (C-c), 40.69 (C-d), 39.93 (C-g), 31.87 (C-14), 29.53 (C-15), 29.54 (C-16), 29.50 (C-17), 29.34 (C-18), 28.81 (C-19), 25.98 (C-20), 22.65 (C-21), 14.37 (C-25), 14.49 (C-22), 14.09 (C-11). ESI-HRMS m/z calcd for C$_{29}$H$_{43}$N$_2$O$_7$S 608.2636, found 608.2609 [M+H]$^+$.

121
In vitro antimalarial assays

P. falciparum parasites were maintained at 37 °C in human erythrocytes (O+) suspended in complete culture medium [RPMI 1640 medium (Sigma-Aldrich) supplemented with 25 mM HEPES (Sigma-Aldrich), 20 mM D-glucose (Sigma-Aldrich), 200 μM hypoxanthine (Sigma-Aldrich), 0.2% sodium bicarbonate, 24 μg/mL Gentamycin (Sigma-Aldrich) and 0.5% AlbuMAX II] in a gaseous environment of 90% N\textsubscript{2}, 5% O\textsubscript{2}, and 5% CO\textsubscript{2}.

In vitro ring-stage intra-erythrocytic *P. falciparum* parasite cultures (Genotyped drug sensitive strains; W2 (Chloroquine, quinine, pyrimethamine and cycloguanil resistant), K1 (chloroquine, pyrimethamine, mefloquine and cycloguanil resistant) and NF54 (drug sensitive) (200 μL at 1% haematocrit, 1% parasitaemia) were treated with the DQ derivatives series. The controls for this assay included chloroquine disulphate (1 μM, as positive control) and complete RPMI media (as negative control) and grown for 96 h at 37 °C under the 90% N\textsubscript{2}, 5% O\textsubscript{2}, and 5% CO\textsubscript{2} gas mixture in 96-well plates.

At the end of the 96 h growth period, equal volumes (100 μL each) of the *P. falciparum* parasite cultures were combined with SYBR Green I lysis buffer (0.2 μL/mL 10 000 x SYBR Green I, Invitrogen; 20 mM Tris, pH 7.5; 5 mM EDTA; 0.008% (w/v) saponin; 0.08% (v/v) Triton X-100).

The samples were incubated at 37 °C for 1h after which the fluorescence was measured using a Fluoroskan Ascent FL microplate fluorometer (Thermo Scientific, excitation at 485 nm and emission at 538 nm). The background fluorescence (i.e. that measured in the samples derived from chloroquine-treated iRBC samples in which parasite proliferation was completely inhibited) was subtracted from the total fluorescence measured for each sample to provide a measure of parasite proliferation. Data obtained were analysed in Excel 2010 and sigmoidal dose-response curves were plotted using GraphPad 6.0.

Decoquinate \textit{I} and the derivatives were screened at 5 μM and 1 μM against the NF54 strain of asexual *P. falciparum* parasites to determine their % inhibition. Compounds showing near complete inhibition at 5 μM and 1 μM (Figure S1), were further screened at 500 and 100 nM against NF54 parasites (Figure S2). Compounds were weighed (1 mg) and dissolved in 100% DMSO and made up to a 10 mM stock and stored at -20 °C.

Solutions of compounds were thawed at room temperature (~1 h) prior to an assay to prepare working solutions. The final starting concentrations (5, 1 μM and 500, 100 nM) were
prepared in complete RPMI-1640 media and aliquoted in triplicate into a 96-well plate. The %DMSO in the starting concentration was 0.05% for the 5 μM, 0.000125% for the 1 μM, 0.05% for the 500 nM and 0.00000125% for the 100 nM drug concentrations; these concentrations were below the parasite inhibition threshold as previously determined in our laboratory. Following dual point assays, compounds were subjected to \textit{in vitro} IC$_{50}$ determinations against asexual \textit{P. falciparum} NF54, K1 and W2 parasites. The respective IC$_{50}$ values for compounds in the series showing activity <200 nM were determined. The same methods and conditions were applied for dissolving and storing the compounds as described for the dual point assays. Fresh stock solutions of the compound used for the IC$_{50}$ determinations were prepared prior to assays and stored at -20 °C. All assays were performed in triplicate for at least three independent biological repeats.

\textbf{In vitro cytotoxicity}

The WI-38 cell line (normal human fetal lung fibroblast) from ECACC was maintained as a monolayer cell culture at 37 °C, 5% CO$_2$, 95% air and 100% relative humidity in EMEM containing 10% fetal bovine serum, 2 mM L-glutamine and 50 μg/mL gentamicin. For this screening experiment, the cells (21 - 50 passages) were inoculated in 96-well microtiter plates at plating densities of 10 000 cells/well and incubated for 24 hours. After 24 hours, the cells were treated with the experimental drugs; which had previously been dissolved in DMSO and diluted in medium to produce five concentrations. Neat cells served as the control. The blank contained complete medium without cells. Parthenolide was used as a standard. The plates were incubated for 48 hours after addition of the compounds. Viable cells were fixed to the bottom of each well with cold 50% trichloroacetic acid, washed, dried and dyed by SRB. Unbound dye was removed and protein bound dye was extracted with 10 mM Tris base for optical density determination at a wavelength of 540 nm using a multiwell spectrophotometer. Data analysis was performed using GraphPad Prism software. 50% of cell growth inhibition (IC$_{50}$) was determined by non-linear regression.
Acknowledgement

This research project is funded by the South African Medical Research Council (MRC) with funds from National Treasury under its Economic Competitiveness and Support Package. The South African National Research Foundation is thanked for financial support to LMB (UID 84627) and RKH (Grant No. 90682). Any opinion, finding and conclusion or recommendation expressed in this material is that of the author(s) and the NRF does not accept any liability in this regard. The authors wish to thank the North-West University for financial support, CSIR for cytotoxicity screening, and Dr Jordaan Johan for recording mass spectra and Mr Andre Joubert for recording NMR spectra.
References

125

Chapter 7

Summary and conclusions

Malaria is the third leading cause of human deaths worldwide. Over 40% of the world's population currently inhabit endemic malaria areas in Africa, Asia, and in South and Central America. Sub-Saharan Africa alone makes up eighty per cent (80%) of this total endemic region (WHO, 2015). In 2015, 438,000 people died from the disease (WHO, 2015). Pregnant women and children under the age of five are the most vulnerable (Shetty, 2012), as they either have reduced, or no acquired immunity against malaria (Roggelin & Cramer, 2014).

Malaria is caused by a protozoan, belonging to the genus, *Plasmodium*. Five species of *Plasmodium*, namely *P. falciparum, P. ovale, P. vivax, P. malariae* and *P. knowlesi* cause malaria in humans. Of these species, *P. falciparum* is responsible for the most severe form of the disease and its prevalence is highest in Sub-Saharan Africa than in any other region (Guerra et al., 2010).

Chemotherapy currently is the sole option for treating malaria (Frevert, 2004). The challenging issue with treating malaria using chemotherapy is the widespread development of resistance towards existing anti-malarial drugs. This is evident from the worldwide spread of resistant *P. falciparum* strains towards prominent anti-malarial drugs, like chloroquine, Fansidar, mefloquine, amodiaquine and piperaquine (Ridley, 2002). Even more concerning is that the parasite has already developed resistance towards artemisinin combination therapies (ACTs) as well (Phyo et al., 2012; Makam et al., 2014). ACTs currently are the cornerstone of malaria treatments and form the last line of defence against the disease.

