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Abstract

A partial matrix, is a matrix for which some entries are specified and some unspecified.
In general completion problems ask whether a given partial matrix, may be completed to
a matrix where all the entries are specified, such that this completion admits a specific
structure. The positive definite completion problem asks whether a partial Hermitian
matrix admits a completion such that the completed matrix is positive semidefinite.
The minimum solution criterion, is that every fully specified principal submatrix is non-
negative. Then the set of partial Hermitian matrices, which admit a positive semidefinite
completion, forms a convex cone, and its dual cone can be identified as the set of positive
semidefinite Hermitian matrices with zeros in the entries that correspond to non-edges in
the graph G. Furthermore, the set of partial Hermitian matrices, with non-negative fully
specified principal minors, also forms a convex cone, and its dual cone can be identified as
the set of positive semidefinite Hermitian matrices which can be written as the sum of rank
one matrices, with underlying graph G. Consequently, the problem reduces to determining
when these cones are equal. Indeed, we find that this happens if and only if the underlying
graph is chordal. It then follows that the extreme rays of the cone of positive semidefinite
Hermitian matrices with zeros in the entries that correspond to non-edges in the graph
G is generated by rank one matrices. The question that arises, is what happens if the
underlying graph is not chordal. In particular, what can be said about the extreme rays of
the cone of positive semidefinite matrices with some non-chordal pattern. This gives rise
to the notion of the sparsity order of a graph G, that is, the maximum rank of matrices
lying on extreme rays of the cone of positive semidefinite Hermitian matrices with zeros
in the entries that correspond to non-edges in the graph G. We will see that those graphs
having sparsity order less than or equal to 2 can be fully characterized. Moreover, one can
determine in polynomial time whether a graph has sparsity order less than or equal to 2,
using a clique-sum decomposition. We also show that one can determine whether a graph
has sparsity order less than or equal to 2, by considering the characteristic polynomial of
the adjacency matrix of certain forbidden induced subgraphs and comparing it with the
characteristic polynomial of principal submatrices of appropriate size.

Keywords: Positive definite completions, chordal graphs, matrix cones, sparsity order
of a graph, spectrum of a graph.
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Introduction

A partial matrix is a matrix where some entries are specified and some are unspecified.
A completion of such a matrix allocates specific values to the unspecified entries, thus
obtaining a matrix of which all the entries are known. Completion problems try to
determine whether there exists completions of a partial matrix with specific properties.
In our study we consider the set of all partial Hermitian matrices and determine under
which conditions there exists a positive semidefinite completion, i.e., a completion that
is a positive semidefinite matrix.

It turns out that the underlying graph G, determined by the unspecified entries of the
matrix, is crucial in determining whether a positive semidefinite completion exists. By
an underlying graph of a matrix, we mean the graph where the diagonal entries each
correspond to a vertex of the graph and the off-diagonal entries correspond to the edges
of the graph. Consider the following example:

Let

A =


5 3 1 ?
3 6 ? 1
1 ? 4 1
? 1 1 4


Then the underlying graph of the matrix A is as follows:

1 3

42

In [12] it was shown that if this graph is chordal (has no minimal cycle longer than
three) and all the fully specified principal minors are positive, there necessarily exists
a positive semidefinite completion. It is important to note here that all the partial
matrices, with non-negative principal minors, and the same underlying graph, admit a
positive semidefinite completion if said graph is chordal. However, more can be said
about matrices with underlying graphs being chordal, as we will soon see.

The approach in [12] used entropy maximization via Lagrange multipliers to prove
that a positive semidefinite completion exists. More recent approaches rely on convex
cone theory. The reason for this is that the set of partial Hermitian matrices, which
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admit a positive semidefinite completion, forms a convex cone, and its dual cone can be
identified as the set of positive semidefinite Hermitian matrices with zeros in the entries
that correspond to non-edges in the graph G. Furthermore, the set of partial Hermitian
matrices, with non-negative fully specified principal minors, also forms a convex cone, and
its dual cone can be identified as the set of positive semidefinite Hermitian matrices which
can be written as the sum of rank one matrices, with underlying graph G. Consequently,
the problem reduces to determining when these cones are equal. It turns out that this
occurs exactly when the underlying graph is chordal. It then follows that the extreme
rays of the cone of positive semidefinite Hermitian matrices with zeros in the entries that
correspond to non-edges in the graph G is generated by rank one matrices.

It is interesting to note that this generalizes a well-known result on the extreme rays of
the cone of positive semidefinite matrices, since the extreme rays for the cone of positive
semidefinite matrices are generated by rank one matrices. This led to the notion of the
sparsity order of a graph, introduced in [1]. The sparsity order of a graph G is defined as
the maximum rank of a matrix lying on an extreme ray of the cone of positive semidefinite
matrices with underlying graph G. It therefore follows that the sparsity order of a chordal
graph is 1. In fact it can be shown that the sparsity order is 1 if and only if the graph is
chordal.

The question now arises as to what happens when the underlying graph is not chordal?
Obviously the maximum rank of extremals (matrices lying on extreme rays) is greater
than 1 if the graph is non-chordal, but how can we determine what the maximum rank
is? In [1] it is proved that a matrix is extremal, with rank k, if and only if the dimension
of the so-called frame space has dimension 1

2
(k2+k−2), in the real case, and k2−1, in the

complex case. They also defined the notion of k-blocks, which may be seen as minimal
graphs, in terms of induced subgraphs, with sparsity order k. They characterized all the
k-blocks, for k = 1, 2, 3, in the real case and conjectured that a graph has sparsity order
less than or equal to 2 if and only if the graph does not contain, as an induced subgraph,
any 3-blocks. In [20] it is shown that this conjecture is in fact true and is extended to
characterize graphs having sparsity order less than or equal to 2, in the real and complex
case. The main ingredient in the proof of these theorems is a graph decomposition result,
which shows that a graph can be decomposed as a clique-sum of graphs, with a specific
form, if and only if the graph does not contain certain graphs as induced subgraphs.

It seems that current methods do not rely on the forbidden induced subgraphs, but
rather applies clique-sum decompositions to determine whether a graph is an element
of a specific set of classes, for which the sparsity order is less than or equal to 2. The
approach that we introduce relies on the forbidden induced subgraphs and the fact that
they are determined by the spectrum of their adjacency matrices. This means that if the
spectrum of a adjacency matrix, of some graph, is equal to the spectrum of one of the
forbidden induced subgraphs, it is necessarily isomorphic to the specific forbidden induced
subgraph. Therefore, determining whether the sparsity order of a graph is less than or
equal to 2, reduces to calculating the characteristic polynomial of principal submatrices of
appropriate size, and comparing them to the characteristic polynomials of the forbidden
induced subgraphs. If a principal submatrix has the same characteristic polynomials as
some forbidden induced subgraphs, it implies that said forbidden induced subgraphs is
in our graph.
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We organize our study in two parts. The first part is devoted to the positive definite
completion problem. In chapter one, we introduce the notion of Hermitian matrices
and some properties of Hermitian matrices. We also define what is meant by positive
semidefinite matrices and prove some results regarding these matrices. Of particular
importance is the notion of Gram matrices, which we will require in our study of the
sparsity order of a graph. In chapter two we prove some general results on cones and
introduce some cones of Hermitian matrices, related to the positive definite completion
problem. It is important to note that these cones rely on the idea of an underlying graph of
a matrix, in the sense that elements of these cones are matrices with the same underlying
graph. In chapter three we define chordal graphs. We give an algorithmic characterization
of chordal graphs in terms of a perfect vertex elimination scheme. Finally, we show that
a partial matrix admits a positive definite completion if and only if its underlying graph
is chordal. The remarkable thing here, is that any partial matrix, with positive principal
minors, admits a positive definite completion if the underlying graph is chordal, regardless
of the specific entries of the partial matrix. The argumentation used here can be found
in [2]. A different approach, in a C∗-algebra setting, can be found in [24].

The second part of our study is devoted to the sparsity order of a graph. As mentioned
earlier, the sparsity order of a graph is 1 if and only if the graph is chordal. This
fact is actually already shown to be true in the first part (Proposition 3.2.1). We start
by proving the graph decomposition result mentioned earlier. The proof of this result
is rather technical and we devote the whole of chapter four to it. In chapter five we
formally define what is meant by the sparsity order of a graph and prove some results
regarding this notion. In particular, we introduce the notion of k-blocks, which plays
a crucial part in determining whether a graph has sparsity order less than or equal to
2. We then prove a theorem of [20] regarding the smallest face of the cone of partial
positive semidefinite matrices, which is in fact a generalization of a result found in [1].
In the last section of this chapter we distinguish between the real and complex case, and
characterize graphs with sparsity order less than or equal to 2. Our approach to these
two chapters relies on work in [20] and [1], where we attempted to optimize some of the
argumentation and added more details. In the sixth chapter we introduce the notion of
the spectrum of a graph and define what is meant when a graph is determined by its
spectrum, as mentioned earlier. We show that all the 3-blocks are determined by their
spectrum, and use this fact to determine whether a graph has sparsity order less than
or equal to two. In the final section of chapter six we propose an algorithm, where we
also make use of eigenvalue interlacing to eliminate some possibilities, to do this. At
this stage the algorithm is not very efficient, but it gives a rather simple and nice way
to determine whether a graph contains any of the forbidden induced subgraphs of the
previous chapter, and we believe there is room for improvement.
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Part I

The positive definite completion
problem
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Chapter 1

Hermitian and positive semidefinite
matrices

In this chapter we give an overview of Hermitian matrices and some of their properties. In
particular, we focus on positive semidefinite matrices. We will introduce several notions
which will later be useful in our study of positive definite completions.

1.1 Hermitian Matrices

LetMn,m(F) denote the set of all n×m matrices with entries in F, where F = C or R. If
m = n we simply write Mn(F). Elements of Mn(F) are denoted by A = [aij]

n
i,j=1, where

aij ∈ F is the ij-th entry of A. Since a matrix A ∈ Mn,m(R) can also be viewed as an
element of Mn,m(C), and since most of the results for F = R and F = C are analogous,
in what follows we will mainly refer to the case F = C, unless stated otherwise. In the
case F = R, A∗ is to be understood as AT , and Hermitian matrices, which we define next,
are real symmetric matrices.

Definition 1.1.1 (Hermitian Matrix). A square matrix A = [aij]
n
i,j=1 is said to be Her-

mitian if A = A∗, where A∗ = A
T

= [aji]
n
i,j=1. It is skew-Hermitian if A = −A∗.

The linear space Mn(C) is a Hilbert space over C, with inner product

〈A,B〉 = tr(AB∗),

where A,B ∈Mn(C) (Theorem B.1). Similarly,Mn(R) is the Hilbert space of all n× n
matrices in R, with inner product

〈A,B〉 = tr(ABT ),

where A,B ∈Mn(R).

Some observations for A,B ∈Mn(C) [17, p.169]:

1. A+ A∗, AA∗, and A∗A are Hermitian.
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2. If A is Hermitian, then Ak is Hermitian for all k = 1, 2, 3, . . . . If A is non-singular
as well, then A−1 is Hermitian.

3. If A and B are Hermitian, then αA+ βB is Hermitian for all real scalars α and β.

4. A− A∗ is skew-Hermitian for all A ∈Mn(C).

5. If A and B are skew-Hermitian, then αA+βB is skew-Hermitian for all real scalars
α and β.

6. A is Hermitian if and only if iA is skew-Hermitian.

7. Any A ∈Mn(C) can be written as

A =
1

2
(A+ A∗) +

1

2
(A− A∗) = H(A) + S(A),

where H(A) = 1
2
(A+A∗) is the Hermitian part of A, and S(A) = 1

2
(A−A∗) is the

skew-Hermitian part of A.

8. If A is Hermitian, the main diagonal entries of A are all real.

All of these results are easily verified and we omit a formal proof. The following theorem
gives further properties that hold for Hermitian matrices.

Theorem 1.1.2. [17, Theorem 4.1.3] Let A ∈Mn(C) be Hermitian. Then

(i) x∗Ax is real for all x ∈ Cn;

(ii) All the eigenvalues of A are real;

(iii) S∗AS is Hermitian for all S ∈Mn(C).

All of the above is trivially true if A ∈Mn(R).

Since Hermitian matrices are normal (AA∗ = A2 = A∗A) all results regarding normal
matrices hold. For more on normal matrices see [17]. One particular result, which we
will make repeated use of, is the so called spectral theorem for Hermitian matrices.

Theorem 1.1.3. [17, Theorem 4.1.5] Let A ∈Mn(C). Then A is Hermitian if and only
if there is a unitary matrix U ∈ Mn(C), (U∗ = U−1), and a real diagonal matrix Λ ∈
Mn(C) such that A = UΛU∗. Moreover, A is real and Hermitian (i.e., real symmetric)
if and only if there is a real orthogonal matrix P ∈ Mn(C), (P T = P−1), and a real
diagonal matrix Λ ∈Mn(C) such that A = PΛP T . Note that Λ = diag(λ1, . . . , λn), where
λ1, . . . , λn are the eigenvalues of A and the columns of U are the associated eigenvectors.

The inner product mentioned earlier naturally gives rise to the so called Frobenius norm
of a matrix.

Definition 1.1.4 (Frobenius norm). Let A ∈Mn(C). Then we define the the norm ‖ ·‖2
as follows:

‖A‖2 =
√
〈A,A〉2 =

√
tr(AA∗) =

√
tr(A∗A)
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We will now show that the set of all n × n Hermitian matrices is a Hilbert space over
R.

Theorem 1.1.5. The subset Hn = {A ∈Mn(C) : A = A∗} of Mn(C) is a Hilbert space
over R, with respect to the inner product

〈A,B〉2 = tr(AB∗) = tr(AB). (1.1)

Proof. (i) For all A,B ∈ Hn and any λ ∈ R, we have that λA+B ∈ Hn. Therefore Hn

is closed under linear operations proving that it is a vector space over R.

(ii) From the proof of Theorem B.1 it is easy to see that Hn is an inner product space
with the inner product defined by (1.1), where the second equality is true since B is
Hermitian. However, it is important to note that Hn is an inner product space over R
and not over C, since

tr(AB) = 〈A,B〉 = 〈B,A〉 = tr(BA) = tr(AB),

which shows that tr(AB) is equal to its conjugate and therefore real for all A,B ∈ Hn.

(iii) To prove the completeness of Hn we need but note that Hn is finite dimensional and
therefore complete by Theorem A.6.

Note that use of the inner product, defined on the space of Hermitian matrices, is
compatible with vectors as well, since we have that

〈Ax, x〉nC = x∗Ax = tr(x∗Ax) = tr(Axx∗) = 〈A, xx∗〉2,

where 〈·, ·〉nC denotes the standard inner product on Cn, x∗Ax = tr(x∗Ax) holds, since
x∗Ax is a scalar and xx∗ ∈ Hn. Therefore, we use these inner products interchangeably,
as the situation dictates, and in most cases drop the subscript.

It is interesting to note that if A ∈ Hn, the Frobenius norm, ‖ · ‖2, may be written as
‖A‖2 =

√
tr(A∗A) =

√
tr(A2).

We now prove some results regarding rank one matrices. We will see later on that rank
one matrices play an important role in our study of the cone of positive semidefinite
matrices.

Theorem 1.1.6. Let A ∈ Mn(C). Then A has rank one if and only if there exist two
non-zero vectors u, v ∈ Cn such that

A = uv∗.

Furthermore, such an A has at most one non-zero eigenvalue (of algebraic multiplicity
one), equal to v∗u. Moreover, u is a right and v is a left eigenvector corresponding to this
eigenvalue.

Proof. We start by proving that A does in fact have the form given in the theorem, we
then show that it has at most one non-zero eigenvector, of algebraic multiplicity one, and
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that this eigenvalue is as stated above. Lastly, we show that u is a right and v is a left
eigenvector corresponding to this eigenvalue.

=⇒ Assume that A = [aij]
n
i,j=1 has rank one. Then the dimension of the column space

is one, which means that a basis for the column space consists of only one vector, say u.
Note that u ∈ Cn. Therefore, every column vector of A is a linear combination of u, in
other words a∗j = βju where a∗j denotes the j-th column of A. Now, let v = [βj]

n
j=1, then

A = uv∗, and u, v ∈ Cn. Furthermore u and v must be non-zero, else A will be the zero
matrix, which has rank 0 and contradicts our assumption that the rank of A is one.

⇐= Let u, v ∈ Cn be non-zero vectors such that A = uv∗. Say u = [αj]
n
j=1 and v = [βj]

n
j=1.

Then

A = uv∗ =

A1
...
An

 [β1 · · · βn
]

=

A1β1 · · · A1βn
...

. . .
...

Anβ1 · · · Anβn

 .
From this it is obvious that every column of A is a linear combination of u, therefore
{u} is a basis for the column space of A. Since the basis of the column space exists of
only one vector, it has rank one. Therefore A has rank one if and only if A = uv∗ where
u, v ∈ Cn are non-zero vectors.

Next, assume that A is a n×n matrix where n > 1. Note that since A does not have full
rank, det(A) = 0 and thus 0 is an eigenvalue of A. The set of all vectors x ∈ Cn satisfying
Ax = λx is called the eigenspace of A corresponding to the eigenvalue λ. The dimension of
the eigenspace of A, corresponding to the eigenvalue λ, is called the geometric multiplicity
of λ. Note that the geometric multiplicity of an eigenvalue is always less than or equal
to the algebraic multiplicity of the eigenvalue. Now, the eigenspace of A corresponding
to the eigenvalue 0 is the set of all x ∈ Cn such that Ax = 0, and we see that it is the
same as the null space of A. Therefore, to determine the geometric multiplicity of 0 we
need but calculate the dimension of the null space, which is called the nullity of A. The
following well-known equality gives the relation between the rank and nullity of A :

nullity(A) + rank(A) = n.

Since rank(A) = 1, it follows that nullity(A) = n− 1. Thus, the geometric multiplicity of
the eigenvalue 0 is equal to n− 1. From this it immediately follows that there exists, at
most, one non-zero eigenvalue of A with algebraic multiplicity one.

Now, assume there exists a non-zero eigenvalue of A, say λ. Let x be the associated
eigenvector, then

Ax = λx.

