Synthesis of a series of novel 2-aminopyrimidine derivatives and their biological evaluation as adenosine receptor antagonists

Sarel Johannes Robinson
B.Pharm., M.Sc. (Pharmaceutical Chemistry)
20367414

Thesis submitted for the degree Doctor Philosophiae in Pharmaceutical Chemistry at the Potchefstroom Campus of the North-West University

Promoter: Dr. A.C.U Lourens
Co-Promoter: Dr. A.L Rousseau
Co-Promoter: Prof. J.P. Petzer

November 2015
The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF.
This thesis is submitted in article format consisting of four original research articles. One of the aforementioned articles has been published in the *European Journal of Medicinal Chemistry*, one article has been submitted to *Bioorganic and Medicinal Chemistry Letters* and the last two are awaiting submission. The author guidelines for the submitted articles have also been included. All scientific research (synthesis, biological assays and writing of thesis as well as articles) for the purpose of this thesis was conducted by Mr S.J. Robinson at the North-West University, Potchefstroom campus.

Letters of agreement from the co-authors of the research articles and the publishing agreements from the editors of the stated journals are included.
Declaration

This thesis is submitted in fulfilment of the requirements for the degree of Philosophiae Doctor in Pharmaceutical Chemistry, at the School of Pharmacy, North West University.

I, Sarel Johannes Robinson hereby declare that the thesis with the title: Synthesis of a series of novel 2-aminopyrimidine derivatives and their biological evaluation as adenosine receptor antagonists is my own work and has not been submitted at any other university either whole or in part.

SJ Robinson
December 2015
Letter of agreement

To whom it may concern,

Dear Sir/Madam

CO-AUTHORSHIP ON RESEARCH PAPERS
The undersigned as co-authors of the research articles listed below, hereby give
permission to Mr S.J. Robinson to submit these articles as part of the degree PhD in
Pharmaceutical Chemistry at the North-West University, Potchefstroom campus.

- 2-Aminopyrimidines as dual adenosine A1/A2A antagonists;
 Published in European Journal of Medicinal Chemistry. (2015, 104:177-188).

- Amide substituted 2-amino-4,6-diphenylpyrimidines as adenosine receptor antagonists;
 Awaiting submission

- Carbamate substituted 2-amino-4,6-diphenyl-aminopyrimidines as adenosine receptor
 antagonists;
 Submitted to Bioorganic and Medicinal Chemistry Letters.

- Synthesis and evaluation of novel ether derivatives of 2-amino-4,6-diphenylpyrimidine as
 potential dual adenosine A1 and A2A antagonists
 Awaiting submission

Yours sincerely,

Dr. A.C.U. Lourens Dr. A.L Rousseau Prof. J.P. Petzer Prof. J.J. Bergh

Prof. G. Terre'Blanche Prof. A. Petzer Dr. M.M. van der Walt
Acknowledgements

- Dr. A.C.U. Lourens, my sincere gratitude for your guidance, patience, motivation and continuous support through 5 years of study. I could not have imagined having a better promoter and mentor during this time.

- Dr. A.L. Rousseau and Prof J.P Petzer, for your assistance, insights and encouragement.

- Mr. André Joubert and Dr. Johan Jordaan of the SASOL Centre for Chemistry, North-West University for recording of NMR and MS spectra.

- Ms. Madelein Geldenhuys for her assistance with the radioligand binding studies and Prof. Jan du Preez for HPLC analyses

- The North-West University and NRF for financial support.

- My colleagues and friends at Pharmaceutical Chemistry, thank you for a memorable 5 years.

- Marlé Meiring, thank you for your love and support. I love you.
ABSTRACT

Parkinson’s disease (PD) is a progressive, neurodegenerative movement disorder caused by a substantial loss of dopamine in the striatum. This deficiency of dopamine in the brain results in the typical motor symptoms such as muscle rigidity, dyskinesia, tremor and impairment of postural balance. PD patients not only have to deal with the life altering motor deficits, but usually suffer from non-motor symptoms like depression and dementia. Current treatments, which mainly involve dopamine replacement therapies, are symptomatic and do not prevent the progression of PD. These treatments are also associated with numerous side effects that further complicate the lives of patients. These shortcomings have spurred a search for novel, alternative non-dopaminergic therapies.

Dual antagonism of adenosine A₁ and A₂A receptors is a potential, promising non-dopaminergic alternative. Reports indicate that dual antagonism of A₁ and A₂A receptors will act synergistically to reverse the motor deficiencies of PD. Non-motor symptoms may also be addressed by dual antagonism, as adenosine A₁ receptor antagonism is linked to increased cognition, whereas antagonism of the A₂A receptor may improve depression symptoms. Neuroprotection, which remains the single, most elusive problem in PD, may also possibly be attained by A₂A receptor antagonism in particular. The benefits of dual adenosine A₁ and A₂A antagonism therefore extend further than the mere symptomatic treatment of the disease and these agents have the potential to influence the progression of PD.

The 2-aminopyrimidine chemotype is a privileged scaffold for antagonism of adenosine receptors as this motif frequently occurs in compounds that exhibit potent adenosine A₂A and/or adenosine A₁ affinity. Selected compounds from a series of 2-aminopyrimidine derivatives designed and synthesised in a previous study exhibited potent adenosine A₂A affinities as well as in vivo activity in the haloperidol induced catalepsy assay in rats. The first aim of this PhD study was therefore to determine the adenosine A₁ affinities of these compounds and to evaluate their potential cytotoxicity. After identification of 2-amino-4,6-diphenylpyrimidine as a feasible scaffold for the design of dual adenosine A₁ and A₂A antagonists, the second aim of this study was to further explore the structure-activity relationships of these aminopyrimidines with regards to their potential as dual adenosine A₁ and A₂A antagonists.

The adenosine A₁ receptor affinities of the 2-aminopyrimidines synthesised in the preceding study were determined using radioligand binding studies. 1,3-[³H]-Dipropyl-8-cyclopentylxanthine ([³H]DPCPX) was used as a radioligand to determine binding to the A₁ receptors. Whole brains obtained from male Sprague-Dawley rats (NWU-0035-10-A5) were used as receptor source. These 2-aminopyrimidines illustrated moderate to good A₁ receptor affinities with Kᵢ values ranging from 9.54 nM – 650.1 nM. These compounds are therefore promising dual adenosine A₁ and A₂A antagonists since potent A₂A
receptor affinities have been illustrated in the preceding study. These compounds were also not toxic in a preliminary cytotoxicity assay as cell viability was generally still above 70% at a concentration of 10 µM, which is almost 1000 fold higher than the reported K_i values.

Three novel series of amide, carbamate and ether substituted 2-amino-4,6-diphenylpyrimidines were further synthesised. The synthesis of the ether and carbamate derivatives involved firstly, the reaction of acetophenone and 3-hydroxybenzaldehyde under basic conditions to yield (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one, as precursor. Similarly, 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid, the precursor for the amide series, was synthesised by reacting 3-formylbenzoic acid and acetophenone under basic conditions. Different carbamoyl chlorides, alkyl chlorides and amines were coupled to the respective precursors to yield chalcone intermediates for the carbamate, ether and amide series, respectively. Cyclisation of these intermediates with guanidine hydrochloride and sodium hydride in DMF afforded the desired 2-aminopyrimidines. Structures were confirmed by nuclear magnetic resonance spectroscopy and mass spectrometry.

The adenosine A$_1$ and A$_{2A}$ receptor affinities of the newly synthesised 2-amino-4,6-diphenylpyrimidines were determined using radioligand binding studies. The non-selective radioligand, [³H]5'-N-ethylcarboxamide-adenosine ([³H]NECA) was utilised in the presence of N6-cyclopentyladenosine (CPA) to assess binding to the adenosine A$_{2A}$ receptor. Striata dissected from male Sprague-Dawley rats (NWU-0035-10-A5) served as receptor source. Evaluation of A$_1$ affinities were done as described above. Compounds from both the amide and carbamate series showed moderate to potent dual adenosine A$_1$ and A$_{2A}$ affinities, while compounds from the ether series were more selective towards the A$_1$ receptor. K_i values for the A$_1$ receptor ranged from 5.42 - 25.2 nM, 0.175 - 10.7 nM and 5.66 – 48.8 nM for the amide, carbamate and ether series, respectively. Moderate A$_{2A}$ K_i values of 47.0 – 351 nM were observed for the ethers, whereas the amides and carbamates had superior affinities ranging from 3.37 - 106.5 nM and 1.58 - 451 nM, respectively.

Molecular docking studies (C-Docker, Discovery studio 3.1), using the crystal structure of the adenosine A$_{2A}$ receptor (PDB 3EML) were further performed in an attempt to rationalise the results obtained in radioligand binding assays. Unfortunately, the crystal structure of the adenosine A$_1$ receptor is not yet available. Important anchoring interactions, such as those of the exocyclic amino group and Glu169 as well as hydrophobic interactions between the tricyclic ring system and Phe168, were observed for most compounds. The amide and carbamate derivatives, however showed additional interactions between the side chain carbonyl and either Glu169 or Tyr271, located in the binding site, suggesting that this interaction is important for A$_{2A}$ affinity. It is postulated that the decrease in A$_{2A}$ affinity observed for the ether series is a result of the absence of this carbonyl group in the side chain, as this interaction is no longer possible.
The compounds with the most promising dual affinities were selected for in vivo screening using the haloperidol induced catalepsy assay. This assay is often used as an indication of A$_{2A}$ receptor antagonism, as administration of known antagonists results in reversal of haloperidol induced catalepsy. At the same time, this assay gives a preliminary indication of bioavailability. The following compounds, [3-(2-amino-6-phenylpyrimidin-4-yl)phenyl-4-methylpiperazine-1-carboxylate, 3-(2-amino-6-phenylpyrimidin-4-yl)phenyl morpholine-4-carboxylate and 3-(2-amino-6-phenylpyrimidin-4-yl)-N-[3-(morpholin-4-yl)propyl]benzamide] were selected and illustrated in vivo activity as catalepsy was attenuated to a significant degree when compared to the control groups. One carbamate compound, 3-(2-amino-6-phenylpyrimidin-4-yl)phenyl-4-methylpiperazine-1-carboxylate had no in vivo activity. Determination of both Log D and water solubility values for this compound indicated that this derivative is highly lipophilic (Log D = 4.03), with low water solubility and it is postulated that these unfavourable physicochemical properties are responsible for the lack of in vivo activity.

All objectives as set out, were met successfully as 26 novel 2-amino-4,6-diphenylpyrimidines were synthesised and evaluated as dual adenosine A$_1$ and A$_{2A}$ antagonists. Promising dual adenosine A$_1$ and A$_{2A}$ affinities and good in vivo results were obtained for the newly synthesised derivatives, clearly illustrating the promise of the 2-aminopyrimidines in the potential treatment of PD.

Keywords
Parkinson’s disease, dual adenosine antagonists, 2-aminopyrimidines, A$_{2A}$ antagonists, A$_1$ antagonists
Parkinson se siekte (PS) is ‘n progressiewe, neurodegeneratiewe bewegingsiekte wat veroorsaak word deur ‘n verlaging in die dopamienkonsentrasie in die striatum. Hierdie verlies van dopamien in die brein veroorsaak die tipiese motorsimptome soos spierstyfheid, diskinesie, tremor en versteuring van posturale balans. Pasiënte met PS moet nie net saamleef met motoriese inkorting nie, maar ondervind ook dikwels nie-motoriese simptome soos depressie en demensie. Huidige behandeling, wat hoofsaaklik dopamienvervangingsterapie behels, is simptomaties en verhoed nie die progressiewe verloop van PS nie. Huidige behandeling word verder geassosieer met verskeie newe-effekte wat die lewens van pasiënte verder kompliseer. Hierdie tekortkominge het die soeke na nuwe, alternatiewe nie-dopaminergiese terapieë aangevuur.

Dualistiese antagonisme van adenosien A₁- en A₂A-reseptore is ‘n potensiële nie-dopaminergiese alternatief. Daar is vermeld dat dualistiese antagonisme van A₁- en A₂A-reseptore sinergisties sal optree om motoriese simptome te verhoed. Nie-motoriese simptome mag ook moontlks aangespreek word deur dualistiese antagonisme, aangesien antagonisme van die A₁ reseptor geassosieer word met ‘n toename in kognisie, tewyl antagonisme van die A₂A reseptor depressiewe simptome mag verbeter. Neurobeskerming, wat die belangrikste doel is in die behandeling van PS, mag ook deur veral A₂A antagonisme ‘n werklkheid word. Die voordele van dualistiese adenosien A₁- en A₂A-antagonisme strek dus verder as die blote simptomatiese behandeling van die siekte en hierdie middels mag moontlks ook die verloop van PS beïnvloed.

Die 2-aminopirimidienkern is van belang vir die antagonisme van adenosienreseptore aangesien hierdie motief voorkom in verbinding met potente adenosien A₂A-en/of adenosien A₁-affiniteit. Geselekteerde 2-aminopirimidiinderivate, wat ontwerp en gesintetiseer is tydens ‘n vorige studie, het potente adenosien A₂A-affiniteite, en ook in vivo aktiviteit, in die haloperidol-geïnduseerde katalepsietoets in rotte getoon. Die eerste doelwit van hierdie studie was om die adenosien A₁-affiniteite asook die potensiële sitotoksisiteit van hierdie verbinding te bepaal. Nadat die 2-amino-4,6-difenielpirimidienkern as ‘n geskikte motief vir die ontwerp van dualistiese adenosien A₁- en A₂A-antagoniste geidentifiseer is, was die hoofdoelwit van hierdie studie dan om die struktuuraktiviteitsverwantskappe van hierdie aminopirimidiene, wat betrekking het op hulle potensiaal as adenosien A₁- en A₂A-antagoniste, verder te ondersoek.

Die adenosien A₁-reseptoraffiniteite van die 2-aminopirimidiene wat in die voorafgaande studie gesintetiseer is, is bepaal deur gebruik te maak van radioligandbindingstudies. Om binding aan A₁-reseptore te bepaal, is 1,3-[³H]-dipropiel-8-siklopentielxantien ([³H]DPCPX) gebruik as radioligand. Breinweefsel, verkry van manlike Sprague-Dawley rotte (NWU-0035-10-A5), is gebruik as bron van
reseptore. Hierdie 2-aminopirimidiene het matig tot goeie affiniteite vir die A_1-reseptor, met K_i waardes tussen 9.54 nM – 650.1 nM, getoon. Hierdie verbindings is dus belowende dualistiese adenosien A_1 en A_{2A} antagoniste, aangesien potente A_{2A} reseptoraffiniteite in die voorafgaande studie verkry is. Hulle was ook relatief non-toksies, aangesien sellewensvatbaarheid in die algemeen groter as 70% was by ’n konsentrasie van 10 µM, wat ongeveer 1000 keer hoër is as die waargenome K_i waardes.

Drie nuwe amied-, karbamaat- en etergesubstitueerde 2-amino-4,6-difenielpirimidienreekse is verder gesintetiseer. Die sintese van die eter en karbamaatderivate het eerstens die reaksie van asetofenoon en 3-hidroksiebensaldehied, onder basiese kondisies, om ($2E$)-3-(3-hidroksifeniel)-1-fenielprop-2-en-1-oon as voorloper te lever, behels. Soortgelyk hieraan, is 3-[(1E)-3-okso-3-fenielprop-1-en-1-iel]bensoësuur, die voorloper van die amiedreeks, gesintetiseer deur die reaksie van 3-formielbensoësuur met asetofenoon, ook onder basiese kondisies. Verskillende karbamoïelchloriede, alkielchlorede en amiene is aan die onderskeie voorlopers gekoppel om die chalkoonintermediëre vir die karbaat, eter en amiedreekse, respektiewelik, te lever. Siklisering van hierdie intermediëre met guanidienhidrochloried en natriumhidried in DMF het gelei tot die verkryging van die gewenste 2-aminopirimidiene. Strukture is bevestig met kernmagnetieseresonanssspektroskopie en massaspektrometrie.

Die adenosien A_1- en A_{2A}-affiniteite van die nuutgesintetiseerde 2-amino-4,6-difenielpirimidieniene is bepaal deur gebruik te maak van radioligandbindingstudies. Die non-selektiewe radioligand, [3H]5’-N-etieltarbooksamied-adenosien ([3H]NECA), in die teenwoordigheid van N6-siklopentieladenosien (CPA), is gebruik om binding aan die adenosien A_{2A} reseptor te meet. Striata, wat verkry is deur disseksie van manlike Sprague-Dawley rotte (NWU-0035-10-A5), het as bron van reseptore gedien. Evaluering van A_1 affiniteite is uitgevoer soos hierbo beskryf. Terwyl verbindings van die amied- en karbamaatreekse matig tot potente dualistiese affiniteite vir die adenosien A_1- en A_{2A}-reseptore getoon het, was die eteranaloë meer selektief vir die A_1-reseptor. K_i-waardes van die A_1-reseptor was tussen 5.42 - 25.2 nM, 0.175 - 10.7 nM en 5.66 – 48.8 nM vir die amied-, karbamaat- en eterreekse, respektiewelik. Matige $A_{2A}K_i$-waardes van 47.0 – 351 nM is waargeneem vir die eter, terwyl die amiede en karbamate beter affiniteite van tussen 3.37 - 106.5 nM en 1.58 - 451 nM, respektiewelik, getoon het.

Molekulêre passingstudies (C-Docker, Discovery studio 3.1), is verder uitgevoer in ’n poging om ’n rasionele verduideliking vir die resultate van die radioligandbindingstudies te verkry. Die kristalstruktuur van die adenosien A_{2A}-reseptor (PDB 3EML) is hiervoor gebruik. Ongelukkig is die kristalstruktuur van die adenosien A_1-reseptor nog nie beskikbaar nie. Belangrike ankeringsinteraksies, soos die van die eksosikliëse amiengroep en Glu169, sowel as hidrofoiese interaksies tussen die trisikliëse ringsisteem en Phe168, is waargeneem vir die meeste verbindings. Die amied- en karbamaatderivate het verder ook additionele interaksies tussen die karbonielgroep in die syketting en
Glu169 or Tyr271, what voorkom in die bindingsetel, getoon, wat aandui dat hierdie interaksie van besondere belang vir A2A-affiniteit is. Daar word gepostuleer dat die afwesigheid van hierdie karbonielgroep in die syketting van die eters verantwoordelik is vir die verlies aan affiniteit vir hierdie reeks, aangesien hierdie interaksie nie meer moontlik is nie.

Die verbindings met die mees belowende dualistiese affiniteit is geselekteer vir in vivo toetsing in die haloperidol-geïnduseerde katalepsietoets. Hierdie toets word gereeld gebruik as ’n aanduiding van A2A-reseptorantagonisme, aangesien die toediening van bekende A2A-antagoniste haloperidol-geïnduseerde katalepsie omkeer. Terselfdertyd gee hierdie toets ook ’n aanduiding van biobeskikbaarheid en akute toksiese effekte. Die verbindings [3-(2-amino-6-fenielpirimidien-4-iel)feniel-4-metielpipersien-1-karboksilaat, 3-(2-amino-6-fenielpirimidien-4-iel)fenielmorfolien-4-karboksilaat en 3-(2-amino-6-fenielpirimidien-4-iel)-N-[3-(morfolien-4-iel)propiel]bensamied] is gekies en het in vivo aktiwiteit getoon aangesien ’n statisties waarneembare afname in katalepsie waargeneem is, vergeleke met die kontrolegroep. Een karbamaatverbinding, 3-(2-amino-6-fenielpirimidien-4-iel)feniel 4-metielpipersien-1-karboksilaat het geen in vivo aktiwiteit getoon nie. Beide Log D en wateroplosbaarheid is vir hierdie verbinding bepaal en hierdie waardes het aangetoon dat hierdie derivaat hoogs lipofiel is (Log D = 4.03), met lae wateroplosbaarheid. Daar word gepostuleer dat hierdie ongunstige fisiese-chemiese eienskappe verantwoordelik is vir die afwesigheid van in vivo aktiwiteit.

Alle doelwitte, soos gestel, is suksesvol bereik, aangesien 26 nuwe 2-amino-4,6-difenielpirimidien gesintetiseer is en as dualistiese adenosien A1- en A2A-antagoniste geëvalueer is. Belowende dualistiese A1- en A2A affiniteit en goeie in vivo resultate is verkry vir die nuut gesintetiseerde derivate, wat duidelik die potensiaal van die 2-aminopirimidiene vir die behandeling van PS aantoon.

Sleutelwoorde
Parkinson se siekte, dualistiese adenosienantagoniste, 2-aminopirimidiene, A2A-antagoniste, A1-antagoniste
Table of contents

Preface.. ii

Declaration... iii

Letter of agreement... iv

Acknowledgements.. v

Abstract... vi

Uittreksel.. ix

List of compounds, figures, tables and schemes... xv

Abbreviations... xx

Chapter 1 - Introduction

1.1 Background... 1
 1.1.1 Parkinson’s disease.. 1
 1.1.2 Adenosine receptors as drug targets in PD.. 1
 1.1.3 Design of 2-aminopyrimidines as adenosine A\textsubscript{1} and A\textsubscript{2A} antagonists... 2

1.2 Aim, rationale and hypothesis.. 3

1.3 Objectives... 6

Chapter 2 - Literature overview

2.1 Parkinson’s disease... 9
 2.1.1 General background.. 9
 2.1.2 Neuropathology.. 9
 2.1.3 Aetiology and pathogenesis.. 11
 2.1.3.1 Age hypothesis.. 12
 2.1.3.2 Environmental toxin hypothesis.. 12
 2.1.3.3 Genetic hypothesis... 12
 2.1.3.4 Several other hypotheses.. 13
 2.1.4 Treatment... 14
 2.1.4.1 Levodopa.. 14
 2.1.4.2 Dopamine D\textsubscript{2} agonists... 15
 2.1.4.3 Monoamine oxidase B (MAO-B) inhibitors.. 16
 2.1.4.4 Catechol-O-methyltransferase (COMT) inhibitors.................................. 16
 2.1.4.5 Anticholinergics... 17
2.1.4.6 Novel therapies ... 17
2.1.4.7 Conclusion ... 18
2.2 Adenosine and its receptors ... 19
 2.2.1 Background ... 19
 2.2.2 Overview of the basal ganglia structures, pathways and their role in PD 21
2.3 Adenosine A_{2A} receptor .. 23
 2.3.1 Structure ... 23
 2.3.2 Brain Distribution of the adenosine A_{2A} receptor 25
 2.3.3 Role of adenosine A_{2A} antagonism in PD 26
 2.3.4 A_{2A} antagonism and its interactions with other neurotransmitter receptors in PD.... 26
 2.3.5 A_{2A} antagonism and neuroprotection 28
 2.3.6 Adenosine A_{2A} antagonists in PD .. 30
2.4 Adenosine A₁ receptor .. 31
 2.4.1 Overview ... 31
 2.4.2 Structure of the adenosine A₁ receptor 31
 2.4.3 Role of adenosine A₁ antagonism in PD 32
2.5 Dual adenosine A₁ and A_{2A} antagonism .. 32
 2.5.1 Examples and benefits of dual antagonism 32
 2.5.2 Possible side effects of dual adenosine A₁ and A_{2A} antagonism 34
2.6 Evaluation of synthesised compounds as dual adenosine A₁ and A_{2A} antagonists 34
 2.6.1 In vitro assays ... 34
 2.6.2 Determination of agonistic and antagonistic effects with functional assays 35
2.7 Summary .. 37

References .. 38

Chapter 3 - Article 1
2-Aminopyrimidines as dual adenosine A₁/A_{2A} antagonists ... 54
Supplementary material ... 85

Chapter 4 - Article 2
Amide substituted 2-amino-4,6-diphenylpyrimidines as adenosine receptor antagonists 109
Supplementary material .. 119
Chapter 5 - Article 3
Carbamate substituted 2-amino-4,6-diphenylpyrimidines as adenosine receptor antagonists……. 155
Supplementary material………………………………………………………………………………. 166

Chapter 6 - Article 4
Synthesis and evaluation of novel ether derivatives of 2-amino-4,6-diphenylpyrimidine as potential dual adenosine A₁ and A₂A antagonists…………………………………………………………… 200
Supplementary material…………………………………………………………………………….. 207

Chapter 7 - Conclusion………………………………………………………………………………… 231

Appendix…………………………………………………………………………………………… 239
List of compounds, figures, tables and schemes

Compounds:

Chapter 1

1.1 Chemical structure of preladenant... 2

1.2 Example of indenopyrimidine.. 3

1.3 Example of indenopyrimidone.. 3

1.4-1.6 Examples of amide derivatives synthesised in preceding MSc study............. 3

1.7 2-Aminopyrimidine scaffold.. 4

1.8-1.10 Examples of 2-aminopyrimidines with longer amide side chains............... 4

1.11 Chemical structure of ZM241385... 5

1.12-1.14 Examples of carbamate substituted 2-amino-4,6-diphenylpyrimidines...... 5

1.15 Chemical structure of rivastigmine... 5

1.16-1.18 Examples of ether substituted 2-amino-4,6-diphenylpyrimidines............... 6

Chapter 2

2.1 Chemical structure of carbidopa... 15

2.2 Chemical structure of benserazide.. 15

2.3 Chemical structure of pergolide.. 16

2.4 Chemical structure of pramipexole... 16

2.5 Chemical structure of selegeline.. 16

2.6 Chemical structure of rasagiline... 16

2.7 Chemical structure of entacapone... 17

2.8 Chemical structure of tolcapone... 17

2.9 Chemical structure of orphenadrine.. 17

2.10 Chemical structure of trihexyphenidyl... 17

2.11 Chemical structure of adenosine.. 19
2.12 Chemical structure of caffeine... 30
2.13 Chemical structure of CSC.. 30
2.14 Chemical structure of KW6002... 30
2.15 Chemical structure of preladenant... 31
2.16 Chemical structure of tozadenant... 31
2.17 Example of a dual adenosine antagonist.. 34
2.18 Example of a dual adenosine antagonist containing a 2-aminopyrimidine moiety........... 34
2.19 Chemical structure of the radioligand \[^{3}\text{H}]\text{NECA} \).. 35
2.20 Chemical structure of the radioligand \[^{3}\text{H}]\text{DPCPX} \).. 35

Article 1
1-6 Examples of Adenosine A\textsubscript{2A} antagonists containing the 2-aminopyrimidine moiety........ 56

Article 2
1 2-aminopyrimidine derivative with potent dual affinity... 111

Article 3
1 Chemical structure of preladenant... 157
2 Chemical structure of tozadenant... 157
3 Chemical structure of synthesised amide derivative... 157
4 Chemical structure of carbamate substituted 2-amino-4,6-diphenylpyrimidine............... 157
5 Chemical structure of rivastigmine... 157

Article 4
1 Chemical structure of amide substituted 2-aminopyrimidine............................. 201
2 Chemical structure of carbamate substituted 2-amino-4,6-diphenylpyrimidine............. 201
3 Example of ether substituted 2-aminopyrimidine.. 202

Figures:

Chapter 2
Figure 2.1 Pathophysiology of PD... 10
Figure 2.2 The metabolism of Levodopa to dopamine by L-AAD............................ 14
Figure 2.3 Schematic diagram illustrating the direct and indirect pathways under (A) normal conditions, (B) during Parkinson’s disease (C) with the administration of levodopa agent, restoring the imbalance and (D) administration of a D2 agonist restoring only some of the imbalance between the direct and indirect pathways. Blue arrows indicate stimulation of movement and red arrows inhibition of movement. 22

Figure 2.4 Schematic diagram illustrating the direct and indirect pathways under (A) normal conditions, (B) during Parkinson’s disease (C) with the administration of an A2A antagonist, restoring the imbalance and (D) administration of an A1 antagonist restoring only some of the imbalance between the direct and indirect pathways. Blue arrows indicate stimulation of movement and red arrows inhibition of movement. 23

Figure 2.5 ZM241385 docked in the active site of the human A2A receptor. Green lines: hydrogen bonding interactions; Blue lines: hydrophobic interactions; Orange lines: π stacking. 25

Figure 2.6 Schematic diagram illustrating A) the mechanism by which dopamine D2 antagonism exerts catalepsy as well as B) the reversal effect that A2A antagonism has on induced catalepsy. 37

Article 1

Figure 1 Adenosine A2A antagonists containing the 2-aminopyrimidine moiety. 56

Figure 2a Reduction in haloperidol induced-catalepsy in male Sprague-Dawley rats by compound 8m. 63

Figure 2b Reduction in haloperidol induced-catalepsy in male Sprague-Dawley rats by compound 8k. 63

Figure 3 Illustration of the different orientations of compound 8b in the binding site of the A2A receptor. 65

Figure 4 Docking orientation of compound 8j in the active site of the adenosine A2A receptor. 65

Article 2

Figure 1 A. Compound 6a docked in the binding site of the human A2A receptor.
 B. Compound 6f docked in the binding site illustrating the alternative interaction between the amide nitrogen and Tyr271. 115
Figure 2 Graph illustrating a significant reduction of catalepsy with both concentrations of compound 6b. ... 116

Article 3

Figure 1 Compound 4b docked in the binding site of the human A2A receptor...............161

Figure 2A Compounds 4i (in colour) and 4b (in yellow) docked in the binding site of the human A2A receptor. **2B.** ZM241385 bound in the binding site of the human A2A receptor .. 162

Figure 3A Graph illustrating no significant reduction of catalepsy for both concentrations of compound 4b. **3B.** Graph illustrating a significant attenuation of catalepsy with both concentrations of compound 4c 162

Article 4

Figure 1 Illustration of the intermolecular hydrogen bond between the amide carbonyl of compound 1 and Tyr271 ...202

Figure 2 Compound 3e (A) and 3g (B) docked in the binding site of the human A2A receptor205

Chapter 7

Figure 7.1 A) Example of amide derivative 7.2 and B) carbamate derivative 7.12 docked in adenosine A2A receptor binding pocket ... 235

Tables:

Chapter 2

Table 2.1 The distribution, function and different G-protein binding preferences of each adenosine receptor subtype ...20

Article 1

Table 1 Adenosine receptor affinities (Ki) of compounds 8a - h ... 58

Table 2 Adenosine receptor affinities (Ki) of compounds 8j - n ... 60

Table 3 The percentage viable cells remaining after treatment with amide derivatives (8j - 8n), as compared to untreated cells (100%) .. 61

Article 2

Table 1 Adenosine A1 and A2A receptor affinities of the synthesised 2-aminopyrimidines 112

Article 3

Table 1 Adenosine receptor affinities (Ki) of the synthesised carbamates 4a - 4i 159

Table 2 The Log D and solubility of compound 4b .. 163
Article 4

Table 1 Adenosine receptor affinities (K_i) of the synthesised ethers 3a - 3g..203

Chapter 7

Table 7.1..232
Table 7.2..233
Table 7.3..234
Table 7.4..236

Schemes:

Chapter 1

Scheme 1.1 Synthesis of amide derivatives...7
Scheme 1.2 Synthesis of carbamate and ether derivatives..7

Article 1

Scheme 1 Synthesis. Reagents and conditions of 2-aminopyrimidine derivatives........56

Article 2

Scheme 1 Synthesis. Reagents and conditions of 2-aminopyrimidine derivatives........111

Article 3

Scheme 1 Synthesis. Reagents and conditions of carbamate substituted 2-aminopyrimidines......158

Article 4

Scheme 1 Synthesis. Reagents and conditions of ether substituted 2-aminopyrimidines........203
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asn</td>
<td>Asparagine</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CPM</td>
<td>Counts per minute</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>COMT</td>
<td>Catechol-O-methyltransferase</td>
</tr>
<tr>
<td>CPA</td>
<td>N^6-cyclopentyladenosine</td>
</tr>
<tr>
<td>CSC</td>
<td>8-(3-chlorostyryl)caffeine</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>DAs</td>
<td>Dopamine agonists</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>EL</td>
<td>Extracellular loop</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-aminobutyric acid</td>
</tr>
<tr>
<td>G-protein</td>
<td>Guanine nucleotide-binding protein</td>
</tr>
<tr>
<td>GPCR</td>
<td>G-protein coupled receptor</td>
</tr>
<tr>
<td>IL</td>
<td>Intracellular loop</td>
</tr>
<tr>
<td>IP3</td>
<td>Inositol triphosphate</td>
</tr>
<tr>
<td>L-AAD</td>
<td>L-amino acid decarboxylase</td>
</tr>
<tr>
<td>LBs</td>
<td>Lewy bodies</td>
</tr>
<tr>
<td>MAO-B</td>
<td>Monoamine oxidase B</td>
</tr>
<tr>
<td>MPTP</td>
<td>1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s disease</td>
</tr>
<tr>
<td>Phe</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SNpc</td>
<td>Substantia nigra pars compacta</td>
</tr>
<tr>
<td>TM</td>
<td>Transmembrane</td>
</tr>
</tbody>
</table>
CHAPTER 1

Introduction

1.1 Background

1.1.1 Parkinson’s disease

Parkinson’s disease (PD) is a chronic neurodegenerative disease characterised by typical motor symptoms such as bradykinesia, muscle rigidity, impairment of postural balance and resting tremor. These motor symptoms are believed to be the result of the deterioration of dopaminergic neurons in the striatum, which leads to a substantial decrease in the dopamine concentration in the brain. Individuals with PD not only suffer from these movement disabilities but generally develop several non-motor symptoms, like depression and loss of cognitive function, especially in the progressive stages of the disease (Dauer & Przedborski, 2003).

Current PD therapies, which are mostly dopaminergic in nature, only provide symptomatic relief (by improving the dopamine deficiency in the brain), and do not have the ability to halt the progression of the disease (Olanow et al., 2008; Schapira et al., 2014). A further limitation of these therapies is that, while providing relief for the motor symptoms, the non-motor symptoms that usually accompany PD are left untreated (Todorova et al., 2014; Jenner et al., 2013, Shook & Jackson, 2011). Additionally, detrimental side effects are often experienced and the therapeutic effect of drugs such as levodopa, decrease over time (Chaudhuri et al., 2006; Adler, 2005). These limitations demonstrate the immense need for the development of alternative drug therapies for PD.

It is believed that over 10 million people worldwide suffer from PD and this number is expected to rise substantially, as the incidence of the disease escalates with the increase in human lifespan (Dorsey et al., 2007). Finding a cure for PD is therefore of utmost importance, since the economic and social burden of the disease will increase substantially in the future.

1.1.2 Adenosine receptors as drug targets in PD

The basal ganglia and its sub-structures, particularly the striatum, plays an imperative role in the control of movement. The appeal of adenosine A1 and A2A receptors as targets in the treatment of movement disorders are twofold: Firstly, they are localised in the parts of the brain that control movement and secondly, they have the potential to modulate neurotransmission of other neurotransmitters involved in movement control, due to their integrative roles with other receptors such as the dopamine D2 receptors.
(Graybiel et al., 1994). The involvement of both the adenosine A_1 and A_{2A} receptors in motor function are well established and several studies have shown the potential of adenosine antagonists in the treatment of PD (Shook & Jackson, 2011; Müller & Ferré, 2007; Schwarzschild et al., 2006; Fredholm et al., 2005; Shook et al., 2012).

Since antagonism of both adenosine A_1 and A_{2A} receptors individually leads to an improvement in motor function (Pollack & Fink, 1995; Trevitt et al., 2009; Antoniou et al., 2005), it has been suggested that A_1 and A_{2A} receptor antagonists can act synergistically to relieve the motor symptoms associated with Parkinson’s disease (Shook et al., 2012). Antagonists of these receptors also have the potential to improve several non-motor symptoms. For example, the anti-depressant effects of the known adenosine A_{2A} antagonist KW6002 was recently reported, providing evidence of a possible role for adenosine A_{2A} receptor antagonists in the treatment of depression (Yamada et al., 2013). Antagonism of the A_1 receptor on the other hand, has been linked to enhancement of cognition (Pereira et al., 2002; Maemoto et al., 2004; Bortolotto et al., 2015). Dual antagonism of A_1 and A_{2A} receptors will therefore offer an added advantage as most PD patients suffer from depression and impaired cognitive abilities, especially in the later stages of the disease. Furthermore, adenosine A_{2A} receptor antagonism may have the ability to halt the progression of PD as neuroprotective properties have been reported in several preclinical studies (Jenner et al., 2009; Popoli et al., 2000; Ascherio et al., 2001). This makes dual adenosine A_1 and A_{2A} antagonism a particularly exciting alternative to current PD therapies, since it may not only improve the motor and non-motor symptoms, but has the potential to halt the progression of the disease.

1.1.3 Design of 2-aminopyrimidines as adenosine A_1 and A_{2A} antagonists

Although none of the drugs currently on the market for the treatment of PD are adenosine antagonists, several have reached clinical trials. The first adenosine antagonists designed for the treatment of PD were xanthines, derived from the known non-selective adenosine antagonist caffeine, and this class of compounds have been extensively researched (Mantri et al., 2008). However, our interest in the design of adenosine antagonists started with the realisation that many high potency adenosine antagonists, and adenosine A_{2A} antagonists in particular, contained a 2-aminopyrimidine moiety in their structures. Preladenant (1.1), for example, reached phase 3 clinical trials as a possible antiparkinsonian drug.

![Preladenant](image)

1.1 Preladenant

We thus set out to synthesise a preliminary series of 2-aminopyrimidines in order to assess the potential of these compounds as adenosine A_{2A} antagonists (Robinson, 2013). The design of these compounds
was based on similar indenopyrimidines (1.2) and indenopyrimidones (1.3) for which potent adenosine A\textsubscript{2A} and in some cases, potent adenosine A\textsubscript{1} affinities have been reported (de Lera Ruiz \textit{et al.}, 2014; Gillespie \textit{et al.}, 2009a; Gillespie \textit{et al.}, 2009b; Matasi \textit{et al.}, 2005; Shook \textit{et al.}, 2010a, Shook \textit{et al.}, 2010b; Shook \textit{et al.}, 2010c; Atack \textit{et al.}, 2014; Shook & Jackson, 2011; Müller & Ferré, 2007; Van Veldhoven \textit{et al.}, 2008; Lim \textit{et al.}, 2011).

![Chemical structure of 1.2 and 1.3](image)

A series of amide derivatives was thus synthesised and compounds with potent adenosine A\textsubscript{2A} affinity and \textit{in vivo} activity were identified during this preceding study (e.g. 1.4, 1.5, 1.6) establishing the feasibility of this scaffold in the design of adenosine A\textsubscript{2A} antagonists for future studies.

![Chemical structure of 1.4, 1.5, and 1.6](image)

\begin{align*}
A\textsubscript{2A}K_i &= 0.8 \text{ nM} \\
A\textsubscript{1}K_i &= 58.4 \text{ nM} \\
A\textsubscript{2A}K_i &= 8.2 \text{ nM}
\end{align*}

\begin{align*}
A\textsubscript{2A}K_i &= 6.34 \text{ nM} \\
A\textsubscript{2A}K_i &= 16.28 \text{ nM} \\
A\textsubscript{2A}K_i &= 29.32 \text{ nM}
\end{align*}

1.2 Aim, rationale and hypothesis

The focus of the preceding study was to identify a suitable scaffold for the design of adenosine antagonists which led to the discovery of the novel 2-amino-6-phenylpyrimidine nucleus. The main aim of this study is to further investigate the structure-activity relationships of this 2-amino-6-phenylpyrimidine scaffold with regards to its potential to antagonise both adenosine A\textsubscript{1} and A\textsubscript{2A} receptors.
As a validated adenosine A\textsubscript{1} receptor assay was not available at the time of the preceding study, the potential of these 2-aminopyrimidines (e.g. 1.4, 1.5, 1.6) as dual A\textsubscript{1} and A\textsubscript{2A} antagonists could not be determined. The first objective of the current study is therefore to expand the biological data of these previously synthesised compounds by evaluating their potential as adenosine A\textsubscript{1} antagonists. The adenosine A\textsubscript{1} affinities will be combined with the previously obtained A\textsubscript{2A} data so that the dual antagonistic potential of these compounds can be assessed and published at the same time. Furthermore, a preliminary cytotoxicity study will be carried out to assess the toxicity profile of these compounds.

To further explore the structure-activity relationships of the 2-aminopyrimidines, the following strategies will be employed: Firstly, it was decided to replace the methyl furan substituent on position 4 with a phenyl ring, as this simplified the synthesis (1.7) and results from a related study indicated that this change does not alter affinity to a significant degree (Kleynhans, 2014).

\begin{center}
\includegraphics[width=0.5\textwidth]{structure1.png}
\end{center}

1.7

It was subsequently decided that three series of 2-amino-4,6-diphenylpyrimidines will be synthesised and evaluated as dual adenosine antagonists. In the first series, the effect of lengthening the amide side chain on both adenosine A\textsubscript{1} and A\textsubscript{2A} affinity will be evaluated. (e.g. 1.8, 1.9, 1.10).

\begin{center}
\includegraphics[width=0.7\textwidth]{structures.png}
\end{center}

1.8 1.9 1.10

If the structures of other adenosine A\textsubscript{2A} antagonists, for example preladenant (1.1) and ZM241385 (1.11), is considered it appears that long chains can often be accommodated in the receptor binding site, and it is postulated that lengthening the side chain may lead to additional interactions with the binding site, which may lead to an improvement in affinity. Since molecular modelling studies done in the
preceding study indicated that the amide carbonyl group is important for binding, this group is retained for this series.

For the second series, different carbamate substituted 2-amino-4,6-diphenylpyrimidines (1.12, 1.13, 1.14) will be synthesised.

The carbamate group is often found in therapeutic agents such as the acetylcholinesterase inhibitor rivastigmine (1.15), used in the therapy of Alzheimer’s disease.

These amide-ester hybrids generally exhibit very good chemical and proteolytic stability as well as increased permeability across cellular membranes (Gosh & Brindisi, 2015). The additional oxygen in the carbamate side chain will alter the position of both the carbonyl oxygen as well as the side chain nitrogen and it is hypothesised that this could lead to additional or different binding interactions which could result in higher affinities.

To assess the importance of the carbonyl in the side chain, the amide group will be replaced with a less rigid ether group (1.16, 1.17, 1.18) in the third series. The hypothesis is that the carbonyl group is important for high affinity and it is postulated that these derivatives may show decreased affinities. On the other hand, it is possible that the more flexible side chain could bend and rotate to a greater extent.
than the more rigid amide and carbamate side chains, allowing an improved fit of these compounds in the binding sites of the adenosine receptors, resulting in improved affinities.

1.3 Objectives

The objectives of this study are summarised below:

a) The adenosine A_1 affinities of the compounds synthesised in the preceding study (appendix) will be determined with a radioligand binding assay and their potential as dual antagonists will be assessed.

b) Since the safety profile of these previously synthesised derivatives is also unknown, toxicity assays will be performed using the MTT cell viability assay in HELA cells.

c) Three series of novel amide, carbamate and ether substituted 2-amino4,5-diphenylpyrimidines will be synthesised. The selection of derivatives will mostly depend on the availability of starting materials. The synthesis will be performed by employing the general synthetic routes below (Scheme 1.1 and Scheme 1.2):
Scheme 1.1. Synthesis of amide derivatives. Reagents and conditions: (i) NaOH, 1M (2 eq.), MeOH, rt, overnight; (ii) CDI (1.2 eq.), CH$_2$Cl$_2$, rt, 4 h; (iii) Amine (1.2 eq.), CH$_2$Cl$_2$, rt, overnight; (iv) Guanidine hydrochloride (1.5 eq.), NaH (1.5 eq.), DMF, 110 °C, overnight.

Scheme 1.2. Synthesis of carbamate and ether derivatives. Reagents and conditions: (i) NaOH, 1M (2 eq.), MeOH, 90 °C, 5 days; (ii) K$_2$CO$_3$ (2 eq.), CH$_3$CN, rt, 30 min; (iii) RCl (1.2 eq.), reflux at 90 °C, overnight; (iv) R1R2NCOCl (1.2 eq.), reflux at 90 °C, overnight; (v) Guanidine hydrochloride (1.5 eq.), NaH (1.5 eq.), DMF, 110 °C, overnight.

d) Synthesised compounds will be screened in vitro using radioligand binding studies to determine their affinities for both adenosine A$_1$ and A$_2$A receptors.

e) Compounds with the most promising dual adenosine A$_1$ and A$_2$A affinity will be evaluated in vivo using the haloperidol induced catalepsy assay in rats to assess their bioavailability and to
verify whether they are antagonists. Drug-like properties such as Log D and solubility will be
determined for selected compounds if required.
f) Molecular modelling will further be used to assess probable binding orientations as well as
interactions between compounds and the binding site in an attempt to rationalise observed
affinities of all compounds.
2.1 Parkinson’s disease

2.1.1 General background

Parkinson’s disease (PD) is a chronic, neurodegenerative disorder described for the first time in 1817 by James Parkinson. While James Parkinson could only describe the clinical features of the disease, extensive research over the years has established that its primary pathological feature is the deterioration of dopaminergic neurons in an area of the brain known as the substantia nigra. Today PD is the second most common neurodegenerative disorder after Alzheimer’s disease and affects approximately 1.5% of the global population over the age of 65. With the current increase in global population age, this number is expected to rise substantially in the coming decades, increasing the social and economic burden associated with the disease (Dauer & Przedborski, 2003; Hindle, 2010).

The most perceptible symptoms of PD include motor deficits such as bradykinesia (slowness), muscle rigidity, tremor during rest and an impairment of postural balance (Schwarzschild et al., 2006). For the diagnosis of PD to be confirmed, at least two of these cardinal features must be present. Most of the motor symptoms can be managed and the prognosis of PD may be altered with effective pharmacological treatments such as levodopa and dopamine agonists. Levodopa, which is a precursor of dopamine, works by restoring the dopamine deficiency in the striatum and is, to date, the most effective option for treating the motor symptoms of PD. Unfortunately, long-term treatment with dopaminergic drugs (like levodopa and dopamine agonists) are associated with the development of motor complications such as dyskinesia as well as several other dopamine related autonomic and neuropsychological side effects. This highlights the importance of research aimed at the discovery of alternative and more effective therapies for PD (Olanow et al., 2013; Fahn, 2008). In addition to the limitation of movement, PD patients also suffer from non-motor symptoms, which is especially troublesome in the more advanced stages of the disease. These symptoms include: neuropsychiatric disturbances such as depression, anxiety, apathy, problems with cognition, thought, behavior, speech and swallowing, as well as several autonomic and sensory disorders (Chaudhuri et al., 2006; Adler, 2005).

2.1.2 Neuropathology

As mentioned earlier, one of the primary hallmarks of PD is the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), which leads to a substantial reduction in the dopamine
concentration in the striatum. The SNpc forms part of the striatum which is the primary input center (via the nigrostriatal pathway) of the basal ganglia. The main function of the striatum is to facilitate voluntary movements, and therefore a dopamine deficiency in this region of the brain leads to the involuntary movements seen in PD (Parent & Hazrati, 1995). Brain autopsies in patients diagnosed with only a mild degree of PD, have revealed that over 60% of striatal dopaminergic neurons have degenerated. Furthermore, if the possible dysfunction of a percentage of the remaining neurons is taken into account, up to 80% of the striatal dopamine concentration may be lost in these patients (Zigmond & Burke, 2005). It is further estimated that at least 50% of neurons in the SNpc are destroyed before PD symptoms emerge (Mackenzie, 2001).

Examination of the parkinsonian brain further reveals depigmentation of the SNpc as well as the presence of intraneuronal inclusions called “Lewy bodies” (LB’s), (Figure 2.1) (Dauer & Przedborski, 2003).

![Figure 2.1. Pathophysiology of PD. (A) The human brain with the normal nigrostriatal pathway shown in red and the pigmented SNpc. (B) Represents the brain of a PD patient with the degradation of the nigrostriatal pathway as well as depigmentation of the SNpc. (C) The immunohistochemical labelling of intraneuronal inclusions named Lewy bodies (Dauer & Przedborski, 2003).](image)

LBs are intracytoplasmic eosinophilic inclusions that are also considered to be a pathological hallmark of PD. In fact, some neuropathologists are reluctant to make the diagnosis in their absence (Mackenzie, 2001). It is suggested that LBs are a result of a failed attempt to remove excess proteins produced during PD. These proteins are encapsulated to be removed but become permanent after mechanisms
responsible for their elimination fail (Olanow et al., 2004). These spherical cytoplasmic aggregates measure between 8 µm to 30 µm in diameter and are composed of a variety of proteins such as α-synuclein, ubiquitin, parkin, and neurofilaments. Although LBs can be found in the affected regions of the brain in the majority of PD patients, it has been reported that LBs are not exclusive to PD, and it remains unclear whether they are involved in the cause or formed as a result of the disease (Halliday et al., 2011; Tugwell, 2008).

Although it is commonly thought that the pathology of PD is defined solely by dopaminergic neuron loss (believed to be the cause of typical motor symptoms) and the presence of LB’s, there is also progressive degeneration reported in the cholinergic, noradrenergic and serotonergic systems. Post-mortem studies revealed a decline in choline acetyltransferase activity in the hippocampus and cortical areas, believed to be responsible for symptoms such as cognitive dysfunction and hallucinations present in some PD patients (Bosboom et al., 2004). Furthermore, there are reports of impaired noradrenergic intervention in the locus coeruleus and neocortex which is believed to contribute to the cognitive impairment, as well as a serotonergic deficiency in the striatum and mediofrontal cortex that has been associated with depression (Espay et al., 2014; Politis & Loane, 2011). The effects of PD on the noradrenergic and serotonergic systems are however not as clearly defined as that of the dopaminergic systems and are generally thought to occur only in more severe cases or late stages of the disease (Dauer & Przedborski, 2003). There are several other neuropathological features which are also worth mentioning. These include a consistent impairment of glutathione metabolism in the striatum, abnormalities in mitochondrial function, as well as high levels of superoxide dismutase activity together with increased iron concentrations that leads to abnormal hydrogen peroxide processing. The presence of hydrogen peroxide contributes to the formation of damaging cytotoxic free radicals which are believed to be involved in the progression of PD (Jenner et al., 2013; Nikolova, 2012).

There is no standard diagnostic test for PD and the precise neuropathological hallmarks are still hotly debated. Diagnosis of PD is therefore mostly made on clinical grounds. However, a definite diagnosis still entails a post-mortem neuropathological examination of brain tissue from PD patients to identify required features such as dopaminergic neuron loss, the presence of LB’s (although not exclusive to PD) and also to exclude histopathological trademarks of other disorders (Michotte, 2003; Gelb et al., 1999).

2.1.3 Aetiology and pathogenesis

Despite decades of intensive research, the exact cause of PD remains unknown (Cieślak et al., 2008) and the question remains whether the degeneration of dopaminergic neurons as observed in PD is primarily caused by ageing, or genetic or various environmental factors (Healy et al., 2008; Talpade et al., 2000). Consequently, several competing hypotheses have emerged, all containing viable evidence to support the separate theories.
2.1.3.1 Age hypothesis

PD can be classified as an age related disorder as the risk of developing the disease increases dramatically after the age of 60. In fact, it is believed that more than 1% of all elderly people have some form of the disease. However, the precise mechanistic correlation between PD and age is still unclear (Abdullah et al., 2015). It has been previously reported that although neural cell death is associated with normal aging, the rate is much higher in patients with PD (Nurmi et al., 2000). This provides evidence that age cannot be the sole cause of PD and that there is still uncertainty on which particular factors contribute to neural cell death.

2.1.3.2 Environmental toxin hypothesis

The environmental toxin hypothesis received intensive attention during the 1980’s after it was discovered that prolonged exposure to certain external toxins lead to an elevated risk of developing PD (Dauer & Przedborski, 2003). For example, exposure of young drug addicts to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a contaminant found in a designer drug, resulted in a syndrome almost identical to PD, giving credibility to this hypothesis. After injection, MPTP is metabolised to the toxic metabolite MPP+, which accumulates in the brain causing the death of dopaminergic neurons, which in turn precipitates symptoms similar to PD. Numerous other toxins like paraquat (a herbicide structurally related to MPP+), rotenone (a garden insecticide) as well as metals, solvents and other pollutants have also been proven to precipitate PD symptoms in animal models (Goldman, 2014). However, there is no conclusive evidence that links any environmental toxin to idiopathic PD and most people exposed to these toxins do not necessarily develop the disease, suggesting that environmental toxins alone, are not enough to cause PD (McCormack & Di Monte, 2003; Tanner, 1992).

2.1.3.3 Genetic hypothesis

The possibility of a genetic aetiology for PD emerged in the last 15 years, after the discovery of a possible genetic basis for several forms of PD and other PD related disorders. Several genes, required for the expression of different proteins, have been identified and linked to PD namely, PARK1 (α-synuclein), PARK2 (parkin), PARK5 (ubiquitin carboxy terminal hydrolase-L1), PARK7 (DJ-1) and PARK 8 (leucine rich repeat kinase 2). From the genes mentioned above, mutations in the PARK-1 gene, encoding for α-synuclein, has probably received the most attention (Steece-Collier et al., 2002). Mutations of α-synuclein are common in all cases of PD, however the extent to which it is involved in the onset of the disease is still unclear (Stefanis, 2012). Evidence suggests that the formation of aggregates may be accelerated due to mutation of α-synuclein, and lead to early-onset PD. As α-synuclein is a component of the LB structure, LB production may also increase as a result of these α-synuclein aggregates (Stefanis, 2012).

Although there is increasing evidence which is indicative of a genetic cause of PD, the pathogenic role of most of these gene mutations appears to be subtle. The majority of PD cases are not directly inherited
and do not have a genetic origin (Tugwell, 2008). In fact, only 5% of all PD cases appear to have a genetic basis. It has been shown that having a parent with PD only increases the risk of developing PD from 2% to 6%. In a study where 14000 pairs of twins 50 years and older were examined, only two twin pairs both had PD (Wirdefeldt et al., 2004). Nonetheless, the identification of risk genes and mutations have provided new insights into PD aetiology and advances in genetics will continue to improve our understanding of the progression, response to treatment and underlying molecular mechanisms of PD (Trinh & Farrer, 2013).

2.1.3.4 Several other hypotheses

Several other hypotheses exist, including one that ascribes the development of PD to the aggregation and misfolding of proteins. Protein aggregation takes place when certain proteins undergo misfolding due to either oxidative stress, thermal stress or several other factors. These aggregated proteins are deposited when the necessary degradation systems responsible for removing them malfunction (Dobson, 2003). Protein aggregates in the brain are present in several age-related diseases and although the composition and location differ from disease to disease, the common presence of these protein deposits suggest that it might play a role in cell degeneration (Dauer & Przedborski, 2003).

Another hypothesis postulates that PD may be caused by endogenous toxins that produce harmful oxidative species. Dopamine, for example, is metabolised by monoamine oxidase to form reactive oxygen species (ROS), which cause damage to dopaminergic neurons (Youdim et al., 2006). Another example is that of the excitatory neurotransmitter, glutamate, which causes excitotoxic cell death in excessive amounts (Foran & Trotti, 2009).

