
Software: university
courses versus workplace
practice

Janet Liebenberg, Magda Huisman and Elsa Mentz

Abstract: There is a shortage of software developers with the right skills
and knowledge, not only in South Africa but worldwide. Despite reports of
a gap between industry needs and software education, the gap has
mostly been explored in developed countries and in quantitative studies.
This paper reports on a mixed methods study of the perceptions of
professional software developers regarding what topics they learned from
their formal education and the importance of these topics to their actual
work. The analysis suggests that there is a gap between software
development education and workplace practice and recommendations for
software development education are made.

Keywords: computing curricula; computing education institutions;
software development education; software industry; software
professionals

The authors are with the North-West University, Private Bag X6000, Potchefstroom, 2520,
South Africa. Janet Liebenberg (corresponding author) is a Lecturer and Magda Huisman
is a Professor with the Department of Computer Science and Information Systems. Elsa
Mentz is a Professor with the Faculty of Education Sciences. Corresponding author E-mail:
janet.liebenberg@nwu.ac.za.

South Africa has a shortage of software developers; and
across the African continent the overall levels of
technical and soft skills needed are not sufficient to meet
demand (Biztech Africa, 2013; Harris, 2012). This skills
shortage is actually a worldwide phenomenon
(Connolly, 2013). Not only are there shortages of
software development (SD) workers, but students in the
computing fields are graduating with a lack of the skills
that companies require (Bateman, 2013). Regarding ICT
skills in South Africa, according to Mawson (2010),
‘not all graduates are prepared for the working
environment, and don’t always fit in. This is a gap that
needs addressing.’

The SD industry expects students to be educated in
courses and projects that are professionally relevant and
that prepare them well for the workplace (Moreno et al,
2012); but, equally, the role of the university should also

be considered. According to Reisman (2004), the mission
of undergraduate and graduate programmes is
educational, but that mission has steadily transformed into
one of training. The curriculum focuses on a common
body of knowledge, a set of basic topics and principles:
the primary qualification of new employees is their
foundational undergraduate education, and they could
therefore easily be trained by their employer for entry-
level project work using particular (vendor) products.

Information technology is described by some authors
as the ‘Great Globalizer’ and, in these authors’ view,
computing education should meet global standards.
However, when referring to developing countries, some
authors argue that instead of tailoring and evaluating
education to global standards, computing education
should address local needs (Ezer, 2006; Wade, 2002;
Mooketsi and Chigona, 2014).

INDUSTRY & HIGHER EDUCATION Vol 29, No 3, June 2015, pp 221–235, doi: 10.5367/ihe.2015.0254

Several researchers have studied the knowledge and
skills requirements for IT professionals through
quantitative analysis, but the gap has mostly been
explored in developed countries. No mixed methods
study in a developing country could be found that
studied professional software developers’ perceptions
regarding the topics they learned in their formal
education and the importance of these topics to their
actual work. In view of the rapid pace at which
technology is changing, and in the light of the shortage
of skilled software developers, the present study
investigated the possible current gap between software
development education and software workplace
practice.

The research questions were:

(1) What are the topics professional software developers
learned in their formal education?;

(2) What topics are important to professional software
developers in their actual workplace?; and

(3) Is there a gap between software development
education and the workplace from the perspective of
the software industry?

It is hoped that the answers might help SD educators,
curriculum developers and corporate trainers, especially
in developing countries, to form a picture of what
knowledge and skills demanded by industry university
courses do or do not cater for; and the software industry
will be able to ascertain which tasks new recruits in the
SD workplace might be well qualified to perform.
University and industry should be able relate the results
to the academic preparation of future software
developers, as well as the continued education and
training of software developers. It is argued that this
could therefore lead to more relevant software
development education with regard to the software
industry and contribute to meeting the demand for
skilled software developers.

Clarification of terminology
The dynamic nature and continual evolution of
computing makes it difficult and potentially misleading to
define the computing disciplines and related terminology
(Guzdial et al, 2009; Gruner, 2014). For the purpose of
this study, it is therefore useful and helpful to explain and
clarify certain key terms, as follows.

Software development (SD)

The International Organization for Standardization
(ISO) and the International Electrotechnical
Commission (IEC) define ‘developer’ as an individual
or organization that performs development activities
(including requirements analysis, design, testing through

acceptance) during the system or software life cycle
process (ISO/IEC 25000, 2014). The IEEE, ISO and
IEC define the software development process as the
process by which user needs are translated into a
software product (ISO/IEC/IEEE 24765, 2010). For the
purposes of this study ‘software development’ will refer
to the process of developing software products through
successive phases in an orderly way.

Software industry

The ISO and IEC define ‘software manufacturer’ as a
group of people who or organizations that develops or
develop software, typically for distribution and use by
other people or organizations (ISO/IEC 19770–2, 2009).
For the purposes of this study, ‘software industry’ will
refer to software manufacturers, as well as organizations
for which software is not the main product but is
developed for use within the organization.

Conceptual framework

The student in the software development class

Students in current university classes are described by a
great number of writers as the Net Generation. The Net
Generation is characterized by people who may have
never known life without the Internet (Jones et al,
2010). However, not all today’s students can be
described as the Net Generation, since not all students
had and still have the benefit of state-of-the-art,
ubiquitous technology. They may have information
literacy characteristics and IT skills quite different from
those typical of the Net Generation. Higher education
comprises a highly diverse and growing student body
with a wide variety of information literacy skills and
abilities (Lorenzo et al, 2007; Jones et al, 2010).

Students in developing countries do not fit the
description of the Net Generation since Internet
penetration for households in 2013 is a mere 31.2%.
South Africa was ranked 37th amongst developing
countries, with 39.4% (25.5% in 2012) of South African
households using the Internet. The considerable rise in
Internet use is explained by mobile broadband
subscriptions experiencing an 80% year-on-year growth
in Africa (UN Broadband Commission, 2013, 2014) and
Calitz (Biztech Africa, 2013) believes that mobile
applications can play a key role in delivering ICT
learning and generating interest in careers in ICT in
Africa.

Software developers in the workplace

Software and technical developments have made
remarkable strides in the last few decades, and continue
to do so seemingly unabated. The result has been

Software: university courses versus workplace practice

INDUSTRY & HIGHER EDUCATION June 2015222

profound transformation of markets, industries and
society in general (Biztech Africa, 2013; Shaw et al,
2005). The demands on software developers are
changing because the character of software production
itself is changing and with this the dependence on
software is increasing (Saiedian, 2009; Shaw et al,
2005; Gupta, 2005). The diversity of software
applications, clients and contexts requires adaptability in
responding to client needs and the ability to discriminate
between criteria for success (Shaw et al, 2005; Gupta,
2005). Professionals in the computing field require
personal skills, technical expertise and lifelong learning
abilities (Fernandez-Sanz, 2009; Calitz, 2010) and
employers must provide opportunities for lifelong
learning specifically making use of on-line courses and
training materials (Krakovsky, 2010).

In view of the discriminatory apartheid past of South
Africa, the Employment Equity Act (South Africa)
(1998) requires companies to ensure through affirmative
action that designated groups (black people, women and
people with disabilities) have equal opportunities in the
workplace. This is a double concern for ICT companies
in South Africa because there is a shortage of black ICT
professionals (Calitz, 2010) and, on top of that, the
shortage of women in the computing disciplines is a fact
of life in South Africa as much as it is a worldwide
phenomenon (Harris, 2012).