Writing A = uv∗, we have the following

uv∗x = λx =⇒ v∗uv∗x = λv∗x =⇒ (v∗u− λ)v∗x = 0.

Since v∗x 6= 0, λ = v∗u.

Finally, let A = uv∗ with eigenvalue λ = v∗u. Then Au = uv∗u = uλ = λu and
v∗A = v∗uv∗ = λv∗, proving that u is a right and v is a left eigenvector as claimed.
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1.2 Positive Semidefinite Matrices

The notion of positive semidefinite matrices is central to our question regarding comple-
tions of partial Hermitian matrices, as we wish to know when a partial Hermitian matrix
admits a positive semidefinite completion.

First of all, we give the condition under which a matrix is said to be positive semidefinite.

Definition 1.2.1 (Positive Semidefinite). Let A ∈ Hn. A is said to be positive semidefi-
nite if

x∗Ax > 0, for all non-zero x ∈ Cn.

If the inequality is strictly greater than 0, A is said to be positive definite.

Equivalently, we formulate this condition in terms of the inner product defined in the
previous section.

Definition 1.2.2. Let A ∈ Hn. A is said to be positive semidefinite if

〈Ax, x〉 = tr(Axx∗) > 0, for all non-zero x ∈ Cn.

If the inequality is strictly greater than 0, A is said to be positive definite. We write
A < 0 for a positive semidefinite matrix and A � 0 for a positive definite matrix. If
the inequalities are reversed, we say the matrix is negative (semi)definite. If none of the
above is true, we say the matrix is indefinite.

We may now define an ordering on the subset of Hermitian matrices.

Definition 1.2.3 (Partial Ordering of Hermitian Matrices). Let A,B ∈ Hn. We write
B < A if the matrix B −A is positive semidefinite. Similarly, B � A means that B −A
is positive definite.

Note that if A < B and B < A, then A = B. It is easy to see that the relation <
is transitive and reflexive, say B < A and C < B then B − A and C − B are positive
semidefinite and thus (C − B) + (B − A) = C − A is positive semidefinite, and since
A−A = 0 is positive semidefinite, we have that A < A is always true. However it is not
a total order, since there exist A,B ∈ Hn, such that neither A < B nor B < A. All of the
above holds for 4 and ≺ . This partial order is known as the Loewner order on matrices.

Positive semidefinite matrices have many useful properties, some of which we now men-
tion.

Lemma 1.2.4. [17, Observation 7.1.2] The principal submatrices of a positive semidefi-
nite matrix are positive semidefinite. For a positive definite matrix the principal subma-
trices are positive definite.

Theorem 1.2.5. [17, Observation 7.1.4] The eigenvalues of a positive semidefinite matrix
are all non-negative numbers. In particular, if A is positive definite, the eigenvalues are
positive numbers.
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Corollary 1.2.6. [17, Corollary 7.1.5] The trace, determinant and all principal minors
of a positive semidefinite matrix are non-negative.

For a positive definite matrix, non-negative becomes positive. From this we see that
every positive definite matrix is non-singular, since the determinant is strictly greater
than zero. This in turn implies that all positive definite matrices have full rank, i.e., if
A ∈Mn(C) is positive definite, then rank(A) = n.

From the following theorem we see that it suffices to calculate the spectrum of a Her-
mitian matrix when we wish to determine whether the matrix is positive semidefinite.

Theorem 1.2.7. [17, Theorem 7.2.1] A matrix A ∈ Hn is positive semidefinite if and
only if all of its eigenvalues are non-negative. It is positive definite if and only if all of
its eigenvalues are positive.

Note that if a Hermitian matrix A is non-singular and positive semidefinite, we may
conclude that it is positive definite, since 0 is not an eigenvalue of A and all other
eigenvalues are positive.

We now prove a decomposition result for positive semidefinite matrices, with respect to
rank one matrices.

Theorem 1.2.8. Let A ∈ Hn be positive semidefinite. Then A has rank one if and only
if there exists a non-zero vector u ∈ Cn such that

A = uu∗.

Proof. Since A is Hermitian, we may apply the spectral theorem for Hermitian matrices
(Theorem 1.1.3) and write A = UΛU∗. We now prove the theorem.

=⇒ Assume that A = [aij]
n
i,j=1 has rank one. From Theorem 1.1.6 we know that A has,

at most, one non-zero eigenvector, thus we may write Λ = diag(λ1, 0, . . . , 0) as the real
diagonal matrix in the spectral decomposition of A. Therefore, A = UΛU∗ = λ1u1u

∗
1,

where u1 denotes the first column of U. Now, the eigenvalues of A are non-negative
(Theorem 1.2.5), therefore the square root of λ1 is real and non-negative and we may
define u =

√
λ1u1. Thus, we have that A = uu∗. Note that u 6= 0, since A 6= 0, from our

assumption that A has rank one.

⇐= Let u ∈ Cn be a non-zero vector such that A = uu∗. The fact that A has rank one
follows from Theorem 1.1.6.

Note that, from Theorem 1.1.6, we know that if a matrix A has rank one, it has at
most one non-zero eigenvalue. Thus, when A is a rank one positive semidefinite matrix
the eigenvalue is equal to u∗u, also u is a right and left eigenvector corresponding to
this eigenvalue. We now extend the result of Theorem 1.2.8 to show that any positive
semidefinite matrix can be written as the sum of rank one positive semidefinite matrices.

Theorem 1.2.9. [17, Theorem 7.5.2] Let A ∈ Hn be a positive semidefinite matrix, with
rank(A) = k, then A may be written in the form

A = v1v
∗
1 + v2v

∗
2 + · · ·+ vkv

∗
k,

where each vi ∈ Cn and the set {v1, . . . , vk} is an orthogonal set of non-zero vectors.
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Proof. Use the spectral theorem, Theorem 1.1.3, to write A = UΛU∗ and let vi be equal
to λ

1/2
i times the i-th column of U, similar to the first part of the proof of Theorem 1.2.8.

Then the result follows immediately.

Our next goal is to introduce the Cholesky factorization of positive semidefinite matrices.
However, we first need the following theorem.

Theorem 1.2.10. [17, Theorem 7.2.7] A matrix A ∈ Mn(C) is positive semidefinite if
and only if there is a matrix C ∈Mn(C) such that A = C∗C. In particular, A is positive
definite if and only if C is non-singular.

Proof. Assume that A is positive semidefinite. Let C = A1/2, where A1/2 exists by
Theorem B.4 and is positive semidefinite Hermitian. Thus, the wished for factorization
does indeed exist. Note that if A is positive definite A1/2 is as well (Theorem B.4 (ii)),
which implies that C is non-singular.

Conversely, if A = C∗C, it is easily seen to be positive semidefinite, since, for all non-zero
x ∈ Cn,

〈Ax, x〉 = 〈C∗Cx, x〉 = 〈Cx,Cx〉 = ‖Cx‖2 > 0.

Note that equality holds if and only if Cx = 0, so if C is non-singular this is impossible
and consequently A is positive definite.

The factorization A = C∗C of a positive semidefinite matrix can be specialized by
applying the QR factorization (Theorem B.3) in the following way:

Every matrix C ∈ Mn(C) can be written as C = QR, where Q is unitary and R is an
upper triangular matrix with the same rank as C. Then we have that

A = C∗C = (QR)∗QR = R∗Q∗QR = R∗R,

since Q∗Q = I. Moreover, if C is non-singular, we may choose R in such a way that
all of its diagonal entries are positive and the factorization C = QR is unique. If C is
real, Q and R may both be taken to be real. We have therefore established the following
corollary, which gives the lower-upper Cholesky factorization of A.

Corollary 1.2.11. [17, Corollary 7.2.9] A matrix A is positive semidefinite if and only
if there exists a lower triangular matrix L ∈ Mn(C) with positive diagonal entries such
that A = LL∗. Moreover, A is positive definite if and only if L is non-singular. If A is
real, L may be taken to be real.

Our final characterization of positive semidefinite matrices is that they may always be
seen as, so-called, Gram matrices, which we will now define.

Let {u1, . . . , un} be a set of n vectors in an inner product space U , with some given
inner product 〈·, ·〉. The Gram matrix of the vectors {u1, . . . , un} is defined as the matrix
G = [gij]

n
i,j ∈Mn(F), where gij = 〈uj, ui〉.

Theorem 1.2.12. [17, Theorem 7.2.10] Let G ∈ Mn(C) be the Gram matrix of the
vectors {u1, . . . , un}, ui ∈ Ck, i = 1, . . . , n, with respect to a given inner product 〈·, ·〉,
and let U =

[
u1 · · · un

]
∈Mk,n(C). Then

11



(i) G is positive semidefinite;

(ii) G is non-singular if and only if the vectors u1, . . . , un are linearly independent;

(iii) There exists a positive definite matrix A ∈Mk(C) such that G = U∗AU ;

(iv) rank(G) = rank(U) = maximum number of linearly independent vectors in the set
{u1, . . . , un}.

Proof. (i) G is easily seen to be Hermitian, since gij = 〈uj, ui〉 = 〈ui, uj〉 = gji. We now
show that G is positive semidefinite: Let x = [xi] be a non-zero vector in Cn, then

x∗Gx =
n∑

i,j=1

gijxixj =
n∑

i,j=1

〈uj, ui〉xixj

=
n∑

i,j=1

〈xjuj, xiui〉 =

〈
n∑
j=1

xjuj,

n∑
i=1

xiui

〉

=

∥∥∥∥∥
n∑
i=1

xiui

∥∥∥∥∥
2

> 0,

where ‖ · ‖ is the norm induced by the given inner product. Therefore, G is positive
semidefinite.

(ii) Suppose G is singular, then there is some non-zero vector x = [xi] such that Gx = 0.
Hence, ‖

∑n
i=1 xiui‖

2
= x∗Gx = 0, which in turn implies that

∑n
i=1 xiui = 0, since ‖ · ‖ is

a norm. From this we see that the set {u1, . . . , un} must be linearly dependent, because
x is a non-zero vector, and, therefore, there exists at least one xi 6= 0.

Conversely, if
∑n

i=1 xiui = 0, with x = [xi] 6= 0, then x∗Gx = 0 so Gx = 0, which
implies that G is singular, since x is non-zero.

(iii) Let {e1, . . . , ek} be the standard basis of Ck, then the matrix A = [〈ej, ei〉]ki,j=1 is a
non-singular positive semidefinite matrix by (i) and (ii), which implies that it is positive
definite (see the remark after Theorem 1.2.7). Now, for any x, y ∈ Ck we have

〈y, x〉 =

〈
k∑
j=1

yjej,
k∑
i=1

xiei

〉
=

k∑
i,j=1

〈ej, ei〉xiyj = x∗Ay.

Thus, gij = 〈uj, ui〉 = u∗iAuj, consequently G = U∗AU.

(iv) We first show that the null spaces of G and U coincide. Let x be in the null space of
G, then Gx = 0. Thus,

0 = x∗Gx = x∗U∗AUx = (Ux)∗A(Ux),

which implies that Ux = 0 since A is positive definite, and so x is in the null space of U.
Conversely, let x be in the null space of U, then Ux = 0. Therefore,

Gx = U∗AUx = 0,
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which shows that x is in the null space of G. Consequently, G and U have the same null
space, from which we may conclude that they have the same rank.

Finally, the column rank of U is the maximum number of linearly independent vectors
in the set {u1, . . . , un}.

We will now prove that a matrix is positive semidefinite if and only if it is the Gram
matrix of some set of linearly independent vectors.

Corollary 1.2.13. [17, Corollary 7.2.11] Let A ∈ Mn(C) be a given matrix. Then
A is positive semidefinite with rank r 6 n if and only if there is a set of vectors S =
{u1, . . . , un} ⊆ Ck containing exactly r linearly independent vectors such that A is the
Gram matrix of S with respect to the standard inner product.

Proof. We saw in the previous theorem that if A is a Gram matrix, it is positive semidefi-
nite. Conversely, assume that A is positive semidefinite. Then the square root of A exists,
namely, B = A1/2 and is itself positive semidefinite (Theorem B.4). The rank of B is the
same as the rank of A and A = B2 = B∗B is the Gram matrix of the columns of B with
respect to the standard inner product.
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Chapter 2

Cones of Hermitian matrices

In this chapter we introduce some notions concerning convex cones. We start by proving
some results for general convex cones and then focus on cones of Hermitian matrices, in
particular, the cone of positive semidefinite matrices.

2.1 Cones and their basic properties

Definition 2.1.1 (Convex Cone). Let H be a Hilbert space over R with inner product
〈·, ·〉. A non-empty subset C of H is called a convex cone if

(i) C + C ⊆ C

(ii) αC ⊆ C, for all α > 0.

Thus a subset of H is called a convex cone if it is closed under addition and multiplication
by positive scalars.

If C1, C2 ∈ C then sC1 + (1 − s)C2 ∈ C for s ∈ [0, 1]. Hence a convex cone is convex.
The convex cone C is closed if C = C, where C denotes the closure of C. As we will only
be using convex cones, we will henceforth refer to them as cones.

We call a cone C salient if and only if C ∩ −C ⊆ {0}, in other words, if X and −X are
elements of C, we have that X = 0. C is pointed if 0 ∈ C. A salient pointed cone C induces
a partial order 6 on H, defined as follows:

X 6 Y if Y −X ∈ C.

If C is not salient it only induces a preorder.

In the following proposition we see that the intersection and sum of two cones both
form a cone.

Proposition 2.1.2. [2, Proposition 1.1.1] Let H be a Hilbert space and let C1 and C2 be
cones in H. Then the following are also cones:
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(i) C1 ∩ C2, and

(ii) C1 + C2 = {C1 + C2 : C1 ∈ C1, C2 ∈ C2}

Next we introduce the notion of a dual cone, which will be of significant importance
later on, as the completion process is easily explained through the use of cones and dual
cones.

Definition 2.1.3 (Dual of a Cone). Let H be a Hilbert space and let C be a cone in H.
The dual C∗ of C is defined as

C∗ = {L ∈ H : 〈L,K〉 > 0 for all K ∈ C}.

We call a cone C selfdual if C = C∗. Not surprisingly, the dual cone is a cone in its own
right. Also, it is always closed, regardless of whether the original cone was closed or not.

Lemma 2.1.4. [2, Lemma 1.1.2] Let H be a Hilbert space. The dual of a cone is again
a cone. Furthermore the dual is always closed, regardless of the original cone.

Proof. Let C be a cone and let C∗ be the dual cone of C. Now let L1, L2 ∈ C∗ and let
α, β > 0 be scalars. Then 〈L1, K〉 > 0 and 〈L2, K〉 > 0 for all K ∈ C, therefore

0 6 〈αL1, K〉+ 〈βL2, K〉 = 〈αL1 + βL2, K〉,

thus αL1 + βL2 ∈ C∗. This proves that C∗ is a cone.

We now prove that C∗ is closed, regardless of whether C is closed or not. Let {L(n)}n∈N be
a Cauchy sequence in H, such that L(1), L(2), . . . ∈ C∗. Every Cauchy sequence converges
in H, because of the completeness of H. Now say {L(n)}n∈N converges to L. We need to
prove that L is in C∗. From the continuity of the inner product (Lemma A.5) we have
the following

0 6 〈L(n), K〉 −→ 〈L,K〉 for all K ∈ C,

thus 〈L,K〉 > 0, for all K ∈ C. Therefore L ∈ C∗, which proves that C∗ is closed.

We now consider a subspace of a Hilbert space. This subspace naturally forms a cone,
as it is closed under addition and scalar multiplication. However, it is not so obvious
that the dual cone of this subspace is equal to its orthogonal complement, which we will
prove in the following theorem.

Theorem 2.1.5. [2, Lemma 1.1.2] Let H be a Hilbert space and W a subspace of H.
Then W is a cone and its dual is equal to its orthogonal complement.

Proof. We start by showing that W is a cone and then that its dual is equal to its
orthogonal complement.

LetW be a subspace ofH. ThenW is an inner product space with the same inner product
as H restricted to W ×W . Now W is a vector space and therefore closed under addition
and multiplication, in particular multiplication by positive scalars. Thus W is a cone.
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We need but prove that W∗ ⊆ W⊥, since W⊥ ⊆ W∗ is always true. If h ∈ W∗ and
w ∈ W , then 〈h,w〉 > 0, thus for −w ∈ W we have 〈h,−w〉 6 0. Since −w ∈ W , we
also have 〈h,−w〉 > 0. Hence 〈h,−w〉 = 0. Then also 〈h,w〉 = 0. So if h ∈ W∗ then
〈h,w〉 = 0 for all w ∈ W , which shows that h ∈ W⊥. Thus W∗ ⊆ W⊥.

In the following theorem we make use of hyperplanes. A hyperplane is a generalization
of the two-dimensional plane in R3 into a larger number of dimensions. A hyperplane of
an n-dimensional space is a flat subset with dimension n− 1. By its nature, it separates
the space into two half spaces, as we will now see.

Theorem 2.1.6. [10, Theorem 4.4.2] Let H be a Hilbert space. Given a closed convex
cone C ⊂ H and a point X ∈ H \ C, there exists a L ∈ H such that

〈X,L〉 < 0 and 〈K,L〉 > 0 for all K ∈ C.

Proof. We start the proof by setting L = S − X, with S ∈ C the nearest point to X
(in terms of the metric induced by the inner product). The existence of S follows from
Theorem A.7. Note that L 6= 0, since S and X are distinct values.

We first prove that 〈X,L〉 < 0. Observe the following

0 < 〈L,L〉 = 〈S −X,L〉 = 〈S, L〉 − 〈X,L〉.

If we can show that 〈S, L〉 = 0, the wished for result follows.

If S = 0 it is clear. For S 6= 0, we first assume that 〈S, L〉 > 0, and set S ′ = (1−α)S =
L+X − α(L+X), for 0 < α < 1 and α ∈ R. Note that S ′ ∈ C, since C is a cone. Now,

‖S ′ −X‖2 = ‖L− αS‖2 = 〈(L− αS), (L− αS)〉 = ‖L‖2 − 2αRe(〈S, L〉) + α2‖S‖2.