Tuberculosis (TB), a disease that is spread through the inhalation of droplets from an infected individual when he or she coughs, is caused by the bacterium, *Mycobacterium tuberculosis* (*Mtb*) (Rao et al., 2013). Although TB is one of the oldest diseases known in human history (Smith, 2003), it is still the leading cause of human mortalities worldwide, as the number of deaths resulting from TB presently outweighs that being caused by any other disease, including AIDS and malaria (WHO, 2015). In 2014, 9.6 million people were infected with TB, of which 1.4 million had succumbed from it (WHO, 2015). Unlike malaria, the morbidity and
mortality numbers that result from TB are not limited to tropical zones (WHO, 2015), but are even higher in temperate zones, like Russia and the Eastern European region, which together account for 58% of the total TB burden (Wang et. al., 2015; WHO, 2015). In essence, TB is endemic to both temperate and tropical zones, with Russia, India, China, and South Africa being the hot spots of the disease (Churchyard et. al., 2014).

Chemotherapy is also the cornerstone for the control and treatment of TB. Besides the long treatment time of 2 to 6 months and the serious side effects (e.g. hepatotoxicity and neuropathy), associated with the use of current anti-tubercular drugs, Mtb strains resistant to current drugs like rifampicin, isoniazid, fluoroquinolones have emerged and spread globally (Yempalla et. al., 2015).

The growing resistance towards anti-malarial and anti-TB drugs emphasises the need to discover new chemotherapeutic agents for the treatment of these diseases. It is also imperative that these new therapies would be cost-effective, efficient and safe.

One of the fastest and cheapest approaches to discover new drugs is to start with a known therapeutic agent, identify its potentials and liabilities, then define strategies to address those liabilities to augment its therapeutic potential.

Decoquinate (DQ) is a known therapeutic agent in veterinary medicine, which was identified as a potent anti-malarial agent, having strong gametocytocidal and schizonticidal activities, with a unique mode of action that targets the cytochrome bc_{1} complex (Da Cruz et. al., 2012). The outcomes of another study also confirmed that decoquinate had demonstrated strong activity against hypnozoites, both in vivo and in vitro (Bonamy et. al., 2011). From these studies, it has become obvious that decoquinate meets the Medicine for malarial ventures (MMV) requirements for possible qualification as a next generation drug, needed for the eradication of malaria (Burrows et. al., 2013). These requirements are that a drug candidate should be able to kill gametocytes, hypnozoites and other liver stages, thereby inhibiting transmission and relapse, as well as to provide prophylaxes for the disease. With respect to TB, DQ also has a flexible and lipophilic 10-carbon alkyl chain, and as such should easily penetrate macrophages and the lipophilic mycolic acid coating of the Mtb cells. However, the poor aqueous solubility of DQ represents the biggest disadvantage as a therapeutic agent for the treatment of systemic diseases, like malaria and tuberculosis. DQ also has a metabolically susceptible ester, which, if hydrolysed into carboxylic acid, may result in its low bio-availability in vivo.
This study was aimed at addressing the poor aqueous solubility of DQ, as well as replacing the metabolically susceptible ester group with amide groups that would be more resistant to hydrolysis. To achieve this, the secondary amine at the N-1 position and/or the ester at the C-3 position of DQ were transformed during syntheses. The secondary amine was either transformed by treating DQ with an alkyl bromide in the presence of potassium carbonate to obtain N-alkylated derivatives, or by treating DQ with an acyl chloride in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to generate N-acylated derivatives. The ester was transformed into amides by treating DQ with amines in the presence of DBU. Seventy-seven novel derivatives, with varied groups attached to either position 1 and/or 3 of DQ, were generated. These derivatives were screened in vitro against the H37Rv strain of Mycobacterium tuberculosis and against W1-cell lines for anti-TB activity and cytotoxicity, respectively, and also against NF54, K1, and W2 strains of P. falciparum for anti-malarial activity.

From the analysis of the biological data generated during this study, the following conclusions were made:

- The derivatisation of decoquinate at N-1 and the replacement of the ester had led to derivatives that were soluble in polar (ethanol, methanol, dimethylsulfoxide) and non-polar (dichloromethane, chloroform) solvents.
- The C-3 ethyl ester functional group of decoquinate was found important for anti-malarial activity, but not for anti-tubercular activity. While those derivatives wherein the ester had been transformed into an amide generally showed inferior, or no anti-malarial activities, compared to decoquinate, those same derivatives were generally more active than decoquinate against Mtb.
- Modifications at the N-1 position of the amide derivatives of decoquinate generally increased their anti-TB activities. The highest anti-TB activity was obtained from a tertiary amide, bearing an ethyl group attached to N-1.
- Derivatisation at the N-1 position of the quinolone ring had variable impacts on anti-malarial activity. It was found that the attachment of an alkyl group to N-1 had led to derivatives with a loss in activity, while the conversion of the N-1 into an amide, or urea had resulted in increased activity, relative to decoquinate. The most outstanding anti-malarial activity was obtained from the conversion of the secondary amine into a urea, bearing a sulfonyl moiety.

132
In summary, this project has delivered a non-toxic hit compound with outstanding *in vitro* anti-malarial activities (IC$_{50}$: NF54 1 nM; K1 1 nM; W2 1 nM), as compared to DQ (IC$_{50}$: NF54 26 nM; K1 64 nM; W2:15 nM), chloroquine (IC$_{50}$: NF54 139 nM; K1 154 nM; W2 233 nM), artesunate (IC$_{50}$: NF54 7 nM; K1 8 nM; W2 6 nM) and artemether (IC$_{50}$: NF54 5 nM; K1 7 nM; W2 4 nM). The study has also led to the discovery of a safe and potent anti-tubercular hit (H37Rv: MIC$_{90}$: 1 µM; MIC$_{99}$: 1 µM). Both of these promising derivatives will undergo further evaluations in their respective medicinal areas.

Straightforward conversion of decoquinate into inexpensive tractable new quinolones with significant antimalarial activities.

1 Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa.
2 Department of Biochemistry, Centre for Sustainable Malaria Control, University of Pretoria, Pretoria 0002, South Africa
3 Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.

* Correspondence: richard.haynes@nwu.ac.za; Tel: +27; Fax: +27 18 299 4243; david.nda@nwu.ac.za; Tel: +27 18 299 2256; Fax: +27 18 299 4243.
Supporting data for chapter 4

Supporting Information

Experimental Section

General procedures

The amines, acyl, sulfonyl, carbamoyl and alkyl halides in this study were purchased from either Sigma Aldrich or AKSci and were used as supplied. NMR spectra were obtained on a 600 MHz Bruker Avance™ III spectrometer as solutions in deuterated solvents (CDCl₃, or DMSO-d₆). All chemical shifts (δ) are reported in parts per million (ppm) values. ¹H chemical shifts are reported downfield of tetramethylsilane (TMS), and were internally referenced to the residual proton in CDCl₃ (7.26 ppm), or DMSO-d₆ (2.50 ppm). ¹³C chemical shifts were internally referenced to resonances in CDCl₃ (δ 77.16 ppm), or DMSO-d₆ (δ 39.51 ppm). Peak multiplicities are abbreviated as follows: s (singlet), d (doublet), dd(doublet of doublet), t (triplet), q (quartet), p (pentet), and m (multiplet). Coupling constant (J) are reported in Hz. NMR data were analyzed using MestReNova Software, version 5.3.2-4936. Exact mass measurements were recorded on Bruker MicroTOF Q II mass spectrometer with its APCI source set at 300 °C coupled chromatography. Calculated LogP (cLogP) values were generated using ACD/ChemSketch version 14.02 with Bruker Compass Data analysis 4.0 software. A full scan, ranging between 50–1500 m/z, was generated at a capillary voltage of 4500 V, end plate offset voltage of -500 V, and a collision cell RF voltage of 100 V. Infrared (IR) spectra were recorded on a Bruker Alpha-P FTIR instrument. Melting points (mp) were determined with a Büchi melting point B-545 instrument and were uncorrected. Thin layer chromatography (TLC) was performed using silica gel plates (60F₂₅₄) (Merck) and components were visualized by ultraviolet light (254 nm). Silica gel 230-400 (particle size 40-63 μm) mesh was used for column