University courses vs workplace practice

The seminal study by Lethbridge (2000) can serve as a
framework for understanding relationships between the
needs of the SD industry and the education of software
developers. In the survey carried out by Lethbridge
(ibid) over 200 software developers and managers from
around the world were asked what they thought about
75 educational topics. For each topic they were asked
how much they had learned about it in their formal
education, how much they knew about it at the time of
the survey and how important the topic had been in their
career. The Lethbridge study and several others, mainly
in the USA, suggested the existence of a gap between
the knowledge and skills demanded by the industry and
the knowledge and skills gained by graduates of
university computing courses: Table 1 provides a
summary of the relevant studies.

Courses with a primary emphasis on current
technology, in which most of the knowledge will
become obsolete as the technology does, are a major
challenge in the education of software developers.
Pressures arising from the changing character of
software and from external pressures on educational
institutions will require changes in what software
developers are taught and how they are taught (Gupta,
2005).

Curricula for software development
To fill, effectively, this gap between the knowledge and
skills demanded by the industry and the knowledge and
skills gained by graduates of university computing
courses, it would be necessary on the one hand to
guarantee that the educational programmes provide the
knowledge required for the job profiles suggested by
industry; and on the other hand to ensure that this
knowledge is taught in a manner enabling future
professionals to tackle correctly the problems they will
face during their professional career (Gupta, 2005;
Loftus et al, 2011). Plice and Reinig (2007) found that
emphasizing technical topics at the expense of business
content in university courses may provide short-term
benefits in making the transition into the workforce, but
it might inhibit career advancement as graduates assume
greater managerial responsibilities. Emphasizing com-
munication and teamwork skills, while maintaining the
existing curriculum balance between business and technical
content, is indicated as an appropriate strategy for aligning
the computing curricula with the needs of industry.

The Joint Task Force on Computing Curricula (Joint
Task Force, 2013) emphasized that the education
students receive must adequately prepare them for the
workforce in a more holistic way than simply conveying
technical facts. Students will, through the general
university experience, acquire some soft skills and
personal attributes (for example, patience, time
management, work ethic, and an appreciation for
diversity), but for the rest of the skills provision must be
made through specific curricula.

The adoption of international curricula offers a ready
means for updating university computing curricula, but
universities in developing countries face challenges of
implementing these curricula which are typically
designed for Western realities and which therefore do not
address local needs (Bass and Heeks, 2011; Ezer, 2006).

Lethbridge et al (2007) argue that the majority of
quality and budgetary problems with software have their
root cause in human error or lack of skill. These in turn
arise in large part from inadequate education; thus
improving education should go a long way towards
improving software and software practice.

Methodology and data collection
In this section the research design, the demographics of
the participants, as well as the data collection and
analysis are discussed.

Research design and participants

A mixed methods approach was used to conduct the
research. Tashakkori and Creswell (2007) describe
mixed methods as: ‘Research in which the investigator

Software: university courses versus workplace practice

INDUSTRY & HIGHER EDUCATION June 2015 223

collects and analyses data, integrates the findings, and
draws inferences using qualitative and quantitative
approaches or methods in a single study or programme
of inquiry’. Mixed methods research can help develop

rich insights into various phenomena of interest that
cannot be fully understood using only a quantitative or a
qualitative method. Often, mixed methods research will
provide the most informative, complete, balanced and

Table 1. Studies on the knowledge and skills gap.

Author(s) Study Results

Lethbridge (2000) Survey of software practitioners on what they
thought about 75 educational topics.

Gaps in HCI/user interfaces, real-time system
design, software cost estimation, software
metrics, software reliability and fault tolerance,
and requirements gathering and analysis.
Mathematical topics over-emphasized.

Kitchenham et al (2005) Surveyed SE graduates to assess the extent to
which the education delivered by four UK
universities matches the requirements of the
software industry.

Gaps in Web-based programming, project
management, configuration and release
management, multimedia, security and
cryptography, computer graphics, and business
topics. Mathematical topics over-emphasized.

Kim et al (2006) Examines IS/IT skills gaps from three
perspectives: end-users, academia, and IS/IT
employers.

Gaps in project management; most basic and
widely used technologies (personal productivity
and desktop operating systems), security, ERP,
end-user computing, and the integration of soft
skills.

Surakka (2007) A small survey of software developers, academia
and Master’s students to evaluate the
importance of subjects in demanding
programming tasks.

Gap in Web-related subjects and skills.
Mathematical topics over-emphasized.

Benamati and Mahaney (2007) Thirteen IS executives were interviewed to learn
their views on the state of the entry-level IS job
market and what skills today’s IS graduates lack
most.

Lack in programming skills, project management
skills, communications skills, business
knowledge, and leadership skills.

Lee and Han (2008) Investigated the skill requirements for a
programmer/analyst by analysing 837 job ads
posted on Fortune 500 corporate websites.

Require skills related to development, software,
social skills, and business.

Aasheim et al (2009) Compared the perceptions academics have of
the importance of various skills for entry-level IT
workers with the view of IT managers.

IT managers place more importance on
hardware concepts, operating systems,
leadership skills or entrepreneurial traits than
academia. Both groups ranked interpersonal
skills, personal skills, technical skills,
organizational skills and work experience – in the
same order of importance.

Bullen et al (2009) Examined workforce trends in IT companies. Companies seek client-facing capabilities,
project management skills and business domain
knowledge.

Gallagher et al (2010) Interviewed senior IT managers in non-IT
companies to investigate the premise that IT
professionals should possess a varied set of
skills.

Skills most critical are non-technical skills, such
as project management, business-domain
knowledge and relationship skills.

Moreno et al (2012) Investigated the relationship between the
competences of recent SE graduates and the
tasks that these professionals are to perform as
part of their jobs in industry.

The biggest gaps found concern tasks
associated with IT business consultancy,
knowledge related to leadership, negotiation or
giving presentations.

Keil et al (2013) Investigated the skill requirements for IT project
managers in (IT) projects.

The top ?ve skills identi?ed were leadership,
verbal communication skills, scope
management, listening skills, and project
planning.

Software: university courses versus workplace practice

INDUSTRY & HIGHER EDUCATION June 2015224

useful research results (Venkatesh et al, 2013; Johnson
et al, 2007). Creswell and Clark (2007) suggested four
major types of mixed methods design: (1) triangulation
(merge qualitative and quantitative data to understand a
research problem); (2) embedded (use either qualitative
or quantitative data to answer a research question within
a largely quantitative or qualitative study); (3)
explanatory (use qualitative data to help explain or
elaborate quantitative results); and (4) exploratory
(collect quantitative data to test and explain a
relationship found in qualitative data). In this study the
type of mixed methods research was explanatory,
because the objective of the qualitative investigation
was to supplement the quantitative investigation and to
better understand and explain the observations of the
quantitative investigation. This mixed methods study
was conducted in South Africa: for the quantitative part
of the study a survey was used and the qualitative data
were acquired through the comments made by survey
respondents.