From our assumption that 〈S, L〉 > 0, it follows that Re(〈S, L〉) > 0 which in turn implies
that 2αRe(〈S, L〉 > α2‖S‖2 for all sufficiently small α > 0. Thus ‖S ′ − X‖2 < ‖L‖2 =
‖S −X‖2, which contradicts S being the nearest point to X. This shows that 〈S, L〉 > 0
cannot be true. For the case 〈S, L〉 < 0 a similar argument follows for S ′ = (1 + α)S.
This proves that 〈S, L〉 = 0. Therefore 〈X,L〉 < 0.

Next, we prove that 〈K,L〉 > 0. Let K ∈ C, K 6= S. The angle ∠KSX has to be at least
90◦. Say this were not so, then ∠KSX < 90◦. We may then take the projection S ′, not
equal to S, of X, on the line through K and S, such that

S ′ ∈ {K + δ(S −K) : δ ∈ [0, 1]} ⊆ C.

Now,
‖X − S ′‖ 6 ‖X − S‖ = inf

K∈C
‖X −K‖ 6 ‖X − S ′‖.

Hence, ‖X −S ′‖ = ‖X −S‖, but S is the unique point with smallest distance to X, thus
S ′ = S, which contradicts our choice of S ′. Therefore, ∠KSX > 90◦. Next, note that the
inner product may be written as 〈x, y〉 = ‖x‖‖y‖ cos θ, where θ is the angle between the
vectors x and y and θ ∈ [−180◦, 180◦]. Now using this form of the inner product we have
the following

〈(K − S), (X − S)〉 = ‖K − S‖‖X − S‖ cos θ 6 0,
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since θ = ∠KSX > 90◦ and cos θ 6 0 for θ ∈ [90◦, 180◦]. Thus,

0 > 〈(K − S), (X − S)〉 = 〈(K − S),−L〉 = −〈K,L〉+ 〈S, L〉,

and from the first part of the proof we know that 〈S, L〉 = 0. Thus −〈K,L〉 6 0 which
implies that 〈K,L〉 > 0.

0

L

X

H
C

0

L

X

SH

C

Figure 2.1: In the figure on the left we see a point X ∈ R2 \ C can be separated from C
by a hyperplane H = {K ∈ R2 : 〈L,K〉 = 0} through the origin. The figure on the right
shows the separating hyperplane resulting from the proof of Theorem 2.1.6.

We are now ready to prove some properties of cones and their duals.

Lemma 2.1.7. [2, Lemma 1.1.2] For cones C, C1 and C2 we have the following statements:

(i) if C1 ⊆ C2, then C∗2 ⊆ C∗1 ;

(ii) (C∗)∗ = C;

(iii) C∗1 + C∗2 ⊆ (C1 ∩ C2)∗;

(iv) (C1 + C2)∗ = C∗1 ∩ C∗2 .

Proof. (i) Let L ∈ C∗2 . Then 〈L,C〉 > 0, for all C ∈ C2. Since C1 ⊆ C2, it follows that
〈L,C〉 > 0, for all C ∈ C1, thus L ∈ C∗1 . Therefore C∗2 ⊆ C∗1 .

(ii) For any C ∈ C, we have, by the definition of the dual of a cone, that 〈K,C〉 > 0, for
all K ∈ C∗. We therefore have that C ∈ (C∗)∗. Thus, C ⊆ (C∗)∗ = (C∗)∗, where the last
equality holds, since (C∗)∗ is the dual of a cone and is therefore closed by Lemma 2.1.4.
Next we will prove, by contradiction, that (C∗)∗ ⊂ C. Suppose (C∗)∗ ⊂ C is not true, then
there exists a X ∈ (C∗)∗ \ C. Now, by Theorem 2.1.6, we have the following,

〈X,L〉 < 0 and 〈K,L〉 > 0 for all K ∈ C,

for some L ∈ H. From the second inequality we see that L ∈ C∗. Therefore, we have a
contradiction, since for X ∈ (C∗)∗ and L ∈ C∗, we should have that 〈X,L〉 > 0, but the
first inequality shows that 〈X,L〉 < 0. Thus (C∗)∗ ⊂ C and so, (C∗)∗ = C.

(iii) Let L = L1 + L2 ∈ C∗1 + C∗2 , where L1 ∈ C∗1 and L2 ∈ C∗2 . For any K ∈ C1 ∩ C2 we
have, 0 6 〈L,K〉 = 〈L1, K〉 + 〈L2, K〉, and since Li ∈ C∗i , for i = 1, 2, it follows that
〈L1, K〉 > 0 for all K ∈ C1, and 〈L2, K〉 > 0 for all K ∈ C2. Therefore L ∈ (C1 ∩ C2)∗.
Thus C∗1 + C∗2 ⊆ (C1 ∩ C2)∗.
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(iv) We prove the two inclusions (C1 + C2)∗ ⊆ C∗1 ∩ C∗2 and C∗1 ∩ C∗2 ⊆ (C1 + C2)∗.

For the first inclusion, note that if 0 ∈ C2, then C1 ⊆ C1 + C2, and thus (C1 + C2)∗ ⊆ C∗1
(by part (i)). Similarly, 0 ∈ C1 implies (C1 +C2)∗ ⊆ C∗2 . Hence, if 0 ∈ C1∩C2, the inclusion
follows. If Ci, i = 1, 2, is not closed, 0 need not be in Ci. However, we can get arbitrarily
close to 0 with elements from Ci. Recall that αC ⊆ C for α > 0. Let L ∈ (C1 + C2)∗ then
〈L,C〉 > 0, for all C ∈ C1 + C2. Now, say C = C1 + αC2, where C1 ∈ C1, C2 ∈ C2 and
α > 0, then

0 6 〈L,C〉 = 〈L,C1 + αC2〉 = 〈L,C1〉+ 〈L, αC2〉.

Let α → 0, then we have that L ∈ C∗1 . We use a similar argument to show that L ∈ C2.
Therefore, (C1 + C2)∗ ⊆ C∗1 ∩ C∗2 .

Next, let L ∈ C∗1 ∩ C∗2 . Then L ∈ C∗1 and L ∈ C∗2 . Thus, 〈L,C1〉 > 0 for all C1 ∈ C1 and
〈L,C2〉 > 0 for all C2 ∈ C2. Now, we have 0 6 〈L,C1〉+〈L,C2〉 = 〈L,C1 + C2〉. Therefore,
L ∈ (C1 + C2)∗, proving that C∗1 ∩ C∗2 ⊆ (C1 + C2)∗. Thus, C∗1 ∩ C∗2 = (C1 + C2)∗.

Note that if C is a closed cone, we have that (C∗)∗ = C = C, by (ii) of the preceding
lemma. Now, if we have a X /∈ C, it follows that X /∈ (C∗)∗. This in turn implies that
there exists a L ∈ C∗ such that 〈X,L〉 < 0, and 〈K,L〉 > 0 for any K ∈ C, because
L ∈ C∗. Therefore, we may say that Lemma 2.1.7 (ii) is equivalent to the separation
theorem (Theorem 2.1.6), stated before the lemma.

Lemma 2.1.7 now has the following interesting corollary.

Corollary 2.1.8. Let C1 and C2 be closed cones. Then

C∗1 + C∗2 = (C1 ∩ C2)∗.

Proof. Applying property (iv) of Lemma 2.1.7 with C1 and C2 replaced by C∗1 and C∗2 ,
respectively, and keeping in mind that both cones are closed, we obtain (C∗1 + C∗2)∗ =
(C∗1)∗ ∩ (C∗2)∗ = C1 ∩ C2. Consequently we have that

(C1 ∩ C2)∗ = ((C∗1 + C∗2)∗)∗ = C∗1 + C∗2 .

Applying this corollary we may give an alternative proof for property (iii) of Lemma
2.1.7. We need but note that C∗1 + C∗2 ⊆ C∗1 + C∗2 , and the result follows immediately.

We end this section by defining faces and extreme rays of a cone.

Definition 2.1.9 (Face of a cone). Let C be a cone. A subset F ⊆ C is called a face of
C if it is a subcone of C such that X = Y + Z, with X ∈ F and Y, Z ∈ C, implies that
Y, Z ∈ F .

Equivalently, F is a face of C if 0 6 Y 6 X with X ∈ F , implies that Y ∈ F , where 6
is the order induced by C. We define the dimension of the face F as the dimension of its
span, that is,

dim(F) := dim(span(F)).

Note that since a face F is also a cone, we have that span(F) = F − F .
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Definition 2.1.10 (Extreme ray). An extreme ray of a cone C is a subset of C ∪ {0} of
the form {αK : α > 0}, where 0 6= K ∈ C is such that

K = A+B, for A,B ∈ C ⇒ A = αK for some α ∈ [0,∞).

Equivalently, {αK : α > 0} is an extreme ray of C if 0 6 A 6 K implies that A = αK,
for some α ∈ [0,∞), where 6 is the order induced by C. Note that the extreme rays of a
cone C, are its faces of dimension 1.

2.2 The cone of positive semidefinite matrices

In this section we prove that the set of positive semidefinite matrices is in fact a selfdual
cone. We then give a nice characterization of the smallest face containing a positive
semidefinite matrix. Finally, we show that the extreme rays, of the cone of positive
semidefinite matrices, are generated by rank one positive semidefinite matrices.

The following corollary of Theorem 1.2.9, besides being interesting, is necessary to show
that the cone of positive semidefinite matrices is selfdual.

Corollary 2.2.1. Let A ∈ Hn. Then A is positive semidefinite if and only if 〈A,B〉 > 0,
for all positive semidefinite B ∈ Hn. Furthermore, if A and B are positive semidefinite
and 〈A,B〉 = 0, it follows that AB = 0.

Proof. =⇒ Since A and B are positive semidefinite, the square root of each exists (The-

orem B.4), such that A = A
1
2A

1
2 and B = B

1
2B

1
2 . Thus

〈A,B〉 = tr(AB) = tr(A
1
2A

1
2B

1
2B

1
2 ) = tr(A

1
2B

1
2B

1
2A

1
2 )

= tr(A
1
2B

1
2 (A

1
2B

1
2 )∗) = 〈A

1
2B

1
2 , A

1
2B

1
2 〉 = ‖A

1
2B

1
2‖2.

Thus, 〈A,B〉 > 0.

⇐= Let u ∈ Cn, u 6= 0. Then B = uu∗ is positive semidefinite, by Theorem 1.2.8. We
then have the following,

〈Au, u〉 = u∗Au = tr(u∗Au) = tr(Auu∗) = tr(AB) = 〈A,B〉 > 0.

Therefore, A is positive semidefinite.

Next, let 〈A,B〉 = 0. Since 〈A,B〉 = 0, it follows that ‖A 1
2B

1
2‖ = 0. So A

1
2B

1
2 = 0, which

implies that AB = A
1
2A

1
2B

1
2B

1
2 = 0.

Theorem 2.2.2 (The cone PSDn). [2, Lemma 1.1.3] The set of all n×n positive semidef-
inite matrices forms a salient pointed cone, which we will call PSDn. Furthermore, this
set is a self-dual cone (PSDn = (PSDn)∗) in the Hilbert space Hn.

Proof. We start by proving that the set of all n×n positive semidefinite matrices forms
a cone. Let A,B ∈ PSDn and let α, β > 0. Now consider

x∗(αA+ βB)x = αx∗Ax+ βx∗Bx > 0,
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this shows that αA+ βB is an element of PSDn and therefore, per definition, PSDn is a
cone.

Next, we prove that (i) PSDn ⊆ (PSDn)∗ and (ii) (PSDn)∗ ⊆ PSDn, to show that it is
self-dual.

(i) Let A ∈ PSDn . Then, from Corollary 2.2.1, it follows that 〈A,B〉 > 0, for all B ∈
PSDn . Thus A ∈ (PSDn)∗, proving that PSDn ⊆ (PSDn)∗.

(ii) The second inclusion, also follows from Corollary 2.2.1. Let A ∈ (PSDn)∗, then
we have that 〈A,B〉 > 0 for every positive semidefinite matrix B. Thus, A is positive
semidefinite. Therefore, (PSDn)∗ ⊆ PSDn .

Finally, it is easy to see that PSDn is salient, since X ∈ PSDn and −X ∈ PSDn implies
that X = 0 and it is pointed since the zero matrix is positive semidefinite.

Note that since PSDn is selfdual, it immediately follows that it is a closed subset of Hn,
by Lemma 2.1.4.

Let X ∈ PSDn and denote by FPSDn(X) the smallest (with respect to inclusion) face of
PSDn that contains X. We now have the following proposition regarding the structure of
FPSDn(X).

Proposition 2.2.3. [3, Lemma 4] Let X ∈ PSDn . Then

FPSDn(X) = {Y ∈ PSDn : ker(X) ⊆ ker(Y )}.

Proof. We show that Y ∈ FPSDn(X) if and only if ker(X) ⊆ ker(Y ).

Assume that Y ∈ FPSDn(X), then X − Y is positive semidefinite. If k ∈ ker(X), we
have

0 6 〈(X − Y )k, k〉 = 〈Xk, k〉 − 〈Y k, k〉 = −〈Y k, k〉 6 0.

which implies that k ∈ ker(Y ).

Conversely, assume that ker(X) ⊆ ker(Y ). Let

H = {h ∈ Cn : h ∈ ran(X) and ‖h‖ = 1},

where ran(X) denotes the range of X. Note that ran(X) = (ker(X))⊥, since ran(X) is
finite dimensional and, hence, closed. H is compact and 〈Xh, h〉 > 0 for all h ∈ H.
Hence,

0 6 λ = sup
h∈H

(
〈Y h, h〉
〈Xh, h〉

)
<∞.

Now, for all t ∈ Cn, there exist h ∈ ran(X) and k ∈ ker(X) such that t = h + k. Then,
〈Xt, t〉 = 〈Xh, h〉 and 〈Y t, t〉 = 〈Y h, h〉, since k ∈ ker(X) ⊆ ker(Y ). Moreover, Y is
non-zero, so there exists some t ∈ Cn such that 0 < 〈Y t, t〉 = 〈Y h, h〉, which implies that
λ > 0. Therefore, for all t ∈ Cn, we have that

〈Xt, t〉 = 〈Xh, h〉 > 1

λ
〈Y h, h〉 =

1

λ
〈Y h, h〉,

which shows that λX > Y. Since X ∈ FPSDn(X) we have that λX ∈ FPSDn(X) and so
we may conclude that Y ∈ FPSDn(X).
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In the next proposition we will see that the extreme rays of the cone PSDn are generated
by rank one positive semidefinite matrices.

Proposition 2.2.4. [2, Proposition 1.1.4] The extreme rays of PSDn are given by

{αvv∗ : α > 0},

where v is a non-zero vector in Cn. In other words, all extreme rays of PSDn are generated
by rank one positive semidefinite matrices.

Proof. We prove this proposition in two parts. In part (i) we show that rank one matrices
generate extreme rays of PSDn, and in part (ii) we show that if a matrix is not of rank
one, it does not generate an extreme ray of PSDn .

(i) Let v ∈ Cn and suppose that vv∗ = A + B with A and B positive semidefinite. If
w ∈ Cn is orthogonal to v, we have that 0 = w∗vv∗w = w∗(A + B)w = w∗Aw + w∗Bw,
and as both A and B are positive semidefinite, we have that w∗Aw = 0 = w∗Bw. Thus
0 = tr(w∗Aw) = tr(w∗A

1
2A

1
2w) = tr(A

1
2ww∗A

1
2 ) = tr(A1/2w(A

1
2w)∗) = 〈A 1

2w,A
1
2w〉,

where A
1
2 represents the unique positive semidefinite matrix the square of which is A.

The same argument holds for w∗Bw. Thus 〈A 1
2w,A

1
2w〉 = 0 = 〈B 1

2w,B
1
2w〉. Then, per

definition of the inner product, A
1
2w = 0 = B

1
2w. Therefore A

1
2A

1
2w = Aw = 0 = Bw =

B
1
2B

1
2w. Thus, w is in the null space of A and B. Now, the orthogonal complement of

the span of v has dimension n− 1, since vv∗ has rank one (follows from Theorem 1.2.9).
Therefore, A and B have at most rank one, since the nullity of A and B is, at least, n−1.
If they have rank one, the eigenvector corresponding to the single non-zero eigenvalue
must be a multiple of v, as seen in the comments after Theorem 1.2.8, and this implies
that both A and B are multiples of vv∗. Therefore, we have an extreme ray generated by
rank one positive semidefinite matrices.

(ii) Let K ∈ PSDn be a matrix of rank k > 2, then, by Theorem 1.2.9, we may write K as
the sum of rank one matrices, K = v1v

∗
1 + . . .+vkv

∗
k, where v1, . . . , vk are non-zero vectors

in Cn. Hence for k > 2 we can write K = A+B with A = v1v
∗
1 and B = v2v

∗
2 + · · ·+vkv

∗
k.

Now, if α = 0, we have that rank(αK) = 0, else, rank(αK) = rank(K), since rank is
invariant under scalar multiplication. Thus, v1v

∗
1 = αK cannot hold for k > 2, since they

do not have the same rank. Therefore K is not an extreme ray.

2.3 Matrix cones related to a symmetric pattern

In this section we show a connection between graph theory and matrices by associating
the vertices and edges of a graph with the entries of a matrix. This will allow us to
determine when a positive semidefinite completion exists, by looking at the underlying
graph of the matrix. See Appendix C for some basic definitions regarding graph theory.

We start by defining a symmetric pattern and then associating it with the vertices and
edges of a graph G = (V,E). Note that throughout all graphs mentioned are simple
undirected graphs.

Definition 2.3.1 (Symmetric Pattern). A subset P ⊆ {1, . . . , n} × {1, . . . , n} with
the properties
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(i) (i, i) ∈ P for i = 1, . . . , n;

(ii) (i, j) ∈ P ⇐⇒ (j, i) ∈ P.

is called an n× n symmetric pattern. Such a pattern is said to be a sparsity pattern for
a matrix A ∈ Hn (recall that Hn is the set of all Hermitian matrices in Mn(C)), if for
every 1 6 i, j 6 n, such that (i, j) /∈ P, it follows that the (i, j) entry of A is 0.