Syntheses

(a) To a 100 mL two neck flask containing decoquinate 1 (1 g, 2.34 mmol) and DBU (320 μL, 0.33 g, 2.1 mmol, 0.9 eq.) in chloroform (25 mL) was added the primary or secondary amine (5 eq.). The resulting mixture was stirred under reflux for 24-72 h. Progress of the reactions was monitored by tlc. Upon completion, the reaction mixture was concentrated in vacuo. The concentrated residue was taken into chloroform (20 mL) and washed with distilled water (4 x 20 mL). The organic layer was dried (Na₂SO₄), filtered and the filtrate was evaporated to dryness to leave the crude product, which was subjected to flash column chromatography on
silica gel. The product was eluted with a mixture of dichloromethane/methanol (10:1, v/v). The product was recrystallized from ethyl acetate and air dried. The amide derivatives 2-21 were thereby obtained in good yields using this procedure. Data for derivatives 2, 3 and 6 are given below.

(b) To a 100 mL two neck flask containing DQ 1 (0.5 g 1.22 mmol. 1 eq), DBU (100 µL 0.7 mmol, 0.6 eq.) in chloroform (15 mL) was added the appropriate acyl or sulfonyl halide, or alkyl halide (5 eq). The mixture was stirred under reflux for 15 h, and then washed with aqueous saturated NH₄Cl solution (3 x 20 mL). The organic layer was dried (Na₂SO₄), filtered and the filtrate was evaporated to dryness to leave the crude product, which was submitted flash column chromatography on silica gel. Elution with dichloromethane/methanol (20:1, v/v) gave the product mixture, that was evaporated under reduced pressure to leave the crude product that was recrystallized from acetone and air dried overnight. The N-substituted derivatives 30-35 were obtained in 50-80% yields. Data for derivatives 30, 31 and 33 are given below.

The foregoing procedure was applied to the morpholino amide 2 (0.35 g, 0.8 mmol, 1 eq.) to give the N-substituted derivatives 22-29.
Supporting data for chapter 4

DQ and key derivatives in this study have the general structure below.

![Chemical Structure]

<table>
<thead>
<tr>
<th>Compd</th>
<th>R</th>
<th>R'</th>
<th>Compd</th>
<th>R</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>25</td>
<td>24</td>
<td>N</td>
<td>3'</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>2'</td>
<td>3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>2'</td>
<td>3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>5'</td>
<td>7'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6-Decoxy-7-ethoxy-3-(morpholin-4-ylcarbonyl)quinolin-4(1H)-one (2)
White powder; yield: 80%, 0.87 g; m.p.: 182-184 °C; HPLC: 30% ACN/ 70% 0.1% H₃PO₄ gradient, >93% pure, rt = 5 min; APCI-HRMS (m/z): 459.2793 [M+H]+ (calculated for C₂₆H₃₉N₂O₅: 459.2853); IR (ATR) νmax cm⁻¹: 3167, 3135, 2988, 2916, 1633, 1604, 1566, 1539, 1000-574; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 11.96 (s, 1H, H-1), 7.67 (s, 1H, H-2), 7.52 (s, 1H, H-5), 6.70 (s, 1H, H-8), 4.01 – 3.92 (m, 4H, H-12, H-13), 3.76 – 3.68 (m, 8H, H-2', H-5'), 1.81 (m, J = 7.0 Hz, 2H, H-14), 1.45 – 1.35 (m, 4H, H-15, H-16), 1.37 – 1.18 (m, 13H, H-11, H-17,-H-21), 0.85 (t, J = 6.9 Hz, 3H, H-22); ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 172.75 (C-4), 167.79 (C-23), 153.61 (C-6), 147.80 (C-7), 138.63 (C-2), 135.00 (C-9), 120.22 (C-10), 115.47 (C-3), 105.57 (C-5), 99.84 (C-8), 69.17 (C-13), 67.23 (C-3', C-4'), 64.61 (C-12), 48.08 (C-2', C-5'), 31.88 (C-14), 29.54 (C-15, C-16), 29.35 (C-17, C-18), 28.97 (C-19), 25.93 (C-20), 22.66 (C-21), 14.45 (C-11), 14.10 (C-22).
Supporting data for chapter 4

6-Decoxy-7-ethoxy-N-(4-fluorobenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (3)
White powder; yield: 80%, 0.82 g; m.p.: 202-203 °C; HPLC: 30% ACN/ 70% 0.1% H₃PO₄ gradient, >92% pure, rt = 16.5 min; APCI-HRMS (m/z): 497.2734 [M+H]+ (calculated for C₂₉H₃₈FN₂O₄: 497.2810); IR (ATR) νmax cm⁻¹: 3167, 3135, 2988, 2916, 1648, 1627, 1614, 1580, 1531, 1498; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 11.85 (s, 1H, H-1), 11.11 (t, J = 5.8 Hz, 1H, H-1'), 8.67 (s, 1H, H-2), 7.67 (s, 1H, H-5), 7.28 (dd, J = 8.4, 5.3 Hz, 2H, H-5', H-7'), 6.94 (t, J = 8.5 Hz, 2H, H-4', H-8'), 6.81 (s, 1H, H-8), 4.66 (d, J = 5.8 Hz, 2H, H-2'), 4.05 (t, J = 6.9 Hz, 2H, H-13), 3.92 (t, J = 6.9 Hz, 2H, H-12), 1.84 (q, J = 7.4, 6.7 Hz, 4H, H-14,-15), 1.47 – 1.18 (m, 15H, H-11, H-16,-H-21,), 0.92 – 0.82 (m, 3H, H-22); ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 176.11 (C-4), 166.87 (C-23), 162.83 (C-6'), 153.82 (C-6,), 148.18 (C-7), 141.18 (C-2), 134.77 (C-9), 133.94 (C-3'), 128.93 (C-4', C-8'), 120.70 (C-10), 115.51 (C-5', C-7'), 110.05 (C-3), 105.92 (C-5), 99.85 (C-8), 69.26 (C-13), 64.70 (C-12), 42.72 (C-2'), 31.87 (C-14), 29.53 (C-15, C-16), 28.85 (C-19), 25.90 (C-20), 22.66 (C-21), 14.38 (C-11), 14.10 (C-22).