Neuro-inflammation has recently also been implicated in the development of PD. The tightly regulated immune responses within the brain are partly dependant on the blood-brain barrier as well as a number of resident cells in the brain such as microglia, astrocytes and oligodendrocytes (Taylor et al., 2013). Under regular circumstances, when an immune response is initiated (due to toxic protein accumulation, pathogen invasion or injury) tissue repair is instigated to clear out debris as well as apoptotic cells. Once the initial stress has been removed, the innate response should resolve, however, persistence or a failure in this inflammatory process will lead to an overproduction of neurotoxic factors such as prostaglandins, cytokines and chemokines. These inflammatory responses generate ROS which are believed to contribute to neural cell death (Taylor et al., 2013).

Furthermore, there are theories regarding the role of energy metabolism, viral causes, immune regulation and several other hypotheses, all of which have some credible role in the aetiology of PD (Standaert & Young, 2006; Hirsch & Hunot, 2009; Armentero et al., 2011).
Not one of these hypotheses can however, on its own, adequately explain the cause of PD, which suggests that a cascade of events that includes the interaction between some or even all the above could potentially be responsible for the onset of the disease.

2.1.4 Treatment

There is no cure for PD and none of the currently approved drugs are registered as neuroprotective agents. However, evidence suggests that mono-amine oxidase inhibitors may have neuroprotective properties (described in section 2.1.4.3). These effects however have only been observed in animal models and cell cultures, and actual evidence of neuroprotection in humans is still to be reported (Youdim et al., 2006; Baker et al., 2012; Youdim et al., 2005).

Current therapies are therefore only symptomatic, aimed at relieving the motor and in some cases the non-motor symptoms of the disease. Drugs presently on the market are mostly dopaminergic in nature, and are aimed at improving dopaminergic signalling in the striatum. This is done by either increasing the supply of dopamine (with drugs such as levodopa), by stimulating the dopamine receptors directly (dopamine agonists) or by inhibiting the metabolism of dopamine (monoamine oxidase inhibitors) (Lees, 2005). Several symptomatic drug therapies thus exist; however, the extent of the disease ultimately determines which therapy best suits the unique needs of each patient so that quality of life can be improved. Several common drugs clinically used today are discussed below.

2.1.4.1 Levodopa

Levodopa is still, more than 40 years after its first introduction to the market, the gold standard in PD therapy. It is the metabolic precursor of dopamine and is metabolised to dopamine by L-amino acid decarboxylase (L-AAD) after crossing the blood-brain barrier, which dopamine is unable to do (Figure 2.2) (Chen & Swope, 2007).

\[
\begin{align*}
\text{Levodopa} & \quad \text{Dopamine} \\
\end{align*}
\]

Figure 2.2: The metabolism of Levodopa to dopamine by L-AAD

The supply of dopamine in the brain therefore increases directly with the administration of levodopa, reducing symptoms like muscle rigidity and bradykinesia. However, after long-term treatment, patients usually develop side effects such as fluctuations in motor function, dyskinesia, neurobehavioural problems as well as nausea, which are ascribed to the peripheral conversion of levodopa to dopamine. The latter can be reduced by combining levodopa with drugs like carbidopa (2.1) and benserazide (2.2) which inhibit L-AAD peripherally, resulting in higher levels of levodopa in the brain (Standaert &
The motor complications associated with levodopa treatment, especially dyskinesia, are common, difficult to treat and are often troublesome (Fabbrini et al., 2007). The motor fluctuations are believed to be the result of a combination of the chronic intermittent delivery of the short half-life levodopa (+/- 90 minutes) and the progressive nature of PD (Smith et al., 2003). In the early stages of PD, the remaining natural dopamine release is sufficient enough to compensate for the fluctuations of plasma levels caused by the short pharmacological half-life of levodopa. However, in advanced PD, the physiological dopamine-release continues to decrease and after a while reaches a point where it can no longer buffer the unstable plasma levels of levodopa. This manifests as involuntary movements or the so-called “wearing-off” phenomenon (decrease of therapeutic effect with each dose of levodopa) as well as levodopa-induced dyskinesia. Strategies to increase the half-life of levodopa are therefore needed if a more stable clinical response is to be seen in advanced PD patients (Huot et al., 2013; Brotchie, 2005).

2.1 Carbidopa
2.2 Benserazide

2.1.4.2 Dopamine D₂ agonists

Dopamine agonists (DAs) are divided into two classes, the ergot derived DAs such as bromocriptine and pergolide (2.3), and the newer non-ergot DAs like ropinirole and pramipexole (2.4). Although the use of ergot DAs is effective in the management of PD, reports of adverse fibrotic side effects in patients have restricted their use as PD therapy. Like most DAs, the non-ergot derivatives more commonly used to treat PD have a high affinity for the dopamine D₂ receptor, and are used to improve both motor symptoms and the “wearing-off phenomenon” experienced during levodopa therapy (Zhou et al., 2014; Vijverman & Fox, 2014). Dopamine D₂ agonists mimic the function of dopamine by stimulating dopaminergic D₂ receptors directly. The therapeutic effect of DAs is generally less dramatic when compared to the clinical effects seen with levodopa, but does result in less dyskinesia. This may be attributed to the fact that DAs have preferential selectivity for the D₂ receptor, resulting in less motor side-effects and a weaker symptomatic effect compared to dopamine produced from levodopa, which interacts equally with all five dopamine receptor subtypes as well as with other neurotransmitting systems (Misu et al., 2002). DAs are frequently used, mainly in combination with levodopa, although they are effective as monotherapy in mild-to-moderate cases of PD. With combination therapy, the levodopa dosage may additionally be lowered, especially when initialising treatment. When DAs are prescribed as first-line treatment it is mostly for patients under the age of 55, since monotherapy provokes less dyskinesia. However, levodopa remains the therapy of choice in older patients, as they
are more susceptible to the cognitive side effects associated with dopamine agonists (Lees, 2005; Standaert & Young, 2006).

2.1.4.3 Monoamine oxidase B (MAO-B) inhibitors
MAO-B inhibitors decrease the oxidative metabolism of dopamine in the striatum and consequently prolong the activity of the available endogenous dopamine. Since the metabolism of amines leads to the production of ROS (believed to contribute to neurodegeneration), MAO-B inhibitors may also, in theory, reduce neurodegeneration. The two drugs of this class currently used are selegiline (2.5) and rasagiline (2.6). These drugs can be given as monotherapy in the early stages of PD, delaying the need for levodopa, or they can decrease the motor fluctuations associated with long-term use of levodopa, if co-administered (Youdim et al., 2006; Miyasaki et al., 2002; Suchowersky et al., 2006). Unfortunately, several undesirable psychotoxic and cardiovascular side effects are associated with the use of MAO-B inhibitors. Furthermore, since these drugs bind irreversibly to the MAO-B enzyme, a slow recovery rate of enzyme activity is expected after treatment is terminated (Tipton et al., 2004).

2.1.4.4 Catechol-O-methyltransferase (COMT) inhibitors
COMT inhibitors such as entacapone (2.7) and tolcapone (2.8) inhibit the peripheral metabolism of catecholamines such as dopamine and levodopa. This class of drugs can be given in combination with levodopa, since the peripheral metabolism of levodopa will be decreased, resulting in higher levels of levodopa that reaches the brain. COMT inhibitors however have no effect on PD as monotherapy and side effects are mostly dopaminergic in nature (nausea, vomiting, dyskinesias, hallucination), since it is usually used in combination with levodopa treatment. These side effects are usually moderate,
however, the use of tolcapone are under strict regulations with regards to liver enzyme monitoring, as cases of fatal hepatotoxicity have been reported (Haasio, 2010).

2.7 Entacapone

2.8 Tolcapone

2.1.4.5 Anticholinergics
Antagonists of muscarinic acetylcholine receptors such as orphenadrine (2.9) and trihexyphenidyl (2.10) are generally reserved as last resort for patients suffering from tremors that are resistant to dopaminergic therapy (Rezak, 2007; Rao et al., 2006). Tremor is a symptom of increased cholinergic activity caused by the dopamine deficiency in PD. Inhibition of cholinergic activity will therefore be therapeutic, however, this class of compounds is also associated with numerous side effects. The most severe adverse effects include sedation, mental confusion, vision disturbances, constipation and urinary retention which usually limit the use of these compounds, especially in elderly patients (Chen & Swope, 2007).

2.9 Orphenadrine

2.10 Trihexyphenidyl

2.1.4.6 Novel therapies
Several new therapeutic strategies are currently being investigated as alternative drug treatment options for PD, including new formulations of existing drugs like levodopa and dopamine agonists (Vijverman & Fox, 2014). Most PD drugs currently used have numerous pharmacokinetic and pharmacodynamic challenges. New formulations of existing drugs are therefore investigated in an attempt to bypass these clinical shortcomings and to optimise the benefits. IPX066 (approved in January 2015 by the FDA) is an extended-release formulation of levodopa combined with carbidopa that contains both immediate and extended release components. This prolongs the duration of sustained release of levodopa and decreases the wearing-off phenomenon. Another example of an old drug with new possibilities is APL-130277, which is a novel formulation of apomorphine for sublingual administration, currently in phase 2 clinical trials. Apomorphine is an agonist of the D₁ and D₂ receptors (with a preference toward the
latter) used as rescue therapy, much like insulin for diabetics, to temporarily treat the refractory motor fluctuations that develop in between levodopa dosages. Although Apomorphine is effective, it remains largely underused, mostly due to its short dose dependent duration (mean 40 min), side effects like nausea (usually administered with an anti-emetic) and unpleasant administration (subcutaneous injection or infusion). The main goal of this newly developed sublingual preparation of apomorphine is to retain the quick onset of action, to improve duration of therapeutic effect as well as simplifying administration and improving the delivery of apomorphine (Katzenschlager, 2009; Vijverman & Fox, 2014).

There are also novel therapeutic strategies that focus on alternative non-dopaminergic targets for the treatment of PD which include adenosine A$_{2A}$ antagonists, glutamate inhibitors, adrenergic receptor antagonists, iron chelators, calcium channel blockers and several others (Stayte & Vissel, 2014; Vijverman & Fox, 2014). In recent years, adenosine A$_{2A}$ antagonism in particular has received attention (Pinna, 2014). So far, KW6002 (istradefylline) is the only adenosine A$_{2A}$ antagonist approved (in Japan) as adjunctive PD treatment, however tozadenant, another A$_{2A}$ antagonist currently in phase 3 clinical trials, is expected to be approved in the near future if all goes well. Although KW6002 was only permitted in combination treatment of PD (Stayte & Vissel, 2014), several preclinical studies have reported that adenosine A$_{2A}$ antagonism independently can improve motor symptoms (Shiozaki et al., 1999; Kanda et al., 1998a; Kanda et al., 1998b; Schwarzschild et al., 2006; Wardas et al., 2001; Bara-Jimenez, et al., 2003), non-motor symptoms (Yamada et al., 2013) and furthermore has the possibility to exert neuroprotective effects in PD (Ascherio et al., 2001; Jenner et al., 2009; Müller & Ferré, 2007), making antagonism of adenosine A$_{2A}$ receptors an especially appealing strategy.

2.1.4.7 Conclusion

Although all of the above-mentioned drugs alleviate the symptoms of PD and improve the quality of life for a short while, none of them can stop the progressive neurodegeneration in PD. Furthermore, all of these drugs come with their own array of side effects which adds to the patient’s suffering. This clearly emphasises the need for more effective drug therapies that can not only treat the symptoms of the disease, but also have the potential to be neuroprotective. Adenosine receptors have recently emerged as a promising non-dopaminergic alternative target for PD, with the potential to relieve motor as well as non-motor symptoms and in addition, have the potential to provide neuroprotection. The focus of this study is thus to further investigate antagonism of adenosine receptors as an alternative therapy option for PD.
2.2 Adenosine and its receptors

2.2.1 Background
Adenosine is an essential endogenous nucleoside composed of the purine base adenine attached to a ribose sugar (2.11). It is present throughout the human body where it has numerous functions, in both the central nervous system (CNS) and a large variety of peripheral tissues.

In the CNS, adenosine acts as a neuromodulator by regulating the release of several neurotransmitters presynaptically. It is thus implicated in the regulation of sleep, basal ganglia function, locomotion, cerebral blood flow, nociception, arousal as well as providing neuroprotection during hypoxic, ischemic and oxidative stress events (Cunha, 2005; Ferreira & Paes-de-Carvalho, 2001; Xu et al., 2005; Jaakola et al., 2008). Peripherally, adenosine plays a role in cell growth, pain perception, inflammation, apoptosis and affects the cardiovascular as well as gastro-intestinal systems (Schulte & Fredholm, 2003). These biological effects of adenosine are initiated via four receptor subtypes which have been denoted A\textsubscript{1}, A\textsubscript{2A}, A\textsubscript{2B}, and A\textsubscript{3} receptors. All four adenosine receptor subtypes are members of the heterotrimeric guanine nucleotide-binding protein (G protein) coupled receptor (GPCR) family, each having their own distinct subcellular localization, transduction pathways, different G-protein binding preferences, as well as unique ligand binding- and acting profiles (briefly summed up in Table 2.1) (Hernan et al., 2002; Fredholm et al., 2001; Fredholm et al., 2005).
Table 2.1: The distribution, function and different G-protein binding preferences of each adenosine receptor subtype (Fredholm et al., 2001; Xu et al., 2005; Poulsen & Quinn, 1998; Cacciari et al., 2005)

<table>
<thead>
<tr>
<th>Receptor subtype</th>
<th>G-protein</th>
<th>Signalling pathway</th>
<th>Role and/or Function</th>
<th>Brain distribution</th>
<th>Peripheral distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A<sub>1</sub></td>
<td>G<sub>i</sub></td>
<td>cAMP* ↓</td>
<td>Inhibition of neurotransmitter release, ischemic preconditioning, symptomatic and parasympathetic activation, bradycardia, sleep, tubuloglomerular feedback, analgesia, inhibition of lipolysis and glucagon release</td>
<td>Densely expressed throughout the CNS (particularly in neocortex hippocampus and cerebellum)</td>
<td>Skeletal muscles, lungs, liver, pancreas kidneys and adipose tissue</td>
</tr>
<tr>
<td>A<sub>2A</sub></td>
<td>G<sub>a</sub></td>
<td>cAMP ↑</td>
<td>Neurodegeneration, locomotion, inhibition of platelet aggregation, wakefulness, immunosuppression, vasodilation, defense against ischemic damage, activation of sensory nerve activity and angiogenesis</td>
<td>Densely expressed in striatum. Also present in olfactory tubercle, nucleus accumbens, caudate putamen and brain endothelial cells</td>
<td>Blood platelets, leukocytes, thymus, spleen, heart, lungs, blood vessels neutrophils, microglia, astrocytes, oligodendrocytes, platelets and vascular smooth muscle</td>
</tr>
<tr>
<td>A<sub>2B</sub></td>
<td>G<sub>a</sub></td>
<td>cAMP ↑</td>
<td>Vascular integrity, relaxation of smooth muscle in intestine and vasculature, pain, inhibition of monocytes and macrophages and activation of mast cell release.</td>
<td>Widespread (low concentration in all areas)</td>
<td>Caecum, lungs, colon, blood vessels, bladder, eye, mast cells, adipose tissue, kidney and adrenal gland</td>
</tr>
</tbody>
</table>
A3 | Gi | cAMP ↓
--- | --- | ---
Boost mediator release from mast cells, inflammatory pain, white cell chemotaxis and airway contraction | Widespread (Higher concentrations in hippocampus and cerebellum) | Testis, thyroid, mast cells, spleen, kidney heart and liver.

*cAMP = cyclic adenosine monophosphate

The adenosine A2B and A3 receptors possess relatively low affinity for adenosine when compared to the superior affinities of the A1 and A2A receptors (Fredholm et al., 2011). This suggests that both the adenosine A1 and A2A receptors play the dominant role in the central nervous system under normal physiological conditions. Furthermore, the distinct localisation of the adenosine A2A receptor in the striatum and its specific role in neurodegeneration, (discussed in section 2.3.5) as well as locomotion (Table 2.1) is indicative of its potential as a target in the treatment of PD. Recently, the role of adenosine A1 receptors in PD has also emerged (discussed in section 2.4.3). There is evidence that suggests that antagonism of both adenosine A1 and A2A receptors during dual therapy could promote the stimulation of movement (discussed in section 2.5). In addition, epidemiological studies reported that regular consumers of caffeine, which is a dual adenosine A1 and A2A antagonist, have a lower risk of developing PD, which is indicative of a neuroprotective role in PD (Hernan et al., 2002; Ascherio et al., 2004).

A detailed description of the properties, processes, functions as well as the particular role that the adenosine A1 and A2A receptors play in PD, are discussed below.

2.2.2 Overview of the basal ganglia structures, pathways and their role in PD

Adenosine A2A receptors are concentrated in the brain regions where dopamine is most abundant, such as the striatum and other parts of the basal ganglia (Table 2.1). They are co-localised with dopamine D2 receptors and are involved in the modulation of dopaminergic neurotransmission. The richly interconnected neural network of the basal ganglia allows these receptors to play a part in adaptive control of behaviour through interactions with sensorimotor, cognitive and motivational brain areas (Graybiel et al., 1994). The major input centre of the basal ganglia is the striatum, which plays a critical role in the control of movement. The dorsal part of the striatum is responsible for the selection and initiation of motor functions as well as for the development of skills and habits (Graybiel et al., 1994; Graybiel, 1995; White, 1997). On the other hand, the ventral striatum plays a central role in motivation and reward (Schultz et al., 2003).

Two important pathways, namely the direct striatonigral and the indirect striatopallidal pathway connect the output structures of the basal ganglia and the dorsal striatum. The direct pathway expresses the stimulatory dopamine D1 as well as the inhibitory adenosine A1 receptor subtypes. In contrast, the indirect pathway expresses the inhibitory D2 and opposing stimulatory adenosine A2A receptors. Under normal conditions, binding of dopamine to D1 receptors thus result in activation of the direct pathway,
while binding to D₂ receptors results in deactivation of the indirect pathway. Adenosine on the other hand deactivates the direct pathway by binding to A₁ receptors and activates the indirect pathway by binding to A₂A receptors. Activation of the direct pathway is believed to stimulate normal movement while activation of the indirect pathway inhibits movement. Signalling occurs in both these pathways during movement and should therefore be in balance for movement to be coordinated (Figure 2.3 A) (Müller & Ferrè, 2007; Xu et al., 2005). For example, when a person is walking, activation of the direct pathway mobilises the right sets of muscles so that normal forward movement can take place, while simultaneous activation of the indirect pathway leads to inhibition of other opposing muscles preventing disruption of the intended movement (Wang et al., 2015). (It should be noted that this is a very simplified representation of the mechanisms involved in coordinated movement, which is a highly complicated process).

The substantial loss of dopaminergic input in the striatum experienced during Parkinson’s disease causes an imbalance between the two pathways as adenosine signalling is now basically unopposed. As a result, the activity of the direct pathway decreases and the activity of the indirect pathway increases, resulting in disruption of movement (Figure 2.3 B). Current dopaminergic treatment therapies used in PD, such as levodopa, improve motor function by re-activating the direct pathway (D₁ receptors) and inhibiting the indirect pathway (D₂ receptors) and as a result restore the imbalance between the two pathways (Figure 2.3 C). Dopamine D₂ agonists on the other hand, improve motor symptoms of PD by binding to inhibitory D₂ receptors, deactivating the overactive indirect pathway, thus restoring some of the imbalance between the two pathways (Figure 2.3 D) (Müller & Ferrè, 2007).

![Figure 2.3](image)

Figure 2.3: Schematic diagram illustrating the direct and indirect pathways under (A) normal conditions, (B) during Parkinson’s disease (C) with the administration of levodopa agent, restoring the imbalance and (D) administration of a D₂ agonist restoring only some of the imbalance between the direct and indirect pathways. Blue arrows indicate stimulation of movement and red arrows inhibition of movement.
Adenosine A_{2A} antagonists act in a similar manner, deactivating the indirect pathway by blocking the stimulatory adenosine A_{2A} receptors, thus also restoring some of the imbalance between the pathways (Figure 2.4 C) (Xu et al., 2005; Mori & Shindou, 2003). In theory, adenosine A_1 antagonism would also be able to restore the motor symptoms present in PD since antagonism of A_1 receptors would increase the activity of the direct pathway by binding to the inhibitory adenosine A_1 receptors, also improving some of the balance between the pathways (Figure 2.4 D).

![Figure 2.4](image_url)

Figure 2.4: Schematic diagram illustrating the direct and indirect pathways under (A) normal conditions, (B) during Parkinson’s disease (C) with the administration of an A_{2A} antagonist, restoring the imbalance and (D) administration of an A_1 antagonist restoring only some of the imbalance between the direct and indirect pathways. Blue arrows indicate stimulation of movement and red arrows inhibition of movement.

The study of these pathways and the understanding of their functions thus provides the basis for the design of adenosine antagonists as a treatment option for PD patients.

2.3 Adenosine A_{2A} receptor

2.3.1 Structure

The adenosine A_{2A} receptor gene has been cloned from numerous species including human, rat, mouse, guinea pig and dog, and a high degree of structural homology exists between A_{2A} receptors from rat, mouse and human (Fredholm et al., 2000). All the adenosine receptor subtypes exhibit characteristics similar to class A G-protein coupled receptors. Similarity of the overall amino acid sequence identity between the adenosine A_{2A} receptor and the A_1, A_{2B} and A_3 receptor subtypes are 49%, 58% and 41%, respectively (Katritch et al., 2010). Even though all subtypes of adenosine receptors have a high sequence similarity, A_{2A} receptors have a much greater weight (45 kDa) compared to the rest. This superior weight is attributed to a longer cytosolic carboxy terminus (C-terminus) present in the A_{2A}
receptor structure. The structure of the A_{2A} receptor is further composed of a central core consisting of seven transmembrane (TM1-7) α-helices (each with 20 to 27 amino acids), three intercellular (IL1-3), and three extracellular loops (EL1-3), an additional short membrane-associated helix (helix 8) that runs parallel to the cytoplasmic membrane surface, as well as an extracellular amino-terminus (N-terminus) (Piirainen et al., 2011). The extracellular loops link the TM domains (which are mainly α-helices) where TM3 and EL2 contain cysteine residues forming a disulfide bond (Piirainen et al., 2011).

Mutagenesis data on agonist and antagonist binding as well as high resolution crystal structures aided in the identification of the specific receptor residues in the ligand-binding cavity that are important for binding to different ligands (Keränen et al., 2014). One such example is the availability of the crystal structure of the human adenosine A_{2A} receptor crystallised with the known A_{2A} antagonist ZM241385 (Jaakola et al., 2008) (Figure 2.5). Several important interactions were observed between ZM241385 and the binding site. These include interactions such as aromatic stacking interactions between Phe168 and the triazolotriazine core and hydrogen bonds between the exocyclic amino group of ZM241385 and Glu169 as well as Asn253. These interactions are believed to anchor the ligand in the active site and are also important binding interactions observed for other high affinity antagonists (Zhang et al., 2014). Jaakola and co-workers (2010) further reported that interactions with residues in the lower region of the binding site of the A_{2A} receptor determine the affinity, while selectivity is mostly controlled by the less conserved upper part (Figure 2.5).
25

Figure 2.5: ZM241385 docked in the active site of the human A_{2A} receptor. Green lines: hydrogen bonding interactions; Blue lines: hydrophobic interactions; Orange lines: π stacking (Piirainen et al., 2011).

2.3.2 Brain Distribution of the adenosine A_{2A} receptor

In the central nervous system, A_{2A} receptors are abundantly expressed in the striatum as well as other parts of the basal ganglia such as the nucleus accumbens and olfactory bulb, where they are mostly co-localised with dopamine D_{2} receptors (Rosin et al., 2003). In fact, the density of A_{2A} receptors in the basal ganglia is about 20 times greater than any other part of the brain (Lopes et al., 2004). Distribution in these specific parts of the brain that mostly control movement, implicate these receptors in neurological diseases such as PD. High expression of adenosine A_{2A} receptors has also been reported in neutrophils, microglia, astrocytes, oligodendrocytes, platelets and vascular smooth muscle which all play key roles during inflammation. A_{2A} receptors are also abundantly present in brain endothelial cells where they are ideally localised to alter the lipid and/or cholesterol metabolism in the blood-brain barrier, further implicating them in the regulation of inflammatory responses (Schaddelee et al., 2003; Varani et al., 2010; Lappas et al., 2005; Varani et al., 2009; Stolp & Dziegielewksa, 2009; Weiss et al., 2009; Carvey et al., 2005).
The specific distribution of adenosine A2A receptors in the brain therefore supports its role in neural development, neuroprotection, as well as its significant role in movement and is therefore ideal as a target for PD.

2.3.3 Role of adenosine A2A antagonism in PD

Adenosine A2A receptor antagonism is relevant to the treatment of PD in several ways. Firstly, there is a strong antagonistic interaction between dopamine D2 receptors and adenosine A2A receptors in the indirect striatopallidal pathway, effecting the regulation of normal movement (discussed in section 2.2.2). Results from biochemical studies further illustrated that stimulation of A2A receptors decreases the affinity of dopamine for D2 receptors as well as its signal transduction to the G protein. Antagonism of adenosine A2A receptors would thus lead to an increase in dopamine’s affinity for the D2 receptor (Ferrè et al., 1991; Salim et al., 2000).

Secondly, preclinical studies have shown that A2A antagonism has the ability to improve several of the primary motor symptoms of PD while also reducing motor fluctuations (“wearing-off” phenomenon) and dyskinesias which develop with levodopa therapy (Hickey & Stacy, 2012). Parkinsonian rest tremor, which is normally resistant to dopamine replacement therapies, was stabilised in rodent models of parkinsonian tremor after administration of A2A antagonists (Correa et al., 2004; Salamone et al., 2008). This was validated in a clinical setting, as KW6002 in combination with subthreshold doses of levodopa, counteracted resting tremor effectively (Bara-Jimenez, et al., 2003). In addition, muscle rigidity induced in rodents by the dopamine depleting drug reserpine can be reduced with the administration of an A2A antagonist or completely eliminated in combination with levodopa (Wardas et al., 2001).

Thirdly, a recent study has shown that A2A antagonism results in a reduction of non-motor symptoms such as depression that often accompany PD. An anti-depressant effect in rodents was illustrated for KW6002, at doses comparable to equivalent doses of known tricyclic anti-depressants such as desipramine and imipramine. KW6002 may further enhance the effects of other antidepressants such as a significant improvement in rodents was seen during combination therapy with drugs like paroxetine, fluoxetine and deprenyl at doses that do not normally show anti-depressant effects (Yamada et al., 2013).

Fourthly, and probably the most exciting role of A2A antagonism, is its ability to exert a neuroprotective effect. A detailed discussion of the neuroprotective properties and underlying mechanisms are provided in section 2.3.5.

2.3.4 A2A antagonism and its interactions with other neurotransmitter receptors in PD

A receptor heteromer is defined as a macromolecular complex, composed of no less than two functional receptors, where stimulation results in a physiological outcome that is noticeably different from those of its individual effects (Ferrè et al., 2009). Adenosine A2A receptors form several heteromers with other
neurotransmitter receptors which include D₁, D₂, A₁, cholinergic, glutamatergic, opioid, vasoactive intestinal peptide and calcitonin gene-related peptide receptors. Some of these receptor interactions play distinct roles in PD and are discussed in this section.

The interaction between adenosine A₂A and dopamine D₂ receptors has already been described in sections 2.2.2 and 2.3.2. These receptors can however also interact on the level of the second messenger systems. For example, the activation of adenosine A₂A receptors results in the formation of cAMP, while activation of dopamine D₂ receptor inhibits cAMP formation. The response to D₂ receptor activation can thus be mimicked by antagonising adenosine A₂A receptors, since this will also result in inhibition of cAMP production (Lee et al., 2002). Furthermore, as mentioned in section 2.3.3, the antagonism of A₂A receptors increases the binding affinity of dopamine for the D₂ receptor and also increases the G-protein coupling of the D₂ receptor. This interaction between the A₂A and D₂ receptors implies functional interdependence, however data suggest that striatal adenosine A₂A receptors are not entirely dependent and can exhibit antiparkinsonian activities with either D₂-independent or D₂-dependent mechanisms (Aoyama et al., 2002; Chen et al., 2001a; Xu et al., 2005). This is one of the most studied receptor heteromers in the striatum and their malfunction plays a key role in neurodegenerative disorders like PD (Ferrè et al., 2008; Fuxe et al., 2007).

Another interesting interaction that plays a role in PD is the one between the adenosine A₂A receptor and the cholinergic system. Anticholinergic drugs are given to patients to decrease the overactive cholinergic system present in PD. Adenosine A₂A receptors can also influence the cholinergic system as the levels of acetylcholine in the striatum decrease during antagonism, restoring motor deficits associated with an overactive cholinergic output (Kirkpatrick & Richardson, 1993; Xu et al., 2005).

Antagonism of the adenosine A₂A receptor further decreases extracellular gamma-aminobutyric acid (GABA) levels. In PD, the central nervous system is inhibited by excessive amounts of GABA which result in CNS suppression. Adenosine A₂A antagonism can therefore restore these levels and in this way also improve the motor effects caused by the GABA mediated CNS suppression (Diaz-Cabiable et al., 2002; Xu et al., 2005).

A strong synergistic relationship exists between the metabotropic glutamate receptor and the adenosine A₂A receptor. Glutamate is one of the major excitatory neurotransmitters in the brain, involved in the repair of the central nervous system, memory and learning, as well as synaptic plasticity (Armentero et al., 2011). Whereas stimulation of the adenosine A₂A receptor results in glutamate release, which in the long run causes neurotoxicity, adenosine A₂A antagonism will decrease the excitatory output of glutamate and reduce glutamate mediated neurotoxicity.

There are also other possible neuroprotective benefits of adenosine A₂A antagonism, these will be discussed in the next section.
2.3.5 A_{2A} antagonism and neuroprotection

The neuroprotective properties of adenosine A_{2A} receptor antagonism was first illustrated in a model of cerebral ischemic injury (Gao & Phillis, 1994) and since then, neuroprotective properties have been illustrated in several other animal models.

For example, the deleterious impact of chronic noxious insults to brain tissue under various conditions such as neuro-inflammation (Yu et al., 2008), disrupted blood-brain barrier (Chen et al., 2008; Chen et al., 2010; Stolp & Dziegielewska, 2009; Weiss et al., 2009; Carvey et al., 2005), combined free radical/excitotoxic injury (Behan & Stone, 2002), glutamate excitotoxicity (Domenici et al., 2007; Popoli et al., 2003; Stone & Behan, 2007) 6-hydroxydopamine toxicity and MPTP toxicity (Chen et al., 2001b; Ikeda et al., 2002; Xu et al., 2002) showed promising results after treatment with an A_{2A} antagonist. Considering the above, the role that adenosine A_{2A} antagonism may play in neuroprotection can be summarised as follows:

Firstly, adenosine A_{2A} antagonism may prevent neuro-inflammation, which is believed to be a contributing factor in the development of PD. Neuro-inflammation leads to the disruption of normal mechanisms of control, and toxic metabolites are produced that can increase the underlying pathology (Armentero et al., 2011). In addition, dopaminergic cell death is also stimulated by inflammation (Hirsch & Hunot, 2009). Adenosine A_{2A} receptors are ideally situated to influence inflammation in PD since they are found in cells such as astrocytes (Brambilla et al., 2003; Fiebich et al., 1996) oligodendrocytes (Stevens et al., 2002) and microglia (Fiebich et al., 1996), which are associated with neuro-inflammation. The positive effects of adenosine A_{2A} antagonism on neuro-inflammation was, for example, illustrated in a study where the administration of the known adenosine A_{2A} receptor antagonist KW6002, resulted in a reduction of large activated microglial cells as well as a decrease in neuro-inflammation (Yu et al., 2008).

Adenosine A_{2A} antagonism can, in addition, assist in the conservation and protection of the blood-brain barrier. Several reports have illustrated that the blood-brain barrier is disrupted during PD, which further contributes to the progression of the disease (Stolp & Dziegielewska, 2009; Weiss et al., 2009; Carvey et al., 2005). For example, it was illustrated in a mouse model of PD, that chronic ingestion of caffeine protected against blood-brain barrier dysfunction (Chen et al., 2008). Although the precise mechanism by which caffeine protects against blood-brain barrier dysfunction remains unclear, it is reported that this protective effect is most likely due to the blockade of adenosine A_{2A} receptors (Chen et al., 2010). Antagonism of adenosine A_{2A} receptors may therefore aid in maintaining this important defence mechanism, as well as shield it from any destructive factors that may be triggered during PD.

Adenosine A_{2A} antagonism may also potentially prevent brain damage caused by free radical oxygen species. In a study where rats received quinolinic acid (an endogenous excitotoxin present in low levels in the CNS), as well as a mixture of xanthine and xanthine oxidase (which is known to generate free
radicals), over 80% neural loss resulted. Under normal physiological conditions, the concentration of quinolinic acid in the CNS is too low to be neurotoxic. However, the neurotoxic properties of quinolinic acid at even low concentrations can be enhanced significantly when combined with free radicals which are produced, for instance, during neuro-inflammation. In this study, the administration of an A_{2A} antagonist protected against this combined damage, suggesting that antagonism of the A_{2A} receptor has potential value in the prevention of brain damage caused by combined excitotoxic/free radical injury (Behan & Stone, 2002).

As previously discussed, another mechanism by which A_{2A} antagonism may exert neuroprotection is through the inhibition of glutamate release (see section 2.3.4). The increased release of excitatory transmitters, like glutamate, is an important cause of excitotoxic neuronal cell death (Popoli et al., 2003; Chen et al., 2001b). Adenosine A_{2A} antagonism may therefore provide neuroprotection by decreasing the excessive amounts of glutamate and reducing the deleterious effect it has on neurons.

Additional mechanisms may also be involved since it is not clear why A_{2A} antagonism prevents the effects of MPTP and 6-hydroxydopamine induced toxicity in rodents, however, several intriguing possibilities have emerged (Chen et al., 2001b; Ikeda et al., 2002). For example, it has been suggested that A_{2A} modulation of dopaminergic neurotoxicity is indirect. A_{2A} receptor stimulation enhances GABA release in the striatum and may therefore facilitate the indirect pathway’s disinhibition which in turn may contribute to the excitotoxic injury of dopaminergic neurons in the substantia nigra (Piallat et al., 1996). Antagonism of the A_{2A} receptors would therefore decrease the proposed dopaminergic toxicity produced through this circuit (Sebastiao & Ribeiro, 1996; Chen et al., 2001b).

Although the neuroprotective properties of A_{2A} antagonism have been illustrated in various animal models, the most compelling evidence of the neuroprotective effect can be found in the results of epidemiological studies. Numerous studies have been performed over the years and a definite relationship between the consumption of the non-selective adenosine A_1 and A_{2A} antagonist caffeine, and a decreased risk of developing PD has been established (Hernan et al., 2002; Ross et al., 2000; Palacios et al., 2010; Ascherio et al., 2001). For example, in a 30 year follow up study where data from 8004 Japanese-American men were analyzed, it was confirmed that coffee drinkers had a lower risk of developing PD than non-coffee drinkers (Ross et al., 2000). Results showed that the age-adjusted incidence of PD decreased consistently with an increase in coffee intake. These results are also supported by numerous other large, prospective, more ethnically diverse cohorts (Ascherio et al., 2001; Hernan et al., 2002). For example, the results from another study which investigated the effects of coffee consumption and the risk of developing PD in both men (197 with a mean age of 71) as well as women (120 with a mean age of 69) (Palacios et al., 2010), indicated that coffee consumption was associated with a significantly reduced risk of developing PD in men, and a marginally reduced risk in
women. These findings occurred with a mean caffeine intake of approximately 3 cups of coffee a day and were conducted over 8 years (Palacios et al., 2010).

The precise mechanism by which caffeine exerts neuroprotection is still unknown, and remains the object of scientific debate. However, the neuroprotective effect of caffeine is linked to its ability to antagonise the adenosine A_{2A} receptor, rather than its ability to block the A₁ receptor, which most likely is responsible for its motor effects. (Jenner et al., 2009).

2.3.6 Adenosine A_{2A} antagonists in PD

The focus of this section will mainly be on adenosine A_{2A} antagonists that have progressed to clinical trials. The first class of compounds that was designed with PD therapy in mind were the xanthine derivatives, such as caffeine (2.12). This class of compounds mostly represents compounds containing a caffeine core, commonly substituted with a styryl moiety at position 8 of the purine. An example of such a styryl xanthine is 8-(3-chlorostyryl)caffeine (CSC) (2.13) which also served as a lead compound for the development of compounds such as KW6002 (2.14), which is the only compound in this class that has reached clinical trials and the only A_{2A} antagonist currently registered as an antiparkinsonian drug (Stayte & Vissel, 2014).

![Caffeine](image1)

![CSC](image2)

![KW6002](image3)

These xanthine derivatives often suffer from inadequate water solubility, as well as photoinstability caused by photoisomerization. A wide range of nonpurine heterocycles that are remarkably diverse in structure were also developed (Preti et al., 2015; Shook & Jackson, 2011). Of particular importance to this study is the number of these heterocyclic adenosine A_{2A} antagonists with potent A_{2A} and/or A₁ affinities that contain a 2-aminopyrimidine motif (de Lera Ruiz et al., 2014; Gillespie et al., 2009a; Gillespie et al., 2009b; Matasi et al., 2005; Shook et al., 2010a; Shook et al., 2010b; Shook et al., 2010c; Atack et al., 2014; Shook & Jackson, 2011; Müller & Ferré, 2007; Van Veldhoven et al., 2008; Lim et al., 2011). These include several promising candidates such as preladenant (2.15) that reached phase 3 clinical trials before termination of further studies due to insufficient effectivity (Merck, 2013). Another example is tozadenant which was selected for phase 3 clinical trials, starting in July 2015 (2.16) (Biote therapies, 2015). It is thus evident that the 2-aminopyrimidine scaffold is a privileged structure when aiming for adenosine receptor affinity.
In the previous paragraphs the possibilities of antagonism of adenosine A$_{2A}$ receptors in the treatment of PD has been discussed. In the next section, the role of the adenosine A$_{1}$ receptor will be discussed.

2.4 Adenosine A$_{1}$ receptor

2.4.1 Overview

Adenosine A$_{1}$ receptors are the most conserved adenosine receptor subtype and can be found throughout the body, with the highest levels expressed in the central nervous system, including the cortex, hippocampus and striatum (Fredholm et al., 2001). Adenosine A$_{1}$ receptors are G$_{i}$ coupled receptor subtypes which means that their activation results in inhibition of adenyl cyclase activity, activation of potassium channels, an increase in inositol-1,4,5-trisphosphate (IP$_{3}$) through the activation of phospholipase C and blockade of transient Ca$^{2+}$ channels, resulting in an increase in intracellular calcium (Fredholm et al., 1996). Adenosine A$_{1}$ receptors play a particularly important role in the brain as stimulation of these receptors inhibits the influx of calcium Ca$^{2+}$ ions which leads to a reduction in the release of excitatory transmitters (presynaptically) as well as counteracting their excitatory effects (postsynaptically) (Fredholm et al., 1996). The A$_{1}$ receptor also plays a role in many other organs including the heart and liver and is implicated in conditions such as renal dysfunction in patients with acute heart failure (Chen et al., 2013).

2.4.2 Structure of the adenosine A$_{1}$ receptor

As mentioned in section 2.3.1, the adenosine A$_{1}$ receptor shares a 49% amino acid sequence similarity with the A$_{2A}$ receptor. Reports on the size of the adenosine A$_{1}$ receptor vary, with reported values between 34-38 kDa, which is rather low in comparison to the mass obtained for the A$_{2A}$ receptor (45-47 kDa) (Barrington et al., 1989; Nanoff et al., 1991). Similar to the adenosine A$_{2A}$ receptor, the A$_{1}$ receptor also displays the typical pattern of seven transmembrane (TM1-7) α-helices each with 20 to 27 hydrophobic residues, three intracellular loops and three extracellular loops. The distinctive N-terminus, carboxy tail, as well as the additional cytoplasmic loop are also present in the A$_{1}$ receptor, however these particular substructures are all very short in comparison with those of the A$_{2A}$ receptor, which further supports the low mass obtained for the A$_{1}$ receptor (Piirainen et al., 2011; Raymond et al., 1990).

Since no crystal structure currently exists for the adenosine A$_{1}$ receptor, it is quite difficult to define the receptor binding site or to design ligands that can antagonise this important drug target.
2.4.3 Role of adenosine A_1 antagonism in PD

Adenosine A_1 receptor antagonism may relieve several symptoms of PD in three separate ways. Firstly, it may improve the impaired motor function in PD patients. Several studies reported that motor activation in animals was stimulated with the administration of a selective adenosine A_1 antagonist (Trevitt et al., 2009; Antoniou et al., 2005). Adenosine A_1 receptor antagonism can thus be of particular importance since it can potentially reduce the primary motor symptoms of PD. Secondly, A_1 receptor antagonism facilitates dopamine release in the striatum and potentiates the response to dopamine (Nikodijević et al., 1991; Ferré et al., 2001; Shook et al., 2012). This means that the low concentration of dopamine observed in PD patients may be restored and that the desensitising of dopamine receptors (observed during long-term dopaminergic treatment) would be counteracted as dopamine mediated-responses also improve with the administration of an adenosine A_1 antagonist. Thirdly, adenosine A_1 receptor antagonism has the potential to improve non-motor symptoms associated with PD. Recent studies illustrated that the antagonism of central adenosine A_1 receptors can lead to enhanced cognition (Bortolotto et al., 2015). In fact, a short open-labelled study in Parkinson’s disease patients illustrated the improvement of both mental and motor impairment scores with the administration of the non-selective (A_1/A_{2A}) adenosine antagonist theophylline (Mally & Stone, 1994). Since administration of the selective adenosine A_{2A} antagonist KW6002 resulted in no cognitive improvement in animal models, the improved cognition observed in PD patients was most likely a result of the A_1 antagonism (Shook et al., 2012). Several other studies performed in animals also illustrated improved cognition with the administration of an adenosine A_1 antagonist (Pereira et al., 2002; Maemoto et al., 2004; Bortolotto et al., 2015). Adenosine A_1 receptor antagonism can therefore provide an added benefit as the cognitive dysfunction present in PD patients, especially in the later stages of the disease, would be improved.

2.5 Dual adenosine A_1 and A_{2A} antagonism

2.5.1 Examples and benefits of dual antagonism

When looking at PD as a whole, the disease seems incredibly complicated with symptoms ranging from motor disturbances such as tremor and dyskinesia, to debilitating non-motor symptoms including, depression and cognitive impairment. This is complicated further by the fact that the cause of PD remains unclear, there is involvement of several neurotransmitter systems and the disease is progressive in nature. A multi-target approach for the therapy of PD may thus be more beneficial than the usual single target approaches to address the multifactorial nature of the disease.

Dual antagonism of adenosine A_1 and A_{2A} receptors presents an exciting alternative non-dopaminergic therapy for Parkinson’s disease. It has been proposed that antagonism of the A_1 and A_{2A} receptors will be synergistic as each of these receptors has the ability on their own to improve motor function (Shook
et al., 2012). The main characteristic motor symptoms of PD can therefore be reduced with dual adenosine A\textsubscript{1} and A\textsubscript{2A} antagonism.

Dual antagonism will most likely not only lead to an improvement in motor function, but several non-motor symptoms may potentially be improved as well. It has already been mentioned that antagonism of A\textsubscript{1} receptors results in improved cognition (discussed in section 2.4.3) and since a decrease in cognition is often found in PD with a progressive form of the disease, this would be an added benefit.

Furthermore, it has been suggested that A\textsubscript{2A} antagonism may have anti-depressant effects. A recent study reported the anti-depressant activity of the known adenosine A\textsubscript{2A} antagonist KW6002 (Yamada et al., 2013) providing additional evidence that A\textsubscript{2A} antagonism may also have the ability to alter non-motor symptoms of PD.

Then there is also the possibility that A\textsubscript{2A} antagonism may provide neuroprotection (discussed in section 2.3.5), which means that dual antagonism may not only be beneficial for the motor and non-motor symptoms of PD, but may potentially inhibit the progression of PD.

Caffeine is an example of a dual adenosine antagonist and provides proof of concept as numerous studies have illustrated its value in PD. For example, reports indicate that caffeine improved motor activity in PD patients (Postuma et al., 2012) as well as in toxin-induced models of PD (Yu et al., 2006), drug induced parkinsonism models (Moo-Puc, 2003) and models of dopamine-deficient mice (Kim & Palmater, 2003). There are also studies that showed improvement of cognition (Abreu et al., 2011; Hogervorst et al., 2008) and decreased risk of developing depression (Lucas et al., 2011) with the consumption of caffeine, illustrating the potential of dual adenosine antagonism for treatment of non-motor symptoms of PD. Caffeine further may have a role in delaying the neurodegeneration as it has been shown in rat models of PD, that the administration of caffeine after the start of disease progression prevented the loss of dopaminergic neurons (Li et al., 2008; Morelli et al., 2012; Sonsalla et al., 2012). In addition, it has been shown that caffeine is a down-regulator of neuro-inflammatory responses and nitric oxide production which are believed to contribute to many underlying pathological processes in PD, including cell death (Salvemini et al., 2013; Yaday et al., 2012; Tsutsui et al., 2004). Caffeine may furthermore increase the bioavailability as well as prolong the clinical effect of levodopa (Deleu et al., 2006) illustrating its value in combination therapy. The ample benefits of the dual adenosine A\textsubscript{1} and A\textsubscript{2A} antagonist caffeine in PD are clear and illustrate the potential of dual adenosine antagonism as non-dopaminergic alternative in PD therapy.

Since the potential of caffeine in PD was discovered, several dual adenosine antagonists have been developed, such as compound 2.17, a xanthine derived from caffeine, and particularly important to this study, heterocyclic compounds containing a 2-aminopyrimidine motif such as compound 2.18 (Preti et al., 2015; Shook et al., 2010a).
2.5.2 Possible side effects of dual adenosine A1 and A2A antagonism

Adenosine receptors are not only expressed in the central nervous system, but also occur in various organs and major peripheral tissue such as the heart, lungs, liver as well as the immune system (Ledent et al., 1997; Lee et al., 2003). Adenosine A2A and A1 receptors play multiple roles in these peripheral parts of the body, which suggests that antagonising them may have an influence on these areas. The best example of the safety of a dual antagonist is caffeine, which is the most consumed psychoactive substance in the world. Caffeine is relatively safe with moderate intake, however, some caution is advised as feelings of anxiety, restlessness, agitation, excitement and insomnia were reported with excessive caffeine consumption (Winston et al., 2005; Yacoubi et al., 2000). Caffeine is however a weak antagonist, and further investigation of the effects of potent dual antagonists are required.

2.6 Evaluation of synthesised compounds as dual adenosine A1 and A2A antagonists

2.6.1 In vitro assays

A Radioligand binding study is a cell-free method which can be used to determine whether ligands have affinities for specific target receptors and is suitable for any G-protein coupled receptor (Zhang & Xie, 2012). These assays are used to determine the affinities of either agonists or antagonists, but do not distinguish between agonistic, antagonistic or inverse agonistic interactions. The availability of radiolabelled ligands can be a limitation in the use of ligand binding assays. However, there are several radioligands available for both adenosine A1 and A2A receptor subtypes, such as 1,3-[3H]-dipropyl-8-cyclopentylxanthine ([3H]DPCPX) (2.19) (A1 specific) and [3H]5'-N-ethylcarboxamide-adenosine ([3H]NECA) (2.20) (non-specific).
These radioligands bind to the specific receptor targets and the measured radiation in the absence of a test compound then represents total (100%) binding. The affinity of a test compound is determined by the amount of radioligand that it is able to displace from the target receptors. If a compound has high affinity for the target receptor it would displace almost all of the radioligand, resulting in a low radiation reading and vice versa (Bruns et al., 1986; Bruns et al., 1987; Van der Walt et al., 2013). Historically, radioligand binding assays have been the gold standard in determining affinities of test compounds for their target receptors, and are the most established assay for this particular purpose (Zhang & Xie, 2012).

2.6.2. Determination of agonistic and antagonistic effects with functional assays
The results of radioligand binding assays only provide information regarding the affinity of a compound for the target receptor, and do not distinguish between agonistic and antagonistic activity. It also does not give an indication of the test compound’s bioavailability or its potential to reverse PD symptoms in vivo (Baraldi et al., 1995). Additional assays are thus performed in an attempt to determine these characteristics of the test compounds. G-protein dependent functional assays determine the biological responses after ligand binding (to its target receptor) revealing important information about the characteristics of the ligand-receptor interaction (for example, agonistic or antagonistic interaction). These characteristics are determined by either measuring the G-protein activation or G-protein-mediated events including second messenger generation (Zhang & Xie, 2012). The cAMP assay is one example of a G-protein dependant functional assay that measures the cellular levels of cAMP. These levels are dependent on the adenyl cyclase activity mediated by G-protein coupled receptors (Gs, Gi, Go). This assay is often used and it is generally straightforward to screen Gs-coupled receptors. However screening Gi/o-coupled receptors with cAMP assays can be difficult as the inhibition signal needs to be enhanced with a direct activator of adenyl cyclase, such as forskolin, which needs to be titrated during optimization of the assay (Thomsen et al., 2005). In addition, a highly sensitive instrument is also needed to detect the low levels of cAMP that accumulate from adenosine receptor stimulation or inhibition, making it a relatively expensive and complex assay (Williams, 2004).
Numerous *in vivo* rodent models for PD also exist. These range from acute pharmacological models including the reserpine akinesia-(causes akinesia and hind limb rigidity) or haloperidol induced catalepsy (induces muscle rigidity and catalepsy) models, where one or more PD symptoms are induced. Models that mimic the destruction of the dopaminergic nigro-striatal pathway present in PD also exist, such as the 6-OHDA rat and the MPTP mouse models (Duty & Jenner, 2011). Although the latter mentioned models are the most popular experimental models of PD when it comes to preclinical testing of new symptomatic therapies, they also have shortcomings. For example, 6-OHDA cannot be administered systemically since it poorly crosses the blood-brain barrier and causes a chemical sympathectomy by damaging the peripheral nervous system. The acquired route of administration used to circumvent this problem is thus by directly injecting 6-OHDA into the brain by either free hand or by stereotaxic means, which is difficult (Bové *et al.*, 2005). The MPTP model on the other hand has no effect on rats, as the dopaminergic neurons are for some unknown reason relatively resistant in these rodents. The effects of MPTP are therefore mostly tested in nonhuman primates and small vertebrate animals such as mice. The sensitivity to the MPTP toxin varies considerably between the distinct mouse strains and studies have reported the spontaneous recovery of mice after MPTP administration. The use of nonhuman primates is the understandable alternative and although they are highly effective, they are limited due to obvious financial and ethical implications (Antony *et al.*, 2011). Care also has to be taken when using MPTP as it is a highly toxic substance.

The haloperidol-catalepsy assay employed for this study, is a popular model of choice for assessing the potential symptomatic efficacy of novel non-dopaminergic agents such as A_{2A} antagonists (Duty & Jenner, 2011). For this assay, the D$_2$ antagonist haloperidol is administered to rats to induce catalepsy and inhibit locomotion. The effects of the haloperidol should effectively be reversed with the administration of an adenosine A_{2A} antagonist, as indicated by several literature results (Correa *et al.*, 2004; Ishiwari *et al.*, 2007; Salamone *et al.*, 2008). The mechanism by which A_{2A} antagonism reverses catalepsy can be seen in Figure 2.6.
Figure 2.6: Schematic diagram illustrating A) the mechanism by which dopamine D$_2$ antagonism exerts catalepsy as well as B) the reversal effect that A$_{2A}$ antagonism has on induced catalepsy (Ward & Dorsa, 1999).

Haloperidol antagonises the D$_2$ receptor and eliminates the inhibitory G$_i$-coupled effect of normal endogenous dopamine. The unopposed signalling of adenosine G$_s$-coupled A$_{2A}$ receptors lead to increased cAMP levels in the striatopallidal neurons and result in catalepsy. Antagonism of the A$_{2A}$ receptor will therefore block the G$_s$-coupled stimulation and reverse catalepsy by normalising the cAMP input in the striatopallidal neuron (Ward & Dorsa, 1999).

Choice of the type of model to use depends on the specific pathophysiological state or symptom of PD that needs to be assessed, as well as several other ethical, financial and time dependant elements. However, there is still much progress to be made as no single model fully represents the complexity of PD (Blesa et al., 2012).

2.7 Summary

In this chapter, the need for the development of alternative drug therapies for PD has clearly been illustrated. A particular promising alternative to current dopaminergic therapies is dual adenosine A$_1$ and A$_{2A}$ antagonism, as it has the potential to confer neuroprotection and presents the possibility of addressing non-motor symptoms concomitant to improvements in motor symptoms.
REFERENCES

4-substituted nicotinonitriles as A\textsubscript{2A} adenosine receptor antagonists. *Journal of Medicinal Chemistry*, 51:4449-4455.

Robinson, S.J. 2013. Syntheses of chalcones and 2-aminopyrimidines and their evaluation as monoamine oxidase inhibitors and as adenosine receptor antagonists. NWU Potchefstroom. (Dissertation - M.Sc.) 194p.

Varani, K., Vincenzi, F., Tosi, A., Gessi, S., Casetta, I., Granieri, G., Fazio, P., Leung, E., MacLennan, S.,
Granieri, E., Borea, P.A. 2010. A2A adenosine receptor overexpression and functionality, as well as TNF-alpha

7:761-777.

Wang, K.S., McClure, J.P., Alselehdar, S.K., Kanta, V. 2015. Direct and indirect pathways of the basal ganglia:

not serotonin 5-HT6 receptors following antipsychotic administration. Neuroscience, 89:927-938.

Wardas, J., Konieczny, J., Lorenc-Koci, E. 2001. SCH 58261, an A2A adenosine receptor antagonist,
counteracts the parkinsonian-like muscle rigidity in rats. Synapse, 41:160-171.

Weiss, N., Miller, F., Cazaubon, S., Couraud, P.O. 2009. The blood-brain barrier in brain homeostasis and
neurological diseases. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1788:842-857.

Discovery, 3:125-135.

Treatment, 11:432-439.

Xu, K., Xu, Y.H., Chen, J.F., Schwarzschild, M.A. 2002. Caffeine’s neuroprotection against 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine toxicity shows no tolerance to chronic caffeine administration in mice.
Neuroscience Letters, 322:13-16.

