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Abstract

We show that a Beurling type theory of invariant subspaces of noncommutative H2 spaces holds
true in the setting of subdiagonal subalgebras of σ-finite von Neumann algebras. This extends
earlier work of Blecher and Labuschagne [10] for finite algebras, and complements more recent
contributions in this regard by Bekjan [5] and Chen, Hadwin and Shen [12] in the finite setting,
and Sager [28] in the semifinite setting.

We then also introduce the notion of an analytically conditioned algebra, and go on to show
that in the class of analytically conditioned algebras this Beurling type theory is part of a list
of properties which all turn out to be equivalent to the maximal subdiagonality of the given
algebra. This list includes a Gleason-Whitney type theorem, as well the pairing of the unique
normal state extension property and an L2 density condition.
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1. Background and Introduction

In the late 50’s and early 60’s of the previous century, it became apparent that many famous
theorems about the classical H∞ space of bounded analytic functions on the disk, could be
generalized to the setting of abstract function algebras. Many notable researchers contributed
to the development of these ideas; in particular Helson and Lowdenslager [16], and Hoffman
[17]. The paper [29] of Srinivasan and Wang, from the middle of the 1960s, organized and
summarized much of this ‘commutative generalized Hp-theory’. The construct that Srinivasan
and Wang used to summarise these results in [29], was the so-called weak* Dirichlet algebras.
Essentially this summary furnishes one with an array of properties that are all in some way
equivalent to the validity of a Szegö formula for these weak* Dirichlet algebras.

Round about the same time that the paper of Srinivasan and Wang appeared, Arveson
introduced his notion of subdiagonal subalgebras of von Neumann algebras as a possible context
for extending this cycle of results to the noncommutative context [1, 2]. In the case that A is
a maximal subdiagonal subalgebra of a von Neumann algebra M equipped with a finite trace
(all concepts defined below), Hp may be defined to be the closure of A in the noncommutative
Lp space Lp(M). In the case where A contains no selfadjoint elements except scalar multiples
of the identity, the Hp theory will in the setting where M is commutative, collapse to the
classical theory of Hp-spaces associated to weak* Dirichlet algebras. Thus Arveson’s setting
canonically extends the notion of weak* Dirichlet algebras.

The theory of these subdiagonal algebras progressed at a carefully measured pace, until in
2005, Labuschagne [26] managed to use some of Arveson’s ideas to show that in the context
of finite von Neumann algebras, these maximal subdiagonal algebras satisfy a Szegö formula.

Pursuant to this breakthrough, in a sequence of papers ([6], [7], [9], [10], [11]), complemented
by important contributions from Ueda [32], and Bekjan and Xu [3], Blecher and Labuschagne
demonstrated that in the context of finite von Neumann algebras the entire cycle of results
(somewhat surprisingly) survives the passage to noncommutativity. Specifically it was shown
that the same cycle of results hold true for what Blecher and Labuschagne call tracial
subalgebras of a finite von Neumann algebra (see [8]).

With the theory of subdiagonal subalgebras of finite von Neumann algebras thereby reaching
some level of maturity, several authors then turned their attention to the the analysis of the case
of σ-finite von Neumann algebras. Important structural results were obtained by Ji, Ohwada,
Saito, Bekjan and Xu ([20], [21], [33], [18], [19], [4]).

However the transition from finite to σ-finite von Neumann algebras cannot be made without
some sacrifice. One very costly price paid for the passage to the σ-finite case, is the loss of the
theory of the Fuglede-Kadison determinant ([13], [2]). (As was shown by Sten Kaijser [24], the
presence of such a determinant forces the existence of a finite trace, and hence the theory of
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the Fuglede-Kadison determinant, is is essentially a theory of finite von Neumann algebras.) In
the case of subdiagonal subalgebras of finite von Neumann algebras, this determinant played
the role of a geometric mean, and hence featured very prominently in the development of that
theory. But with no such determinant, how does one even begin to give a sensible and useful
description of a geometric mean, and with no geometric mean, how can one give expression to
a Szegö formula in this context?

In this paper we show that despite this very formidable challenge, there are nevertheless
several aspects of the tracial theory which survives the transition to the type III case. These
aspects include a very detailed Beurling-type theory of invariant subspaces, a very general
Gleason-Whitney theorem, and an extension of the so-called unique normal state extension
property. (One version of the unique normal state extension property amounts to the claim
that any f ∈ L1(M)+ will belong to L1(D) whenever f ⊥ (A ∩ ker(E)), where E is a conditional
expectation from M onto A ∩A∗.) In fact these theories not only hold for type III maximal
subdiagonal algebras, but serve to characterise them among the class of what we will call
analytically conditioned subalgebras (definition loc. cit.). See Theorem 3.4. As we shall see, in
many cases the proofs turn out to be remarkably similar to those of Blecher and Labuschagne
in [9], with important and at times quite subtle technical modifications needing to be made at
crucial points.