6-Decoxy-7-ethoxy-N-[2-(2-hydroxyethoxy)ethyl]-4-oxo-1,4-dihydroquinoline-3-carboxamide (6)
White powder; yield: 68%, 0.68 g; m.p.: 133-136 °C; HPLC: 30% ACN/ 70% 0.1% H₃PO₄ gradient, > 96% pure, rt= 8.7 min; APCI-HRMS (m/z): 477.2911 [M+H]+ (calculated for C₂₆H₄₁N₂O₆: 477.2959); IR (ATR) νmax cm⁻¹: 3336, 3178, 3135, 3085, 2922, 2849, 1639, 1581, 1561, 1523, 1499; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 11.99 (s, 1H, H-1), 10.73 (t, J = 5.3 Hz, 1H, H-1'), 8.64 (s, 1H, H-2), 7.39 (s, 1H, H-5), 6.80 (s, 1H, H-8), 4.43 (s, 1H, H-7'), 4.01 (t, J = 7.0 Hz, 2H, H-13), 3.86 (t, J = 6.8 Hz, 2H, H-12), 3.83 – 3.78 (m, 2H, H-2'), 3.71 – 3.60 (m, 6H, H-3', H-5', H-6'), 1.76 (t, J = 6.9 Hz, 2H, H-14), 1.46 – 1.19 (m, 17H, H-11, H-15,-H-21), 0.87 (dt, J = 21.8, 7.3 Hz, 3H, H-22); ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 175.76 (C-4), 166.62 (C-23), 153.66 (C-6), 147.86 (C-7), 141.49 (C-2), 134.73 (C-9), 120.40 (C-10), 110.13 (C-3), 105.39 (C-5), 99.88 (C-8), 72.38 (C-2'), 69.80 (C-6'), 68.54 (C-3', C-5'), 64.63 (C-13), 61.73 (C-12), 31.90 (C-14), 29.65 (C-15, C-16), 29.27 (C-17, C-18), 28.92 (C-19, C-20), 22.67 (C-21), 14.44 (C-11), 14.10 (C-22).
Supporting data for chapter 4

1-Acetyl-6-decoxy-7-ethoxy-3-(morpholin-4-ylcarbonyl) quinolin-4(1H)-one (24)
White powder; yield: 64%, 0.24 g; m.p. 142-144°C; HPLC: 30% ACN/70% 0.1% H₃PO₄ gradient, > 83% pure, rt = 12.6 min; APCI-HRMS (m/z): 501.2895 [M+H]+ (calculated for C₂₈H₄₁N₂O₆: 501.2959); IR (ATR) νmax cm⁻¹: 2988, 2916, 1633, 1604, 1566, 1539, 1000-574;
¹H NMR (600 MHz, CDCl₃) δ (ppm): 8.57 (s, 1H, H-2), 7.3 (s, 1H, H-5), 6.92 (s, 1H, H-8), 4.18 – 4.11 (m, 2H, H-13), 4.09 – 4.03 (m, 2H, H-12), 3.74 – 3.30 (m, J = 16.1 Hz, 8H, H-2′,H-5′), 2.43 (s, 3H, H-b), 1.88 – 1.73 (m, 2H, H-14), 1.57 – 1.45 (m, 4H, H-15, H-16), 1.43 – 1.37 (m, 2H, H-17), 1.33 – 1.17 (m, 11H, H-11, H-18,-H-21), 0.87 (dt, J = 14.0, 7.3 Hz, 3H, H-22);
¹³C NMR (151 MHz, CDCl₃) δ (ppm) :172.83 (C-4), 167.24 (C-a), 165.61 (C-23), 153.25 (C-6), 147.71 (C-7), 144.17 (C-2), 140.83 (C-9), 134.49 (C-10), 120.37 (C-3), 107.01 (C-5), 99.63 (C-8), 69.24 (C-13), 67.32 (C-12), 64.83 (C-4′), 47.94 (C-2′), 42.85 (C-5′), 31.86 (C-14), 29.52 (C-15), 29.49 (C-16), 29.31 (C-17), 29.28 (C-18), 28.88 (C-19), 27.03 (C-b), 25.89 (C-20), 22.64 (C-21), 14.41 (C-11), 14.08 (C-22).

Ethyl-6-decoxy-7-ethoxy-4-oxo-1-propanoyl-1,4-dihydroquinoline-3-carboxylate, (30)
White powder; yield: 60%, 0.30 g; m.p.: 160-162°C; HPLC: 30% ACN, 70% 0.1% H₃PO₄ gradient, > 96% pure, rt=9.3 min; APCI-HRMS (m/z): 474.2806 [M+H]+ (calculated for C₂₇H₄₀N₀₆: 474.2850); IR (ATR) νmax cm⁻¹: 2988, 2916, 1741, 1604, 1566, 1539, 1000-574;
¹H NMR (600 MHz, CDCl₃) δ (ppm): 9.15 (s, 1H, H-2), 7.41 (s, 1H, H-5), 7.12 (s, 1H, H-8), 4.47 – 4.30 (m, 2H, H-24), 4.31 – 4.21 (m, 2H, H-13), 4.13 – 4.03 (m, 2H, H-12), 2.91 – 2.81 (m, 2H, H-b), 1.88 – 1.73 (m, 2H, H-14), 1.57 – 1.45 (m, 4H, H-15, H-16), 1.43 – 1.37 (m, 2H, H-17), 1.33 – 1.17 (m, 17H, H-11, H-18,-H-21, H-25, H-c), 0.87 (dt, J = 14.0, 7.3 Hz, 3H, H-22);
¹³C NMR (151 MHz, CDCl₃) δ (ppm) :172.83 (C-4), 165.61 (C-23), 153.25 (C-6), 150.44 (C-7), 144.37 (C-2), 130.86 (C-9), 117.55 (C-10), 113.16 (C-3), 108.72 (C-5), 100.60 (C-8), 69.15 (C-13), 68.11 (C-12), 64.19 (C-24), 38.68 (C-b), 31.87 (C-14), 29.52 (C-15), 29.49 (C-16), 29.31 (C-17), 29.28 (C-18), 28.88 (C-19), 25.89 (C-20), 22.64 (C-21), 14.39 (C-c), 14.25 (C-25), 14.11 (C-11), 14.09 (C-22).
Supporting data for chapter 4

Ethyl-1-acetyl-6-decoxy-7-ethoxy-4-oxo-1,4-dihydroquinoline-3-carboxylate (31)

White powder; yield: 84%, 0.42 g; m.p.: 159-162 °C; HPLC: 30% ACN/ 70% 0.1% H₃PO₄ gradient, > 97% pure, rt= 8.2 min; APCI-HRMS (m/z): 460.2656 [M+H]+ (calculated for C_{26}H_{38}N_{6}O_{6}: 460.2694); IR (ATR) \(\nu_{\text{max}} \) cm\(^{-1}\): 2988, 2916, 1743, 1604, 1566, 1539, 1000-574; \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta \) (ppm): 9.15 (s, 1H, H-2), 7.41 (s, 1H, H-5), 7.12 (s, 1H, H-8), 4.47 – 4.30 (m, 2H, H-24), 4.31 – 4.21 (m, 2H, H-13), 4.13 – 4.03 (m, 2H, H-12), 2.51 (s, 3H, H-b), 1.88 – 1.73 (m, 2H, H-14), 1.57 – 1.45 (m, 4H, H-15, H-16), 1.43 – 1.37 (m, 2H, H-17), 1.33 – 1.17 (m, 14H, H-11, H-18, -21, -25), 0.87 (dt, \(J = 14.0, 7.3 \) Hz, 3H, H-22); \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta \) (ppm): 172.83 (C-4), 165.61 (C-23), 154.46 (C-a), 154.06 (C-6), 150.44 (C-7), 149.37 (C-2), 130.86 (C-9), 117.55 (C-10), 113.16 (C-3), 108.72 (C-5), 100.60 (C-8), 69.15 (C-13), 68.11 (C-12), 31.87 (C-14), 29.52 (C-15), 29.49 (C-16), 29.31 (C-17), 29.28 (C-18), 28.88 (C-19), 25.89 (C-20), 22.64 (C-21), 21.13 (C-b), 14.39 (C-25), 14.27 (C-11), 14.09 (C-22).

