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Abstract

Background: Metabolomics datasets are often high-dimensional though only a limited number of variables are
expected to be informative given a specific research question. The important task of selecting informative variables
can therefore become complex. In this paper we look at discriminating between two groups. Two tasks need to
be performed: (i) finding variables which differ between the two groups; and (ii) determining how the selected
variables can be used to classify new subjects. We introduce an approach using minimum classification error rates
as test statistics to find discriminatory and therefore informative variables. The thresholds resulting in the minimum
error rates can be used to classify new subjects. This approach transforms error rates into p-values and is referred to
as ERp.

Results: We show that non-parametric hypothesis testing, based on minimum classification error rates as test
statistics, can find statistically significantly shifted variables. The discriminatory ability of variables becomes more
apparent when error rates are evaluated based on their corresponding p-values, as relatively high error rates can still
be statistically significant. ERp can handle unequal and small group sizes, as well as account for the cost of
misclassification. ERp retains (if known) or reveals (if unknown) the shift direction, aiding in biological interpretation. The
threshold resulting in the minimum error rate can immediately be used to classify new subjects.
We use NMR generated metabolomics data to illustrate how ERp is able to discriminate subjects diagnosed with
Mycobacterium tuberculosis infected meningitis from a control group. The list of discriminatory variables produced by
ERp contains all biologically relevant variables with appropriate shift directions discussed in the original paper from
which this data is taken.

Conclusions: ERp performs variable selection and classification, is non-parametric and aids biological interpretation
while handling unequal group sizes and misclassification costs. All this is achieved by a single approach which is easy
to perform and interpret. ERp has the potential to address many other characteristics of metabolomics data. Future
research aims to extend ERp to account for a large proportion of observations below the detection limit, as well as
expand on interactions between variables.
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Background
A major aim of metabolomics studies is to find metabolites
that distinguish a control group of reference or “normal”
subjects from a group of experimental or “abnormal”
subjects which differ from the control group subjects as a
result of disease, treatment with drugs, toxicity, environ-
mental, genetic or physiological effects [1–3]. The inter-
pretation of those metabolites in terms of the underlying
biological phenomena and the development of discrim-
inating biomarkers are important goals [4]. Traditional
statistical methods often make assumptions which
make the validity of results questionable in the case of
metabolomics. Metabolite concentrations are non-
negative, requiring suitable transformation to accom-
modate the distributional assumptions of parametric
statistical methods. While non-parametric methods
such as the Mann–Whitney test make no distributional
assumptions, they do not produce classification rules
for new subjects. Metabolomics datasets generated
through spectroscopic or spectrometric methods can
consist of hundreds and even thousands of variables,
making the selection of discriminatory variables an
important yet complex task [5]. In addition, it is often
difficult or expensive to obtain sufficient subjects or
sample material to make group sizes large and equal.
However, methods such as logistic regression require
large sample sizes (N), especially when confronted with
a large number of explanatory variables (V) [6]. Vari-
able selection prior to developing a classification model
is often performed on large V small N data. However,
inference after variable selection is not advisable with-
out correcting for the uncertainty associated with the
selection step [7]. These methods also require model
specifications such as linearity in the variables of the
regression function. This linearity may well be misspe-
cified. Methods such as PLS-DA (Partial least squares
regression for discriminant analysis) are often used, but
are biased and more likely to classify new subjects as
belonging to the smaller of the two groups [8], whereas
the cost of misclassification may be opposite to this.
Furthermore, variable selection based on a PLS-DA
model is still problematic [9]. Such projection based
statistical methods are generally rather sophisticated,
limiting their practicality [4, 8]. This is likely the reason
why metabolomics researchers often combine the
results of a variety of statistical and even machine
learning methods to select a subset of variables. Doing
so can become cumbersome if they do not reach the same
decision and again requires estimation of “post-selection
error” [10] when used in further model development.
The notions of sensitivity (se) and specificity (sp) of statis-

tical methods are often used to evaluate the classification
ability of models. These can be combined into the Youden
Index (J) and the area under the receiver operating