In the last quarter of 2013 a convenience sample of
995 professional software developers in South Africa
was taken. The respondents were members of the
following groups of the professional networks
LinkedIn and MyBroadband: Software and Web
Developers in South Africa, SA Developer.NET and
C# Developers/Architects. They were contacted via
e-mail and asked to complete the anonymous online
survey. Some of the respondents indicated that they
had sent the link of the survey to their colleagues for
completion. In addition, five managers at software
houses were contacted and they sent the link of the
survey to the software developers in their company.
The number of usable responses received was 214, a
response rate of around 21%.

Table 2 provides a summary of the biographical data
of the respondents. The gender profile, with only 8% of
the respondents being female, is a matter for concern –
but not surprising. The age profile shows that 42% of
the respondents were ‘young’ (aged under 30) software
developers. A greater concern is the ethnic background
of the software developers, with only 19% of the
respondents being Black. In terms of the respondents’
education 49% of them were in possession of a CS/IS
degree or degrees, with another 22.5% having related
degrees.

It is not uncommon in software development to find
people with few formal qualifications (4.5% of the
respondents): they often teach themselves to
programme and then prove themselves to employers in
the software industry through their knowledge, skills
and experience. The work experience of respondents
indicates that 70.5% of them had more than five years’
work experience. A common trend is for software

developers not to stay long in one position or
workplace: this became apparent in this study, with
only 43% of the respondents having worked for more
than two years with their current employer. About a
quarter of the respondents (27%) were part of
management and 46% of them were involved in the
hiring of new graduates.

Table 2. Profile of respondents (n=214).

Number (%) of
respondents

Gender Male 196 (92%)
Female 18 (8%)

Age category 18–24 25 (12%)
25–29 64 (30%)
30–39 94 (44%)
40–49 28 (13%)
50–59 3 (1%)
60+ 0 (0%)

Ethnic background African/Black 40 (19%)
White 145 (68%)
Coloureda 11 (5%)
Indian/Asian 14 (6%)
Other 4 (2%)

Education Matric 10 (4.5%)
Certification 22 (10%)
National Diploma 30 (14%)
CS/IS degree(s) 104 (49%)
BSc/BCom 38 (18%)
Engineering degree 10 (4.5%)

Work experience
(in years)

0–4 63 (29.5%)
5–9 62 (29%)
10–14 51 (24%)
15–19 22 (10%)
20–29 13 (6%)
30–39 3 (1.5%)
40+ 0 (0%)

Years at current
employer

0–2 123 (57%)
3–4 47 (22%)
5–9 26 (12%)
10–19 13 (6%)
20–29 4 (2%)
30–39 0 (0%)
40+ 1 (0.5%)

Involved in hiring of
new graduates?

Yes 99 (46%)
No 115 (54%)

Part of
management?

Yes 58 (27%)
No 156 (73%)

Note: a The term ‘Coloured’ is used by government organizations
in South Africa, among others, as an ethnic label for people of
mixed ethnic origin who possess ancestry from Europe, Asia
and various Khoisan and Bantu tribes of Southern Africa and is
not considered derogatory.

Software: university courses versus workplace practice

INDUSTRY & HIGHER EDUCATION June 2015 225

Data collection, instrument and analysis
A survey with two sets of 63 items, and an open-ended
question at the end of the questionnaire asking for
further comments on the education of software
developers, was developed. The first section of the
questionnaire gathered information on the biographical
data of the respondents as shown in Table 2. The second
and third sections both listed the same 63 core software
development topics. Similar to Lethbridge (2000), the
first set of 63 topics asked in respect of each topic:
‘How much did you learn about this in your formal
education?’ and was accompanied by a five-point Likert
response scale with 1 (‘Learned nothing at all’);
2=(‘Became vaguely familiar’); 3=(‘Moderate working
knowledge’); 4=(‘Learned a lot’); 5=(‘Learned in
depth; became expert’). The second set asked in respect
of each of the 63 topics: ‘How important have the
details of this specific material been to you in your
career as a software developer?’ and was accompanied
by a five-point Likert response scale with 1 (‘No
importance’) 2=(‘Occasionally important’);
3=(‘Moderately important’); 4=(‘Very important’); 5
(‘Essential’).

Factor analysis was used to investigate the two sets
of 63 items in more detail, to reduce the variables into a
smaller number of factors but taking into account that in
order to answer the third research question, the two sets
needed to be comparable. The 214 responses were
examined using principal components factor analysis
and the two sets of attitude items each yielded 14

interpretable factors and five items were being handled
as single research variables for each set. Factors were
named according to their main context. A Cronbach’s
Alpha coefficient was calculated for each of the factors
and was found, as Table 3 shows, to be reliable
(� R0.60).

Kitchenham et al (2005) raised concerns over the
population in the study by Lethbridge (2000), namely
that some of the respondents graduated a very long time
prior to the study, and some graduated in non-computer
science-related disciplines or did not graduate at all. For
this present study the concerns of Kitchenham et al
(2005) were therefore addressed. Cross tabulation (see
Table 4) was used to establish the core group of
respondents with, in the first place, a pure CS/IS degree;
and, in the second place, respondents who had
completed their degree in the past fifteen years. These
criteria were met by 93 respondents – from hereon
referred to as the ‘Core Group’ – because their
education can be considered as relatively recent and
these respondents could offer useful information about
current computer science-related courses. For the first
and second research questions, the Core Group’s views
are reported together with those of the whole group, but
for the third research question, when establishing the
gap, only the Core Group’s views are reported because
only they can give a clear indication of the possible gap.

Basic analysis of quantitative data was done by
calculating the mean values and standard deviation of
each of the 19 variables. The statistical tests used in the

Table 3. Factors (with reliability coefficients) and items.

Factors Set 1: Cronbach’s � Set 2: Cronbach’s �

Information systems 0.800 0.812
Computer hardware and electrical and computer engineering 0.937 0.907
Software testing and maintenance 0.900 0.833
Computer science theory 0.912 0.908
Real-time and systems programming 0.888 0.867
Mathematics and statistics 0.933 0.910
Mobile technologies 0.946 0.967
Software development methodologies 0.915 0.803
Software management 0.882 0.831
General software design 0.853 0.834
Specialized application techniques 0.865 0.884
Web design and development 0.914 0.911
Hardware: data transmission 0.851 0.820
Software engineering methods 0.901 0.867

Items
Data warehousing
Security and cryptography
Game development
HCI/user interfaces
Essential subsystem design: databases

Note: See Appendix for the items in each factor.

Software: university courses versus workplace practice

INDUSTRY & HIGHER EDUCATION June 2015226

analysis varied as necessary to match the metric being
analysed. When the results of the interaction analysis
are reported, only the significant interactions or primary
effects will typically be discussed. A convenience
sample instead of a random sample was used therefore
the p-values will be reported for the sake of
completeness but will not be interpreted.

The qualitative data gathered in the open-ended
question at the end of the questionnaire came from 77 of
the respondents. In addition, there were 21 respondents
who felt so strongly about the topic that they gave up
their anonymity and e-mailed the researcher with more
comments and suggestions.

The ATLAS.ti 7.1.4 computer program was used for
the analysis of the qualitative data. The data were stored
as a hermeneutic unit and coded into themes and
subthemes and analysed for dominant themes. Given
that the objective of the qualitative investigation was to
supplement the quantitative investigation, the question
central to this analysis was, ‘What knowledge is
important to professional software developers in their
actual workplace?’ From the data analysis, some
patterns emerged and the themes identified were:

• The knowledge needed by industry;
• The knowledge not needed by industry;
• The state of SD education; and
• Suggestions for SD education.