Xu, K., Bastia, E., Schwarzschild, M. 2005. Therapeutic potential of adenosine A2A receptor antagonists in

Yacoubi, M.E., Ledent, C., Parmentier, M., Costentin, J., Vaugeois, J.M. 2000. The anxiogenic-like effect of
caffeine in two experimental procedures measuring anxiety in the mouse is not shared by selective A2A adenosine

adenosine A2A receptor antagonist, istradefylline (KW-6002), in the forced swimtest and the tail suspension test

2-Aminopyrimidines as dual adenosine A₁/A₂A antagonists

Sarel J. Robinson⁴,a, Jacobus P. Petzer⁴,a, Gisella Terre'Blanche⁴,a, Anél Petzer⁵,b, Mietha M. van der Walt⁴,b, Jacobus J. Bergh⁴,a, Anna C.U. Lourens⁴,a,b*

⁴Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
⁵Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
*Corresponding author. ⁴Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa. Tel: (+27 18 2992266). E-mail address: Arina.Lourens@nwu.ac.za

Abstract
In this study thirteen 2-aminopyrimidine derivatives were synthesised and screened as potential antagonists of adenosine A₁ and A₂A receptors in order to further investigate the structure activity relationships of this class of compounds. 4-(5-Methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (8m) was identified as a compound with high affinities for both receptors, with an A₂A Ki value of 6.34 nM and an A₁ Ki value of 9.54 nM. The effect of selected compounds on the viability of cultured cells was assessed and preliminary results indicate low cytotoxicity. In vivo efficacy at A₂A receptors was illustrated for compounds 8k and 8m since these compounds attenuated haloperidol induced catalepsy in rats. A molecular docking study revealed that the interactions between the synthesised compounds and the adenosine A₂A binding site most likely involve Phe168 and Asn253, interactions which are similar for structurally related adenosine A₂A receptor antagonists.

Keywords: Adenosine A₂A antagonist, Adenosine A₁ antagonist, 2-aminopyrimidine, Parkinson’s disease
1. Introduction

Parkinson’s disease is a complex, chronic neurodegenerative disorder, mainly characterised by a decline in motor function, but also associated with non-motor manifestations such as cognitive deficits (e.g. dementia) and neuropsychiatric symptoms, such as depression [1]. Management of the non-motor symptoms in particular is challenging and represents an important unmet medical need [2,3,4]. The neuropathology of the disease is hallmarked by the selective degeneration of dopaminergic neurons of the nigrostriatal pathway and the resulting deficiency of dopamine in the basal ganglia [5]. However, the importance of other neurotransmitter systems and organs in Parkinson’s disease pathogenesis are increasingly recognised [6,7,8].

Nevertheless, current treatments are still focused on enhancing dopaminergic neurotransmission and include the use of levodopa, (which is still the gold standard nearly 50 years since its introduction), dopamine agonists, catechol-O-methyltransferase and monoamine oxidase inhibitors. Since the chronic nature of the disease requires long-term use of medication, the occurrence of side-effects is unavoidable, and levodopa especially is associated with the development of debilitating dyskinesias [9, 10]. Limited progress has been made in altering the progress of neurodegeneration, and to date, no agent has been established as neuroprotective or disease modifying [11,12]. Non-dopaminergic targets for the disease are thus particularly appealing; especially if these would also improve non-motor symptoms and provide neuroprotection [13]. In recent years, antagonists of the adenosine A_{2A} receptor in particular has received attention as a promising non-dopaminergic alternative (for examples of reviews see [3, 4, 14-17] and several of these agents such as istradefylline (KW-6002), preladenant and tozadenant have been investigated clinically with promising results. Istradefylline for example has been approved for use as adjunctive treatment for Parkinson’s disease in Japan [18-22].

Adenosine receptors are G-protein coupled receptors and consist of four subtypes, namely A_{1}, A_{2A}, A_{3} and A_{2B} [23,24]. Of particular importance to Parkinson’s disease are adenosine A_{2A} receptors which are concentrated in the indirect striatopallidal GABAergic pathway. This pathway also expresses the D_{2} dopamine receptor and enkephalin [25-27]. Antagonism of A_{2A} receptors potentiate dopamine mediated responses and partly restores the imbalance between the hypoactive direct striatonigral and hyperactive indirect striatopallidal pathways that develops in Parkinson’s disease, thus relieving motor symptoms [14, 16, 28, 29]. Both epidemiological and experimental data have shown that adenosine A_{2A} antagonists exert a neuroprotective effect [16]. Furthermore, it has been reported that the adenosine A_{2A} antagonist KW-6002, exhibit antidepressant properties in animal models of depression [30,31] and that adenosine A_{2A} antagonists have potential in the management of dyskinesias [29,32]. This illustrates the promise of these agents as multifactorial non-dopaminergic treatment of Parkinson’s disease.

Adenosine A_{1} receptors on the other hand, are expressed throughout the brain, including the cortex, hippocampus and striatum [23]. Since A_{1} receptor antagonism also results in motor activation in animals
[33,34] it has been suggested that dual antagonism of A₁ and A₂A receptors would act synergistically in improving motor deficits in Parkinson’s disease [4]. Furthermore, since the A₁ receptor also occurs in systems that are important for cognitive function, adenosine A₁ antagonism may improve cognitive deficits experienced in Parkinson’s disease, as illustrated in animals [35-37]. Several dual adenosine A₁/A₂A antagonists have in fact been investigated in animals and has not only shown effectiveness in improving motor disabilities [4, 38-43], but has also illustrated effectiveness in enhancing cognition [38]. In summary, dual adenosine A₁ and A₂A antagonists would thus not only treat the motor symptoms of Parkinson’s disease and potentially be neuroprotective, but may also improve non-motor symptoms.

The 2-aminopyrimidine motif frequently occurs in compounds (e.g. 1-6) that exhibit potent adenosine A₂A and/or adenosine A₁ affinity (Figure 1) and indicates that this scaffold is privileged for antagonism of these receptors [4, 15, 17, 40-48]. Of particular relevance to this paper are the findings of Van Veldhoven, Matasi and Shook and co-workers [40-42, 46, 47], who synthesised a number of 2-aminopyrimidines (e.g. 3), indenopyrimidones (e.g. 4, 5) and indenopyrimidines (e.g. 6), respectively.

Our research group has been interested in the design, synthesis and evaluation of heterocycles as antagonists of adenosine receptors. Based on the aforementioned findings, the aim of the present study was to explore the necessity of the methylene bridge as present in the indenopyrimidine or

Figure 1: Adenosine A₂A antagonists containing the 2-aminopyrimidine moiety
indenopyrimidone scaffolds previously synthesised [40-42, 46] and to further investigate the structure-activity relationships of the 2-aminopyrimidine scaffold for dual antagonism of adenosine A₁ and A_{2A} receptors. We thus set out to synthesise firstly, a set of 2-aminopyrimidines substituted with simple electron withdrawing and donating groups (8a - h), and secondly an amide substituted series (8j - n), related to the indenopyrimidones (e.g. 5) as synthesised by Shook and co-workers [41]. We report herein their affinities for adenosine A_{2A} and A₁ receptors, the results of docking selected compounds into the adenosine A_{2A} receptor’s binding site, as well as the <i>in vivo</i> activities of selected compounds.

2. Chemistry
As shown in scheme 1, the 2-aminopyrimidines were readily synthesised in two or three steps, albeit in low yields. Firstly, a Claisen-Schmidt condensation, using commercially available ketones and aldehydes under basic conditions [49] yielded the desired intermediate chalcones (7a - i). For the amide derivatives (8j - n), the condensation reaction was followed by an amide coupling reaction mediated by 1,1′-carbonyldiimidazole (CDI) resulting in chalcones 7j - n. All chalcones were cyclised with guanidine hydrochloride in the presence of sodium hydride [50] to yield the desired 2-aminopyrimidines (8a - n), since the use of sodium hydroxide in ethanol resulted in complicated mixtures of products.
Scheme 1. Synthesis. Reagents and conditions of 2-aminopyrimidine derivatives 8. Reagents and Conditions: (i) NaOH, EtOH/MeOH, rt, 3 h; (ii) Guanidine hydrochloride, NaH, DMF, 110 °C, 24 h. (iii) CDI, CH₂Cl₂, NHR, rt, 5 h.

3. Results and discussion
The affinities of the 2-aminopyrimidines for the adenosine A₂A and A₁ receptors were determined by radioligand binding and are expressed as the receptor-ligand dissociation constants (Kᵢ, nM) (Tables 1 and 2). Adenosine A₂A receptor affinity was determined using the non-selective adenosine antagonist, [³H]5’-N-ethylcarboxamide-adenosine ([³H]NECA) in the presence of N⁶-cyclopentyladenosine (CPA), and A₁ receptor affinity was determined using 1,3-[³H]-dipropyl-8-cyclopentylxanthine ([³H]DPCPX) [51-53].
Table 1: Adenosine receptor affinities (Ki) of compounds 8a - h.

<table>
<thead>
<tr>
<th>Comp.</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>A²A Ki (nM)ᵃ</th>
<th>A¹ Ki (nM)ᵃ</th>
<th>SIᵇ</th>
<th>A²A Ki/A¹ Ki</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a</td>
<td>-H</td>
<td>-Cl</td>
<td></td>
<td>948 ± 141</td>
<td>22.8 ± 5.51</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>8b</td>
<td>-H</td>
<td>-Cl</td>
<td></td>
<td>245 ± 21.1</td>
<td>39.1 ± 3.64</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>8c</td>
<td>-H</td>
<td>-Cl</td>
<td></td>
<td>399 ± 151</td>
<td>129 ± 12.1</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>8d</td>
<td>-H</td>
<td>-OCH₃</td>
<td></td>
<td>249 ± 79.6</td>
<td>61.4 ± 0.435</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>8e</td>
<td>-H</td>
<td>-OCH₃</td>
<td></td>
<td>409 ± 217</td>
<td>145 ± 19.6</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>8f</td>
<td>-OCH₃</td>
<td>-OCH₃</td>
<td></td>
<td>2778 ± 375</td>
<td>650 ± 63.0</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>8g</td>
<td>-Cl</td>
<td>-H</td>
<td></td>
<td>3320 ± 484</td>
<td>434 ± 13.0</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>8h</td>
<td>-F</td>
<td>-H</td>
<td></td>
<td>257 ± 36.4</td>
<td>158 ± 12.1</td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>

CPA 10.4 ± 1.57
The 2-aminopyrimidines of series 1 (8a - h) exhibited moderate to weak affinities for the adenosine A_{2A} receptor and moderate to good affinities for A₁ receptors with A_{2A} Ki values ranging from approximately 3 µM (8f, 8g) to approximately 250 nM (8b, 8d, 8h) and A₁ Ki values ranging from 23 nM (8a) to 650 nM (8f). These compounds all have higher affinities for the adenosine A₁ receptor than for the adenosine A_{2A} receptor, with compound 8a being the most selective (selectivity index of 42). For adenosine A_{2A} receptor affinity, the replacement of the phenyl substituent (R₃) with either a furan or methyl furan group, resulted in improved affinity (compound 8a vs. compounds 8b and 8c), whereas the opposite was true for A₁ affinity, where methyl furan substitution in particular proved to be detrimental. When the affinities of compounds 8b and 8c, and compounds 8d and 8e are compared, it is clear that methyl substitution of the furan ring results in decreased affinity, especially for the adenosine A₁ receptor. Based on these results, it thus appears that for R³, furan substitution is preferable for A_{2A} affinity, while phenyl substitution is optimal for A₁ receptor affinity. These results are in agreement with literature since the preference of the adenosine A_{2A} receptor for furan substitution is well documented [e.g. 46]. The affinity is apparently not significantly affected by the electronic effects of the substituent on the phenyl ring (R²) as compounds 8b and 8d (A_{2A} Ki values approx. 250 nM, A₁ Ki values 40 - 60 nM) as well as compounds 8c and 8e (A_{2A} Ki values approx. 400 nM, A₁ Ki values 130- 140 nM) had similar affinities for A_{2A} and A₁ receptors, respectively. On the other hand, the position of the substituent on the phenyl ring seems to have a significant effect on both A₁ and A_{2A} affinity, as substitution on the meta position (8c, R¹ = H, R² = Cl) is superior to substitution on the para position (8g, R¹ = Cl, R² = H). A similar observation is made when the affinities of compounds 8e and 8f are compared, where addition of a second methoxy group, in the para position, results in much weaker A₁ and A_{2A} affinity. However, since only a limited number of derivatives have been synthesised, these structure-activity relationships should be seen as preliminary.

![Chemical Structures]

Values are given as mean ± SEM of duplicate determinations

Selectivity index
Table 2: Adenosine receptor affinities (K_i) of compounds 8j - n.

<table>
<thead>
<tr>
<th>Comp.</th>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>$A_{2A}K_i$ (nM)a</th>
<th>$A_{1A}K_i$ (nM)a</th>
<th>SI^b</th>
<th>$A_{2A}K_i/A_{1A}K_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8j</td>
<td>-H</td>
<td></td>
<td></td>
<td>29.3 ± 0.978</td>
<td>52.1 ± 16.9c</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>8k</td>
<td>-H</td>
<td></td>
<td></td>
<td>16.3 ± 2.18</td>
<td>136 ± 1.88</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>8l</td>
<td>-H</td>
<td></td>
<td></td>
<td>30.9 ± 3.10</td>
<td>37.5 ± 0.857</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>8m</td>
<td>-H</td>
<td></td>
<td></td>
<td>6.34 ± 0.532</td>
<td>9.54 ± 1.34</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>8n</td>
<td>-H</td>
<td></td>
<td></td>
<td>58.2 ± 19.9</td>
<td>36.8 ± 5.42</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>CPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.4 ± 1.57</td>
</tr>
<tr>
<td>ZM241385</td>
<td></td>
<td></td>
<td></td>
<td>2.88 ± 0.670</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KW-6002</td>
<td></td>
<td></td>
<td></td>
<td>11.1 ± 3.97</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aValues are given as mean ± SEM of duplicate determinations

bSelectivity index

cn= 4
For compounds 8j - n, the 5-methyl-2-furanyl group was selected as the R³ substituent, since it was synthetically easier to work with than furan and is also less likely to present with metabolic liabilities [40]. Gratifyingly, this amide series showed improved adenosine A₂A affinity, while still retaining good A₁ affinity. The most promising candidate was compound 8m, with dual affinity for both A₂A and A₁ receptors with Ki values of 6.34 nM and 9.54 nM, respectively. For adenosine A₂A affinity, the amine groups yielded the following order of affinity: piperidine > methyl piperazine > morpholine = ethyl piperazine > pyrrolidine. Piperidine substitution was also most advantageous for A₁ affinity, while methyl piperazine substitution was least favourable. The affinities of this series of compounds are quite similar to those reported for related arylindenopyrimidones [41], and indicate that the presence of the five-membered indenyl ring (e.g as present in 5 and 6) is not an absolute requirement for dual affinity.

To gain an indication of potential cytotoxicity of the amide derivatives, the effect of these compounds on the viability of cultured HeLa cells were measured. For this purpose, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay was used [54]. Cell viability was generally above 60% when exposed for 24 h to either 1 µM or 10 µM of test compound (Table 3). These concentrations are almost 1000-fold higher than the reported Ki values of these compounds. Cytotoxicity at the doses required to obtain adenosine A₁ and A₂A affinity should thus not be problematic.

Table 3: The percentage viable cells remaining after treatment with amide derivatives (8j - 8n), as compared to untreated cells (100%).

<table>
<thead>
<tr>
<th>Comp.</th>
<th>% Viable cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 µMᵃ</td>
</tr>
<tr>
<td>8j</td>
<td>98.6 ± 4.45</td>
</tr>
<tr>
<td>8k</td>
<td>106.6 ± 9.76</td>
</tr>
<tr>
<td>8l</td>
<td>65.7 ± 4.95</td>
</tr>
<tr>
<td>8m</td>
<td>64.3 ± 4.74</td>
</tr>
<tr>
<td>8n</td>
<td>101 ± 6.22</td>
</tr>
</tbody>
</table>

ᵃValues are given as mean ± SD of triplicate determinations

Selected representatives 8m (the compound with best dual affinity, A₂A Ki = 6.34 nM, A₁ Ki = 9.54 nM) and 8k (A₂A Ki = 16.3 nM), were subjected to in vivo studies to determine the effectiveness of these compounds as dual adenosine A₁/A₂A antagonists. For these studies the effect of the test compounds on haloperidol induced catalepsy in rats was investigated [33].
Figure 2a. Reduction in haloperidol induced-catalepsy in male Sprague-Dawley rats by compound 8m. Time to descend from the bar was measured in haloperidol (5 mg/kg, ip) treated rats after ip administration of compound 8m (0.1, 0.4, 1, 2 mg/kg). Each bar represents average time (± SEM) of (n = 6) rats in the cataleptic position (*,** indicate significant differences compared with the haloperidol + vehicle control group as determined by one-way ANOVA [F (4, 25) = 5.893; P < 0.005) followed by Dunnet’s post test with *P = 0.01 - 0.05 and **P = 0.001 – 0.01).

Figure 2b. Reduction in haloperidol induced-catalepsy in male Sprague-Dawley rats by compound 8k. Time to descend from the bar was measured in haloperidol (5 mg/kg, ip) treated rats after ip administration of compound 8k (0.1, 0.4, 1, 2 mg/kg). Each bar represents average time (± SEM) of (n = 6) rats in the cataleptic
position (* indicates significant differences compared with the haloperidol + vehicle control group as
determined by one-way ANOVA [F (4, 25) = 3.103; P < 0.05) followed by Dunnet’s post test with P = 0.01
– 0.05).

As depicted in figure 2, a significant reduction in catalepsy time was observed for 8m at all
intraperitoneal (ip) administered doses while a significant reduction in catalepsy time was only observed
for the highest two doses (1 and 2 mg/kg) for compound 8k (Figures 2a and b).

The results obtained with compounds 8m and 8k are thus similar to those obtained with other adenosine
A2A antagonists where catalepsy is reversed in the presence of A2A antagonists or dual adenosine A2A/A1
antagonists [33,34,43], and provides evidence of in vivo efficacy of these compounds as antagonists.

In order to rationalise the results obtained in the radioligand binding studies, a docking study was
performed using CDOCKER (Discovery Studio 3.1). The synthesised compounds were docked into a
model of the binding site of the adenosine A2A receptor (PDB code: 3PWH). Visual inspection of the
docked poses with most favourable CDOCKER interaction energy firstly revealed that the three-
membered ring system of all derivatives (8a - n), undergo π-π interactions with Phe168. Hydrogen
bonding interactions also occur between the exocyclic amino group and Asn253 for most derivatives.
These interactions most likely anchor the aminopyrimidine in the binding site and are also important
binding interactions predicted for other 2-aminopyrimidine antagonists [55] (Figure 3 and 4).
Additionally, hydrogen bonding interactions were also observed with His250, Ser67, Glu169, Phe168
and Ala63 for some compounds. Interestingly, for compounds 8a - h there were two different
orientations, one where the C-6 substituent was orientated towards His250 and another where the C-4
substituent was orientated towards His250 (Figure 3). The CDOCKER interaction energies of these two
poses were in all cases very similar. The docking results gave no clear explanation for the observed
higher affinity of the amide derivatives (8j - n) compared to the series 1 compounds (8a - h). However,
when ranked according to CDOCKER interaction energy, most of the series 2 compounds ranked above
the series 1 compounds, except for compound 8f, which ranked above compound 8n. It would thus
appear that the interaction between the amide derivatives (8j - n) and the receptor is generally more
favourable than for the “smaller” derivatives and provides some explanation for the superior affinity of
compounds 8j - n.
Figure 3: Illustration of the different orientations of compound 8b in the binding site of the A2A receptor. Intermolecular hydrogen bond interactions are observed between the exocyclic amino group and Asn253, while π-π stacking occurs between the three ring systems and Phe168 (A). In orientation B, an additional hydrogen bonding interaction is observed between the furan oxygen and Asn253 (Figure generated using Pymol).

Figure 4: Docking orientation of compound 8j in the active site of the adenosine A2A receptor. An intermolecular hydrogen bond interaction is observed between the exocyclic amino group and Asn253, while π-π stacking occurs between the three ring systems and Phe168. Additional hydrogen bond interactions occur between the morpholine in the side chain and Glu169 and Ser67 (Figure generated using Pymol).

4. Conclusion
This series of 2-aminopyrimidines, particularly the amide derivatives (8j - n), which are related to previously synthesised arylindenopyrimidines, retain affinity for both adenosine A1 and A2A receptors. The 2-aminopyrimidine scaffold can thus be optimised and the presence of a five-membered “linker ring” is not an absolute requirement for affinity. In vivo activity is indicative of adenosine antagonism rather than agonism and has been illustrated for compounds 8k and 8m with A2AKi values of 16.3 nM and 6.34 nM and A1Ki values of 136 nM and 9.54 nM, respectively. Docking results indicate that these compounds are predicted to bind in a fashion similar to that illustrated for other compounds of the 2-aminopyrimidine class.

5. Experimental section
5.1 Chemistry
Chemical reagents were purchased from Sigma-Aldrich, and used without further purification. Reactions were routinely monitored on TLC using precoated Kieselgel 60 F254 sheets with ethyl
acetate: petroleum ether (1:4) as mobile phase for series 1 (8a - h) and dichloromethane: methanol (9:1) as mobile phase for series 2 compounds (8j - n). Melting points were determined using a Buchi B-545 apparatus, and are uncorrected. Mass spectra were obtained on a dual focusing DFS magnetic sector mass spectrometer in EI+ mode. The mass spectrum for compound 7n was obtained with a Bruker microTOF-QII mass spectrometer in atmospheric-pressure chemical ionisation (APCI) mode. Proton (1H) and carbon (13C) NMR spectra were recorded on a Bruker Avance III 600 spectrometer at frequencies of 600 MHz and 150 MHz, respectively. Samples were dissolved in either deuterochloroform (CDCl$_3$) or deuterated dimethylsulfoxide (DMSO-d_6). 1H NMR data are reported in parts per million (ppm) and the following abbreviations are used: s (singlet), br s (broad singlet), d (doublet), br d (broad doublet), dd (doublet of doublets), t (triplet), br t (broad triplet), q (quartet), p (pentet/quintet) or m (multiplet). Chemical shifts are referenced to the residual solvent signal (CDCl$_3$ 7.26 and 77.0 ppm for 1H and 13C respectively; DMSO-d_6: 2.5 and 39.5 ppm for 1H and 13C, respectively). Assignments were based on data obtained from 1D (1H, 13C, DEPT) and 2D (HSQC, HMBC, COSY) NMR experiments. HPLC analyses were conducted with an Agilent 1100 HPLC system equipped with a quaternary pump and an Agilent 1100 series diode array detector. A Venusil XBP C18 column (4.60×150 mm, 5 µm) was used with a solvent gradient program (30% acetonitrile and 70% MilliQ water initially) at a flow rate of 1 ml/min. The concentration of acetonitrile in the mobile phase was linearly increased up to 85% over a period of 5 min. Each HPLC run lasted 15 min and a time period of 5 min was allowed for equilibration between runs. The test compound was injected (20 µl, 1 mM) into the HPLC system and the eluent was monitored at a wavelength of 254 nm.

5.1.1 Procedure for the synthesis of 3-[(1E)-3-(5-methylfuran-2-yl)-3-oxoprop-1-en-1-yl]benzoic acid (7i)

A solution of 4% (w/v) sodium hydroxide (34 mmol) was added to a suspension of 3-formylbenzoic acid (17 mmol) and 1-(5-methyl-2-furyl)ethanone (17 mmol) in methanol (100 ml). The mixture was stirred at room temperature for 24 h and acidified with concentrated hydrochloric acid to a pH of 1-2. The precipitate that formed was filtered, rinsed with water and recrystallised from methanol to afford 7i.

5.1.1.1 3-[(1E)-3-(5-methylfuran-2-yl)-3-oxoprop-1-en-1-yl]benzoic acid (7i)

Yield 68%; Pale yellow crystals; mp 191.7-194.1 °C (methanol); 1H NMR (600 MHz, DMSO-d_6) δ 13.20 (br s, 1H, OH), 8.33 (br s, 1H, H-2'), 8.07 (br d, $J = 7.8$ Hz, 1H, H-6'), 7.98 (dt, $J = 1.4, 7.7$ Hz, 1H, H-4'), 7.82 (d, $J = 3.5$ Hz, 1H, H-3''), 7.75 (d, $J = 16.0$ Hz, 1H, H-7 or H-8), 7.71 (d, $J = 16.0$ Hz, 1H, H-7 or H-8), 7.57 (t, $J = 7.7$ Hz, 1H, H-5'), 6.42 (dd, $J = 1.1, 3.5$ Hz, 1H, H-4''), 2.40 (s, 3H, CH$_3$).13C NMR (151 MHz, DMSO-d_6) δ 175.6 (C-1), 167.0 (acid C=O), 158.8 (C-5''), 151.8 (C-2'').
141.2 (C-3), 135.0 (C-1’), 132.8 (C-6’), 131.6 (C-3’), 131.0 (C-4’), 129.2 (C-2’, C-5’), 123.1 (C-2), 121.9 (C-3’’), 109.6 (C-4’’), 13.8 (CH$_3$). EI-HRMS m/z: calcd for C$_{15}$H$_{12}$O$_4$, 256.07356, found 256.07292; Purity (HPLC): 100%.

5.1.2 General procedure for the synthesis of chalcones (7j – 7n)
1,1’-Carbonyldiimidazole (CDI) (7.0 mmol) was added to a suspension of the acid (7i) (5.8 mmol) in dichloromethane (70 ml). The reaction mixture was stirred under nitrogen at room temperature for 2 h and the appropriate amine (7.0 mmol) was added. The mixture was then stirred for a further 3 h. The reaction was quenched by the addition of brine and the aqueous phase extracted with dichloromethane (2 × 20 ml). The combined organic fractions were washed once with saturated sodium hydrogen carbonate and twice with brine. The organic fraction was concentrated (in vacuo), purified with column chromatography [dichloromethane: methanol (98:2)] and recrystallised from methanol.

5.1.2.1 (2E)-1-(5-methylfuran-2-yl)-3-[3-(morpholine-4-carbonyl)phenyl]prop-2-en-1-one (7j)
The title compound was prepared from (1E)-1-(5-methylfuran-2-yl)-3-[3-oxoprop-1-en-1-yl]benzoic acid (7i) and morpholine in a yield of 54%: mp 149.1-149.9 °C (methanol), pale yellow crystals.

1H NMR (600 MHz, CDCl$_3$) δ 7.80 (d, $J = 15.8$ Hz, 1H, H-3), 7.69 (br t, $J = 1.6$ Hz, 1H, H-2’), 7.65 (dt, $J = 1.6, 7.7$ Hz, 1H, H-6’), 7.47 – 7.36 (m, 3H, H-2, H-5’, H-4’), 7.25 (br d, $J = 3.4$ Hz, 1H, H-3’’), 6.21 (dd, $J = 1.0, 3.4$ Hz, 1H, H-4’’), 3.93 – 3.31 (m, 8H, 4 x morpholine CH$_2$), 2.43 (s, 3H, CH$_3$).

13C NMR (151 MHz, CDCl$_3$) δ 176.8 (C-1), 169.6 (amide C=O), 158.4 (C-5’’), 152.3 (C-2’’), 141.8 (C-3), 136.0 (C-1’ or C-3’), 135.4 (C-1’ or C-3’), 129.9 (C-6’), 129.1, 128.5 (C-4’, C-5’)*, 126.6 (C-2’), 122.4 (C-2), 119.8 (C-3’), 109.4 (C-4’’), 66.8, 48.2, 42.5 (morpholine CH$_2$). EI-HRMS m/z: calcd for C$_{19}$H$_{19}$NO$_4$, 325.13141, found 325.13031; Purity (HPLC): 100%. * In no particular order.

5.1.2.2 (2E)-1-(5-methylfuran-2-yl)-3-[3-(4-methylpiperazine-1-carbonyl)phenyl]prop-2-en-1-one (7k)
The title compound was prepared from (1E)-1-(5-methylfuran-2-yl)-3-[3-oxoprop-1-en-1-yl]benzoic acid (7i) and 1-methylpiperazine in a yield of 67%: mp 131.0-132.2 °C (methanol), yellow crystals.

1H NMR (600 MHz, CDCl$_3$) δ 7.79 (d, $J = 15.8$ Hz, 1H, H-3), 7.68 (br t, $J = 1.6$ Hz, 1H, H-2’), 7.63 (dt, $J = 1.6, 7.7$ Hz, 1H, H-6’), 7.45 – 7.35 (m, 3H, H-4’, H-5’, H-2), 7.25 (d, $J = 3.5$ Hz, 1H, H-3’’), 6.20 (d, $J = 3.5$ Hz, 1H, H-4’’), 3.81 (br s, 2H, CONCH$_2$), 3.44 (br s, 2H, CONCH$_2$), 2.50-2.27 (m, 10H, 2 x CH$_2$NCH$_3$, 2 x CH$_3$).13C NMR (151 MHz, CDCl$_3$) δ 176.8 (C-1), 169.5 (amide C=O), 158.3 (C-5’’), 152.3 (C-2’’), 141.9 (C-3), 136.5 (C-1’ or C-3’), 135.3 (C-1’ or C-3’), 129.7 (C-6’), 129.0 (C-4’ or C-5’), 128.5 (C-4’ or C-5’), 126.6 (C-2’), 122.3 (C-2), 119.8 (C-3’’), 109.4 (C-4’’), 55.2 (CH$_2$NCH$_3$), 54.6 (CH$_2$NCH$_3$), 47.6 (CONCH$_2$), 45.9 (piperazine CH$_3$), 42.0 (CONCH$_2$), 14.1 (furan CH$_3$). EI-HRMS m/z: calcd for C$_{20}$H$_{22}$N$_2$O$_3$, 338.16304, found 338.16270; Purity (HPLC): 97%.
5.1.2.3 (2E)-3-[3-(4-ethylpiperazine-1-carbonyl)phenyl]-1-(5-methylfuran-2-yl)prop-2-en-1-one (7i)

The title compound was prepared from (1E)-1-(5-methylfuran-2-yl)-3-[3-oxopropan-1-en-1-yl]benzoic acid (7i) and 1-ethylpiperazine in a yield of 63%: mp 98.5-98.8 °C (methanol), orange solid.

\[\text{H NMR (600 MHz, CDCl}_3\text{)} \delta 7.80 (d, J = 15.9 Hz, 1H, H-3), 7.68 (br s, 1H, H-2'), 7.63 (br d, J = 7.6 Hz, 1H, H-6'), 7.45 - 7.36 (m, 3H, H-4', H-5', H-2), 7.25 (d, J = 3.5 Hz, 1H, H-3''), 6.21 (d, J = 3.5 Hz, 1H, H-4''), 3.81 (br s, 2H, CONHCH\text{3}), 3.44 (br s, 2H, CONCH\text{2}), 2.55 - 2.33 (m, 9H, 2 x CH\text{2}NCH\text{3}, NCH\text{2}CH\text{2}, furan CH\text{3}), 1.08 (t, J = 7.2 Hz, 3H, NCH\text{2}), 7.45 - 7.36 (m, 3H, H-5', H-4, H-2), 7.25 (d, 1H, J = 3.4 Hz, H-3''), 6.21 (d, J = 3.4 Hz, 1H, H-4''), 3.71 (s, 2H, CONCH\text{2}), 3.33 (s, 2H, CONCH\text{2}), 2.43 (s, 3H, CH\text{3}), 1.71 - 1.42 (m, 6H, 3 x piperidine CH\text{3}).

EI-HRMS m/z: calcd for C\text{21}H\text{24}N\text{2}O\text{3}, 352.17869, found 352.17790; Purity (HPLC): 98%.

5.1.2.4 (2E)-1-(5-methylfuran-2-yl)-3-[3-(piperidine-1-carbonyl)phenyl]prop-2-en-1-one (7m)

The title compound was prepared from (1E)-1-(5-methylfuran-2-yl)-3-[3-oxopropan-1-en-1-yl]benzoic acid (7i) and piperidine in a yield of 78%: mp 144.7 - 145.1 °C (methanol), pale yellow solid.

\[\text{H NMR (600 MHz, CDCl}_3\text{)} \delta 7.81 (d, J = 15.8 Hz, 1H, H-3), 7.68 (br s, 1H, H-2'), 7.63 (br d, J = 7.8 Hz, 1H, H-6'), 7.45 - 7.35 (m, 3H, H-4', H-5', H-2), 7.25 (d, 1H, J = 3.4 Hz, H-3''), 6.21 (d, J = 3.4 Hz, 1H, H-4''), 3.71 (s, 2H, CONCH\text{2}), 3.33 (s, 2H, CONCH\text{2}), 2.43 (s, 3H, CH\text{3}), 1.71 - 1.42 (m, 6H, 3 x piperidine CH\text{3}).

EI-HRMS m/z: calcd for C\text{20}H\text{21}NO\text{3}, 323.15214, found 323.15116; Purity (HPLC): 96%.

5.1.2.5 (2E)-1-(5-methylfuran-2-yl)-3-[3-(pyrrolidine-1-carbonyl)phenyl]prop-2-en-1-one (7n)

The title compound was prepared from (1E)-1-(5-methylfuran-2-yl)-3-[3-oxopropan-1-en-1-yl]benzoic acid (7i) and pyrrolidine in a yield of 74%: mp 120.8-122.6 °C (methanol), yellow crystals.

\[\text{H NMR (600 MHz, CDCl}_3\text{)} \delta 7.82 - 7.76 (m, 2H, H-2', H-3), 7.62 (br d, J = 7.7 Hz, 1H, H-6'), 7.49 (br d, J = 7.7 Hz, 1H, H-4'), 7.44 - 7.37 (m, 2H, H-5', H-2), 7.24 (d, J = 3.5 Hz, 1H, H-3''), 6.2 (d, J = 3.5 Hz, 1H, H-4''), 3.63 (t, J = 7.1 Hz, 2H, CONCH\text{2}), 3.41 (t, J = 6.6 Hz, 2H, CONCH\text{2}), 2.41 (s, 3H, CH\text{3}), 1.95 (p, J = 6.9 Hz, 2H, CH\text{2}CH\text{2}CH\text{2}), 1.86 (p, J = 6.7 Hz, 2H, CH\text{2}CH\text{2}CH\text{2}).

\[\text{C NMR (151 MHz, CDCl}_3\text{)} \delta 176.9 (C-1), 169.4 (amide C=O), 158.3 (C-5''), 141.9 (C-3), 136.5 (C-1' or C-3''), 135.3 (C-1' or C-3'), 129.8 (C-6'), 129.0 (C-4' or C-5'), 128.5 (C-4' or C-5'), 126.6 (C-2'), 122.3 (C-2), 119.8 (C-3''), 109.4 (C-4''), 53.1 (CH\text{2}NCH\text{2}), 52.3 (CH\text{2}NCH\text{2}), 52.2 (NCH\text{2}CH\text{3}), 47.7 (CONCH\text{2}), 42.1 (CONCH\text{2}), 14.1 (furan CH\text{3}), 11.8 (piperazine CH\text{3}).

EI-HRMS m/z: calcd for C\text{21}H\text{24}N\text{2}O\text{3}, 352.17869, found 352.17790; Purity (HPLC): 98%.
109.4 (C-4′′), 49.5 (CONCH2), 46.2 (CONCH2), 26.3 (CH2CH2CH2), 24.3 (CH2CH2CH2), 14.1 (CH3).

APCI-HRMS m/z: calcd for C19H19NO3 (M + H)+, 310.1438, found 310.1448; Purity (HPLC): 93%.

5.1.3 General procedure for the synthesis of 2-aminopyrimidines

Guanidine hydrochloride (4.6 mmol) was dissolved in a small amount of DMF (15 ml), and the appropriate chalcone (3.1 mmol) and sodium hydride (9.2 mmol) were added while stirring. The reaction mixture was heated (110 °C) for 24 h under nitrogen, allowed to cool to room temperature and then diluted with equal volumes of ethyl acetate and water. The aqueous phase was extracted with ethyl acetate (twice) and the organic layers were combined. All traces of DMF were removed by washing the combined organic layers with water (4 times). The organic layer was concentrated in vacuo and the crude product was purified with column chromatography [petroleum ether: ethyl acetate (4:1)] and recrystallised from ethanol.

5.1.3.1 4-(3-chlorophenyl)-6-phenylpyrimidin-2-amine (8a)

The title compound was prepared from (2E)-3-(3-chlorophenyl)-1-phenylprop-2-en-1-one (7a) in a yield of 15%: mp 128.6-131.4 °C (ethanol), (lit. 132 – 133 °C) [56] white solid. 1H NMR (600 MHz, CDCl3) δ 8.05 (m, 3H, Ar-H), 7.92 (dt, J = 1.5, 7.6 Hz, 1H, H-4'/6'), 7.53 – 7.39 (m, 6H, Ar-H, H-5), 5.42 (s, 2H, NH2). 13C NMR (151 MHz, CDCl3) δ 166.5, 164.64, 163.6 (C-2, C-4, C-6)*, 139.5, 137.4, 134.8 (C-1′, C-1′′, C-3′′)*, 130.6, 130.3, 130.0, 128.8 (2C), 127.2, 127.1 (2C), 125.1 (Ar-C), 104.1 (C-5). EI-HRMS m/z: calcd for C16H12ClN3, 281.07198, found 281.07167; Purity (HPLC): 99%.* In no particular order.

5.1.3.2 4-(3-chlorophenyl)-6-(furan-2-yl)pyrimidin-2-amine (8b)

The title compound was prepared from (2E)-3-(3-chlorophenyl)-1-(furan-2-yl)prop-2-en-1-one (7b) in a yield of 22%: mp 144.1-144.4 °C (ethanol), light yellow solid. 1H NMR (600 MHz, CDCl3) δ 8.05 (br t, J = 1.9 Hz, 1H, H-2'), 7.91 (dt, J = 1.45, 7.6 Hz, 1H, H-6'), 7.59 (dd, J = 0.8, 1.8 Hz, 1H, H-5''), 7.42 (ddd, J = 8.0, 2.1, 1.2 Hz, 1H, H-4'), 7.38 (br t, J = 7.8 Hz, 1H, H-5'), 7.34 (s, 1H, H-5), 7.20 (dd, J = 0.8, 3.5 Hz, 1H, H-3''), 6.56 (dd, J = 1.8, 3.5 Hz, 1H, H-4''), 5.41 (s, 2H, NH2). 13C NMR (151 MHz, CDCl3) δ 164.6 (C-2 or C-4), 163.4 (C-2 or C-4), 157.24 (C-6), 152.0 (C-2''), 144.6 (C-5''), 139.3 (C-1′), 134.8 (C-3), 130.4 (C-4' or C-5'), 129.9 (C-4' or C-5'), 127.2 (C-2'), 125.1 (C-6'), 112.3 (C-3' or C-4''), 111.80 (C-3'' or C-4''), 101.94 (C-5). EI-HRMS m/z: calcd for C16H16ClN3O, 271.05124, found 271.05049; Purity (HPLC): 98%.
5.1.3.3 4-(3-chlorophenyl)-6-(5-methylfuran-2-yl)pyrimidin-2-amine (8c)
The title compound was prepared from (2E)-3-(3-chlorophenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (7e) in a yield of 45%: mp 170.5-172.1°C (ethanol), yellow solid. H NMR (600 MHz, CDCl₃) δ 8.05 (br s, 1H, H-2'), 7.92 (d, J = 7.6 Hz, 1H, H-6'), 7.46 – 7.37 (m, 2H, H-4', H-5'), 7.31 (s, 1H, H-5), 7.11 (br s, 1H, H-3'), 6.17 (br s, 1H, H-4''), 5.26 (s, 2H, NH₂), 2.43 (s, 3H, CH₃). ¹³C NMR (151 MHz, CDCl₃) δ 164.3 (C-2 or C-4), 163.3 (C-2 or C-4), 157.3 (C-6), 155.4 (C-5''), 150.5 (C-2''), 139.4 (C-1'), 134.8 (C-3'), 130.3 (C-4' or C-5'), 129.9 (C-4' or C-5'), 127.2 (C-2'), 125.1 (C-6'), 113.3 (C-3''), 108.8 (C-4''), 101.6 (C-5), 14.0 (CH₃). EI-HRMS m/z: calcd for C₁₅H₁₂NO₃Cl, 285.06690, found 285.06556; Purity (HPLC): 100%.

5.1.3.4 4-(3-methoxyphenyl)-6-(furan-2-yl)pyrimidin-2-amine (8d)
The title compound was prepared from (2E)-1-(furan-2-yl)-3-(3-methoxyphenyl)prop-2-en-1-one (7d) in a yield of 19%: mp 113.8-116.8 °C (ethanol), dark brown crystals. H NMR (600 MHz, CDCl₃) δ 7.64 – 7.57 (m, 3H, H-2',H-4',H-5''), 7.40 – 7.37 (m, 2H, H-5, H-5'), 7.19 (dd, J = 0.82, 3.4 Hz, 1H, H-3''), 7.03 (ddd, J = 0.96, 2.59, 8.1 Hz, 1H, H-6''), 6.55 (dd, J = 1.7, 3.4 Hz, 1H, H-4''), 5.41 (s, 2H, NH₂), 3.89 (s, 3H, OCH₃). ¹³C NMR (151 MHz, CDCl₃) δ 165.92 (C-4), 163.35 (C-2), 159.96 (C-3'), 156.43 (C-6), 152.15 (C-2''), 144.51 (C-5''), 138.89 (C-1'), 129.68 (C-5'), 119.47 (C-4'), 116.54 (C-6'), 112.21 (C-2'/C-3''/C-4''), 112.21 (C-2'/C-3''/C-4''), 112.07 (C-2'/C-3''/C-4''), 102.18 (C-5), 55.37 (OCH₃). EI-HRMS m/z: calcd for C₁₅H₁₃N₃O₂, 267.10078, found 267.09949; Purity (HPLC): 92%.

5.1.3.5 4-(3-methoxyphenyl)-6-(5-methylfuran-2-yl)pyrimidin-2-amine (8e)
The title compound was prepared from (2E)-3-(3-methoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (7e) in a yield of 43%: mp 149.0 -150.6 °C (ethanol), light orange crystals. H NMR (600 MHz, CDCl₃) δ 7.64 – 7.58 (m, 2H, H-2', H-4'), 7.38 (br t, J = 7.9 Hz, 1H, H-5'), 7.33 (s, 1H, H-5), 7.09 (d, J = 3.3 Hz, 1H, H-3''), 7.02 (ddd, J = 2.6, 8.2 Hz, 1H, H-6'), 6.15 (dd, J = 0.9, 3.3 Hz, 1H, H-4''), 5.44 (s, 2H, NH₂), 3.89 (s, 3H, OCH₃). ¹³C NMR (151 MHz, CDCl₃) δ 165.6 (C-4), 163.4 (C-2), 159.9 (C-3'), 157.0 (C-6), 155.1 (C-5''), 150.6 (C-2''), 139.1 (C-1'), 129.6 (C-5'), 119.47 (C-4''), 116.3 (C-6'), 113.0 (C-3''), 112.1 (C-2'), 108.7 (C-4''), 101.7 (C-5), 55.4 (OCH₃). EI-HRMS m/z: calcd for C₁₆H₁₅N₃O₂, 281.11643, found 281.11556 ; Purity (HPLC): 100%.

5.1.3.6 4-(3,4-dimethoxyphenyl)-6-(5-methylfuran-2-yl)pyrimidin-2-amine (8f)
The title compound was prepared from (2E)-3-(3,4-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (7f) in a yield of 27%: mp 167.4-168.1 °C (ethanol), dark yellow crystals. H NMR (600 MHz, CDCl₃) δ 7.68 (d, J = 2.0 Hz, 1H, H-2'), 7.61 (dd, J = 2.1, 8.4 Hz, 1H, H-6'), 7.29 (s, 1H, H-5), 7.08 (d, J = 3.3 Hz, 1H, H-3''), 6.93 (d, J = 8.4 Hz, 1H, H-5'), 6.15 (dd, J = 0.8, 3.3 Hz, 1H, H-4''), 5.35 (s, 2H, NH₂), 3.98 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 2.42 (s, 3H, CH₃). ¹³C NMR (151 MHz, CDCl₃) δ 165.2 (C-4), 163.3 (C-2), 156.7 (C-6), 155.0 (C-5''), 151.1, 150.6 (C-4' or C-3' and C-2''), 149.0 (C-3' or C-
4'), 130.2 (C-1'), 120.1 (C-6'), 112.8 (C-3''), 110.7 (C-5'), 108.7 (C-4''), 100.8 (C-5), 56.0 (OCH₃), 55.9 (OCH₃), 14.00 (CH₃). EI-HRMS m/z: calcd for C₁₇H₁₇N₃O₃, 311.12699, found 311.12618; Purity (HPLC): 100%* In no particular order.

5.1.3.7 4-(4-chlorophenyl)-6-(5-methylfuran-2-y)pyrimidin-2-amine (8g)
The title compound was prepared from (2E)-3-(4-chlorophenyl)-1-(5-methylfuran-2-y)prop-2-en-1-one (7g) in a yield of 30%: mp 204.6 – 205.8 °C (ethanol), dark yellow powder. ¹H NMR (600 MHz, DMSO-d₆) δ 8.14 (d, J = 8.6 Hz, 2H, H-2', H-6'), 7.56 (d, J = 8.6 Hz, 2H, H-3', H-5'), 7.39 (s, 1H, H-5), 7.21 (d, J = 3.3 Hz, 1H, H-3''), 6.76 (s, 2H, NH₂), 6.32 (dd, J = 1.0, 3.3 Hz, 1H, H-4''), 2.37 (s, 3H, CH₃). ¹³C NMR (151 MHz, DMSO-d₆) δ 163.9 (C-2 or C-4), 163.1 (C-2 or C-4), 156.7 (C-6), 154.7 (C-5''), 150.4 (C-2''), 136.0 (C-1'), 135.2 (C-4'), 128.8 (C-2', C-6' or C-3', C-5'), 128.6 (C-2', C-6' or C-3', C-5'), 113.3 (C-3''), 110.9 (C-5''), 99.4 (C-5), 13.7 (CH₃). EI-HRMS m/z: calcd for C₁₅H₁₂ClN₃O, 285.06689, found 285.06633; Purity (HPLC): 99%.

5.1.3.8 4-(4-fluorophenyl)-6-(furan-2-y)pyrimidin-2-amine (8h)
The title compound was prepared from (2E)-1-(4-fluorophenyl)-3-(furan-2-y)prop-2-en-1-one (7h) in a yield of 41%: mp 162.3-162.5 °C (lit. 170 °C) [57] (ethanol), faded yellow crystals. ¹H NMR (600 MHz, CDCl₃) δ 8.09 – 8.03 (m, 2H, H-2',H-6'), 7.59 (dd, J = 0.8, 1.8 Hz, 1H, H-5''), 7.37 (s, 1H, H-5), 7.19 – 7.13 (m, 3H, H-3'', H-3', H-5'), 6.57 (dd, J = 1.8, 3.4 Hz, 1H, H-4''), 5.28 (s, 2H, NH₂). ¹³C NMR (151 MHz, CDCl₃) δ 165.0 (C-2 or C-4), 164.4 (d, J_{C,F} = 250.5 Hz, C-4'), 163.3 (C-2 or C-4), 157.1 (C-6), 152.2 (C-2''), 144.6 (C-5''), 133.5 (d, J_{C,F} = 3.5 Hz, C-1'), 129.1 (d, J_{C,F} = 8.5 Hz C-2', C-6'), 115.7 (d, J_{C,F} = 21.3 Hz, C-3', C-5'), 112.3 (C-3''), 111.6 (C-4''), 101.7 (C-5). EI-HRMS m/z: calcd for C₁₄H₁₀FN₃O, 255.08079, found 255.07982; Purity (HPLC): 100%.

5.1.3.9 4-(5-methylfuran-2-y)-6-[3-(morpholine-4-carbonyl)phenyl]pyrimidin-2-amine (8j)
The title compound was prepared from (2E)-1-(5-methylfuran-2-y)-3-[3-(morpholine-4-carbonyl)phenyl]prop-2-en-1-one (7j) in a yield of 20%: mp 205.9 – 206.4 °C (methanol), yellow solid. ¹H NMR (600 MHz, CDCl₃) δ 8.11 (m, 2H, H-2', H-6'), 7.55 – 7.46 (m, 2H, H- 4', H-5'), 7.35 (s, 1H, H-5), 7.09 (d, J = 3.4 Hz, 1H, H-3''), 6.16 (br d, J = 3.4 Hz, 1H, H-4''), 5.32 (s, 2H, NH₂), 3.87 – 3.43 (m, 8H, morpholine CH₂), 2.42 (s, 3H, CH₃). ¹³C NMR (151 MHz, CDCl₃) δ 170.0 (C=O), 164.6 (C-2 or C-6), 163.4 (C-2 or C-6), 157.3 (C-4), 155.3 (C-5''), 150.4 (C-2''), 138.1 (C-1'), 135.7 (C-3'), 128.8, 128.7, 128.4, 125.9 (C-2', C-4', C-5', C-6''), 113.2 (C-3''), 108.7 (C-4''), 101.5 (C-5), 66.8, 48.2, 42.6 (morpholine CH₂) 14.0 (CH₃). EI-HRMS m/z: calcd for C₂₀H₂₉N₃O₃, 364.15354, found 364.15292; Purity (HPLC): 92%. * In no particular order.
5.1.3.10 4-(5-methylfuran-2-yl)-6-[3-(4-methylpiperazine-1-carbonyl)phenyl]pyrimidin-2-amine (8k)
The title compound was prepared from (2E)-1-(5-methylfuran-2-yl)-3-[3-(4-methylpiperazine-1-
carbonyl)prop-2-en-1-one (7k) in a yield of 57%: 194.3-194.4 °C (methanol), cream solid. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 8.13 – 8.07 (m, 2H, H-2', H-6'), 7.53 – 7.45 (m, 2H, H-4', H-5'), 7.35 (s, 1H, H-5), 7.09 (d, \(J = 3.4\) Hz, 1H, H-3''), 6.15 (br d, \(J = 3.4\) Hz, 1H, H-4''), 5.30 (s, 2H, NH\(_2\)), 3.83 (br s, 2H, CONCH\(_2\)), 3.46 (br s, 2H, CONCH\(_2\)), 2.60 – 2.19 (m, 10H, 2 x CH\(_2\)NCH\(_3\), 2 x CH\(_3\)). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 169.8 (C=O), 164.7 (C-2 or C-6), 163.4 (C-2 or C-6), 157.3 (C-4), 155.3 (C-5''), 150.5 (C-2''), 138.1 (C-1'), 136.2 (C-3'), 128.8, 128.7, 128.2, 125.9 (C-2', C-4', C-5', C-6')*, 113.2 (C-3''), 108.8 (C-4''), 101.6 (C-5), 55.2 (CH\(_2\)NCH\(_3\)), 54.6 (CH\(_2\)NCH\(_3\)), 47.7 (CONCH\(_2\)), 46.0 (piperazine CH\(_3\)), 42.1 (CONCH\(_2\)), 14.0 (furan CH\(_3\)). EI-HRMS m/z: calcd for C\(_{21}\)H\(_{23}\)N\(_5\)O\(_2\), 377.18518, found 377.18422; Purity (HPLC): 85%. *In no particular order.

5.1.3.11 4-(5-methylfuran-2-yl)-6-[3-(4-ethylpiperazine-1-carbonyl)phenyl]pyrimidin-2-amine (8l)
The title compound was prepared from (2E)-3-[3-(4-ethylpiperazine-1-carbonyl)phenyl]-1-(5-
methylfuran-2-yl)prop-2-en-1-one (7l) in a yield of 16%: 178.1-178.4 °C (methanol), light orange solid. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 8.12 – 8.07 (m, 2H, H-2', H-6'), 7.52 – 7.44 (m, 2H, H-4', H-5'), 7.34 (s, 1H, H-5), 7.08 (d, \(J = 3.4\) Hz, 1H, H-3''), 6.14 (dd, \(J = 1.0, 3.4\) Hz, 1H, H-4''), 5.38 (s, 2H, NH\(_2\)), 3.83 (br s, 2H, CONCH\(_2\)), 3.46 (br s, 2H, CONCH\(_2\)), 2.62 – 2.21 (m, 9H, 2 x CH\(_2\)NCH\(_3\), NCH\(_2\)CH\(_3\), furan CH\(_3\)), 1.07 (t, \(J = 7.4\) Hz, 3H, NCH\(_2\)CH\(_3\)). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 169.7 (C=O), 164.7 (C-2 or C-6), 163.4 (C-2 or C-6), 157.2 (C-4), 155.2 (C-5''), 150.4 (C-2''), 138.0 (C-1'), 136.2 (C-3'), 128.7, 128.7, 128.2, 125.9 (C-2', C-4', C-5', C-6')*, 113.1 (C-3''), 108.7 (C-4''), 101.5 (C-5), 53.0 (CH\(_2\)NCH\(_3\)), 52.3 (CH\(_2\)NCH\(_3\)), 52.2 (NCH\(_2\)CH\(_3\)), 47.7 (CONCH\(_2\)), 42.1 (CONCH\(_2\)), 14.0 (furan CH\(_3\)), 11.8 (NCH\(_2\)CH\(_3\)). EI-HRMS m/z: calcd for C\(_{22}\)H\(_{25}\)N\(_5\)O\(_2\), 391.20083, found 391.20052; Purity (HPLC): 100%. * In no particular order.

5.1.3.12 4-(5-methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (8m)
The title compound was prepared from (2E)-1-(5-methylfuran-2-yl)-3-[3-(piperidine-1-
carbonyl)prop-2-en-1-one (7m) in a yield of 56%: 179.2-180.5 °C (methanol), orange crystals. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 8.12 – 8.05 (m, 2H, H-2', H-6'), 7.52 – 7.44 (m, 2H, H-4', H-5'), 7.35 (s, 1H, H-5), 7.09 (d, \(J = 3.4\) Hz, 1H, H-3''), 6.15 (dd, \(J = 1.1, 3.4\) Hz, 1H, H-4''), 5.35 (s, 2H, NH\(_2\)), 3.73 (br s, 2H, CONCH\(_2\)), 3.36 (br s, 2H, CONCH\(_2\)), 2.42 (s, 3H, CH\(_3\)), 1.77 – 1.39 (m, 6H, 3 x piperidine CH\(_3\)). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 169.8 (C=O), 164.9 (C-2 or C-6), 163.4 (C-2 or C-6), 157.2 (C-4), 155.2 (C-5''), 150.4 (C-2''), 138.0 (C-1'), 136.2 (C-3'), 128.7, 128.7, 128.2, 125.9 (C-2', C-4', C-5', C-6')*, 113.1 (C-3''), 108.7 (C-4''), 101.5 (C-5), 53.0 (CH\(_2\)NCH\(_3\)), 52.3 (CH\(_2\)NCH\(_3\)), 52.2 (NCH\(_2\)CH\(_3\)), 47.7 (CONCH\(_2\)), 42.1 (CONCH\(_2\)), 14.0 (furan CH\(_3\)), 11.8 (NCH\(_2\)CH\(_3\)). EI-HRMS m/z: calcd for C\(_{21}\)H\(_{25}\)N\(_5\)O\(_2\), 391.20083, found 391.20052; Purity (HPLC): 97%. *In no particular order.
5.1.3.13 4-(5-methylfuran-2-yl)-6-[3-(pyrrolidine-1-carbonyl)phenyl]pyrimidin-2-amine (8n)
The title compound was prepared from (2E)-1-(5-methylfuran-2-yl)-3-[3-(pyrrolidine-1-carbonyl)phenyl]prop-2-en-1-one (7n) in a yield of 27%: 212.7 – 213.4 °C (methanol), yellow crystals.