Throughout M will be a σ-finite von Neumann algebra equipped with a faithful normal
state ϕ. A weak*-closed unital subalgebra A of M will be called subdiagonal, if there exists
a faithful normal conditional expectation E onto the subalgebra D = A ∩A∗, which is also
multiplicative on A. Here D = A ∩A∗ is sometimes referred to as the diagonal. In cases where
the identity of the diagonal is important, we will say that A is subdiagonal with respect to
D. We pause to point out that the assumption regarding the weak*-closedness of A does not
generally form part of the definition of subdiagonality. But since we are primarily interested
in studying maximal subdiagonal algebras, and since the weak* closure of an algebra that is
subdiagonal with respect to D will also be subdiagonal with respect to D, we may make this
assumption without any loss of generality.

The following theorem characterises those subdiagonal algebras which are maximal with
respect to a given diagonal D. We pause to give some insight into this theorem. With A a
subdiagonal algebra and D and E as above, the condition ϕ ◦ E = ϕ turns out to be equivalent
to the claim that σϕt (D) = D for all t ∈ R. In fact the very existence of E is ensured by the
fact that the maps σϕt “preserve” D. (See [30, Theorem IX.4.2].) However if alternatively we
had that the maps σϕt preserve A, the fact that they would then also preserve D, is a trivial
consequence of the fact that D = A ∩A∗. Hence such preservation of A by these maps, is
more restrictive than preservation of D, and as such guarantees the existence of E . As can be
seen from the theorem, if A is large enough to ensure that A+A∗ is weak*-dense in M , then
maximality with respect to D is signified by precisely this more restrictive requirement.

Theorem 1.1 [33], [20]. Let A be a weak* closed unital subalgebra of M with D and E
as before, and assume that additionally A+A∗ is weak*-dense in M . Then A is maximal as a
subdiagonal subalgebra with respect to D if and only if σϕt (A) = A for all t ∈ R.

Proof. The “if” part follows from [33, Theorem 1.1]. The “only if” part from [20, Theorem
2.4].

Let A, D and E be as before. The above result may alternatively be interpreted as the
statement that any weak*-closed subdiagonal subalgebra A for which we have that σϕt (A) = A
for all t ∈ R, will be maximal subdiagonal with respect to D whenever A+A∗ is weak*-dense
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in M . It is this interpretation that we use as our starting point. We will therefore call any
weak* closed unital subalgebra A of M for which

– σϕt (A) = A for all t ∈ R,
– and for which the faithful normal conditional expectation E : M → D = A ∩A∗ satisfying
ϕ ◦ E = ϕ (ensured by the above condition [30, Theorem IX.4.2]), is multiplicative on A

an analytically conditioned subalgebra. In the case that ϕ is actually a tracial state, Blecher
and Labuschagne called such algebras tracial algebras. If additionally we assume that A+A∗

is σ-weakly dense in M , then (M,A, E , ϕ) is what Prunaru calls a subdiagonal quadruple
[27]. However in deference to the preceding theorem and following GuoXing Ji, we will simply
refer to such algebras as maximal subdiagonal. Given an analytically conditioned algebra, our
objective in this paper is then to look for properties that may be compared to the criterion of
requiring A+A∗ to be weak*-dense in M .

For the sake of simplicity we will in the discussion that follows write L for M oϕ R. The
crossed product of course admits a dual action of R in the form of an automorphism group
θs and a canonical trace characterised by the property that τL ◦ θs = e−sτL. The Lp-spaces
are defined as Lp(M) = {a ∈ L̃ : θs(a) = e−s/pa for all s ∈ R}. The space L1(M) admits a
canonical trace functional tr, which is used to define a norm ‖a‖ = tr(|a|p)1/p on Lp(M).
The topology on Lp(M) engendered by this norm, coincides with the relative topology of
convergence in measure that Lp(M) inherits from L̃.

Now let h = dϕ̃
dτL
∈ L1(M). It is well-known that Lp(M) may for any 0 ≤ c ≤ 1 be realised as

the completion of {hc/pfh(1−c)/p : f ∈M} under the norm tr(|a|p)1/p [25]. Given 1 ≤ p <∞,
we know from the work of Ji [19, Theorem 2.1] that for any maximal subdiagonal algebra
A, the closures of each of {hc/pfh(1−c)/p : f ∈ A} in Lp(M) (where 0 ≤ c ≤ 1), all agree. It
is this closure that we will identify as our Hardy spaces Hp(A). However a careful perusal of
[19, Theorem 2.1], reveals that all we need for the proof of that theorem to go through, is
the invariance of A under the action of σϕt . Hence even for analytically conditioned algebras
we have that the closures of {hc/pfh(1−c)/p : f ∈ A} agree for each 0 ≤ c ≤ 1. Note that this
fact ensures that these closures are all right D-modules. In the case where we are dealing with
analytically conditioned algebras, we will write Hp(A) for these closures, and occasionally refer
to this subspace of Lp(M) as the Lp-hull of A. For subspaces X of Lp(M), we will simply
write [X]p for the closure in Lp(M). Ji also showed that for maximal subdiagonal algebras,
Lp(M) = Hp(A)⊕Hp0(A)∗ for any 1 < p <∞ [19, Theorem 3.3].