From the data analysis an overall description of the
respondents’ experiences and feelings about software
development education was created. Since the product
of qualitative research is richly descriptive (Merriam,
2009), the results of this part of the study are presented
in the form of quotations taken from the participants’
comments.

Threats to validity

As previously stated, the dynamic nature of computing
makes it difficult to define the computing disciplines and
related terminology. In this study the focus was on
software developers, and all of the respondents fitted the

label ‘software developer’; but what a software tester,
web developer, software architect, project manager, or
any of a host of other software-related professionals
might need in preparation might vary. Furthermore,
software developers are dispersed across many different
industries (banking, service industries, etc) and there
would be many different needs to address. The
researchers had taken care to select the software
development groups from LinkedIn and MyBroadband:
the views and opinions of these experienced software
developers do not necessarily only represent their
specific profession or sector, because a project manager
in the SD department of a bank will, for instance, notice
what knowledge and skills are lacking in the software
development team and knowledge regarding software
testing is not bound to a specific sector.

Software engineering (SE) is not yet offered as a
separate degree programme at universities in South
Africa, and software developers in South Africa
therefore originate from CS/IS/IT degree programmes.
The results of this study could not therefore be used as a
remedy to fix a single degree programme; but, rather, as
a guideline for role players ranging from lecturers,
developers of degree programmes/curricula to corporate
trainers.

Results and discussion
In this section, important data for each of the concepts
are considered, as well as the qualitative data that
provide a rich description of the information obtained.
The qualitative data also helped the researchers to
discover and gain understanding of the perspectives of
the professional software developers regarding the
topics they learned from their formal education and the
importance of these topics to their actual work.

University courses

Table 5 shows the topics the Core Group (n=93) and
the whole group (n=214) of professional software
developers learned in their formal education. It is

Table 4. Cross tabulation of experience vs education.

Work experience (years)

0–4 5–9 10–14 15–19 20–29 30–39 Total
Education Matric 1 4 2 2 0 1 10

CS/IS degree(s) 37 35 21 7 4 0 104
BSc/BCom degree 8 10 11 5 4 0 38
Certification 9 2 5 2 2 2 22
National diploma 7 8 8 5 2 0 30
Engineering degree 1 3 4 1 1 0 10

Total 63 62 51 22 13 3 214

Software: university courses versus workplace practice

INDUSTRY & HIGHER EDUCATION June 2015 227

noteworthy that there are no significant differences
between the Core Group and the whole group. Most of
the differences might be explained by the 38
respondents who graduated more than 14 years prior to
the study.

The topic that they learned the most was ‘Essential
subsystem design: databases’ with the mean value
indicating that their knowledge ranged from ‘Learned a
lot’ to ‘Moderate working knowledge’. They also rated
‘Moderate working knowledge’ on the topics: General
software design; Computer science theory; and
Mathematics and statistics. The topics they learned the
least (‘Became vaguely familiar’) were ‘Game
development’ and ‘Mobile technologies’. It is a matter
for concern that little was taught regarding ‘Mobile
technologies’, because mobile broadband subscriptions
were, and are, showing such a considerable growth in
Africa.

The number of years’ experience of the respondents
was taken into consideration and was tested for
significant differences between means of the
respondents with less than 15 years’ experience against
those with 15 and more years’ experience, using a
T-test. There were three factors showing medium
practically significant differences in terms of what they
learned in their formal education, namely ‘Mobile
technologies’ (d=0.50), ‘Software development
methodologies’ (d=0.60) and ‘Web design and
development’ (d=0.69). It is not surprising that these
newer technologies and methods were not taught to the

‘older/more experienced’ respondents because these
technologies might not even have existed when they
received their education. These results also confirm that
in order to establish the gap between current SD
education and the workplace, these older respondents
had to be left out of the equation.

The T-test also showed that there were no significant
differences in the views of the ‘older/more experienced’
respondents and the rest in terms of the important topics
in the workplace. This fact confirms that the whole
group of respondents’ views are important in answering
the second research question.

Knowledge needed

Table 6 shows that these software developers viewed
the topics in the workplace from ‘Essential’, ‘Very
important’ through ‘Moderately important’ to
‘Occasionally important’. These software developers
view ‘Essential subsystem design: databases’ as the
most important topic in the workplace, but it is
encouraging to see that the same topic ranked first in the
topics they learned in their formal education. ‘General
software design’, followed by ‘Web design and
development’ were viewed as very important topics in
the workplace. The result for ‘Web design and
development’ is in agreement with that of Surakka
(2007) and Kitchenham (2005), that the industry views
Web-related subjects and skills as important.

The topics viewed as the least important
(‘Occasionally important’) were ‘Game development’

Table 5. Topics learned in formal education.

Core Group Whole group

Topics Meana

(n=93)
SD Meana

(n=214)
SD

Essential subsystem design: databases 3.613 0.847 3.308 0.992
General software design 3.240 0.758 3.071 0.806
Computer science theory 3.223 0.902 3.043 0.969
Mathematics and statistics 3.132 0.972 2.908 1.137
HCI/user interfaces 2.978 1.251 2.724 1.148
Software engineering methods 2.875 0.941 2.718 0.950
Real-time and systems programming 2.824 0.850 2.650 0.893
Security and cryptography 2.699 1.130 2.341 1.171
Hardware: data transmission 2.694 1.045 2.509 1.066
Web design and development 2.621 1.030 2.296 1.068
Information systems 2.541 0.891 2.321 0.903
Data warehousing 2.538 1.138 2.145 1.080
Specialized application techniques 2.490 0.950 2.265 0.937
Software testing and maintenance 2.336 0.951 2.158 0.902
Software management 2.263 0.869 2.026 0.877
Software development methodologies 2.161 1.033 1.827 0.982
Computer hardware and electrical and computer engineering 2.147 0.839 2.170 0.997
Mobile technologies 1.987 1.151 1.734 1.013
Game development 1.667 1.004 1.472 0.848

Note: a Likert-style responses were ranked from 1 to 5 respectively.

Software: university courses versus workplace practice

INDUSTRY & HIGHER EDUCATION June 2015228

and ‘Computer hardware and electrical and computer
engineering’. The qualitative data revealed the
following regarding the knowledge needed by software
developers. Respondents felt that students lacked certain
knowledge and skills especially in relation to the way in
which software development takes place in the real
world:

‘The common problem is that they have no concept
of how real projects are managed, how projects are
planned and timings are estimated, and various other
things relevant to real-world development.’

‘I think future developers need some introduction in
the SDLC of the workplace along with something
like SCRUM.’

‘More practical exposure, become language and os
agnostic use best tool for the job.’

‘I think the education should focus on what is used in
the industry like Agile and Extreme Programming
and software practices (TDD).’

‘Practical SDLC experience in a team setting
(systems development projects) is a crucial part of
the learning process.’

‘General problem solving should be more of a focus.’

‘They should learn the basic fundamentals and not
just the methods to provide quick solutions.’

‘The concepts are far more important (design
patterns, algorithms).’

‘Met too many honours degree students that don’t
grasp object-oriented design and design patterns.’