With an n × n symmetric pattern, P, we associate the graph G = (V,E), with V =
{1, . . . , n} and (i, j) ∈ E if and only if (i, j) ∈ P and i 6= j. From this it is clear that
G is a simple undirected graph. Conversely, a simple undirected graph G = (V,E),
with V = {1, . . . , n}, defines a symmetric pattern in the sense that (i, j) ∈ P if and
only if (i, j) ∈ E and (i, i) ∈ P, for all i = 1, . . . , n. Note that G being simple, implies
that (i, i) /∈ E, for i = 1, . . . , n. Thus, it is necessary to specify that (i, i) ∈ P, for all
i = 1, . . . , n, else P is not a symmetric pattern. In what follows we will usually start with
a simple undirected graph G = (V,E). Hence, from now on, each graph will be assumed
to be simple and undirected.

For a pattern with associated graph G = (V,E), we introduce the following subspace
of Hn :

HG = {A ∈ Hn : aij = 0 for all (i, j) /∈ P},

that is, the set of all n× n Hermitian matrices with sparsity pattern P . Of course, since
HG is a subspace, its dual, as a cone, is equal to its orthogonal complement (Theorem
2.1.5). Furthermore, since HG is a closed subspace of the Hilbert space Hn, we have that
Hn = HG ⊕H⊥G (Theorem A.8). From this it is immediately clear that

H⊥G = {A ∈ Hn : aij = 0 for all (i, j) ∈ P}.

Recall, when A = [aij]
n
i,j=1 is an n × n matrix and K ⊆ {1, . . . , n}, then A[K] denotes

the cardK × cardK principal submatrix

A[K] = [aij]i,j∈K = [aij](i,j)∈K×K .

We are now ready to define four new cones that stand central to the whole problem of
when a positive semidefinite completion of a matrix exists.

Proposition 2.3.2. [2, p.7] Let G = (V,E) be a graph. The following sets are cones in
HG,

(i) PPSDG = {A ∈ HG : A[K] < 0 for all cliques K of G};
(PPSD - Partial Positive Semidefinite)

(ii) PSDG = {X ∈ HG : X < 0};

(iii) AG = {Y ∈ HG : Y +W < 0, for some W ∈ H⊥G};

(iv) BG = {B ∈ HG : B =
∑nB

i=1Bi, where B1, . . . , BnB
∈ PSDG are of rank 1}.
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Proof. (i) Let A,B ∈ PPSDG and α > 0. Then A[K] < 0 and B[K] < 0 for all cliques
K of G, therefore αA[K] +B[K] < 0 for all cliques K of G. Thus αA+B ∈ PPSDG .

(ii) The sum of two positive semidefinite matrices is positive semidefinite, and multiplica-
tion of a positive scalar with a positive semidefinite matrix yields a positive semidefinite
matrix. Thus PSDG is a cone.

(iii) Let X, Y ∈ AG and α > 0. Then there exist W,Z ∈ H⊥G such that X + W < 0 and
Y + Z < 0. Note that if W,Z ∈ H⊥G, then αW + Z ∈ H⊥G. Therefore

α(X +W ) + (Y + Z) = (αX + Y ) + (αW + Z) < 0,

and this proves that αX + Y ∈ AG.

(iv) Let α > 0 and A,B ∈ BG, then A =
∑nA

i=1Ai (Ai ∈ PSDG, and rank(Ai) = 1, for
i = 1, . . . , nA,) and B =

∑nB

i=1Bi (Bi ∈ PSDG and rank(Bi) = 1, for i = 1, . . . , nB). Then

αA+B = α

nA∑
i=1

Ai +

nB∑
i=1

Bi =

nA∑
i=1

αAi +

nB∑
i=1

Bi.

Thus αA + B is equal to the sum of positive semidefinite rank 1 matrices. This proves
αA+B ∈ BG.

Note that PSDG = PSDn ∩HG, that is, the set of all positive semidefinite matrices with
underlying graph G. Furthermore, PPSDG is the set of all matrices whose fully specified
principal submatrices are positive semidefinite. This is a necessary solution criterion for
a partial Hermitian matrix to admit a positive semidefinite completion (Lemma 1.2.4).
In other words the only matrices that may have a positive semidefinite completion are
those that are elements of PPSDG . The cone AG is the set of all matrices in HG for
which a positive semidefinite completion exists. We therefore see that it must be true
that AG ⊆ PPSDG . We will confirm this fact in the next theorem and also show the
connection between the four cones in the previous proposition, for an arbitrary graph G.

Theorem 2.3.3. [2, Proposition 1.2.1] Let G = (V,E) be a graph. The cones PPSDG,
PSDG, AG, and BG are closed, and their duals, in HG, are

(PSDG)∗ = AG, and (PPSDG)∗ = BG.

Moreover
(PPSDG)∗ ⊆ PSDG ⊆ (PSDG)∗ ⊆ PPSDG .

Before we prove this theorem we need the following lemma regarding rank one matrices
and the maximal cliques of a graph G.

Lemma 2.3.4. Let G = (V,E) be a graph and B ∈ BG, i.e., B =
∑nB

k=1Bk, with
Bk ∈ PSDG of rank 1, for each k. Write J1, . . . , Jp for the maximal cliques of G. Then
all the non-zero entries of Bk lie in Jk × Jk, for k = 1, . . . , p.
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Proof. We complete the proof in three parts. In part (i) we show that if (i, j) /∈ E and
bii 6= 0, for i 6= j, then bjj = 0. In part (ii) we define the set J = {i ∈ {1, . . . , n} : bii 6= 0}
and prove that it is a clique in G. Finally, in part (iii) we conclude that J is contained in
a maximal clique of G and prove the result of the lemma.

(i) Fix a k ∈ {1, . . . , n}, and say Bk = [bij]
n
i,j=1. The fact that Bk has rank one, implies

Bk 6= 0. Thus, Bk has a non-zero entry on its diagonal (because Bk ∈ PSDG), say on the
(i, i)-th position. Let j ∈ {1, . . . , p} such that j 6= i and (i, j) /∈ E. Since Bk < 0 and
rank(Bk) = 1, we may write Bk = vv∗ for some v ∈ Cn, v 6= 0 (Theorem 1.2.8). Then
bij = viv̄j = 0, since (i, j) is not in the sparsity pattern of Bk. Furthermore bii = |vi|2 6= 0
implies that vi 6= 0, and it must be true that vj = 0. Now, bjj = vj v̄j = |vj|2, therefore
bjj = 0.

(ii) Define the set J = {i ∈ {1, . . . , n} : bii 6= 0}. To prove that J is a clique we need to
show that any pair of distinct vertices in J are connected by an edge in E. Let i, j ∈ J,
then bii 6= 0 and bjj 6= 0. The proof is by contradiction. Assume (i, j) /∈ E. Then from
part (i) and the fact that bii 6= 0, we have that bjj = 0. But this contradicts our choice
of j, therefore, (i, j) ∈ E. Since this holds for any pair of distinct vertices in J, it follows
that J is a clique.

(iii) Since J is a clique it must be contained in some maximal clique of G, say Jk, for
some q ∈ {1, . . . , p}. Let (i, j) /∈ Jk × Jk, then we have that i /∈ Jk, or j /∈ Jk, which
implies that i /∈ J or j /∈ J. Therefore, either bii = 0 or bjj = 0. We may assume, without
loss of generality, that j /∈ Jk. Since bjj = |vj|2 (see part (i) of the proof), it follows that
vj = 0. Finally, since bij = vivj, we have that bij = 0, and the same holds for bji. Thus,
if (i, j) /∈ Jk × Jk, we have that bij = bji = 0. Hence, all the non-zero entries of Bk lie in
Jk × Jk, for some q ∈ {1, . . . , p}.

Proof of Theorem 2.3.3. We start the proof by showing that all the cones, in the
proposition, are in fact closed. We then prove that all the equalities stated hold, namely
(PSDG)∗ = AG, and (PPSDG)∗ = BG. Finally, we prove the inclusions (PPSDG)∗ ⊆
PSDG ⊆ (PSDG)∗ ⊆ PPSDG .

The fact that PPSDG and PSDG are closed is trivial, since the limit of a sequence of
positive semidefinite matrices is again positive semidefinite.

We now prove that AG is closed. Let Yk ∈ AG and say Yk → Y. Since Yk ∈ AG there
exists a Wk ∈ H⊥G, such that Yk +Wk < 0. The fact that Yk +Wk is positive semidefinite
implies, by use of Gerschgorin circles, that the diagonal elements are a bound for the
elements in each row, since all the eigenvalues are non-negative. Now say Yk + Wk =
[yij +wij]

n
i,j=1, and let ρ = sup{ypp : p = 1, . . . , n} then it follows that |yij +wij| 6 ρ <∞,

for each i, j = 1, . . . , n and i 6= j (ρ <∞ follows from the fact that Yk is convergent and
therefore bounded). In particular, we have that |wij| 6 ρ, for all i, j = 1, . . . , n. Therefore,
each element of Wk is bounded; equivalently sup ‖Wk‖2 < ∞. Hence, there exists a
convergent subsequence, {Wkl}l∈N, with limit, say W. Note that W ∈ H⊥G, since H⊥G is
closed. The fact that Yk converges implies that there exists a convergent subsequence
{Ykl}l∈N, with the same limit as Yk. Thus 0 4 Ykl + Wkl → Y + W, and it follows that
Y ∈ AG, since W ∈ H⊥G. This proves that AG is closed.

Now, to prove that BG is closed, we first observe that if J1, . . . Jp are all the maximal
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cliques of the graph G, then any B ∈ BG can be written as B = B1 + · · · + Bp, where
Bk < 0 and we may conclude from the preceding lemma (Lemma 2.3.4) that all the
non-zero entries of Bk lie in Jk × Jk, for some q ∈ {1, . . . , p}. Note that B < Bk, for

k = 1, . . . , p. We now let A(s) =
∑p

k=1A
(s)
k ∈ BG, such that the non-zero entries of A

(s)
k

lie in Jk × Jk, and assume that A(s) converges to A as s → ∞. Then A
(s)
1 is a bounded

sequence of matrices, and thus there is a convergent subsequence {A(sk)
1 }k∈N with limit,

say A1. Note that A1 is positive semidefinite and has non-zero entries only in J1 × J1.
Next take a subsequence {A(skl )

2 }l∈N, of {A(sk)
2 }k∈N that converges to a limit, say A2. Note

that A2 is also positive semidefinite and has non-zero entries only in J2 × J2. Repeating

this argument, we ultimately obtain m1 < m2 < . . . so that limj→∞A
(mj)
k = Ak < 0 with

Ak having non-zero entries only in Jk × Jk. Then we have the following

A = lim
s→∞

A(s) =

p∑
k=1

lim
j→∞

A
(mj)
k =

p∑
k=1

Ak ∈ BG.

Therefore A ∈ BG, proving that BG is closed.

We start by proving the duality of PSDG and AG. Note that PSDG = PSDn ∩HG.
Applying Corollary 2.1.8, recalling that PSDn is self-dual and using the fact that the
dual of a subspace is its orthogonal complement, we have that

(PSDG)∗ = (PSDn ∩HG)∗ = (PSDn)∗ + (HG)∗ = PSDn +H⊥G.

Now AG = PSDn +H⊥G, therefore (PSDG)∗ = AG. However, AG is closed, thus (PSDG)∗ =
AG.

We now prove the duality of PPSDG and BG. To do this we prove the two inclusions (i)
PPSDG ⊆ B∗G and (ii) B∗G ⊆ PPSDG .

(i) Let B1 ∈ PSDG and rank(B1) = 1, then B1 = ww∗ (Theorem 1.2.8), where w is a
vector with support in a clique K of G. Now form a new vector, say w′, where all the
entries of w whose index is not in K, are deleted. Let L ∈ PPSDG, then

〈L,B1〉 = 〈L,ww∗〉 = tr(Lww∗)

= tr(w∗Lw) = tr((w′)∗L[K]w′)

= tr(L[K]w′(w′)∗) = 〈L[K]w′, w′〉
> 0,

since L[K] is positive semidefinite. Therefore, L ∈ B∗G, since every element of BG is the
sum of rank one matrices. Thus PPSDG ⊆ B∗G.

(ii) Now, if A /∈ PPSDG there is a clique K such that A[K] is not positive semidefinite.
Thus there is a vector v such that 〈A[K]v, v〉 = tr(A[K]vv∗) < 0. Therefore, there exists a
positive semidefinite rank one matrix B = vv∗ with all its non-zero entries in K (Lemma
2.3.4), so that 〈A,B〉 = tr(A[K]B) = tr(A[K]vv∗) < 0. As B ∈ BG, this shows that A
is not in the dual of BG. We have thus shown that A /∈ PPSDG implies that A /∈ B∗G.
Therefore, A ∈ B∗G implies that A ∈ PPSDG, and so, B∗G ⊆ PPSDG .

Combining (i) and (ii) we have that PPSDG = B∗G. Thus, (PPSDG)∗ = (B∗G)∗ = BG,
where the last inequality follows from Lemma 2.1.7 (ii) and the fact that BG is closed.
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We now prove the inclusions stated in the proposition: It suffices to prove the inclusions
PSDG ⊆ (PSDG)∗ and (PPSDG)∗ ⊆ PSDG, This follows from the fact that all of the cones
are closed, which implies that PPSDG)∗∗ = PPSDG, (PSDG)∗∗ = PSDG and the fact that
(PPSDG)∗ ⊆ PSDG implies that (PSDG)∗ ⊆ PPSDG (Lemma 2.1.7 (i), (ii)).

(PPSDG)∗ ⊆ PSDG : Let A ∈ BG, then A ∈ PSDG, by our definition of BG, since the sum
of positive semidefinite matrices is again positive semidefinite.

PSDG ⊆ (PSDG)∗ : Let A ∈ PSDG, then it is also an element of HG, and there exists a
W ∈ H⊥G (W = 0), such that A+W < 0, which shows that A ∈ AG = (PSDG)∗.

Therefore, (PPSDG)∗ ⊆ PSDG ⊆ (PSDG)∗ ⊆ PPSDG .

2.4 Notes

The proof of Proposition 2.3.2 is our own. With regards to Theorem 2.3.3, the only part
of the proof that is the same as the one found in [2], is the proof of the closedness of BG,
the rest is our own work.
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Chapter 3

Positive semidefinite matrix
completion problem

In this chapter we consider the positive semidefinite matrix completion problem. We
wish to determine under which conditions every element, with the same sparsity pattern,
admits a positive definite completion. In other words, we want to know when does there
exist a positive definite completion, for every element satisfying the necessary solution
criterion, regardless of the specific entries of each element. We will see that the structure
of the underlying graph is crucial. In the first section we introduce the notion of chordal
graphs and prove some results regarding graphs with this property. In the second section
we will see that if the underlying graph is chordal, there necessarily exists a positive
semidefinite completion for every element.

3.1 Chordal graphs

Definition 3.1.1 (Chordal Graph). A graph G is called chordal if every cycle of length
longer than 3 possesses a chord, that is, an edge joining two non-consecutive vertices of
the cycle.

Figure 3.1: Chordal vs. Non-Chordal
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Definition 3.1.2 (Minimum fill-in of a graph). Let G = (V,E) be a graph. Then the
minimum fill-in of G is the minimum number of edges which need to be added to G to
obtain a chordal graph. We will denote the minimum fill-in of G by fill(G).

The minimum fill-in of a graph is sometimes called the minimum triangulation.

Definition 3.1.3 (Perfect Vertex Elimination Scheme). Let G = (V,E) be a graph,
where V = {v1, . . . , vn}. The ordering σ = (v1, . . . , vn) of the vertices is called a perfect
vertex elimination scheme (or perfect scheme) if each set

Si = {vj ∈ Adj(vi) : j > i}

is a clique, where Adj(v) = {u ∈ V : (u, v) ∈ E} is the adjacency set of the vertex v.

Definition 3.1.4 (Simplicial vertex). Let G = (V,E) be a graph. A vertex v ∈ V is said
to be simplicial if Adj(v) is a clique.

Thus, σ = {v1, . . . , vn} is a perfect scheme if each vi is simplicial in the induced graph
G[{vi, . . . , vn}].

Perfect vertex elimination schemes go hand in hand with chordal graphs, as we will see
in Theorem 3.1.9.

We now introduce the notion of connected components and cutsets, both of which play
an important role in the characterization of chordal graphs.

Definition 3.1.5 (Connected Components). Let G = (V,E) be a graph. A subgraph H
of G is called a connected component if it is a connected graph and the vertices in H are
not connected to any other vertices of G.

Definition 3.1.6 (Cutset, ab-cutset). Let G = (V,E) be a connected graph. A subset Q
of V is called a cutset if G[V \Q] is not connected. For vertices a, b ∈ V, an ab-cutset is a
subset Q of V \{a, b} such that G[V \Q] has, at least, two distinct connected components
G[A] = (A,E[A]) and G[B] = (B,E[B]), containing a and b, respectively. We also say
that such a subset Q separates a and b. If no proper subset of Q is a cutset, then Q is
called a minimal cutset.

We now have an important property regarding minimal cutsets of a chordal graph.

Proposition 3.1.7. [2, Proposition 1.2.2] Every minimal cutset of a chordal graph in-
duces a clique.

Proof. Let S be a minimal ab-cutset in a chordal graph G = (V,E), and let G[A] =
(A,E[A]) and G[B] = (B,E[B]) be the connected components in G[V \ S] containing
a and b, respectively. Let x, y ∈ S be arbitrary. Each vertex in S must be connected
to at least one vertex in A and at least one in B. We can choose minimal length paths,
[x, a1, . . . , ar, y] and [y, b1, . . . , bs, x], such that ai ∈ A for i = 1, . . . , r and bj ∈ B for
j = 1, . . . , s. Then [x, a1, . . . , ar, y, b1, . . . , bs, x] is a cycle in G of length greater than 3
(if it has length 3 there is nothing to prove) and because G is a chordal graph it must
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A S B

Figure 3.2: An example of a cutset Q, separating the vertex sets A and B. Here A and B
are the vertex sets of the connected components G[A] = (A,E[A]) and G[B] = (B,E[B]),
respectively.

have a chord in this cycle. Now it holds that (ai, bj) /∈ E, by the definition of a cutset
and, (ai, aj), (bi, bj) /∈ E, for i < j, j 6= i+ 1, by the minimality of r and s. Therefore the
only possible chord is (x, y). Hence, every pair of distinct vertices in S is connected by
an edge in E. Thus S is a clique.