Ethyl-6-decoxy-7-ethoxy-4-oxo-1-(piperidin-1-ylcarbonyl)-1,4-dihydroquinoline-3-carboxylate (33)

White powder; yield: 63.7%, 0.32 g; m.p.: 170-172 °C; HPLC: 30% ACN/ 70% 0.1% H₃PO₄ gradient, > 96% pure, rt= 7.3 min; APCI-MS (m/z): 529.3236 [M+H]+ (calculated for C_{30}H_{45}N_{2}O_{6}: 529.3272); IR (ATR) \(\nu_{\text{max}} \) cm\(^{-1}\): 2988, 2916, 1733, 1604, 1566, 1539, 1000-574; \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta \) (ppm): 9.15 (s, 1H, H-2), 7.42 (s, 1H, H-5), 7.12 (s, 1H, H-8), 4.47 – 4.30 (m, 2H, H-24), 4.31 – 4.21 (m, 2H, H-13), 4.13 – 4.03 (m, 2H, H-12), 2.71 – 2.01 (m, 10H, H-b, -H-f), 1.88 – 1.73 (m, 2H, H-14), 1.57 – 1.45 (m, 4H, H-15, H-16), 1.43 – 1.37 (m, 2H, H-17), 1.33 – 1.17 (m, 14H, H-11, H-18,-H-21, H-25), 0.87 (dt, \(J = 14.0, 7.3 \) Hz, 3H, H-22); \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta \) (ppm): 172.83 (C-4), 165.61 (C-23), 154.48 (C-a), 154.06 (C-6), 150.44 (C-7), 149.37 (C-2), 130.86 (C-9), 117.55 (C-10), 113.16 (C-3), 108.72 (C-5), 100.60 (C-8), 69.15 (C-13), 68.11 (C-12), 54.58 (C-b, C-f), 31.89 (C-c, C-e), 31.87 (C-14), 29.52 (C-d'), 29.52 (C-15), 29.49 (C-16), 29.31 (C-17), 29.28 (C-18), 28.88 (C-19), 25.89 (C-20), 22.64 (C-21), 14.39 (C-25), 14.27 (C-11), 14.09 (C-22).
Supporting data for chapter 4

In vitro antimalarial assays

P. falciparum parasites were maintained at 37 °C in human erythrocytes (O+) suspended in complete culture medium [RPMI 1640 medium (Sigma-Aldrich) supplemented with 25 mM HEPES (Sigma-Aldrich), 20 mM D-glucose (Sigma-Aldrich), 200 μM hypoxanthine (Sigma-Aldrich), 0.2% sodium bicarbonate, 24 μg/mL Gentamycin (Sigma-Aldrich) and 0.5% AlbuMAX II] in a gaseous environment of 90% N₂, 5% O₂, and 5% CO₂. In* vitro* ring-stage intra-erythrocytic *P. falciparum* parasite cultures (Genotyped drug sensitive strains; W2 (Chloroquine, quinine, pyrimethamine and cycloguanil resistant), K1 (chloroquine, pyrimethamine, mefloquine and cycloguanil resistant) and NF54 (drug sensitive) (200 μL at 1% haematocrit, 1% parasitaemia) were treated with the DQ derivatives series. The controls for this assay included chloroquine disulphate (1 μM, as positive control) and complete RPMI media (as negative control) and grown for 96 h at 37 °C under the 90% N₂, 5% O₂, and 5% CO₂ gas mixture in 96-well plates.

At the end of the 96 h growth period, equal volumes (100 μL each) of the *P. falciparum* parasite cultures were combined with SYBR Green I lysis buffer (0.2 μL/mL 10 000 x SYBR Green I, Invitrogen; 20 mM Tris, pH 7.5; 5 mM EDTA; 0.008% (w/v) saponin; 0.08% (v/v) Triton X-100).

The samples were incubated at 37 °C for 1h after which the fluorescence was measured using a Fluoroskan Ascent FL microplate fluorometer (Thermo Scientific, excitation at 485 nm and emission at 538 nm). The ‘background’ fluorescence (i.e. that measured in the samples derived from chloroquine-treated iRBC samples in which parasite proliferation was completely inhibited) was subtracted from the total fluorescence measured for each sample to provide a measure of parasite proliferation.

Data obtained were analysed in Excel 2010 and sigmoidal dose-response curves were plotted using GraphPad 6.0.

Decoquinate 1 and the derivatives were screened at 5 μM and 1 μM against the NF54 strain of asexual *P. falciparum* parasites to determine their % inhibition. Compounds showing near complete inhibition at 5 μM and 1 μM (**Figure S1**), were further screened at 500 and 100 nM against NF54 parasites (**Figure S2**). Compounds were weighed (1 mg) and dissolved in 100% DMSO and made up to a 10 mM stock and stored at -20°C. Some compounds, however, did not completely dissolve (1, 7, 11, 13, 21, 30, 31, 33, 34 and 35) despite being incubated at 37
Supporting data for chapter 4

°C for >1h. These were dissolved at lower stock concentrations (<5 mM) and treated with 1xPBS. Therefore, prior to assay these compounds were vortexed thoroughly and the suspensions were immediately used to make up the working solutions in complete RMPI-1640 media.

Solutions/suspensions of compounds were thawed at room temperature (~1 h) prior to an assay to prepare working solutions. The final starting concentrations (5, 1 μM and 500, 100 nM) were prepared in complete RPMI-1640 media and aliquoted in triplicate into a 96-well plate. The %DMSO in the starting concentration was 0.05% for the 5 μM, 0.000125% for the 1 μM, 0.05% for the 500 nM and 0.00000125% for the 100 nM drug concentrations; these concentrations were below the parasite inhibition threshold as previously determined in our laboratory. Following dual point assays, compounds were subjected to in vitro IC$_{50}$ determinations against asexual $P. falciparum$ NF54, K1 and W2 parasites. The respective IC$_{50}$ values for compounds in the series showing activity <100 nM were determined (DQ 1 and compounds 2, 5, 30, 31, 33). The same methods and conditions were applied for dissolving and storing the compounds as described for the dual point assays. Fresh stock solutions of the compound used for the IC$_{50}$ determinations were prepared prior to assays and stored at -20 °C. All assays were performed in triplicate for at least three independent biological repeats.
Compounds were incubated at 5 μM and 1 μM against asexual NF54 *P. falciparum* parasites. Several compounds showed near complete inhibition of parasite proliferation as determined with the SYBR Green I fluorescence based assay following incubation at 37 ºC for 96 h with decoquinate 1 as control. Data analysis were performed in triplicate for n = 3 independent biological repeats with GraphPad 6.0; the average % inhibition is shown and error bars indicate SEM.
Figure S2: Inhibitory potential against asexual NF54 *P. falciparum* parasites.

The most active compounds at 5 µM and 1 µM were incubated at 500 nM and 100 nM against asexual NF54 *P. falciparum* parasites. Eight compounds showed near complete inhibition of parasite proliferation as determined with the SYBR Green I fluorescence based assay following incubation at 37 °C for 96 h. Data analysis were performed in triplicate for n=3 independent biological repeats with GraphPad 6.0; the average % inhibition is shown and error bars indicate SEM.