One of the respondents echoed the findings of other
researchers (Mawson, 2010; Kitchenham et al, 2005;
Kim et al, 2006; Plice and Reinig, 2007) regarding the
lack of business knowledge: for example, ‘I wasn’t
prepared from a business knowledge perspective’; and
another respondent commented, ‘When I first started I
had very little idea of how to begin working with an
existing code base and team structures’.

Respondents commented on recent developments and
trends and what should be taught to students in order to
stay up to date:

‘The Functional Program (immutable) paradigm is
taking over. Rather teach interfaces, generics,
functions, delegates, lambdas and drum in the basics
of stacks, heaps, queues and thread safety, etc.’

‘Distributed Systems and Parallel computing are
becoming more important now.’

‘SOLID (Uncle Bob), Domain Driven Design
(Evans) and Brock – Test-Driven Design are really
useful.’

‘SOLID is extremely important for writing good,
maintainable, testable, extendable code.’

Table 6. Important topics in the workplace.

Core Group Whole group

Topics Meana

(n=93)
SD Meana

(n=214)
SD

Essential subsystem design: databases 4.419 0.864 4.336 0.924
General software design 4.029 0.702 3.977 0.783
Web design and development 3.903 1.073 3.770 1.117
Software testing and maintenance 3.796 0.836 3.738 0.831
HCI/user interfaces 3.634 1.101 3.617 1.131
Software engineering methods 3.584 1.015 3.564 0.955
Mobile technologies 3.476 1.298 3.386 1.346
Software development methodologies 3.427 1.065 3.159 1.041
Security and cryptography 3.409 1.236 3.486 1.141
Software management 3.296 0.963 3.254 0.958
Data warehousing 3.215 1.214 3.037 1.214
Real-time and systems programming 3.138 1.079 3.169 1.000
Computer science theory 3.099 1.156 3.040 1.112
Information systems 2.792 1.104 2.776 1.082
Mathematics and statistics 2.621 1.025 2.584 1.068
Hardware: data transmission 2.559 1.091 2.680 1.094
Specialized application techniques 2.249 0.977 2.228 0.971
Computer hardware and electrical and computer engineering 1.880 0.843 1.985 0.882
Game development 1.591 1.024 1.636 0.982

Note: a Likert-style responses were ranked from 1 to 5 respectively.

Software: university courses versus workplace practice

INDUSTRY & HIGHER EDUCATION June 2015 229

‘Database design and development is severely under
taught. Strong Knowledge of SQL is paramount and
it’s not present.’

‘Ignore too many Mobile technology specific courses
(i.e. no iOS, Android, WindowsPhone, etc) – stick
with Web skills. UI design for small devices (and
innovative UI design) is valuable.’

‘Get students to become familiar with version control
of some kind through assigned projects.’

‘They are learning the wrong technologies for the
industry; they should be focusing only on the .NET
stack and LAMP stack and mob.’

‘They need to be taught industry relevant languages,
i.e. C# and proper platforms if they come from
JAVA.’

The knowledge not needed

Respondents had strong opinions on knowledge and
topics that they felt were not important and which topics
were over-emphasized.

‘Languages and syntax aren’t really important.’

‘OO is dying and Inheritance and Polymorphism is
over emphasized at Varsity!’

‘Mutation of state of objects is no longer a desirable
paradigm as it limits parallelism.’

‘Ignore too many mobile technology specific courses
(i.e. no iOS, Android, WindowsPhone etc).’

‘Web dev is a fad. Need more hard core real-time
programmers.’

‘They should learn the basic fundamentals and not
just the methods to provide quick solutions.’

University courses versus workplace practice

The results of the Core Group were analysed to
determine if there was a gap between software
development education and the workplace from the
perspective of the software industry. Differences were
analysed with a T-test and Table 7 shows significant
differences in means between 19 factors.

Thirteen factors revealed that their mean values for
importance in the workplace were higher than the mean
values of what they learned in their formal education.
Six factors (Mathematics and statistics; Computer
hardware and electrical and computer engineering;
Specialized application techniques; Hardware: Data
transmission; Computer science theory; Game
development) showed lower mean values for
importance in the workplace than the mean values of
what they learned in their formal education.

Seven factors (Software testing and maintenance;
Software development methodologies; Web design and
development; Mobile technologies; Software
management; General software design; Essential

Table 7. The gap between university courses and workplace practice.

Mean (n=93)

Topics Learned in formal
education

Importance in
workplace

Effect size p

Software testing and maintenance 2.336 3.796 1.54** <0.001
Software development methodologies 2.161 3.427 1.19** <0.001
Web design and development 2.621 3.903 1.19** <0.001
Mobile technologies 1.987 3.476 1.15** <0.001
Software management 2.263 3.296 1.07** <0.001
General software design 3.240 4.029 1.04** <0.001
Essential subsystem design: databases 3.613 4.419 0.93** <0.001
Software engineering methods 2.875 3.584 0.70* <0.001
Security and cryptography 2.699 3.409 0.57* <0.001
Data warehousing 2.538 3.215 0.56* <0.001
Human–computer interaction/user interfaces 2.978 3.634 0.52* <0.001
Real-time and systems programming 2.824 3.138 0.29
Information systems 2.541 2.792 0.23
Mathematics and statistics 3.132 2.621 0.50* <0.001
Computer hardware and electrical and computer engineering 2.147 1.880 0.32
Specialized application techniques 2.490 2.249 0.25
Hardware: data transmission 2.694 2.559 0.12
Computer science theory 3.223 3.099 0.11
Game development 1.667 1.591 0.07

Note: * Medium practically significant difference (d> =0.5); ** Large practically significant difference (d> =0.8).

Software: university courses versus workplace practice

INDUSTRY & HIGHER EDUCATION June 2015230

subsystem design: Databases) showed large practically
significant differences between what they learned in
their formal education and what they view as important
in the workplace. All seven factors indicated that these
highly important topics were not extensively taught.
Software testing and maintenance showed a very large
difference and clearly needed a lot more coverage in
their education, since it also ranked fourth in the most
important topics in the workplace. The study by
Lethbridge (2000) also found a gap in the education of
software management (software cost estimation;
software metrics) and software testing and maintenance
(software reliability and fault tolerance).

There were also five factors showing a medium
practically significant difference between what they
learned in their formal education and what they view as
important in the workplace. Four of the five factors
(Software engineering methods; Security and
cryptography; Data warehousing; Human–computer
interaction/user interfaces) indicated not only that their
education in these topics was lacking but also that the
factor Mathematics and statistics is overemphasized at
university. This finding is in agreement with the results
of Lethbridge (2000), Kitchenham et al (2005) and
Surakka (2007) in respect of the excessive importance
attached to mathematics-related topics at university.

However, one respondent contradicted the
quantitative results that Mathematics and statistics are
not very important in the workplace:

‘Math – calculus/algebra/matrices, etc. – data
structures – algorithms – machine learning!!! totally
beneficial.’

Venkatesh et al (2013) stated that when conducting
mixed methods research a researcher may find
contradictory conclusions from the quantitative and
qualitative strands, but these contradicting findings are
valuable in that they not only enrich our understanding
of a phenomenon but also open new avenues for future
inquiries. It is noteworthy that the above-mentioned
studies were conducted between 2000 and 2007. It
would seem that universities might have taken note of
the findings and decreased their coverage of
mathematics to such an extent that some people in the
SD industry are beginning to feel that students lack the
necessary education in mathematics. This contradictory
finding regarding mathematics is a clear indication that
further research might be necessary.