The next result is known as Dirac’s Lemma, which gives a characterization of chordal
graphs.

Lemma 3.1.8 (Dirac’s Lemma). [2, Lemma 1.2.3] Every chordal graph G has a simplicial
vertex. Moreover, if G is not complete, it has two non-adjacent simplicial vertices.

Proof. Proof by induction on n, where n is the number of vertices of G. When n < 4,
the result is trivial (since every chordal graph with 3 or less vertices is complete). Let
n > 4 and assume that the result is true for graphs with fewer than n vertices. Now
say G = (V,E) has n vertices. If G is complete, the result holds. Therefore say G is
not complete, and let S be a minimal ab-cutset for two non-adjacent vertices a and b.
Let G[A] = (A,E[A]) and G[B] = (B,E[B]) be the connected components in G[V \ S]
containing a and b, respectively. By our assumption, either the subgraph G[A ∪ S] has
two non-adjacent simplicial vertices, one of which must be in G[A] (since, by Proposition
3.1.7, G[S] is complete and therefore all its simplicial vertices are adjacent), or G[A ∪ S]
is complete and any vertex in A is simplicial in G[A ∪ S]. Since Adj(a) ⊆ A ∪ S, for any
a ∈ A, a simplicial vertex of G[A ∪ S] in A, is simplicial in G. Similarly, B contains a
simplicial vertex of G, and therefore if G is not complete it has two non-adjacent simplicial
vertices, and this proves the lemma.

The following is an algorithmic characterization of chordal graphs, and the main result
of this section.
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Theorem 3.1.9. [2, Theorem 1.2.4] A graph is chordal if and only if it has a perfect
scheme. Moreover, any simplicial vertex can start a perfect scheme.

Proof. =⇒ Let G = (V,E) be a chordal graph with n vertices. We use an induction
argument. For n = 1 the result is trivial and we may therefore assume that every
chordal graph with fewer than n vertices has a perfect scheme. Now from Dirac’s Lemma
(Lemma 3.1.8) we know that G has a simplicial vertex, say u. Let {v1, . . . , vn−1} be a
perfect scheme for G[V \{u}] (the existence follows from our induction argument). Then
{u, v1, . . . , vn−1} is a perfect scheme for G.

⇐= Let G = (V,E) be a graph with a perfect scheme, say, σ = {v1, . . . , vn}. If there
are no cycles greater than 3 in G, then G is automatically chordal and there is nothing
to prove, therefore assume that C is a cycle of length greater than 3 in G. Let u be
the vertex in C with the smallest index in σ. By definition of a perfect scheme, the two
vertices in C adjacent to u must be connected by an edge (Adj(u) is a clique), so C has
a chord. Since our choice of C was arbitrary, G is chordal.

3.2 Matrix cones with chordal patterns

We start this section by showing that Theorem 1.2.9 holds, for matrices in HG, if the
underlying graph is chordal, i.e., PSDG is equal to (PPSDG)∗ when the graph G is chordal.
In other words, any positive semidefinite matrix with underlying graph G may be written
as the sum of rank one positive semidefinite matrices (also with underlying graph G), if
the graph G is chordal.

Proposition 3.2.1. [2, Proposition 1.2.6] Let A ∈ PSDG, where G is a chordal graph
with n vertices. Then A can be written as A =

∑r
i=1wiw

∗
i , where r = rank(A) and

wi ∈ Cn are non-zero vectors such that wiw
∗
i ∈ PSDG for i = 1, . . . , r. In other words, we

have PSDG = (PPSDG)∗.

Proof. Proof by induction on n. For n = 1 the result is trivial. Now assume n > 2,
such that it holds for n − 1. Let A ∈ PSDG, where G = (V,E) is a chordal graph with
V = {1, . . . , n} and let r = rank(A). We may assume, without loss of generality, that the
vertex 1 is simplicial (otherwise we reorder the rows and columns of A in an order that
starts with a simplicial vertex). If a11 = 0, the first row and column of A are necessarily
zero, else A would not be positive semidefinite, and the result follows from our assumption
for n− 1. Now say a11 6= 0, and let w1 ∈ Cn be the first column of A multiplied by 1√

a11
.

An entry (k, l), 2 6 k, l 6 n of w1w
∗
1 is zero if (1, k), (1, l) /∈ E. Since the vertex 1 is

simplicial, we have (k, l) ∈ E. Then by Lemma B.5, A − w1w
∗
1 is a positive semidefinite

matrix of rank r− 1, and has its first row and column equal to zero. From this it follows
that all the principal submatrices of A− w1w

∗
1 are positive semidefinite (Lemma 1.2.4).

We now show that if (i, j) /∈ E, where i, j > 1 and i 6= j, the (i, j)-th entry of w1w
∗
1 is

equal to zero. Let i, j > 1, with i 6= j, such that (i, j) /∈ E. Then it follows that at least
one of (1, i) and (1, j) is not in E, since 1 is simplicial. Assume, without loss of generality,
that (1, i) /∈ E, then the (1, i)-th entry of w1 is zero (i.e., a1i = 0). Now, the (i, j)-th
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entry of w1w
∗
1 is equal to a1ia1j/a11, and consequently, equal to zero. We also note that

the (i, j)-th entry of A is equal to zero, since A ∈ PSDG and (i, j) /∈ E.

Therefore, if (i, j) /∈ E, where i, j > 1 and i 6= j, the (i, j)-th entry of A−w1w1 is equal to
zero. This, combined with the fact that every principal submatrix of A−w1w

∗
1 is positive

semidefinite, ensures that (A− w1w
∗
1)[{2, . . . , n}] ∈ PSDG|{2,...,n} .

Since G|{2, . . . , n} is also chordal, by our assumption for n−1, we have that A−w1w
∗
1 =∑r

i=2wiw
∗
i , where each wi ∈ Cn is a non-zero vector with its first component equal to

zero. Thus

A = w1w
∗
1 +

r∑
i=2

wiw
∗
i =

r∑
i=1

wiw
∗
i .

We have therefore shown that every A ∈ PSDG can be written as the sum of rank one
positive semidefinite matrices.

Proposition 3.2.1 has the following two corollaries.

Corollary 3.2.2. [2, Corollary 1.2.7] Let P be a symmetric pattern with associated graph
G = (V,E). Then Gaussian elimination can be carried out on every A ∈ PSDG such that
in the process no entry corresponding to (i, j) /∈ P is changed even temporarily to a
non-zero, if and only if σ = {1, 2, . . . , n} is a perfect scheme for G.

Corollary 3.2.3. [2, Corollary 1.2.8] Let G = (V,E) be a graph. Then the lower-upper
Cholesky factorization A = LL∗, of every A ∈ PSDG satisfies lij = 0 for 1 6 j < i 6 n
such that (i, j) /∈ E, if and only if σ = {1, 2, . . . , n} is a perfect scheme for G.

Proof. Follows immediately from the fact that L =
[
w1 w2 · · · wn

]
where w1, . . . , wn

are obtained recursively as in the proof of Proposition 3.2.1.

We now show that if G is not chordal, there exist matrices, whose principal submatrices
are all positive semidefinite, which do not admit a positive semidefinite completion.

Proposition 3.2.4. [2, Proposition 1.2.9] Let G = (V,E) be a non-chordal graph. Then
(PSDG)∗ is a proper subset of PPSDG .

Proof. From Proposition 2.3.3, we know that (PSDG)∗ ⊆ PPSDG . Now, for m > 4
define the m×m Toeplitz matrix

Am =


1 1 0 0 · · · −1
1 1 1 0 · · · 0
0 1 1 1 · · · 0
...

. . . . . . . . . . . .
...

−1 0 0 0 · · · 1

 , (1.5.1)

the graph of which is the chordless cycle (1, . . . ,m). For each m > 4, we have Am ∈

PPSDG, since both matrices

(
1 1
1 1

)
and

(
1 −1
−1 1

)
are positive semidefinite. We cannot

modify the zeros of Am in any way to obtain a positive semidefinite matrix, since the
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only positive semidefinite matrix with the three middle diagonals equal to 1, is the matrix
with all entries equal to 1 (see [12, Lemma 6]).

Let G = (V,E), V = {1, . . . , n}, be a non-chordal graph and assume, without loss
of generality, that it contains the chordless cycle (1, . . . ,m), 4 > m > n. Let A be
the matrix, with underlying graph G, having 1 on its main diagonal, the matrix Am in
(1.5.1) as its m×m upper-left corner, and 0 on any other position. Then A ∈ PPSDG, but
A /∈ (PSDG)∗, since the zeros in its upper left m×m corner cannot be modified such that
this corner becomes a positive semidefinite matrix. Therefore (PSDG)∗ ( PPSDG .

The following and final result of this section, summarizes all the important results in the
preceding sections and shows that equality between (PPSD)∗ and PSDG (or equivalently,
between (PSDG)∗ and PPSDG) occurs exactly when G is chordal.

Theorem 3.2.5. [2, Theorem 1.2.10] Let G = (V,E) be a graph. Then the following are
equivalent:

(i) G is chordal.

(ii) PPSDG = (PSDG)∗.

(iii) (PPSDG)∗ = PSDG .

(iv) There exists a permutation σ of (1, . . . , n) such that after reordering the rows and
columns of every A ∈ PSDG by the order σ, A has the lower-upper Cholesky factor-
ization A = LL∗ with lij = 0 for every 1 6 j < i 6 n such that (i, j) /∈ E.

Proof. (i) =⇒ (iv) follows from the fact that a graph is chordal if and only if it has a
perfect scheme (Theorem 3.1.9) and Corollary 3.2.3.

(iv) =⇒ (iii) from Corollary 3.2.3 and Proposition 3.2.1, since (iv) is true if and only if
σ = (1, 2, . . . , n) is a perfect scheme for G, but then G is chordal (Theorem 3.1.9) and
therefore we may apply Proposition 3.2.1.

(iii) =⇒ (ii) from property (ii) of Lemma 2.1.7 and the fact that the cones are closed.

(ii) =⇒ (i) follows from Proposition 3.2.4 and Proposition 3.2.1, since PPSDG ( (PSDG)∗

implies that G is non-chordal, therefore, if PPSDG = (PSDG)∗ then G is chordal.

Thus, we see that every element of PPSDG admits a positive definite completion if and
only if G is chordal. This is remarkable, since the specific entries of each matrix are, in
a sense, irrelevant, all that is required, is that the fully specified principal submatrices
are positive semidefinite. We also see that Theorem 1.2.9 holds for positive semidefinite
matrices in HG, that is, every element of PSDG can be written as the sum of rank 1
positive semidefinite matrices if and only if G is chordal. We will explore this relationship
further in Part II.
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3.3 Notes

Proposition 3.2.1 has been written out in more detail and the part where we prove that
the (i, j)-th entry of w1w

∗
1 is equal to zero if (i, j) /∈ E, is our own work.
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Part II

The sparsity order of a graph
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Chapter 4

Graph decomposition theorem

4.1 Introduction

The main theorem of this section states that a graph may be decomposed as a clique-sum
of a set of graphs belonging to four basic classes if and only if the graph does not contain
certain graphs as induced subgraphs. The whole chapter will be devoted to proving this
rather technical result.

We start by defining what is meant by a clique-sum and the related notion of clique-
cutsets. Recall that a cutset of a connected graph G = (V,E), is a subset Q of V such
that G[V \Q] is not connected.

Definition 4.1.1 (Clique-sum, Clique-cutset). Let G = (V,E) be a connected graph
and let K be a cutset of G. If the connected components of G are G1 = (V1, E1) and
G2 = (V2, E2) and K is a clique, we call G the clique-sum of G1 and G2 and K the
clique-cutset of G. Equivalently,

G = (V1 ∪ V2, E1 ∪ E2)

K = V1 ∩V2 is a clique in G1 and G2 and there are no edges between the sets V1 \V2 and
V2 \ V1.

It now follows that a graph containing a clique-cutset may be decomposed into the
clique-sum of a set of smaller graphs. Note that if a graph contains more than one
clique-cutset, we decompose it as the clique-sum of graphs containing no clique-cutsets.
This process of decomposition by clique-cutsets can be done in O(nm) time, where n
is the number of vertices of the graph and m the number of edges [27]. Furthermore,
it was shown in [21] that this decomposition can be made unique if the clique-cutsets
are also minimal. This decomposition can obviously be reversed, in the following way:
Let G1 = (V1, E1) and G2 = (V2, E2) be two distinct connected graphs. If they contain
cliques of equal size the the clique-sum of G1 and G2 is formed from their disjoint union
of vertices by identifying pairs of vertices in these two cliques to form a single shared
clique. We can also form a clique-sum of several graphs by repeated use of the process
described here for two graphs. For more on decomposing a graph as a clique-sum see [4].
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The graphs G1 and G2 The clique-sum of G1 and G2

Figure 4.1: An example of two distinct connected graphs and the clique-sum of these
graphs

We now introduce the four basic classes mentioned in the previous paragraph. We will
denote these graphs and their induced subgraphs by Gi, for i = 1, 2, 3, 4, and use the
following convention, as seen in [20, p.550]:

A small dark dot indicates a vertex, a big dark circle indicates a clique, while a big white
circle indicates a stable set; edges are indicated by lines, while a thick line between two
spheres or between two sets of vertices shows that every vertex in one set is adjacent to
every vertex in the other set.

The form of the four classes Gi, i = 1, 2, 3, 4 can be seen in Figure 4.2. Note that these
classes include all graphs of this form and their induced subgraphs, for example, a chordal
graph is an element of G1, since it is a induced subgraph of a graph with the form seen
in G1. We also give the form of the complementary classes of Gi, for i = 2, 3, 4, which we
will denote by G2,G3,G4.

We will call the forbidden induced subgraphs mentioned earlier A1−A10, B1−B6. The
form of the complements of these graphs can be seen in Figure 4.3. Note that we give
the complements, since they have a very simple form.

Our main goal in this chapter is to prove the following theorem:

Theorem 4.1.2. [20, Theorem 8] The following statements are equivalent for a graph
G :

(i) G does not contain, as an induced subgraph, a cycle Cn, n > 5, nor any of the
graphs A2 − A10 and B1 −B6.

(ii) G is a clique-sum of a set of graphs belonging to
⋃4
i=1 Gi.

We may assume, without loss of generality, that G is connected. Indeed, if G were
disconnected, we need but prove the result for each of its connected components and we
are done. This follows from the fact that a disconnected graph is a clique-sum of its
connected components and the null graph.

As a starting point we will show that the vertex set of a graph can be partitioned in
the following way:
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chordal graph

G1 G2

G3 G4

G2

G3 G4

Figure 4.2: The classes G1,G2,G3,G4 and the complementary classes G2,G3,G4

Let G = (V,E) be a graph. For S ⊆ V define

N = {i ∈ V \ S : i is adjacent to some vertex in S},

N = V \ (S ∪N).

Then S, N and N are mutually disjoint and

V = S ∪N ∪N.

If G is a clique, we have that N = V \ S, which implies that N = ∅. Now, if G is not
a clique, we may refine the partitioning of the vertex set V even further. We first note
that since G is not a clique, there exists a vertex u ∈ V, which is not adjacent to all the
other vertices in V. Define S ⊆ V to be the maximal subset which contains u such that
G[S] is connected and V 6= S ∪ N. Note that if S = {u}, both of these conditions are
satisfied, hence the maximal subset does indeed exist and is non-empty. Furthermore,
N 6= ∅, since V 6= S ∪N. Since N and N are disjoint, it follows that there are no edges
between the sets S and N. Finally, we observe that every vertex in N is adjacent to every
vertex in N. Indeed, if this were not so, there exists a vertex i in N which is not adjacent
to all the vertices of N. Then, we could increase S by i, contradicting the maximality
assumption on S.
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A1 A2 A3 A4 A5

A6 A7 A8 A9 A10

B2B1 B3

B4 B5 B6

Figure 4.3: Complements of the graphs A1 − A10, B1 −B6.

Proposition 4.1.3. If G is chordal, then N is a clique.

Proof. Suppose G is chordal, but N is not a clique, then there exist non-adjacent vertices
i and j in N. Choose n ∈ N and let P = [a1, . . . , ap], p > 1, be a shortest path in
S ∪ N connecting i and j. Then, (n, i, a1, . . . , ap, j) is a cycle of length at least 4, a
contradiction.

We now return to the proof of Theorem 4.1.2. For the implication (ii) =⇒ (i) we
note that the graphs Cn, n > 5, A2 − A10, B1 − B6 contain no clique-cutsets (apply the
algorithm described in [28]) and cannot occur as induced subgraphs of a graph in

⋃4
i=1 Gi.

Therefore, if G is a clique-sum of a set of graphs belonging to
⋃4
i=1 Gi, it does not contain,

as an induced subgraph, a cycle Cn, n > 5, nor any of the graphs A2−A10 and B1−B6.

For the proof of the reverse implication (i) =⇒ (ii) we start with the following corollary.
Note that this corollary and Lemma 3.1.8 are essentially the same, although the proofs
differ. In this case we rely on the partitioning of the vertex set V, discussed earlier, to
prove the result.

Corollary 4.1.4. [25, Theorem 7.9] Every chordal graph G = (V,E) which is not a
clique, has a clique-cutset. In particular, every chordal graph is the clique-sum of cliques.
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Proof. Let G = (V,E) be a chordal graph which is not a clique. Then V admits the
following partitioning, as seen above,

V = S ∪N ∪N,

where G[S] is connected, N 6= ∅ and there are no edges between the sets N and S. Thus,
N is a clique-cutset in G (Proposition 4.1.3).