1H NMR (600 MHz, CDCl$_3$) δ 8.20 (t, $J = 1.8$ Hz, 1H, H-2'), 8.10 (dt, $J = 1.5$, 7.8 Hz, 1H, H-6'), 7.59 (dt, $J = 1.4$, 7.7 Hz, 1H, H-4'), 7.49 (t, $J = 7.7$ Hz, 1H, H-5'), 7.36 (s, 1H, H-5), 7.08 (d, $J = 3.4$ Hz, 1H, H-3''), 6.14 (dd, $J = 1.2$, 3.3 Hz, 1H, H-4''), 5.37 (s, 2H, NH$_2$), 3.66 (t, $J = 7.0$ Hz, 2H, CONCH$_2$), 3.44 (t, $J = 6.7$ Hz, 2H, CONCH$_2$), 2.41 (s, 3H, CH$_3$), 1.95 (p, $J = 7.0$ Hz, 2H, CH$_2$CH$_2$CH$_2$), 1.86 (p, $J = 6.7$ Hz, 2H, CH$_2$CH$_2$CH$_2$).13C NMR (151 MHz, CDCl$_3$) δ 169.2 (C=O), 164.8 (C-2 or C-6), 163.4 (C-2 or C-6), 157.2 (C-4), 155.2 (C-4''), 150.5 (C-1''), 137.7 (C-1' or C-3'), 137.6 (C-1' or C-3'), 128.8, 128.5, 128.3, (C-4', C-5', C-6''), 125.9 (C-2'), 113.1 (C-3''), 108.7 (C-4''), 101.5 (C-5), 49.6 (CONCH$_2$), 46.2 (CONCH$_2$), 26.3 (CH$_2$CH$_2$CH$_2$), 24.4 (CH$_2$CH$_2$CH$_2$), 14.0 (CH$_3$). EI-HRMS m/z: calcd for C$_{20}$H$_{20}$N$_4$O$_2$, 348.15863, found 348.15730; Purity (HPLC): 95%. *In no particular order.

5.2 Biological methods

5.2.1. Materials
Adenosine deaminase (type X from calf spleen), N$_6$-cyclopentyladenosine (CPA), anhydrous magnesium chloride, Trizma® Base, Trizma® Hydrochloride, silicone solution (Sigma-cote), 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), phosphate-buffered saline and isopropanol were obtained from Sigma Aldrich. Dimethyl sulfoxide (DMSO), Whatman® GF/B 25 mm diameter filters and formic acid were obtained from Merck. Filtercount scintillation fluid, radioligands, [3H]5'-N-ethylcarboxamide-adenosine ([3H]NECA, 25 Ci/mmol (250 µCi)) and 1,3-[3H]-dipropyl-8-cyclopentylxanthine ([3H]DPCPX, 120 Ci/mmol) were obtained from Separation Scientific SA. Cell culture media (Dulbecco’s Modified Eagle Medium), fungizone, trypsin/EDTA, streptomycin, fetal bovine serum and penicillin were obtained from Gibco and Merck. Well-plates (24 and 96) and culture flasks were obtained from Corning. Sterile syringe filters (0.22 µM) were obtained from Pall Corporation Life Sciences.

5.2.2 Radioligand binding studies

Tissue preparation for binding studies
Radioligand binding studies were carried out as reported in literature [51-53]. The Animal Research Ethics Committee of the North-West University (NWU-0035-10-A5) approved the collection of animal tissue required for these assays. Adult male Sprague-Dawley rats were obtained from the Vivarium of the North-West University, Potchefstroom campus. Striata (for the adenosine A$_2A$ assays) and whole brains (for the adenosine A$_1$ assay) were dissected on ice and immediately snap frozen with liquid nitrogen and then stored at -70 ºC until required. The frozen striata as well as the whole brain tissue were suspended in ice-cold 50 mM Tris buffer (pH 7.7 at 25 ºC) and homogenised using a Polytron PT-
10 homogeniser (Brinkman) to yield final suspensions of 1 g/5 ml, which were aliquoted and stored at -70 °C until required. Test compounds were dissolved (10 mM) and further diluted in DMSO, with the final concentration of DMSO in the incubations being 1%. All pipette tips as well as the 4 ml polypropylene tubes used for the incubations were coated with Sigmacote®. The incubations were prepared using 50 mM Tris buffer (pH 7.7 at 25 °C). For the adenosine A2A assay, the final volume of the incubations was 1 ml and each incubation contained test compound (0-100 µM), membrane suspension yielding ~10 mg of original tissue weight of rat striata, 10 mM MgCl₂, 0.2 units of adenosine deaminase, 50 nM CPA and 4 nM [³H]NECA. The MgCl₂ (A2A assay) and adenosine deaminase (A2A and A₁ assays) were firstly added to the membrane suspension, and this mixture was subsequently added to the incubations. The order of addition was test compound, membrane suspension, CPA and [³H]NECA. All incubations were carried out in duplicate. Non-specific binding was determined in triplicate in the presence of CPA (100 µM replacing the test compound). For the adenosine A₁ assay, the final volume of the incubations was also 1 ml and each incubation contained test compound (0-100 µM), membrane suspension yielding 5 mg of original tissue weight of rat whole brain, 0.1 units of adenosine deaminase and 0.1 nM [³H]DPCPX. The order of addition was test compound, membrane suspension and [³H]DPCPX. All incubations were carried out in duplicate. Non-specific binding was determined in triplicate in the presence of CPA (100 µM replacing the test compound). After incubation for 1 h (with vortexing after 30 minutes), the incubations were rapidly filtered through Whatman® GF/B 25 filters (25 mm diameter) fitted on a Hoffeler vacuum system. The damp filters were placed into scintillation vials and scintillation fluid (4 ml) was added. The vials were shaken thoroughly and left for 2 h. A Packard Tri-CARB 2100 TR scintillation counter was used to count the radioactivity retained on the filters. Specific binding was defined as total binding minus non-specific binding, and was expressed as counts per minute (CPM).

Data analysis
Using the one site competition model of the Prism 5 software package (GraphPad) the CPM values were plotted against the logarithm of the ligand concentration to give a sigmoidal dose response curve, from which the IC₅₀ values were determined. For adenosine A₁ binding, Kᵢ values were calculated from the IC₅₀ values by using the Cheng-Prusoff equation [58], as applicable to radioligand binding assays [51]. Kₐ, the equilibrium dissociation constant for the radioligand [³H]DPCPX, was taken as 0.36 nM [52]. Since adenosine A₂A binding was performed in the presence of CPA, an adapted version of the Cheng-Prusoff equation was used. The Kₐ of the radioligand, [³H]NECA, was taken as 15.3 nM and a Kᵢ value of 685 nM was used for CPA [51]. The binding affinities of the known adenosine A₁ agonist, CPA, and the A₂A antagonists, KW-6002 and ZM241385 were also determined as controls. The results of the radioligand binding studies are reported as the mean ± standard error of the mean (SEM) of duplicate determinations.
5.2.3 MTT cell viability assay

Cell culture
HeLa cells were maintained in 250 cm2 flasks in DMEM media (30 ml) containing 10% fetal bovine serum, 1% penicillin (10 000 units/ml)/streptomycin (10 mg/ml), and fungizone (250 μg/ml). The cells were incubated at 37 °C in an atmosphere of 10% CO$_2$. The media was replaced once a week and cells were allowed to reach confluency before use in assays.

Preparation of compounds
Stock solutions of test compounds were prepared in DMSO (10 mM) and further diluted in DMSO to concentrations of 1 μM and 10 μM. These solutions were filtered via a syringe filter before addition to the cell cultures.

MTT Assay
Once confluent, cells were detached with 3 ml trypsin/EDTA (0.25%/0.02%) and seeded in 24-well plates at 500 000 cells/ well. Plates were then incubated for 24 h and the wells subsequently rinsed with 0.5 ml DMEM free from fetal bovine serum. A volume of 0.99 ml DMEM (free from fetal bovine serum) was subsequently added to each well followed by 10 μl of the test compound. In each 24-well plate, wells were reserved as either positive control (100% cell death via lyses with 0.03% formic acid) or negative controls (100% cell viability as a result of no drug treatment). The plates were then incubated at 37 °C for a further 24 h where after media was aspirated from each well.

The wells were then washed twice with 0.5 ml/well PBS and 200 μl of 0.5% MTT (prepared in PBS) was added to each well. The well-plates were incubated at 37 °C for 2 h in the dark, where after the residual MTT was aspirated and 250 μl isopropanol was added to dissolve the formed formazan crystals. The well-plates were then incubated at room temperature for 5 min to allow dissolution of the blue formazan crystals, where after 100 μl of the isopropanol solution of each well plate was transferred to a corresponding well in a 96-well plate. The absorbance was measured spectrophotometrically at 560 nM (using a Labsystems Multiscan RC UV/V spectrophotometer), with the absorbance of the negative control signifying 100% viability and the absorbance of the positive control signifying 0% viability. The effects of the test compounds were evaluated in triplicate and the residual cell viabilities reported as the mean ± SD of the percentage viable cells compared to the negative control (100%).

5.2.4 *In vivo* assays

Animals
Sprague-Dawley rats were given free access to standard laboratory food and water until the required weight was obtained (240 g - 300 g). All efforts were made to minimise animal suffering as experiments
were carried out in accordance with the National Institute of Health's Guide for the Care and Use of Laboratory Animals. The experimental protocol was approved by the North-West University ethical committee (NWU-00035-10-A5).

Compounds
To induce catalepsy a dose of 5 mg/kg haloperidol (Serenace Injection; 5 mg/ml) was administered intraperitoneally (ip) [33]. A vehicle solution was prepared by mixing a 1:1:4 solution of DMSO, Tween 80 and saline. Compounds (8k and 8m) were dissolved in a required amount of vehicle solution to yield concentrations of 0.1, 0.4, 1 and 2 mg/ml. A suitable volume of these solutions was injected depending on the weight of the rat, resulting in final dose concentrations of 0.1, 0.4, 1 and 2 mg/kg. All injections were administered ip.

Catalepsy test
The experiments were carried out between 8:00 and 15:30 in a lit room with a controlled temperature. All the rats were drug naïve and were only used once. Haloperidol induced catalepsy was measured with the standard bar test, in a Perspex chamber (length, 23 cm; width, 10.5 cm; height, 9 cm) with a horizontal plastic bar (diameter, 1 cm; length, 10.5 cm) fixed at 9 cm above the floor, and at 7 cm from the back of the box.

Animals were divided into 5 groups, each group containing 6 rats. The 5 groups were treated with 0, 0.1, 0.4, 1 and 2 mg/kg of the test compound, respectively. All rats received ip injections of haloperidol (5.0 mg/kg) to induce catalepsy. 30 Minutes later, the rats in each group received ip injections of the compound. The vehicle solution was administered to rats in the control group. Catalepsy was measured 60 min. after the haloperidol injections by placing the rats in the Perspex box with their front paws on the horizontal bar. Catalepsy was measured as the time the animal maintained its position on the bar. Time was recorded until one or both of the rat’s front paws were removed from the bar, or up to 120 seconds.

The results of the animal experiments are reported as the mean ± standard error of the mean (SEM). Data were analysed by means of one-way analysis of variance (ANOVA) across all groups, and were subsequently subjected to Dunnett’s post-test to determine if statistical differences exist between mean values. A p value < 0.05 is judged as being statistically significant. These analyses were carried out with the Prism software package.

5.3 Molecular docking
Molecular docking studies were carried out with the Windows based Accelrys® Discovery Studio 3.1 software. The crystal structure of the adenosine A2A receptor [Protein Data Bank (PDB) code 3PWH]
co-crystalised with the known A$_{2A}$ antagonist ZM241385 was used. This receptor was prepared with the ‘Clean protein’ function to correct problems such as incomplete amino acid side chains and typed with the CHARMm forcefield. A fixed atom constraint was applied to the backbone and a minimisation was then carried out using the Generalised Born approximation with Molecular Volume (GBMV) as the solvent model to obtain a receptor at energetic minimum. A binding sphere with a radius of 5 Å was defined using the existing ligand (ZM241385) before it was removed from the receptor. Selected inhibitors were cleaned and prepared for docking with the 'Prepare ligand' protocol to correct valences and remove duplicates whereafter ligands were visually inspected and remaining errors corrected. The CDOCKER protocol was used for the docking of ligands. The orientations, CDOCKER and CDOCKER interaction energies of the ten different conformers of each ligand were considered and the best conformation for each ligand selected. An in situ ligand minimisation was then performed on the selected conformers and minimised conformers visually inspected and compared.

Acknowledgements
We gratefully acknowledge the assistance of Dr. Johan Jordaan and Mr. André Joubert of the SASOL Centre for Chemistry, North-West University for recording of NMR spectra and Prof. Jan du Preez for HPLC data. The financial assistance of the North-West University, Medical Research Council (MRC) and the National Research Foundation (UID 76308) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF.

Appendix A. Supplementary data
Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.ejmech.2015.09.035. These data include the NMR data of the intermediates (7a – 7h) and examples of sigmoidal dose response curves obtained during the radioligand binding assays.

References

Supplementary material

Synthetic procedures

General procedure for the synthesis of chalcones (7a – 7h)

Ketone (8.57 mmol, 1 equiv) and benzaldehyde (8.57 mmol, 1 equiv) were dissolved in ethanol, and stirred at room temperature. To this mixture, a solution of 40% (w/v) sodium hydroxide (0.5 equiv) was added drop wise. After the reaction mixture was stirred at room temperature for 3 hours, the residue that formed was filtered and washed with cold ethanol. The resulting solid was recrystallised from ethanol.

(2E)-3-(3-chlorophenyl)-1-phenylprop-2-en-1-one (7a)

The title compound was prepared from acetophenone and 3-chlorobenzaldehyde in a yield of 34%: mp 74.7-75.1 °C (ethanol), pale yellow crystals. 1H NMR (600 MHz, CDCl$_3$) δ 8.05 – 8.00 (m, 2H, H-2″, H-6″), 7.73 (d, J = 15.7 Hz, 1H, H-3), 7.65 – 7.57 (m, 2H, H-2′, H-4″), 7.56 – 7.47 (m, 4H, H-2, H-3″, H-5″, H-6″), 7.40 – 7.32 (m, 2H, H-4′, H-5′); 13C NMR (151 MHz, CDCl$_3$) δ 190.0 (C-1), 143.0 (C-3), 137.8 (C-1′), 136.7 (C-1″), 134.9 (C-3′), 133.0 (C-4″), 130.3, 130.2 (C-4′, C-5′), 128.7, 128.5 (C-2″, C-6″ and C-3″, C-5″), 127.9 (C-2′), 126.8 (C-6′), 123.2 (C-2). EI-HRMS m/z: calcd for C$_{15}$H$_{11}$ClO, 242.04984, found 242.04878; Purity (HPLC): 93%.

(2E)-3-(3-chlorophenyl)-1-(furan-2-yl)prop-2-en-1-one (7b)

The title compound was prepared from 2-acetylfuran and 3-chlorobenzaldehyde in a yield of 17%: mp 76.2-77.1 °C (ethanol), light yellow crystals. 1H NMR (600 MHz, CDCl$_3$) δ 7.78 (d, J = 15.8 Hz, 1H, H-3), 7.67 – 7.65 (m, 1H, H-5″), 7.62 (br t, J = 1.9 Hz, 1H, H-2′) 7.49 (br dt, J = 1.6, 7.3 Hz, 1H, H-6″), 7.43 (d, J = 15.8 Hz, 1H, H-2), 7.39 – 7.31 (m, 3H, H-4′, H-5′, H-3″), 6.60 (dd, J = 1.7, 3.6 Hz, 1H, H-4′); 13C NMR (151 MHz, CDCl$_3$) δ 177.5 (C-1), 153.5 (C-2″), 146.7 (C-5″), 142.2 (C-3), 136.5 (C-1′), 134.9 (C-3′), 130.4, 130.1 (C-4′, C-5′), 127.9 (C-2′), 126.9 (C-6′), 122.3 (C-2), 117.8 (C-3″), 112.6 (C-4″). EI-HRMS m/z: calcd for C$_{13}$H$_9$ClO, 232.02911, found 232.02796; Purity (HPLC): 92%.
(2E)-3-(3-chlorophenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (7e)

The title compound was prepared from 1-(5-methyl-2-furyl)ethanone and 3-chlorobenzaldehyde in a yield of 12%: mp 91.4-92.3 °C (ethanol), orange crystals. 1H NMR (600 MHz, CDCl$_3$) δ 7.77 (d, J = 15.7 Hz, 1H, H-3), 7.65 – 7.61 (m, 1H, H-2'), 7.52 – 7.47 (m, 1H, H-6'), 7.41 – 7.32 (m, 3H, H-4', H-5', H-2), 7.31 – 7.27 (m, 1H, H-3''), 6.24 (m, 1H, H-4''), 2.46 (s, 3H, CH$_3$). 13C NMR (151 MHz, CDCl$_3$) δ 176.7 (C-1), 158.4 (C-2'' or C-5''), 152.3 (C-2'' or C-5''), 141.4 (C-3), 136.6 (C-1'), 134.8 (C-3'), 130.2, 130.1 (C-4' and C-5'), 127.7 (C-2'), 126.8 (C-6'), 122.5 (C-2), 119.9 (C-3''), 109.4 (C-4''), 14.2 (CH$_3$). EI-HRMS m/z: calcd for C$_{14}$H$_{11}$ClO$_2$, 246.04476, found 246.04435; Purity (HPLC): 100%.

(2E)-1-(furan-2-yl)-3-(3-methoxyphenyl)prop-2-en-1-one (7d)

The title compound was prepared from 2-acetylfuran and 3-methoxybenzaldehyde in a yield of 22%: mp 65.4-66.4 °C (ethanol), amber crystals. 1H NMR (600 MHz, CDCl$_3$) δ 7.83 (d, J = 15.8 Hz, 1H, H-3), 7.65 (dd, J = 0.8, 1.7 Hz, 1H, H-5''), 7.42 (d, J = 15.8 Hz, 1H, H-2), 7.35 – 7.29 (m, 2H, H-5', H-3''), 7.25 – 7.22 (br d, 7.5 Hz, 1H, H-6''), 7.15 (br t, J = 2.0 Hz, 1H, H-2''), 6.95 (ddd, J = 0.9, 2.6, 8.2 Hz, 1H, H-4''), 6.59 (dd, J = 1.7, 3.6 Hz, 1H, H-4''), 3.84 (s, 3H, OCH$_3$). 13C NMR (151 MHz, CDCl$_3$) δ 177.9 (C-1), 159.8 (C-3'), 153.6 (C-2''), 146.5 (C-5'), 143.9 (C-3), 136.0 (C-1'), 129.9 (C-5'), 121.3 (C-6' or C-2), 121.1 (C-6' or C-2), 117.6 (C-3''), 116.3 (C-4'), 113.4 (C-2'), 112.5 (C-4''), 55.3 (OCH$_3$). EI-HRMS m/z: calcd for C$_{14}$H$_{12}$O$_3$, 228.07864, found 228.07796; Purity (HPLC): 94%.
(2E)-3-(3-methoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (7e)

The title compound was prepared from 1-(5-methyl-2-furyl)ethanone and 3-methoxybenzaldehyde in a yield of 46%: mp 96.9-97.5 °C (ethanol), yellow crystals. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.79 (d, \(J = 16.1\) Hz, 1H, H-3), 7.35 (d, \(J = 16.1\) Hz, 1H, H-2), 7.31 (t, \(J = 8.0\) Hz, 1H, H-5'), 7.24 (d, 1H, \(J = 3.5\) Hz, H-3''), 7.22 (br d, 1H, \(J = 7.7\) Hz, H-6'), 7.13 (br s, 1H, H-2'), 6.94 (dd, \(J = 2.6, 8.2\) Hz, 1H, H-4'), 6.20 (dd, \(J = 0.8, 3.4\) Hz, 1H, H-4''), 3.83 (s, 3H, OCH\(_3\)), 2.43 (s, 3H, CH\(_3\)). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 177.1 (C-1), 159.8 (C-3'), 158.2 (C-5''), 152.4 (C-2''), 143.1 (C-3), 136.1 (C-1'), 129.8 (C-5'), 121.5 (C-2), 121.0 (C-6'), 119.6 (C-3''), 116.0 (C-4'), 113.4 (C-2'), 109.3 (C-4''), 55.3 (OCH\(_3\)), 14.1 (CH\(_3\)). EI-HRMS m/z: calcd for C\(_{15}\)H\(_{14}\)O\(_3\), 242.09429, found 242.09396; Purity (HPLC): 100%.

(2E)-3-(3,4-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (7f)

The title compound was prepared from 1-(5-methyl-2-furyl)ethanone and 3,4-dimethoxybenzaldehyde in a yield of 35%: mp 116.3-117 °C (ethanol), yellow crystals. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.78 (br d, \(J = 15.7\) Hz, 1H, H-3), 7.26 – 7.16 (m, 3H, H-6', H-2, H-3''), 7.11 (br s, 1H, H-2'), 6.85 (br d, \(J = 8.4\) Hz, 1H, H-5'), 6.19 (br s, 1H, H-4''), 3.93 (s, 3H, OCH\(_3\)), 3.90 (s, 3H, OCH\(_3\)), 2.40 (s, 3H, CH\(_3\)). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 177.2 (C-1), 157.8 (C-5''), 152.5 (C-2''), 151.2 (C-3' or C-4'), 149.1 (C-3' or C-4'), 143.3 (C-3), 127.7 (C-1'), 123.0 (C-2), 119.1 (C-6' or C-3''), 119.2 (C-6' or C-3''), 111.0 (C-5'), 110.1 (C-2'), 109.2 (C-4''), 55.9 (OCH\(_3\)), 55.9 (OCH\(_3\)), 14.1 (CH\(_3\)). EI-HRMS m/z: calcd for C\(_{16}\)H\(_{16}\)O\(_4\), 272.10486, found 272.10447; Purity (HPLC): 90%.
(2E)-3-(4-chlorophenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (7g)

![Structural formula]

The title compound was prepared from 1-(5-methyl-2-furyl)ethanone and 4-chlorobenzaldehyde in a yield of 41%: mp 151.4-151.9 °C (ethanol), pale yellow solid. 1H NMR (600 MHz, CDCl$_3$) δ 7.70 (d, J = 15.7 Hz, 1H, H-3), 7.49 (m, 2H, H-2', H-6'), 7.29 – 7.24 (m, 3H, H-2, H-3', H-5'), 7.18 (d, J = 3.4 Hz, 1H, H-3''), 6.14 (dd, J = 0.9, 3.4 Hz, 1H, H-4''), 2.36 (s, 3H, CH$_3$). 13C NMR (151 MHz, CDCl$_3$) δ 176.9 (C-1), 158.3 (C-5''), 152.4 (C-2''), 141.7 (C-3), 136.2 (C-4''), 133.3 (C-1''), 129.5 (C-2', C-6' or C-3', C-5'), 129.1 (C-2', C-6' or C-3', C-5'), 121.7 (C-2), 119.7 (C-3''), 109.4 (C-4''), 14.2 (CH$_3$). EI-HRMS m/z: calcd for C$_{14}$H$_{11}$ClO$_2$, 246.04476, found 246.04409; Purity (HPLC): 96%.

(2E)-1-(4-fluorophenyl)-3-(furan-2-yl)prop-2-en-1-one (7h)

![Structural formula]

The title compound was prepared from 1-(4-fluorophenyl)ethanone and furan-2-carbaldehyde in a yield of 40%: mp 59.9-60.5 °C (ethanol), dark orange solid. 1H NMR (600 MHz, CDCl$_3$) δ 8.09 – 8.02 (m, 2H, H-2', H-6'), 7.59 (d, J = 15.3 Hz, 1H, H-3), 7.52 (d, J = 1.7 Hz, 1H, H-5''), 7.42 (d, J = 15.3 Hz, 1H, H-2), 7.19 – 7.12 (m, 2H, H-3', H-5'), 6.72 (d, J = 3.4 Hz, 1H, H-3''), 6.51 (dd, J = 1.7, 3.4 Hz, 1H, H-4''). 13C NMR (151 MHz, CDCl$_3$) δ 188.0 (C-1), 165.5 (d, $J_{C,F}$ = 253.5 Hz, C-4''), 151.5 (C-2''), 145.0 (C-5''), 134.4 (d, $J_{C,F}$ = 3.2 Hz, C-1''), 130.96 (d, $J_{C,F}$ = 9.6 Hz, C-2', C-6''), 130.8 (C-3), 118.7 (C-2), 116.4 (C-3''), 115.6 (d, $J_{C,F}$ = 21.9 Hz, C-3', C-5'), 112.7 (C-4''). EI-MS m/z: calcd for C$_{13}$H$_9$FO$_2$, 216.05866, found 216.05805; Purity (HPLC): 91%.
4-(3-chlorophenyl)-6-phenylpyrimidin-2-amine (8a)

1H-NMR

13C-NMR
4-(3-chlorophenyl)-6-(furan-2-yl)pyrimidin-2-amine (8b)

1H-NMR

13C-NMR
4-(3-chlorophenyl)-6-(5-methylfuran-2-yl)pyrimidin-2-amine (8c)

^{1}H-NMR

^{13}C-NMR
4-(furan-2-yl)-6-(3-methoxyphenyl)pyrimidin-2-amine (8d)

1H-NMR

13C-NMR

Oct21-2011-nmrsu
SJ Robinson SJ18
PROTON CDCl$_3$ /opt/topspin2.1PL6 nmrsu 7
4-(3-methoxyphenyl)-6-(5-methylfuran-2-yl)pyrimidin-2-amine (8e)

1H-NMR

13C-NMR
4-(3,4-dimethoxyphenyl)-6-(5-methylfuran-2-yl)pyrimidin-2-amine (8f)

1H-NMR

13C-NMR
4-(4-chlorophenyl)-6-(5-methylfuran-2-yl)pyrimidin-2-amine (8g)

1H-NMR

![1H-NMR Spectrum](image)

13C-NMR

![13C-NMR Spectrum](image)
4-(4-fluorophenyl)-6-(furan-2-yl)pyrimidin-2-amine (8h)

1H-NMR

13C-NMR
4-(5-methylfuran-2-yl)-6-[3-(morpholine-4-carbonyl)phenyl]pyrimidin-2-amine (8j)

1H-NMR

^{13}C-NMR
4-(5-methylfuran-2-yl)-6-[3-(4-methylpiperazine-1-carbonyl)phenyl]pyrimidin-2-amine (8k)

1H-NMR

13C-NMR
4-(5-methylfuran-2-yl)-6-[3-(4-ethylpiperazine-1-carbonyl)phenyl]pyrimidin-2-amine (8I)

^1H-NMR

![^1H-NMR spectrum]

^13C-NMR

![^13C-NMR spectrum]

[Attached images of NMR spectra]
4-(5-methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (8m)

1H-NMR

13C-NMR
4-(5-methylfuran-2-yl)-6-[3-(pyrrolidine-1-carbonyl)phenyl]pyrimidin-2-amine (8n)

1H-NMR

13C-NMR
Mass spectra

\((2E)\)-3-(3-chlorophenyl)-1-phenylprop-2-en-1-one (7a)

\((2E)\)-3-(3-chlorophenyl)-1-(furan-2-yl)prop-2-en-1-one (7b)

\((2E)\)-3-(3-chlorophenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (7c)
(2E)-1-(furan-2-yl)-3-(3-methoxyphenyl)prop-2-en-1-one (7d)

(2E)-3-(3-methoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (7e)

(2E)-3-(3,4-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (7f)
(2E)-3-(4-chlorophenyl)-1-(5-methylfuran-2-yl)prop-2-ene-1-one (7g)

(2E)-1-(4-fluorophenyl)-3-(furan-2-yl)prop-2-ene-1-one (7h)

3-[(1E)-3-(5-methylfuran-2-yl)-3-oxoprop-1-en-1-yl]benzoic acid (7i)
(2E)-1-(5-methylfuran-2-yl)-3-[3-(morpholine-4-carbonyl)phenyl]prop-2-en-1-one (7j)

(2E)-1-(5-methylfuran-2-yl)-3-[3-(4-methylpiperazine-1-carbonyl)phenyl]prop-2-en-1-one (7k)

(2E)-3-[3-(4-ethylpiperazine-1-carbonyl)phenyl]-1-(5-methylfuran-2-yl)prop-2-en-1-one (7l)
(2E)-1-(5-methylfuran-2-yl)-3-[3-(piperidine-1-carbonyl)phenyl]prop-2-en-1-one (7m)

(2E)-1-(5-methylfuran-2-yl)-3-[3-(pyrrolidine-1-carbonyl)phenyl]prop-2-en-1-one (7n)

4-(3-chlorophenyl)-6-phenylpyrimidin-2-amine (8a)
4-(3-chlorophenyl)-6-(furan-2-yl)pyrimidin-2-amine (8b)

4-(3-chlorophenyl)-6-(5-methylfuran-2-yl)pyrimidin-2-amine (8c)

4-(3-methoxyphenyl)-6-(furan-2-yl)pyrimidin-2-amine (8d)
4-(3-methoxyphenyl)-6-(5-methylfuran-2-yl)pyrimidin-2-amine (8e)

4-(3,4-dimethoxyphenyl)-6-(5-methylfuran-2-yl)pyrimidin-2-amine (8f)

4-(4-chlorophenyl)-6-(5-methylfuran-2-yl)pyrimidin-2-amine (8g)
4-(4-fluorophenyl)-6-(furan-2-yl)pyrimidin-2-amine (8h)

4-(5-methylfuran-2-yl)-6-[3-(morpholine-4-carbonyl)phenyl]pyrimidin-2-amine (8j)

4-(5-methylfuran-2-yl)-6-[3-(4-methylpiperazine-1-carbonyl)phenyl]pyrimidin-2-amine (8k)
4-(5-methylfuran-2-yl)-6-[3-(4-ethylpiperazine-1-carbonyl)phenyl]pyrimidin-2-amine (8l)

4-(5-methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (8m)

4-(5-methylfuran-2-yl)-6-[3-(pyrrolidine-1-carbonyl)phenyl]pyrimidin-2-amine (8n)
Examples of sigmoidal dose response curves

Sigmoidal dose response curve obtained during the determination of A₁ affinity of compound 8m in the radioligand binding assay.

Sigmoidal dose response curve obtained during the determination of A₂A affinity of compound 8m in the radioligand binding assay.
Amide substituted 2-amino-4,6-diphenylpyrimidines as adenosine receptor antagonists

Sarel J. Robinsona,b, Jacobus P. Petzera,b, Amanda L. Rousseauc, Gisella Terre’Blanchea,b, Anna C.U. Lourensa,b*

aPharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
bCentre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
cMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS 2050, South Africa
*Corresponding author. aPharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa. Tel: (+27 18 2992266). E-mail address: Arina.Lourens@nwu.ac.za

Abstract
Recently, dual antagonism of adenosine A\textsubscript{1} and A\textsubscript{2A} receptors has gained credibility as an alternative to dopaminergic therapies for the treatment of Parkinson’s disease. This study illustrates the synthesis of a novel series of amide substituted 2-amino-4,6-diphenylpyrimidines and their evaluation as potential dual adenosine A\textsubscript{1} and A\textsubscript{2A} antagonists. Promising dual affinities were obtained for nearly all amide derivatives with 3-(2-amino-6-phenylpyrimidin-4-yl)-N-[3-(morpholin-4-yl)propyl]benzamide (6b) identified as the most potent compound, exhibiting an A\textsubscript{1} \textit{K}_i of 7.53 nM and an A\textsubscript{2A} \textit{K}_i value of 3.37 nM. Encouraging \textit{in vivo} results obtained for compound 6b illustrated the potential of these compounds as alternative drug candidates for Parkinson’s disease.

\textit{Keywords:} 2-aminopyrimidine; amide, adenosine A\textsubscript{1} and A\textsubscript{2A} receptor; dual; antagonist.

*Corresponding author. Tel.: +27 18 2992266; fax: +27 18 2994243.
E-mail address: arina.lourens@nwu.ac.za (A.C.U. Lourens)
Introduction

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, affecting the lives of over ten million people worldwide.1 The primary motor manifestations of PD which include bradykinesia, muscle rigidity, postural instability and resting tremor, are attributable to the deterioration of dopaminergic neurons in the substantia nigra, resulting in low levels of dopamine in the striatum.2 Although these motor symptoms are predominant, patients also suffer from non-motor complications such as cognitive deficiencies and depression.3 Dopamine replacement therapy such as levodopa and dopamine agonists are currently the mainstay of PD treatment, however, after long-term use, patients present with autonomic and neuropsychological side effects as well as the development of motor complications.4 Furthermore, these dopamine replacement therapies only provide symptomatic relief and have no effect on the non-motor symptoms associated with PD.3

Non-dopaminergic targets, such as adenosine A\textsubscript{1} and A\textsubscript{2A} receptors, are increasingly being investigated as alternative therapies for PD.5 The adenosine A\textsubscript{2A} receptor is particularly interesting due to its specific localisation in the striatum and its ability to modulate dopaminergic neurotransmission.6 Antagonism of the A\textsubscript{2A} receptor in animal models extends the efficacy of levodopa and prevents the onset of motor complications such as dyskinesia.7 Furthermore, it has been suggested that adenosine A\textsubscript{2A} antagonism may be neuroprotective, which suggests that the rate of progression of PD may be reduced.8,9 Recently the antidepressant properties of the known A\textsubscript{2A} antagonist KW6002 have been reported and since depression is one of the co-morbidities associated with PD, adenosine A\textsubscript{2A} antagonism may provide an additional benefit.10

Antagonism of the adenosine A\textsubscript{1} receptor, which is widely expressed in the brain, may also be advantageous in the treatment of PD.11 A\textsubscript{1} antagonism improves cognition, which is relevant as most PD patients suffer from cognitive deficits, especially in the later stages of the disease.12-15 Since A\textsubscript{1} antagonism also activates motor function in animals, adenosine A\textsubscript{1} receptor antagonists can in addition interact synergistically with adenosine A\textsubscript{2A} receptor antagonists to improve motor symptoms of PD.16,17 The synergistic benefits that dual antagonists of the adenosine A\textsubscript{1} and A\textsubscript{2A} receptors offer, are indicative of the potential of these agents as alternative PD therapies.

Only a handful of adenosine antagonists have reached clinical trials, and most of these are selective towards the adenosine A\textsubscript{2A} receptor.18-20 Our research group is interested in the design, synthesis and evaluation of heterocyclic adenosine antagonists, and in particular the activity of 2-aminopyrimidines. Recently, we have identified a potent dual affinity 2-aminopyrimidine derivative (1).21
In order to further investigate the ability of the adenosine receptor binding site to accommodate these types of compounds, a series of 2-aminopyrimidines with extended amide side chains were synthesised. It was decided to replace the methyl furan substituent at the 4-position of the pyrimidine ring with a phenyl ring, which simplified the synthesis. An initial study suggested that this modification does not alter the affinities for adenosine receptors to a large degree.

Experimental

Synthesis

Scheme 1. Synthesis. Reagents and conditions: (i) NaOH, 1 M (2 eq.), MeOH, rt, overnight (67%); (ii) CDI (1.2 eq.), CH$_2$Cl$_2$, rt, 4 h; iii) NH$_2$R (1.2 eq.), CH$_2$Cl$_2$, rt, overnight (60-80%); iv) Guanidine hydrochloride (1.5 eq.), NaH (1.5 eq.), DMF, 110 °C, overnight (15-30%).

Ten amide substituted 2-amino-4,6-diphenylpyrimidines were successfully synthesised as follows: a Claisen-Schmidt condensation of 3-formylbenzoic acid (2) and acetophenone (3) yielded chalcone 4, which was coupled to different amines using CDI to obtain the desired amides (5). The final
aminopyrimidines (6) were obtained by cyclization of the amides (5) with guanidine hydrochloride in the presence of sodium hydride in DMF (Scheme 1). The structures of the synthesised compounds (Table 1) were confirmed by nuclear magnetic resonance spectroscopy and mass spectrometry.

Table 1: Adenosine A₁ and A₂A receptor affinities of the synthesised 2-aminopyrimidines

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>A₁<sup>a</sup> <i>Kᵢ</i> (nM)</th>
<th>A₂A<sup>a</sup> <i>Kᵢ</i> (nM)</th>
<th>SI<sup>b</sup> (A₂A/A₁)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6a</td>
<td></td>
<td>25.2 ± 1.58</td>
<td>15.0 ± 7.37</td>
<td>0.60</td>
</tr>
<tr>
<td>6b</td>
<td></td>
<td>7.53 ± 2.11</td>
<td>3.37 ± 1.63</td>
<td>0.45</td>
</tr>
<tr>
<td>6c</td>
<td></td>
<td>6.00 ± 1.11</td>
<td>45.5 ± 3.64</td>
<td>7.6</td>
</tr>
<tr>
<td>6d</td>
<td></td>
<td>6.93 ± 0.85</td>
<td>25.2 ± 1.30</td>
<td>3.6</td>
</tr>
<tr>
<td>6e</td>
<td></td>
<td>14.5 ± 2.02</td>
<td>21.0 ± 4.37</td>
<td>1.5</td>
</tr>
<tr>
<td>6f</td>
<td></td>
<td>11.5 ± 1.00</td>
<td>7.54 ± 2.83</td>
<td>0.66</td>
</tr>
<tr>
<td>6g</td>
<td></td>
<td>5.42 ± 0.60</td>
<td>9.09 ± 0.84</td>
<td>1.7</td>
</tr>
<tr>
<td>6h</td>
<td></td>
<td>18.5 ± 1.15</td>
<td>26.2 ± 3.27</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Radioligand binding assays were performed with the selective A1 radioligand 1,3-[3H]-dipropyl-8-cyclopentylxanthine ([3H]DPCPX) for binding to adenosine A1 receptors and the non-selective radioligand [3H]S'-N-ethylcarboxamide-adenosine ([3H]NECA) for binding to adenosine A2A receptors. Striata from male Sprague-Dawley rats were used as receptor source for A2A receptor binding, while whole brains were utilised in A1 receptor binding assays (Ethics number: NWU-0035-10-A5). IC50 values were calculated from sigmoidal dose response curves using the Prism 5 software package (GraphPad) and the Cheng-Prusoff equation was used to calculate Ki values. The results are given in Table 1.

From these results it is clear that most of these compounds exhibit potent dual affinity with adenosine A1 affinities ranging from 5.42 nM (6j) to 25.2 nM (6a) and adenosine A2A affinities ranging from 1.67 nM (6i) to 107 nM (6j). Compounds 6b (A1Ki = 7.53 nM, A2AKi = 3.37 nM), 6f (A1Ki = 11.5 nM, A2AKi = 7.54 nM) and 6g (A1Ki = 5.42 nM, A2AKi = 9.09 nM) are the most promising candidates for dual antagonistic activity with Ki values very similar to those of the reference compounds, CPA (A1Ki = 8.48 nM) and ZM241385 (A2AKi = 1.20 nM). No clear structure-activity relationships emerged for this study. However, when the A1 affinities of the 2-carbon chain derivatives e.g. 6a, 6c, 6d, 6e, 6h and 6j are compared, it seems that piperidine (6c, Ki = 6.00 nM) or pyrrolidine (6d, Ki = 6.93 nM) substitution is most favourable and substitution with either morpholine (6a, Ki = 25.2 nM), m-chlorophenyl (6e, Ki = 14.5 nM), 2-pyridine (6h, Ki = 18.5 nM) or the N,N-dimethyl (6j, Ki = 13.5 nM) group results in lower affinity. Interestingly, when the affinities of the two morpholine derivatives (6a and 6b) are compared, it appears that extension of the carbon chain by one carbon (6b, Ki = 7.53 nM) improves affinity to a value similar to that observed for both the 2-carbon piperidine (6c, Ki = 6.00 nM) and pyrrolidine (6d,
When comparing the affinity of compound 6g, which has the most potent A₁ affinity (\(K_i = 5.42\) nM), to that of compound 6f (\(K_i = 11.5\) nM) it also appears that para substitution of the phenyl ring (6g) is preferred over meta substitution (6f).

The range of observed A₁ receptor affinities for these compounds (6a – 6j) is however, reasonably small, [ranging from 5.42 nM (6g) to 25.2 nM (6a)] and it would thus appear that the adenosine A₁ receptor is capable of accommodating a variety of substituents equally well in this position. On the other hand, larger substituents are preferable for good A_{2A} affinity. For example, compounds 6i (\(K_i = 1.67\) nM) and 6b (\(K_i = 3.37\) nM) with the longest chains, exhibited the most potent adenosine A_{2A} affinities of the series, while compound 6j (A_{2A}\(K_i = 107\) nM) with the “smallest” substituent exhibited the weakest adenosine A_{2A} affinity. These results suggest that the binding site of the adenosine A_{2A} receptor is more sensitive to changes in the nature of the amide substituent than the binding site of the adenosine A₁ receptor.

Molecular docking studies were performed to rationalise the results obtained from the radioligand binding assays. The structure of the human adenosine A_{2A} receptor crystallised with the known A_{2A} antagonist ZM241385 was used (PDB code: 3EML) for these studies. The C-DOCKER function of Discovery Studio 3.1 (Accelrys) was employed to dock all compounds into the binding site in order to investigate the receptor-ligand interactions of the synthesised compounds. The following interactions were observed for all compounds: i) intermolecular hydrogen bonding between the exocyclic amino group of the pyrimidine ring and Glu169, ii) \(\pi-\pi\) interactions between the three-membered ring system and Phe168, and iii) hydrogen bonding interactions between one of the pyrimidine ring nitrogens and Asn253 (Figure 1A). These interactions were also observed with known adenosine A_{2A} antagonists and are believed to be responsible for anchoring the aminopyrimidine moiety in the binding site.\(^{29}\) Hydrogen bonding was also observed between the amide carbonyl and Tyr271 (Figure 1A) and in most cases, where this carbonyl interaction was absent, an alternative hydrogen bonding interaction occurred between the amide nitrogen and Tyr271, as illustrated for compound 6f (Figure 1B).
Figure 1: **A.** Compound 6a docked in the binding site of the human A2A receptor. **B.** Compound 6f docked in the binding site illustrating the alternative interaction between the amide nitrogen and Tyr271. Orange lines illustrate hydrophobic interactions. Green lines illustrate intermolecular hydrogen bonding.

None of the interactions observed explain the differences in observed affinities, however, it does illustrate the ability of these compounds to bind in the binding site and therefore confirms the good affinities obtained with the radioligand binding assays.

Compound 6b was subsequently selected to be evaluated in vivo since it was identified as the most promising dual affinity candidate in vitro. Reversal of haloperidol induced catalepsy was determined with the standard bar test (results shown in Figure 2) to evaluate the potential of compound 6b to act as an antagonist of the A2A receptor. Three groups (n = 10) of drug-naïve Sprague-Dawley rats each received a 5.0 mg/kg intraperitoneal injection of haloperidol to induce catalepsy. Thirty minutes later the animals from two groups received 0.4 and 2 mg/kg test compound intraperitoneally, respectively, and one group (control group) received the vehicle, DMSO (0.3 ml), also intraperitoneally. Catalepsy for each rat was determined 60 minutes after the first injection.¹⁶
Figure 2: Graph illustrating a significant reduction of catalepsy with both concentrations of compound 6b. (** indicates significant differences compared to the control group as determined by one-way ANOVA [F (2,27) = 9.634] followed by Dunnet’s post-test with p = 0.001 and 0.002 for the two dosages respectively).

Compared to the control group, a significant reduction in catalepsy can be observed for both concentrations of compound 6b administered intraperitoneally. The results provide evidence of bioavailability and indicate that compound 6b is an antagonist of A\textsubscript{2A} receptors.

Conclusion
Ten amide substituted 2-amino-4,6-diphenylpyrimidines were successfully synthesised and evaluated as potential dual adenosine A\textsubscript{1} and A\textsubscript{2A} antagonists. The potent dual affinity previously reported for a related series were improved in \textit{in vitro} assays, again illustrating the potential of the 2-aminopyrimidine scaffold as a source for new antiparkinsonian drugs. Subsequent data from an \textit{in vivo} assay provided evidence that these compounds have the potential to be bioavailable and that these compounds are antagonists of adenosine A\textsubscript{2A} receptors. Molecular docking results indicate that these compounds bind to the adenosine A\textsubscript{2A} binding site in a similar fashion as reported for other adenosine A\textsubscript{2A} antagonists and correlated with the good affinities obtained in \textit{in vitro} assays.

Acknowledgements
We gratefully acknowledge the assistance of Dr. Johan Jordaan and Mr. André Joubert of the SASOL Centre for Chemistry, North-West University for recording of NMR and mass spectra. We are also thankful to Ms Madelein Geldenhuys for her assistance with the radioligand binding studies. The financial assistance of the North-West University, Medical Research Council (MRC) and the National Research Foundation (UID 76308) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF.
Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version, at...... These data include the NMR spectroscopic data of the intermediates and examples of sigmoidal dose response curves obtained during the radioligand binding assays.

References

Supplementary material

1. Materials and instrumentation
2. Synthesis
3. Physical data
4. Radioligand binding assays
5. Molecular docking
6. Haloperidol induced catalepsy assay
7. NMR spectra

1. Materials and instrumentation

All chemicals were purchased from Sigma-Aldrich and used without any further purification. Solvents for synthesis and chromatography were obtained from Associated Chemical Enterprises while deuterated solvents for nuclear magnetic resonance (NMR) spectroscopy were purchased from Merck.

Thin layer chromatography (TLC):
Precoated Kieselgel 60 F254 plates (Merck) were used to monitor reactions. Detection was done by UV light at a wavelength of 254 nm.

Melting points:
The melting points of all compounds were determined using a Buchi B-545 apparatus, and are uncorrected.

Mass spectrometry (MS):
The mass spectra for all compounds were obtained with a Bruker microTOF-QII mass spectrometer in atmospheric-pressure chemical ionisation (APCI) mode.

Nuclear magnetic resonance (NMR) spectroscopy:
A Bruker Avance III 600 spectrometer was used to record proton (1H) and carbon (13C) NMR spectra at frequencies of 600 MHz and 151 MHz, respectively. Samples were dissolved in either deuterated dimethylsulfoxide (DMSO-d6) or deuterated chloroform (CDCl3). Reported 1H NMR spectroscopic data indicate the chemical shift (δ) in ppm, the integration (e.g. 1H), the multiplicity and the coupling constant (J) in Hz. The following abbreviations are used: s (singlet), br s (broad singlet), d (doublet), br d (broad doublet), dd (doublet of doublets), ddd (doublet of doublet of doublets), t (triplet), br t (broad triplet), q (quartet), p (pentet/quintet) or m (multiplet). Chemical shifts are referenced to the residual solvent signal (DMSO-d6: 2.5 and 39.5 ppm for 1H and 13C respectively; CDCl3 7.26 and 77.0 ppm for 1H and 13C respectively). An interesting coupling was observed between the amide proton and the
adjacent CH₂ carbons of the side chains, resulting in the observed quartet signals for some compounds at approximately 3-4 Hz.

High performance liquid chromatography (HPLC):
The purity of most of the synthesised aminopyrimidines was assessed by HPLC analysis with an Agilent 1100 HPLC system equipped with a quaternary pump and an Agilent 1100 series diode array detector. HPLC grade acetonitrile (Merck) and Milli-Q water (Millipore) was used for the chromatography. A Venusil XBP C18 column (4.60 × 150 mm, 5 µm) was used with an initial mobile phase of 30% acetonitrile and 70% MilliQ water at a flow rate of 1 ml/min. At the start of each HPLC run, a solvent gradient program was initiated. The concentration of acetonitrile in the mobile phase was linearly increased up to 85% over a period of 5 min. Each HPLC run lasted 15 min and a time period of 5 min was allowed for equilibration between runs. The test compound was injected (20 µl, 1 mM) into the HPLC system and the eluent was monitored at wavelengths of 210, 254 and 300 nm.

2. **Synthesis**

General procedure for the synthesis of 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid (4)

![Chemical structure of 4](image)

A solution of 4% (w/v) sodium hydroxide (33.4 mmol, 2 equiv) was added to a suspension of 3-formylbenzoic acid (4) (16.7 mmol 1 equiv) and acetophenone (5) (24.5 mmol, 1.5 equiv) in methanol (100 ml). The mixture was stirred at room temperature overnight and then acidified by the dropwise addition of concentrated hydrochloric acid to a pH of 1-2. The resulting precipitate was filtered, rinsed with water and recrystallised from methanol.
General procedure for the synthesis of chalcones (5a-j)

![5a-j](image)

A mixture of dichloromethane (70 ml), acid (4) (5.83 mmol, 1 equiv) and carbonyldiimidazole (7.00 mmol, 1.2 equiv) was stirred at room temperature for 2 hours. The required amine (7.00 mmol, 1.2 equiv) was subsequently added and the reaction mixture was stirred for a further 3 hours. The reaction was quenched by the addition of water and the aqueous phase was extracted with dichloromethane (20 ml x 3). The organic fractions were combined, washed twice with brine and concentrated on a rotary evaporator. The resulting solid was purified by column chromatography (dichloromethane: methanol, 98:2) and recrystallised from methanol.

General procedure for the synthesis of aminopyrimidines (6a-j)

![6a-j](image)

The chalcone (5) (3.07 mmol, 1 equiv) and sodium hydride (4.61 mmol, 1.5 equiv) were added to a suspension of guanidine hydrochloride (4.61 mmol, 1.5 equiv) in DMF (20 ml). The reaction mixture was stirred under nitrogen for 24 hours at 110 °C. Afterwards the reaction was left to cool down, diluted with water and extracted with ethyl acetate (20 ml x 3). The organic layers were combined and all traces of DMF were washed out with water and brine. The organic layer was concentrated in vacuo and the crude product was purified by column chromatography (dichloromethane: methanol, 98:2) and recrystallised from ethanol.
3. Physical data

Chalcones:

3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid (4)

The title compound was prepared from 3-formylbenzoic acid and 1-phenylethan-1-one in a yield of 71%: mp 200.6 – 201.4 °C (ethanol), light yellow crystals. 1H NMR (600 MHz, DMSO-d_6) δ 13.16 (br s, 1H), 8.38 (s, 1H), 8.20 – 8.11 (m, 3H), 8.03 – 7.96 (m, 2H), 7.79 (d, $J = 15.6$ Hz, 1H), 7.70 – 7.62 (m, 1H), 7.62 – 7.53 (m, 3H). 13C NMR (151 MHz, DMSO-d_6) δ 189.2, 167.0, 143.0, 137.4, 135.1, 133.3, 132.9, 131.7, 131.1, 129.6, 129.3, 128.8 (2C), 128.7 (2C), 123.2. APCI-HRMS m/z: calcd for C$_{16}$H$_{13}$O$_3$ (M + H)$^+$, 253.0859, found 253.0838.

N-[2-(morpholin-4-yl)ethyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5a)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid and 2-(morpholin-4-yl)ethan-1-amine in a yield of 36%: mp 117.9 – 119.8 °C (ethanol), light yellow solid. 1H NMR (600 MHz, CDCl$_3$) δ 8.09 (s, 1H), 8.03 – 7.98 (m, 2H), 7.82 – 7.69 (m, 3H), 7.62 – 7.55 (m, 2H), 7.52 – 7.44 (m, 3H), 6.96 (t, $J = 5.0$ Hz, 1H), 3.71 (t, $J = 4.6$ Hz, 4H), 3.59 – 3.53 (m, 2H), 2.60 (t, $J = 6.1$ Hz, 2H), 2.52 – 2.47 (m, 4H). 13C NMR (151 MHz, CDCl$_3$) δ 190.1, 166.7, 143.5, 137.8, 135.1, 133.0, 131.2, 129.1, 128.6 (2C), 128.4 (2C), 128.3, 126.8, 122.9, 66.9 (2C), 56.8, 53.3 (2C), 36.1. APCI-HRMS m/z: calcd for C$_{22}$H$_{25}$N$_2$O$_3$ (M + H)$^+$, 365.1860, found 365.1830.
N-[3-(morpholin-4-yl)propyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5b)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid and 3-(morpholin-4-yl)propan-1-amine in a yield of 24%: mp 110.0 – 111.5 °C (ethanol), light yellow solid. 1H NMR (600 MHz, CDCl$_3$) δ 8.15 – 8.08 (m, 2H), 8.02 – 7.97 (m, 2H), 7.81 – 7.74 (m, 2H), 7.71 (br d, J = 7.8 Hz, 1H), 7.61 – 7.54 (m, 2H), 7.51 – 7.42 (m, 3H), 3.65 (t, J = 4.7 Hz, 4H), 3.60 – 3.53 (q, J = 6.0 Hz, 2H), 2.66 – 2.26 (m, 6H), 1.79 (p, J = 6.1 Hz, 2H). 13C NMR (151 MHz, CDCl$_3$) δ 190.1, 166.7, 143.5, 137.8, 135.6, 135.3, 132.9, 131.2, 128, 128.6 (2C), 128.5 (2C), 128.2, 126.9, 123.0, 66.9 (2C), 58.4, 53.7 (2C), 40.5, 24.2. APCI-HRMS m/z: calcd for C$_{23}$H$_{27}$N$_2$O$_3$ (M + H)$^+$, 379.2016, found 379.1998.

3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-[2-(piperidin-1-yl)ethyl]benzamide (5c)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid and 2-(piperidin-1-yl)ethan-1-amine in a yield of 42%: mp 85.2 – 86.9 °C (ethanol), yellow solid. 1H NMR (600 MHz, DMSO-$_d$6) δ 8.54 (t, J = 5.7 Hz, 1H), 8.31 (s, 1H), 8.17 (d, J = 6.9 Hz, 2H), 8.06 – 7.96 (m, 2H), 7.90 (br d, J = 7.8 Hz, 1H), 7.79 (d, J = 15.6 Hz, 1H), 7.72 – 7.65 (m, 1H), 7.62 – 7.53 (m, 3H), 3.48 – 3.39 (m, 2H), 2.50 – 2.46 (m, 2H), 2.42 (s, 4H), 1.53 – 1.45 (m, 4H), 1.43 – 1.31 (m, 2H). 13C NMR (151 MHz, DMSO-$_d$6) δ 189.2, 165.6, 143.4, 137.4, 135.2, 134.7, 133.2, 131.4, 129.3, 129.0, 128.8 (2C), 128.6 (2C), 127.1, 122.9, 57.6, 54.0 (2C), 36.9, 25.4 (2C), 23.9. APCI-HRMS m/z: calcd for C$_{23}$H$_{27}$N$_2$O$_2$ (M + H)$^+$, 363.2067, found 363.2085.
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-[2-(pyrrolidin-1-yl)ethyl]benzamide (5d)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid and 2-(pyrrolidin-1-yl)ethan-1-amine in a yield of 55%: orange gum. 1H NMR (600 MHz, DMSO-d_6) δ 8.62 (t, $J = 5.7$ Hz, 1H), 8.32 (br s, 1H), 8.18 – 8.11 (m, 2H), 8.06 – 7.95 (m, 2H), 7.90 (dt, $J = 7.8$, 1.4 Hz, 1H), 7.77 (d, $J = 15.6$ Hz, 1H), 7.71 – 7.62 (m, 1H), 7.62 – 7.48 (m, 3H), 7.01 (br s, 1H), 3.47 – 3.39 (m, 1H), 2.66 (t, $J = 6.9$ Hz, 2H), 2.56 (d, $J = 6.1$ Hz, 4H), 1.69 (p, $J = 3.0$ Hz, 4H). 13C NMR (151 MHz, DMSO-d_6) δ 189.2, 165.7, 143.4, 137.5, 135.2, 134.7, 133.3, 131.5, 129.4, 129.0, 128.9 (2C), 128.6 (2C), 127.2, 123.0, 54.8, 53.7 (2C), 38.4, 23.1 (2C). APCI-HRMS m/z: calcld for C$_{22}$H$_{25}$N$_2$O$_2$ (M + H)$^+$, 349.1785, found 349.1880.