We recall that a (right) invariant subspace of Lp(M), is a closed subspace K of Lp(M) such
that KA ⊂ K. For consistency, we will not consider left invariant subspaces at all, leaving the
reader to verify that entirely symmetric results pertain in the left invariant case. An invariant
subspace is called simply invariant if in addition the closure of KA0 is properly contained in
K.

If K is a right A-invariant subspace of L2(M), we define the right wandering subspace of
K to be the space W = K 	 [KA0]2; and we say that K is type 1 if W generates K as an
A-module (that is, K = [WA]2). We will say that K is type 2 if W = (0).

2. Invariant subspaces and the module action of D

We pause to review some necessary technical facts regarding faithful normal conditional
expectations, before proceeding with the analysis.

Remark 1. We proceed to review some basic properties of the expectation E in this context.
The basic references we will use for properties of expectations are [14] and [22]. It is instructive
to note that D oσϕ R, can be realised as a subalgebra of L = M oσϕ R. In fact E extends
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canonically to a conditional expectation from M oσϕ R to D oσϕ R, which we will here denote
by E . Moreover for any 1 ≤ p <∞ this extension canonically induces an expectation Ep from
Lp(M) to Lp(D). Note in particular that

– E ◦ θs = θs ◦ E for any s where denotes the dual action of θs R on M oσϕ R. [14, 4.4].
– With ϕ̃ denoting the dual weight on L = M oσϕ R and τL the canonical trace on the

crossed product, E is both ϕ̃ and τL invariant. [14, Theorem 4.7]
– E1 maps hM = dϕ̃

dτL
onto hD = dϕ̃

dτDoR
. [14, Lemma 4.8], [22, Lemma 2.1].

– E extends canonically to the extended positive part of M oσϕ R. When restricted to
Lp+(M) (1 ≤ p <∞), this extension coincides with the restriction of Ep.

– For s ≥ 1, 1
s = 1

p + 1
q + 1

r , a ∈ Lp(D), b ∈ Lq(M) and c ∈ Lr(D), we have Es(abc) =
aEq(b)c. [22, 2.5]

– For any a ∈ L1(M), we have that tr(E1(a)) = tr(a) where tr is the canonical trace
functional on L1(M). See [22, Lemma 2.1] and the discussion preceding [22, 2.5] where it
is noted that E1 = E∗.

Proposition 2.1. Let A be an analytically conditioned algebra. Given r ≥ 1 with 1
r =

1
p + 1

q , and given a ∈ Hp(A) and b ∈ Hq(A), we have that ab ∈ Hr(A) with Er(ab) = Ep(a)Eq(b).

Proof. Given a0, b0 ∈ A, we have that

Er((h1/pa0)(b0h
1/q)) = h1/pE(a0b0)h1/q [22, 2.5]

= (h1/pE(a0))(E(b0)h1/q) E is multiplicative on A

= Ep(h1/pa0)Eq(b0h1/q) [22, 2.5]

The result follows on extending the actions of Ep, Eq and Er by continuity.

In the following we will where there is no danger of confusion, drop the subscript p when
denoting the action of E on Lp(M).

Corollary 2.2. For any analytically conditioned algebra A, we have that H2(A) +
H2(A)∗ = H2(A)⊕ L2(D)⊕H2

0(A)∗ where H2
0(A) = {f ∈ H2(A) : Ê(f) = 0}.

Proof. Given any f ∈ H2
0(A) and g ∈ H2(A), it is a simple matter to see that 〈g, f∗〉 =

tr(fg) = tr ◦ E(fg) = tr(E(f)E(g)) = 0. Hence H2
0(A)∗ ⊥ H2(A). In particular the subspace

L2(D) of H2(A) ∩H2(A) is also orthogonal to H2
0(A)∗. Since for any g ∈ H2(A) we have that

E(f) ∈ H2(M) with E(f − E(f)) = 0, it follows that L2(D)⊕H2
0(A)∗ is all of H2(A)∗.

Using the properties of E described in the preceding Remark and Proposition, [10, Theorem
2.1] may now be extended to the σ-finite setting. The proofs for the two cases are virtually
identical, with the primary change needing to be made in the passage from the finite to the
σ-finite case, being that we need to substitute the tracial functional trM for the finite trace
τM at suitable points. We therefore choose to leave the translation of this proof to the σ-finite
setting as an exercise.

Theorem 2.3. Let A be an analytically conditioned algebra.

(1) Suppose that X is a subspace of L2(M) of the form X = Z ⊕col [Y A]2 where Z, Y are
closed subspaces of X, with Z a type 2 invariant subspace, and {y∗x : y, x ∈ Y } = Y ∗Y ⊂
L1(D). Then X is simply right A-invariant if and only if Y 6= {0}.
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(2) If X is as in (1), then [YD]2 = X 	 [XA0]2 (and X = [XA0]2 ⊕ [YD]2).
(3) If X is as described in (1), then that description also holds if Y is replaced by [YD]2. Thus

(after making this replacement) we may assume that Y is a D-submodule of X.
(4) The subspaces [YD]2 and Z in the decomposition in (1) are uniquely determined by X.