Assume that G has clique-cutsets. This implies that G can be decomposed as the
clique-sum of a finite number of subgraphs (since G is finite) which contain no clique-
cutset, say G1, G2, . . . , Gp. Since we wish to show that a graph satisfying Theorem 4.1.2
(i), is the clique-sum of a set of graphs belonging to

⋃4
i=1 Gi, it suffices to show that

G1, G2, . . . , Gp ∈
⋃4
i=1 Gi, to prove the result. Thus, there is no loss of generality if

we assume that G has no clique-cutset. Furthermore, as mentioned earlier, Cn, n > 5,
A1 − A10, B1 − B6 contain no clique-cutsets. This is an important fact, since it then
follows that if G1, G2, . . . , Gp all satisfy Theorem 4.1.2 (i), G does as well.

If G is a clique, it is an induced subgraph of a graph belonging to
⋃4
i=1 Gi. Therefore, if

G is a clique, there is nothing to prove; consequently it makes sense to assume that G is
not a clique.

In summary, the assumptions on the graph G are as follows:

Assumption. Let G = (V,E) be a graph. We assume the following:

(i) G does not contain, as an induced subgraph, a cycle Cn, n > 5, nor any of the
graphs A2 − A10 and B1 −B6;

(ii) G is connected;

(iii) G has no clique-cutset;

(iv) G is not a clique.

In the rest of the chapter G = (V,E) is a graph which satisfies these assumptions.
We now apply the partitioning discussed earlier to the vertex set V. Hence, V will be
partitioned as

V = S ∪N ∪N,
where S 6= ∅, G[S] is connected, N 6= ∅, there is no edge between the sets S and N, every
vertex in N is adjacent to every vertex in N, and N is not a clique (else it would be a
clique-cutset in G).

4.2 Preliminary results

We group here a number of preliminary results on the structure of G which will lead to
two distinct cases that we have to consider.

Proposition 4.2.1. [20, Claim 3, 5 and 7] Let I and J be distinct stable sets in N, then:
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(i) There exists an s ∈ S adjacent to all the vertices in I. Moreover, if |I| > 3, this
vertex s is unique.

(ii) If |I| > 2, |J | > 2, I ∩ J 6= ∅ and s ∈ S is adjacent to all the vertices in I, then s
is adjacent to all the vertices in J.

Proof. (i) If |I| = 0 or |I| = 1, the statement is trivial. We proceed by induction on |I|.
Throughout, n will denote a vertex in N.

Assume that |I| = 2. Let i, j ∈ N be non-adjacent and assume that no vertex in S is
adjacent to both i and j. There exist s, t ∈ S such that (s, i), (t, j) ∈ E, per definition
of N, and (s, j), (t, i) /∈ E, by our assumption. Let P be a shortest path in S from s
to t, which exists since G[S] is connected. Then this path P, together with the edges
(s, i), (i, n), (n, j), (j, t) forms a cycle of length greater than 4 in G, a contradiction. Note
that we may have that i or j is adjacent to some vertex in P ; if this should be the case,
we merely take this vertex to be our new s or t, depending on whether i or j is adjacent
to said vertex. Regardless of the number of times we may need to do this, we still find a
cycle of length greater than 4 in G.

Assume that |I| = 3. Let I = {i, j, k}. Assume there exists no vertex in S adjacent
to i, j, k. Then, from the case |I| = 2, we know there exist vertices r, s, t ∈ S such that
(r, i), (r, j), (s, i), (s, k), (t, j), (t, k) ∈ E. By our assumption (r, k), (s, j), (t, i) /∈ E. Now,
assume that r and s are adjacent, then we find an induced cycle C5 in G on {n, j, r, s, k},
a contradiction. Similarly, if (r, t) ∈ E or (s, t) ∈ E. Therefore, r, s and t are pairwise
non-adjacent. However, we then find an induced cycle C6 in G on {r, i, s, k, t, j}, a
contradiction. Thus, there exists a vertex in S adjacent to all the vertices in I.

Now assume that |I| > 3 and that the claim is valid for any stable subset of N of
cardinality |I| − 1. Say I = {i1, . . . , ip}, p > 4 and that no vertex in S is adjacent to all
the vertices in I. By the induction hypothesis, we may assume that for every j = 1, . . . , p,
there exists an sj ∈ S adjacent to all vertices in I \ {ij}. However, we then find B4, as an
induced subgraph, on the vertices {n, s1, sp, ip−2, ip−1, ip} (see Figure 4.4). Hence, there
exists an s ∈ S adjacent to all the vertices in I.

n

s1

sp ip

ip−1

ip−2

Figure 4.4: The complementary graph on the vertex set {n, s1, sp, ip−2, ip−1, ip}

Next we prove the uniqueness claim. First, assume that |I| = 3. Assume s, t ∈ S are
distinct vertices, adjacent to i, j and k. Then i, j and k form a C3 in G, non-adjacent to
s, t and n, while n is adjacent to s and t. Thus we find B2 or A2, as induced subgraphs,
on the vertices {i, j, k, s, t, n} (see Figure 4.5), depending on whether (s, t) ∈ E or not, a
contradiction. Hence the result holds when |I| = 3.
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i

j

k n

s

t

Figure 4.5: The complementary graph on the vertex set {i, j, k, s, t, n}

Assume that |I| > 3. For any subset of I consisting of three vertices there can be
only one s ∈ S adjacent to all the vertices of the subset, by the preceding paragraph.
Therefore, there can be only one s ∈ S adjacent to all the vertices of I.

(ii) Let i ∈ I, j ∈ J and let s ∈ S be adjacent to all the vertices in I. Let k ∈ I ∩J, which
exists since |I| > 2, |J | > 2, and I∩J is assumed to be non-empty. Then (i, k), (j, k) /∈ E.

Our proof is by contradiction. Assume that j is non-adjacent to s. If i and j are non-
adjacent there exists, by the first part of the proposition, a vertex t ∈ S adjacent to i, j
and k. However, we then find B4 or B5, as an induced subgraph, on the on the vertex set
{n, s, t, i, j, k} (see Figure 4.6) depending on whether (s, t) ∈ E or not. Thus, i and j are
adjacent.

i

k

j s

n

t

Figure 4.6: The complementary graph on the vertex set {n, s, t, i, j, k}

Now, there exists a u ∈ S adjacent to i, j and k. Indeed, if this were not so, there
exists, by the first part of the proposition, vertices u1, u2 ∈ S such that u1 is adjacent to
i and j but not k, and u2 is adjacent to j and k but not i. Then u1 and u2 are adjacent,
else we find an induced cycle of length 5 on the vertices {u1, u2, i, j, k}. However, u1 and
u2 adjacent, leads to another contradiction, since (n, u1, k, j, i, u2) is an induced C6 in G,
which implies that B1 is an induced subgraph on the vertices {n, u1, u2, i, j, k}. Therefore,
there necessarily exists a vertex u ∈ S adjacent to i, j and k.

Now we find A4 or B5, as an induced subgraph, on the vertex set {n, s, u, i, j, k} (see
Figure 4.7) depending on whether (s, u) ∈ E or not. This contradiction shows that s
must be adjacent to all the vertices of J.

Corollary 4.2.2. [20, p.559] G[N ] is chordal.

Proof. The proof is by contradiction. Assume that G[N ] is not chordal. By our assump-
tion G, and hence G[N ], does not contain a cycle of length greater than or equal to 5. So
we assume that G[N ] contains C4, as an induced subgraph. Let i, j ∈ N be non-adjacent.

41



i

k

j s

n

u

Figure 4.7: The complementary graph on the vertex set {n, s, u, i, j, k}

Then both i and j are adjacent to all the vertices in the induced C4 in G[N ], since every
vertex in N is adjacent to every vertex in N. Moreover, by Proposition 4.2.1 (i), there
exists an s ∈ S adjacent to both i and j, but not to any vertex in the induced C4 in
G[N ], since there are no edges between the sets S and N. Then we find B3, as an induced
subgraph, on the vertices of C4 and i, j, s, a contradiction.

Proposition 4.2.3. [20, Claim 8] Let (i, h, j, k) be an induced C4 in G[N ]. Then we have
the following:

(i) Any vertex s ∈ S adjacent to i and j is adjacent to h and k.

(ii) Every vertex x ∈ N \ {i, j, h, k} is adjacent to at least three vertices in {i, j, h, k}.

Proof. (i) By Proposition 4.2.1 (i) there exists vertices s, t ∈ S such that s is adjacent
to i and j, and t is adjacent to h and k. Assume that s is not adjacent to both h and
k. We will show that this leads to a contradiction. Let n ∈ N. Now, the complementary
graph induced by the vertex set {i, j, h, k, s, t, n} has the form shown in Figure 4.8. The
solid lines indicate edges in the complementary graph and dotted lines indicate possible
edges in the complementary graph.

n

s t

h k i j

Figure 4.8: The complementary graph on the vertex set {n, s, t, i, j, h, k}

We list all the possibilities in the table below, along with the vertex set and forbidden
induced subgraph which arises in each case. A check in the appropriate column indicates
that the edge is present in the graph G, which of course implies that it is not an edge in
the complementary graph G, i.e., not an edge in Figure 4.8.
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(s, t) (s, h) (s, k) (t, i) (t, j) Vertex set Induced subgraph
X X X {n, s, t, i, j, h, k} B6

X X {s, t, i, j, h, k} A2

X X {s, t, i, j, h, k} A2

X {s, t, i, j, h, k} B2

X X {n, s, t, i, j, h, k} B3

X {s, t, i, j, h, k} B5

X {s, t, i, j, h, k} B5

{s, t, i, j, h, k} B4

Therefore, we may assume, without loss of generality, that (s, h) ∈ E and, similarly,
(t, i) ∈ E. The graph in Figure 4.9 gives the form of the complementary graph under the
new assumptions. Again we list all the possibilities in the table below.

(s, t) (s, h) (s, k) (t, i) (t, j) Vertex set Induced subgraph
X X X X {n, s, t, i, j, h, k} A5

X X X {n, s, t, i, j, k} A4

X X X {s, t, i, j, h, k} B6

X X {s, t, i, j, h, k} A4

n

s t

h k i j

Figure 4.9: The complementary graph on the vertex set {n, s, t, i, j, h, k}

We may therefore conclude that (s, k) ∈ E. Hence, s is adjacent to h and k.

(ii) Let x ∈ N \ {i, j, h, k} and assume that (x, i) /∈ E. We show, by contradiction, that x
is adjacent to j, h and k. Thus, assume that x is not adjacent to each of j, h and k. Let
n ∈ N. We start by proving that there exists a vertex s ∈ S adjacent to i, j, h, k and x.
We need but consider two cases: (a) (x, j) /∈ E; and (b) (x, h) ∈ E, (x, k) /∈ E.

(a) Assume that (x, j) /∈ E. Then {x, i, j} is a stable set in N and, by Proposition 4.2.1
(i) there exists a s ∈ S adjacent to x, i and j. Now, by (i) of the current lemma, it follows
that s is adjacent to h and k.

(b) Assume that (x, h) ∈ E, (x, k) /∈ E Then {h, k} and {x, k} are two intersecting stable
sets. Thus, by Proposition 4.2.1 (i) and (ii), there exists a vertex s ∈ S adjacent to x, h
and k. Therefore, by (i) of the current lemma, it follows that s is adjacent to i and j.

Thus, there exists a vertex s ∈ S adjacent to i, j, h, k and x. The complementary graph
induced by the vertex set {i, j, h, k, x, s, n} has the form shown in Figure 4.10. In the
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table below we list all the possibilities. Note that in all of the cases the relevant vertex
set is {n, s, i, j, h, k, x}.

(x, j) (x, h) (x, k) Induced subgraph
X X A5

X X A5

X X A3

X B6

X B6

X B6

B3

n

s

i h

kj

x

Figure 4.10: The complementary graph on the vertex set {n, s, i, j, h, k, x}

We may therefore conclude that (x, j), (x, h), (x, k) ∈ E.

Corollary 4.2.4. [20, Corollary 9] If N is not a clique, then G[N ] is chordal and there
are at least two edges among any three vertices in N.

Proof. Assume n1 and n2 are two non-adjacent vertices in N and that G[N ] is not
chordal. Note that all cycles Cn, n > 5, are forbidden by assumption. Hence, G[N ]
contains an induced C4. Let (i, h, j, k) be an induced C4 in N. By Proposition 4.2.1 (i)
and Proposition 4.2.3 (i) there exists a vertex s ∈ S adjacent to i, j, h and k, then we
find A3, as an induced subgraph, on {n1, n2, s, i, j, h, k}, a contradiction (see Figure 4.11).
Thus, G[N ] is chordal.

s

n1 n2

i

j

h

k

Figure 4.11: The complementary graph on the vertex set {n1, n2, s, i, j, h, k},

Next, let i, j and k be distinct vertices in N and assume that there are less than two
edges among them. Our proof is by contradiction. We start by showing that there exists
a vertex s ∈ S adjacent to i, j and k. There are two cases: either there are no edges
between i, j and k; or there is one edge, say (i, j) ∈ E. In the first case, there exists
a vertex s ∈ S adjacent to i, j and k, by Proposition 4.2.1 (i), and in the second case,
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n1

n2

s k

i

j

Figure 4.12: The complementary graph on the vertex set {n1, n2, s, i, j, k}

{i, k} and {j, k} are two intersecting stable sets, which implies that there exists a vertex
s ∈ S adjacent to i, j and k, by Proposition 4.2.1 (i) and (ii) . The complementary graph,
induced by the vertex set {n1, n2, s, i, j, k}, is shown in Figure 4.12. Again the solid lines
indicate edges in the complementary graph and dotted lines indicate possible edges in
the complementary graph.

It is now clear that if there are no edges between the vertices i, j and k we find B2 as an
induced subgraph, and if there is only one edge we find A2, as an induced subgraph.

From this corollary we see that if G[N ] is not chordal, or if there are fewer than two
edges among any three vertices in N, it must be true that N is a clique.

We will now show that the proof of Theorem 4.1.2 (i) =⇒ (ii) may be split into two
disjoint cases, but first we need to introduce the notion of a matching and prove some
results regarding this notion.

Definition 4.2.5 (Matching). Let G = (V,E) be a graph. A subset F ⊆ E is called a
matching in G if no two edges of F have a common end-vertex.

We say that F is an induced matching if it is a matching together with any vertices
that are the endpoints of edges in the matching. Now, let ν denote the largest cardinality
of an induced matching in G[N ]. The following proposition gives bounds for ν.

Proposition 4.2.6. [20, p.561] Let ν denote the largest cardinality of an induced match-
ing in G[N ]. Then

1 6 ν 6 3.

Proof. We first observe that ν > 1, since N is not a clique. Now, assume that ν > 4
and let {(ia, ja) : a = 1, 2, 3, 4} be an induced matching in G[N ]. By Proposition 4.2.1 (i)
there exists a vertex s ∈ S such that (s, i1), (s, j1) ∈ E. Then, by Proposition 4.2.3 (i), it
follows that (s, i2), (s, j2), (s, i3), (s, j3), (s, i4), (s, j4) ∈ E, since (i1, i2, j1, j2), (i2, i3, j2, j3)
and (i3, i4, j3, j4) are all induced C4’s in N. We then find A10, as an induced subgraph,
in G on {n, s, i1, i2, i3, i4, j1, j2, j3, j4}, where n ∈ N. Therefore, ν 6 3 and the proof is
complete.

Using the parameter ν we split the rest of the proof into two disjoint cases:

Case I: ν = 1.

Case II: ν ∈ {2, 3}.

For Case I we show that G ∈ G1 ∪ G4, and for Case II that G ∈ Gν , ν ∈ {2, 3}.
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4.3 Case I

We assume here that ν = 1. This easily implies that G[N ] is chordal. Furthermore,
under the assumption that G contains no clique-cutsets, it follows that N can not be a
clique. Therefore, by Corollary 4.1.4, N contains a clique-cutset K. Consequently, we
may partition N as

N = N1 ∪K ∪N2,

with K 6= ∅ a clique and N1, N2 both non-empty sets, such that there are no edges
between N1 and N2.

Our first goal in this section, is to prove the following proposition:

Proposition 4.3.1. Every vertex in S is adjacent to every vertex in N \K0, where K0

is defined as
K0 := {k ∈ K : (i, k) ∈ E for all i ∈ N1 ∪N2}.

We start by defining the following set

S12 := {s ∈ S : s adjacent to a vertex in N1 and a vertex in N2}.

It is not hard to see that S12 6= ∅. Indeed, let i1 ∈ N1 and i2 ∈ N2. Then, by Proposition
4.2.1 (i), there exists a vertex s ∈ S adjacent to i1 and i2, since (i1, i2) /∈ E. Thus, s ∈ S12.
In the next proposition we will see that every vertex in S12 is adjacent to every vertex in
N \K0.

Proposition 4.3.2. [20, p.562] Every vertex in S12 is adjacent to every vertex in N \K0.

Proof. Let s ∈ S12 and let i1 ∈ N1, i2 ∈ N2 be adjacent to s. Then s, by Proposition
4.2.1 (ii), is adjacent to every other vertex in j1 ∈ N1, since {i1, i2} and {j1, i2} are two
intersecting stable sets in N. A similar argument shows that s is adjacent to every vertex
in N2. Now, let k ∈ K \K0, then k must be non-adjacent to some element in N1 ∪ N2.
We may assume, without loss of generality, that k and i1 are non-adjacent. Then {k, i1}
and {i2, i1} are two intersecting stable sets in N, so applying Proposition 4.2.1 (ii) again,
we have that s is adjacent to k. Thus, every vertex in S12 is adjacent to every vertex in
N \K0.

If we can show that S = S12 it immediately follows that every vertex in S is adjacent to
every vertex in N \K0. However, some more work needs to be done before we can show
that this is in fact true. For the sake of brevity we define the following sets:

S1 := {s ∈ S : s is adjacent to a vertex in N1 but not to a vertex in N2},

S2 := {s ∈ S : s is adjacent to a vertex in N2 but not to a vertex in N1},

S0 = S \ (S1 ∪ S2 ∪ S12),

and, for a = 1, 2
Ka := {k ∈ K : (i, k) /∈ E for some i ∈ Na}.
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Thus, S = S0 ∪ S1 ∪ S2 ∪ S12 and K = K0 ∪K1 ∪K2. Setting T := S0 ∪ S1 ∪ S2, we see
that S = S12 is equivalent to T = ∅. Therefore, in what follows we will prove that T = ∅.
For s ∈ T, set

Xs := {x ∈ S12 ∪N : (s, x) ∈ E}.