N-[2-(3-chlorophenyl)ethyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5e)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid and 2-(3-chlorophenyl)ethan-1-amine in a yield of 34%: mp 117.8 – 118.8 °C (ethanol), light yellow crystals. 1H NMR (600 MHz, CDCl$_3$) δ 8.02 (t, $J = 1.8$ Hz, 1H), 7.99 – 7.94 (m, 2H), 7.74 – 7.68 (m, 2H), 7.65 (d, $J = 7.8$ Hz, 1H), 7.60 – 7.53 (m, 1H), 7.52 (d, $J = 15.7$ Hz, 1H), 7.50 – 7.44 (m, 2H), 7.40 (t, $J = 7.7$ Hz, 1H), 7.24 – 7.15 (m, 3H), 7.08 (dt, $J = 7.1$, 1.6 Hz, 1H), 6.81 (t, $J = 5.8$ Hz, 1H), 3.68 (q, $J = 7.0$ Hz, 2H), 2.90 (t, $J = 7.1$ Hz, 2H). 13C NMR (151 MHz, CDCl$_3$) δ 190.3, 166.9, 143.5, 140.8, 137.7, 135.2, 135.1, 134.3, 133.0, 131.5, 129.8, 129.1, 128.8, 128.6 (2C), 128.5, 128.4 (2C), 126.9, 126.7, 126.5, 122.9, 41.0, 35.2. APCI-HRMS m/z: calcld for C$_{24}$H$_{21}$ClNO$_2$ (M + H)$^+$, 390.1255, found 390.1224.
N-[(3-chlorophenyl)methyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5f)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid and (3-chlorophenyl)methanamine in a yield of 55%: mp 126.4 – 127.8 °C (ethanol), yellow solid. 1H NMR (600 MHz, CDCl$_3$) δ 8.13 (br s, 1H), 7.96 – 7.91 (m, 2H), 7.82 (br d, $J = 7.8$ Hz, 1H), 7.74 – 7.63 (m, 2H), 7.59 – 7.50 (m, 2H), 7.48 – 7.36 (m, 4H), 7.27 (br s, 1H), 7.24 – 7.13 (m, 3H), 4.56 (d, $J = 5.9$ Hz, 2H). 13C NMR (151 MHz, CDCl$_3$) δ 190.3, 166.9, 143.5, 140.2, 137.7, 135.2, 134.8, 134.4, 133.0, 131.6, 129.9, 129.2, 128.8, 128.6 (2C), 128.4 (2C), 127.7, 127.6, 126.7, 125.8, 122.9, 43.4. APCI-HRMS m/z: calcd for C$_{23}$H$_{19}$ClNO$_2$ (M + H)$^+$, 376.1099, found 376.1091.

N-[(4-chlorophenyl)methyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5g)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid and (4-chlorophenyl)methanamine in a yield of 53%: mp 191.0 – 192.9 °C (ethanol), light yellow crystals. 1H NMR (600 MHz, DMSO-d_6) δ 9.16 (t, $J = 6.0$ Hz, 1H), 8.35 (br s, 1H), 8.17 – 8.12 (m, 2H), 8.05 (br d, $J = 7.8$ Hz, 1H), 7.98 (d, $J = 15.7$ Hz, 1H), 7.94 (dt, $J = 7.8$, 1.2 Hz, 1H), 7.78 (d, $J = 15.7$ Hz, 1H), 7.71 – 7.65 (m, 1H), 7.63 – 7.53 (m, 3H), 7.42 – 7.33 (m, 4H), 4.50 (d, $J = 5.9$ Hz, 2H). 13C NMR (151 MHz, DMSO-d_6) δ 189.3, 165.8, 143.3, 138.6, 137.4, 134.9, 134.8, 133.3, 131.7, 131.4, 129.4, 129.2 (2C), 129.1, 128.9 (2C), 128.6 (2C), 128.3 (2C), 127.2, 123.0, 42.1. APCI-HRMS m/z: calcd for C$_{23}$H$_{19}$ClNO$_2$ (M + H)$^+$, 376.1099, found 376.1068.
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-(2-(pyridin-2-yl)ethyl)benzamide (5h)

![Chemical Structure](image)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid and 2-(pyridin-2-yl)ethan-1-amine in a yield of 44%: mp 78.4 – 79.2 °C (ethanol), yellow solid. 1H NMR (600 MHz, DMSO-d_6) δ 8.69 (t, $J = 5.6$ Hz, 1H), 8.52 – 8.48 (m, 1H), 8.27 (br s, 1H), 8.16 – 8.11 (m, 2H), 8.05 – 7.91 (m, 2H), 7.88 (dt, $J = 7.7$, 1.4 Hz, 1H), 7.77 (d, $J = 15.7$ Hz, 1H), 7.73 – 7.62 (m, 2H), 7.63 – 7.49 (m, 3H), 7.28 (br d, $J = 7.8$ Hz, 1H), 7.21 (ddd, $J = 7.6$, 4.8, 1.2 Hz, 1H), 3.70 – 3.62 (q, $J = 7.2$ Hz, 2H), 3.03 (t, $J = 7.4$ Hz, 2H). 13C NMR (151 MHz, DMSO-d_6) δ 189.3, 165.8, 159.1, 149.1, 143.4, 137.5, 136.5, 135.3, 134.7, 133.3, 131.5, 129.3, 129.1, 128.9 (2C), 128.6 (2C), 127.1, 123.2, 122.9, 121.6, 39.4, 37.4. HRMS m/z: calcd for C$_{23}$H$_{21}$N$_2$O$_2$ (M + H)$^+$, 357.1598, found 357.1617.

3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-(4-phenylbutyl)benzamide (5i)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid and 4-phenylbutan-1-amine in a yield of 24%: mp 106.5 – 106.7 °C (ethanol), yellow solid. 1H NMR (600 MHz, DMSO-d_6) δ 8.57 (t, $J = 5.7$ Hz, 1H), 8.30 (br s, 1H), 8.16 (br d, $J = 7.1$ Hz, 2H), 8.06 – 7.96 (m, 2H), 7.91 (br d, $J = 7.8$ Hz, 1H), 7.79 (d, $J = 15.6$ Hz, 1H), 7.73 – 7.65 (m, 1H), 7.62 – 7.52 (m, 3H), 7.26 (t, $J = 7.5$ Hz, 2H), 7.22 – 7.12 (m, 3H), 3.33 (q, $J = 6.6$ Hz, 2H), 2.61 (t, $J = 7.5$ Hz, 2H), 1.67 – 1.51 (m, 4H). 13C NMR (151 MHz, DMSO-d_6) δ 189.2, 165.6, 143.4, 142.1, 137.5, 135.4, 134.7, 133.2, 131.3, 129.3, 128.8 (2C), 128.5 (2C), 128.3(2C), 128.2 (2C), 127.2, 125.6, 122.9, 39.1, 34.8, 28.8, 28.5. APCI-HRMS m/z: calcd for C$_{26}$H$_{26}$NO$_2$ (M + H)$^+$, 384.1945, found 384.1973.
N-[2-(dimethylamino)ethyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5j)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid and (2-aminoethyl)dimethylamine hydrochloride in a yield of 66%: pale yellow gum. 1H NMR (600 MHz, CDCl$_3$) δ 8.12 (s, 1H), 8.02 – 7.97 (m, 2H), 7.92 – 7.88 (m, 1H), 7.77 (d, J = 15.8 Hz, 1H), 7.72 – 7.67 (m, 1H), 7.62 – 7.52 (m, 2H), 7.50 – 7.40 (m, 3H), 7.19 (s, 1H), 3.52 (q, J = 5.5 Hz, 2H), 2.53 (t, J = 6.0 Hz, 2H), 2.26 (s, 6H). 13C NMR (151 MHz, CDCl$_3$) δ 190.2, 167.0, 143.6, 137.8, 135.2, 135.1, 132.9, 131.2, 128.7, 128.6 (2C), 128.4 (2C), 127.8, 126.9, 122.9, 57.6, 45.0, 37.2. APCI-HRMS m/z: calcd for C$_{20}$H$_{23}$N$_2$O$_2$ (M + H)$^+$, 323.1754, found 323.1757.

Aminopyrimidines:

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(morpholin-4-yl)ethyl]benzamide (6a)

The title compound was prepared from N-[2-(morpholin-4-yl)ethyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide in a yield of 14%: mp 192.5 – 193.6 °C (ethanol), white crystals. 1H NMR (600 MHz, DMSO-d_6) δ 8.70 (s, 1H), 8.66 (t, J = 5.7 Hz, 1H), 8.43 (br d, J = 8.0 Hz, 1H), 8.32 – 8.26 (m, 2H), 8.04 (br d, J = 7.8 Hz, 1H), 7.83 (s, 1H), 7.69 (t, J = 7.7 Hz, 1H), 7.64 – 7.57 (m, 3H), 6.92 (s, 2H), 3.65 (t, J = 4.6 Hz, 4H), 3.52 (q, J = 6.6 Hz, 2H), 2.62 – 2.42 (m, 6H). 13C NMR (151 MHz, DMSO-d_6) δ 166.1, 165.1, 164.4, 164.1, 137.5, 137.3, 135.1, 130.5, 129.6, 129.1, 128.7, 128.6 (2C), 127.0 (2C), 125.8, 102.0, 66.2 (2C), 57.4, 53.3 (2C), 36.7. APCI-HRMS m/z: calcd for C$_{23}$H$_{26}$N$_5$O$_2$ (M + H)$^+$, 404.2081, found 404.2068; Purity (HPLC): 98%.
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[3-(morpholin-4-yl)propyl]benzamide (6b)

The title compound was prepared from N-[3-(morpholin-4-yl)propyl]-3-[(1\(E\))-3-oxo-3-phenylprop-1-en-1-yl]benzamide in a yield of 17\%: mp 144.7 – 146.9 °C (ethanol), light yellow solid. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 8.58 (t, \(J = 4.6\) Hz, 1H), 8.48 (br s, 1H), 8.11 (br d, \(J = 7.7\) Hz, 1H), 8.08 (br d, \(J = 7.8\) Hz, 1H), 8.06 – 8.02 (m, 2H), 7.55 (t, \(J = 7.7\) Hz, 1H), 7.50 – 7.43 (m, 4H), 5.68 (s, 2H), 3.90 (t, \(J = 4.7\) Hz, 4H), 3.62 (q, \(J = 5.4\) Hz, 2H), 2.74 – 2.30 (m, 6H), 1.79 (p, \(J = 5.9\) Hz, 2H). \(^1\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 166.4, 166.2, 165.3, 163.9, 138.0, 137.5, 134.9, 130.4, 129.9, 128.9, 128.7 (2C), 127.0 (2C), 124.4, 104.0, 66.4 (2C), 59.2, 53.8 (2C), 41.4, 23.6. APCI-HRMS m/z: calcd for C\(_{24}\)H\(_{28}\)N\(_5\)O\(_2\) (M + H\(^+\)), 418.2238, found 418.2229; Purity (HPLC): 99\%.

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(piperidin-1-yl)ethyl]benzamide (6c)

The title compound was prepared from 3-[(1\(E\))-3-oxo-3-phenylprop-1-en-1-yl]-N-[2-(piperidin-1-yl)ethyl]benzamide in a yield of 12\%: mp 109.5 – 110.6 °C (ethanol), orange solid. \(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 8.65 – 8.59 (m, 2H), 8.33 (dt, \(J = 7.8, 1.5\) Hz, 1H), 8.23 – 8.18 (m, 2H), 7.95 (dt, \(J = 7.7, 1.5\) Hz, 1H), 7.75 (s, 1H), 7.61 (t, \(J = 7.7\) Hz, 1H), 7.55 – 7.49 (m, 3H), 6.81 (s, 2H), 2.63 – 2.38 (m, 8H), 1.51 (p, \(J = 5.6\) Hz, 4H), 1.38 (q, \(J = 6.0\) Hz, 2H). \(^1\)C NMR (151 MHz, DMSO-\(d_6\)) \(\delta\) 166.1, 165.1, 164.4, 164.1, 137.6, 137.3, 135.1, 130.6, 129.6, 129.1, 128.8, 128.7 (2C), 127.0 (2C), 125.8, 102.1,
57.5, 53.9 (2C), 36.7, 25.2 (2C), 23.7. APCI-HRMS m/z: calcd for C_{24}H_{28}N_{5}O (M + H)^{+}, 402.2302, found 402.2302.

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(pyrrolidin-1-yl)ethyl]benzamide (6d)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-[2-(pyrrolidin-1-yl)ethyl]benzamide in a yield of 11%: mp 140.6 – 141.7 °C (ethanol), white solid. \(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 8.64 – 8.58 (m, 2H), 8.33 (dt, \(J = 7.8, 1.4\) Hz, 1H), 8.24 – 8.17 (m, 2H), 7.95 (dt, \(J = 7.7, 1.5\) Hz, 1H), 7.74 (s, 1H), 7.60 (t, \(J = 7.7\) Hz, 1H), 7.56 – 7.49 (m, 3H), 6.82 (s, 2H), 3.45 – 3.38 (m, 4H), 2.59 (t, \(J = 7.0\) Hz, 2H), 2.51 – 2.45 (m, 2H), 1.66 (p, \(J = 3.0\) Hz, 4H). \(^1\)C NMR (151 MHz, DMSO-\(d_6\)) \(\delta\) 166.0, 165.1, 164.5, 164.1, 137.6, 137.3, 135.1, 130.6, 129.6, 129.1, 128.7, 128.7 (2C), 127.0 (2C), 125.8, 102.1, 55.0, 53.7 (2C), 38.8, 23.2 (2C). APCI-HRMS m/z: calcd for C_{23}H_{26}N_{5}O (M + H)^{+}, 388.2132, found 388.2153.

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(3-chlorophenyl)ethyl]benzamide (6e)

The title compound was prepared from N-[2-(3-chlorophenyl)ethyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide in a yield of 11%: mp 180.7 – 181.3 °C (ethanol), white crystals. \(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 8.73 (t, \(J = 5.6\) Hz, 1H), 8.60 (s, 1H), 8.35 (br d, \(J = 7.9\) Hz, 1H), 8.25 – 8.19 (m, 2H), 7.94 (br d, \(J = 7.7\) Hz, 1H), 7.74 (s, 1H), 7.62 (t, \(J = 7.7\) Hz, 1H), 7.58 – 7.51 (m, 3H), 7.37 – 7.29 (m,
2H), 7.29 – 7.20 (m, 2H), 6.85 (s, 2H), 3.55 (q, \(J = 6.9\) Hz, 2H), 2.90 (t, \(J = 7.2\) Hz, 2H). \(^{13}\)C NMR (151 MHz, DMSO-\(d_6\)) \(\delta\) 166.1, 165.1, 164.4, 164.1, 142.1, 137.5, 137.3, 135.1, 132.9, 130.5, 130.1, 129.6, 129.0, 128.7, 128.6 (2C), 128.6, 127.5, 127.0 (2C), 126.1, 125.8, 102.0, 40.6, 34.6. APCI-HRMS m/z: calcd for C\(_{25}\)H\(_{22}\)ClN\(_4\)O (M + H\(^{+}\)), 429.1477, found 429.1475; Purity (HPLC): 99%.

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[(3-chlorophenyl)methyl]benzamide (6f)

The title compound was prepared from N-[(3-chlorophenyl)methyl]-3-[(1\(E\))-3-oxo-3-phenylprop-1-en-1-yl]benzamide in a yield of 22%: mp 182.8 – 184.1 °C (ethanol), white solid. \(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 9.27 (t, \(J = 6.0\) Hz, 1H), 8.70 (s, 1H), 8.39 (br d, \(J = 7.8\) Hz, 1H), 8.26 – 8.19 (m, 2H), 8.05 (br d, \(J = 7.7\) Hz, 1H), 7.77 (s, 1H), 7.65 (t, \(J = 7.7\) Hz, 1H), 7.57 – 7.50 (m, 3H), 7.41 (br s, 1H), 7.40 – 7.34 (m, 1H), 7.37 – 7.29 (m, 2H), 6.86 (s, 2H), 4.55 (d, \(J = 5.9\) Hz, 2H). \(^{13}\)C NMR (151 MHz, DMSO-\(d_6\)) \(\delta\) 166.2, 165.1, 164.3, 164.1, 142.2, 137.7, 137.3, 134.6, 133.0, 130.5, 130.2, 129.9, 129.2, 128.8, 128.6 (2C), 127.1, 127.0 (2C), 126.8, 126.0, 125.9, 102.1, 42.3. APCI-HRMS m/z: calcd for C\(_{24}\)H\(_{20}\)ClN\(_4\)O (M + H\(^{+}\)), 415.1320, found 415.1304; Purity (HPLC): 99%.

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[(4-chlorophenyl)methyl]benzamide (6g)

The title compound was prepared from N-[(4-chlorophenyl)methyl]-3-[(1\(E\))-3-oxo-3-phenylprop-1-en-1-yl]benzamide in a yield of 9%: mp 209.5 – 210.9 °C (ethanol), orange solid. \(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 9.25 (t, \(J = 6.0\) Hz, 1H), 8.68 (br s, 1H), 8.38 (br d, \(J = 7.8\) Hz, 1H), 8.24 – 8.20 (m, 2H), 8.03 (br d, \(J = 7.8\) Hz, 1H), 7.77 (s, 1H), 7.64 (t, \(J = 7.8\) Hz, 1H), 7.57 – 7.51 (m, 3H), 7.40 (d, \(J = 8.4\) Hz, 2H), 7.38 (d, \(J = 8.4\) Hz, 2H), 6.85 (s, 2H), 4.52 (d, \(J = 5.9\) Hz, 2H). \(^{13}\)C NMR (151 MHz, DMSO-
\[\delta \ 166.1, 165.1, 164.3, 164.0, 138.7, 137.6, 137.3, 134.7, 131.3, 130.5, 129.8, 129.2 \ (2C), 128.8, 128.6 \ (2C), 128.3 \ (2C), 128.2, 127.0 \ (2C), 125.9, 102.0, 42.1. \]
APCI-HRMS m/z: calcd for C_{24}H_{20}ClN_{4}O (M + H)^{+}, 415.1320, found 415.1311; Purity (HPLC): 96%.

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(pyridin-2-yl)ethyl]benzamide (6h)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-[2-(pyridin-2-yl)ethyl]benzamide in a yield of 13%: mp 165.8 – 166.6 °C (ethanol), white solid. \(^1\)H NMR (600 MHz, DMSO-d6) \(\delta\) 8.74 (t, \(J = 5.6\) Hz, 1H), 8.59 (t, \(J = 1.8\) Hz, 1H), 8.51 (ddd, \(J = 4.9, 1.9, 0.9\) Hz, 1H), 8.35 – 8.30 (m, 1H), 8.24 – 8.17 (m, 2H), 7.93 (dt, \(J = 7.8, 1.3\) Hz, 1H), 7.74 – 7.66 (m, 2H), 7.60 (t, \(J = 7.7\) Hz, 1H), 7.56 – 7.49 (m, 3H), 7.29 (br d, \(J = 7.8\) Hz, 1H), 7.21 (ddd, \(J = 7.6, 4.8, 1.2\) Hz, 1H), 6.82 (s, 2H), 3.66 (q, \(J = 7.0\) Hz, 2H), 3.03 (t, \(J = 7.4\) Hz, 2H). \(^{13}\)C NMR (151 MHz, DMSO-d6) \(\delta\) 166.1, 165.1, 164.4, 164.1, 159.2, 149.1, 137.6, 137.3, 136.6, 135.2, 130.6, 129.6, 129.1, 128.8 (2C), 128.7, 127.0 (2C), 125.8, 123.2, 121.6, 102.1, 39.4, 37.4. APCI-HRMS m/z: calcd for C_{24}H_{22}N_{4}O (M + H)^{+}, 396.1819, found 396.1843; Purity (HPLC): 99%.
3-(2-amino-6-phenylpyrimidin-4-yl)-N-(4-phenylbutyl)benzamide (6i)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-(4-phenylbutyl)benzamide in a yield of 15%: mp 156.9 – 158.2 °C (ethanol), white crystals. 1H NMR (600 MHz, DMSO-d_6) δ 8.65 – 8.58 (m, 2H), 8.33 (dt, $J = 7.9$, 1.4 Hz, 1H), 8.24 – 8.18 (m, 2H), 7.95 (dt, $J = 7.8$, 1.4 Hz, 1H), 7.74 (s, 1H), 7.60 (t, $J = 7.7$ Hz, 1H), 7.56 – 7.49 (m, 3H), 7.27 – 7.11 (m, 5H), 6.83 (s, 2H), 3.32 (q, $J = 6.9$ Hz, 2H), 2.60 (t, $J = 7.5$ Hz, 2H), 1.66 – 1.51 (m, 4H). 13C NMR (151 MHz, DMSO-d_6) δ 166.0, 165.1, 164.5, 164.1, 142.2, 137.5, 137.3, 135.3, 130.5, 129.5, 129.1 (2C), 128.7 (2C), 128.3 (2C), 128.2 (2C), 127.0 (2C), 125.8, 125.7, 102.0, 39.1, 34.9, 28.9, 28.6. APCI-HRMS m/z: calcd for C$_{27}$H$_{27}$N$_4$O (M + H)$^+$, 423.2179, found 423.2198; Purity (HPLC): 100%.

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(dimethylamino)ethyl]benzamide (6j)

The title compound was prepared from N-[2-(dimethylamino)ethyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide in a yield of 14%: mp 133.5 – 134.2 °C (ethanol), orange solid. 1H NMR (600 MHz, CDCl$_3$) δ 8.46 (br s, 1H), 8.09 (br d, $J = 7.7$ Hz, 1H), 7.99 – 7.95 (m, 2H), 7.88 (br d, $J = 7.7$ Hz, 1H), 7.59 (t, $J = 5.2$ Hz, 1H), 7.50 – 7.40 (m, 5H), 5.66 (s, 2H), 3.59 (q, $J = 5.5$ Hz, 2H), 2.60 (t, $J = 5.8$ Hz, 2H), 2.30 (s, 6H). 13C NMR (151 MHz, CDCl$_3$) δ 167.3, 166.3, 165.1, 163.6, 163.6, 137.3, 137.4, 135.0, 130.4, 129.7, 129.0, 128.8, 128.6 (2C), 127.0 (2C), 125.8, 104.0, 58.0, 44.9, 37.1 (2C). APCI-HRMS m/z: calcd for C$_{21}$H$_{24}$N$_5$O (M + H)$^+$, 362.1975, found 362.1983.
4. Radioligand binding assays

Tissue preparation for binding studies

Radioligand binding studies were performed according to literature procedures.1,2 The collection of animal tissue for these assays was approved by The Animal Research Ethics Committee of the North-West University (NWU-0035-10-A5). Adult male Sprague-Dawley rats were obtained from the Vivarium of the North-West University, Potchefstroom campus. Whole brains (for A₁ assay) and striata (for A₂A assay) were immediately snap frozen with liquid nitrogen after dissection (on ice), and stored at -70 °C. The frozen whole brains as well as striata were suspended in ice-cold 50 mM Tris buffer (pH 7.7 at 25 °C) and homogenised using a Polytron PT-10 homogeniser (Brinkman) to yield final suspensions of 1 g/5 ml, which were aliquoted and stored at -70 °C until required.

Test incubations contained 1% of DMSO in the final concentration. Sigmacote® was used to coat all pipette tips as well as the 4 ml polypropylene tubes used for the incubations. The incubations were prepared using 50 mM Tris buffer (pH 7.7 at 25 °C). The final incubation volume for the A₂A assay was 1 ml; containing test compound (0-100 µM), membrane suspension yielding ~10 mg of original tissue weight of rat striata, 10 mM MgCl₂, 0.2 units of adenosine deaminase, 50 nM CPA and 4 nM [³H]NECA. The MgCl₂ (A₂A assay) and adenosine deaminase (A₂A and A₁ assays) were first added to the membrane suspension, and this mixture was subsequently added to the incubations. The order of addition was test compound, membrane suspension, CPA and [³H]NECA. All incubations were carried out in triplicate. Non-specific binding was determined in triplicate in the presence of CPA (100 µM replacing the test compound). The final incubation volume for the A₁ assay was also 1 ml, containing test compound (0-100 µM), membrane suspension yielding 5 mg of original tissue weight of rat whole brain, 0.1 units of adenosine deaminase and 0.1 nM [³H]DPCPX. The order of addition was test compound, membrane suspension and [³H]DPCPX. All incubations were carried out in triplicate. Non-specific binding was determined in triplicate in the presence of CPA (100 µM replacing the test compound). Incubations were stopped after 1 hour with rapid filtration through Whatman® GF/B 25 filters (25 mm diameter) fitted on a Hoffeler vacuum system. The damp filters were placed into scintillation vials and 4 ml scintillation fluid was added. Afterwards the vials were shaken thoroughly and left for two hours before placed in a Packard Tri-CARB 2100 TR scintillation counter that counted the radioactivity retained on the filters. Specific binding was defined as total binding minus non-specific binding, and was expressed as counts per minute (CPM).

5. Molecular docking

Molecular docking of compounds in the binding site of the crystal structure of the human A₂A receptor was carried out using the Windows based Accelrys® Discovery Studio 3.1 software. The receptor
structure which is co-crystallised with the known A2A antagonist ZM241385 (PDB code: 3EML) was obtained from the Protein data bank. The protein was prepared and errors corrected with the ‘Clean protein’ function. The receptor was typed with the CHARMm forcefield and the ionisation state of residues was optimised by selecting the ‘Calculate Protein Ionization and Residue pK’ function. After a fixed atom constraint was applied to the backbone a minimisation was carried out utilising the Generalised Born approximation with Molecular Volume (GBMV) as the solvent model to obtain the energetic minimum of the receptor. The existing ligand (ZM241385) was selected, used to define a binding sphere with a radius of 5 Å and removed from the binding site. All compounds screened in silico were drawn in a new molecule window. These ligands were cleaned and prepared for docking with the 'Prepare ligand' protocol. The CDOCKER protocol was used to dock ligands - each with 10 random conformations and using Momany-Rone as Ligand partial charge. C-DOCKER, C-DOCKER_INTERACTION energies as well as orientation of the ten different conformers of each ligand were inspected and the best conformation for each ligand selected for in situ ligand minimisation.

6. Haloperidol induced catalepsy assay

The North-West University ethical committee approved the following experimental protocol (NWU-00035-10-A5):

In vivo assay:

Drug naïve male Sprague-Dawley rats (240 – 300 g) were utilised for the in vivo assay. The assay was performed between 8:00 and 15:30 in a lit room with a controlled temperature. The animals were divided into 3 groups (control, 0.4 and 2 mg/kg groups) each containing 10 rats. A dose of 5 mg/kg haloperidol was administered intraperitoneally to all rats to induce catalepsy. Thirty minutes later each animal from their respective groups received another i.p injection. The control group receiving DMSO and the other 2 groups the corresponding concentration of test compound. Catalepsy was measured 60 minutes after the first i.p injection (Haloperidol) with the standard bar test, in a Perspex chamber (length, 23 cm; width, 10.5 cm; height, 9 cm) with a horizontal plastic bar (diameter, 1 cm; length, 10.5 cm) fixed at 9 cm above the floor, and at 7 cm from the back of the box. This was performed by placing the animals in the Perspex box with their front paws on the horizontal bar. The time the animal maintained its position on the bar or until both paws were removed from the bar, was recorded up to 120 seconds. To compare between the control group and the compound treated groups a 1 way ANOVA test followed by Dunnett’s multiple comparison’s test was performed. A probability of p < 0.05 was used to declare statistically significant differences.
7. NMR spectra

Chalcones

N-[2-(morpholin-4-yl)ethyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5a)

1H NMR

1C NMR
N-[3-(morpholin-4-yl)propyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5b)

1H NMR

13C NMR
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-[2-(piperidin-1-yl)ethyl]benzamide (5c)

1H NMR

13C NMR
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-[2-(pyrrolidin-1-yl)ethyl]benzamide (5d)

1H NMR

13C NMR
N-[2-(3-chlorophenyl)ethyl]-3-[(1\textit{E})-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5e)

^1H NMR

^{13}C NMR
$\text{N-[(3-chlorophenyl)methyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5f)}$

$^1\text{H NMR}$

$^{13}\text{C NMR}$
N-[(4-chlorophenyl)methyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5g)

1H NMR

13C NMR
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-[2-(pyridin-2-yl)ethyl]benzamide (5h)

^{1}H NMR

^{13}C NMR
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-(4-phenylbutyl)benzamide (5i)

1H NMR

13C NMR
N-[2-(dimethylamino)ethyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5j)

1H NMR

13C NMR
Aminopyrimidines

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(morpholin-4-yl)ethyl]benzamide (6a)

1H NMR

13C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[3-(morpholin-4-yl)propyl]benzamide (6b)

1H NMR

13C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(piperidin-1-yl)ethyl]benzamide (6c)

1H NMR

13C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(pyrrolidin-1-yl)ethyl]benzamide (6d)

1H NMR

13C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(3-chlorophenyl)ethyl]benzamide (6e)

1H NMR

13C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[(3-chlorophenyl)methyl]benzamide (6f)

1H NMR

13C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[(4-chlorophenyl)methyl]benzamide (6g)

1H NMR

13C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(pyridin-2-yl)ethyl]benzamide (6h)

^1H NMR

![1H NMR spectrum](image)

^13C NMR

![^13C NMR spectrum](image)
3-(2-amino-6-phenylpyrimidin-4-yl)-N-(4-phenylbutyl)benzamide (6i)

1H NMR

13C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(dimethylamino)ethyl]benzamide (6j)

1H NMR

13C NMR
Carbamate substituted 2-amino-4,6-diphenylpyrimidines as adenosine receptor antagonists

Sarel J. Robinsona,b, Jacobus P. Petzera,b, Amanda L. Rousseauc, Gisella Terre’Blanchea,b, Anél Petzerb, Anna C.U. Lourensa,b,*

aPharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
bCentre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
cMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS 2050, South Africa

*Corresponding author. aPharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa. Tel: (+27 18 2992266). E-mail address: Arina.Lourens@nwu.ac.za

Abstract

A novel series of carbamate substituted 2-amino-4,6-diphenylpyrimidines was evaluated as potential dual adenosine A\textsubscript{1} and A\textsubscript{2A} receptor antagonists. The majority of the synthesised compounds exhibited promising dual affinities, with A\textsubscript{1}K\textsubscript{i} values ranging from 0.175 – 10.7 nM and A\textsubscript{2A}K\textsubscript{i} values ranging from 1.58 - 451 nM. The \textit{in vivo} activity illustrated for 3-(2-amino-6-phenylpyrimidin-4-yl)phenyl morpholine-4-carboxylate (4c) is indicative of the potential of these compounds as therapeutic agents in the treatment of Parkinson’s Disease, although physicochemical properties may require optimisation.

Keywords: 2-aminopyrimidine; adenosine A\textsubscript{1} and A\textsubscript{2A} receptor; dual; antagonist.

*Corresponding author. Tel.: +27 18 2992266; fax: +27 18 2994243.

\textit{E-mail address}: arina.lourens@nwu.ac.za (A.C.U. Lourens)
Introduction

Parkinson’s disease (PD) is a chronic neurodegenerative disease that affects over 1% of the world population. PD is an age related disease, and with life expectancy increasing worldwide, will continue to present a huge social and economic burden in the future. Patients with PD mainly suffer from a progressive loss of motor function, but non-motor symptoms, such as cognitive impairment and depression often occur. The motor symptoms of the disease can be attributed to the deterioration of dopaminergic neurons in the striatum, resulting in a significant loss of dopamine in this region. There is still no cure for PD, but the dopaminergic therapies used clinically are reasonably effective in managing the symptoms during the early stages of the disease. Long-term treatment with dopaminergic therapies however, is associated with several undesirable side effects such as loss of drug efficacy, dyskinesia and depression.

Adenosine is an endogenous ligand that acts as a neurotransmitter in the brain through the activation of its G-protein coupled receptors, namely the A1, A2A, A2B and A3 receptors. Recently, dual targeted antagonism of adenosine A1 and A2A receptors has emerged as a promising non-dopaminergic alternative for the treatment of neurodegenerative diseases such as Parkinson’s disease. The appeal of adenosine A2A receptors as a target in movement disorders is due to their distinct localisation in the striatum as well as their unique integrative action with dopamine D2 receptors. Adenosine A2A receptors and dopamine D2 receptors have a mutual antagonistic interaction, which means that antagonism of adenosine A2A receptors would lead to enhanced D2 signalling, providing a rationale for their use in the symptomatic treatment of PD. The use of A2A antagonists adjunctive to current dopaminergic therapy may be beneficial since the dosage of the dopaminergic drugs administered could potentially be lowered. This may reduce the occurrence of dyskinesia and other side effects associated with dopaminergic drugs. Furthermore, it has been suggested that A2A antagonism may halt the progression of PD as preclinical evidence exists of its possible neuroprotective benefits. Depression is a co-morbidity that often decreases quality of life in PD patients, especially in the later stages of the disease. A recent study illustrated the antidepressant effect of the known A2A antagonist, KW6002, indicating an additional advantage of A2A antagonism.

The brain distribution of the adenosine A1 receptor on the other hand, is more widespread than that of the A2A receptor, with high levels expressed in the striatum, hippocampus and neocortex. Similar to adenosine A2A antagonism, antagonism of A1 receptors have been shown to result in activation of motor function in animals, and may thus decrease motor deficiencies experienced in PD. It has also been reported that the antagonism of the A1 receptor may enhance cognitive ability, and since a decline in cognition is often observed in PD patients over time, A1 antagonism may thus be advantageous. Dual antagonism of A1 and A2A receptors thus has the potential of addressing the multifactorial nature of PD symptoms with less dopaminergic side-effects than generally experienced with current therapies.
The best known adenosine receptor antagonists are the xanthines, such as caffeine and theophylline, which as a chemical class, have been reviewed extensively. Several heterocyclic compounds have also progressed to clinical trials, and include compounds such as preladenant (1) and tozadenant (2).

![Chemical structures of 1, 2, 3, 4, and 5](image)

Of particular interest to our group was the fact that the 2-aminopyrimidine motif often occurred in heterocycles with adenosine A$_{2A}$ and/ or A$_1$ affinity. Based on the aforementioned results, we set out to synthesise a small library of 2-aminopyrimidines to investigate the potential of these compounds as dual adenosine A$_1$ and A$_{2A}$ antagonists. In this preliminary study, we synthesised amide derivative 3 which exhibited high dual affinity ($A_1 K_i = 9.54$ nM; $A_{2A} K_i = 6.34$ nM) and in vivo activity.

In order to further investigate the affinities of this class of compounds for adenosine receptors, we decided to synthesise a series of carbamate substituted 2-amino-4,6-diphenylpyrimidines (4). The carbamate moiety is often present in therapeutic agents, such as rivastigmine (5), an acetylcholinesterase inhibitor, which is used in the treatment of Alzheimer’s disease. This amide-ester hybrid generally displays very good chemical and proteolytic stability and may increase permeability across cellular membranes. The addition of the extra oxygen in structures such as 4, alters the position of both the carbonyl and nitrogen groups and has the potential to change the hydrogen bonding between the compound and the receptor binding site, thus changing the affinity and possibly the selectivity of these compounds in comparison with the amide derivatives (3). It was also decided to replace the methyl furan substituent on position 4 with a phenyl ring, as this simplified the synthesis. Gratifyingly, preliminary results indicated that this change did not alter affinity to a significant degree (Kleynhans, 2014).
Results and discussion

Chemistry

Scheme 1. Synthesis. Reagents and conditions: (i) NaOH, 1 M (2 eq.), MeOH, 90 °C, 5 days (60%); (ii) K$_2$CO$_3$ (2 eq.), CH$_3$CN, rt, 30 min; (iii) Carbamoyl chloride (1.2 eq.), reflux, 90 °C, overnight (70-90%); iv) Guanidine hydrochloride (1.5 eq.), NaH (1.5 eq.), DMF, 110 °C, overnight (15-30%).

Nine carbamate substituted 2-amino-4,6-diphenylpyrimidines (Table 1) were successfully synthesised as indicated in Scheme 1. Firstly, 3-hydroxybenzaldehyde (6) was condensed with acetophenone (7), yielding chalcone (8), which was reacted with commercially available carbamoyl chlorides to obtain carbamates (9a-i). Cyclisation was carried out with guanidine hydrochloride and sodium hydride in N,N-dimethylformamide yielding the desired 2-aminopyrimidines (4a-i) in low yields. Initially, three equivalents of sodium hydride were used in the cyclisation step, but this resulted in cleavage of the carbamate group. This problem was overcome by reducing the number of molar equivalents of NaH used in the reaction. The structures of all synthesised compounds (Table 1) were confirmed by nuclear magnetic resonance spectroscopy and mass spectrometry, while purity was assessed by HPLC (see supporting information).
Table 1: Adenosine receptor affinities (K_i) of the synthesised carbamates $4a$ – $4i$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>K_i (nM)</th>
<th>K_i (nM)</th>
<th>SI (A_{2A}/A_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4a$</td>
<td></td>
<td>1.95 ± 0.278</td>
<td>8.94 ± 0.259</td>
<td>4.58</td>
</tr>
<tr>
<td>$4b$</td>
<td></td>
<td>2.04 ± 0.002</td>
<td>1.58 ± 0.311</td>
<td>0.775</td>
</tr>
<tr>
<td>$4c$</td>
<td></td>
<td>2.65 ± 0.059</td>
<td>3.50 ± 0.030</td>
<td>1.32</td>
</tr>
<tr>
<td>$4d$</td>
<td></td>
<td>0.835 ± 0.088</td>
<td>24.8 ± 6.61</td>
<td>29.7</td>
</tr>
<tr>
<td>$4e$</td>
<td></td>
<td>2.06 ± 0.135</td>
<td>51.9 ± 3.07</td>
<td>25.2</td>
</tr>
<tr>
<td>$4f$</td>
<td></td>
<td>0.468 ± 0.057</td>
<td>22.8 ± 1.75</td>
<td>48.7</td>
</tr>
<tr>
<td>$4g$</td>
<td></td>
<td>0.175 ± 0.017</td>
<td>12.1 ± 1.35</td>
<td>69.1</td>
</tr>
<tr>
<td>$4h$</td>
<td></td>
<td>1.07 ± 0.079</td>
<td>39.9 ± 4.77</td>
<td>37.3</td>
</tr>
<tr>
<td>$4i$</td>
<td></td>
<td>10.7 ± 0.431</td>
<td>451 ± 143</td>
<td>42.1</td>
</tr>
<tr>
<td>'CPA'</td>
<td></td>
<td>8.48 ± 0.302</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Biological assays

Radioligand binding assays were performed to assess the binding of synthesised compounds to adenosine receptors. The radioligands used were 1,3-[3H]-dipropyl-8-cyclopentylxanthine ([3H]DPCPX) for adenosine A\textsubscript{1} receptors, and [3H]5'-N-ethylcarboxamide-adenosine ([3H]NECA) for adenosine A\textsubscript{2A} receptors. Striata from male Sprague-Dawley rats were used as receptor source for A\textsubscript{2A} binding studies, while whole brains were utilised for A\textsubscript{1} binding studies (Ethics number: NWU-0035-10-A5). IC\textsubscript{50} values were obtained from sigmoidal dose response curves as generated by the Prism 5 software package (GraphPad) and the K\textsubscript{i} values were calculated from the IC\textsubscript{50} values using the Cheng-Prusoff equation. Results from the receptor binding studies are presented in Table 1.

The results reveal that most of these compounds have potent dual affinity for both receptor subtypes, although affinities are generally higher for the adenosine A\textsubscript{1} receptor compared to the adenosine A\textsubscript{2A} receptor. Compounds 4a, 4b and 4c are the most promising candidates for dual antagonistic activity with both A\textsubscript{1}K\textsubscript{i} and A\textsubscript{2A}K\textsubscript{i} values below 10 nM and selectivity indices of 4.6, 0.8 and 1.3, respectively. Compounds 4f and 4g in particular exhibit high affinities for the adenosine A\textsubscript{1} receptors, with K\textsubscript{i} values of 0.468 and 0.175 nM, respectively. As exemplified by compounds 4a, 4b and 4c, substitution with six-membered saturated cyclic carbamate substituents appears to yield optimal A\textsubscript{2A} receptor affinity. Interestingly, although compound 4i with diphenyl substitution still has high affinity for the adenosine A\textsubscript{1} receptor (K\textsubscript{i} = 10.7 nM), its affinity for the adenosine A\textsubscript{2A} receptor is comparatively weak with a K\textsubscript{i} value of 451 nM. The size of the carbamate substituent therefore appears to affect affinity to a greater degree for A\textsubscript{2A} receptors, where substitution with groups that are either too small (e.g. 4e) or too large (e.g. 4h and 4i) appears to be detrimental for affinity. By comparison, the A\textsubscript{1} receptors are able to accommodate larger carbamate substituents without loss of binding affinity.

Molecular modelling studies were performed in an attempt to rationalise the results obtained with the radioligand binding assays. The crystal structure of the human A\textsubscript{2A} receptor crystallised with the known adenosine A\textsubscript{2A} antagonist ZM241385 (PDB code: 3EML) was used as protein model. All compounds were successfully docked into the binding site using the C-DOCKER function of Discovery studio 3.1 (Accelrys). Hydrophobic (\pi-\pi) interactions were observed between the three-membered ring system
and Phe168 for all compounds. Intermolecular hydrogen bonding interactions were also present between the exocyclic amino group of the pyrimidine ring and Glu169 as well as Asn253 (Figure 1) for most derivatives. These interactions are believed to be responsible for anchoring the aminopyrimidine in the binding site and are similar to binding interactions previously determined for other 2-aminopyrimidine antagonists.35 There was another noticeable hydrogen bond interaction between Glu169 and the carbamate carbonyl of most compounds. When ranking the compounds according to C-DOCKER - and C-DOCKER-interaction energies, it was observed that compound 4i exhibited the least favourable values. This corresponds with the results obtained in the radioligand binding studies, where compound 4i also exhibited the weakest affinity for the A\textsubscript{2A} receptor among the compounds synthesised ($K_i = 451$ nM). Visual inspection of the lowest energy pose of compound 4i reveals that the hydrogen bonding interactions with Glu169 and Asn253 are absent and that it has docked “upside down” in the binding site when compared to the rest of the synthesised compounds (Figure 2A), as well as ZM241385 (Figure 2B). This supports the theory that A\textsubscript{2A} receptor affinity is influenced by molecular size, with the receptor binding site unable to accommodate this large compound (4i). These molecular docking results provide, at least in part, some explanation for the results obtained with the radioligand binding assays.

\textbf{Figure 1.} Compound 4b docked in the binding site of the human A\textsubscript{2A} receptor. Hydrophobic interactions are indicated in orange while intermolecular hydrogen bonding are indicated in green.
Figure 2A. Compounds 4i (in colour) and 4b (in yellow) docked in the binding site of the human A2A receptor. 2B. ZM241385 bound in the binding site of the human A2A receptor.36 Hydrophobic interactions are indicated in orange while intermolecular hydrogen bonding are indicated in green.

The most promising dual affinity compounds (4b and 4c) were subsequently selected for in vivo screening, using the reversal of haloperidol induced catalepsy with the standard bar test as an indication of the potential of these compounds to act as antagonists at A2A receptors.16 Drug naïve Sprague-Dawley rats were divided into three groups each receiving intraperitoneal (i.p) injections of haloperidol (5.0 mg/kg) to induce catalepsy. Thirty minutes later the animals from group 1 received DMSO (control group) and the other two groups received 0.4 and 2 mg/kg of the test compound, respectively. Catalepsy was measured 60 minutes after the first injection.

Figure 3A. Graph illustrating no significant reduction of catalepsy for both concentrations of compound 4b. 3B. Graph illustrating a significant attenuation of catalepsy with both concentrations of compound 4c. (* indicates
significant differences compared with the haloperidol + vehicle control group as determined by one-way ANOVA [F (2, 24) = 3.97 (p = 0.032) followed by Dunnet’s post test with p = 0.03 – 0.05).

The results obtained after i.p administration of the two selected compounds 4b and 4c are shown in Figure 3. Disappointingly, compound 4b with the highest dual affinity in vitro, did not reverse catalepsy and appeared to be inactive in vivo (Figure 3A). Contrastingly, after i.p administration of compound 4c, a significant reduction in catalepsy was observed when compared to the control group (Figure 3B), which is indicative of adenosine A\textsubscript{2A} antagonism. It is postulated that the negative results obtained with compound 4b are due to unfavourable physicochemical properties, such as poor water solubility, resulting in the precipitation of the compound upon i.p. injection.

To obtain support for this theory, solubility and log D values were determined for compound 4b in order to assess its suitability as a drug candidate. The octanol-buffer partition coefficient was determined with the shake flask method, while water solubility was determined by shaking an excessive amount of 4b in water at 37 °C. For the Log D study potassium phosphate buffer (pH 7.4) was selected for the hydrophilic phase and n-octanol for the hydrophobic phase. Results are shown in Table 2.

| Table 2. The Log D and solubility of compound 4b |
| Log D | Solubility |
| 4.03 +/- 0.197 | 0.22 +/- 0.072 µM |

It is generally accepted that the ideal log D value for a drug should be between 1-3,37 thus allowing solubility in blood plasma while at the same time ensuring that the compound is lipophilic enough to cross the blood-brain-barrier. A Log D value of 4.03 is thus rather lipophilic, and this combined with the low aqueous solubility are probably responsible for the lack of observed activity in vivo.

Conclusion

This study provides evidence that carbamate substitution of the 2-amino-4,6-diphenylpyrimidine scaffold results in compounds with potent dual affinity for both adenosine A\textsubscript{1} and A\textsubscript{2A} receptors. Size of the substituent appears to affect adenosine A\textsubscript{2A} affinity to a larger extent than A\textsubscript{1} affinity. Diphenyl substitution on the carbamate nitrogen in particular appears to be detrimental, partly due to a loss of important binding interactions as illustrated with molecular docking studies. The physicochemical properties of these compounds would have to be optimised in order to improve in vivo activity and applicability as therapeutic agents in the treatment of PD.
Acknowledgements

We gratefully acknowledge the assistance of Dr. Johan Jordaan and Mr. André Joubert of the SASOL Centre for Chemistry, North-West University for recording of NMR and mass spectra as well as Prof Jan du Preez for HPLC analyses. We are also thankful to Ms Madelein Geldenhuys for her assistance with the radioligand binding studies. The financial assistance of the North-West University, Medical Research Council (MRC) and the National Research Foundation (UID 76308) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version, at......

References

36 Jaakola, V.P.; Griffith, M.T.; Hanson, M.A.; Cherezov, V.; Chien, E.Y.T. Science. 2008 322, 1211.

Supplementary material

1. Materials and instrumentation
2. Biological evaluation
3. Physicochemical properties
4. Molecular modelling
5. Synthesis
6. Physical data
7. NMR spectra

1. Materials and instrumentation
Starting materials and other reagents were purchased from Sigma-Aldrich and used without any further purification. Deuterated solvents for nuclear magnetic resonance (NMR) spectroscopy were obtained from Merck while solvents used during synthesis and chromatography were purchased from Associated Chemical Enterprises (ACE).

Thin layer chromatography (TLC):
Precoated Kieselgel 60 F254 plates (Merck) were used to monitor reactions. Detection was done by UV light at a wavelength of 254 nm.

Melting points:
The melting points of all compounds were determined using a Buchi B-545 apparatus, and are uncorrected.

Mass spectrometry (MS):
The mass spectra for all compounds were obtained with a Bruker MicrOTOF-QII mass spectrometer in atmospheric-pressure chemical ionisation (APCI) mode.

Nuclear magnetic resonance (NMR) spectroscopy:
Proton (1H) and carbon (13C) NMR spectra were recorded on a Bruker Avance III 600 spectrometer at frequencies of 600 MHz and 150 MHz, respectively. Samples were dissolved in either deuterated chloroform (CDCl3) or deuterated dimethylsulfoxide (DMSO-d6). Reported 1H NMR spectroscopic data indicate the chemical shift (δ) in ppm, the integration (e.g. 1H), the multiplicity and the coupling constant (J) in Hz. The following abbreviations are used: s (singlet), br s (broad singlet), d (doublet), br d (broad doublet), dd (doublet of doublets), ddd (doublet of doublet of doublets) t (triplet), br t (broad triplet), q (quartet), p (pentet/quintet) or m (multiplet). Chemical shifts are referenced to the residual solvent signal (DMSO-d6: 2.5 and 39.5 ppm for 1H and 13C respectively; CDCl3 7.26 and 77.0 ppm for
\(^{1}\text{H} \text{ and } ^{13}\text{C} \text{ respectively}). \text{ For most compounds there are equivalent carbons and some carbon signals therefore represent more than one carbon.}

High performance liquid chromatography (HPLC):

To determine the purity of the synthesised compounds, HPLC analyses were conducted with an Agilent 1100 HPLC system equipped with a quaternary pump and an Agilent 1100 series diode array detector. For the chromatography HPLC grade acetonitrile (Merck) and Milli-Q water (Millipore) was used. A Vensionil XBP C18 column (4.60 × 150 mm, 5 µm) was used with 30% acetonitrile and 70% MilliQ water as the initial mobile phase at a flow rate of 1 ml/min. At the start of each HPLC run, a solvent gradient program was initiated. The concentration of acetonitrile in the mobile phase was linearly increased up to 85% over a period of 5 min. Each HPLC run lasted 15 min and a time period of 5 min was allowed for equilibration between runs. The test compound was injected (20 µl, 1 mM) into the HPLC system and the eluent was monitored at wavelengths of 210, 254 and 300 nm.

2. **Biological evaluation**

In vitro

Tissue preparation for binding studies

Radioligand binding studies were carried out as reported in literature\(^{1,2,3}\). The Animal Research Ethics Committee of the North-West University (NWU-0035-10-A5) approved the collection of animal tissue required for these assays. Adult male Sprague-Dawley rats were obtained from the Vivarium of the North-West University, Potchefstroom campus. Striata (for the adenosine A\(_{2A}\) assays) and whole brains (for the adenosine A\(_{1}\) assay) were dissected on ice and immediately snap frozen with liquid nitrogen and then stored at \(-70^{\circ}\text{C}\) until required. The frozen striata as well as the whole brain tissue were suspended in ice-cold 50 mM Tris buffer (pH 7.7 at 25\(^{\circ}\text{C}\)) and homogenised using a Polytron PT-10 homogeniser (Brinkman) to yield final suspensions of 1 g/5 ml, which were aliquoted and stored at \(-70^{\circ}\text{C}\) until required. Test compounds were dissolved (10 mM) and further diluted in DMSO, with the final concentration of DMSO in the incubations being 1%. All pipette tips as well as the 4 ml polypropylene tubes used for the incubations were coated with Sigmacote®. The incubations were prepared using 50 mM Tris buffer (pH 7.7 at 25\(^{\circ}\text{C}\)). For the adenosine A\(_{2A}\) assay, the final volume of the incubations was 1 ml and each incubation contained test compound (0-100 µM), membrane suspension yielding ~10 mg of original tissue weight of rat striata, 10 mM MgCl\(_2\), 0.2 units of adenosine deaminase, 50 nM CPA and 4 nM \[^{3}\text{H}]\text{NECA}. The MgCl\(_2\) (A\(_{2A}\) assay) and adenosine deaminase (A\(_{2A}\) and A\(_{1}\) assays) were firstly added to the membrane suspension, and this mixture was subsequently added to the incubations. The order of addition was test compound, membrane suspension, CPA and \[^{3}\text{H}]\text{NECA}. All incubations were carried out in duplicate. Non-specific binding was determined in triplicate in the presence of CPA (100 µM replacing the test compound). For the adenosine A\(_{1}\) assay, the final volume of the incubations was also 1 ml and each incubation contained test compound (0-100 µM), membrane suspension yielding 5
mg of original tissue weight of rat whole brain, 0.1 units of adenosine deaminase and 0.1 nM \[^3H\]DPCPX. The order of addition was test compound, membrane suspension and \[^3H\]DPCPX. All incubations were carried out in duplicate. Non-specific binding was determined in triplicate in the presence of CPA (100 µM replacing the test compound). After incubation for 1 h (with vortexing after 30 minutes), the incubations were rapidly filtered through Whatman® GF/B 25 filters (25 mm diameter) fitted on a Hoffeler vacuum system. The damp filters were placed into scintillation vials and scintillation fluid (4 ml) was added. The vials were shaken thoroughly and left for 2 h. A Packard Tri-CARB 2100 TR scintillation counter was used to count the radioactivity retained on the filters. Specific binding was defined as total binding minus non-specific binding, and was expressed as counts per minute (CPM).

In vivo

Catalepsy test

The protocol for the in vivo studies was approved by the Animal Research Ethics Committee of the North-West University (NWU-0035-10-A5). Male Sprague-Dawley rats (240 -300 g) were used for these assays. Animals had free access to standard laboratory food and water. The assays were performed in the morning between 8:00 and 13:00 in a temperature controlled room. Animals were drug naive and only used once. Haloperidol induced catalepsy was measured with the standard bar test, in a Perspex chamber (length, 23 cm; width, 10.5 cm; height, 9 cm) with a horizontal plastic bar (diameter, 1 cm; length, 10.5 cm) fixed 7 cm from the back of the box, and 9 cm above the floor.

Thirty male (n = 30) Sprague-Dawley rats were divided into 3 groups, (control, 0.4 and 2 mg/kg groups) each group containing 10 rats. Haloperidol 5.0 mg/kg was injected intraperitoneally (i.p) to induce catalepsy. Thirty minutes later, the animals in the control group received i.p injections of DMSO and the animals in the other two groups received i.p injections of the corresponding concentration of test compound. Catalepsy was measured 60 minutes after the haloperidol injections by placing the rats in the Perspex box with their front paws on the horizontal bar. The time the animal maintained its position on the bar was recorded up to 120 seconds of cataleptic time. To compare between the control group and the compound treated groups a 1 way ANOVA test followed by Dunnett’s multiple comparison’s test was performed. A probability of p < 0.05 was used to declare statistically significant differences.