So is Y if we take it to be a D-submodule (see (3)).
(5) If A is maximal subdiagonal, then any right A-invariant subspace X of L2(M) is of the

form described in (1), with Y the right wandering subspace of X.

Building on Theorem 2.3, we are now able to present the following rather elegant decom-
position of the right wandering subspace. This extends [10, Proposition 2.2]. Although there
are close similarities between the proofs of the tracial and the σ-finite case, there are rather
delicate modifications that need to be made for the proof to go through in the general case –
a mere notational change will not suffice.

Proposition 2.4. Suppose that X is as in Theorem 2.3, and that W is the right wandering
subspace of X. Then W may be decomposed as an orthogonal direct sum ⊕coli uiL

2(D), where
ui are partial isometries in M for which ui(

dϕ̃
dτL

)1/2 ∈W , with u∗i ui ∈ D, and u∗jui = 0 if i 6= j.
If W has a cyclic vector for the D-action, then we need only one partial isometry in the above.

Proof. By the theory of representations of a von Neumann algebra (see e.g. the discussion at
the start of Section 3 in [23]), any normal Hilbert D-module is an L2 direct sum of cyclic Hilbert
D-modules, and if K is a normal cyclic Hilbert D-module, then K is spatially isomorphic to
eL2(D), for an orthogonal projection e ∈ D.

Suppose that the latter isomorphism is implemented by a unitary D-module map ψ. If
in addition K ⊂W , let g = ψ(eh1/2) ∈W where h = dϕ̃

dτL
. Then tr(d∗g∗gd) = ‖ψ(ed)‖22 =

tr(d∗h1/2eh1/2d), for each d ∈ D. By Theorem 2.3, u∗u ∈ L1(D), and so g∗g = h1/2eh1/2. Hence
there exists a partial isometry u with initial projection e such that g = ueh1/2 = uh1/2. the
modular action of ψ we will then have that ψ(eh1/2d) = ψ(eh1/2)d = uh1/2d for any d ∈ D.
Since L2(D) is the closure of {h1/2d : d ∈ D}, it follows that ψ(eL2(D)) = uL2(D).

Given ui and uj with i 6= j, we have that uiL
2(D), ujL

2(D) ⊂W . Hence L2(D)u∗juiL
2(D) ⊂

L1(D). Since for any d ∈ D we have that tr(h1/2u∗juih
1/2d) = tr(ψ(ejh

1/2)∗ψ(eih
1/2)d) =

tr(ψ(ejh
1/2)∗ψ(eih

1/2d)) = tr(h1/2ejeih
1/2d) = 0, it follows from the previously mentioned

fact that h1/2u∗juih
1/2 = 0, and hence that u∗jui = 0. (To see this recall that the embedding

M → L2(M) : a→ h1/2eh1/2 is injective [25].) In the case where i = j we of course have that
u∗i ui = ei ∈ D. Putting these facts together, we see that W is of the desired form.

Corollary 2.5. Suppose that X is as in Theorem 2.3, and that W is the right
wandering subspace of X. If indeed X ⊂ H2(A), then Z ⊥ L2(D). If additionally A is maximal
subdiagonal, then the partial isometries ui described in the preceding Proposition, all belong
to A.

Proof. If indeed X ⊂ H2(A), it is a fairly trivial observation to make that Z = [ZA0]2 ⊂
[XA0]2 ⊂ [H2(A)A0]2 = H2

0(A). It is clear from the proof of Corollary 2.2 that H2(A) =
H2

0(A)⊕ L2(D), and hence the first claim follows.
Now suppose that A is maximal subdiagonal. To see the second claim recall that in the

proof of Proposition 2.4, we showed that uiL
2(D) ⊂W for each i. Hence given any a ∈ A0, and

taking h = dϕ̃
dτL

, we will therefore have that auih
1/2 ∈ aW ⊂ A0X ⊂ A0H

2(A) ⊂ H2
0 (A). But E2

annihilates H2
0 (A), and hence we must have that 0 = E2(auih

1/2) = E(aui)h
1/2. It now follows
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from the injectivity of the injection M → L2(M) : f → fh1/2 (see [25]), that E(aui) = 0. Since
a ∈ A0 was arbitrary, we may now apply [21, Theorem 2.2] to conclude that ui ∈ A as claimed.

Corollary 2.6. If X is an invariant subspace of the form described in Theorem 2.3, then
X is type 1 if and only if X = ⊕coli uiH2(A), for ui as in Proposition 2.4.

Proof. If X is type 1, then X = [WA]2 where W is the right wandering space, and so
the one assertion follows from Proposition 2.4. If X = ⊕coli uiH2(A), for ui as above, then
[XA0]2 = ⊕coli uiH2(A0), and from this it is easy to argue that W = ⊕coli uiL

2(D). Thus X =
[WA]2 = ⊕coli uiH2(A).

The following Theorem extends [10, Proposition 2.4]. Although the proofs of the two cases
are almost identical, there was a typo in (ii) and (iv) of [10, Proposition 2.4]. (The column
sum K1 ⊕col K2 should’ve been K2 ⊕col K1.) For this reason we choose state the proof in full.