Note that the set Xs is, in essence, the adjacency set of s, minus possible neighbours in
T, i.e., Xs = Adj(s) \ T.

Lemma 4.3.3. [20, Claim 14] Let s, t ∈ T. Then

(i) Xs is a clique.

(ii) Xs ∪Xt is a clique for every (s, t) ∈ E.

Proof. (i) Assume that Xs is not a clique, for some s ∈ T. Then there are two non-
adjacent vertices x, y ∈ Xs. Thus, x, y ∈ S12 ∪ N and s is adjacent to x and y. Let
i1 ∈ N1, i2 ∈ N2 and n ∈ N. Note that the following combinations are impossible:

� x ∈ S12, y ∈ N \K0 : Since every vertex in S12 is adjacent to every vertex in N \K0

(Proposition 4.3.2).

� x, y ∈ K : Since K is a clique.

� x ∈ N1 ∪N2, y ∈ K0 : Follows from the definition of K0.

� x ∈ N1, y ∈ N2 : Since s ∈ T implies that s is in one of S0, S1, S2 and s is adjacent
to x and y.

� x ∈ K1, y ∈ N1 or x ∈ K2, y ∈ N2 : Assume x ∈ K1, y ∈ N1. The fact that y ∈ N1

implies that s ∈ S1. Then, {x, y} and {i2, y} are two intersecting stable sets, which
implies, by Proposition 4.2.1 (ii), that s is adjacent to i2. However, this contradicts
the fact that s ∈ S1. A similar argument shows that x ∈ K2, y ∈ N2 is impossible.

� x ∈ N1, y ∈ K2 or x ∈ N2, y ∈ K1 : Assume that x ∈ N1, y ∈ K2. Then s ∈ S1 and
we may assume, without loss of generality, that (y, i2) /∈ E. Then, {x, y} and {i2, y}
are two intersecting stable sets, which implies, by Proposition 4.2.1 (ii), that s is
adjacent to i2. However, this contradicts the fact that s ∈ S1. A similar argument
shows that x ∈ K2, y ∈ N2 is impossible.

Thus, the only remaining combinations are:

� x, y ∈ S12 or x ∈ S12, y ∈ K0.

� x, y ∈ N1 or x, y ∈ N2.

We treat each case separately. Assume that x, y ∈ S12 or x ∈ S12, y ∈ K0. In the
table below we list all the possibilities. The first three columns of the table indicate
in which sets s, x and y are and the last column indicates which forbidden induced
subgraph occurs in each case. The relevant vertex set is {n, x, y, s, i1, i2}. In Figure 4.13
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we illustrate the complementary graph, induced by the vertex set {n, s, i, j, k}. The solid
lines indicate edges in the complementary graph and dotted lines indicate possible edges
in the complementary graph.

s x y Induced subgraph
S0 S12 S12 B4

S0 S12 K0 B5

S1 ∪ S2 S12 S12 B5

S1 ∪ S2 S12 K0 A4

i1

i2

s n

x

y

Figure 4.13: The complementary graph on the vertex set {n, s, x, y, i1, i2}.

We may therefore conclude that the combinations x, y ∈ S12 and x ∈ S12, y ∈ K0 are
impossible.

Assume that x, y ∈ N1 or x, y ∈ N2. The two cases are symmetric, therefore, there
is no loss of generality in assuming that x, y ∈ N1. Consequently, s ∈ S1. Furthermore,
{x, y, i2} is a stable set in N. Thus, by Proposition 4.2.1 (i), there exists a unique vertex
s1 ∈ S adjacent to x, y and i2. There now arises four distinct cases, depending on whether
s is adjacent to i2 and s1, or not. We list these four possibilities in the table below. The
first two columns of the table indicate whether s and is adjacent to i2 and s1, or not,
and the last column indicates which forbidden induced subgraph occurs. Note that the
relevant vertex set is {n, s1, s, i2, x, y}. The graph in Figure 4.14 gives the form of the
complementary graph on the vertex set {n, s1, s, i2, x, y}.

(s, i2) (s, s1) Induced subgraph
X X A2

X B2

X B5

B4

n

s1

s i2

x

y

Figure 4.14: The complementary graph on the vertex set {n, s1, s, i2, x, y}.
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We may therefore conclude that the combinations x, y ∈ N1 or x, y ∈ N2 are impossible.

Now, since we have exhausted all the possibilities, we may conclude that Xs is a clique
for every s ∈ T.

(ii) Assume that Xs ∪ Xt is not a clique, for some (s, t) ∈ E, s, t ∈ T. Then there are
two non-adjacent vertices x, y ∈ Xs∪Xt. We show that this leads to a contradiction. Let
n ∈ N, i1 ∈ N1 and i2 ∈ N2.

By (i) of the current lemma Xs is a clique for every s ∈ T. Therefore, we necessarily
have that x ∈ Xs \Xt and y ∈ Xt \Xs. Thus, x, y ∈ S12∪N with s adjacent to x, but not
y, and t adjacent to y, but not x. We immediately have that x, y ∈ N is impossible, else
(n, x, s, t, y) is an induced cycle of length 5. The only remaining possibility is x ∈ S12,
y ∈ S12 ∪K0. In these cases we have that x and y are adjacent to both i1 and i2.

Now, s, t ∈ S0 ∪ S1 or s, t ∈ S0 ∪ S2. Indeed, assume that s ∈ S1 and t ∈ S2. Then
(n, i1, s, t, i2) is an induced C5, a contradiction. We may therefore assume, without loss
of generality, that s, t ∈ S0 ∪ S1.

Thus, assume that x ∈ S12, y ∈ S12 ∪ K0 and s, t ∈ S0 ∪ S1. Then (i2, x, s, t, y) is an
induced C5. Consequently, x ∈ S12, y ∈ S12 ∪K0 is impossible.

We have again exhausted all possibilities and may thus conclude that Xs∪Xt is a clique
for every (s, t) ∈ E, s, t ∈ T.

Assume that T 6= 0. Let A denote a maximal subset of T such that

� G[A] is connected;

� X(A) =
⋃
a∈AXa is a clique.

Lemma 4.3.4. [20, Claim 15] There are no edges between the sets A and T \ A.

Proof. The proof is by contradiction. Assume that a ∈ A and b ∈ T \ A are adjacent.
The maximality of A implies that X(A) ∪ Xb is not a clique. Indeed, G[A ∪ {b}] is
connected, since (a, b) ∈ E. Thus, if X(A) ∪ Xb is a clique, A is not maximal. Hence,
there exist two non-adjacent vertices x ∈ X(A) and y ∈ Xb. Let n ∈ N, i1 ∈ N1 and
i2 ∈ N2.

Now, since x ∈ X(A) there exists a vertex a0 ∈ A, such that (x, a0) ∈ E. Then a0 6= a.
Indeed, if a0 = a, we have that Xa0 ∪Xb is a clique, by Lemma 4.3.3 (ii), which implies
that (x, y) ∈ E, a contradiction. A similar argument, and application of Lemma 4.3.3 (i)
and (ii), shows that (a, y), (a0, b), (a0, y), (x, b) /∈ E.

Observe that there exists no path from S1 to S2, with all internal vertices in S0. Indeed,
assume that s1 ∈ S1, s2 ∈ S2 and that [s1, u1, . . . , up, s2], p > 0, is a path with ui ∈ S0,
for i = 1, . . . , p. Without loss of generality, assume that (i1, s1), (i2, s2) ∈ E. Then,
(n, i1, s1, u1, . . . , up, s2, i2) is an induced cycle of length greater than or equal to 5, a
contradiction. This implies that any induced path contained in T, is necessarily contained
in either S0 ∪ S1 or S0 ∪ S2. We will use this fact in what follows.

The fact that G[A] is connected, implies there exists a shortest path [a0, a1, . . . , ap, a],
p > 0, from a0 to a. Then, P = [x, a0, a1, . . . , ap, a, b, y] is an induced path of length
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greater than 3, from x to y, with internal vertices in T. By the preceding paragraph we
may assume, without loss of generality, that the internal vertices of P are contained in
S0 ∪ S1.

We now have two cases: either x, y ∈ N or x ∈ S12, y ∈ S12 ∪K0. (Note that x, y ∈ K0

is impossible, since K0 is a clique.) However, both of these cases lead to contradictions.
Indeed, if x, y ∈ N, then (n, x, a0, a1, . . . , ap, a, b, y) is an induced Cn, n > 6; if x ∈ S12,
y ∈ S12 ∪K0, then (i2, x, a0, a1, . . . , ap, a, b, y) is an induced Cn, n > 6.

Thus, we may conclude that there exist no edges between the sets A and T \ A.

Proof of Proposition 4.3.1. We prove that the set T is empty. Indeed, if T 6= ∅ implies
that A 6= ∅. Moreover, there are no edges between A and the sets T \A, (S12∪N)\X(A)
and N. Hence, if we delete the clique X(A), the graph G is disconnected, which shows
that X(A) is a clique-cutset, contradicting our assumption that G contains no clique-
cutsets. Consequently, T = ∅, which implies that S = S12. In other words, every vertex
in S is adjacent to every vertex in N \K0.

We are now ready to show that G ∈ G1 ∪ G4. We do this in the form of several proposi-
tions.

Proposition 4.3.5. [20, Corollary 16] If |Na| = 1 and Ka = ∅, for a = 1, 2, then G ∈ G1.

Proof. Assume that |Na| = 1, for a = 1, 2. Then N1 = {i1} and N2 = {i2}. Moreover,
K = K0, since K1 = K2 = ∅. Thus, i1 and i2 are adjacent to all the vertices in S∪K∪N.
All that remains is to show that G[S ∪K ∪N ] is chordal.

We prove this by contradiction. By our assumption G, and hence G[S ∪K ∪N ], does
not contain a cycle of length greater than or equal to 5. Thus, assume that G[S ∪K ∪N ]
contains a C4, as an induced subgraph. Note that G[K ∪ N ] is chordal, since K is a
clique, every vertex in K is adjacent to every vertex in N and G[N ] is chordal (Corollary
4.2.2). Hence a possible C4 is necessarily in G[S ∪ K], with at least two vertices in S,
since K is a clique. We now have three possibilities:

(a) (i, j, s, t) is an induced C4, with i, j ∈ K and s, t ∈ S.

(b) (i, r, s, t) is an induced C4, with i ∈ K and r, s, t ∈ S.

(c) (r, s, t, u) is an induced C4, with r, s, t, u ∈ S.

The complementary graphs of all three possibilities can be seen in Figure 4.15.

(a) (b) (c)

i s n t j

i1 i2

r

t

n s i

i1 i2 r

t
n

s

u

i1

i2

Figure 4.15: The complementary graphs of the three possibilities (a)− (c)
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It is now easy to see that the forbidden induced subgraphs which occur are: (a) A5; (b)
B6; and (c) B3. We may therefore conclude that G[S ∪K ∪N ] is chordal. Consequently,
G ∈ G1.

Henceforth, we assume that |N1 ∪K1| > 2 or |N2 ∪K2| > 2. Note that the two cases
are symmetric. Thus, there is no loss of generality if we assume that |N1 ∪K1| > 2.

Lemma 4.3.6. [20, p.564] If |N1∪K1| > 2, we have that N and S are cliques. Moreover,
every vertex in S is adjacent to every vertex in N.

Proof. Since |N1 ∪K1| > 2 we either have that i1, j1 ∈ N1 or i1 ∈ N1, k ∈ K1. For the
case i1 ∈ N1, k ∈ K1 we may assume, without loss of generality, that (i1, k) /∈ E. Let
n ∈ N and i2 ∈ N2.

Now, N is a clique. Indeed, observe that in both cases there is, at most, one edge among
the two vertices and the vertex i2. We may therefore conclude, by Corollary 4.2.4, that
N is a clique.

Next, we show that S is a clique. We prove this by contradiction. Assume that S is not
a clique, then there exist two non-adjacent vertices s, t ∈ S. Now, if i1, j1 ∈ N1 there are
two possibilities, depending on whether i1 and j1 are adjacent. The graph in Figure 4.16
is the complementary graph induced by the vertex set {n, s, t, i2, i1, j1}. The solid lines
indicate edges in the complementary graph and dotted lines indicate possible edges in
the complementary graph. It is therefore clear that we find A2, as an induced subgraph,
if i1 and j1 are adjacent, and B2, as an induced subgraph, if i1 and j1 are not adjacent.
A similar argument holds for i1 ∈ N1, k ∈ K1. Thus, S is a clique.

n

s

t i2

i1

j1

Figure 4.16: The complementary graph on the vertex set {n, s, t, i2, i1, j1}

Finally, we show that every vertex in S is adjacent to every vertex in N. We again
prove this by contradiction. Assume that s ∈ S is not adjacent to some vertex h ∈ N.
Now, by Proposition 4.3.2, s is adjacent to every vertex in N \ K0. Thus, h ∈ K0.
Moreover, h is adjacent to some vertex t ∈ S, by the definition of N. Note that s and
t are adjacent, since S is a clique. Assume that i1, j1 ∈ N1. Note that h is adjacent to
i1, j1 and i2. Consequently, there are two possibilities, depending on whether i1 and j1 are
adjacent. The graph in Figure 4.17 is the complementary graph induced by the vertex set
{n, s, t, h, i2, i1, j1}. Clearly we find A6, as an induced subgraph, if i1 and j1 are adjacent,
and A2, as an induced subgraph, if i1 and j1 are not adjacent. A similar argument holds
for i1 ∈ N1, k ∈ K1. Therefore, every vertex in S is adjacent to every vertex in N.

Proposition 4.3.7. [20, Corollary 18] If |S| = |N | = 1, then G ∈ G1.
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t

n

s

h

i2

i1 j1

Figure 4.17: The complementary graph on the vertex set {n, s, t, h, i2, i1, j1}

Proof. If |S| = |N | = 1, we have that S = {s} and N = {n}. Recall that |N1 ∪K1| > 2.
Thus, by Lemma 4.3.6, s and n are adjacent to every vertex in N. Moreover, G[N ] is
chordal. Therefore, G ∈ G1.

In what follows we assume that |S ∪N | > 3.

Lemma 4.3.8. [20, p.564] If |N1 ∪K1| > 2 and |S ∪N | > 3, then

(i) G[N ] does not contain an induced path of length 3;

(ii) N does not contain a stable set of cardinality greater than or equal to 3. That is,
α(G[N ]) = 2, where α(H) denotes the stability number of the graph H.

Proof. By Lemma 4.3.6, N and S are cliques and every vertex in S is adjacent to every
vertex in N. Now, since |S ∪ N | > 3, we either have that s1, s2 ∈ S, n ∈ N or s ∈ S,
n1, n2 ∈ N.

(i) Our proof is by contradiction. Assume that G[N ] contains a path [i, j, k, l] of length
3. Now, if s1, s2 ∈ S, n ∈ N, we find A6, as an induced subgraph, on the vertex set
{n, s1, s2, i, j, h, k}. This can be seen in Figure 4.18 where the graph is the complementary
graph on the vertex set {n, s1, s2, i, j, h, k}. A similar argument holds for s ∈ S, n1, n2 ∈
N. Thus, G[N ] does not contain an induced path of length 3.

(ii) Note that α(G[N ]) > 2, since N is not a clique. We again prove the result by
contradiction. Assume that {i, j, k} is a stable set in N. Now, if s1, s2 ∈ S, n ∈ N, we find
A2, as an induced subgraph, on the vertex set {n, s1, s2, i, j, k}. This is depicted in Figure
4.19 where the graph is the complementary graph on the vertex set {n, s1, s2, i, j, k}. A
similar argument holds for s ∈ S, n1, n2 ∈ N.

Lemma 4.3.9. [20, Lemma 12] If H = (VH , EH) is a chordal graph, containing no
induced path of length 3 and with α(H) = 2, its vertex set VH may be partitioned as
follows:

VH = V0 ∪ V1 ∪ V2,
where V0 ∪ V1 and V0 ∪ V2 are cliques and there are no edges between the sets V1 and V2.
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Figure 4.18: The complementary graph on the vertex set {n, s1, s2, i, j, h, k}
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Figure 4.19: The complementary graph on the vertex set {n, s1, s2, i, j, k}.

Proof. Note that α(H) = 2 implies that H is not a clique. Thus, by Corollary 4.1.4, H
contains a clique-cutset K. Consequently, the vertex set VH may be partitioned as

VH = N1 ∪K ∪N2,

where N1, N2 are both non-empty sets, such that there are no edges between N1 and N2.
Moreover, N1 and N2 are both cliques. Indeed, assume that there exist two non-adjacent
vertices i1, j1 ∈ N1 and let i2 ∈ N2. Then {i1, j1, i2} is a stable set of cardinality 3,
contradicting α(H) = 2.

Recall that Ka, for a = 1, 2, is defined as

Ka := {k ∈ K : (i, k) /∈ E for some i ∈ Na}.

and
K0 := {k ∈ K : (i, k) ∈ E for all i ∈ N1 ∪N2}.

Thus, K = K0∪K1∪K2. Moreover, K2∪N1 and K1∪N2 are cliques. Indeed, assume that
K1∪N2 is not a clique. Then, there exist two non-adjacent vertices i2 ∈ N2, k ∈ K1. Take
i1 ∈ N1 non-adjacent to k1, then, {i1, i2, k} is a stable set of cardinality 3, contradicting
α(H) = 2.

Now, assume that K1 is non-empty. Let k ∈ K1, then there exists a vertex i1 ∈ N1

such that (i1, k) /∈ E. Consequently, k is not adjacent to any other vertex in N1. Indeed,
assume that j1 ∈ N1 is adjacent to k and let i2 ∈ N2. Then, [i1, j1, k, i2] is an induced
path of length 3, since N1 and K1∪N2 are cliques. We may therefore conclude that there
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are no edges between the sets K1 and N1. Moreover, we have that K2 = ∅. To see this,
assume that k2 ∈ K2 exists and let i1 ∈ N1, i2 ∈ N2 and k1 ∈ K1. Then, [i1, k2, k1, i2] is
an induced path of length 2, since K2 ∪N1, K1 ∪N2 and K are cliques.