The state of SD education

Some of the respondents were quite negative and felt

there was a gap between what students learn at
university and what is important in the workplace:

‘I do think there is distinct disconnect between what
students are being taught at varsity and what they
actually need to know to work in a proper software
development house and be useful and productive.’

‘I really feel that the tertiary education system is
failing them horribly.’

‘I have been attempting to convince XYZ University
to produce more able software developers, but
nothing is changing.’

Not all the respondents were negative about SD
education, however:

‘On the plus side, I don’t think that their degrees can
be considered easy or of little value by any means.
They clearly worked very hard to earn those degrees
and they do seem to be taught a lot of solid
foundational principles that can be built on very
easily.’

‘Computer science degrees often don’t prepare an
individual to go out there and start developing
systems from scratch, but it gives them a long-term
advantage, a broad knowledge and understanding of
how they should learn development and what they
should try to avoid.’

Suggestions for software development education

Respondents offered suggestions to improve SD
education, which included practical experience for
students and keeping the curriculum up to date –
although in this latter regard the fact that the industry
changes at such a rapid pace was acknowledged:

‘Universities should bridge this gap by integrating
more experience into curriculum.’

‘The most useful thing that varsities could probably
do would be to try and make the material they are
teaching the students more current and more in-line
with what is actually going on out there. I realize that
is incredibly difficult when you are trying to plan a
syllabus ahead of time and the industry changes at
the pace that ours does, but if you want to improve
the marketability of students straight out of varsity,
that’s what will do it.’

‘Lecturers should be able to teach more up to date
skills to students, and open their eyes to possible
exposures to methodologies.’

Software: university courses versus workplace practice

INDUSTRY & HIGHER EDUCATION June 2015 231

Some respondents felt that since the industry changes so
rapidly students should instead be taught the
foundational and theoretical knowledge of SD:

‘Education should be about important principles and
knowledge, not what businesses may require at any
particular time.’

‘The market has a severe lack of solid theoretical
computer science training.’

‘Practical software development skills change rapidly
so tertiary institutions should focus on general
theory.’

One of the respondents acknowledged the fact that the
majorities in South Africa are the minorities in SD
classes and the workplace (also reflected in Table 2,
with only 18% females and 19% African/Black
respondents) and called on universities to prioritize
diversity: ‘Increased diversity within the student body
should be a priority for universities.’

Software development education should not only
include technical knowledge:

‘The education of software developers should
emphasize soft skills as much as technical skills.’

Respondents spoke of the gap that opens up after SD
students have left university:

‘No problem with the education. What falls flat is
what happens with IT companies after graduation.’

‘A high and consistent standard of education in
South Africa is exceptionally difficult to find,
especially continuing education.’

It is not uncommon in software development to find
people without a computing degree but with a lot of
experience – computing classes must be delivered with
a variety of methods and to a variety of students, as
these responses illustrate:

‘There are opportunities for education institutions to
pull in ‘‘DIY’’ students like me into the courses they
offer. The Internet has a lot of free information
making it easy to build your skills. I think a lot of
people see this as an option for training and they
ignore the traditional education institutions.’

‘Look at for example Udacity (https://
www.udacity.com/) and similar MOOCs. They draw
the masses and I think it forces universities to change
their approach towards education.’

Respondents felt strongly that the university and the IT
industry should work together in creating up-to-date
curricula.

‘I think it’s of vital importance in the software
industry, more important than any other industry, that
academic institutions consult with the private sector
to learn how best to equip students for their first
real-world position as a software engineer.’

‘Industry professionals NEED to be brought in for
consultation on the tool chain they make daily use of
in their development role.’

Conclusions and recommendations

There is a shortage of skilled software developers, but
there is a gap between the education of software
developers and what they actually need to know to work
in a software development house. The rapid pace at
which technology is changing often causes the
knowledge graduates acquire at university to be
outdated. Graduates often lack business knowledge and
they generally lack experience of teamwork, and general
practical experience with real-life projects.

The objective of this study was specifically not to
determine either the needs of a specific sector or the
knowledge needed for a specific development role.
Rather, the study provides information regarding the
topics viewed as important in the workplace and the
extent to which these topics are taught in university
courses from the perspective of software development
professionals. The results are further supplemented by
the qualitative findings providing rich insights into the
perspective of the SD industry regarding SD education.

We would argue that the purpose of a university is
not that of a vocational training institution, but rather of
a higher education institution. The university cannot be
expected to deliver software developers who can
contribute productively to the development of software
from the first day they enter the workplace. However,
universities must consider increasing their coverage of
the above-mentioned topics and take cognisance of the
specific knowledge and skills the software industry
seeks.

Equally, the software industry must anticipate that
graduates will be underprepared in the above-mentioned
topics and, as employers, they can put mechanisms in
place, such as in-house training on these topics, to fill
the gaps effectively.

The following are recommended for the provision of
relevant software development education from the
perspective of the industry.

Software: university courses versus workplace practice

INDUSTRY & HIGHER EDUCATION June 2015232

http://www.udacity.com/

• More coverage. The topics that need significantly
more coverage are: software testing and
maintenance; software development methodologies;
web design and development; mobile technologies;
software management; general software design; and
essential subsystem design: databases.

• Real-life projects. Real-life and practical experience
must be included in students’ education.

• Soft skills and business skills. Universities must
examine their curricula to ensure that not only
technical but also soft skills and business skills are
included.

• Up to date. Universities must attempt to keep pace
with the rapid changes in technology.

• Diversity. SD education must be made accessible to
a diverse range of students, including minority
groups.

• Continuing education. Universities as well as
industry must put mechanisms in place in order for
SD workers wanting to continue and expand their
education to stay at the forefront of the latest
developments in the SD field.

• Teamwork. The university and the IT industry
should work together in creating up-to-date
curricula. Individuals from industry can be brought
into software development classes: lecturers can
acquire industry experience.

References
Aasheim, C., Li, L., and Williams, S. (2009), ‘Knowledge and

skill requirements for entry-level information technology
workers: a comparison of industry and academia’, Journal of
Information Systems Education, Vol 20, No 3, pp 349–356.

Bass, J., and Heeks, R. (2011), ‘Changing computing curricula in
African universities: Evaluating progress and challenges via
design–reality gap analysis’, The Electronic Journal of
Information Systems in Developing Countries, Vol 48, No 5,
pp 1–39.

Bateman, K. (2013), ‘The irony of an unemployment problem
and an IT skills shortage within the IT industry’,
ComputerWeekly.com, October, http://
www.computerweekly.com//itworks/2013/10/the-irony-of-an-
unemployment-p.html (accessed 30 July 2014).

Benamati, J., and Mahaney, R.C. (2007), ‘Current and future
entry-level IT workforce needs in organizations’, Proceedings
of the 2007 ACM SIGMIS CPR Conference, Computer
Personnel Research: The Global Information Technology
Workforce (SIGMIS CPR ‘07), ACM, New York, pp 101–104).

Biztech Africa (2013), ‘Africa’s high end ICT skills shortfall
grows’, 25 November, http://www.biztechafrica.com//africas-
high-end-ict-skills-shortfall-grows/7302/#.UqwYi_SnqSA
(accessed 21 January 2014).