Proposition 2.7. Let X be a closed A-invariant subspace of L2(M), where A is an
analytically conditioned subalgebra of M .

(1) If X = Z ⊕ [Y A]2 as in Theorem 2.3, then Z is type 2, and [Y A]2 is type 1.
(2) If A is a maximal subdiagonal algebra, and if X = K2 ⊕col K1 where K1 and K2 are types

1 and 2 respectively, then K1 and K2 are respectively the unique spaces Z and [Y A]2 in
Theorem 2.3.

(3) If A and X are as in (2), and if X is type 1 (resp. type 2), then the space Z of Theorem
2.3 for X is (0) (resp. Z = X).

(4) If X = K2 ⊕col K1 where K1 and K2 are types 1 and 2 respectively, then the right
wandering subspace for X equals the right wandering subspace for K1.

Proof. (1) Clearly in this case Z is type 2. To see that [Y A]2 is type 1, note that since
Y ⊥ XA0 by part (ii) of Theorem 2.3, we must have Y ⊥ Y A0. Thus Y ⊂ [Y A]2 	 [Y A0]2, and
consequently [Y A]2 = [([Y A]2 	 [Y A0]2)A]2.

(2) Suppose that X = K2 ⊕col K1 where K1 and K2 are types 1 and 2 respectively. Let Y
be the right wandering space for K1. Then of course K1 = [Y A]2. By Theorem 2.3 we have
Y ∗Y ⊂ L1(D). So X = K2 ⊕col [Y A]2, and by the uniqueness assertion in Theorem 2.3, K2 is
the space Z in Theorem 2.3 for X.

(3) This is obvious from Theorem 2.3.
(4) If K = K2 ⊕col K1 as above, then K2 = [K2A0]2 ⊂ [KA0]2, and so K 	 [KA0]2 ⊂ K 	

K2 = K1. Thus K 	 [KA0]2 ⊂ K1 	 [K1A0]2. Conversely, if η ∈ K1 	 [K1A0]2, then η ⊥ KA0

since η ∈ K1 ensures that η∗K2 = (0). So η ∈ K 	 [KA0]2.

On collecting the information reflected in the preceding four results, we obtain the following
structure theorem for invariant subspaces.

Theorem 2.8. If A is a maximal subdiagonal subalgebra of M , and if K is a closed right
A-invariant subspace of L2(M), then:

(1) K may be written uniquely as an (internal) L2-column sum K2 ⊕col K1 of a type 1 and a
type 2 invariant subspace of L2(M), respectively.

(2) If K 6= (0) then K is type 1 if and only if K = ⊕coli uiH
2, for ui partial isometries with

mutually orthogonal ranges and |ui| ∈ D.
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(3) The right wandering subspace W of K is an L2(D)-module in the sense of Junge and
Sherman, and in particular W ∗W ⊂ L1(D).

3. Characterisations of maximal subdiagonal subalgebras

In order to prove our main theorem, we need to invoke the Haagerup reduction theorem
(see [15]). The use of the reduction theorem in studying σ-finite subdiagonal subalgebras,
was pioneered by Xu [33] in his innovative application of the theorem in studying maximality
properties of such algebras. We pause to briefly review the main points of that construction.
(Further details may be found in [33], [27], [18], [19].)

Let QD be the diadic rationals and let R = M oσϕ QD. Since QD is discrete, there exists a
canonical expectation Φ from R onto M . The dual weight ϕ̂ on R turns out to be a faithful
normal state. The Haagerup reduction theorem then informs us that there exists an increasing
net Rn of finite von Neumann algebras each equipped with a faithful state ϕ̂n = ϕ̂|Rn

, and
a concomitant net of expectations Φn : R→ Rn for which Φn ◦ Φm = Φm ◦ Φn = Φn when
n ≥ m. (In the case that ϕ is a state, these nets are in fact a sequences.) Moreover ∪nRn is
σ-strongly dense in R. As far as Lp spaces are concerned, the theorem further tells us that
for each 0 < p <∞, ∪nLp(Rn) is dense in Lp(R) with each Lp(Rn) canonically isometric to
Lp(Rn, τn), where τn is a canonical normal tracial state on Rn.

For weak*-closed unital maximal subdiagonal subalgebras A of the type described above,
the work of Xu tells us that in the case presently under consideration (the case where ϕ is a
state), both A and the expectation E : M → D extend to R in such a way that Â is a maximal
subdiagonal subalgebra of R, with the extension Ê of E mapping onto Â ∩ Â∗ = D oσϕ QD.
In fact there is a net of subalgebras Ân ⊂ Rn such that each Ân is subdiagonal in Rn with
respect to both ϕ̃n and τn, with in addition ∪∞n=1Ân σ-weakly dense in Â. Here Â is just the
σ-weak closure of the span of {λ(t)π(x) : t ∈ QD} and may hence be regarded as representing
something like Aoσϕ QD. (Here π denotes the canonical ∗-homomorphism embedding M into
R = M oσϕ QD.) We then also have that Φ(Â) = A. The algebra Ân is just Ân = Â ∩Rn.