characteristic curve (AUC) [11, 12]. In this paper we also
combine sensitivity and specificity but in the form of a
weighted sum of misclassification error rates depending on
a threshold. The choice of threshold resulting in the mini-
mum error rate provides us with a rule to classify new sub-
jects. There are some parallels with CART (classification
and regression trees) in this respect. However, we show
that non-parametric hypothesis testing can be based on the
minimised error rates. This enables us to convert the error
rates into p-values which in turn lead to selecting variables
that contain discriminatory information. These p-values
provide a ranking of the variables and the notion of
multiple testing corrections can be used to decide how far
up in this ranking the variables are considered to contain
significant discriminatory information. This approach is
referred to as ERp below.
ERp takes unequal and small group sizes explicitly into

account and allows for the specification of the relative
cost of misclassification, which is desirable when select-
ing an appropriate threshold. ERp provides information
regarding the direction of the shift, i.e., whether metab-
olite levels are higher or lower in the experimental
group, thus aiding biological interpretation of the results.
ERp simultaneously provides us with a classification rule
which can be applied immediately to classify new sub-
jects. That is, once statistically significantly shifted vari-
ables have been selected, final classification can be based
on a majority vote (as used here) or a more complex
weighting structure taking p-values into account.
The paper is structured as follows: First, we review the

notion of classification error rates and their dependence
on thresholds, as well as how they can be estimated from
available data. Secondly, we show that the testing used in
ERp is non-parametric and how to calculate the relevant
p-values. Finally, we illustrate the application of ERp on
1H nuclear magnetic resonance (NMR) spectroscopy data
from cerebrospinal fluid (CSF) samples to discriminate
subjects diagnosed with Mycobacterium tuberculosis in-
fected meningitis from a control group and compare our
results with those obtained using traditional methods [13].

Methods
Introduction
If there is a shift in the concentration of a metabolite
from the control to the experimental group, the shift
is either upwards or downwards. For such a metabol-
ite there is a concentration threshold which can be
used to discriminate between the groups and classify new
subjects. The combined error rate is associated with a
choice of threshold and if it can be chosen to make this
combined error rate small, the metabolite is important as
a discriminator between the groups. This raises the ques-
tion: How small must this error rate be for the associated
variable (e.g., metabolite) to be a good discriminator? ERp
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makes use of significance testing and transformation of
this error rate to a p-value to answer this question.

Classification error rates
Consider a single variable X and let F0 and F1 denote
the population cumulative distribution functions
(CDFs) for control and experimental subjects respect-
ively. We assume that experimental subjects tend to
have either upwardly or downwardly shifted values of
X when compared to control subjects. It is important
to treat these shift directions separately in order to
properly determine the role of X in discriminating
between the groups.
The upward rule is to choose a threshold c and classify

a subject as experimental group if X > c and as control if
X ≤ c. The rate of misclassification of control subjects is 1
− F0(c) and of experimental subjects is F1(c). Let weights
w0 and w1 (w0 +w1 = 1) represent the relative costs of mis-
classification of control and experimental subjects respect-
ively, so that the weighted combined error rate is

erup cð Þ ¼ w0 1−F0 cð Þð Þ þ w1F1 cð Þ: ð1Þ

Choosing equal weights w0 ¼ w1 ¼ 1
2 implies that it

is equally important to keep both rates of misclassifi-
cation low. In other applications the weights could be
selected differently, e.g., if experimental subjects are
ill individuals, then misclassifying an individual as an
experimental subject may imply costly or invasive
treatment, while not identifying an ill individual as an
experimental subject may have fatal consequences.
The incidence rates of the two groups may also need
to be taken into account in the choice of the weights.
For the downward rule a subject is classified as ex-

perimental if X ≤ c and as control otherwise. The
weighted combined error rate is then

erdown cð Þ ¼ w0F0 cð Þ þ w1 1−F1 cð Þð Þ: ð2Þ

Both error rates are functions of the threshold c.
Let cup and cdown represent the choices of c that
minimize (1) and (2) with minimized error rates erup

*

and erdown
* respectively. If erup

* is small, the variable X
can be used to classify subjects following the upward
rule with threshold cup. Alternatively, if erdown

* is
small, the downward rule with threshold cdown can be
applied.
As mentioned above a shift in distribution is either

upward or downward and this is reflected in only one
of the pair erup

* and erdown
* being small. With this in

mind, we introduce also a minimum error rate to-
gether with a threshold and direction by letting

er�min ¼ er�up; cmin ¼ cup and

dmin ¼ }up} if er�up < er�down and ð3Þ

er�min ¼ er�down; cmin ¼ cdown and

dmin ¼ }down} if er�up ≥ er�down ð4Þ

In other words, ermin
* is the minimum of the up and

down error rates while cmin and dmin are the threshold
and shift direction associated with this minimum. Some-
times subject matter reasons may dictate to only con-
sider the upward or downward shift, but in the absence
of such reasons, we choose the smaller of the two error
rates (ermin

* ). We can then classify a new subject using
the rule specified by dmin.