Bullen, C., Abraham, T., Gallagher, K., Simon, J.C., and Zwieg,
P. (2009), ‘IT workforce trends: implications for curriculum
and hiring’, Communications of the Association for
Information Systems, Vol 24, pp 129–140.

Calitz, A.P. (2010), ‘A model for the alignment of ICT education
with business ICT skills requirements’, DBA thesis, Nelson
Mandela Metropolitan University, Port Elizabeth.

Connolly, B. (2013), ‘IT worker shortage continues as jobs
remain unfilled’, CIO. http://www.cio.com.au/article/454650/_

worker_shortage_continues_jobs_remain_unfilled/
(accessed 31 October 2013).

Creswell, J.W., and Clark, V.L.P. (2007), Designing and
Conducting Mixed Methods Research, Sage, Thousand
Oaks, CA.

Employment Equity Act (South Africa) (1998), Number 55 of
1998, Government Printer, Pretoria.

Ezer, J. (2006), ‘India and the USA: a comparison through the
lens of model IT curricula’, Journal of Information Technology
Education, Vol 5, pp 429–440.

Fernandez-Sanz, L. (2009), ‘Personal skills for computing
professionals’, Computer, Vol 42, No 10, pp 110–112.

Gallagher, K.P., Kaiser, K.M., Simon, J.C., Beath, C.M., and
Goles, T. (2010), ‘The requisite variety of skills for IT
professionals’, Communications of the ACM, Vol 53, No 6, pp
144–148.

Gruner, S. (2014), ‘On the historical semantics of the notion of
software architecture’, TD: The Journal for Transdisciplinary
Research in Southern Africa, Vol 10, No 1, pp 37–66.

Gupta, A. (2005), ‘Securing the future of the Indian IT industry: a
case for educational innovation in higher technical
education–challenges and the road ahead’, Industry and
Higher Education, Vol 19, No 6, pp 423–431.

Guzdial, M., Prey, J., Topi, H., Urban, J., Cassel. L., and
Schneider, D. (2009), ‘Future of computing education
summit’, 25–26 June 2009, http://www.acm.org/education/
future-of-computing-education-summit/FoCES_web.pdf
(accessed 30 July 2014).

Harris, L. (2012), ‘Mind the ICT skills gap’, Brainstorm,
September,http://www.brainstormmag.co.za/
index.php?option=_
content&view=article&id=4699:mind-the-ict-skills-
gap&catid=92:features&Itemid=125 (accessed 24 July
2013).

ISO/IEC 25000 (2014), Systems and Software Engineering –
Systems and Software Quality Requirements and Evaluation
(SQuaRE) – Guide to SQuaRE. ISO/IEC, Geneva,
Switzerland.

ISO/IEC 19770–2 (2009), Information Technology – Software
Asset Management – Part 2: Software Identification Tag,
ISO/IEC, Geneva, Switzerland.

ISO/IEC/IEEE 24765 (2010), 3.2758: Systems and Software
Engineering – Vocabulary, ISO/IEC/IEEE, Geneva,
Switzerland.

Johnson, R.B., Onwuegbuzie, A.J., and Turner, L.A. (2007),
‘Toward a definition of mixed methods research’, Journal of
Mixed Methods Research, Vol 1, No 2, pp 112–133.

Joint Task Force [on Computing Curricula, Association for
Computing Machinery (ACM) and IEEE Computer Society]
(2013), ‘Computer science curricula 2013: curriculum
guidelines for undergraduate degree programs in computer
science’, ACM, New York.

Jones, C., Ramanau, R., Cross, S., and Healing, G. (2010), ‘Net
Generation or Digital Natives: is there a distinct new
generation entering university?’, Computers and Education,
Vol 54, No 3, pp 722–732.

Keil, M., Lee, H., and Deng, T. (2013), ‘Understanding the most
critical skills for managing IT projects: a Delphi study of IT
project managers’, Information and Management, Vol 50, pp
398–414.

Kim, Y., Hsu, J., and Stern, M. (2006), ‘An update on the IS/IT
skills gap’, Journal of Information Systems Education, Vol 17,
No 4, pp 395–402.

Kitchenham, B., Budgen, D., Brereton, P., and Woodall, P.
(2005), ‘An investigation of software engineering curricula’,
Journal of Systems and Software, Vol 74, No 3, pp 325–335.

Krakovsky, M. (2010), ‘Degrees, distance, and dollars’,
Communications of the ACM, Vol 53, No 9, pp 18–19.

Lee, C., and Han, H. (2008), ‘Analysis of skills requirement for
entry-level programmer/analysts in Fortune 500

Software: university courses versus workplace practice

INDUSTRY & HIGHER EDUCATION June 2015 233

http://www.ingentaconnect.com/content/external-references?article=0950-4222()19L.423[aid=10598518]
http://www.ingentaconnect.com/content/external-references?article=0950-4222()19L.423[aid=10598518]
http://www.computerweekly.com//itworks/2013/10/the-irony-of-an-unemployment-p.html
http://www.computerweekly.com//itworks/2013/10/the-irony-of-an-unemployment-p.html
http://www.biztechafrica.com//africas-
http://www.cio.com.au/article/454650/_worker_shortage_continues_jobs_remain_unfilled/
http://www.cio.com.au/article/454650/_worker_shortage_continues_jobs_remain_unfilled/
http://www.acm.org/education/future-of-computing-education-summit/FoCES_web.pdf
http://www.acm.org/education/future-of-computing-education-summit/FoCES_web.pdf
http://www.brainstormmag.co.za/

corporations’, Journal of Information Systems Education, Vol
19, No 1, pp 17–27.

Lethbridge, T.C. (2000), ‘Priorities for the education and training
of software engineers’, Journal of Systems and Software, Vol
53, No 1, pp 53–71.

Lethbridge, T., Diaz-Herrera, J., LeBlanc, R., and Thompson,
J.B. (2007), ‘Improving software practice through education:
challenges and future trends’, in Future of Software
Engineering, IEEE Computer Society, Washington, DC,
2007, pp 12–28.

Loftus, C., Thomas, L., and Zander, C. (2011), ‘Can graduating
students design: revisited’, in Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education
(SIGCSE ’11), ACM, New York, pp105–110.

Lorenzo, G., Oblinger, D., and Dziuban, C. (2007), ‘How choice,
co-creation, and culture are changing what it means to be net
savvy’, Educause Quarterly, Vol 30, No 1, pp 6–12.

Mawson, N. (2010), ‘ICT skills shortage to cost SA’, ITWeb,
http://www.itweb.co.za/index.php?option=com_
&view=article&id=29992 (accessed 30 April 2015).

Merriam, S.B. (2009), Qualitative Research: A Guide to Design
and Implementation, Jossey-Bass, San Francisco, CA.

Moreno, A., Sanchez-Segura, M., Medina-Dominguez, F., and
Carvajal, L. (2012), ‘Balancing software engineering
education and industrial needs’, Journal of Systems and
Software, Vol 85, No 7, pp 1607–1620.

Mooketsi, B. E., and Chigona, W. (2014). ‘Different shades of
success: educator perception of government strategy on
e-education in South Africa’, Electronic Journal of Information
Systems in Developing Countries, Vol 64, No 8, pp 1–15.

Plice, R. K., and Reinig, B. A. (2007), ‘Aligning the information
systems curriculum with the needs of industry and
graduates’, Journal of Computer Information Systems, Vol
48, No 1, pp 22.