In vitro cytotoxicity

The WI-38 cell line (normal human fetal lung fibroblast) from ECACC was maintained as a monolayer cell culture at 37 °C, 5% CO₂, 95% air and 100% relative humidity in EMEM containing 10% fetal bovine serum, 2 mM L-glutamine and 50 µg/mL gentamicin. For this screening experiment, the cells (21 - 50 passages) were inoculated in 96-well microtiter plates at plating densities of 10 000 cells/well and incubated for 24 hours. After 24 hours, the cells were treated with the experimental drugs; which had previously been dissolved in DMSO and diluted in medium to produce five concentrations. Neat cells served as the control. The blank contained complete medium without cells. Parthenolide was used as a standard. The plates were incubated
Supporting data for chapter 4

for 48 hours after addition of the compounds. Viable cells were fixed to the bottom of each well with cold 50% trichloroacetic acid, washed, dried and dyed by SRB. Unbound dye was removed and protein bound dye was extracted with 10 mM Tris base for optical density determination at a wavelength of 540 nm using a multiwell spectrophotometer. Data analysis was performed using GraphPad Prism software. 50% of cell growth inhibition (IC$_{50}$) was determined by non-linear regression.
Supporting data for chapter 4

NMR and HRMS spectra of key derivatives

Compound 2

1H NMR spectrum of Compound 2

13C NMR spectrum of Compound 2
HRMS spectrum of Compound 2

Acquisition Parameter

- Source Type: ESI
- Focus: Not active
- Scan Begin: 50 m/z
- Scan End: 3000 m/z
- Ion Polarity: Positive
- Set Capillary: 4500 V
- Set End Plate Offset: -500 V
- Set Collision Cell RF: 150.0 Vpp
- Set Nebulizer: 1.6 Bar
- Set Dry Heater: 200 °C
- Set Dry Gas: 8.0 l/min
- Set Divert Valve: Waste

The spectrum shows a peak at m/z 458.2753, corresponding to the molecular formula C_{10}H_{21}O_4. The structure indicates the presence of two oxygen atoms and two nitrogen atoms.
Supporting data for chapter 4

Compound 3

1H NMR spectrum of Compound 3

![NMR spectrum of Compound 3](image)
Supporting data for chapter 4

13C NMR spectrum of Compound 3

![C NMR spectrum of Compound 3](image)

HRMS Spectrum of Compound 3

![HRMS Spectrum of Compound 3](image)

Acquisition Parameter

<table>
<thead>
<tr>
<th>Source Type</th>
<th>APCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Not active</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
</tr>
<tr>
<td>Scan End</td>
<td>1500 m/z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ion Polarity</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Capillary</td>
<td>4500 V</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
<td>-500 V</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set Nebulizer</th>
<th>1.6 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Dry Heater</td>
<td>250 °C</td>
</tr>
<tr>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

Intens. x10^4

![Intens. x10^4](image)
Supporting data for chapter 4

Compound 6

1H NMR spectrum of Compound 6
Supporting data for chapter 4

13C NMR spectrum of Compound 6

HRMS spectrum of Compound 6
Supporting data for chapter 4

Compound 24

1H NMR spectrum of Compound 24

13C NMR spectrum of Compound 24
Supporting data for chapter 4

HRMS spectrum of Compound 24

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>APCI</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>4500 V</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
<td>-500 V</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
<td>150.0 Vpp</td>
</tr>
<tr>
<td>Set Nebulizer</td>
<td>1.6 Bar</td>
</tr>
<tr>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Set Dry Gas</td>
<td>8.0 L/min</td>
</tr>
<tr>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

![HRMS spectrum graph](image-url)
Supporting data for chapter 4

Compound 30

1H NMR spectrum of Compound 30

13C NMR spectrum of Compound 30
Supporting data for chapter 4

HRMS spectrum of Compound 30
Supporting data for chapter 4

Compound 31

1H NMR spectrum of Compound 31

13C NMR spectrum of Compound 31
Supporting data for chapter 4

HRMS spectrum of Compound 31
Supporting data for chapter 4

Compound 33

\(^1\)H NMR spectrum of Compound 33

\(^{13}\)C NMR spectrum of Compound 33
HRMS spectrum of Compound 33
Addendum B: 1H and 13C NMR and mass spectra for chapter 5

Compound 3

1H NMR spectrum of compound 3
Supporting data for chapter 5

13C NMR spectrum of compound 3

HRMS spectrum of compound 3
Supporting data for chapter 5

Compound 4

1H NMR spectrum of compound 4

13C NMR spectrum of compound 4
Supporting data for chapter 5

HRMS spectrum of compound 4
Supporting data for chapter 5

Compound 5

1H NMR spectrum of compound 5

13C NMR spectrum of compound 5
Supporting data for chapter 5

HRMS spectrum of compound 5
Supporting data for chapter 5

Compound 6

1H NMR spectrum of compound 6

13C NMR spectrum of compound 6
Supporting data for chapter 5

HRMS spectrum of compound 6
Supporting data for chapter 5

Compound 7

1H NMR spectrum of compound 7
Supporting data for chapter 5

13C NMR spectrum of compound 7

HRMS spectrum of compound 7
Supporting data for chapter 5

Compound 8

1H NMR spectrum of compound 8

13C NMR spectrum of compound 8
Supporting data for chapter 5

HRMS spectrum of compound 8
Supporting data for chapter 5

Compound 9

$^1\text{H NMR spectrum of compound 9}$

$^{13}\text{C NMR spectrum of compound 9}$
Supporting data for chapter 5

HRMS spectrum of compound 9

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>APCI</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Negative</td>
</tr>
<tr>
<td>Reactor</td>
<td>10,000 V</td>
</tr>
<tr>
<td>Nebulizer</td>
<td>1.2 Bar</td>
</tr>
<tr>
<td>Focus</td>
<td>Needle</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>100 m/z</td>
</tr>
<tr>
<td>Scan End</td>
<td>1500 m/z</td>
</tr>
<tr>
<td>ESI End Plate Thermal</td>
<td>400 °C</td>
</tr>
<tr>
<td>ESI Dry Heater</td>
<td>250 °C</td>
</tr>
<tr>
<td>ESI Dip Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>ESI Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

![HRMS spectrum of compound 9](image)
Supporting data for chapter 5

Compound 10

1H NMR spectrum of compound 10

13C NMR spectrum of compound 10
Supporting data for chapter 5

HRMS spectrum of compound 10

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
</tr>
<tr>
<td>Ion Polaritiy</td>
</tr>
<tr>
<td>Focus</td>
</tr>
<tr>
<td>Scan Begin</td>
</tr>
<tr>
<td>Scan End</td>
</tr>
<tr>
<td>Set Capillary</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
</tr>
<tr>
<td>Set Dry Heater</td>
</tr>
<tr>
<td>Set Dry Gas</td>
</tr>
<tr>
<td>Set Divert Valve</td>
</tr>
</tbody>
</table>

![HRMS Spectrum Image](image-url)
Supporting data for chapter 5

Compound 11

1H NMR spectrum of compound 11

13C NMR spectrum of compound 11
Supporting data for chapter 5

HRMS spectrum of compound 11

<table>
<thead>
<tr>
<th>Source Type</th>
<th>APCI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Set Nebulizer</th>
<th>1.9 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>N. A.</td>
<td>Set Capillary</td>
<td>-4500 V</td>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 mV</td>
<td>Set End Plate Offset</td>
<td>500 V</td>
<td>Set Dry Gas</td>
<td>0.0 l/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>3000 mV</td>
<td>Set Collision Cell RF</td>
<td>1500.0 Vpp</td>
<td>Set Switch Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

[Graph showing HRMS spectrum with labeled peaks and molecular structure]
Supporting data for chapter 5

Compound 12

1H NMR spectrum of compound 12
Supporting data for chapter 5

13C NMR spectrum of compound 12

![13C NMR spectrum of compound 12](image)

HRMS spectrum of compound 12

![HRMS spectrum of compound 12](image)
Supporting data for chapter 5

Compound 13

1H NMR spectrum of compound 13

13C NMR spectrum of compound 13
Supporting data for chapter 5

HRMS spectrum of compound 13
Supporting data for chapter 5

Compound 14

1H NMR spectrum of compound 14

13C NMR spectrum of compound 14
Supporting data for chapter 5

HRMS spectrum of compound 14
Supporting data for chapter 5

Compound 15

1H NMR spectrum of compound 15

13C NMR spectrum of compound 15
Supporting data for chapter 5

HRMS spectrum of compound 15

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>ESI</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Spray voltage</td>
<td>4000 V</td>
</tr>
<tr>
<td>Set Heater</td>
<td>180 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
</tr>
<tr>
<td>Scan End</td>
<td>1500 m/z</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
</tr>
<tr>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