Estimating error rates from data
All the quantities introduced above depend on the popu-
lation CDFs F0 and F1 which are usually unknown and
can only be estimated from the data at hand. Notation is
needed for this purpose. Denote the number of subjects
observed in the control and experimental groups by N0

and N1 respectively. Let N =N0 +N1, and for n = 1, 2,…,
N, let xn represent the value of X for the n-th subject and
yn its group indicator taking the value 0 for the control
group and 1 for the experimental group.
The empirical estimates of F0(c) and F1(c) are given by

1
N0

XN

n¼1
1−ynð ÞI xn≤cð Þ and 1

N1

XN

n¼1
ynI xn≤cð Þ respect-

ively, where I(A) is the indicator function of the event A.
Replacing F0(c) and F1(c) in (1) by their estimates, the
estimated combined error rate is

er̂up cð Þ ¼ w0

N0

XN

n¼1
1−ynð ÞI xn > cð Þ þ w1

N1

XN

n¼1
ynI xn≤cð Þ

ð5Þ

Let ĉup denote the value of c which minimizes (5) and let
the corresponding minimized error rate be er̂up ĉup

� � ¼
minc er̂up cð Þ

n o
¼ er̂up

� .

This minimization can be performed by ranking the
xn’s increasingly. As c is varied, er̂up cð Þ remains constant

between the successively ranked xn values. Hence it is
sufficient to compute er̂up cð Þ only at the midpoints of

the intervals formed by the ranked xn values and then to
choose ĉup as the value which minimizes er̂up cð Þ [14].
Thus ĉup and er̂up

� provide estimates of cup and erup
* re-

spectively when using the upward rule. If an upward shift
in the values of the variable X is of interest and er̂up

� turns

out to be small, X can be used to classify subjects by apply-
ing the upward rule with threshold ĉup. Similar statements
hold when specifying a downward shift or specifying no
shift direction (see Additional file 1: Figure S1).
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Using classification error rates as test statistics
Clearly, the discriminating ability of X is related to the size
of er̂up

� , but it is not obvious how small er̂up
� should be for X

to be a good discriminator. Furthermore, the true but un-
known error rate erup

* may differ from er̂up
� , making it inad-

visable to judge the importance of the variable X solely on
the value of er̂up

� without taking into account the extent of

such differences. One possible way to do this is to calculate
a standard error or confidence interval for er̂up

� as done

when using the Youden index [12]. We propose to use er̂up
�

as a test statistic to formally test the null hypothesis that
there is no shift in the distribution of X for the experimen-
tal group compared to the control group, against the alter-
native of an upward shift in distribution. This enables us to
judge the discriminatory importance of X in terms of the
familiar concept of a p-value.
For testing purposes, the distributions of er̂up

� ; er̂ �down and

er̂min
� under the null hypothesis H0 : F(x) = F0(x) = F1(x) are

required. Assume: (i) F(x) is a continuous and strictly in-
creasing function in x starting at 0 for some sufficiently
small value of x; and (ii) the xn’s are independent and iden-
tically distributed (iid) according to F. Putting un = F(xn)
and b = F(c) equation (5) becomes

er̂up cð Þ ¼ w0

N0

XN

n¼1
1−ynð ÞI F xnð Þ > F cð Þð Þ

þ w1

N1

XN

n¼1
ynI F xnð Þ≤F cð Þð Þ

¼ w0

N0

XN

n¼1
1−ynð ÞI un > bð Þ

þ w1

N1

XN

n¼1
ynI un≤bð Þ ¼ ~erup bð Þ

Since this expression is only a function of b, minimising
over c is equivalent to minimising over b, giving er̂up