3. Physico-chemical properties

Lipophilicity (logD)

The octanol-buffer/water partition coefficient (D) was measured according to the shake flask method. n-Octanol was selected for the hydrophobic phase while potassium phosphate buffer (pH 7.4) was selected for the hydrophilic phase. Firstly, the potassium phosphate buffer and n-octanol were mutually saturated by occasionally shaking a 50:50 mixture of the two and allowing it to settle overnight. After the separation of the 2 phases (saturated octanol and saturated buffer phase) 640 µl saturated octanol,
800 µl saturated buffer and 160 µl of a [10 mM] compound solution in octanol were added to a 2ml micro- tube to yield a final analyte concentration of 1mM. The tube was shaken for 5 min by hand and centrifuged for 10 min at 4000 g. The n-octanol phase was diluted 60-fold with 100% n-octanol and the absorbance of the resulting solution recorded at a maximal absorbance wavelength of 340 nm. The buffer/water phase was diluted into HPLC vials containing 50% deionised water (MilliQ, Millipore, Billerica, USA) and 50% acetonitrile. This was then analysed by HPLC (same method as above). By using the molar extinction coefficients recorded in n-octanol, the concentrations of the test compound in saturated n-octanol and saturated buffer/water phases were determined. These assays were performed in triplicate and the partition coefficients reported as the mean ± SD of the log D values.

Solubility:
Water (1 ml) was added to 3 microtubes containing ~4.5 mg of test compound. Tubes were then placed in a shaking water bath for 24 hours at 37 °C. Afterwards the tubes were centrifuged at 16000 g for 10 minutes. The supernatant was filtered through a syringe filter into HPLC vials. The concentration of dissolved compound was determined by HPLC as described above.

4. Molecular modelling
Windows based Accelrys® Discovery Studio (DS 3.1) was used to carry out the molecular docking studies. The crystal structure of the adenosine A_{2A} receptor co-crystallised with the known A_{2A} antagonist ZM241385, was obtained from the Protein data bank (PDB – code: 3EML). To correct errors and prepare the receptor the ‘Clean protein’ function was used. The receptor was typed with the CHARMM forcefield and the ‘Calculate Protein Ionization and Residue pK function was selected to optimise the ionisation state of residues. The protein was then minimized with CHARMM while a fixed atom constraint was applied to the backbone. The minimisation was carried out using the Generalised Born approximation with Molecular Volume (GBMV) as a solvent model. The existing ligand was selected to define a binding sphere (radius of 5Å) and removed afterwards for docking. Ligands were drawn in ChemWindow, copied and pasted in Discovery Studio. These ligands, which include ZM241385 (for docking validation) were prepared for docking with the ‘Prepare Ligands’ function and docked using the C-DOCKER protocol (10 Random conformations, Momany-Rone as Ligand partial charge). Orientation, C-DOCKER and C-DOCKER_INTERACTION energies of the ten different conformers of each ligand were considered and the best conformation for each ligand selected. An in situ ligand minimisation was then performed on the selected conformers and the binding energies were calculated afterwards.
5. Synthesis

General procedure for the synthesis of (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (8)

![Chemical structure of 8](image)

A solution of 4\% (w/v) sodium hydroxide in water (49 mmol) was added to a suspension of 3-hydroxy benzaldehyde (6) (24.5 mmol) and acetophenone (7) (24.5 mmol) in methanol (300 ml). The mixture was refluxed at 90 °C for 5 days. The reaction was subsequently concentrated and equal volumes of water and ethyl acetate added. The water phase was extracted twice with ethyl acetate and the organic layers were combined, concentrated *in vacuo* and the resulting solid recrystallised from ethanol.

General procedure for the synthesis of carbamates (9a-i)

![Chemical structure of 9a-i](image)

(2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (8) (12 mmol) was added to stirred suspension of 100 ml acetonitrile and potassium carbonate (24 mmol). After stirring for 30 minutes, the carbamate (14.4 mmol) was added to the reaction mixture. The reaction was refluxed overnight at 90 °C and left to cool down to room temperature. Water (~ 100 ml) was added to the reaction until a precipitate formed. The resulting solid was filtered and recrystallised from ethanol. In cases where no precipitate formed, the solvent was evaporated and the product extracted with chloroform.
General procedure for the synthesis of aminopyrimidines (4a-i)

![Diagram of 4a - i]

Guanidine hydrochloride (4.61 mmol) was dissolved in a small amount of DMF (20 ml) and the required carbamate intermediate (9a – i) (3.07 mmol) and sodium hydride (4.61 mmol) added to the reaction. The reaction mixture was heated (90 °C) for 24 hours under nitrogen, allowed to cool down and then diluted with equal volumes of ethyl acetate and water. The aqueous phase was extracted with ethyl acetate and the organic layers combined. All traces of DMF were removed by washing the combined organic layers several times with water. The organic layer was concentrated in vacuo and the crude product was purified with column chromatography [dichloromethane: methanol (98:2)] and recrystallised from ethanol.

6. Physical data

2E-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (8)

![Diagram of 8]

The title compound was prepared from 3-hydroxybenzaldehyde and acetophenone in a yield of 59%: mp 88.4 – 89.2 °C (ethyl acetate), pale yellow solid. 1H NMR (600 MHz, DMSO-d_6) δ 9.68 (s, 1H), 8.17 – 8.12 (m, 2H), 7.84 (d, $J = 15.6$ Hz, 1H), 7.72 – 7.62 (m, 2H), 7.56 (br t, $J = 7.7$ Hz, 2H), 7.32 (br d, $J = 7.8$ Hz, 1H), 7.29 – 7.23 (m, 2H), 6.90 (ddd, $J = 8.0, 2.5, 1.0$ Hz, 1H). 13C NMR (151 MHz, DMSO-d_6) δ 189.2, 157.8, 144.3, 137.6, 135.9, 133.1, 129.9, 128.8, 128.5, 121.9, 119.9, 117.9, 115.3. APCI-HRMS m/z: calcd for C$_{15}$H$_{13}$O$_2$(M + H)$^+$, 225.0910, found 225.0910.
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl piperidine-1-carboxylate (9a)

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one and piperidine-1-carboxylic chloride in a yield of 75%: mp 143.3 – 143.6 °C (ethanol), light yellow crystals.

1H NMR (600 MHz, CDCl$_3$) δ 8.04 – 7.99 (m, 2H), 7.77 (d, $J = 15.7$ Hz, 1H), 7.61 – 7.55 (m, 1H), 7.54 – 7.47 (m, 3H), 7.47 – 7.38 (m, 3H), 7.17 (ddd, $J = 8.0$, 2.4, 1.1 Hz, 1H), 3.62 (br s, 2H), 3.52 (br s, 2H), 1.67 – 1.61 (m, 6H).

13C NMR (151 MHz, CDCl$_3$) δ 190.3, 153.4, 151.9, 143.9, 138.0, 136.1, 132.8, 129.7, 128.6, 128.5, 125.6, 123.9, 122.6, 121.1, 45.5, 45.1, 25.8, 25.4, 24.2. APCI-HRMS m/z: calcd for C$_{21}$H$_{22}$NO$_3$ (M + H)$^+$, 336.1594, found 336.1594.

3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl 4-methylpiperazine-1-carboxylate (9b)

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one and 4-methylpiperazine-1-carboxylic chloride in a yield of 78%: mp 123.5 – 124.8 °C (ethanol), yellow solid.

1H NMR (600 MHz, CDCl$_3$) δ 8.03 – 7.98 (m, 2H), 7.76 (d, $J = 15.7$ Hz, 1H), 7.60 – 7.54 (m, 1H), 7.54 – 7.38 (m, 6H), 7.16 (ddd, $J = 8.1$, 2.4, 1.1 Hz, 1H), 3.70 (t, $J = 4.9$ Hz, 2H), 3.60 (t, $J = 4.9$ Hz, 2H), 2.49 – 2.43 (m, 4H), 2.34 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 190.2, 153.3, 151.7, 143.8, 137.9, 136.2, 132.8, 129.7, 128.5, 128.4, 125.8, 123.8, 122.7, 121.0, 54.6, 54.5, 46.1, 44.4, 43.8. APCI-HRMS m/z: calcd for C$_{21}$H$_{23}$N$_2$O$_3$ (M + H)$^+$, 351.1703, found 351.1687.
The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one and morpholine-4-carbonyl chloride in a yield of 78%: mp 142.2 – 143.1 °C (ethanol), light yellow crystals.

1H NMR (600 MHz, DMSO-d_6) δ 8.20 – 8.15 (m, 2H), 7.98 (d, J = 15.6 Hz, 1H), 7.79 – 7.65 (m, 4H), 7.58 (t, J = 7.7 Hz, 2H), 7.47 (t, J = 7.9 Hz, 1H), 7.23 (ddd, J = 8.1, 2.3, 1.0 Hz, 1H), 3.70 – 3.57 (m, 8H).

13C NMR (151 MHz, DMSO-d_6) δ 189.2, 153.0, 151.7, 143.1, 137.5, 136.2, 133.4, 129.9, 128.9, 128.7, 126.7, 124.4, 122.9, 121.6, 65.9, 44.7, 43.9. APCI-HRMS m/z: calcd for C$_{20}$H$_{20}$NO$_4$ (M + H)$^+$, 338.1387, found 338.1357.

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one and pyrrolidine-1-carbonyl chloride in a yield of 65%: mp 93.1 – 93.8 °C (ethanol), light yellow crystals.

1H NMR (600 MHz, CDCl$_3$) δ 8.03 – 7.98 (m, 2H), 7.77 (d, J = 15.7 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.54 – 7.46 (m, 3H), 7.47 – 7.42 (m, 2H), 7.39 (t, J = 7.8 Hz, 1H), 7.19 (ddd, J = 8.0, 2.2, 1.2 Hz, 1H), 3.57 (t, J = 6.7 Hz, 2H), 3.49 (t, J = 6.7 Hz, 2H), 2.01 – 1.88 (m, 4H). 13C NMR (151 MHz, CDCl$_3$) δ 190.3, 152.7, 151.8, 143.9, 138.0, 136.1, 132.8, 129.6, 128.5, 128.4, 125.5, 123.9, 122.6, 121.0, 46.4, 46.3, 25.7, 24.9. APCI-HRMS m/z: calcd for C$_{20}$H$_{20}$NO$_3$ (M + H)$^+$, 322.1438, found 322.1434.
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-dimethylcarbamate (9e)

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one and N,N-dimethylcarbamoyl chloride in a yield of 92%: mp 88.7 – 89.4 °C (ethanol), light yellow solid. 1H NMR (600 MHz, CDCl$_3$) δ 8.04 – 7.99 (m, 2H), 7.77 (d, J = 15.7 Hz, 1H), 7.61 – 7.53 (m, 1H), 7.55 – 7.47 (m, 2H), 7.49 – 7.36 (m, 2H), 7.17 (ddd, J = 8.1, 2.4, 1.1 Hz, 1H), 3.12 (s, 3H), 3.03 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 190.3, 154.6, 151.9, 143.9, 138.0, 136.2, 132.8, 129.7, 128.6, 128.5, 125.7, 123.9, 122.7, 121.1, 36.7, 36.4. APCI-HRMS m/z: calcd for C$_{18}$H$_{18}$NO$_3$ (M + H)$^+$, 296.1281, found 296.1272

3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-diethylcarbamate (9f)

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one and N,N-diethylcarbamoyl chloride in a yield of 78%: mp 51.3 – 53.0 °C (ethanol), light yellow solid. 1H NMR (600 MHz, DMSO-d$_6$) δ 8.21 – 8.16 (m, 2H), 7.99 (d, J = 15.7 Hz, 1H), 7.78 – 7.65 (m, 4H), 7.58 (t, J = 7.7 Hz, 2H), 7.46 (t, J = 7.9 Hz, 1H), 7.21 (ddd, J = 8.1, 2.3, 1.0 Hz, 1H), 3.43 (q, J = 7.2 Hz, 2H), 3.32 (q, J = 7.1 Hz, 2H), 1.23 (t, J = 7.0 Hz, 3H), 1.13 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, DMSO-d$_6$) δ 189.1, 153.3, 151.7, 143.1, 137.4, 136.1, 133.3, 129.7, 128.8, 128.6, 126.4, 124.4, 122.8, 121.6, 41.8, 41.5, 14.2, 13.3. APCI-HRMS m/z: calcd for C$_{20}$H$_{22}$NO$_3$ (M + H)$^+$, 324.1594, found 324.1591.
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-bis(propan-2-yl)carbamate (9g)

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one and N,N-bis(propan-2-yl)carbamoyl chloride in a yield of 74%: mp 109.6 – 110.8 °C (ethanol), light yellow crystals. 1H NMR (600 MHz, CDCl$_3$) δ 8.04 – 7.99 (m, 2H), 7.78 (d, $J = 15.7$ Hz, 1H), 7.61 – 7.55 (m, 1H), 7.55 – 7.47 (m, 3H), 7.47 – 7.43 (m, 1H), 7.43 – 7.37 (m, 2H), 7.18 (ddd, $J = 8.1, 2.4, 1.2$ Hz, 1H), 4.11 (brs, 1H), 3.97 (brs, 1H), 1.44 – 1.22 (m, 12H). 13C NMR (151 MHz, CDCl$_3$) δ 190.4, 153.5, 151.7, 144.0, 138.0, 136.2, 129.7, 128.6, 128.5, 125.4, 124.0, 122.7, 121.2, 47.0, 46.1, 21.5, 20.4. APCI-HRMS m/z: calcd for C$_{22}$H$_{26}$NO$_3$ (M + H)$^+$, 352.1907, found 352.1905.

3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N-methyl-N-phenylcarbamate (9h)

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one and N-methyl-N-phenylcarbamoyl chloride in a yield of 84%: mp 108.7 – 111.3 °C (ethanol), light yellow crystals. 1H NMR (600 MHz, CDCl$_3$) δ 8.04 – 7.99 (m, 2H), 7.76 (d, $J = 15.7$ Hz, 1H), 7.62 – 7.56 (m, 1H), 7.53 – 7.47 (m, 3H), 7.48 – 7.36 (m, 7H), 7.29 (brs, 1H), 7.17 (brs, 1H), 3.44 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 190.3, 153.6, 151.7, 143.8, 142.6, 137.9, 136.2, 132.8, 129.7, 129.1, 128.6, 128.5, 126.8, 126.1, 125.8, 123.7, 122.8, 120.9, 38.3. APCI-HRMS m/z: calcd for C$_{23}$H$_{28}$NO$_3$ (M + H)$^+$, 358.1438, found 358.1432.
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-diphenylcarbamate (9i)

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one and N,N-diphenylcarbamoyl chloride in a yield of 75%: mp 141.8 – 142.3 °C (ethanol), light yellow crystals. 1H NMR (600 MHz, CDCl$_3$) δ 8.05 – 8.00 (m, 2H), 7.77 (d, $J = 15.7$ Hz, 1H), 7.62 – 7.56 (m, 1H), 7.55 – 7.36 (m, 14H), 7.31 – 7.24 (m, 2H), 7.22 (ddd, $J = 8.1$, 2.4, 1.1 Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 190.3, 152.8, 151.5, 143.7, 142.0, 137.9, 136.2, 132.8, 129.7, 129.1, 128.6, 128.5, 126.8, 126.0, 123.5, 122.8, 120.7. APCI-HRMS m/z: calcd for C$_{28}$H$_{22}$NO$_3$(M + H)$^+$, 420.1594, found 420.1589.

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl piperidine-1-carboxylate (4a)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl piperidine-1-carboxylate in a yield of 12%: mp 142.9 – 143.8 °C (ethanol), yellow crystals. 1H NMR (600 MHz, CDCl$_3$) δ 8.07 – 8.00 (m, 2H), 7.87 (br d, $J = 7.8$ Hz, 1H), 7.83 (t, $J = 2.0$ Hz, 1H), 7.52 – 7.44 (m, 4H), 7.42 (s, 1H), 7.28 – 7.22 (m, 1H), 5.51 (s, 2H), 3.63 (br s, 2H), 3.54 (br s, 2H), 1.65 (br s, 6H). 13C NMR (151 MHz, CDCl$_3$) δ 166.3, 165.2, 163.6, 153.5, 151.9, 139.0, 137.6, 130.4, 129.4, 128.7, 127.1, 123.8, 123.7, 120.6, 104.2, 45.5, 45.1, 25.8, 25.4, 24.2. APCI-HRMS m/z: calcd for C$_{22}$H$_{23}$N$_2$O$_2$(M + H)$^+$, 375.1816, found 375.1816; Purity (HPLC): 99%.
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl 4-methylpiperazine-1-carboxylate (4b)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl 4-methylpiperazine-1-carboxylate in a yield of 20%: mp 173.3 – 174.2 °C (ethanol), white crystals. 1H NMR (600 MHz, CDCl$_3$) δ 8.07 – 8.00 (m, 2H), 7.88 (ddd, $J = 7.8, 1.7, 1.0$ Hz, 1H), 7.83 (br t, $J = 2.0$ Hz, 1H), 7.52 – 7.45 (m, 4H), 7.43 (s, 1H), 7.25 (ddd, $J = 8.1, 2.4, 1.0$ Hz, 1H), 5.42 (s, 2H), 3.72 (brs, 2H), 3.62 (brs, 2H), 2.53 – 2.39 (m, 4H), 2.343 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 166.3, 165.1, 163.6, 153.4, 151.7, 139.1, 137.6, 130.4, 129.5, 128.7, 127.1, 123.9, 123.7, 120.5, 104.2, 54.7, 54.5, 46.1, 44.4, 43.9. APCI-HRMS m/z: calcd for C$_{22}$H$_{24}$N$_5$O$_2$ (M + H)$^+$, 390.1925, found 390.1887; Purity (HPLC): 99%.

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl morpholine-4-carboxylate (4c)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl morpholine-4-carboxylate in a yield of 35%: mp 176.9 – 177.7 °C (ethanol), light yellow crystals. 1H NMR (600 MHz, CDCl$_3$) δ 8.07 – 8.00 (m, 2H), 7.88 (br d, $J = 7.8$ Hz, 1H), 7.85 (t, $J = 2.0$ Hz, 1H), 7.52 – 7.45 (m, 4H), 7.42 (s, 1H), 7.27 – 7.22 (m, 1H), 5.56 (s, 2H), 3.78 – 3.66 (m, 6H), 3.60 (s, 2H). 13C NMR (151 MHz, CDCl$_3$) δ 166.3, 165.0, 163.6, 153.5, 151.6, 139.2, 137.5, 130.4, 129.5, 128.7, 127.0, 124.0, 123.6,
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl pyrrolidine-1-carboxylate (4d)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl pyrrolidine-1-carboxylate in a yield of 10%: mp 154.3 – 156.1 °C (ethanol), pale yellow crystals. 1H NMR (600 MHz, CDCl$_3$) δ 8.07 – 8.00 (m, 2H), 7.90 – 7.85 (m, 2H), 7.51 – 7.44 (m, 4H), 7.42 (s, 1H), 7.28 (ddd, $J = 8.1$, 2.3, 1.1 Hz, 1H), 5.54 (s, 2H), 3.59 (t, $J = 6.7$ Hz, 2H), 3.52 (t, $J = 6.7$ Hz, 2H), 2.00 – 1.87 (m, 4H).

13C NMR (151 MHz, CDCl$_3$) δ 166.2, 165.2, 163.6, 152.9, 151.8, 139.0, 137.6, 130.3, 129.4, 128.6, 127.1, 123.7, 123.7, 120.5, 104.1, 46.4, 46.3, 25.7, 24.9. APCI-HRMS m/z: calcd for C$_{21}$H$_{21}$N$_4$O$_3$ (M + H)$^+$, 361.1659, found 361.1651; Purity (HPLC): 100%.

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N,N-dimethylcarbamate (4e)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-dimethylcarbamate in a yield of 7%: mp 135.1 – 137.2 °C (ethanol), light yellow crystals. 1H NMR (600 MHz, CDCl$_3$) δ 8.07 – 8.00 (m, 2H), 7.88 (dt, $J = 7.9$, 1.4 Hz, 1H), 7.84 (t, $J = 2.0$ Hz, 1H), 7.52 – 7.44 (m, 4H), 7.42 (s, 1H), 7.28 – 7.23 (m, 1H), 5.54 (s, 2H), 3.12 (s, 3H), 3.04 (s, 3H).

13C NMR (151 MHz, CDCl$_3$) δ 166.2, 165.2, 163.6, 154.7, 151.9, 139.1, 137.6, 130.4, 129.5, 128.6, 127.1, 123.7, 120.5, 104.1, 36.7, 36.4. APCI-HRMS m/z: calcd for C$_{19}$H$_{19}$N$_4$O$_2$ (M + H)$^+$, 335.1503, found 335.1498; Purity (HPLC): 99%.
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N,N-diethylcarbamate (4f)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-diethylcarbamate in a yield of 15%: mp 127.6 – 128.1 °C (ethanol), orange crystals. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 8.07 – 8.01 (m, 2H), 7.87 (br d, \(J = 7.9\) Hz, 1H), 7.84 (t, \(J = 2.0\) Hz, 1H), 7.52 – 7.45 (m, 4H), 7.43 (s, 1H), 7.29 – 7.24 (m, 2H), 5.54 (s, 2H), 3.47 (q, \(J = 7.1\) Hz, 2H), 3.42 (q, \(J = 7.1\) Hz, 2H), 1.28 (t, \(J = 7.1\) Hz, 3H), 1.22 (t, \(J = 7.1\) Hz, 3H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 166.3, 165.3, 163.6, 163.0, 151.9, 139.1, 137.6, 130.4, 129.4, 128.7, 127.1, 123.8, 123.7, 120.6, 104.2, 42.2, 41.9, 14.2, 13.3. APCI-HRMS m/z: calcd for C\(_{21}\)H\(_{23}\)N\(_4\)O\(_2\)(M + H)\(^+\), 363.1816, found 363.1820; Purity (HPLC): 99%.

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N,N-bis(propan-2-yl)carbamate (4g)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-bis(propan-2-yl)carbamate in a yield of 22%: mp 169.6 – 171.9 °C (ethanol), light orange crystals. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 8.08 – 8.01 (m, 2H), 7.86 (br d, \(J = 7.9\) Hz, 1H), 7.84 (t, \(J = 2.0\) Hz, 1H), 7.52 – 7.45 (m, 4H), 7.43 (s, 1H), 7.29 – 7.23 (m, 1H), 5.57 (s, 2H), 4.14 (br s, 1H), 3.99 (br s, 1H), 1.37 (br s, 6H), 1.31 (br s, 6H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 166.2, 165.3, 163.6, 153.6, 151.7, 139.1, 137.6, 130.4, 129.4, 128.7, 127.1, 123.9, 123.7, 120.6, 104.2, 46.9, 46.1, 21.5, 20.4. APCI-HRMS m/z: calcd for C\(_{23}\)H\(_{27}\)N\(_4\)O\(_2\)(M + H)\(^+\), 391.2129, found 391.2129; Purity (HPLC): 99%.
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N-methyl-N-phenylcarbamate (4h)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N-methyl-N-phenylcarbamate in a yield of 6%: mp 151.9 – 152.9 °C (ethanol), white solid. 1H NMR (600 MHz, DMSO-d_6) δ 8.19 – 8.14 (m, 2H), 8.05 (br d, $J = 7.8$ Hz, 1H), 7.93 (br s, 1H), 7.66 (s, 1H), 7.55 – 7.34 (m, 8H), 7.25 (t, $J = 7.3$ Hz, 2H), 6.68 (s, 2H), 3.31 (s, 3H). 13C NMR (151 MHz, DMSO-d_6) δ 165.7, 164.4, 164.3, 153.7, 151.9, 143.1, 139.0, 137.5, 131.2, 130.3, 129.6, 129.2, 127.1, 126.4, 124.5, 124.5, 120.7, 102.5, 38.5. APCI-HRMS m/z: calcd for $C_{24}H_{21}N_4O_2$ (M + H)$^+$, 397.1659, found 397.1644; Purity (HPLC): 100%.

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N,N-diphenylcarbamate (4i)

The title compound was prepared from 3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-diphenylcarbamate in a yield of 18%: mp 172.4 – 173.9 °C (ethanol), pale yellow crystals. 1H NMR (600 MHz, DMSO-d_6) δ 8.25 – 8.20 (m, 2H), 8.12 (br d, $J = 7.9$ Hz, 1H), 8.03 (br s, 1H), 7.74 (s, 1H), 7.59 – 7.39 (m, 12H), 7.37 (dd, $J = 8.0$, 1.4 Hz, 1H), 7.29 (t, $J = 7.4$ Hz, 2H), 6.81 (s, 2H). 13C NMR (151 MHz, DMSO-d_6) δ 165.1, 164.0, 163.7, 152.5, 151.2, 142.2, 138.8, 137.2, 130.5, 129.6, 129.2, 128.6, 127.2, 127.0, 126.7, 124.3, 123.9, 120.2, 101.9. APCI-HRMS m/z: calcd for $C_{29}H_{23}N_4O_2$ (M + H)$^+$, 459.1816, found 459.1786; Purity (HPLC): 99%
NMR spectra

(2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (8)

1H NMR

13C NMR
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl piperidine-1-carboxylate (9a)

1H NMR

13C NMR
3-[(1\(E\))-3-oxo-3-phenylprop-1-en-1-yl]phenyl 4-methylpiperazine-1-carboxylate (9b)

\(^1\)H NMR

\(^{13}\)C NMR
$3-[(1E)-3$-oxo-3-phenylprop-1-en-1-yl]$phenyl$ morpholine-4-carboxylate$ (9c)$

1H NMR

13C NMR
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl pyrrolidine-1-carboxylate (9d)

H NMR

![H NMR spectrum](image)

C NMR

![C NMR spectrum](image)
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-dimethylcarbamate (9e)

H NMR

C NMR
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-diethylcarbamate (9f)

1H NMR

13C NMR
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-bis(propan-2-yl)carbamate (9g)

1H NMR

![1H NMR spectrum](image)

13C NMR

![13C NMR spectrum](image)
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N-methyl-N-phenylcarbamate (9h)

1H NMR

13C NMR
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-diphenylcarbamate (9i)

1H NMR

![H NMR spectrum]

13C NMR

![C NMR spectrum]
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl piperidine-1-carboxylate (4a)

1H NMR

13C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl 4-methylpiperazine-1-carboxylate (4b)

1H NMR

13C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl morpholine-4-carboxylate (4c)

1H NMR

13C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl pyrrolidine-1-carboxylate (4d)

1H NMR

13C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N,N-dimethylcarbamate (4e)

1H NMR

13C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N,N-diethylcarbamate (4f)

¹H NMR

¹³C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N,N-bis(propan-2-yl)carbamate (4g)

1H NMR

13C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N-methyl-N-phenylcarbamate (4h)

\(^1\)H NMR

\(^{13}\)C NMR
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N,N-diphenylcarbamate (4i)

^{1}H NMR

^{13}C NMR
CHAPTER 6

Article 4

Synthesis and evaluation of novel ether derivatives of 2-amino-4,6-diphenylpyrimidine as potential dual adenosine A₁ and A₂A antagonists

Sarel J. Robinson⋯, Jacobus P. Petzer⋯, Amanda L. Rousseau⋯, and Anna C.U. Lourens⋯*

⋯Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
⋯Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
⋯Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, South Africa

*Corresponding author. Tel: (+27 18 2992266). E-mail address: Arina.Lourens@nwu.ac.za

Abstract

A novel series of ether substituted 2-amino-4,6-diphenylpyrimidines were evaluated as potential dual adenosine A₁ and A₂A receptor antagonists. The synthesised ether derivatives were mostly selective towards the adenosine A₁ receptor, exhibiting potent A₁ affinities with A₁Kᵢ values ranging from 5.66 – 48.8 nM. Moderate adenosine A₂A affinities were recorded with A₂A Kᵢ values ranging from 47.0 – 352 nM. Compound 3g (4-phenyl-6-[3-(3-phenylpropoxy)phenyl]pyrimidin-2-amine), the only compound with a carbonyl group in its side chain, exhibited the most promising dual affinity in this series, with an A₁Kᵢ of 22.2 nM and an A₂A Kᵢ of 47.0 nM.

*Corresponding author. Tel.: +27 18 2992266; fax: +27 18 2994243.
E-mail address: arina.lourens@nwu.ac.za (A.C.U. Lourens)

Introduction

Parkinson’s disease (PD) is a chronic neurodegenerative disease that affects the lives of millions of people worldwide.¹ The primary manifestation of PD is decreased motor function, however, patients may also develop several non-motor symptoms such as depression and experience a decline in cognitive
function.2,3 Existing drug therapies suffer from a number of shortcomings such as the inability to halt the progression of the disease, fading of effectivity over time, as well as numerous undesirable side effects that affect quality of life.4 There is thus an urgent need for the development of alternatives to current therapies and non-dopaminergic targets for the disease are particularly appealing, especially if these are able to address non-motor symptoms and provide neuroprotection. In recent years, antagonists of the adenosine A\textsubscript{2A} receptor have received attention as promising non-dopaminergic alternatives.5

Several preclinical studies have illustrated that independent antagonism of the adenosine A\textsubscript{1} and A\textsubscript{2A} receptors has the ability to improve the motor symptoms associated with PD.6-8 Antagonism of both these receptors may also be beneficial in the treatment of non-motor symptoms that usually develop in the more progressive stages of the disease. For example, antidepressant effects have recently been reported for the A\textsubscript{2A} antagonist, KW6002,9 while antagonism of the A\textsubscript{1} receptor on the other hand, is linked to an increase in cognition.10-13 Another exciting advantage of A\textsubscript{2A} antagonism is the possibility of neuroprotection.14,15 Antagonism of adenosine A\textsubscript{1} and A\textsubscript{2A} receptors may thus not only improve motor and non-motor symptoms of PD, but may also be able to slow the progression of the disease.

Several 2-aminopyrimidines with potent dual adenosine A\textsubscript{1} and A\textsubscript{2A} affinities were recently identified in our laboratories (1, 2).16-18 These 2-aminopyrimidines were substituted with various amide (e.g. 1) and carbamate (e.g. 2) substituents.

![Molecular structures of 2-aminopyrimidines 1 and 2](image)

\begin{align*}
A_1K_i &= 9.54 \, \text{nM} \\
A_2AK_i &= 6.34 \, \text{nM} \\
A_1K_i &= 1.95 \, \text{nM} \\
A_2AK_i &= 8.94 \, \text{nM}
\end{align*}

Molecular docking studies conducted previously in our laboratories, indicated that the carbonyl group is important for binding, and particularly for adenosine A\textsubscript{2A} receptor affinity, as intermolecular interactions were frequently observed between this group and residues (such as Tyr271) in the receptor binding site (Figure 1).16-18
The aim of this study was therefore to further investigate the importance of the carbonyl group by replacing the amide and carbamate side chains with an ether substituent (e.g. 3). It was also hypothesised that the more flexible ether could possibly bend and rotate to a larger extent than the more rigid analogues, allowing an improved fit in the binding sites of the target receptors, resulting in an increase in binding affinity.

Results and discussion:
A series of ether substituted 2-amino-4,6-diphenylpyrimidines was successfully synthesised as illustrated in Scheme 1. Condensation of 3-hydroxybenzaldehyde (4) with acetophenone (5), resulted in chalcone (6), which was reacted with commercially available chlorides to obtain the ether intermediates (7a - g). Cyclisation was carried out with guanidine hydrochloride and sodium hydride in N,N-dimethylformamide yielding the desired 2-aminopyrimidines (3a - g) in low yields. The structures of all synthesised compounds (Table 1) were confirmed by nuclear magnetic resonance spectroscopy and mass spectrometry (see supporting information).
Scheme 1: Synthesis. Reagents and conditions: (i) NaOH, 1 M (2 eq.), MeOH, 90 °C, 5 days (60%); (ii) K$_2$CO$_3$ (2 eq.), CH$_3$CN, rt, 30 min; (iii) RCl (1.2 eq.), reflux at 90 °C, 24 h (60-70%); (iv) Guanidine hydrochloride (1.5 eq.), NaH (1.5 eq.), DMF, 110 °C, 24 h (6-33%).

To determine affinities for the adenosine receptors, radioligand binding assays were performed using the radioligands 1,3-[³H]-dipropyl-8-cyclopentylxanthine ([³H]DPCPX) for binding to A$_1$ receptors, while the non-selective adenosine antagonist, [³H]5'-N-ethylcarboxamide-adenosine ([³H]NECA) was used in the presence of N6-cyclopentyladenosine (CPA), for binding to the A$_{2A}$ receptors. The affinities of the synthesised compounds are expressed as the dissociation constants (K_i, nM) for both the adenosine A$_1$ and A$_{2A}$ receptors as indicated in Table 1.

Table 1: Adenosine receptor affinities (K_i) of the synthesised ethers 3a – 3g.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>A$_1$ K_i (nM)</th>
<th>A$_{2A}$ K_i (nM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td></td>
<td>5.66 ± 1.01</td>
<td>326 ± 71.3</td>
<td>58</td>
</tr>
<tr>
<td>3b</td>
<td></td>
<td>7.31 ± 0.69</td>
<td>77.8 ± 1.49</td>
<td>11</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>A1 Ki (nM) ± SD</td>
<td>A2A Ki (nM) ± SD</td>
<td>Selectivity Index</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>3c</td>
<td></td>
<td>48.8 ± 7.64</td>
<td>352 ± 24.4</td>
<td>7.2</td>
</tr>
<tr>
<td>3d</td>
<td></td>
<td>11.7 ± 1.48</td>
<td>194 ± 3.00</td>
<td>17</td>
</tr>
<tr>
<td>3e</td>
<td></td>
<td>16.2 ± 4.43</td>
<td>133 ± 14.3</td>
<td>8.2</td>
</tr>
<tr>
<td>3f</td>
<td></td>
<td>7.80 ± 2.98</td>
<td>307 ± 7.48</td>
<td>39</td>
</tr>
<tr>
<td>3g</td>
<td></td>
<td>22.2 ± 3.93</td>
<td>47.0 ± 3.00</td>
<td>2.1</td>
</tr>
<tr>
<td>CPA</td>
<td></td>
<td>8.48 ± 0.30</td>
<td>1.20 ± 0.39</td>
<td></td>
</tr>
<tr>
<td>ZM241385</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a All values are expressed as the mean ± SD of triplicate determinations.
*b Selectivity index (A2A Ki/A1 Ki)
*c N°-Cyclopentyladenosine, a known adenosine A1 agonist, used as reference for A1 receptor affinity – literature K_i = 7.9 nM
*d A known adenosine A2A receptor antagonist, used as positive reference for A2A receptor affinity – literature K_i = 2 nM

The ether substituted 2-amino-4,6-diphenylpyrimidines were mostly selective for the A1 receptor and exhibited A1 Ki values that ranged from 5.66 - 48.8 nM. For the compounds with the 2 carbon linker in the side chain (3b, 3d, 3e and 3f) similar A1 affinities were obtained, however morpholine substitution appears to be least favourable, possibly indicating that a more hydrophobic terminal ring is preferable. Interestingly, addition of a carbonyl to the side chain and opening of the terminal ring (3g) also appears to affect adenosine A1 affinity negatively. Comparison of the A1 affinities of compound 3c, with the weakest A1 receptor affinity (K_i = 48.8 nM), to 3a (K_i = 5.66 nM) and 3b (K_i = 7.31 nM) reveals that the longer carbon side chain linker (3c) is detrimental for A1 receptor affinity. In fact, compound 3a, with the shortest side chain, has the highest A1 receptor affinity (K_i = 5.66 nM), which further suggests that a shorter, hydrophobic side chain is better accommodated by the A1 receptor binding site.

By comparison, adenosine A2A affinities were generally weaker with A2A Ki values ranging from 47.0 – 352 nM. When comparing the adenosine A2A receptor affinities within the series of compounds, it is evident that ether substitution is less favourable than amide (e.g. 1) or carbamate (e.g. 2) substitution.
(these results can be directly compared since these compounds were evaluated under identical experimental conditions). This is probably due to the absence of the carbonyl group which was previously shown to be important for adenosine A_{2A} receptor affinity. This theory was further supported by the finding that compound $3g$, which is the only compound from this series containing a carbonyl group in the side chain, exhibited the highest A_{2A} affinity ($K_i = 47.0$ nM) of the series. However, it also appears that the position of the carbonyl in the side chain is important as the A_{2A} affinity of this compound is weaker than those observed for the previously synthesised amides and carbamates.

Additional molecular modelling studies were subsequently performed in order to rationalise the results obtained from the radioligand binding assays. The synthesised compounds were docked into a model of the binding site of the crystallised adenosine A_{2A} receptor (PDB code: 3EML) using the CDOCKER function of Discovery Studio 3.1. Visual inspection of the docked ether derivatives revealed that these compounds undergo several of the interactions previously observed for other 2-aminopyrimidines, which are most likely responsible for anchoring these compounds in the binding site. These include $\pi-\pi$ interactions with Phe168 and intermolecular hydrogen bonding between the exocyclic amino group of the pyrimidine ring and Glu169 as well as Asn253 (Figure 2A). However, since most of these compounds do not have a carbonyl group in their side chains, no interaction is observed with Tyr271 as previously reported for related amides (Figure 2A). However, compound $3g$ is an exception, since it is the only compound from the current series that exhibits an additional hydrogen bond interaction between the carbonyl oxygen and Tyr271 (Figure 2B). This additional interaction provides, at least in part, an explanation for the superior adenosine A_{2A} affinity observed for $3g$ in the radioligand binding assays. It can therefore be concluded that the interaction between the carbonyl and Tyr271 is important and that loss of this interaction leads to a decrease in adenosine A_{2A} receptor affinity.

Figure 2: Compound $3e$ (A) and $3g$ (B) docked in the binding site of the human A_{2A} receptor. $\pi-\pi$ Interactions are indicated in orange while intermolecular hydrogen bond interactions are indicated in green.
Conclusion

The ether substituted 2-amino-4,6-diphenylpyrimidines synthesised in this study exhibited some selectivity for the A_1 receptor, over the A_{2A} receptor. The moderate A_{2A} affinities observed for these compounds are most likely due to the absence of a carbonyl group in the side chain, which was supported by the results obtained from molecular docking studies. These particular compounds, being A_1 receptor selective, could therefore be investigated for application in alternative disease states.

References

Supplementary material

1. Materials and instrumentation

2. Synthesis

3. Physical data

4. NMR Spectra

1. Materials and instrumentation

All chemicals were purchased from Sigma-Aldrich and used without any further purification. Solvents for synthesis and chromatography were obtained from Associated Chemical Enterprises while deuterated solvents for nuclear magnetic resonance (NMR) spectroscopy were purchased from Merck.

Thin layer chromatography (TLC):
Precoated Kieselgel 60 F254 plates (Merck) were used to monitor reactions. Detection was done by UV light at a wavelength of 254 nm.

Melting points:
The melting points of all compounds were determined using a Buchi B-545 apparatus, and are uncorrected.

Mass spectrometry (MS):
The mass spectra for all compounds were obtained with a Bruker micrOTOF-QII mass spectrometer in atmospheric-pressure chemical ionisation (APCI) mode.

Nuclear magnetic resonance (NMR) spectroscopy:
A Bruker Avance III 600 spectrometer was used to record proton (^1H) and carbon (^13C) NMR spectra at frequencies of 600 MHz and 151 MHz, respectively. Samples were dissolved in either deuterated dimethylsulfoxide (DMSO-d6) or deuterated chloroform (CDCl3). Reported ^1H NMR spectroscopic data indicate the chemical shift (δ) in ppm, the integration (e.g. 1H), the multiplicity and the coupling constant (J) in Hz. The following abbreviations are used: s (singlet), br s (broad singlet), d (doublet), br d (broad doublet), dd (doublet of doublets), ddd (doublet of doublet of doublets), t (triplet), br t (broad triplet), q (quartet), p (pentet/quintet) or m (multiplet). Chemical shifts are referenced to the residual
solvent signal (DMSO-d_6: 2.5 and 39.5 ppm for 1H and 13C respectively; CDCl$_3$ 7.26 and 77.0 ppm for 1H and 13C respectively).

2. Synthesis

General procedure for the synthesis of (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (6)

![Chemical Structure](image)

A solution of sodium hydroxide (4% w/v; 49 mmol) in water, was added dropwise to a suspension of acetophenone (5) (24.5 mmol) and benzaldehyde (4) (24.5 mmol) in 300 ml methanol. The reaction mixture was refluxed at 90 °C for 5 days. Afterwards the reaction was concentrated *in vacuo* and equal volumes of ethyl acetate and water were added. The layers were separated and the water phase was extracted twice with ethyl acetate. The organic layers were combined, concentrated *in vacuo* and the subsequent solid was recrystallised from ethanol.

General procedure for the synthesis of ethers (7a-g)

![Chemical Structure](image)

(2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (6) (11.1 mmol) was added to a stirred suspension of 100 ml acetonitrile and potassium carbonate (22.2 mmol). After stirring for 30 minutes, the alkyl chloride (13.3 mmol) was added to the mixture. The reaction was refluxed overnight at 90 °C, cooled to room temperature and water (~ 100 ml) was added until a precipitate formed. The resulting solid was filtered and recrystallised from ethanol. In cases where no precipitate formed, the solvent was evaporated and the product extracted with chloroform.
General procedure for the synthesis of aminopyrimidines (3a-g)

Guanidine hydrochloride (4.61 mmol) was suspended in a small amount of DMF (20 ml) and the required ether intermediate (7a–g) (3.07 mmol) and sodium hydride (4.61 mmol) were added to the reaction mixture. The reaction was heated (90 °C) overnight under nitrogen, allowed to cool down and subsequently diluted with equal volumes of water and ethyl acetate. The aqueous phase was extracted with ethyl acetate and the organic layers combined. All traces of DMF were removed by washing the combined organic layers four to five times with water. The organic layer was concentrated in vacuo and the crude product purified by silica gel column chromatography [dichloromethane: methanol (98:2)]. The resulting solid was recrystallised from ethanol.

3. Physical data

Chalcones:

(2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (6)

The title compound was prepared from 3-hydroxybenzaldehyde and acetophenone in a yield of 59%: mp 88.4 – 89.2 °C (ethyl acetate), pale yellow solid. 1H NMR (600 MHz, DMSO- d 6) δ 9.68 (s, 1H), 8.17 – 8.12 (m, 2H), 7.84 (d, J = 15.6 Hz, 1H), 7.72 – 7.62 (m, 2H), 7.56 (br t, J = 7.7 Hz, 2H), 7.32 (br d, J = 7.8 Hz, 1H), 7.29 – 7.23 (m, 2H), 6.90 (ddd, J = 8.0, 2.5, 1.0 Hz, 1H). 13C NMR (151 MHz, DMSO- d 6) δ 189.2, 157.8, 144.3, 137.6, 135.9, 133.1, 129.9, 128.8, 128.5, 121.9, 119.9, 117.9, 115.3. APCI-HRMS m/z: calcd for C15H13O2 (M + H)⁺, 225.0910, found 225.0910.
(2E)-3-[3-(benzyloxy)phenyl]-1-phenylprop-2-en-1-one (7a)

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (6) and benzyl chloride in a yield of 80%: mp 88.4 – 89.2 °C (ethanol), light yellow crystals. ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 15.7 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.46 – 7.39 (m, 3H), 7.38 (br d, J = 8.3 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.30 – 7.23 (m, 2H), 7.20 – 7.15 (m, 2H), 6.96 (dd, J = 8.2, 2.4 Hz, 1H), 5.03 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 190.4, 159.1, 144.6, 138.1, 136.6, 136.2, 132.8, 129.9, 128.61 (2C), 128.58 (2C), 128.5 (2C), 128.1, 127.5 (2C), 122.3, 121.4, 117.0, 114.4, 70.1. APCI-HRMS m/z: calcd for C₂₂H₁₉O₂ (M + H)⁺, 315.1380, found 315.1354.

(2E)-1-phenyl-3-[3-(2-phenylethoxy)phenyl]prop-2-en-1-one (7b)

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (6) and (2-chloroethyl)benzene in a yield of 61%: light yellow gum. ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 15.7 Hz, 1H), 7.63 – 7.55 (m, 1H), 7.55 – 7.49 (m, 3H), 7.38 – 7.30 (m, 3H), 7.30 – 7.22 (m, 2H), 7.18 (br s, 1H), 6.98 (dd, J = 8.2, 2.4 Hz, 1H), 4.24 (t, J = 7.0 Hz, 2H), 3.15 (t, J = 7.0 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 190.4, 159.1, 144.7, 138.1, 138.0, 136.2, 132.7, 129.9, 129.0 (2C), 128.6 (2C), 128.48 (2C), 128.45 (2C), 126.5, 122.2, 121.3, 116.8, 113.9, 68.7, 35.7. APCI-HRMS m/z: calcd for C₂₃H₂₁O₂ (M + H)⁺, 329.1536, found 329.1534.
(2E)-1-phenyl-3-[3-(3-phenylpropoxy)phenyl]prop-2-en-1-one (7e)

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (6) and (3-chloropropyl)benzene in a yield of 39%: mp 68.0 – 69.5 °C (ethanol), yellow crystals. 1H NMR (600 MHz, CDCl$_3$) δ 8.07 – 8.02 (m, 2H), 7.79 (d, J = 15.7 Hz, 1H), 7.63 – 7.57 (m, 1H), 7.56 – 7.50 (m, 3H), 7.37 – 7.29 (m, 3H), 7.27 – 7.21 (m, 4H), 7.17 (t, J = 2.0 Hz, 1H), 6.97 (dd, J = 8.2, 2.6 Hz, 1H), 4.02 (t, J = 6.3 Hz, 2H), 2.85 (t, J = 7.6 Hz, 2H), 2.19 – 2.11 (m, 2H). 13C NMR (151 MHz, CDCl$_3$) δ 190.5, 159.3, 144.7, 141.3, 138.1, 136.2, 132.7, 129.9, 128.6 (2C), 128.5 (4C), 128.4 (2C), 125.9, 122.2, 121.1, 116.8, 114.0, 66.9, 32.1, 30.7. APCI-HRMS m/z: calcd for C$_{24}$H$_{23}$O$_2$ (M + H)$^+$, 343.1693, found 343.1682.

(2E)-1-phenyl-3-{3-[2-(piperidin-1-yl)ethoxy]phenyl}prop-2-en-1-one (7d)

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (6) and 1-(2-chloroethyl)piperidine in a yield of 69%: orange gum. 1H NMR (600 MHz, CDCl$_3$) δ 8.01 (br d, J = 8.1 Hz, 2H), 7.76 (d, J = 15.6 Hz, 1H), 7.61 – 7.53 (m, 1H), 7.53 – 7.47 (m, 3H), 7.31 (t, J = 7.9 Hz, 1H), 7.25 – 7.15 (m, 2H), 6.96 (dd, J = 8.2, 2.5 Hz, 1H), 4.15 (t, J = 6.0 Hz, 2H), 2.81 (t, J = 6.0 Hz, 2H), 2.54 (br s, 4H), 1.65 – 1.59 (m, 4H), 1.48 – 1.42 (m, 2H). 13C NMR (151 MHz, CDCl$_3$) δ 190.4, 159.1, 144.7, 138.1, 136.1, 132.7, 129.9, 128.6 (2C), 128.4 (2C), 122.2, 121.3, 116.8, 113.9, 65.9, 57.8, 55.0 (2C), 25.7 (2C), 24.0. APCI-HRMS m/z: calcd for C$_{22}$H$_{26}$NO$_2$ (M + H)$^+$, 336.1958, found 336.1959.
(2E)-3-\{3-[2-(morpholin-4-yl)ethoxy]phenyl\}-1-phenylprop-2-en-1-one (7e)

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (6) and 4-(2-chloroethyl)morpholine in a yield of 67%: amber gum. 1H NMR (600 MHz, CDCl$_3$) δ 8.03 – 7.98 (m, 2H), 7.75 (d, J = 15.7 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.53 – 7.47 (m, 3H), 7.32 (t, J = 7.9 Hz, 1H), 7.23 (br d, J = 7.6 Hz, 1H), 7.17 (t, J = 2.0 Hz, 1H), 6.96 (dd, J = 8.3, 2.6 Hz, 1H), 4.15 (t, J = 5.7 Hz, 2H), 3.76 – 3.68 (m, 4H), 2.82 (t, J = 5.7 Hz, 2H), 2.65 – 2.56 (m, 4H). 13C NMR (151 MHz, CDCl$_3$) δ 190.4, 159.0, 144.6, 138.0, 136.2, 132.8, 129.9, 128.6 (2C), 128.4 (2C), 122.3, 121.3, 116.8, 114.0, 66.8 (2C), 65.8, 57.5, 54.0 (2C). APCI-HRMS m/z: calcd for C$_{21}$H$_{24}$NO$_3$ (M + H)$^+$, 338.1751, found 338.1729.

(2E)-1-phenyl-3-\{3-[2-(pyrrolidin-1-yl)ethoxy]phenyl\}prop-2-en-1-one (7f)

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (6) and 1-(2-chloroethyl)pyrrolidine in a yield of 38%: amber gum. 1H NMR (600 MHz, CDCl$_3$) δ 8.00 (br d, J = 8.2 Hz, 2H), 7.75 (d, J = 15.7 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.54 – 7.46 (m, 3H), 7.30 (t, J = 7.9 Hz, 1H), 7.24 – 7.16 (m, 2H), 6.96 (dd, J = 8.2, 2.5 Hz, 1H), 4.17 (t, J = 5.8 Hz, 2H), 2.96 (t, J = 5.8 Hz, 2H), 2.72 – 2.64 (m, 4H), 1.82 (p, J = 3.2 Hz, 4H). 13C NMR (151 MHz, CDCl$_3$) δ 190.4, 159.0, 144.6, 138.0, 136.1, 132.7, 129.9, 128.5 (2C), 128.4 (2C), 122.2, 121.3, 116.8, 113.9, 66.8, 54.9, 54.6 (2C), 23.4 (2C). APCI-HRMS m/z: calcd for C$_{21}$H$_{24}$NO$_2$ (M + H)$^+$, 322.1802, found 322.1782.
N,N-diethyl-2-{3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenoxy}acetamide (7g)

The title compound was prepared from (2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (6) and 2-chloro-N,N-diethylacetamide in a yield of 99%: light yellow gum. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 8.02 – 7.97 (m, 2H), 7.73 (d, \(J = 15.7\) Hz, 1H), 7.60 – 7.53 (m, 1H), 7.53 – 7.45 (m, 3H), 7.31 (t, \(J = 7.9\) Hz, 1H), 7.28 – 7.19 (m, 2H), 6.99 (dd, \(J = 8.2, 2.6\) Hz, 1H), 4.71 (s, 2H), 3.46 – 3.23 (m, 4H), 1.21 (t, \(J = 7.1\) Hz, 3H), 1.13 (t, \(J = 6.7\) Hz, 3H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 190.3, 166.5, 158.4, 144.3, 138.0, 136.3, 132.7, 129.9, 128.5 (2C), 128.4 (2C), 122.4, 121.7, 116.7, 114.3, 67.3, 41.5, 40.3, 14.3, 12.7. APCI-HRMS m/z: calcd for C\(_{21}\)H\(_{24}\)NO\(_3\) (M + H\(^+\)), 338.1751, found 338.1749.

Aminopyrimidines:

4-[3-(benzyloxy)phenyl]-6-phenylpyrimidin-2-amine (3a)

The title compound was prepared from (2E)-3-[3-(benzyloxy)phenyl]-1-phenylprop-2-en-1-one (7a) in a yield of 6%: mp 106.6 – 107.3 °C (ethanol), light yellow crystals. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 8.09 – 8.03 (m, 2H), 7.75 (dd, \(J = 2.6, 1.6\) Hz, 1H), 7.65 (dt, \(J = 7.8, 1.1\) Hz, 1H), 7.55 – 7.46 (m, 5H), 7.45 – 7.38 (m, 4H), 7.39 – 7.32 (m, 1H), 7.12 (ddd, \(J = 8.2, 2.6, 0.9\) Hz, 1H), 5.43 (s, 2H), 5.16 (s, 2H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 166.2, 165.9, 163.6, 159.1, 139.2, 137.7, 136.8, 130.4, 129.8, 128.7 (2C), 128.6 (2C), 128.0, 127.5 (2C), 127.1 (2C), 119.7, 117.0, 113.4, 104.3, 70.1. APCI-HRMS m/z: calcd for C\(_{23}\)H\(_{25}\)N\(_3\)O (M + H\(^+\)), 354.1601, found 354.1567.
4-phenyl-6-[3-(2-phenylethoxy)phenyl]pyrimidin-2-amine (3b)

The title compound was prepared from (2\text{E})-1-phenyl-3-[3-(2-phenylethoxy)phenyl]prop-2-en-1-one (7b) in a yield of 8\%: mp 123.4 – 124.9 °C (ethanol), light yellow crystals. 1H NMR (600 MHz, CDCl$_3$) δ 8.00 – 7.93 (m, 2H), 7.56 – 7.50 (m, 2H), 7.44 – 7.36 (m, 3H), 7.33 (s, 1H), 7.30 (t, $J = 7.9$ Hz, 1H), 7.27 – 7.21 (m, 4H), 7.20 – 7.13 (m, 1H), 6.94 (ddd, $J = 8.2$, 2.6, 0.9 Hz, 1H), 5.33 (br s, 2H), 4.18 (t, $J = 7.1$ Hz, 2H), 3.05 (t, $J = 7.1$ Hz, 2H). 13C NMR (151 MHz, CDCl$_3$) δ 166.2, 165.9, 163.6, 159.2, 139.1, 138.1, 137.7, 130.4, 129.7, 129.0 (2C), 128.7 (2C), 128.5 (2C), 127.1 (2C), 126.5, 119.5, 116.9, 112.9, 104.3, 68.7, 35.8. APCI-HRMS m/z: calcd for C$_{24}$H$_{22}$N$_3$O (M + H)$^+$, 368.1757, found 368.1729.