Reisman, S. (2004), ‘Higher education’s role in job training’, IT
Professional, Vol 6, No 1, pp 6–7.

Saiedian, H. (2009), ‘Software engineering challenges of the
‘‘Net’’ generation’, Journal of Systems and Software, Vol 82,
No 4, pp 551–552.

Shaw, M., Herbsleb, J., and Ozkaya, I. (2005), ‘Deciding what to
design: closing a gap in software engineering education’, in
Proceedings of the 27th International Conference on
Software Engineering (ICSE ’05), ACM, New York, pp
607–608.

Surakka, S. (2007), ‘What subjects and skills are important for
software developers?’, Communications of the ACM, Vol 50,
pp 73–78.

Tashakkorri, A., and Creswell J.W. (2007), ‘The new era of
mixed methods (editorial)’, Journal of Mixed Methods
Research, Vol 1, pp 3–7.

UN Broadband Commission (2013), ‘The state of broadband
2013: universalizing broadband. A report by the Broadband
Commission’, September 2013, http://
www.broadbandcommission.org/documents/
bbannualreport2013.pdf (accessed 13 December 2013).

UN Broadband Commission (2014), ‘The state of broadband
2014: broadband for all. A report by the Broadband
Commission’, September 2014, http://
www.broadbandcommission.org/documents/
bbannualreport2014.pdf (accessed 23 September 2014).

Venkatesh, V., Brown, S.A., and Bala, H. (2013), ‘Bridging the
qualitative–quantitative divide: guidelines for conducting
mixed methods research in information systems’, MIS
quarterly, Vol 37, No 1, pp 21–54.

Wade, R. (2002), ‘Bridging the digital divide: new route to
development or new form of dependency?’, Global
Governance, Vol 8, No 4, pp 443–466.

Acknowledgment
The financial assistance of the National Research
Foundation (NRF) towards the work done in this
research is hereby acknowledged. Opinions expressed,
and conclusions arrived at, are those of the authors and
are not necessarily to be attributed to the NRF.

Appendix
Items and descriptive statistics (see Table 3)

Learned in formal
education (Set 1)

Important in the
workplace (Set 2)

Factors Items Meana SD Meana SD

Information systems Information retrieval 2.692 1.129 3.322 1.254
Decision support systems 2.248 1.083 2.720 1.277
Expert systems 2.023 0.986 2.285 1.277

Computer hardware
and electrical and
computer engineering

Digital electronics and digital logic 2.528 1.270 2.192 1.141
Microprocessor architecture 2.519 1.247 2.107 1.176
Computer system architecture 2.780 1.106 2.495 1.198
Analog electronics 1.911 1.181 1.603 0.897
Digital signal processing 2.014 1.250 1.864 1.145
Data acquisition 1.874 1.104 2.136 1.243
Robotics 1.561 0.999 1.500 0.838

Software testing and
maintenance

Performance measurement and analysis 2.220 0.999 3.505 1.029
Testing, verification, and quality assurance 2.215 1.035 4.079 0.929
Software reliability and fault tolerance 2.210 1.069 3.949 0.965
Maintenance, re-engineering, and reverse engineering 1.986 1.009 3.421 1.134

Computer science
theory

Programming language theory 3.220 1.072 3.121 1.261

Software: university courses versus workplace practice

INDUSTRY & HIGHER EDUCATION June 2015234

http://www.ingentaconnect.com/content/external-references?article=0164-1212()53L.53[aid=10598531]
http://www.ingentaconnect.com/content/external-references?article=0164-1212()53L.53[aid=10598531]
http://www.itweb.co.za/index.php?option=com_
http://www.broadbandcommission.org/documents/bbannualreport2013.pdf
http://www.broadbandcommission.org/documents/bbannualreport2013.pdf
http://www.broadbandcommission.org/documents/bbannualreport2014.pdf
http://www.broadbandcommission.org/documents/bbannualreport2014.pdf

Learned in formal
education (Set 1)

Important in the
workplace (Set 2)

Factors Items Meana SD Meana SD

Formal languages 3.089 1.082 2.995 1.265
Computational complexity and algorithm analysis 2.972 1.113 3.159 1.250
Information theory 2.893 1.093 2.883 1.252

Real-time and
systems programming

Operating systems 3.019 1.034 3.196 1.210
Systems programming 2.846 1.021 3.196 1.248
Data transmission and networks 2.846 1.070 3.379 1.155
Parallel and distributed processing 2.308 1.117 3.107 1.268
Real-time system design 2.229 1.130 2.967 1.298

Mathematics and
statistics

Discrete mathematics 2.874 1.263 2.491 1.178
Probability and statistics 3.037 1.174 2.827 1.184
Linear algebra and matrices 3.070 1.282 2.654 1.268
Continuous mathematics 2.650 1.261 2.364 1.182

Mobile technologies User interface design 1.916 1.203 3.393 1.399
Mobile application development 1.720 1.103 3.336 1.387
Security and privacy 1.692 1.061 3.477 1.436
Compatibility 1.607 0.991 3.336 1.424

Software development
methodologies

Agile methods 1.897 1.100 3.500 1.190
Extreme programming 1.888 1.078 2.696 1.262
Scrum 1.696 1.005 3.280 1.236

Software management Project management 2.444 1.144 3.322 1.144
Software metrics 2.098 0.957 2.991 1.092
Software cost estimation 1.846 1.007 3.154 1.289
Configuration and release management 1.715 0.963 3.547 1.169

General software
design

Data structures 3.187 0.985 3.981 1.105
Algorithm design 3.079 1.025 3.668 1.149
Software design and patterns 2.762 1.169 4.112 0.982
Software architecture 2.612 1.111 4.089 0.958
Object-oriented concepts and technology 3.425 1.080 4.364 0.923
Specific programming languages 3.360 0.982 3.645 1.201

Specialized
application techniques

Simulation 2.360 1.161 2.495 1.174
Artificial intelligence 2.252 1.114 1.935 1.086
Pattern recognition and image processing 2.243 1.232 2.248 1.233
Computer graphics 2.093 1.118 2.187 1.160
Parsing and compiler design 2.379 1.183 2.276 1.219

Web design and
development

Web-based methods 2.047 1.069 3.477 1.281
Interface design 2.411 1.263 3.720 1.228
Security and privacy 2.257 1.177 3.935 1.247
Web application development 2.467 1.269 3.949 1.275

Hardware: data
transmission

Network architecture and data transmission 2.696 1.116 2.916 1.148
Telecommunications 2.322 1.168 2.444 1.227

Software engineering
methods

Requirements gathering and analysis 2.766 0.998 3.874 1.006
Formal specification methods 2.631 1.092 3.215 1.159
Analysis and design methods 2.757 1.029 3.603 1.051

Data warehousing Data-warehousing 2.145 1.080 3.037 1.214
Security and
cryptography

Security and cryptography 2.341 1.171 3.486 1.141

Game development Game development 1.472 0.848 1.636 0.982
Human–computer
interaction/user
interfaces

Human-computer interaction/user interfaces 2.724 1.148 3.617 1.131

Essential subsystem
design: databases

Essential subsystem design: databases 3.308 0.992 4.336 0.924

Software: university courses versus workplace practice

INDUSTRY & HIGHER EDUCATION June 2015 235