� ¼
minc er̂up cð Þ

n o
¼ minb ~erup bð Þ� �

. This expresses er̂up
� as

a function of the un’s only. The probability integral
transform states that the un’s are independent and iden-
tically uniformly distributed on [0, 1], henceforth abbre-
viated as IIUD [0, 1]. Therefore, the null distribution of
er̂up

� does not depend on F, i.e., er̂up
� is a non-parametric

test statistic. Additional file 1: Figure S2 shows that this
is also true for er̂down

� and er̂min
� and that the null distri-

bution of er̂down
� is the same as for er̂up

� . Moreover, the

null distributions depend on the group sizes (N0 and
N1) and the weights (w0 and w1), so that one does not
need to be concerned about unequal sample sizes, sam-
pling variability and biases when judging the resulting
p-values as indicators of the discriminatory importance
of X (see Additional file 1: Figure S4).
The actual calculation of the null distribution by analytic

means seems impossible in view of the complicated

expressions involved in the definitions of the error rates.
However, simulation offers a solution. Table 1 provides an
algorithm to convert error rate test statistics into their cor-
responding p-values. As an alternative to simulating the
null distribution, asymptotic approximation can be used, as
discussed in Additional file 1: Figure S3. We illustrate the
benefit of converting error rates into their correspond-
ing p-values in the Results & Discussion section below.

ERp applied to more than one variable
Up to this point we have considered only one variable X.
As mentioned previously, metabolomics studies deal
with multiple variables, therefore we need to find a short
list of discriminatory and biologically relevant variables
which are preferably easy to detect in clinical practice
[4]. ERp calculates the error rate for each variable, con-
verts it into a p-values and ranks the variables by in-
creasing p-values. The family wise error rate (FWER) or
false discovery rate can be used to decide how far up the
ranking variables are still considered to contain signifi-
cant information. We use the Bonferroni-Holm (BH)
method [15] to control the FWER for multiple testing,
making it the only parameter involved in our approach.
However, a slight adjustment is required when applying
stepwise methods such as BH, since more than one vari-
able can have the same error rate and therefore p-value.
The stepwise nature of BH may indicate that some vari-
ables are significant while others, with the same error
rate, are not. In such instances we prefer to be on the
conservative side regarding control of the FWER. That
is, if a variable is not significant then all variables with
the same error rate should also be treated as not signifi-
cant. Instead of using the Bonferroni-Holm method the
user may opt for any of the many other available correc-
tion methods (see for example [16] and [17]).

ERp software
The Matlab [18] functions to perform ERp, as well as
an example application, are provided as part of the
Additional file 2. Additional file 1: Figure S8 gives

Table 1 Algorithm to simulate the null cumulative distribution
functions

• Generate N IIUD[0,1] un’s

• Assign the first N0 yn’s as 0 and the remainder as 1

• Minimize w0
N0

XN

n
1−ynð ÞI un > bð Þ þ w1

N1

XN

n¼1
ynI un≤bð Þ by varying b

over the midpoints of the increasingly ordered un’s to obtain er̂up�

• Repeat these steps M times to build up a file of iid copies of er̂up� , say
er̂up

� mð Þ; m ¼ 1;…;M, whose empirical distribution function provides
a simulation approximation of the null CDF

• If T of the er̂up� mð Þ0s fall below an actually observed er̂up� its associated
p-value is approximately T/M. Approximations are more accurate for
large M.
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details of this software together with the user inputs
required and the output delivered.

Results and discussion
In this section we discuss two examples to illustrate the
benefit of converting error rates into their corresponding p-
value. The sample sizes N0 = 21 and N1 = 12 were selected
to correspond with those of the dataset used to illustrate
ERp in the application subsection below. Two weight sets,
referred to as 1 w0 ¼ w1 ¼ 1

2

� �
and2 w0 ¼ 1

3 andw1 ¼ 2
3

� �
are used. These examples are used throughout the remain-
der of the paper.