4-phenyl-6-[3-(3-phenylpropoxy)phenyl]pyrimidin-2-amine (3c)

The title compound was prepared from (2\text{E})-1-phenyl-3-[3-(3-phenylpropoxy)phenyl]prop-2-en-1-one (7c) in a yield of 33\%: mp 121.0 – 122.6 °C (ethanol), light yellow crystals. 1H NMR (600 MHz, CDCl$_3$) δ 8.10 – 8.05 (m, 2H), 7.67 – 7.61 (m, 2H), 7.53 – 7.49 (m, 3H), 7.46 (s, 1H), 7.41 (t, $J = 7.9$ Hz, 1H), 7.31 (t, $J = 7.6$ Hz, 2H), 7.29 – 7.19 (m, 3H), 7.04 (ddd, $J = 8.2$, 2.6, 1.0 Hz, 1H), 5.44 (s, 2H), 4.07 (t, $J = 6.2$ Hz, 2H), 2.89 – 2.83 (m, 2H), 2.20 – 2.12 (m, 2H). 13C NMR (151 MHz, CDCl$_3$) δ 166.2, 166.0, 163.6, 159.4, 141.4, 139.1, 137.7, 130.4, 129.7, 128.7 (2C), 128.5 (2C), 128.4 (2C), 127.1 (2C), 125.9, 119.4, 116.7, 113.0, 104.3, 66.9, 32.1, 30.8. APCI-HRMS m/z: calcd for C$_{25}$H$_{24}$N$_3$O (M + H)$^+$, 382.1914, found 382.1876.
4-phenyl-6-\{3-[2-(piperidin-1-yl)ethoxy]phenyl\}pyrimidin-2-amine (3d)

The title compound was prepared from (2E)-1-phenyl-3-\{3-[2-(piperidin-1-yl)ethoxy]phenyl\}prop-2-en-1-one (7d) in a yield of 31%: orange gum. 1H NMR (600 MHz, CDCl$_3$) 1H NMR (600 MHz, CDCl$_3$) δ 8.06 – 8.01 (m, 2H), 7.65 – 7.58 (m, 2H), 7.51 – 7.45 (m, 3H), 7.42 (s, 1H), 7.37 (t, $J = 7.9$ Hz, 1H), 7.02 (dd, $J = 8.2, 2.5$ Hz, 1H), 5.40 (s, 2H), 4.20 (t, $J = 6.0$ Hz, 2H), 2.81 (t, $J = 6.0$ Hz, 2H), 2.53 (s, 4H), 1.66 – 1.57 (m, 4H), 1.47 – 1.41 (m, 2H). 13C NMR (151 MHz, CDCl$_3$) δ 166.1, 165.9, 163.5, 159.1, 139.1, 137.1, 137.7, 130.4, 129.7, 128.7 (2C), 127.0 (2C), 119.5, 116.8, 113.0, 104.3, 65.9, 57.9, 55.0 (2C), 25.8 (2C), 24.1. APCI-HRMS m/z: calcd for C$_{23}$H$_{27}$N$_4$O (M + H)$^+$, 375.2179, found 375.2155.

*Acetone in NMR sample, due to acetone in NMR tube.

4-{3-[2-(morpholin-4-yl)ethoxy]phenyl}-6-phenylpyrimidin-2-amine (3e)

The title compound was prepared from (2E)-3-\{3-[2-(morpholin-4-yl)ethoxy]phenyl\}-1-phenylprop-2-en-1-one (7e) in a yield of 19%: mp 104.4 – 106.1 °C (ethanol), light yellow crystals. 1H NMR (600 MHz, CDCl$_3$) δ 8.06 – 8.01 (m, 2H), 7.67 – 7.59 (m, 2H), 7.52 – 7.46 (m, 3H), 7.42 (s, 1H), 7.36 (t, $J = 7.9$ Hz, 1H), 7.03 (dd, $J = 8.2, 2.6$ Hz, 1H), 5.46 (br s, 2H), 4.20 (t, $J = 5.7$ Hz, 2H), 3.74 (t, $J = 4.7$ Hz, 4H), 2.83 (t, $J = 5.7, 1.5$ Hz, 2H), 2.59 (br s, 4H). 13C NMR (151 MHz, CDCl$_3$) δ 166.2, 165.8, 163.6, 159.1, 139.1, 137.1, 137.6, 130.4, 129.7, 128.7 (2C), 127.0 (2C), 119.6, 116.8, 113.0, 104.3, 66.9 (2C), 65.8, 57.6, 54.0 (2C). APCI-HRMS m/z: calcd for C$_{22}$H$_{25}$N$_4$O$_2$ (M + H)$^+$, 377.1972, found 377.1986.
4-phenyl-6-{3-[2-(pyrrolidin-1-yl)ethoxy]phenyl}pyrimidin-2-amine (3f)

![Chemical Structure](image)

The title compound was prepared from (2E)-1-phenyl-3-{3-[2-(pyrrolidin-1-yl)ethoxy]phenyl}prop-2-en-1-one (7f) in a yield of 30%: amber paste. 1H NMR (600 MHz, CDCl$_3$) δ 8.05 – 8.00 (m, 2H), 7.64 (br t, $J = 2.1$ Hz, 1H), 7.60 (dt, $J = 7.7$, 1.3 Hz, 1H), 7.51 – 7.45 (m, 3H), 7.41 (s, 1H), 7.37 (t, $J = 7.9$ Hz, 1H), 7.03 (ddd, $J = 8.2$, 2.6, 0.9 Hz, 1H), 5.43 (s, 2H), 4.27 (t, $J = 5.7$ Hz, 2H), 3.05 (t, $J = 5.7$ Hz, 2H), 2.81 (t, $J = 5.4$ Hz, 4H), 1.87 (p, $J = 3.6$ Hz, 4H). 13C NMR (151 MHz, CDCl$_3$) δ 166.2, 165.8, 163.5, 158.5, 139.1, 137.6, 130.4, 129.7, 128.7 (2C), 127.0 (2C), 119.7, 116.8, 113.0, 104.3, 66.2, 54.7, 54.6 (2C), 23.3 (2C). APCI-HRMS m/z: calcd for C$_{22}$H$_{25}$N$_4$O (M + H)$^+$, 361.2023, found 361.2018. * Methanol in sample.

2-[3-(2-amino-6-phenylpyrimidin-4-yl)phenoxy]-N,N-diethylacetamide (3g)

![Chemical Structure](image)

The title compound was prepared from N,N-diethyl-2-[3-(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenoxy]acetamide (7g) in a yield of 28%: mp 91.6 – 92.8 °C (ethanol), orange solid. 1H NMR (600 MHz, CDCl$_3$) δ 8.06 – 8.00 (m, 2H), 7.69 – 7.61 (m, 2H), 7.51 – 7.45 (m, 3H), 7.43 – 7.36 (m, 2H), 7.08 (ddd, $J = 8.2$, 2.7, 0.9 Hz, 1H), 5.39 (s, 2H), 4.75 (s, 2H), 3.40 (dq, $J = 12.6$, 7.1 Hz, 4H), 1.22 (t, $J = 7.1$ Hz, 3H), 1.14 (t, $J = 7.1$ Hz, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 166.7, 166.2, 165.7, 163.5, 158.5, 139.2, 137.6, 130.4, 129.8, 128.7 (2C), 127.0 (2C), 120.2, 116.9, 113.2, 104.3, 67.4, 41.5, 40.3, 14.3, 12.8. APCI-HRMS m/z: calcd for C$_{22}$H$_{25}$N$_4$O$_2$ (M + H)$^+$, 377.1972, found 377.1945. *Acetone in NMR sample, due to acetone in NMR tube.
4. NMR Spectra

Chalcones:

$(2E)$-3-[3-(benzyloxy)phenyl]-1-phenylprop-2-en-1-one (7a)

1H NMR

13C NMR
(2E)-1-phenyl-3-[3-(2-phenylethoxy)phenyl]prop-2-en-1-one (7b)

1H NMR

13C NMR
(2E)-1-phenyl-3-[3-(3-phenylpropoxy)phenyl]prop-2-en-1-one (7c)

1H NMR

13C NMR
(2E)-1-phenyl-3-{3-[2-(piperidin-1-yl)ethoxy]phenyl}prop-2-en-1-one (7d)

1H NMR

13C NMR
(2E)-3-{3-[2-(morpholin-4-yl)ethoxy]phenyl}-1-phenylprop-2-en-1-one (7e)

1H NMR

13C NMR
(2E)-1-phenyl-3-{3-[2-(pyrrolidin-1-yl)ethoxy]phenyl}prop-2-en-1-one (7f)

\[\text{H NMR} \]

\[\text{C NMR} \]
N,N-diethyl-2-{3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenoxy}acetamide (7g)

1H NMR

13C NMR
Aminopyrimidines

4-[3-(benzyloxy)phenyl]-6-phenylpyrimidin-2-amine (3a)

1H NMR

13C NMR
4-phenyl-6-[3-(2-phenylethoxy)phenyl]pyrimidin-2-amine (3b)

1H NMR

13C NMR
4-phenyl-6-[3-(3-phenylpropoxy)phenyl]pyrimidin-2-amine (3c)

1H NMR

13C NMR
4-phenyl-6-{3-[2-(piperidin-1-yl)ethoxy]phenyl}pyrimidin-2-amine (3d)

1H NMR

13C NMR
4-\{3-[2-(morpholin-4-yl)ethoxy]phenyl\}-6-phenylpyrimidin-2-amine (3e)

1H NMR

13C NMR
4-phenyl-6-\{3-[2-(pyrrolidin-1-yl)ethoxy]phenyl\}pyrimidin-2-amine (3f)

1H NMR

13C NMR
2-[3-(2-amino-6-phenylpyrimidin-4-yl)phenoxy]-N,N-diethylacetamide (3g)

1H NMR

13C NMR
CHAPTER 7

Conclusion

The 2-aminopyrimidine chemotype is a privileged scaffold for antagonism of adenosine receptors as this motif frequently occurs in compounds that exhibit potent adenosine A_{2A} and/or adenosine A_{1} affinity. These compounds, which act on a non-dopaminergic target, have the potential to improve the motor and non-motor symptoms of Parkinson’s disease, and could, in addition, also inhibit further neurodegeneration, thus preventing the progress of this debilitating disease.

The main objectives of this study were as follows: Firstly, the adenosine A_{1} affinities of a series of 2-aminopyrimidines synthesised in a preceding study needed to be determined, and preliminary cytotoxicity data had to be obtained. Secondly, the structure-activity relationships of the promising 2-amino-4,6-diphenylpyrimidine scaffold required further investigation, and would be done by synthesising three novel series of amide, carbamate and ether substituted 2-amino-4,6-diphenylpyrimidines. These objectives were successfully met and culminated in the drafting of four manuscripts for publication.

The first article (Robinson et al., European Journal of Medicinal Chemistry 2015, 104: 177-188) describes the potential of 2-aminopyrimidines as dual adenosine A_{1} and A_{2A} antagonists and consists of a combination of work done in the preceding MSc study, as well as work done during the current PhD study. In the preceding MSc study, two series of 2-aminopyrimidine derivatives were synthesised and their affinities for adenosine A_{2A} receptors determined (see appendix 1). The amide series showed promising affinities with $A_{2A}K_i$ values ranging from 6 nM - 3 µM (e.g. 7.1 – 7.4). In addition, in vivo activity was illustrated for two of the amide derivatives, which was indicative of adenosine A_{2A} antagonism. Molecular docking results furthermore indicated that interactions observed between the synthesised compounds and residues in the binding site, were similar to interactions previously observed for structurally related adenosine A_{2A} antagonists. This provided further confirmation of the viability of this scaffold in the design of adenosine A_{2A} receptor antagonists. In the present study, the biological data of these derivatives were expanded by evaluating their potential as adenosine A_{1} receptor antagonists. The amide substituted series exhibited promising affinities for the A_{1} receptor and 4-(5-methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (7.4) was identified as a compound with potent dual affinity with an $A_{2A}K_i$ value of 6.34 nM and an $A_{1}K_i$ value of 9.54 nM. Cell viability assays further indicated that the amide series exhibited low cytotoxicity. These results provided proof of concept and formed a basis for further exploration of these compounds as dual adenosine A_{2A} and A_{1} antagonists in the current study.
Table 7.1:

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>A_1K_i (nM) ± SEM</th>
<th>$A_{2A}K_i$ (nM) ± SEM</th>
<th>Cell viability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 µM</td>
<td>10 µM</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>O</td>
<td>52.12 ± 16.86 (n=4)</td>
<td>29.32 ± 0.9779</td>
<td>99 82</td>
</tr>
<tr>
<td>7.2</td>
<td>N</td>
<td>135.6 ± 1.878</td>
<td>16.28 ± 2.181</td>
<td>107 77</td>
</tr>
<tr>
<td>7.3</td>
<td>N</td>
<td>36.78 ± 5.424</td>
<td>58.22 ± 19.94</td>
<td>83 79</td>
</tr>
<tr>
<td>7.4</td>
<td>N</td>
<td>9.54 ± 1.338</td>
<td>6.344 ± 0.5317</td>
<td>115 68</td>
</tr>
</tbody>
</table>

In the second article (submitted to *Bioorganic and Medicinal Chemistry Letters*), alternative amide substitution of the 2-amino-4,6-diphenylpyrimidine core was investigated. The methyl furan substituent at the 4-position of the pyrimidine ring in the original series of compounds (Table 7.1) was replaced with a phenyl ring as this simplified the synthesis. Furthermore, results from a related study indicated that this change did not alter affinity to a large degree. The main aim was to investigate the effect of elongation of the amide side chain on adenosine A_1 and A_{2A} affinities. Therefore, ten amide substituted 2-amino-4,6-diphenylpyrimidines were synthesised. These derivatives (Table 7.2) generally showed improved dual affinities, when compared to related derivatives of the previous series (Table 7.1). K_i values for this series ranged from 5.42 - 25.2 nM and 3.37 - 106.5 nM for A_1 and A_{2A} receptors, respectively.
Although no clear structure-activity relationships could be derived regarding A_1 affinities, p-chlorobenzyl substitution (7.8) was most favourable ($A_1K_i = 5.42$ nM). The difference between the adenosine A_1 affinities of the compounds from this series are however, reasonably small, (ranging from 5.42 nM to 25.2 nM) and it would thus appear that the adenosine A_1 receptor is capable of accommodating a variety of substituents and different chain lengths (depending on the terminal substituent) almost equally well. On the other hand, the A_{2A} receptor affinity was noticeably influenced by the length of the side chain as compounds 7.9 ($K_i = 1.67$ nM) and 7.5 ($K_i = 3.37$ nM) with the longest side chains had the best affinities. The best dual affinity compound from this series (7.5), was selected for \textit{in vivo} screening. Compound 7.5 attenuated catalepsy in rats as previously observed for other adenosine A_{2A} antagonists, and provides evidence of \textit{in vivo} efficacy of this compound as an antagonist. These results are also indicative of bio-availability. Molecular docking results did not provide clarification regarding the differences in affinities observed between individual compounds, but
interactions similar to those observed for related 2-aminopyrimidines were observed, confirming their ability to fit into the binding site.

The third article describes the synthesis and evaluation of a novel series of carbamate substituted 2-amino-4,6-diphenylpyrimidines as dual adenosine A_1 and A_{2A} receptor antagonists (e.g. compounds in Table 7.3). The carbamate moiety was incorporated since it is often found in therapeutic agents such as the acetylcholinesterase inhibitor rivastigmine, used as therapy for Alzheimer’s disease. Gratifyingly, most of the synthesised carbamates illustrated potent dual affinity for both receptor subtypes with A_1K_i values ranging from 0.175 nM - 10 nM and $A_{2A}K_i$ values ranging from 1.58 nM – 451 nM. In fact, the most potent dual affinity derivatives from this PhD were from this series of compounds, and it is clear that carbamate substitution is preferable over both amide and ether substitution (Table 7.3 vs Tables 7.1, 7.2 and 7.4). Substitution with six-membered saturated cyclic carbamate substituents appears to yield optimal A_{2A} receptor affinity (7.10, 7.11, 7.12). The size of the carbamate substituent further affects affinity to a greater degree for A_{2A} receptors, where substitution with groups that are either too small (e.g. 7.14) or too large (e.g. 7.15 and 7.16) appears to be detrimental for affinity. By comparison, the A_1 receptors are able to accommodate larger carbamate substituents without loss of binding affinity.

Table 7.3:

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>$A_1 K_i$ (nM)</th>
<th>$A_{2A} K_i$ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.10</td>
<td>$\frac{1}{2}N$</td>
<td>1.95 ± 0.278</td>
<td>8.94 ± 0.259</td>
</tr>
<tr>
<td>7.11</td>
<td>$\frac{1}{2}N$</td>
<td>2.04 ± 0.002</td>
<td>1.58 ± 0.311</td>
</tr>
<tr>
<td>7.12</td>
<td>$\frac{1}{2}N$</td>
<td>2.65 ± 0.059</td>
<td>3.50 ± 0.030</td>
</tr>
<tr>
<td>7.13</td>
<td>$\frac{3}{2}N$</td>
<td>0.835 ± 0.088</td>
<td>24.8 ± 6.61</td>
</tr>
<tr>
<td>7.14</td>
<td>$\frac{1}{2}N$</td>
<td>2.06 ± 0.135</td>
<td>51.9 ± 3.07</td>
</tr>
</tbody>
</table>
These results were partially explained by molecular docking studies. Interestingly, in contrast to interactions observed for the previously synthesised amide derivatives, a hydrogen bond was observed between Glu169 (Figure A) and the carbonyl group instead of Tyr271 (Figure B) as observed for the amide derivatives. It is thus postulated that this particular interaction plays an important role in the potent affinities observed for these compounds.

Furthermore, compound 7.16, with the lowest A2A affinity, also exhibited the least favourable C-DOCKER – as well as C-DOCKER-interaction energies. In addition, it was observed that compound 7.16 is docked “upside down” in the binding site when compared to the rest of the synthesised compounds, resulting in the absence of several important interactions observed for other structurally related A2A antagonists. The most promising dual affinity candidates, compounds 7.11 and 7.12 were subsequently selected for in vivo screening. Catalepsy was attenuated after administration of compound 7.12, providing evidence of bio-availability and indicating that this compound is indeed an antagonist. Disappointingly, compound 7.11, with the highest dual affinity, did not reverse catalepsy and appeared to be inactive in vivo, possibly due to unfavourable physicochemical properties, such as poor water solubility. The solubility and log D of compound 7.11 was thus subsequently determined and a Log D

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.15</td>
<td></td>
<td>1.07 ± 0.079</td>
</tr>
<tr>
<td>7.16</td>
<td></td>
<td>10.7 ± 0.431</td>
</tr>
</tbody>
</table>

Figure 7.1: A) Example of amide derivative 7.2 and B) carbamate derivative 7.12 docked in adenosine A2A receptor binding pocket. Orange lines illustrate hydrophobic interactions. Green lines illustrate intermolecular hydrogen bonding.
value of 4.03 and an aqueous solubility of 0.22 \(\mu \text{M} \) were obtained. This compound is therefore probably too lipophilic and most likely precipitates after i.p. injection, and this combined with the low aqueous solubility, are probably responsible for the lack of observed activity \textit{in vivo}. Although compounds from this series were thus highly active \textit{in vitro}, optimisation of physicochemical properties may be required in future studies.

For the fourth article, novel ether substituted 2-amino-4,6-diphenylpyrimidines were evaluated as dual adenosine \(A_1 \) and \(A_{2A} \) antagonists. The main objective was to determine the importance of the carbonyl group present in the amide and carbamate derivatives, since the molecular docking studies showed that an interaction between this group and a residue in the binding site (Tyr271 or Glu169) is usually associated with good affinity. It was also hypothesised that the more flexible ether side chain would be able to rotate to a larger degree than the more rigid derivatives, allowing them to fit better in the binding sites of the \(A_1 \) and \(A_{2A} \) receptors, resulting in improved affinities for both receptor subtypes. However, results obtained in radioligand studies provided evidence that ether substitution is less favourable than related amide- (Table 7.1 and 7.2) or carbamate- (Table 7.3) substitution, particularly for adenosine \(A_{2A} \) affinity, since adenosine \(A_{2A} \) affinities were only moderate (\(A_{2A}K_i \) values ranging from 47.04 – 351.6 nM) (Table 7.4).

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>(A_1 K_i) (nM)</th>
<th>(A_{2A} K_i) (nM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.17</td>
<td></td>
<td>5.658 ± 1.005</td>
<td>326.8 ± 71.25</td>
<td>58</td>
</tr>
<tr>
<td>7.18</td>
<td></td>
<td>7.305 ± 0.691</td>
<td>77.81 ± 1.488</td>
<td>11</td>
</tr>
<tr>
<td>7.19</td>
<td></td>
<td>48.84 ± 7.643</td>
<td>351.6 ± 24.35</td>
<td>7.2</td>
</tr>
<tr>
<td>7.20</td>
<td></td>
<td>11.65 ± 1.482</td>
<td>193.5 ± 2.998</td>
<td>17</td>
</tr>
</tbody>
</table>
The importance of the carbonyl group for adenosine A\textsubscript{2A} affinity was thus confirmed. In contrast, these compounds still exhibited potent A\textsubscript{1}Ki values that ranged from 5.658 - 48.84 nM (Table 7.4). Most of these derivatives were also selective towards the A\textsubscript{1} receptor, indicating that the increase in flexibility of the side chain did not significantly alter binding to the binding site of the A\textsubscript{1} receptor. However, compound 7.17, with the shortest side chain, has the best A\textsubscript{1} receptor affinity (K\textsubscript{i} = 5.658 nM) which suggests that short, hydrophobic side chains are preferable for A\textsubscript{1} affinity. Molecular modelling studies were again performed in order to obtain some explanation for these results. The interactions observed for the 2-amino-4,6-diphenylpyrimidine scaffold were similar to those observed for the amide and carbamate derivatives. However, since the carbonyl group was absent in the side chains of most of these derivatives, no additional interactions were observed with either Glu169 or Tyr271, which confirms that this additional interaction results in improved adenosine A\textsubscript{2A} affinity. Further evidence for this is provided by the observation that an additional hydrogen bonding interaction was observed for compound 7.23, which is the only compound with a carbonyl group in its side chain that also exhibited the best A\textsubscript{2A} affinity.

In conclusion, 26 novel 2-amino-4,6-diphenylpyrimidines and their chalcone intermediates were synthesised for the first time during this study. The aminopyrimidines were evaluated for their potential as dual adenosine A\textsubscript{1} and A\textsubscript{2A} antagonists and several derivatives with potent dual affinity were identified. Although carbamate substitution resulted in the best in vitro results, bio-availability of these compounds could be problematic (further investigation in this regard is required) and amide substitution therefore seems preferable, as this resulted in high dual affinity and in vivo activity. Ether substitution on the other hand improves adenosine A\textsubscript{1} selectivity and could find application in alternative diseases. These results were compiled in four journal articles, of which one has been published (European Journal of Medicinal Chemistry), one has been submitted (Bioorganic and Medicinal Chemistry Letters) and two which are ready for submission to Chemical, Biology and Drug Design and Bioorganic and Medicinal Chemistry Letters, respectively. This study provided evidence of the potential of 2-
aminopyrimidines to be utilised in the treatment of the multiple symptoms as experienced in Parkinson’s disease.
Appendix

- **Table 8.1**: Compounds synthesised in the preceding M.Sc. study................................. 240

- **Original published article**: *European Journal of Medicinal Chemistry*......................... 241

- **Author guidelines** ... 253
 - Article 1 (*European Journal of Medicinal Chemistry*) ... 253
 - Article 2 (*Bioorganic and Medicinal Chemistry Letters*)... 265

- **Rights and access** .. 277

- **Mass spectra**
 - Article 2... 279
 (Amide substituted 2-amino-4,6-diphenylpyrimidines as adenosine receptor antagonists)
 - Article 3... 293
 (Carbamate substituted 2-amino-4,6-diphenylpyrimidines as adenosine receptor antagonists)
 - Article 4... 300
 (Synthesis and evaluation of novel ether derivatives of 2-amino-4,6-diphenylpyrimidine as potential dual adenosine A1 and A2A antagonists)

- **HPLC chromatography**
 - Article 2... 305
 (Amide substituted 2-amino-4,6-diphenylpyrimidines as adenosine receptor antagonists)
 - Article 3... 310
 (Carbamate substituted 2-amino-4,6-diphenylpyrimidines as adenosine receptor antagonists)
Table 8.1: Compounds synthesised in the preceding M.Sc. study

<table>
<thead>
<tr>
<th>Compound</th>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>R<sup>3</sup></th>
<th>Compound</th>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>R<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>8a</td>
<td>H</td>
<td>-Cl</td>
<td>H</td>
<td>8j</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8b</td>
<td>H</td>
<td>-Cl</td>
<td>H</td>
<td>8k</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8c</td>
<td>H</td>
<td>-Cl</td>
<td>H</td>
<td>8l</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8d</td>
<td>H</td>
<td>-OCH<sub>3</sub></td>
<td>H</td>
<td>8m</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8e</td>
<td>H</td>
<td>-OCH<sub>3</sub></td>
<td>H</td>
<td>8n</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8f</td>
<td>-OCH<sub>3</sub></td>
<td>-OCH<sub>3</sub></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8g</td>
<td>-Cl</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8h</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2-Aminopyrimidines as dual adenosine A₁/A_{2A} antagonists

Sarel J. Robinson^{a,b}, Jacobus P. Petzer^{a,b}, Gisella Terre'Blanche^{a,b}, Ané Petzer^b, Mietha M. van der Walt^a, Jacobus J. Bergh^{a,b}, Anna C.U. Lourens^{a,b}

^a Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
^b Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa

Article published in *European Journal of Medicinal Chemistry*

Research paper

ABSTRACT

In this study thirteen 2-aminopyrimidine derivatives were synthesised and screened as potential antagonists of adenosine A₁ and A_{2A} receptors in order to further investigate the structure activity relationships of this class of compounds. 4-(5-Methylsulfinyl-2-yi)-6-[3-(piperydine-1-carboxyethyl)pyrimdin-2-amine (88m) was identified as a compound with high affinities for both receptors, with an A_{2A}K_i value of 6.34 nM and an A₁K_i value of 9.54 nM. The effect of selected compounds on the viability of cultured cells was assessed and preliminary results indicate low cytotoxicity. In vivo efficacy at A_{2A} receptors was illustrated for compounds 88 and 80 since these compounds attenuated haloperidol-induced catalepsy in rats. A molecular docking study revealed that the interactions between the synthesised compounds and the adenosine A_{2A} binding site most likely involve Phe168 and Arg253, interactions which are similar for structurally related adenosine A_{2A} receptor antagonists.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Parkinson's disease is a complex, chronic neurodegenerative disorder, mainly characterised by a decline in motor function, but also associated with non-motor manifestations such as cognitive deficits (e.g. dementia) and neuropsychiatric symptoms, such as depression [1]. Management of the non-motor symptoms in particular is challenging and represents an important unmet medical need [2–4]. The neuropathology of the disease is hallmark by the selective degeneration of dopaminergic neurons of the nigrostriatal pathway and the resulting deficiency of dopamine in the basal ganglia [5]. However, the importance of other neurotransmitter systems and organs in Parkinson's disease pathogenesis is increasingly recognised [6–8].

Nevertheless, current treatments are still focused on enhancing dopaminergic neurotransmission and include the use of levodopa, (which is still the gold standard nearly 50 years since its introduction), dopamine agonists, catechol-O-methyltransferase and monoamine oxidase inhibitors. Since the chronic nature of the disease requires long-term use of medication, the occurrence of side-effects is unavoidable, and levodopa especially is associated with the development of debilitating dyskinesias [9,10]. Limited progress has been made in altering the progress of neurodegeneration, and to date, no agent has been established as neuroprotective or disease modifying [11,12]. Non-dopaminergic targets for the disease are thus particularly appealing; especially if these would also improve non-motor symptoms and provide neuroprotection [13]. In recent years, antagonists of the adenosine A_{2A} receptor in particular has received attention as a promising non-dopaminergic alternative [3, 4, 14–17] and several of these agents such as istradefylline (KW-6002), preladenant and tozadentan have been investigated clinically with promising results. Istradefylline for example has been approved for use as adjunctive treatment for Parkinson's disease in Japan [18–22].

Adenosine receptors are G-protein coupled receptors and consist of four subtypes, namely A₁, A_{2A}, A₃ and A_{2B} [23,24]. Of particular importance to Parkinson's disease are adenosine A_{2A} receptors which are concentrated in the indirect striatal-pallidal GABAergic pathway. This pathway also expresses the D₂ dopamine receptor and enkephalin [25–27]. Antagonism of A_{2A} receptors potentiate dopamine mediated responses and partly restores the imbalance between the hyperactive direct striatongral and hyperactive indirect striatopallidal pathways that develops in Parkinson's disease, thus relieving motor symptoms [14,16,28,29]. Both epidemiological and experimental data have shown that adenosine A_{2A} antagonists exert a neuroprotective effect [16]. Furthermore, it has
been reported that the adenosine A3A antagonists KW-6002, exhibit antidepressant properties in animal models of depression [30,31] and that adenosine A3A antagonists have potential in the management of dyskinetics [29,32]. This illustrates the promise of these agents as multifactorial non-dopaminergic treatment of Parkinson's disease.

Adenosine A1 receptors on the other hand, are expressed throughout the brain, including the cortex, hippocampus and striatum [23]. Since A1 receptor antagonism also results in motor activation in animals [33,34] it has been suggested that dual antagonism of A1 and A2A receptors would act synergistically in improving motor deficits in Parkinson's disease [4]. Furthermore, since the A1 receptor also occurs in systems that are important for cognitive function, adenosine A1 antagonism may improve cognitive deficits experienced in Parkinson's disease, as illustrated in animals [35–37]. Several dual adenosine A1/A2A antagonists have in fact been investigated in animals and has not only shown effectiveness in improving motor disabilities [438–43], but has also illustrated effectiveness in enhancing cognition [38]. In summary, dual adenosine A1 and A2A antagonists would thus not only treat the motor symptoms of Parkinson's disease and potentially be neuroprotective, but may also improve non-motor symptoms.

The 2-aminopyrimidine motif frequently occurs in compounds (e.g. 1–6) that exhibit potent adenosine A2A, and/or adenosine A1 affinity (Fig. 1) and indicates that this scaffold is privileged for antagonism of these receptors [4,13,17,40–48]. Of particular relevance to this paper are the findings of Van Veldhoven, Matasi and Shook and co-workers [40–42,66,47], who synthesised a number of 2-aminopyrimidines (e.g. 3), indenopyrimidines (e.g. 4, 5) and indenopyrimidines (e.g. 6), respectively.

Our research group has been interested in the design, synthesis and evaluation of heterocycles as antagonists of adenosine receptors. Based on the aforementioned findings, the aim of the present study was to explore the necessity of the methylene bridge as present in the indenopyrimidine or indenopyrimidone scaffolds previously synthesised [40–42,46] and to further investigate the structure–activity relationships of the 2-aminopyrimidine scaffold for dual antagonism of adenosine A1 and A2A receptors. We thus set out to synthesise firstly, a set of 2-aminopyrimidines substituted with simple electron withdrawing and donating groups (8a–b) and secondly an amide substituted series (8j–n), related to the indenopyrimidones (e.g. 5) as synthesised by Shook and co-workers [41]. We report herein their affinities for adenosine A2A and A1 receptors, the results of docking selected compounds into the adenosine A2A receptor's binding site, as well as the in vivo activities of selected compounds.

2. Chemistry

As shown in Scheme 1, the 2-aminopyrimidines were readily synthesised in two or three steps, albeit in low yields. Firstly, a Caisen–Schmidt condensation, using commercially available ketones and aldehydes under basic conditions [49] yielded the desired intermediate chalcones (8a–i). The condensation reaction was followed by an amide coupling reaction mediated by 1H-carboxyldimidazole (CDI) resulting in chalcones (8j–n). All chalcones were cyclised with guanidine hydrochloride in the presence of sodium hydride [50] to

![Fig. 1. Adenosine A3A antagonists containing the 2-aminopyrimidine moiety.](image-url)
yield the desired 2-aminopyrimidines (8a – n), since the use of sodium hydroxide in ethanol resulted in complicated mixtures of products.

3. Results and discussion

The affinities of the 2-aminopyrimidines for the adenosine A₂A and A₁ receptors were determined by radioligand binding and are expressed as the receptor-ligand dissociation constants (K_i, nM) (Tables 1 and 2). Adenosine A₂A receptor affinity was determined using the non-selective adenosine antagonist, [3H]2-N-ethylcarboxamide-adenosine ([3H]NECA) in the presence of N₆-cyclopentyladenosine (CPA), and A₁ receptor affinity was determined using 1,3-[3H] dipropyl-8-cyclopentylxanthine ([3H]DPCPX) [51–53].

The 2-aminopyrimidines of series 1 (8a – h) exhibited moderate to weak affinities for the adenosine A₂A receptor and moderate to good affinities for A₁ receptors with A₂A/A₁ values ranging from approximately 3 µM (8f, 8g) to approximately 250 nM (8b, 8d, 8h) and A₂A/Ki values ranging from 23 nM (8a) to 650 nM (8f). These compounds all have higher affinities for the adenosine A₁ receptor than for the adenosine A₂A receptor, with compound 8a being the most selective (selectivity index of 42). For adenosine A₂A receptor affinity, the replacement of the phenyl substituent (R²) with either a furan or methyfuran group, resulted in improved affinity (compound 8a vs. compounds 8b and 8c), whereas the opposite was true for A₁ affinity, where methyfuran substitution in particular proved to be detrimental. When the affinities of compounds 8b and 8c and compounds 8d and 8e are compared, it is clear that methyl substitution of the furan ring results in decreased affinity, especially for the adenosine A₁ receptor. Based on these results, it thus appears that for R², furan substitution is preferable for A₂A affinity, while phenyl substitution is optimal for A₁ receptor affinity. These results are in agreement with literature since the preference of the adenosine A₂A receptor for furan substitution is well documented [e.g. 46]. The affinity is apparently not significantly affected by the electronic effects of the substituent on the phenyl ring (R²) as compounds 8b and 8d (A₂A/K_i values approx. 250 nM, A₁/Ki values 40–60 nM) as well as compounds 8c and 8e (A₂A/K_i values approx. 400 nM, A₁/Ki values 130–140 nM) had similar affinities for A₂A and A₁ receptors, respectively.

On the other hand, the position of the substituent on the phenyl ring seems to have a significant effect on both A₁ and A₂A affinity, as substitution on the meta position (8g, R³ = H, R² = Cl) is superior to substitution on the para position (8g, R³ = Cl, R² = H). A similar observation is made when the affinities of compounds 8e and 8f are compared, where addition of a second methoxy group, in the para position, results in much weaker A₁ and A₂A affinity. However, since only a limited number of derivatives have been synthesised, these structure–activity relationships should be seen as preliminary.

For compounds 8j – n, the 5-methyl-2-furanyl group was selected as the R² substituent, since it was synthetically easier to work with than furan and is also less likely to present with metabolic liabilities [40]. Gratifyingly, this amide series showed improved adenosine A₂A affinity, while still retaining good A₁ affinity. The most promising candidate was compound 8m, with dual affinity for both A₂A and A₁ receptors with Ki values of 6.34 nM and 9.54 nM, respectively. For adenosine A₂A affinity, the amine groups yielded the following order of affinity: piperidine > methylpiperazine > morpholine > ethyl piperazine > pyridoline. Piperidine substitution was also most advantageous for A₁ affinity, while methylpiperazine substitution was least favourable. The affinities of this series of compounds are quite similar to those reported for related arylenopyrimidines [41], and indicate that the presence of the five-membered indenyl ring (e.g. as present in 5 and 6) is an absolute requirement for dual affinity.

To gain an indication of potential cytotoxicity of the amide derivatives, the effect of these compounds on the viability of cultured HeLa cells were measured. For this purpose, the 3-(4,5-dimethylylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay was used [54]. Cell viability was generally above 60% when exposed for 24 h to either 1 µM or 10 µM of test compound (Table 3). These concentrations are almost 1000-fold higher than the reported Ki values of these compounds. Cytotoxicity at the doses required to obtain adenosine A₁ and A₂A affinity should thus not be problematic.

Selected representatives 8m (the compound with best dual affinity, A₂A/K_i = 6.34 nM, A₁/Ki = 9.54 nM) and 8k (A₂A/K_i = 16.3 nM), were subjected to in vivo studies to determine the effectiveness of
Table 1
Adenosine receptor affinities (Kᵢ) of compounds 8a – h.

<table>
<thead>
<tr>
<th>Comp.</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>A₂a,Kᵢ (nM)</th>
<th>A₁a,Kᵢ (nM)</th>
<th>SI</th>
<th>A₂a,Kᵢ/A₁a,Kᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a</td>
<td>-H</td>
<td>-Cl</td>
<td></td>
<td>948 ± 141</td>
<td>22.8 ± 5.51</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>8b</td>
<td>-H</td>
<td>-Cl</td>
<td></td>
<td>245 ± 21.1</td>
<td>39.1 ± 3.64</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>8c</td>
<td>-H</td>
<td>-Cl</td>
<td></td>
<td>399 ± 151</td>
<td>129 ± 12.1</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>8d</td>
<td>-H</td>
<td>-OCH₃</td>
<td></td>
<td>249 ± 79.6</td>
<td>61.4 ± 0.435</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>8e</td>
<td>-H</td>
<td>-OCH₃</td>
<td></td>
<td>409 ± 217</td>
<td>145 ± 19.6</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>8f</td>
<td>-OCH₃</td>
<td>-OCH₃</td>
<td></td>
<td>2778 ± 375</td>
<td>650 ± 63.0</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>8g</td>
<td>-Cl</td>
<td>-H</td>
<td></td>
<td>3320 ± 484</td>
<td>434 ± 13.0</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>8h</td>
<td>-F</td>
<td>-H</td>
<td></td>
<td>257 ± 36.4</td>
<td>158 ± 12.1</td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of CPA and ZM241385]

1Values are given as mean ± SEM of duplicate determinations

Selectivity index

these compounds as dual adenosine A₁/A₂a antagonists. For these studies the effect of the test compounds on haloperidol-induced catalepsy in rats was investigated [33].

As depicted in Fig. 2, a significant reduction in catalepsy time was observed for 8m at all intraperitoneal (ip) administered doses while a significant reduction in catalepsy time was only observed for the highest two doses (1 and 2 mg/kg) for compound 8k (Fig. 2a and b).

The results obtained with compounds 8m and 8k are thus similar to those obtained with other adenosine A₂a antagonists.
Table 2
Adenosine receptor affinities (nM) of compounds 8j – n.

<table>
<thead>
<tr>
<th>Comp.</th>
<th>R²</th>
<th>R²</th>
<th>R²</th>
<th>A₁ₐ₁ (nM)</th>
<th>A₁ₐ₂ (nM)</th>
<th>St³</th>
<th>A₁ₐ₁/E₃/A₁ₐ₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>8j</td>
<td>-I</td>
<td></td>
<td></td>
<td>29.3 ± 0.978</td>
<td>52.1 ± 16.9³</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>8k</td>
<td>-I</td>
<td></td>
<td></td>
<td>16.3 ± 2.18</td>
<td>136 ± 1.88</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>8l</td>
<td>-I</td>
<td></td>
<td></td>
<td>30.9 ± 3.10</td>
<td>37.5 ± 0.857</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>8m</td>
<td>-I</td>
<td></td>
<td></td>
<td>6.34 ± 0.532</td>
<td>9.54 ± 1.34</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>8n</td>
<td>-I</td>
<td></td>
<td></td>
<td>58.2 ± 19.9</td>
<td>36.8 ± 5.42</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>C₈₅₃</td>
<td></td>
<td></td>
<td></td>
<td>2.88 ± 0.670</td>
<td></td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>ZM241385</td>
<td></td>
<td></td>
<td></td>
<td>11.1 ± 3.97</td>
<td></td>
<td>1.57</td>
<td></td>
</tr>
</tbody>
</table>

ⁿValues are given as mean ± SEM of duplicate determinations
³Selectivity index
³ⁿ= 4

Table 3
The percentage viable cells remaining after treatment with amide derivatives (8j – 8m), as compared to untreated cells (100%).

<table>
<thead>
<tr>
<th>Comp.</th>
<th>1 μM²</th>
<th>10 μM²</th>
</tr>
</thead>
<tbody>
<tr>
<td>8j</td>
<td>98.6 ± 4.45</td>
<td>81.7 ± 5.97</td>
</tr>
<tr>
<td>8k</td>
<td>106.9 ± 9.76</td>
<td>76.8 ± 18.1</td>
</tr>
<tr>
<td>8l</td>
<td>65.7 ± 4.55</td>
<td>651 ± 0.00</td>
</tr>
<tr>
<td>8m</td>
<td>64.3 ± 4.74</td>
<td>61.6 ± 4.46</td>
</tr>
<tr>
<td>8n</td>
<td>105 ± 6.22</td>
<td>620 ± 7.69</td>
</tr>
</tbody>
</table>

²Values are given as mean ± SD of triplicate determinations.

where catalepsy is reversed in the presence of A₁ₐ₃ antagonists or dual adenosine A₁ₐ₁/A₁ₐ₂ antagonists [33,34,43], and provides evidence of in vivo efficacy of these compounds as antagonists.

In order to rationalise the results obtained in the radioligand binding studies, a docking study was performed using CDOCKER (Discovery Studio 3.1). The synthesised compounds were docked into a model of the binding site of the adenosine A₁ₐ₃ receptor (PDB code: 3PWH). Visual inspection of the docked poses with most favourable CDOCKER interaction energy firstly revealed that the three-membered ring system of all derivatives (8a – n), undergo π–π interactions with Phe168. Hydrogen bonding interactions also occur between the exocyclic amino-group and Asn253 for most derivatives. These interactions most likely anchor the aminopyrimidine in the binding site and are also important binding interactions predicted for other 2-aminopyrimidine antagonists [55] (Figs. 3 and 4). Additionally, hydrogen bonding interactions were also observed with His250, Ser67, Glu169, Phe168 and Ala63 for some compounds. Interestingly, for compounds 8a – h there were two different orientations, one where the C-6 substituent was orientated towards His250 and another where the C-4 substituent...
4. Conclusion

This series of 2-aminopyrimidines, particularly the amide derivatives (8j – n), which are related to previously synthesised aryldenopyrimidines, retain affinity for both adenosine A₁ and A₂A receptors. The 2-aminopyrimidine scaffold can thus be optimised and the presence of a five-membered "linker" ring is not an absolute requirement for affinity. In vivo activity is indicative of adenosine antagonism rather than agonism and has been illustrated for compounds 8k and 8m with A₂A Ki values of 136 nM and 63.4 nM and A₂A Ki values of 136 nM and 9.54 nM, respectively. Docking results indicate that these compounds are predicted to bind in a fashion similar to that illustrated for other compounds of the 2-aminopyrimidine class.

5. Experimental section

5.1. Chemistry

Chemical reagents were purchased from Sigma–Aldrich, and used without further purification. Reactions were routinely monitored on TLC using precoated Kieselgel 60 F254 sheets with ethyl acetate: petroleum ether (1:4) as mobile phase for series 1 (8a – h) and dichloromethane: methanol (9:1) as mobile phase for series 2 compounds (8j – n). Melting points were determined using a Buchi B-545 apparatus, and are uncorrected. Mass spectra were obtained on a dual focusing DFS magnetic sector mass spectrometer in B ion mode. The mass spectrum for compound 7a was obtained with a Bruker microTOF-QII mass spectrometer in atmospheric-pressure chemical ionisation (APCI) mode. Proton (¹H) and carbon (¹³C) NMR spectra were recorded on a Bruker Avance III 600 spectrometer at frequencies of 600 MHz and 150 MHz, respectively. Samples were dissolved in either deuterated chloroform (CDCl₃) or deuterated dimethyl sulfoxide (DMSO-d₆). ¹H NMR data are reported in parts per million (ppm) and the following abbreviations are used: s (singlet), d (doublet), t (triplet), br t (broad triplet), q (quartet), p (pennet, quintet) or m (multiplet). Chemical shifts are referenced to the residual solvent signal (CDCl₃ 7.26 and 7.70 ppm for ¹H and ¹³C respectively; DMSO-d₆ 2.5 and 39.5 ppm for ¹H and ¹³C respectively). Assignments were based on data obtained from 2D (¹H,¹³C, DEPT) and 2D (HSQC, HMBC, COSY) NMR experiments. HPLC analyses were conducted with an Agilent 1100 HPLC system equipped with a quaternary pump and an Agilent 1100 series diode array detector. A Venusil XBP C18 column (4.6 x 150 mm, 5 μm) was used with a solvent gradient program (30% acetonitrile and 70% MeOH/water initially) at a flow rate of 1 ml/min. The concentration of acetonitrile in the mobile phase was linearly increased to 85% over a period of 5 min. Each HPLC run lasted 15 min and a time period of 5 min was allowed for equilibration between runs. The test compound was injected (20 μl, 1 mM) into the HPLC system and the eluent was monitored at a wavelength of 254 nm.

5.1.1. Procedure for the synthesis of 3-((1E)-3-(5-methylfuran-2-yl)-3-oxoprop-1-en-1-yl)benzoic acid (71)

A solution of 4% (w/v) sodium hydroxide (34 mmol) was added to a suspension of 3-formylbenzoic acid (17 mmol) and 1-(5-methyl-2-furyl)ethane (17 mmol) in methanol (100 mL). The mixture was stirred at room temperature for 24 h and acidified with concentrated hydrochloric acid to a pH of 1-2. The precipitate that formed was filtered, rinsed with water and recrystallised from methanol to afford 71.

5.1.1.1. 3-((1E)-3-(5-methylfuran-2-yl)-3-oxoprop-1-en-1-yl)benzoic acid (71). Yield 68%; Pale yellow crystals; mp 191.7–194.1 °C
5.1.2.1. (Z)-1-(5-methylfuran-2-yl)-3-[3-(morpholine-4-carbonyl)phenyl]prop-2-en-1-one (7J). The title compound was prepared from (E)-1-(5-methylfuran-2-yl)-3-[3-oxo-2-azetidinyl]phenylprop-2-en-1-one (7I) and morpholine in a yield of 44%: mp 169.1–170.9 °C (methanol), pale yellow crystals. \(^1H \) NMR (600 MHz, CDCl\(_3\)): \(\delta \) 7.80 (d, \(J = 15.8 \) Hz, 1H, H-3), 7.69 (br t, \(J = 1.6 \) Hz, 1H, H-2'), 7.65 (d, \(J = 1.6, 7.7 \) Hz, 1H, H-6'), 7.47–7.36 (m, 3H, H-2, H-5', H-4'), 7.25 (br s, \(\text{d}, J = 3.4 \) Hz, 1H, H-3'), 4.22 (dd, \(J = 10.3, 3.4 \) Hz, 1H, H-4'), 3.93–3.31 (m, 8H, 4 × morpholine CH\(_2\)), 2.43 (s, 3H, CH\(_3\)). \(^13C \) NMR (151 MHz, CDCl\(_3\)) was 178.6 (C-1), 169.6 (amide C=O), 158.4 (C-5'), 152.3 (C-2'), 141.8 (C-3), 136.0 (C-1' or C-3'), 125.4 (C-1' or C-3'), 129.9 (C-6'), 128.1, 128.5 (C-4', C-5'), 126.6 (C-2'), 122.2 (C-2), 119.8 (C-3'), 109.4 (C-4'), 66.8, 48.2, 42.5 (morpholine CH\(_2\)). EI-HRMS m/z: calculated for C\(_{25}\)H\(_{28}\)N\(_2\)O\(_2\): 325.1341, found 325.1303. *In no particular order.

5.1.2.2. (Z)-1-(5-methylfuran-2-yl)-3-[3-(4-hydroxyphenyl)prop-2-en-1-one (7K). The title compound was prepared from (E)-1-(5-methylfuran-2-yl)-3-[3-oxo-2-azetidinyl]phenylprop-2-en-1-one (7I) and hydroxylamine in a yield of 77%: mp 131.0–132.2 °C (methanol), yellow crystals. \(^1H \) NMR (600 MHz, CDCl\(_3\)) was 7.79 (d, \(J = 15.8 \) Hz, 1H, H-3), 7.68 (br t, \(J = 1.6 \) Hz, 1H, H-2'), 7.63 (d, \(J = 1.6, 7.7 \) Hz, 1H, H-6'), 7.46–7.35 (m, 3H, H-2, H-5', H-4'), 7.25 (dd, \(J = 3.5, 7.5 \) Hz, 1H, H-3'), 6.20 (d, \(J = 3.5 \) Hz, 1H, H-4'), 3.81 (br s, 2H, CONH\(_2\)), 3.44 (br s, 2H, CONH\(_2\)), 2.50–2.27 (m, 6H, 2 × CH\(_2\)NH\(_2\), 2 × CH\(_2\)). \(^13C \) NMR (151 MHz, CDCl\(_3\)) was 176.8 (C-1), 169.5 (amide C=O), 158.3 (C-5'), 152.3 (C-2'), 141.9 (C-3), 136.3 (C-1' or C-3'), 135.3 (C-1' or C-3'), 129.7 (C-6'), 129.0 (C-4' or C-5'), 128.5 (C-4' or C-5'), 126.6 (C-2'), 122.2 (C-2), 119.8 (C-3'), 109.4 (C-4'), 55.2 (CH\(_2\)N(CH\(_3\))\(_2\)), 54.6 (CH\(_2\)N(CH\(_3\))\(_2\)), 47.6 (CONH\(_2\)), 45.9 (piperazine CH\(_2\)), 42.0 (CONH\(_2\)), 41.4 (furan CH\(_3\)). EI-HRMS m/z: calculated for C\(_{25}\)H\(_{30}\)N\(_2\O_2\): 338.16304. Found 338.16370. Purity (HPLC): 97%.

5.1.2.3. (Z)-3-[3-(4-hydroxy-1-carbonyl)phenyl]prop-2-en-1-one (7L). The title compound was prepared from (E)-1-(5-methylfuran-2-yl)-3-[3-oxo-2-azetidinyl]benzoic acid (7I) and 1-ethylpiperazine in a yield of 63%: mp 98.5–98.8 °C (methanol), orange solid. \(^1H \) NMR (600 MHz, CDCl\(_3\)) was 7.80 (d, \(J = 15.9 \) Hz, 1H, H-3), 7.68 (br s, 1H, H-2'), 7.63 (br d, \(J = 7.6 \) Hz, 1H, H-6'), 7.45–7.36 (m, 3H, H-2, H-5', H-4'), 7.25 (d, J = 3.5 Hz, 1H, H-3'), 6.21 (d, \(J = 3.5 \) Hz, 1H, H-4'). 3.81 (br s, 2H, CONH\(_2\)), 3.44 (brs, 2H, CONH\(_2\)), 2.55–2.33 (m, 9H, 2 × CH\(_2\)NH\(_2\), CH\(_2\)N(CH\(_3\))\(_2\), 1H, CH\(_2\)N(CH\(_3\))\(_2\)). EI-HRMS m/z: calculated for C\(_{25}\)H\(_{30}\)N\(_2\O_2\): 338.16304. Found 338.16370. Purity (HPLC): 97%.

5.1.2. General procedure for the synthesis of chalcones (7J–7N)

1.1-Carboxyimidazole (CDI) (7.0 mmol) was added to a suspension of the acid (7I) (5.8 mmol) in dichloromethane (70 mL). The reaction mixture was stirred under nitrogen at room temperature for 2 h and the appropriate amine (70 mmol) was added. The mixture was then stirred for a further 3 h. The reaction was quenched by the addition of brine and the aqueous phase extracted with dichloromethane (2 × 20 mL). The combined organic fractions were washed once with saturated sodium hydrogen carbonate and twice with brine. The organic fraction was concentrated (in vacuo), purified with column chromatography (dichloromethane: methanol 98:2) and recrystallised from methanol.
248
249
and 13,14-dipropyl-8-cyclopentylxanthine ([H]DPCPX, 120 C/ml) were obtained from Separation Scientific SA. Cell culture media (Dulbecco's Modified Eagle Medium (DMEM), fungizone, trypsin/EDTA, streptomycin, fetal bovine serum and penicillin) were obtained from Gibco and Merck. Well-plates (24 and 96) and culture flasks were obtained from Nunc. Sterile syringe filters (0.22 µm) were obtained from Pall Corporation Life Sciences.

5.2.2. Radioligand binding studies

5.2.2.1. Tissue preparation for binding studies. Radioligand binding studies were carried out as described in literature [51–53]. The Animal Research Ethics Committee of the North-West University (NVU-0035-10-AS) approved the collection of animal tissue required for these assays. Adult male Sprague Dawley rats were obtained from the Vivarium of the North-West University, Potchefstroom campus. Striata (for the adenosine A2A assay) and whole brains (for the adenosine A1 assay) were dissected on ice and immediately snap frozen with liquid nitrogen and then stored at −70 °C until required. The frozen striata as well as the whole brain tissue were suspended in ice-cold 50 mM Tris buffer (pH 7.7 at 25 °C) and homogenised using a Polytron PT-10 homogeniser (Brinkman) to yield final suspensions of 1 mg/5 ml, which were aliquoted and stored at −70 °C until required. Test compounds were dissolved (10 mM) and further diluted in DMEM, with the final concentration of DMEM in the incubations being 1%. All pipette tips as well as the 4 ml polypropylene tubes used for the incubations were coated with Sigmacote®. The incubations were prepared using 50 mM Tris buffer (pH 7.7 at 25 °C) for the adenosine A2A assay, the final volume of the incubations was 1 ml and each incubation contained test compound (0–100 µM), membrane suspension yielding 10 mg of original tissue weight of rat striata, 10 mM MgCl₂, 0.2 units of adenosine deaminase, 50 nM CPA and 4 nM [H]NECA. The MgCl₂ (A2A assay) and adenosine deaminase (A2A and A1 assays) were firstly added to the membrane suspension, and this mixture was subsequently added to the incubations. The order of addition was test compound, membrane suspension, CPA and [H]NECA. All incubations were carried out in duplicate. Non-specific binding was determined in triplicate in the presence of CPA (100 µM replacing the test compound). For the adenosine A1 assay, the final volume of the incubations was also 1 ml and each incubation contained test compound (0–100 µM), membrane suspension yielding 5 mg of original tissue weight of rat whole brain, 0.1 units of adenosine deaminase and 0.1 nM [H]DPCPX. The order of addition was test compound, membrane suspension and [H]DPCPX. All incubations were carried out in duplicate. Non-specific binding was determined in triplicate in the presence of CPA (100 µM replacing the test compound). After incubation for 1 h (with vortexing after 30 min), the incubations were rapidly filtered through Whatman® GF/B 25 filters (25 mm diameter) fitted on a Hofferfer vacuum system. The damp filters were placed into scintillation vials and scintillation fluid (4 ml) was added. The vials were shaken thoroughly and left for 2 h. A Packard Tri-CARB 2000 TR scintillation counter was used to count the radioactivity retained on the filters. Specific binding was defined as total binding minus nonspecific binding, and was expressed as counts per minute (CPM).

5.2.2.2. Data analysis. Using the one site competition model of the Prism 5 software package (GraphPad) the IC50 values were plotted against the logarithm of the ligand concentration to give a sigmoidal dose–response curve, from which the IC50 values were determined. For adenosine A1 binding, Kᵟ values were calculated from the IC50 values by using the Cheng-Prusoff equation [58], as applicable to radioligand binding assays [51]. Kᵟ, the equilibrium dissociation constant for the radioligand [H]DPCPX, was taken as 0.36 nM [52]. Since adenosine A2A binding was performed in the presence of CPA, an adapted version of the Cheng-Prusoff equation was used. The Kᵟ of the radioligand, [H]NECA, was taken as 15.3 nM and a Kᵟ value of 685 nM was used for CPA [51]. The binding affinities of the known adenosine A1 agonist, CPA, and the A2A antagonists, KW-6002 and ZM244385 were also determined as controls. The results of the radioligand binding studies are reported as the mean ± standard error of the mean (SEM) of duplicate determinations.