![HRMS spectrum image]
Supporting data for chapter 5

Compound 16

\(^1\text{H} \text{NMR spectrum of compound 16}\)

\(^1\text{C} \text{NMR spectrum of compound 16}\)
Supporting data for chapter 5

HRMS spectrum of compound 16
Supporting data for chapter 5

Compound 17

1H NMR spectrum of compound 17

![1H NMR spectrum of compound 17](image)

13C NMR spectrum of compound 17

![13C NMR spectrum of compound 17](image)
Supporting data for chapter 5

HRMS spectrum of compound 17

<table>
<thead>
<tr>
<th>Source Type</th>
<th>APCI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Sat Nablizor</th>
<th>1.8 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Not active</td>
<td>Set Capillary</td>
<td>4000 V</td>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 Hz</td>
<td>Set End Plate Offset</td>
<td>-600 V</td>
<td>Set Dry Gas</td>
<td>0.0 l/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>3000 Hz</td>
<td>Set Collision Cell RF</td>
<td>150.0 Vpp</td>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

![HRMS Spectrum](image)

- **Acquisition Parameter**
- **Spectrum Parameters**
 - Source Type: APCI
 - Ion Polarity: Positive
 - Sat Nablizor: 1.8 Bar
 - Focus: Not active
 - Scan Begin: 50 Hz
 - Scan End: 3000 Hz

- **Compound Structure**
 - Compound 17

- **Mass Measurement**
 - Mass: 504.3426

- **Additional Notes**
 - MS, 0-4.4 min (23-34)
Supporting data for chapter 5

Compound 18

1H NMR spectrum of compound 18

13C NMR spectrum of compound 18
Supporting data for chapter 5

HRMS spectrum of compound 18

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>APCI</td>
</tr>
<tr>
<td>Ionization Mode</td>
<td>Positive</td>
</tr>
<tr>
<td>Gas Pressure</td>
<td>1.6 Bar</td>
</tr>
<tr>
<td>Flow</td>
<td>Not active</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>4500 V</td>
</tr>
<tr>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
</tr>
<tr>
<td>Scan End</td>
<td>3000 m/z</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
<td>600 V</td>
</tr>
<tr>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Set Coll Cell RF</td>
<td>1500 Upp</td>
</tr>
<tr>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

![HRMS Spectrum Image]
Supporting data for chapter 5

Compound 19

1H NMR spectrum of compound 19

13C NMR spectrum of compound 19
Supporting data for chapter 5

HRMS spectrum of compound 19

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
</tr>
<tr>
<td>Ion Polarity</td>
</tr>
<tr>
<td>Set Nebulizer</td>
</tr>
<tr>
<td>Focus</td>
</tr>
<tr>
<td>Set Capillary</td>
</tr>
<tr>
<td>Set Dry Heater</td>
</tr>
<tr>
<td>Scan Begin</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
</tr>
<tr>
<td>Set Dry Gas</td>
</tr>
<tr>
<td>Scan End</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
</tr>
<tr>
<td>Set Divert Valve</td>
</tr>
</tbody>
</table>

![HRMS Spectrum](image_url)
Supporting data for chapter 5

Compound 20

1H NMR spectrum of compound 20

13C NMR spectrum of compound 20
Supporting data for chapter 5

HRMS spectrum of compound 20

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>ESI</td>
</tr>
<tr>
<td>Focus</td>
<td>Not active</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
</tr>
<tr>
<td>Scan End</td>
<td>1500 m/z</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Postive</td>
<td>4500 V</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>Set Dry Heater</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
<td>-500 V</td>
</tr>
<tr>
<td>Set Dry Gas</td>
<td>Set Divert Valve</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
<td>1000 Vpp</td>
</tr>
</tbody>
</table>

![HRMS spectrum of compound 20]
Supporting data for chapter 5

Compound 21

1H NMR spectrum of compound 21

13C NMR spectrum of compound 21
Supporting data for chapter 5

HRMS spectrum of compound 21

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>ESI</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Focus</td>
<td>Not active</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>4000 V</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
<td>-500 V</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
<td>1000 Vpp</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
</tr>
<tr>
<td>Scan End</td>
<td>1500 m/z</td>
</tr>
</tbody>
</table>

![HRMS Spectrum Image]

<table>
<thead>
<tr>
<th>Meas. m/z</th>
<th>#</th>
<th>Formula</th>
<th>Score</th>
<th>m/z</th>
<th>err [mDa]</th>
<th>err [ppm]</th>
<th>mSign</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.0746</td>
<td>1</td>
<td>C4H10N0</td>
<td>100.00</td>
<td>88.0757</td>
<td>1.1</td>
<td>12.8</td>
<td>5</td>
</tr>
</tbody>
</table>
Supporting data for chapter 5

Compound 22

\(^1\)H NMR spectrum of compound 22

\(^{13}\)C NMR spectrum of compound 22
Supporting data for chapter 5

HRMS spectrum of compound 22

![HRMS spectrum of compound 22](image)
Supporting data for chapter 5

Compound 23

1H NMR spectrum of compound 23

13C NMR spectrum of compound 23
Supporting data for chapter 5

HRMS spectrum of compound 23
Supporting data for chapter 5

Compound 24

1H NMR spectrum of compound 24

13C NMR spectrum of compound 24
Supporting data for chapter 5

HRMS spectrum of compound 24

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>ESI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Nebulizer</th>
<th>0.4 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>-</td>
<td>Set Capillary</td>
<td>4800 V</td>
<td>Dry Heater</td>
<td>190 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>CO2</td>
<td>Set Electrical</td>
<td>-200 V</td>
<td>Dry Gas</td>
<td>4.0 L/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>1500 m/z</td>
<td>Set Collision Cell RF</td>
<td>1000 Vpp</td>
<td>Dry Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>
Supporting data for chapter 5

Compound 25

1H NMR spectrum of compound 25

13C NMR spectrum of compound 25
Supporting data for chapter 5

HRMS spectrum of compound 25

Acquisition Parameter

<table>
<thead>
<tr>
<th>Source Type</th>
<th>ESI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Set Nebulizer</th>
<th>0.4 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Not active</td>
<td>Set Capillary</td>
<td>4000 V</td>
<td>Set Dry Heater</td>
<td>480 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
<td>Set End Plate Offset</td>
<td>600 V</td>
<td>Set Dry Gas</td>
<td>4.0 V/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>1000 m/z</td>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
<td>Set Divert Valve</td>
<td>Wastes</td>
</tr>
</tbody>
</table>

![HRMS spectrum of compound 25](image)
Supporting data for chapter 5

Compound 26

1H NMR spectrum of compound 26

13C NMR spectrum of compound 26
Supporting data for chapter 5

HRMS spectrum of compound 26

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>APCI</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Nebulizer</td>
<td>1.6 Bar</td>
</tr>
<tr>
<td>Focus</td>
<td>Not active</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>4500 V</td>
</tr>
<tr>
<td>Set Dry Heater</td>
<td>290 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
</tr>
<tr>
<td>Set End Plate Offet</td>
<td>-300 V</td>
</tr>
<tr>
<td>Set Dry Gas</td>
<td>6.0 min</td>
</tr>
<tr>
<td>Scan End</td>
<td>3000 m/z</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
<td>150.0 Vpp</td>
</tr>
<tr>
<td>Set Direct Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

![HRMS spectrum diagram](image)
Supporting data for chapter 5

Compound 27

1H NMR spectrum of compound 27

13C NMR spectrum of compound 27
Supporting data for chapter 5

HRMS spectrum of compound 27

<table>
<thead>
<tr>
<th>Emission Type</th>
<th>APCLI</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Set Nebulizer</th>
<th>1.6 Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Source</td>
<td>Not active</td>
<td>Set Capillary</td>
<td>4500 V</td>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
<td>Set End Plate Offset</td>
<td>500 V</td>
<td>Set Dry Gas</td>
<td>8.0 l/min</td>
</tr>
<tr>
<td>Scan End</td>
<td>3000 m/z</td>
<td>Set Collision Cell RF</td>
<td>150.0 Vpp</td>
<td>Set Dwell Value</td>
<td>Waste</td>
</tr>
</tbody>
</table>

![HRMS spectrum of compound 27](image.png)
Supporting data for chapter 6

Addendum C: 1H and 13C NMR and mass spectra for Chapter 6

Substituted decoquinate derivatives with improved solubilities and *in vitro* antimalarial activities
Richard M. Beteck1, Dina Coertzen2, Frans J. Smit3, Lyn-Marie Birkholtz2, Richard K. Haynes3, David D. N’Da3

1 Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa.
2 Department of Biochemistry, Centre for Sustainable Malaria Control, University of Pretoria, Pretoria 0002, South Africa
3 Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.