Converting error rates to p-values
We calculate the null CDFs based on one million simula-
tion repetitions using the algorithm in Table 1. Since we
are only interested in significantly small error rates, the
left tails of the null distributions are relevant. For clarity
purposes, Fig. 1 shows the left tails of the logarithms of
these null CDFs. As is to be expected the null distribution
of er̂min

� is shifted to the left relative to that of er̂up
� . This is

because er̂min
� has slightly less power being a two-sided test

compared to the one-sided test of er̂up
� . The customary 5 %

significance level (α = 0.05 = 10− 1.3) is attained for error
rates as high as 0.3 and 0.25 (light blue lines). An error
rate as large as 0.3 or 0.25 would likely not lead one to

conclude that X has discriminatory ability. This ability
becomes more apparent when evaluating the corre-
sponding p-values. Metabolomics studies have many
variables requiring correction for multiple testing.
Therefore, a lower significance level such as α = 0.001 =
10− 3 may be relevant. Even for such a low α the
observed error rates are above 0.15 (dark blue lines).
Additional file 1: Figure S4 discusses similar results for
other sample sizes and weight combinations.

Power comparison of error rate test statistics
ERp operates on two levels, namely it performs a hypoth-
esis test and also delivers a classification threshold. It may
be anticipated that delivering two outputs comes at a cost,
i.e., less power in the hypothesis testing part. Here we
briefly report a simulation study comparing the power of
er̂up

� and er̂�min as test statistics against that of the well-

known non-parametric Mann–Whitney (MW) test. The
results presented here assume that the control group fol-
lows a standard log-normal distribution, while the experi-
mental group follows an upwardly shifted log-normal
distribution. That is, if yn = 0, thenXn = exp(Zn) with Zn

normally distributed with mean 0 and variance 1, while if
yn = 1, thenXn = exp(Zn + μ) where μ varies over a grid of
positive values. Ten thousand simulated data sets were
generated for each grid point and the p-values were calcu-
lated for the test statistics er̂up

� ; er̂�min and MW, at each

shift magnitude and for each repetition. These simulations
were performed in Matlab [18] making use of the one-
sided MW test ensuring sound comparison to er̂up

� .
As a first measure of comparison the resulting p-

values were averaged over the repetitions to measure the
expected power of the test statistics. Figure 2a and b
represent graphs for weight set 1 and 2, respectively. As
is to be expected, having a priori information regarding
which shift direction to evaluate does improve the dis-
criminatory ability of ERp, since er̂up

� is more powerful

than er̂min
� . It is also evident that the MW test statistic

delivers more power on average, but this diminishes at
larger shift, i.e., at shifts of most practical relevance.
As a second measure of comparison, Fig. 2c and d show

the proportion of p-values for each of the test statistics
that are smaller than the p-values of er̂up

� . If this propor-
tion is above (below) 50 %, then the corresponding test is
frequently better (poorer) than er̂up

� on this measure.

These figures show that the MW is better at smaller shifts,
i.e., below 1.6 and 2.0, while for larger shifts, ERp is con-
sistently better.
In summary, ERp’s ability to also classify new subjects

does not seem to result in a lack of power as compared
to the MW test. Additional file 1: Figure S6 supplies
more results on this matter.

Fig. 1 The null cumulative distribution functions. The graphs show the
log10 transformed null CDFs of er̂up� (black lines) and er̂min

� (red line), for
group sizes N0 = 21 andN1 = 12 using weight sets 1 (solid lines) and 2
(dashed lines). The dark (α = 0.001) and light (α = 0.05) blue lines
represent points of reference discussed in the text
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Leave-one-out error rate estimation
In the classification literature leave-one-out (LOO) cross-
validation is often used to estimate error rates with less
bias than the error rates used throughout this paper [19].
This leads to the question whether LOO error rates can
also be used in a hypothesis testing role to find discrimin-
ating variables analogous to the approach presented above.
However, lower bias of the LOO error rates does not auto-
matically imply greater power in the testing context. We
studied this issue and found that the LOO error rate based

test statistics are also non-parametric but on average less
powerful. Additional file 1: Figures S5 and S6 provide
more details.

Application to metabolomics data
Finally, we illustrate ERp by applying it to data obtained
from the metabolomics study reported in Mason et al.
[13]. The data was generated through 1H NMR spectros-
copy from CSF samples obtained from subjects who suf-
fered from meningitis, but not caused by Mycobacterium

a b

c d

Fig. 2 Simulation comparison of the different error rate test statistics. Figures a (weight set 1) and b (weight set 2) depict the average p-values
associated with er̂up� (red lines), er̂min

� (blue lines) and the MW test statistic (black lines). Figures c (weight set 1) and d (weight set 2) depict the
proportions of repetitions in which the p-values of er̂min