5.2.3. MTT cell viability assay

5.2.3.1. Cell culture. Hela cells were maintained in 250 cm² flasks in DMEM media (30 ml) containing 10% fetal bovine serum, 1% penicillin (10,000 units/ml) streptomycin (10 mg/ml), and fungizone (250 µg/ml). The cells were incubated at 37 °C in an atmosphere of 10% CO2. The media was replaced once a week and cells were allowed to reach confluency before use in assays.

5.2.3.2. Preparation of compounds. Stock solutions of test compounds were prepared in DMSO (10 mM) and further diluted in DMEM to concentrations of 1 µM and 10 µM. These solutions were filtered via a syringe filter before addition to the cell cultures.

5.2.3.3. MTT assay. Once confluent, cells were detached with 3 ml trypsin/EDTA (0.25%/0.02%) and seeded in 24-well plates at 50,000 cells/well. Plates were then incubated for 24 h and the wells subsequently rinsed with 0.5 ml DMEM free from fetal bovine serum. A volume of 0.5 ml DMEM (free from fetal bovine serum) was subsequently added to each well followed by 10 µl of the test compound. In each 24-well plate, wells were reserved as either positive control (100% cell death via lysing with 0.03% formic acid) or negative controls (100% cell viability as a result of no drug treatment). The plates were then incubated at 37 °C for a further 24 h where after media was aspirated from each well.

The wells were then washed twice with 0.5 ml/well PBS and 200 µl of 0.5% MTT (prepared in PBS) was added to each well. The well plates were then incubated at 37 °C for 2 h in the dark, where after the residual MTT was aspirated and 250 µl isopropanol was added to dissolve the formed formazan crystals. The well-plates were then incubated at room temperature for 5 min to allow dissolution of the blue formazan crystals, where after 100 µl of the isopropanol solution of each well plate was transferred to a corresponding well in a 96-well plate. The absorbance was measured spectrophotometrically at 560 nM (using a Labsystems Multiscan RC UV/V spectrophotometer), with the absorbance of the negative control signifying 100% viability and the absorbance of the positive control signifying 0% viability. The effects of the test compounds were evaluated in triplicate and the residual cell viabilities reported as the mean ± SD of the percentage viable cells compared to the negative control (100%).

5.2.4. In vivo assays

5.2.4.1. Animals. Sprague–Dawley rats were given free access to standard laboratory food and water until the required weight was obtained (240 g–300 g). All efforts were made to minimize animal suffering as experiments were carried out in accordance with the National Institute of Health’s Guide for the Care and Use of Laboratory Animals. The experimental protocol was approved by the North-West University ethical committee (NVU-00035-10-AS).

5.2.4.2. Compounds. To induce cataplexy a dose of 5 mg/kg haloperidol (Seronace Injection; 5 mg/ml) was administered intraperitoneally (ip) [33]. A vehicle solution was prepared by mixing a 1:1:4 solution of DMSO, Tween 80 and saline. Compounds (8k and 8m) were dissolved in a required amount of vehicle solution to yield
concentrations of 0.1, 0.4, 1 and 2 mg/ml. A suitable volume of these solutions was injected depending on the weight of the rat, resulting in final dose concentrations of 0.1, 0.4, 1 and 2 mg/kg. All injections were administered ip.

5.2.4.3. Catalase test. The experiments were carried out between 8:00 and 15:30 in a lit room with a controlled temperature. All the rats were drug naive and were only used once. Haloperidol-induced catalepsy was measured with the standard bar test, in a Perspex chamber (length, 23 cm; width, 10.5 cm; height, 9 cm) with a horizontal plastic bar (diameter, 1 cm; length, 10.5 cm) fixed at 9 cm above the floor, and at 7 cm from the back of the box.

Animals were divided into 5 groups, each group containing 6 rats. The 5 groups were treated with 0, 0.1, 0.4, 1 and 2 mg/kg of the test compound, respectively. All rats received ip injections of haloperidol (5.0 mg/kg) to induce catalepsy, 30 min. Later, the rats in each group received ip injections of compound. The vehicle solution was administered to rats in the control group. Catalase was measured 60 min after the haloperidol injections by placing the rats in the Perspex box with their front paws on the horizontal bar. Care was taken not to disrupt the normal time the animal maintained its position on the bar. Time was recorded until one or both of the rat’s front paws were removed from the bar, or up to 120 s.

The results of the animal experiments are reported as the mean ± standard error of the mean (SEM). Data were analysed by means of one-way analysis of variance (ANOVA) across all groups, and were subsequently subjected to Dunnett’s post-test to determine if statistical differences exist between mean values. A p value < 0.05 is judged as being statistically significant. These analyses were carried out with the Prism software package.

5.3. Molecular docking

Molecular docking studies were carried out with the Windows based Accelrys® Discovery Studio 3.1 software. The crystal structure of the adenosine A2A receptor [Protein Data Bank (PDB) code 3PWH] co-crystallised with the known A2A antagonist ZM244385 was used. This receptor was prepared with the ‘Clean protein’ function to correct problems such as incomplete amino acid side chains andBackto and with the CHARMM forcefield. A fixed atom constraint was applied to the backbone and a minimisation was then carried out using the Generalised Born approximation with Molecular Volume (GBMV) as the solvent model to obtain a receptor at energetic minimum. A binding site with a radius of 5 Å was defined using the existing ligand (ZM244385) before it was removed from the receptor. Selected inhibitors were cleaned and prepared for docking with the ‘Prepare ligand’ protocol to correct valences and remove duplicates whereafter ligands were visually inspected and remaining errors corrected. The COCKEER protocol was used for the docking of ligands. The orientations, COCKEER and COCKER interaction energies of the ten different conformers of each ligand were considered and the best conformation for each ligand selected. An in situ ligand minimisation was then performed on the selected conformers and minimised conformers visually inspected and compared.

Acknowledgements

We gratefully acknowledge the assistance of Dr. Johan Jordaan and Mr. Andre Jorduff of the SASOL Centre for Chemistry, North-West University for recording of NMR spectra and Prof. Jan du Prel for HPLC data. The authors would like to thank the National Research Foundation (NRF) for funding of this research. We also acknowledge the University of Pretoria, University of South Africa and the University of the Western Cape for their support.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.ejmech.2015.09.035.

References

TABLE OF CONTENTS

- Description p.1
- Audience p.1
- Impact Factor p.1
- Abstracting and Indexing p.2
- Editorial Board p.2
- Guide for Authors p.3

DESCRIPTION

The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry: organic synthesis; biological behavior; pharmacological activity; drug design; QSAR; molecular modeling; drug-receptor interactions; molecular aspects of drug metabolism; prodrug synthesis and drug targeting. It provides a medium for publication of original papers, laboratory notes, short or preliminary communications, and invited reviews.

Book Proposals: Elsevier also publishes books in this area. If you have a suggestion for a book topic or would like to submit a book proposal, please contact us at: chemistry@elsevier.com

Benefits to authors

We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.

Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our support pages: http://support.elsevier.com http://about.elsevier.com/images/EJMECH2012.gif

AUDIENCE

Medicinal Chemists, Pharmacologists, Pharmacists, Biochemists and Physicians.

IMPACT FACTOR

2014: 3.447 © Thomson Reuters Journal Citation Reports 2015

Author guidelines: Article 1
ABSTRACTING AND INDEXING

BIOSIS
Elsevier BIOBASE
CNRS/Pascal
Chemical Abstracts
Current Contents/Life Sciences
MEDLINE®
EMBASE
Science Citation Index
Current Awareness in Biological Sciences

EDITORIAL BOARD

Editor-in-Chief
H. Galons, INSERM U1022, Université Paris Descartes, 4, Avenue de l’observatoire, 75006, Paris, France

Associate Editors
S. Guccione, Dipart. di Scienze Farmaceutiche, University of Catania, Viale Andrea Doria 6 - Ed. 12, I-95125, Città Universitaria, Catania, Italy
M. Lucas, Director of Medicinal Chemistry, Cubist Pharmaceuticals, 65 Hayden Avenue, Lexington, 02421, Massachusetts, USA
L-H Zhang, Sch. of Pharmaceutical Sciences, Peking University, Xue Yuan 38, 100191, Beijing, China

Honorary Editor-in-Chief
O. Lafont, Faculté de Médecine et Pharmacie, Rouen, France

Editorial Advisory Board
J.R. Chretien, Orléans Cedex 2, France
F. Durant, Namur, Belgium
P. G. George
T. Guzi, VP Chemistry, Cambridge, Massachusetts, USA
U. Hacksell, Malmö, Sweden
R. Hawley, San Francisco, California, USA
R. J-R. Hwu, Hsinchu, Taiwan, ROC
H.D. Hölting, Düsseldorf, Germany
L.H. Jones, Cambridge, Massachusetts, USA
C. Kunick, Braunschweig, Germany
D. Lesuisse, Chilly-Mazarin, France
F. Lopez-Tapia, Honolulu, Hawaii, USA
Y. Lou, Emeryville, CA, USA
S. Lynch, Cranbury, New Jersey, USA
Y.C. Martin, North Chicago, Illinois, USA
D. Neri, Zurich, Switzerland
T. Owens, San Francisco, California, USA
J. Quan, Beijing, China
W.G. Richards, Oxford, England, UK
K. Roy, Kolkata, India
J. K. Shen, Shanghai, China
C.T. Supuran, Firenze, Italy
A. Tartar, Vitry en Artois, France
J.P. Tollenare, Gent, Belgium
V. Tortorella, Bari, Italy
H. van de Waterbeemd, Saint Andre, France
D. M. Zou, Beijing, China
GUIDE FOR AUTHORS

Your Paper Your Way
We now differentiate between the requirements for new and revised submissions. You may choose to submit your manuscript as a single Word or PDF file to be used in the refereeing process. Only when your paper is at the revision stage, will you be requested to put your paper in to a 'correct format' for acceptance and provide the items required for the publication of your article.
To find out more, please visit the Preparation section below.

INTRODUCTION
The European Journal of Medicinal Chemistry (EJMECH) publishes studies on all aspects of medicinal chemistry, including organic synthesis; biological behavior; pharmacological activity; drug design;QSAR; molecular modelling; drug-receptor interactions; molecular aspects of drug metabolism; prodrug synthesis and drug targeting. The journal accepts papers from any country in this world.

Types of Contributions
The journal provides a medium for publication of the following articles:

Original papers are full papers describing original research of high scientific level and timeliness. They are definitive reports on a full study.

Short communications are shorter pieces of work and report limited studies of the same level as described in original papers.

Preliminary communications are also limited studies but describe particularly novel and significant new findings which shall be developed further in the future.

Laboratory notes are focused on practical aspects. They may deal with an original synthesis of a series of compounds or with new pharmacological methods.

Review articles are specially commissioned by the Editors and may embrace the results of various workers in a given area or may feature recent developments from the author's own laboratory. A review that is distinguished by a novel interpretation or representation of earlier findings is especially suitable. The Editors welcome inquiries concerning the suitability of a particular topic for a review article. In addition, a book review section appears in the journal from time to time.

Contact Details for Submission
The European Journal of Medicinal Chemistry uses a web-based online manuscript submission and review system. Authors must submit their manuscript via the online submission page http://ees.elsevier.com/ejmech

BEFORE YOU BEGIN
Ethics in publishing
For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Human and animal rights
If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans, http://www.wma.net/en/30publications/10policies/b3/index.html; Uniform Requirements for manuscripts submitted to Biomedical Journals, http://www.icmje.org. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should be carried out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, the European Communities Council Directive of 24 November 1986 (86/609/EEC) or the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and the authors should
clearly indicate in the manuscript that such guidelines have been followed. **All animal studies need to ensure they comply with the ARRIVE guidelines.** More information can be found at http://www.nc3rs.org.uk/page.asp?id=1357.

In addition to the contents of the Directive 2010/63/EU, Authors of papers submitted to EJMECH are encouraged to reduce as much as possible animal testing. Indeed, animal testing should be limited to the study of compounds that have already demonstrated enough interest in in vitro experiments. It should not be used as a general screening method.

Conflict of interest

All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. See also http://www.elsevier.com/commitmentsofinterest. Further information and an example of a Conflict of Interest form can be found at: http://service.elsevier.com/app/answers/detail/a_id/286/supporthub/publishing.

Submission declaration and verification

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/sharingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

Contributors

Each author is required to declare his or her individual contribution to the article: all authors must have materially participated in the research and/or article preparation, so roles for all authors should be described. The statement that all authors have approved the final article should be true and included in the disclosure.

Changes to authorship

Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed.

Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Article transfer service

This journal is part of our Article Transfer Service. This means that if the Editor feels your article is more suitable in one of our other participating journals, then you may be asked to consider transferring the article to one of those. If you agree, your article will be transferred automatically on your behalf with no need to reformat. Please note that your article will be reviewed again by the new journal. More information about this can be found here: http://www.elsevier.com/authors/article-transfer-service.

Copyright

Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (for more information on this and copyright, see http://www.elsevier.com/copyright). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations.
(please consult http://www.elsevier.com/permissions). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases: please consult http://www.elsevier.com/permissions.

For open access articles: Upon acceptance of an article, authors will be asked to complete an ‘Exclusive License Agreement‘ (for more information see http://www.elsevier.com/OAauthoragreement). Permitted third party reuse of open access articles is determined by the author’s choice of user license (see http://www.elsevier.com/openaccesslicenses).

Author rights
As an author you (or your employer or institution) have certain rights to reuse your work. For more information see http://www.elsevier.com/copyright.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies
Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder’s open access policies. Some authors may also be reimbursed for associated publication fees. To learn more about existing agreements please visit http://www.elsevier.com/fundingbodies.

Open access
This journal offers authors a choice in publishing their research:

- **Open access**
 - Articles are freely available to both subscribers and the wider public with permitted reuse
 - An open access publication fee is payable by authors or on their behalf e.g. by their research funder or institution

- **Subscription**
 - Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs (http://www.elsevier.com/access).
 - No open access publication fee payable by authors.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards.

For open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses:

Creative Commons Attribution (CC BY)
Let others distribute and copy the article, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), include in a collective work (such as an anthology), text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author’s honor or reputation.

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

The open access publication fee for this journal is USD 2850, excluding taxes. Learn more about Elsevier’s pricing policy: http://www.elsevier.com/openaccesspricing.

Green open access
Authors can share their research in a variety of different ways and Elsevier has a number of green open access options available. We recommend authors see our green open access page for further information (http://elsevier.com/greenopenaccess). Authors can also self-archive their manuscripts.
immediately and enable public access from their institution’s repository after an embargo period. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications. Embargo period: For subscription articles, an appropriate amount of time is needed for journals to deliver value to subscribing customers before an article becomes freely available to the public. This is the embargo period and it begins from the date the article is formally published online in its final and fully citable form.

This journal has an embargo period of 24 months.

Language (usage and editing services)
Please write your text in good English (American or British usage is accepted, but not a mixture of those). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier’s WebShop (http://webshop.elsevier.com/languagedevelopment/) or visit our customer support site (http://support.elsevier.com) for more information.

Submission
Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor’s decision and requests for revision, is sent by e-mail.

Referees
Please submit the names and institutional e-mail addresses of several potential referees. For more details, visit our Support site. Note that the editor retains the sole right to decide whether or not the suggested reviewers are used.

PREPARATION
NEW SUBMISSIONS
Submission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts your files to a single PDF file, which is used in the peer-review process.
As part of the Your Paper Your Way service, you may choose to submit your manuscript as a single file to be used in the refereeing process. This can be a PDF file or a Word document, in any format or layout that can be used by referees to evaluate your manuscript. It should contain high enough quality figures for refereeing. If you prefer to do so, you may still provide all or some of the source files at the initial submission. Please note that individual figure files larger than 10 MB must be uploaded separately.

References
There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct.

Formatting requirements
There are no strict formatting requirements but all manuscripts must contain the essential elements needed to convey your manuscript, for example Abstract, Keywords, Introduction, Materials and Methods, Results, Conclusions, Artwork and Tables with Captions.
If your article includes any Videos and/or other Supplementary material, this should be included in your initial submission for peer review purposes.
Divide the article into clearly defined sections.

Figures and tables embedded in text
Please ensure the figures and the tables included in the single file are placed next to the relevant text in the manuscript, rather than at the bottom or the top of the file.

REVISED SUBMISSIONS
Use of word processing software
Regardless of the file format of the original submission, at revision you must provide us with an editable file of the entire article. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). See also the section on Electronic artwork.
To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.

Essential title page information
- **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
- **Author names and affiliations.** Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lowercase superscript letter immediately after the author’s name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.
- **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. **Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author.**
- **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author’s name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Graphical abstract
A Graphical abstract is mandatory for this journal. It should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership online. Authors must provide images that clearly represent the work described in the article. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: please provide an image with a minimum of 511 x 1328 pixels (h x w) or proportionally more. The image should be readable at a size of 5 x 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. See http://www.elsevier.com/graphicalabstracts for examples.
Authors can make use of Elsevier’s Illustration and Enhancement service to ensure the best presentation of their images also in accordance with all technical requirements: Illustration Service.

Highlights
Highlights are mandatory for this journal. They consist of a short collection of bullet points that convey the core findings of the article and should be submitted in a separate editable file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). See http://www.elsevier.com/highlights for examples.

Keywords
Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations
Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Experimental
Analytical data should be included for examination by the editor and referees. However, these data will not be printed if they agree within within ± 0.4 % with calculated values, but may be noted as follows: 'Anal. C14H15NO3 (C, H, N, O)', with the mentioning under Experimental protocols: 'Analyses indicated by the symbols of the elements or functions were within ± 0.4 % of the theoretical values'.

Characterization of prepared compounds
Organic compounds:
Sufficient experimental information should be given by the authors. In particular "supplementary material for publication online" should be constructed for all papers which should at least include representative 1H and 13C NMR spectra. Metal complexes:

X-Ray crystal structural determinations are required for metal complexes.

Acknowledgements
Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Nomenclature
The author is responsible for providing the correct nomenclature which must be consistent and unambiguous. The use of chemical names for drugs is preferred.

Math formulae
Please submit math equations as editable text and not as images. Present simple formulae in line with normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).

Footnotes
Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors build footnotes into the text, and this feature may be used. Should this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article.

Artwork
Electronic artwork
General points
• Make sure you use uniform lettering and sizing of your original artwork.
• Preferred fonts: Arial (or Helvetica), Times New Roman (or Times), Symbol, Courier.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Indicate per figure if it is a single, 1.5 or 2-column fitting image.
• For Word submissions only, you may still provide figures and their captions, and tables within a single file at the revision stage.
• Please note that individual figure files larger than 10 MB must be provided in separate source files.
A detailed guide on electronic artwork is available on our website:

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats
Regardless of the application used, when your electronic artwork is finalized, please 'save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

EPS (or PDF): Vector drawings. Embed the font or save the text as 'graphics'.

TIFF (or JPEG): Color or grayscale photographs (halftones): always use a minimum of 300 dpi.

TIFF (or JPEG): Bitmapted line drawings: use a minimum of 1000 dpi.

TIFF (or JPEG): Combinations bitmapted line/halftone (color or grayscale): a minimum of 500 dpi is required.

Please do not:
• Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); the resolution is too low.
• Supply files that are too low in resolution.
• Submit graphics that are disproportionately large for the content.

Color artwork
Please make sure that artwork files are in an acceptable format (TIFF or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color online (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations
are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color: in print or online only. For further information on the preparation of electronic artwork, please see http://www.elsevier.com/artworkinstructions.

Figure captions
Ensure that each illustration has a caption. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Text graphics
Text graphics may be embedded in the text at the appropriate position. If you are working with LaTeX and have such features embedded in the text, these can be left. See further under Electronic artwork.

Tables
Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules.

References
Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either ‘Unpublished results’ or ‘Personal communication’. Citation of a reference as ‘in press’ implies that the item has been accepted for publication.

Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

References in a special issue
Please ensure that the words ‘this issue’ are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference management software
Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles (http://citationstyles.org), such as Mendeley (http://www.mendeley.com/features/reference-manager) and Zotero (https://www.zotero.org/), as well as EndNote (http://endnote.com/downloads/styles). Using the word processor plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal’s style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide.

Users of Mendeley Desktop can easily install the reference style for this journal by clicking the following link: http://open.mendeley.com/use-citation-style/european-journal-of-medicinal-chemistry

When preparing your manuscript, you will then be able to select this style using the Mendeley plug-ins for Microsoft Word or LibreOffice.

Reference formatting
There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be
applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct. If you do wish to format the references yourself they should be arranged according to the following examples:

Reference style
Text: Indicate references by number(s) in square brackets in line with the text. The actual authors can be referred to, but the reference number(s) must always be given.
Example: '..... as demonstrated [3,6]. Barnaby and Jones [8] obtained a different result ...
List: Number the references (numbers in square brackets) in the list in the order in which they appear in the text.
Examples:
Reference to a journal publication:
Reference to a book:
Reference to a chapter in an edited book:

Video data
Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 150 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. Please supply 'still' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages at http://www.elsevier.com/artworkinstructions. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

AudioSlides
The journal encourages authors to create an AudioSlides presentation with their published article. AudioSlides are brief, webinar-style presentations that are shown next to the online article on ScienceDirect. This gives authors the opportunity to summarize their research in their own words and to help readers understand what the paper is about. More information and examples are available at http://www.elsevier.com/audioslides. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

Supplementary material
Supplementary material can support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Please note that such items are published online exactly as they are submitted; there is no typesetting involved (supplementary data supplied as an Excel file or as a PowerPoint slide will appear as such online). Please submit the material together with the article and supply a concise and descriptive caption for each file. If you wish to make any changes to supplementary data during any stage of the process, then please make sure to provide an updated file, and do not annotate any corrections on a previous version. Please also make sure to switch off the 'Track Changes' option in any Microsoft Office files as these will appear in the published supplementary file(s). For more detailed instructions please visit our artwork instruction pages at http://www.elsevier.com/artworkinstructions.

Open data
This journal supports Open Data, enabling authors to submit any raw (unprocessed) research data with their article for open access publication on ScienceDirect under the CC BY license. For more information, please visit http://www.elsevier.com/about/research-data/open-data.
Database linking

Elsevier encourages authors to connect articles with external databases, giving readers access to relevant databases that help to build a better understanding of the described research. Please refer to relevant database identifiers using the following format in your article: Database: xxxx (e.g., TAIR: AT1G010120; CCDC: 734053; PDB: 1XFN). See http://www.elsevier.com/datalinking for more information and a full list of supported databases.

Mol files

Mol files (optional): Elsevier would like to enrich your online article by visualizing and providing details of chemical structures you define as the main chemical compounds described. For this purpose, corresponding mol files can be uploaded via the online submission system. Each compound needs to be submitted as a separate mol file. Please use your preferred drawing tool to export chemical structures as mol files and ensure that they are unique, complete and do not contain any R-groups or other variables so that a correct InChI key can be generated. For more information see http://www.elsevier.com/mol.

Interactive plots

This journal enables you to show an Interactive Plot with your article by simply submitting a data file. For instructions please go to http://www.elsevier.com/interactiveplots.

Submission checklist

The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item.

Ensure that the following items are present:

One author has been designated as the corresponding author with contact details:
- E-mail address
- Full postal address
All necessary files have been uploaded, and contain:
- Keywords
- All figure captions
- All tables (including title, description, footnotes)
Further considerations:
- Manuscript has been ‘spell-checked’ and ‘grammar-checked’
- All references mentioned in the Reference list are cited in the text, and vice versa
- Permission has been obtained for use of copyrighted material from other sources (including the Internet)
Printed version of figures (if applicable) in color or black-and-white
- Indicate clearly whether or not color or black-and-white in print is required.
For any further information please visit our customer support site at http://support.elsevier.com.

AFTER ACCEPTANCE

Use of the Digital Object Identifier

The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly ‘Articles in press’ because they have not yet received their full bibliographic information. Example of a correctly given DOI (in URL format; here an article in the journal Physics Letters B):

http://dx.doi.org/10.1016/j.physletb.2010.09.059

When you use a DOI to create links to documents on the web, the DOIs are guaranteed never to change.

Online proof correction

Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors.

If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.

AUTHOR INFORMATION PACK 12 Nov 2015 www.elsevier.com/locate/ejmech
We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints
The corresponding author, at no cost, will be provided with a personalized link providing 50 days free access to the final published version of the article on ScienceDirect. This link can also be used for sharing via email and social networks. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier’s WebShop (http://webshop.elsevier.com/myarticleservices/offprints). Authors requiring printed copies of multiple articles may use Elsevier WebShop’s ‘Create Your Own Book’ service to collate multiple articles within a single cover (http://webshop.elsevier.com/myarticleservices/booklets).

AUTHOR INQUIRIES
You can track your submitted article at http://www.elsevier.com/track-submission. You can track your accepted article at http://www.elsevier.com/trackarticle. You are also welcome to contact Customer Support via http://support.elsevier.com.
Author guidelines: Article 2

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS
The Tetrahedron Journal for Research at the Interface of Chemistry and Biology

TABLE OF CONTENTS

- Description p.1
- Audience p.1
- Impact Factor p.1
- Abstracting and Indexing p.2
- Editorial Board p.2
- Guide for Authors p.4

DESCRIPTION

Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.

Benefits to authors
We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.

Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our support pages: http://support.elsevier.com

AUDIENCE

Chemists, Medicinal Chemists, Pharmacologists, Biochemists, Molecular Biologists.

IMPACT FACTOR

2014: 2.420 © Thomson Reuters Journal Citation Reports 2015
ABSTRACTING AND INDEXING

BIOSIS
Bellstein Database
Biochemistry and Biophysics Citation Index
CAB Health
Cancerlit
Chemical Abstracts
Chemical Citation Index
Current Contents/Life Sciences
MEDLINE®
EMBASE
Pascal
Research Alert
SCISEARCH
Science Citation Index
Excerpta Medica
CAB Abstracts
Elsevier BIOBASE/Current Awareness in Biological Sciences
TOXFILE
Adis LMS Drug Alerts
Scopus

EDITORIAL BOARD

Editors
D.L. Boger - Editor in Chief, The Scripps Research Institute, La Jolla, CA, USA
S. Neidle, UCL School of Pharmacy, London, UK
M. Shibasaki, University of Tokyo, Tokyo, Japan

Editor Digests
P.R. Bernstein, PharmaB LLC, Philadelphia, Pennsylvania, USA

Chairman
S.F. Martin, University of Texas at Austin, Austin, Texas, USA

Executive Board of Editors for Tetrahedron Publications
P.R. Bernstein, PharmaB LLC, Philadelphia, Pennsylvania, USA
D.L. Boger, The Scripps Research Institute, La Jolla, California, USA
M. Christmann, Freie Universität Berlin, Berlin, Germany
S.G. Davies, University of Oxford, Oxford, UK
T.J. Donohoe, University of Oxford, Oxford, UK
L. Ghosez, Institut Européen de Chimie et de Biologie (IECB), Pessac, France
Y. Hashimoto, University of Tokyo, Tokyo, Japan
T. Hayashi, Institute of Materials Research and Engineering (IMRE), Singapore
J. Hu, Chinese Academy of Sciences (CAS), Shanghai, China
K.D. Janda, The Scripps Research Institute, La Jolla, California, USA
M. Kitamura, Nagoya University, Nagoya, Japan
G.-Q. Lin, Chinese Academy of Sciences (CAS), Shanghai, China
S.F. Martin, University of Texas at Austin, Austin, Texas, USA
K. Marnoka, Kyoto University, Kyoto, Japan
S. Neidle, UCL School of Pharmacy, London, UK
G.P. Pandey, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI), Lucknow, India
M. Shibasaki, University of Tokyo, Tokyo, Japan
V.K. Singh, IISER Bhopal, Bhopal, India
B.M. Stoltz, California Institute of Technology, Pasadena, California, USA
R.J.K. Taylor, University of York, York, UK
K. Tomioka, Doshisha Women’s College of Liberal Arts, Kyoto, Japan
H. Waldmann, Max Planck Institut (MPI) für Molekulare Physiologie, Dortmund, Germany
J.L. Wood, Baylor University, Waco, Texas, USA
S.Z. Zard, Ecole Polytechnique, Palaiseau, France
Board of Consulting Editors

P.S. Anderson, Bristol-Myers Squibb Company, Pennington, New Jersey, USA
P.G. Baraldi, Università di Ferrara, Ferrara, Italy
J.K. Barton, California Institute of Technology, Pasadena, California, USA
C.R. Bertozzi, University of California at Berkeley, Berkeley, California, USA
B.S.I. Blagg, University of Kansas, Lawrence, Kansas, USA
R. Breslow, Columbia University, New York, USA
A.R. Chamberlin, University of California at Irvine, Irvine, California, USA
E.J. Corey, Harvard University, Cambridge, Massachusetts, USA
B.F. Cravatt, The Skaggs Institute of Chemical Biology, La Jolla, California, USA
S. Danishefsky, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
P. Dervan, California Institute of Technology, Pasadena, California, USA
M.D. Disney, The Scripps Research Institute, Jupiter, Florida, USA
A. Eschenmoser, Swiss Federal Institute of Technology, Zürich, Switzerland
D.M. Floyd, Pharmacopeia Drug Discovery, Inc., Cranbury, New Jersey, USA
B. Ganem, Cornell University, Ithaca, New York, USA
A. Giannis, Universität Leipzig, Leipzig, Germany
B. Giese, Universität de Fribourg, Fribourg, Switzerland
P. Gmeiner, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
H.B. Gray, California Institute of Technology, Pasadena, California, USA
G.L. Grunewald, University of Kansas, Lawrence, Kansas, USA
P. Herrling, Novartis Pharma AG, Basel, Switzerland
D. Hilvert, Organic Chemistry Laboratory, Zurich, Switzerland
L.C. Hsich-Wilson, California Institute of Technology, Pasadena, California, USA
W.L. Jorgensen, Yale University, New Haven, Connecticut, USA
J.A. Katzenellenbogen, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
J. Kelly, The Scripps Research Institute, La Jolla, California, USA
P. Kroghsgaard-Larsen, Københavns Universitet, Copenhagen, Denmark
R. Lerner, The Scripps Research Institute, La Jolla, California, USA
L.A. Mitscher, University of Kansas, Lawrence, Kansas, USA
K.C. Nicolaou, Rice University, Houston, Texas, USA
H.S. Overkleeft, Universiteit Leiden, Leiden, Netherlands
H.I. Pearce, Eli Lilly and Company, Indianapolis, Indiana, USA
J. Rebek Jr, The Scripps Research Institute, La Jolla, California, USA
B. Samuelsson, Karolinska Institutet, Stockholm, Sweden
S.I. Schreiber, Harvard Business School, Cambridge, Massachusetts, USA
P.G. Schultz, Howard Hughes Medical Institute (HHMI), Berkeley, California, USA
P.H. Seeberger, Max Planck Institute (MPI) of Colloids and Interfaces, Potsdam, Germany
O. Doi, Humboldt-Universität Berlin, Berlin, Germany
K. Shokat, University of California at San Francisco (UCSF), San Francisco, California, USA
R.B. Silverman, Northwestern University, Evanston, Illinois, USA
J. Stubbe, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
C.T. Supuran, Università degli Studi di Firenze, Firenze, Italy
S. Walker, Harvard University, Cambridge, Massachusetts, USA
P.A. Wender, Stanford University, Stanford, California, USA
G. M. Whitesides, Harvard University, Cambridge, Massachusetts, USA
R.V. Wolfenden, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
C.-H. Wong, The Scripps Research Institute, La Jolla, California, USA

AUTHOR INFORMATION PACK 12 Nov 2015 www.elsevier.com/locate/bmcl
GUIDE FOR AUTHORS

INTRODUCTION

Bioorganic & Medicinal Chemistry Letters publishes research results of outstanding significance and timelessness in the fields of medicinal chemistry, chemical biology, bioorganic chemistry, bioinorganic chemistry, and related disciplines. Articles are in the form of communications reporting experimental or theoretical results of special interest.

High-quality studies which are especially likely to meet these criteria, as compared to studies that simply report biological data for a series of newly-synthesised compounds. Examples include manuscripts on the medicinal chemistry and associated biology of established or new disease targets, that report on potent new compounds and that analyse and discuss structure-activity relationships on "first-in-class" new therapeutic compounds on chemical biology or bioorganic/bioinorganic chemistry that significantly advances knowledge of a biological mechanism on novel methodological advances that are chemistry-based and which significantly impact on medicine or biology.

Above all the presentation of a rational basis for the work is of particular importance, whether its exact field.

BEFORE YOU BEGIN

Ethics in publishing

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Conflict of interest

All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. See also http://www.elsevier.com/conflicts of interest. Further information and an example of a Conflict of Interest form can be found at: http://service.elsevier.com/app/answers/detail/a_id/286/supporthub/publishing.

Submission declaration and verification

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/sharingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

Changes to authorship

Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed.

Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Copyright

Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (for more information on this and copyright, see http://www.elsevier.com/copyright). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.
Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations (please consult http://www.elsevier.com/permissions). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases: please consult http://www.elsevier.com/permissions.

For open access articles: Upon acceptance of an article, authors will be asked to complete an 'Exclusive License Agreement' (for more information see http://www.elsevier.com/OAAuthoragreement). Permitted third party reuse of open access articles is determined by the author's choice of user license (see http://www.elsevier.com/openaccesslicenses).

Author rights
As an author you (or your employer or institution) have certain rights to reuse your work. For more information see http://www.elsevier.com/copyright.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies
Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder's open access policies. Some authors may also be reimbursed for associated publication fees. To learn more about existing agreements please visit http://www.elsevier.com/fundingbodies.

Open access
This journal offers authors a choice in publishing their research:

Open access
• Articles are freely available to both subscribers and the wider public with permitted reuse
• An open access publication fee is payable by authors or on their behalf e.g. by their research funder or institution

Subscription
• Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs (http://www.elsevier.com/access).
• No open access publication fee payable by authors.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards.

For open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses:

Creative Commons Attribution (CC BY)
Lets others distribute and copy the article, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), include in a collective work (such as an anthology), text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author's honor or reputation.

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

The open access publication fee for this journal is USD 1950, excluding taxes. Learn more about Elsevier's pricing policy: http://www.elsevier.com/openaccesspricing.
Green open access
Authors can share their research in a variety of different ways and Elsevier has a number of green open access options available. We recommend authors see our green open access page for further information (http://elsevier.com/greenopenaccess). Authors can also self-archive their manuscripts immediately and enable public access from their institution’s repository after an embargo period. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications. Embargo period: For subscription articles, an appropriate amount of time is needed for journals to deliver value to subscribing customers before an article becomes freely available to the public. This is the embargo period and it begins from the date the article is formally published online in its final and fully citable form.

This journal has an embargo period of 24 months.

Language (usage and editing services)
Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier’s WebShop (http://webshop.elsevier.com/languagediting/) or visit our customer support site (http://support.elsevier.com) for more information.

Submission
Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the editor’s decision and requests for revision, is sent by e-mail.

Short Communications should be addressed to the appropriate regional editor:

Submissions from Japan and other Asian countries:
Professor Masakatsu Shibusaki, Japanese Regional Editor, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan

Submissions from Europe:
Professor Stephen Neidle, UCL School of Pharmacy, University College London, UK

Submissions from USA, Canada, and all others:
Professor Dale L. Boger, Editor-in-Chief, The Scripps Research Institute, La Jolla, CA, USA

All manuscripts will be centrally handled by the journal editorial office, which will forward manuscripts to the regional editors:

Editorial Office
Bioorganic & Medicinal Chemistry Letters
525 B Street, Suite 1900
San Diego, CA 92101-4495, USA
Facsimile: (1) 619-699-6801
E-mail: bmcl-eo@elsevier.com

Authors who are unable to submit their paper online should contact the editorial office prior to submission at the above address.

Digests are invited reviews detailing the current status and future directions of areas of high current interest and significance that focus on developments in a field in the past few years. As REVIEWS they are NOT the appropriate article TYPE to report new experimental results/findings. The main text should be, preferably, no more than 4500 words and there should be approximately 70 references. They should be submitted via our submission system by selecting the article type "Digest". Digests will be handled by Dr Peter R. Bernstein, BMCL Digest Editor, PharmaB LLC, Philadelphia, Pennsylvania, USA.
Submission address
Please submit your article via http://ees.elsevier.com/bmcl

PREPARATION
Use of word processing software
It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.

Templates
Templates are provided to allow authors to view their paper in a style close to the final printed form. Their use is optional. All manuscripts will be fully typeset from the author's electronic files. It should be noted that due to defined typesetting standards and the complex requirements of electronic publishing, the publisher will not always be able to exactly match the layout the author has submitted. In particular, in the finished journal article, figures and tables are usually placed at the top or bottom of pages. The template is only intended to be used in assisting with the preparation and submission of manuscripts.

It should be noted that use of the journal templates is not a requirement and their adoption will neither speed nor delay publication. Elsevier can handle most major word processing packages and in general most formatting applied by authors for style and layout is replaced when the article is being typeset.

These templates contain a large number of macros. To ensure successful PDF conversion during online submission, it is important that the author save a new document based on the template, rather than saving the template itself. To use the template, the author should save the final document as a Word file with a '.doc' extension (rather than the '.dot' extension).

The templates can be found at http://www.elsevier.com/bmc-templates.

Article structure
Subdivision
Text should either not be subdivided or done so in the simplest possible way consistent with clarity. Headings should be used sparingly. Common headings such as 'Introduction' and 'Results and discussion' should not be used, as the text within these sections should be self-explanatory. As such, the publisher recommends that only the 'Acknowledgments' and 'References and notes' headings be used.

Material and methods
Provide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by a reference: only relevant modifications should be described.

Theory/calculation
A Theory section should extend, not repeat, the background to the article already dealt with in the Introduction and lay the foundation for further work. In contrast, a Calculation section represents a practical development from a theoretical basis.

Results
Results should be clear and concise.

Discussion
This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.
Conclusions
The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Appendices
If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.

Essential title page information
• Title. Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
• Author names and affiliations. Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. Present the authors’ affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lowercase superscript letter immediately after the author’s name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.
• Corresponding author. Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author.
• Present/permanent address. If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Abstract
A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

Graphical abstract
A graphical abstract is mandatory for this journal. It should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership online. Authors must provide images that clearly represent the work described in the article. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: please provide an image with a minimum of 531 x 1328 pixels (h x w) or proportionally more. The image should be readable at a size of 5 x 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. See http://www.elsevier.com/graphicalabstracts for examples. Authors can make use of Elsevier’s Illustration and Enhancement service to ensure the best presentation of their images also in accordance with all technical requirements: Illustration Service.

Abbreviations
Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

X-ray crystallographic data
All crystallographic data must be deposited with the appropriate database and an accession number must be given in the manuscript in order for final acceptance of a manuscript. Small-molecule crystal structures are to be deposited with the Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk) and macromolecular structures with the Protein Data Bank (http://www.rcsb.org). Full details on deposition procedures are available directly from these data bases.

Acknowledgements
Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

AUTHOR INFORMATION PACK 12 Nov 2015 www.elsevier.com/locate/bmcl
Footnotes

Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors can build footnotes into the text, and this feature may be used. Otherwise, please indicate the position of footnotes in the text and list the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Electronic artwork

General points

• Make sure you use uniform lettering and sizing of your original artwork.
• Embed the used fonts if the application provides that option.
• Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Provide captions to illustrations separately.
• Size the illustrations close to the desired dimensions of the published version.
• Submit each illustration as a separate file.

A detailed guide on electronic artwork is available on our website:

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats

If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format.

Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please 'Save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, half-tones, and line/half-tone combinations given below):

EPS (or PDF): Vector drawings, embed all used fonts.
TIFF (or JPEG): Color or grayscale photographs (half-tones), keep to a minimum of 300 dpi.
TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi.
TIFF (or JPEG): Combinations bitmapped line/half-tone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:

• Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.

Color artwork

Please make sure that artwork files are in an acceptable format (TIFF or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color online (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color: in print or online only. For further information on the preparation of electronic artwork, please see http://www.elsevier.com/artworkinstructions.

Figure captions

Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables

Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules.

References
Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

References in a special issue
Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference management software
Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles (http://citationstyles.org), such as Mendeley (http://www.mendeley.com/features/reference-manager) and Zotero (https://www.zotero.org/), as well as EndNote (http://endnote.com/downloads/styles). Using the word processor plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal's style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide.

Users of Mendeley Desktop can easily install the reference style for this journal by clicking the following link:
http://open.mendeley.com/use-citation-style/bioorganic-and-medical-chemistry-letters
When preparing your manuscript, you will then be able to select this style using the Mendeley plug-ins for Microsoft Word or LibreOffice.

References
In the text, references should be indicated by superscript Arabic numerals which run consecutively through the paper and appear after any punctuation. Please ensure that all references are cited in the text and vice versa. The reference list should preferably contain only literature references though other information (e.g., experimental details) can be placed in this section. Preferably, each reference should contain only one literature citation. Authors are expected to check the original source reference for accuracy. Journal titles should be abbreviated according to American Chemical Society guidelines (The ACS Style Guide; Dodd, J. S., Ed.; American Chemical Society: Washington, DC, 1997). A list of currently accepted journal abbreviations may be found at BMCL Journal Abbreviations. Formatting for common references is shown below.

Scientific articles:

Books with editor:

Books without editor:

Theses:

AUTHOR INFORMATION PACK 12 Nov 2015 www.elsevier.com/locate/bmcl
Patent/Chem. Abstract:

Abstract of meeting papers:

Material presented orally:

Journal abbreviations source
Journal names should be abbreviated according to the List of Title Word Abbreviations:
http://www.issn.org/services/online-services/access-to-the-itwa/.

AudioSlides
The journal encourages authors to create an AudioSlides presentation with their published article. AudioSlides are brief, webinar-style presentations that are shown next to the online article on ScienceDirect. This gives authors the opportunity to summarize their research in their own words and to help readers understand what the paper is about. More information and examples are available at http://www.elsevier.com/audioslides. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

Supplementary material
Supplementary material can support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Please note that such items are published online exactly as they are submitted; there is no typesetting involved (supplementary data supplied as an Excel file or as a PowerPoint slide will appear as such online). Please submit the material together with the article and supply a concise and descriptive caption for each file. If you wish to make any changes to supplementary data during any stage of the process, then please make sure to provide an updated file, and do not annotate any corrections on a previous version. Please also make sure to switch off the 'Track Changes' option in any Microsoft Office files as these will appear in the published supplementary file(s). For more detailed instructions please visit our artwork instruction pages at http://www.elsevier.com/artworkinstructions.

Mol files
Mol files (optional): Elsevier would like to enrich your online article by visualizing and providing details of chemical structures you define as the main chemical compounds described. For this purpose, corresponding mol files can be uploaded via the online submission system. Each compound needs to be submitted as a separate mol file. Please use your preferred drawing tool to export chemical structures as mol files and ensure that they are unique, complete and do not contain any R-groups or other variables so that a correct InChI key can be generated. For more information see http://www.elsevier.com/mol.

Interactive plots
This journal enables you to show an Interactive Plot with your article by simply submitting a data file. For instructions please go to http://www.elsevier.com/interactiveplots.

Submission checklist
The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item.

Ensure that the following items are present:
One author has been designated as the corresponding author with contact details:
- E-mail address
- Full postal address
All necessary files have been uploaded, and contain:
- Keywords
- All figure captions
• All tables (including title, description, footnotes)
 Further considerations
• Manuscript has been 'spell-checked' and 'grammar-checked'
• References are in the correct format for this journal
• All references mentioned in the Reference list are cited in the text, and vice versa
• Permission has been obtained for use of copyrighted material from other sources (including the
 Internet)
• Print version of figures (if applicable) in color or black-and-white
• Indicate clearly whether or not color or black-and-white in print is required.
For any further information please visit our customer support site at http://support.elsevier.com.

AFTER ACCEPTANCE
Use of the Digital Object Identifier
The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI
consists of a unique alpha-numeric character string which is assigned to a document by the publisher
upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal
medium for citing a document, particularly 'Articles in press' because they have not yet received their
full bibliographic information. Example of a correctly given DOI (in URL format; here an article in the
journal Physics Letters B):
http://dx.doi.org/10.1016/j.physletb.2010.09.059
When you use a DOI to create links to documents on the web, the DOIs are guaranteed never to change.

Proofs
One set of page proofs (as PDF files) will be sent by e-mail to the corresponding author (if we do not
have an e-mail address then paper proofs will be sent by post) or, a link will be provided in
the e-mail so that authors can download the files themselves. Elsevier now provides authors with
PDF proofs which can be annotated; for this you will need to download Adobe Reader version 9 (or
higher) available from http://get.adobe.com/reader. Instructions on how to annotate PDF files
will accompany the proofs (also given online). The exact system requirements are given at the Adobe
If you do not wish to use the PDF annotations function, you may list the corrections (including
replies to the Query Form) and return them to Elsevier in an e-mail. Please list your corrections
quoting line number. If, for any reason, this is not possible, then mark the corrections and any other
comments (including replies to the Query Form) on a printout of your proof and return by fax, or scan
the pages and e-mail, or by post. Please use this proof only for checking the typesetting, editing,
completeness and correctness of the text, tables and figures. Significant changes to the article as
accepted for publication will only be considered at this stage with permission from the Editor. We
will do everything possible to get your article published quickly and accurately. It is important to
ensure that all corrections are sent back to us in one communication: please check carefully before
replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely
your responsibility.

Offprints
The corresponding author, at no cost, will be provided with a personalized link providing 50
days free access to the final published version of the article on ScienceDirect. This link can also be used for sharing via email and social networks. For an extra charge, paper offprints
can be ordered via the offprint order form which is sent once the article is accepted for
publication. Both corresponding and co-authors may order offprints at any time via Elsevier’s
WebShop (http://webshop.elsevier.com/myarticleservices/offprints). Authors requiring printed copies
of multiple articles may use Elsevier WebShop’s 'Create Your Own Book' service to collate multiple
articles within a single cover (http://webshop.elsevier.com/myarticleservices/booklets).

AUTHOR INQUIRIES
You can track your submitted article at http://www.elsevier.com track-submission. You can track your
accepted article at http://www.elsevier.com trackarticle. You are also welcome to contact Customer

© Copyright 2014 Elsevier | http://www.elsevier.com

AUTHOR INFORMATION PACK 12 Nov 2015 www.elsevier.com/locate/bmcl 12
Rights and access
Except as expressly set out in this Journal Publishing Agreement, the Article is not subject to any prior rights or licenses and, if my co-authors' institution has a policy that might restrict my ability to grant exclusive rights under this Journal Publishing Agreement, policy has been obtained.

If I am using any personal details or images of patients, research subjects or other individuals, I have obtained all consents required and complied with the publisher's policies relating to the use of such images or personal information. See http://www.elsevier.com for further information.

Any software contained in the Supplemental Materials is free from viruses, contaminations or worms.

If the Article or any of the Supplemental Materials were prepared jointly with other authors, I have informed the co-author(s) of this Publishing Agreement and that I am signing on their behalf as their agent, and I am authorized to do so.

For information on the publisher's copyright and access policies, please see http://www.elsevier.com/copyright.
For more information about the definitions relating to this agreement click here.

I have read and agree to the terms of the Journal Publishing Agreement.

1st October 2015
Mass spectra: Article 2

3-[(1\(E\))-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid (4)

N-[2-(morpholin-4-yl)ethyl]-3-[(1\(E\))-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5a)

N-[3-(morpholin-4-yl)propyl]-3-[(1\(E\))-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5b)
3-\([1(E)]-3\text{-oxo-3-phenylprop-1-en-1-yl}\]-N-[2-(piperidin-1-yl)ethyl]benzamide (5c)

3-\([1(E)]-3\text{-oxo-3-phenylprop-1-en-1-yl}\]-N-[2-(pyrrolidin-1-yl)ethyl]benzamide (5d)

N-[2-(3-chlorophenyl)ethyl]-3-\([1(E)]-3\text{-oxo-3-phenylprop-1-en-1-yl}\]benzamide (5e)
N-[(3-chlorophenyl)methyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5f)

N-[(4-chlorophenyl)methyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5g)

3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-[2-(pyridin-2-yl)ethyl]benzamide (5h)
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-(4-phenylbutyl)benzamide (5i)

N-[2-(dimethylamino)ethyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5j)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(morpholin-4-yl)ethyl]benzamide (6a)
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[3-(morpholin-4-yl)propyl]benzamide (6b)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(piperidin-1-yl)ethyl]benzamide (6c)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(pyrrolidin-1-yl)ethyl]benzamide (6d)
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(3-chlorophenyl)ethyl]benzamide (6e)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[3-(3-chlorophenyl)methyl]benzamide (6f)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[4-(3-chlorophenyl)methyl]benzamide (6g)
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(pyridin-2-yl)ethyl]benzamide (6h)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-(4-phenylbutyl)benzamide (6i)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(dimethylamino)ethyl]benzamide (6j)
3-[(1\textit{E})-3-oxo-3-phenylprop-1-en-1-yl]benzoic acid (4)

\begin{center}
\includegraphics[width=\textwidth]{image1}
\end{center}

\textit{N}-[2-(morpholin-4-yl)ethyl]-3-[(1\textit{E})-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5a)

\begin{center}
\includegraphics[width=\textwidth]{image2}
\end{center}

\textit{N}-[3-(morpholin-4-yl)propyl]-3-[(1\textit{E})-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5b)

\begin{center}
\includegraphics[width=\textwidth]{image3}
\end{center}
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-[2-(piperidin-1-yl)ethyl]benzamide (5c)

3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-[2-(pyrrolidin-1-yl)ethyl]benzamide (5d)

N-[2-(3-chlorophenyl)ethyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5e)
$N\text{-}[3\text{-chlorophenyl}methyl]-3\text{-}[(1E)-3\text{-oxo-3-phenylprop-1-en-1-yl}]\text{benzamide (5f)}$

$N\text{-}[4\text{-chlorophenyl}methyl]-3\text{-}[(1E)-3\text{-oxo-3-phenylprop-1-en-1-yl}]\text{benzamide (5g)}$

$3\text{-}[(1E)-3\text{-oxo-3-phenylprop-1-en-1-yl}]\text{-}N\text{-}[2\text{-}(pyridin-2-yl)ethyl]\text{benzamide (5h)}$
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]-N-(4-phenylbutyl)benzamide (5i)

N-[2-(dimethylamino)ethyl]-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzamide (5j)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(morpholin-4-yl)ethyl]benzamide (6a)
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[3-(morpholin-4-yl)propyl]benzamide (6b)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(pyrrolidin-1-yl)ethyl]benzamide (6d)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(3-chlorophenyl)ethyl]benzamide (6e)
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[(3-chlorophenyl)methyl]benzamide (6f)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[(4-chlorophenyl)methyl]benzamide (6g)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(pyridin-2-yl)ethyl]benzamide (6h)
3-(2-amino-6-phenylpyrimidin-4-yl)-N-(4-phenylbutyl)benzamide (6i)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(dimethylamino)ethyl]benzamide (6j)
Mass spectra: Article 3

(2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (8)

3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl piperidine-1-carboxylate (9a)

3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl 4-methylpiperazine-1-carboxylate (9b)
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl morpholine-4-carboxylate (9c)

3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl pyrrolidine-1-carboxylate (9d)

3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-dimethylcarbamate (9e)
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-diethylcarbamate (9f)

3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-bis(propan-2-yl)carbamate (9g)

3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N-methyl-N-phenylcarbamate (9h)
3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl N,N-diphenylcarbamate (9i)

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl piperidine-1-carboxylate (4a)

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl 4-methylpiperazine-1-carboxylate (4b)
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl morpholine-4-carboxylate (4c)

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl pyrrolidine-1-carboxylate (4d)

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N,N-dimethylcarbamate (4e)
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N,N-diethylcarbamate (4f)

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N,N-bis(propan-2-yl)carbamate (4g)

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N-methyl-N-phenylcarbamate (4h)
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl \textit{N,N}-diphenylcarbamate (4i)
Mass spectra: Article 4

(2E)-3-(3-hydroxyphenyl)-1-phenylprop-2-en-1-one (6)

(2E)-3-[3-(benzyloxy)phenyl]-1-phenylprop-2-en-1-one (7a)

(2E)-1-phenyl-3-[3-(2-phenylethoxy)phenyl]prop-2-en-1-one (7b)
(2E)-1-phenyl-3-[3-(3-phenylpropoxy)phenyl]prop-2-en-1-one (7e)

(2E)-1-phenyl-3-{3-[2-(piperidin-1-yl)ethoxy]phenyl}prop-2-en-1-one (7d)

(2E)-3-{3-[2-(morpholin-4-yl)ethoxy]phenyl}-1-phenylprop-2-en-1-one (7e)
(2E)-1-phenyl-3-{3-[2-(pyrrolidin-1-yl)ethoxy]phenyl}prop-2-en-1-one (7f)

N,N-diethyl-2-{3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]phenoxy}acetamide (7g)

4-[3-(benzyloxy)phenyl]-6-phenylpyrimidin-2-amine (3a)
4-phenyl-6-[3-(2-phenylethoxy)phenyl]pyrimidin-2-amine (3b)

4-phenyl-6-[3-(3-phenylpropoxy)phenyl]pyrimidin-2-amine (3c)

4-phenyl-6{-3-[2-(piperidin-1-yl)ethoxy]phenyl}pyrimidin-2-amine (3d)
4-{3-[2-(morpholin-4-yl)ethoxy]phenyl}-6-phenylpyrimidin-2-amine (3e)

4-phenyl-6-{3-[2-(pyrrolidin-1-yl)ethoxy]phenyl}pyrimidin-2-amine (3f)

2-[3-(2-amino-6-phenylpyrimidin-4-yl)phenoxy]-N,N-diethylacetamide (3g)
HPLC chromatograms: Article 2

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(morpholin-4-yl)ethyl]benzamide (6a)

![HPLC Chromatogram 6a](image)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[3-(morpholin-4-yl)propyl]benzamide (6b)

![HPLC Chromatogram 6b](image)
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(piperidin-1-yl)ethyl]benzamide (6c)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(pyrrolidin-1-yl)ethyl]benzamide (6d)
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(3-chlorophenyl)ethyl]benzamide (6e)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[(3-chlorophenyl)methyl]benzamide (6f)
3-(2-amino-6-phenylpyrimidin-4-yl)-N-[4-chlorophenylmethyl]benzamide (6g)

3-(2-amino-6-phenylpyrimidin-4-yl)-N-[2-(pyridin-2-yl)ethyl]benzamide (6h)
3-(2-amino-6-phenylpyrimidin-4-yl)-N-(4-phenylbutyl)benzamide (6i)
HPLC chromatograms: Article 3

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl piperidine-1-carboxylate (4a)

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl 4-methylpiperazine-1-carboxylate (4b)
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl morpholine-4-carboxylate (4c)

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl pyrrolidine-1-carboxylate (4d)
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N,N-dimethylcarbamate (4e)

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl N,N-diethylcarbamate (4f)
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl \(N,N \)-bis(propan-2-yl)carbamate (4g)

3-(2-amino-6-phenylpyrimidin-4-yl)phenyl \(N \)-methyl-\(N \)-phenylcarbamate (4h)
3-(2-amino-6-phenylpyrimidin-4-yl)phenyl \(N,N\)-diphenylcarbamate (4i)