Lemma 3.1. Let A be an analytically conditioned algebra. Then on applying the same
construction outlined above to A, Â will then be an analytically conditioned subalgebra of R,
and each Ân = Â ∩Rn an analytically conditioned subalgebra of Rn.

Proof. The latter part of the proof of [33, Lemma 3.1], where it is shown that in the case
where A is maximal subdiagonal Ê is multiplicative on Â and Â ∩ Â∗ = D oσϕ QD, carries over
verbatim to the present context. Hence the claim regarding Â follows. Similarly on removing
the sections of the proof of [33, Lemma 3.2] devoted to showing that the σ-weak density of
Â+ Â∗ in R ensures the σ-weak density of Ân + Â∗n in Rn, the rest of the proof of this lemma
essentially proves that Ân is an analytically conditioned subalgebra of Rn.

Lemma 3.2. Let A be an analytically conditioned algebra. If L2(M) = H2(A)⊕H2
0(A)∗,

then also L2(R) = H2(Â)⊕H2
0(Â)∗, and L2(Rn) = H2(Ân)⊕H2

0(Ân)∗ for each n.

Proof. Let hM be the density hM = dϕ̃
dτL
∈ L1(M) where L = M oσϕ R. Since A is an

analytically conditioned algebra, we have that H2(A) = {h1/2M f : f ∈ A} = {fh1/2M f : f ∈ A}.
Given any x ∈M , the fact that h

1/2
M x ∈ L2(M) = H2(A)⊕ (H2

0(A))∗, ensures that we may find

sequences {an}, {bn} ⊂ A such that h
1/2
M (an + b∗n)→ h

1/2
M x in norm in L2(M).
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We may now apply the conclusions of Remark 1 to the pair (M,R) and the expectation
Φ : R→M , rather than to the pair (D,M) and the expectation E : M → D. Hence for each
1 ≤ p ≤ ∞, Lp(M) may be regarded as a subspace of Lp(R), and under this identification,

the density hR = d˜̂ϕ
dτ ∈ L

1(R) may be identified with hM . So with this identification, we

have that h
1/2
R (an + b∗n)→ h

1/2
R x in norm in L2(R). Now for any t ∈ QD, we may apply

the noncommutative Hölder inequality to conclude that h
1/2
R (an + b∗n)λ(t)→ h

1/2
R xλ(t) in

norm in L2(R). It is a trivial observation to make that {anλ(t)}, {λ(t−1)bn} ⊂ Â, and

hence that {(h1/2R an) + (λ(t−1)bn)∗} = {h1/2R (an + b∗n)λ(t)} ⊂ H2(Â) +H2(Â)∗. It follows that

span{h1/2R xλ(t) : x ∈M,λ(t), t ∈ QD} ⊂ H2(Â) +H2(Â)∗. But by definition R is the σ-weak
closure of span{xλ(t) : x ∈M,λ(t), t ∈ QD}. So for any g ∈ R, we may select a net {gα} in this

span converging σ-weakly to g. Using the fact that h
1/2
R ∈ L2(R), it is now an exercise to see

that then {h1/2R gα} converges weakly to h
1/2
R g. Hence h

1/2
R R is contained in the L2-weak-closure

of span{h1/2R xλ(t) : x ∈M,λ(t), t ∈ QD}. But since this is a convex set, the weak and norm

closures agree. So the norm closure of this space must contain h
1/2
R R, which is known to be

dense in L2(R). It follows that the norm-closed subspace H2(Â) +H2(Â)∗ of L2(R) contains
a dense subspace of L2(R), and hence that H2(Â) +H2(Â)∗ = L2(R), as claimed.

The claim regarding L2(Rn) follows from the fact that the extension of Φn to L2(R), maps
L2(R) onto L2(Rn), and H2(Â) onto H2(Ân).

Lemma 3.3. Let A be an analytically conditioned algebra. If any f ∈ L1(M)+ which is in
the annihilator of A0 belongs to L1(D), then also

– any f ∈ L1(R)+ which is in the annihilator of Â0 belongs to L1(D̂),
– and for any n, any f ∈ L1(Rn)+ which is in the annihilator of (Ân)0, belongs to L1(Dn).

Proof. Let trR be the canonical trace functional on L1(R). We remind the reader that the
dual action of L1(R) on R, is given by trR(ab) where a ∈ L1(R) and b ∈ R. As was noted in
the proof of the previous Lemma, we may for any n regard each of L1(Rn) and L1(M) as
subspaces of L1(R). Suppose that A satisfies the condition stated in the hypothesis, and let
f ∈ L1(R)+ be given such that f annihilates Â0.

To prove the first claim, we need to show that then f ∈ L1(D̂). Now since A0 ⊂ Â0, we will
for any a ∈ A0 have that

0 = trR(fa) = trR(Φ(fa)) = trR(Φ(f)a).

Hence Φ(f) ∈ L1(M)+ with Φ(f) ⊥ A0. It therefore follows from the hypothesis that Φ(f) ∈
L1(D).