� (blue lines) and MW (black lines) were below the p-values of er̂up� . The dotted red line
represents the 50 % cut-off. The dashed blue lines represent points of reference as discussed in the text
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tuberculosis (Mtb) infection. They formed the control
group. The experimental group consisted of patients
who like-wise suffered from with meningitis, however
confirmed to be caused by Mtb.
Mason et al. [13] selected 12 variables in the CSF that

were able to distinguish the control from the experimental
subjects. These variables were selected based on PLS-DA
VIP values as well as univariate statistics. Quantitatively,
two metabolites that yielded the greatest measures of im-
portance (i.e., those most responsible for the separation)
were highly elevated lactate and decreased glucose in the
TBM subjects relative to values observed for the controls.
These two metabolites indicate the well-known distur-
bances in the energy metabolism of several neurological
disorders [20]. Further selected variables also support the
energy perturbation caused by the infection of the menin-
ges by the tuberculosis bacterium.
We apply ERp to the same data excluding subjects iden-

tified as outliers in Mason et al. [13] and including only
identified metabolites, thus leaving us with 55 metabolites,
17 experimental and 30 control subjects. Next we split the
dataset into two parts: a training set and a test set. The
test set includes about 30 % of subjects from each group,
randomly selected, and are not used to find important me-
tabolites. The test set contains 5 experimental and 9 con-
trol subjects and is used to show the classification ability
of ERp given new subjects. The training set therefore con-
tains N0 = 21 control subjects while the experimental
group consists of N1 = 12 subjects. Mason et al. [13] made
no weight assumptions so that using weight set 1 (our
equal weights scenario) is likely to yield more comparable
results. However, weight set 2 may be more appropriate in
this application since untreated TBM is mostly fatal [21].
Therefore, results are reported for both weight sets. Al-
though in this context the shift directions are known for
some variables we elect to make no directional assump-
tions so as to allow the data to speak in this regard.

List of significantly shifted variables
Table 2 lists the variables selected by ERp for different
choices of the FWER α together with their error rates
ðER ¼ er̂min

� Þ and position in the NMR spectrum, thresh-
olds ðC ¼ ĉminÞ , shift directions, p-values and the BH
adjusted critical levels for the corresponding FWER. To
illustrate how sensitive the list of selected variables is
to the specified FWER, three choices are reported namely
α = 1, 5 and 10 %. As is to be expected, a more tolerant
FWER results in a longer list of significant variables.
In addition to selecting the same metabolites as Mason

et al. [13], ERp also selected succinate as a significant
metabolite. Since succinate is an intermediate in the tri-
carboxylic acid cycle, the finding is compatible with the
increased aerobic energy metabolism required by the

microglia to destroy the invading tuberculosis bacterium.
Overall, we are able to draw the same conclusions pre-
sented in [13] by using only one method as opposed to
many different and more complex techniques.
For comparative purposes, we also modelled a standard

CART classification tree, using SPSS [22], with the follow-
ing specifications: (i) all variables were selected as poten-
tial predictors; (ii) equal prior probabilities for the two
groups; (iii) stopping when the final nodes contain only
one subject or at a tree depth of 100; and (iv) the test set
was used for validation purposes. These settings were se-
lected to make ERp and CART results as comparable as
possible. CART constructs a classification tree by recur-
sively dividing the data into subsets until these subsets are
as homogeneous as possible with regard to group labels
[23]. As a result, the tree stopped growing too soon and
only included the variable “C13 lactic (1.27)”, overlooking
other variables important for biological interpretation.
CART does provide a measure of variable importance.
Figure 3 displays these scores obtained when applying
CART to the training data given the two weight sets. The
suggested cut-off for variable selection corresponds to a
point just before a large drop in Normalized Importance
(NI). We chose a cut-off corresponding to an NI of 60 %,
that is, all variables with NI exceeding 60 % were selected
as important. At this cut-off CART did not flag two bio-
logically important variables, compared to the original
paper [13], and missed DMSO (the depletion of DMSO is
associated with oxidative stress) and lysine (increased
levels of lysine are associated with mental retardation).
CART does not select variables with similar information
to those already in the tree structure and may overlook
metabolites necessary for biological interpretation.