SUPPORTING DATA: 1H AND 13C NMR, and HRMS data for all compounds
Supporting data for chapter 6

Compound 1

1H NMR spectrum of compound 1

13C NMR spectrum of compound 1
Supporting data for chapter 6

HRMS spectrum of compound 1
Supporting data for chapter 6

Compound 2

1H NMR spectrum of compound 2
Supporting data for chapter 6

13C NMR spectrum of compound 2

[Image of 13C NMR spectrum]

HRMS spectrum of compound 2

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>APCI</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Set Neutralizer</td>
<td>1.0 Bar</td>
</tr>
<tr>
<td>Focus</td>
<td>Not active</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>-4000 V</td>
</tr>
<tr>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>60 m/z</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
<td>-200 V</td>
</tr>
<tr>
<td>Scan End</td>
<td>3000 m/z</td>
</tr>
<tr>
<td>Set Collison Cell RF</td>
<td>160.0 Vpp</td>
</tr>
<tr>
<td>Set Dry Gas</td>
<td>3.0 Vmin</td>
</tr>
<tr>
<td>Set Dvent Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

[Image of HRMS spectrum]
Supporting data for chapter 6

Compound 3

1H NMR spectrum of compound 3

13C NMR spectrum of compound 3
Supporting data for chapter 6

HRMS spectrum of compound 3

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
</tr>
<tr>
<td>Ion Polarity</td>
</tr>
<tr>
<td>Scan Begin</td>
</tr>
<tr>
<td>Scan End</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
</tr>
<tr>
<td>Set Dry Gas</td>
</tr>
<tr>
<td>Set Nebulizer</td>
</tr>
<tr>
<td>Set Dry Heater</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
</tr>
<tr>
<td>Set Divert Valve</td>
</tr>
</tbody>
</table>

+MS, 0.0-8min #38.34, Background Subtracted

![HRMS spectrum of compound 3](image)
Supporting data for chapter 6

Compound 4

1H NMR spectrum of compound 4

13C NMR spectrum of compound 4
Supporting data for chapter 6

HRMS spectrum of compound 4
Supporting data for chapter 6

Compound 5

1H NMR spectrum of compound 5

13C NMR spectrum of compound 5
Supporting data for chapter 6

HRMS spectrum of compound 5
Supporting data for chapter 6

Compound 6

1H NMR spectrum of compound 6

13C NMR spectrum of compound 6
Supporting data for chapter 6

HRMS spectrum of compound 6

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Begin</td>
<td>50 m/z</td>
</tr>
<tr>
<td>Scan End</td>
<td>1500 m/z</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>4600 V</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
<td>0.500 V</td>
</tr>
<tr>
<td>Set Dry Heater</td>
<td>100 °C</td>
</tr>
<tr>
<td>Set Dry Gas</td>
<td>4.0 l/min</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
</tr>
<tr>
<td>Set Direct Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>
Supporting data for chapter 6

Compound 7

1H NMR spectrum of compound 7

13C NMR spectrum of compound 7
Supporting data for chapter 6

HRMS spectrum of compound 7
Supporting data for chapter 6

Compound 8

1H NMR spectrum of compound 8

13C NMR spectrum of compound 8
Supporting data for chapter 6

HRMS spectrum of compound 8
Supporting data for chapter 6

Compound 9

1H NMR spectrum of compound 9

13C NMR spectrum of compound 9
Supporting data for chapter 6

HRMS spectrum of compound 9

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>ESI</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Set Nebulizer</td>
<td>0.4 Bar</td>
</tr>
<tr>
<td>Set Dry Heater</td>
<td>180 °C</td>
</tr>
<tr>
<td>Set Divert Valve</td>
<td>Waste</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>4500 V</td>
</tr>
<tr>
<td>Set End Plate Diffr</td>
<td>4000 V</td>
</tr>
<tr>
<td>Set Dry Gas</td>
<td>30 ml/min</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>600 m/z</td>
</tr>
<tr>
<td>Set Collision Cell RF</td>
<td>100.0 Vpp</td>
</tr>
</tbody>
</table>

![HRMS Spectrum Diagram]
Supporting data for chapter 6

Compound 10

1H NMR spectrum of compound 10

13C NMR spectrum of compound 10
Supporting data for chapter 6

HRMS spectrum of compound 10
Supporting data for chapter 6

Compound 11

1H NMR spectrum of compound 11

13C NMR spectrum of compound 11
Supporting data for chapter 6

HRMS spectrum of compound 11
Supporting data for chapter 6

Compound 12

1H NMR spectrum of compound 12

13C NMR spectrum of compound 12
Supporting data for chapter 6

HRMS spectrum of compound 12
Supporting data for chapter 6

Compound 13

1H NMR spectrum of compound 13

13C NMR spectrum of compound 13
HRMS spectrum of compound 13

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>ESI</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>0.4 Bar</td>
</tr>
<tr>
<td>Trap Capillary</td>
<td>4500 V</td>
</tr>
<tr>
<td>Drying Heater</td>
<td>130 °C</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>200 m/z</td>
</tr>
<tr>
<td>Scan End</td>
<td>1600 m/z</td>
</tr>
<tr>
<td>Collision Cell RF</td>
<td>1000 Vpp</td>
</tr>
<tr>
<td>Direct Water</td>
<td>Waste</td>
</tr>
</tbody>
</table>

![HRMS Spectrum Image]
Supporting data for chapter 6

Compound 14

1H NMR spectrum of compound 14

13C NMR spectrum of compound 14
Supporting data for chapter 6

HRMS spectrum of compound 14
Supporting data for chapter 6

Compound 15

1H NMR spectrum of compound 15

13C NMR spectrum of compound 15
Supporting data for chapter 6

HRMS spectrum of compound 15

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>APCI</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Set Nebulizer</td>
<td>1.6 Bar</td>
</tr>
<tr>
<td>Focus</td>
<td>Intacture</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>4500 V</td>
</tr>
<tr>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Sel End Plate Ciflet</td>
<td>-500 V</td>
</tr>
<tr>
<td>Sel Dry Gas</td>
<td>9.0 min</td>
</tr>
<tr>
<td>Sel Coll Cell PF</td>
<td>1500 Vpp</td>
</tr>
<tr>
<td>Sel Dived Valve</td>
<td>Waste</td>
</tr>
</tbody>
</table>

![HRMS Spectrum Image]

C_{10}H_{11}O_4

m/z values:
- 86.0553
- 128.0553
- 168.0531
- 237.0541
- 355.0371
- 416.2685
- 608.2600

+MS: 0.4-0.5 min #274-277