Now notice that for any t, s ∈ QD, it is trivially true that λ(t)Â0λ(s) ⊂ Â0. Using
this fact, it is a simple exercise to show that each of λ(t)∗fλ(t), (1 + λ(t)∗)f(1+
λ(t)), and (1− iλ(t)∗)f(1+ iλ(t)) are also positive elements of L1(R) which are orthog-
onal to Â0. Hence by the same argument as before, each of Φ(λ(t)∗fλ(t)), Φ((1+
λ(t)∗)f(1+ λ(t))) = Φ(f) + Φ(λ(t)∗f) + Φ(fλ(t)) + Φ(λ(t)∗fλ(t)), and Φ((1− iλ(t)∗)f(1+
iλ(t))) = Φ(f)− iΦ(λ(t)∗f) + iΦ(fλ(t)) + Φ(λ(t)∗fλ(t)), also belong to L1(D). Simple arith-
metic now leads to the conclusion that

Φ(fλ(t)) ∈ L1(D) for each t ∈ QD.

We remind the reader that on elements of the form λ(t)b where t ∈ QD and b ∈M , the
action of Ê and Φ and are respectively given by Ê(λ(t)b) = λ(t)E(b) and

Φ(λ(t)b) =

{
b if t = 0
0 otherwise

.
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It easily follows from this that

Φ(Ê(λ(t)b)) = E(Φ(λ(t)b)).

Since the span of elements of the form λ(t)b is σ-weakly dense in R, the normality of each of
Ê and Φ, now leads to the conclusion that Φ ◦ Ê = E ◦ Φ. On combining this fact with the fact
that Φ(fλ(t)) ∈ L1(D)) for each t ∈ QD, it now follows that

trR(fλ(t)b) = trR(Φ(fλ(t)b))

= trR(Φ(fλ(t))b)

= trR(E ◦ Φ(fλ(t))b)

= trR(Φ(Ê(fλ(t)))b)

= trR(Φ(Ê(f)λ(t))b)

= trR(Φ(Ê(f)λ(t)b))

= trR(Ê(f)λ(t)b)

Once again the fact that span{λ(t)))b : t ∈ QD, b ∈M} is σ-weakly dense in R, now ensures
that trR(fg) = trR(Ê(f)g) for any g ∈ R. Hence f = Ê(f) as required.

The second claim now easily follows from the first. To see this let f ∈ L1(Rn)+ be given
with f ⊥ (Ân)0. We need to show that then f ∈ L1(D̂n) = L1(D̂) ∩ L1(Rn). Using the fact
that Φn((Â)0) = (Ân)0, it now easily follows that

trR(fa) = trR(Φn(fa)) = trR(fΦn(a)) = 0

for any a ∈ Â0. Hence by the first part f ∈ L1(D̂) as required.

We are now ready to prove our main theorem. Before doing so we remind the reader of
some concepts introduced in [7]. We say that an extension in the Banach dual M? of M of a
functional in A? (the Banach dual of A) is a Hahn-Banach extension if it has the same norm as
the original functional. If A is a weak* closed subalgebra of M then we say that A has property
(GW1) if every Hahn-Banach extension to M of any normal functional on A, is normal on M .
We say that A has property (GW2) if there is at most one normal Hahn-Banach extension to
M of any normal functional on A. We say that A has the Gleason-Whitney property (GW)
if it possesses (GW1) and (GW2). This is simply saying that there is a unique Hahn-Banach
extension to M of any normal functional on A, and this extension is normal. This is the content
of the classical Gleason-Whitney theorem for H∞(D). Of course normal functionals on M have
to be of the form trM (g · ) for some g ∈ L1(M) where trM is the canonical tracial functional
on L1(M).

Theorem 3.4. Let A be an analytically conditioned algebra. Then the following are
equivalent:
(i) A is maximal subdiagonal,

(ii) For every right A-invariant subspace X of L2(M), the right wandering subspace W of X
satisfies W ∗W ⊂ L1(D), and W ∗(X 	 [WA]2) = (0).

(iii) L2(M) = H2(A)⊕H2
0(A)∗, and any f ∈ L1(M)+ which is in the annihilator of A0 belongs

to L1(D).
(iv) A satisfies (GW2).

Proof. The fact that (i) implies (ii) is proved in Theorem 2.3. We proceed to prove that
(ii) implies (iii). To this end, let g ∈ L1(M)+ be given with τ(gA) = 0. Let f = |g| 12 . Clearly
f ∈ L2(M), and f2 = g. Now set X = [fA]2. Note that f ⊥ [fA0]2 since if an ∈ A0 with fan →
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k in L2-norm, then tr(f∗k) = limn tr(f
∗fan) = limn tr(gan) = 0. In particular, the fact that

f ⊥ [fA0]2 = [XA0]2, ensures that f ∈ X 	 [XA0]2 = W . So by hypothesis, f2 = g ∈ L1(D).
Next set X = L2(M)	H2

0(A)∗. We will deduce that A satisfies L2-density. That is that
X = H2(A). To this end, note that X is right A-invariant. To see this first note that since A is
subdiagonal, {h1/2a∗0 : a0 ∈ A0} is dense in H2