Classification of unseen subjects
We now make use of the test set of subjects to illustrate
the classification feature of ERp. Table 3 shows the clas-
sification results based on the lists of variables in Table 2,
taking α = 1 %, using the corresponding thresholds, shift
directions and classification rules.
The variables in Table 3 are ordered based on their p-

value, from smallest to largest. As is to be expected
variables lower down the list are prone to making more
misclassifications. However, in general there are very few
misclassifications. The majority of variables made a single
misclassification and mostly for the same subject (number
12), indicating that it may be an “outlier”, i.e., not repre-
sentative of the group. Constructing classification tables
for test as well as training subjects enables us to screen for
potential outliers, another potentially useful application of
ERp. However, since outlier detection is not the main
aim of this paper, we do not explore the matter
further.
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Table 2 Significant variables based on weight set 1 and 2

The first column provides the variable names ordered according to increasing error rates which are shown in the second column. The third column provides the threshold
estimates which can be used to classify new subjects by employing the “up” or “down” rule as indicated by the direction in the fourth column. The fifth column provides the
p-values associated with the error rates, expressed as percentages. The significance of these values can be determined through comparison to the BH adjusted critical level.
The last three columns provide these levels for three different FWERs namely 1, 5 and 10 %. The red, green and purple blocks encapsulate the variables that were
significantly shifted at a 1, 5 and 10 % FWERs, respectively. For groups of variables with the same error rates and therefore the same p-values the most conservative BH level
is applied. These groups are indicated in alternating blocks of white and grey
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Overall the second weight set, which puts more weight
on correctly classifying subjects in the experimental
group, was more successful and made no final misclassi-
fications, based simply on majority vote, even in the
presence of the potential outlier. No classification model

was developed in the original paper [13] and therefore
no comparison is possible. The classification results for
the test set (assuming equal weights) are the same for the
CART model as for ERp, with only one experimental sub-
ject misclassified. However, ERp outperforms the CART

a

b

Fig. 3 CART variable importance. The CART method provides a measure of importance for each variable. These values (grey bars), along with the
normalized values (blue bars), are depicted here in the form of a bar chart for each variable (y-axis) in order of decreasing importance. Figures a and
b represent weight sets 1 and 2 respectively. The vertical black and red dashed lines represent values at which large drops in Normalized Importance
occur and therefore possible cut-off choices for variable selection. The dashed red lines represent the cut-offs chosen for comparison with ERp, while
the dashed black lines represent alternative choices
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Table 3 Group classification and outlier detection using significant variables based on weight set 1 and 2

The body of the table shows the classification result due to each significantly shifted variable for each subject, where 0 indicates the subject was classified into the control
group and 1 indicates the subject was classified into the experimental group. Misclassifications are indicated in red. The last three rows (i) provide the final classification
based on the majority vote; (ii) flag subjects that were misclassified; and (iii) flag potential outlying subjects based on the number of variables that misclassified it compared
to the remaining subjects
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model for weight set 2 (assuming unequal weights),
with CART again misclassifying one experimental sub-
ject while ERp made no misclassifications.
Though this is only a single application and not a

comprehensive comparison, the choice of cut-off for
CART remains difficult to interpret. In contrast, ERp
makes use of a controlled FWER (α) which has a
direct interpretation as the probability of having in-
cluded one or more variables which do not discrimin-
ate between the groups.

Conclusion
Our main contribution has been to show that non-
parametric hypothesis testing, based on minimum
error rates, can find statistically significantly shifted
variables. We found that the discriminatory ability of
variables becomes more apparent when error rates
were evaluated based on their corresponding p-values
as relatively high error rates can still be significant.
The power simulations performed concluded that the
MW test is more powerful for small shifts in distribu-
tion, while ERp is competitive for larger shifts. An ex-
ploratory application of ERp indicated that markers of
the disease state of patients suffering from TBM were
successfully selected and used for the classification of
patients with meningitis due to Mtb infection relative
to other causes.
In summary, ERp can accommodate unequal and small

group sizes while accounting for the cost of misclassifi-
cation into either group. ERp retains (if known) or re-
veals (if unknown) the shift direction, aiding biological
interpretation. The thresholds resulting in the minimum
error rates can be used to classify new subjects or to
identify potential outliers.
ERp is a useful addition to the range of methods used

for binary discrimination and classification. Future re-
search aims to explain how ERp can evaluate interac-
tions and extend ERp to accommodate data with a large
proportion of observations below the detection limit.
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