0(A)∗. So f ∈ L2(M) is orthogonal to (H2
0(A))∗

if and only if tr(a0h
1/2f) = tr((h1/2a∗0)∗f) = 0 for every a0 ∈ A0. Given f ∈ X, a ∈ A and

a0 ∈ A0, the fact that then aa0 ∈ A0, ensures that we will then have that tr(a0h
1/2(fa)) =

tr(aa0h
1/2f) = 0 for every a0 ∈ A0. Hence fa ∈ L2(M)	H2

0(A)∗ = X as required.
It is easy to see that h1/2 ∈ X where h = dϕ̃

dτL
. (This is an immediate consequence of the

fact that {a0h1/2 : a0 ∈ A0} is dense in H2
0(A), and that tr(h1/2(ah1/2)) = ϕ(a) = 0 for all

a ∈ A0.) In fact h1/2 ∈W = X 	 [XA0]2 since for any a0 ∈ A0 and f ∈ X we already know
that 0 = tr(a0h

1/2f) = tr(h1/2(fa0)). This forces h1/2(X 	 [WA]2) ⊂W ∗(X 	 [WA]2) = (0).
The injectivity of the embedding L2(M)→ L1(M) : s→ h1/2s now ensures that X 	 [WA]2 =
(0). However the fact that h1/2 ∈W also ensures that h1/2W ⊂W ∗W ⊂ L1(D). For any w ∈
W we will then have that h1/2w = E1(h1/2w) = h1/2E2(w). On once again appealing to the
injectivity of the embedding L2(M)→ L1(M) : s→ h1/2s, we may now conclude that w =
E2(w) ∈ L2(D) for any w ∈W . So X = [WA]2 ⊂ [L2(D)A]2 ⊂ H2(A). The converse inclusion
H2(A) ⊂ X follows from the fact that H2(A) is orthogonal to H2

0(A)∗.
We prove that (iii)⇒(i). Given that (iii) holds, it then follows from Lemmata 3.2 and 3.3

that (iii) also holds when the pair (M,A) is replaced by any of the pairs (Rn, Ân). But each
Rn is a finite von Neumann algebra, and the stated property does not just hold in terms of
(Rn, Ân, ϕ̂n, Ê), but also in terms of (Rn, Ân, τn, Ê) where τn is the canonical finite trace on
Rn. This bears some justification, and hence we pause to substantiate this claim. Firstly note
that the canonical trace on Rn is of the form τn(·) = ϕ̂n(e−an ·) for some element an in the von
Neumann algebra generated by the operators {λ(t) : t ∈ QD} ⊂ R. Hence the fact that ϕ̂n ◦ Ê
ensures that also τn(Ê(·)) = ϕ̂n(e−an Ê(·)) = ϕ̂n(Ê(e−an ·)) = ϕ̂n(e−an ·) = τn. So Ân is indeed
also a tracial subalgebra of Rn. It further follows from Corollary II.38 of [31] that there exists
a topological isomorphism from the τ -measurable operators affiliated with Rn oϕ̂n

R, to those
affiliated with Rn oτn R, in a manner which identifies the Lp spaces corresponding to the two
contexts. The Remark immediately following [31, Corollary II.38] moreover informs us that the
Haagerup Lp-spaces corresponding to the context Rn oτn R, are of the form {f ⊗ exp(·/p) : f ∈
Lp(Rn, τn)}, where Lp(Rn, τn) are the “tracial” Lp-spaces. If one carefully follows the action
of these maps, it can be seen that in the case of Rn, (iii) holds for the “Haagerup” context, if
and only if it holds for the “tracial” context.

For the case of finite von Neumann algebras it is known that condition (iii) is equivalent to
the condition that Â∗n + Ân is σ-weakly dense in Rn ([6], [8]). Hence for each n ∈ N, we have
that Â∗n + Ân is σ-weakly dense in Rn. Thus the σ-weak closure of ∪n∈N(Â∗n + Ân) includes
∪n∈NRn. But ∪n∈NRn is σ-weakly dense in R. Hence the same must be true of ∪n∈N(Â∗n + Ân).
But ∪n∈N(Â∗n + Ân) ⊂ Â∗ + Â. So Â∗ + Â is σ-weakly dense in R. By the σ-weak continuity
of Φ, Φ(Â∗ + Â) = A∗ +A is then σ-weakly dense in Φ(R) = M . Hence (i) holds.

The proof that (i)⇔(iv) proceeds almost exactly as the proof of the first part of [7, Theorem
4.1]. The only changes that need to be made to that proof are either notational in nature or very
minor technical adjustments. Expressions like τM (fa) need to be replaced with expressions of
the form trM (fa), and the notational convention [A0]1 used in [7, Theorem 4.1], needs to be
replaced with H1

0(A). The original proof uses a Lemma of Saito to conclude that g − f ∈ [A0]1.
However the use of this Lemma is superfluous. It suffices to instead use the fact that f − g ⊥ A
throughout the proof. A final fact that needs to be silently used throughout the proof of the
σ-finite case, is that the tracial functional trM annihilates H1

0(A). This follows from the fact
that trM ◦ E1, as pointed out in the discussion preceding Proposition 2.1. All other aspects
remain unchanged.
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