Thus, we may partition the vertex set VH as follows:

VH = N1 ∪K0 ∪ (K1 ∪N2),

where the sets N1 ∪K0 and K0 ∪ (K1 ∪ N2) are cliques and there are no edges between
the sets N1 and K1 ∪ N2. Thus, setting V0 = K0, V1 = N1 and V2 = K1 ∪ N2 completes
the proof.

Proposition 4.3.10. [20, p.565] If |N1 ∪K1| > 2 and |S ∪N | > 3, then G ∈ G4.

Proof. By Lemma 4.3.6, N and S are cliques and every vertex in S is adjacent to every
vertex in N. Furthermore |S ∪ N | > 3 implies, by Lemma 4.3.8, that G[N ] does not
contain an induced path of length 3 and α(G[N ]) = 2. Now, since G[N ] is chordal, it
follows, by Lemma 4.3.9, that N may be partitioned as

N = N1 ∪K0 ∪ (K1 ∪N2),

where N1 ∪K0 and K0 ∪ (K1 ∪ N2) are cliques and there are no edges between the sets
N1 and K1 ∪N2.

In summary we have the following:

� N, S, K0, N1 ∪K0 and K0 ∪ (K1 ∪N2) are all cliques.

� Every vertex in the set K0 is adjacent to every vertex in the sets N, S, N1 ∪ K0

and K0 ∪ (K1 ∪N2).

� Every vertex in the sets N and S is adjacent to every vertex in the sets N1 ∪ K0

and K0 ∪ (K1 ∪N2).

� There are no edges between the sets N and S.

� There are no edges between the sets N1 ∪K0 and K0 ∪ (K1 ∪N2).

We may therefore conclude that G ∈ G4.

This completes the proof for Case I.

4.4 Case II

We assume here that ν ∈ {2, 3}. Thus G[N ] is non-chordal, since the existence of an
induced matching of cardinality 2 in G[N ] implies the existence of an induced C4 in
G[N ]. We may therefore conclude that N is a clique, by Corollary 4.2.4.
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Let {(ia, ja) : a = 1, . . . , ν} be an induced matching of maximum cardinality in G[N ].
Now, by Proposition 4.2.3 (ii), we have that every vertex in N is non-adjacent to, at
most, one of the ia’s or ja’s. Consequently, it makes sense to define the following pairwise
disjoint sets:

Ia := {i ∈ N : i 6= ja, (i, ja) /∈ E}, Ja := {j ∈ N : j 6= ia, (j, ia) /∈ E}

for a = 1, . . . , ν. Thus, ia ∈ Ia and ja ∈ Ja for a 6 ν. Set

I :=
ν⋃
a=1

Ia ∪ Ja, N0 := N \ I.

Lemma 4.4.1. [20, p.567] Every vertex in N0 is adjacent to every vertex in I.

Proof. We start by noting x ∈ N0 implies that x is adjacent to ia, ja, ib and jb, else
x ∈ I.

Now, the proof is by contradiction. Assume that x ∈ N0 and y ∈ I is non-adjacent and
let n ∈ N. We may assume, without loss of generality, that y ∈ Ia and y 6= ia. We now
have that y is adjacent to ia, ib and jb, by Proposition 4.2.3 (ii) . Next, by Proposition
4.2.1 (i) there exists a vertex s ∈ S adjacent to ia and ja. Then, by Proposition 4.2.3 (i),
s is adjacent to ib, jb, x and y, since (jb, ia, ib, ja) and (x, ib, y, jb) are both induced C4’s in
G[N ]. Thus, we find A7, as an induced subgraph, on the vertex set {ia, ja, ib, jb, x, y, s, n}
(see Figure 4.20).

ia

ja

y

x

n

s

ib

jb

Figure 4.20: The complementary graph on the vertex set {ia, ja, ib, jb, x, y, s, n}

Therefore, every vertex in N0 is adjacent to every vertex in I.

Proposition 4.4.2. [20, p.567] The sets N0, Ia and Ja, a = 1, . . . , ν, are pairwise disjoint
cliques with the following properties:

(i) Every vertex in Ia ∪ Ja is adjacent to every vertex in Ib ∪ Jb, for a, b ∈ {1, . . . , ν},
a 6= b. Moreover, if x ∈ Ia ∪ Ja and y ∈ Ib ∪ Jb are adjacent, either x ∈ {ia, ja} or
y ∈ {ib, jb}.
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(ii) There are no edges between the sets Ia and Ja, for a = 1, . . . , ν.

Proof. From the preceding lemma it is not hard to see that N0 is a clique. Indeed,
assume that this is not the case. Then there exist two non-adjacent vertices n1, n2 ∈ N0.
Thus, we find an induced matching in G[N ] on the vertices n1 and n2. However, we then
have an induced matching of cardinality ν+1 in G[N ], since every vertex in N0 is adjacent
to every vertex in I, by Lemma 4.4.1. Therefore, N0 is a clique.

We now show that Ia and Ja, a = l, . . . , ν, are cliques. We prove this by contradiction.
Assume that Ia is not a clique. Then there exist two non-adjacent vertices x, y ∈ Ia.
Furthermore, x and y are both non-adjacent to ja. Thus, by Proposition 4.2.3 (ii), x
and y are both adjacent to ib, and jb. By Proposition 4.2.1 (i) there exists a vertex s
adjacent to ia and ja. Therefore, by Proposition 4.2.3 (i) s is adjacent to ib, jb, x and y,
since (jb, ia, ib, ja) and (x, ia, y, ja) are both induced C4’s in G[N ]. Thus, we find A3, as
an induced subgraph, on the vertex set {ja, ib, jb, x, y, s, n} (see Figure 4.21). A similar
argument holds for Ja.

x

ja y

ib

jb

n

s

Figure 4.21: The complementary graph on the vertex set {ja, ib, jb, x, y, s, n}

Therefore, Ia and Ja, a = l, . . . , ν, are cliques.

(i) We need to show that the following holds:

� every vertex in Ia is adjacent to every vertex in Ib;

� every vertex in Ja is adjacent to every vertex in Jb;

� every vertex in Ia is adjacent to every vertex in Jb;

� every vertex in Ib is adjacent to every vertex in Ja.

However, it suffices to prove one of the above, since all four cases are symmetric.

Our proof is by contradiction. Assume that x ∈ Ia and y ∈ Ib are non-adjacent. Thus,
(x, ja), (y, jb) /∈ E. Note that the case x = ia, y = ib is impossible, by the definition of
an induced matching. Also, the cases x = ia, y 6= ib and x 6= ia, y = ib are impossible,
by Proposition 4.2.3 (ii) . Furthermore, if x 6= ia and y 6= ib we find A4, as an induced
subgraph, on the vertex set {ia, ja, ib, jb, x, y} (see Figure 4.22). Thus, x and y must be
adjacent.

Consequently, every vertex in Ia ∪ Ja is adjacent to every vertex in Ib ∪ Jb.

Now, let n ∈ N and assume that x ∈ Ia ∪ Ja and y ∈ Ib ∪ Jb are adjacent, such that
x /∈ {ia, ja} and y /∈ {ib, jb}. We may assume, without loss of generality, that x ∈ Ia and
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jbia ja ibx y

Figure 4.22: The complementary graph on the vertex set {ia, ja, ib, jb, x, y}

y ∈ Ib. Thus, (x, ja), (y, jb) /∈ E. By Proposition 4.2.1 (i), there exists a s ∈ S adjacent
to ia and ja. Therefore, by Proposition 4.2.3 (i), s is adjacent to ib and jb. We now have
several possibilities, which we list in the table below. A check mark indicates whether the
edge is in the graph. We also provide the relevant vertex set and indicate which forbidden
induced subgraph occurs in each case. In Figure 4.23 we illustrate the complementary
graph, induced by the vertex set {n, s, ia, ja, ib, jb, x, y}. The solid lines indicate edges in
the complementary graph and dotted lines indicate possible edges in the complementary
graph.

(s, x) (s, y) Vertex set Induced subgraph
X X {n, s, ia, ja, ib, jb, x, y} A8

X {s, ia, ja, ib, jb, x, y} A6

X {s, ia, ja, ib, jb, x, y} A6

{s, ja, ib, jb, x, y} A4

x

ja

y

ib

jb

s

n

ia

Figure 4.23: The complementary graph on the vertex set {n, s, ia, ja, ib, jb, x, y}

We may therefore conclude that, if x ∈ Ia ∪ Ja and y ∈ Ib ∪ Jb are adjacent, either
x ∈ {ia, ja} or y ∈ {ib, jb}.

(ii) If x = ia or y = ja, the result is immediate. Thus, assume that x 6= ia and y 6= ja.
Our proof is by contradiction. Assume that x and y are adjacent and let n ∈ N. Note
that (x, ja), (y, ia) /∈ E. Consequently, x is adjacent to ia, ib, jb and y is adjacent to ja,
ib, jb, by Proposition 4.2.3 (ii) . Next, by Proposition 4.2.1 (i), there exists a vertex s ∈ S
adjacent to ia and ja. Therefore, by Proposition 4.2.3 (i), s is adjacent to ib and jb, since
(ia, jb, ja, ib) is an induced C4 in G[N ]. Furthermore, s is adjacent to x and y. Indeed, if
this were not the case, we either have that s is adjacent to neither of x, y or s is adjacent
to only one of x, y. In the first case, (s, ja, y, x, ia) is an induced C5, a contradiction;
and in the second case, we may assume, without loss of generality, that s and x are not
adjacent. Then we find A5, as an induced subgraph, on the vertex set {s, ia, ja, ib, jb, x, y}
(see Figure 4.24).
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Figure 4.24: The complementary graph on the vertex set {s, ia, ja, ib, jb, x, y}

Now, we find A7, as an induced subgraph, on the vertex set {n, s, ia, ja, ib, jb, x, y} (see
Figure 4.25).

x

ja

ia

y

n

s

ib

jb

Figure 4.25: The complementary graph on the vertex set {n, s, ia, ja, ib, jb, x, y}

Therefore, x and y are not adjacent.

It now follows that the set N has the form shown in Figure 4.26, for ν ∈ {2, 3}.

Thus, the structure of N is well-understood. Also, the structure of N and its interaction
with the sets N and S is clear. Our next objective is to understand the structure of S
and its interaction with the set N. To that end, we define the set SI as

SI := {s ∈ S : s is adjacent to all the vertices of I}

and set T := S \ SI .

Proposition 4.4.3. [20, p.567] The set SI is non-empty and the following holds:
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Figure 4.26: The form of the set N for ν ∈ {2, 3}

(i) SI is a clique.

(ii) A vertex s ∈ S belongs to SI if and only if s is adjacent to ia and ja for some
a = 1, . . . , ν.

(iii) If s ∈ T and x, y ∈ Ia ∪ Ja are non-adjacent, then s is adjacent to, at most, one of
x and y.

Proof. By Proposition 4.2.1 (i) there exists a vertex s adjacent to ia and ja. Then, by
Proposition 4.2.3 (i) s is adjacent to ib and jb. Now, assume that x ∈ I, such that x
is not equal to ia or ja, for a = 1, . . . , ν. Since x ∈ I it follows that x is non-adjacent
to, at least, one of the verticesia, ja, ib and jb. Moreover, by Proposition 4.2.3 (ii), x is
adjacent to at least three of the vertices ia, ja, ib and jb. Consequently, x is non-adjacent
to exactly one of these vertices. We may therefore assume, without loss of generality, that
x is non-adjacent to ia, then (ib, x, jb, ja) is an induced C4 in G[N ]. Thus, s is adjacent to
x, by Proposition 4.2.3 (i) . Therefore, s is adjacent to all the vertices in I, which shows
that s ∈ SI ; so, SI is non-empty.

(i) We prove this by contradiction. Assume that SI is not a clique and let n ∈ N. Then
there exist two non-adjacent vertices s, t ∈ SI . We then find A3, as an induced subgraph,
on the vertex set {n, s, t, ia, ja, ib, jb} (see Figure 4.27).

Thus, SI is a clique.

(ii) If s ∈ SI it follows that s is adjacent to every vertex in I. Conversely, assume that
s ∈ S is adjacent to ia and ja, for some a = 1, . . . , ν. A similar argument as the one used
to show that SI 6= ∅ proves that s is adjacent to all the vertices of I; thus, s ∈ SI .

(iii) Assume that s ∈ T and x, y ∈ Ia ∪ Ja, such that x and y are non-adjacent. The
proof is by contradiction. Assume that s is adjacent to x and y. Then, by Proposition
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Figure 4.27: The complementary graph on the vertex set {n, s, t, ia, ja, ib, jb}

4.2.3 (i), s is adjacent to ib and jb, since (ib, x, jb, y) is an induced C4 in G[N ]. By the
same proposition s is adjacent to ia and ja, since (ib, ia, jb, ja) is an induced C4 in G[N ].
Continuing in this fashion, we have that s is adjacent to all the vertices of I; thus s ∈ SI .
However, this contradicts our choice of s ∈ T = S \ SI . Therefore, s is adjacent to, at
most, one of x and y.

Similar to Case I, we wish to show that T = ∅, which is equivalent to S = SI . We start
by defining, for s ∈ T, the set

Ys := {x ∈ SI ∪N : (s, x) ∈ E}.

Lemma 4.4.4. [20, Claim 28] Let s, t ∈ T. Then

(i) Ys is a clique.

(ii) Ys ∪ Yt is a clique for every (s, t) ∈ E.

Proof. (i) Assume that Ys is not a clique, for some s ∈ T. Then there are two non-
adjacent vertices x, y ∈ Ys. Thus, x, y ∈ SI ∪N and s is adjacent to x and y. Note that
the following combinations are impossible:

� x ∈ N0, y ∈ I : Since every vertex in N0 is adjacent to every vertex in I (Lemma
4.4.1).

� x, y ∈ N0 : Since N0 is a clique (Proposition 4.4.2).

� x ∈ Ia∪Ja and y ∈ Ib∪Jb, for a, b ∈ {1, . . . , ν}, a 6= b : Since every vertex in Ia∪Ja
is adjacent to every vertex in Ib ∪ Jb (Proposition 4.4.2 (i)).

� x ∈ SI and y ∈ I : By the definition of SI .

� x, y ∈ SI : Since SI is a clique (Proposition 4.4.3 (i)).

� x, y ∈ Ia ∪ Ja, for a = 1, . . . ν : Since (x, y) /∈ E implies, by Proposition 4.4.3 (iii),
that s is adjacent to, at most, one of x and y, contradicting the fact that x, y ∈ Ys.

Thus, the only combination that remains, is x ∈ SI and y ∈ N0. Note that x and y are
both adjacent to all the vertices in I. Also, since s ∈ T it is non-adjacent to at least one
of the vertices ia, ja, ib and jb. Thus, assume that s is non-adjacent to ia. Consequently,
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by Proposition 4.4.3 (iii), s can not be adjacent to ib and jb. In the table below we list all
of the possibilities. A check in the appropriate column indicates that the edge is present
in the graph, which implies that it is not an edge in the complementary graph shown in
Figure 4.28. Note that in each case the relevant vertex set is {ia, ia, ib, jb, x, y, s}.

(s, ja) (s, ib) (s, jb) Induced subgraph
X X A5

X X A5

X X A3

X B6

X B6

X B6

B3

x

y

ia ib

jbja

s

Figure 4.28: The complementary graph on the vertex set {ia, ia, ib, jb, x, y, s}.

Now, since we have exhausted all the possibilities, we may conclude that Ys is a clique
for every s ∈ T.

(ii) Assume that Ys ∪ Yt is a not clique, for (s, t) ∈ E, s, t ∈ T and Let n. Then there are
two non-adjacent vertices x, y ∈ Ys ∪ Yt. We show that this leads to a contradiction.

By (i) of the current lemma Ys is a clique for every s ∈ T. Therefore, we necessarily
have that x ∈ Ys \ Yt and y ∈ Yt \ Ys. Thus, x, y ∈ SI ∪N with s adjacent to x, but not
y, and t adjacent to y, but not x. We immediately have that x, y ∈ N is impossible, else
(n, x, s, t, y) is an induced C5.

Hence, x ∈ SI and y ∈ N0. Now, by Proposition 4.4.3 (iii), s and t are adjacent to, at
most, one of ia and ja. In fact, s and t are both adjacent to exactly one of ia and ja.
Indeed, assume that s is not adjacent to ia or ja, then (ja, x, s, t, y) and (ia, x, s, t, y) are
both induced C5’s. A similar argument shows that t must also be adjacent to exactly one
of ia and ja.

Now, assume that (s, ja), (t, ia) ∈ E. Then (t, ja, ia, s, y, x) is an induced C6 in G, which
implies that B1 is an induced subgraph, on the vertex set {ia, ja, x, y, s, t}.

We have again exhausted all possibilities and may thus conclude that Ys ∪Yt is a clique
for every (s, t) ∈ E, s, t ∈ T.

Assume that T 6= ∅. Let A denote a maximal subset of T such that

� G[A] is connected;
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� Y (A) =
⋃
a∈A Ya is a clique.

Lemma 4.4.5. [20, Claim 29] There are no edges between the sets A and T \ A.

Proof. The proof is by contradiction. Assume that a ∈ A and b ∈ T \ A are adjacent.
The maximality of A implies that Y (A) ∪ Yb is not a clique. Indeed, G[A ∪ {b}] is
connected, since (a, b) ∈ E. Thus, if Y (A) ∪ Yb is a clique, A is not maximal. Hence,
there exist two non-adjacent vertices x ∈ Y (A) and y ∈ Yb. Let n ∈ N.

Now, since x ∈ Y (A) there exists a vertex a0 ∈ A, such that (x, a0) ∈ E. Then a0 6= a.
Indeed, if a0 = a, we have that Ya0 ∪ Yb is a clique, by Lemma 4.4.4 (ii), which implies
that (x, y) ∈ E, a contradiction. A similar argument, and application of Lemma 4.4.4 (i)
and (ii), shows that (a, y), (a0, b), (a0, y), (x, b) /∈ E.

The fact that G[A] is connected, implies there exists a shortest path P from a0 to a. We
may therefore conclude that a path from x to y, with internal vertices in T, is of length
at least equal to 3, since (x, a0), (a, b), (b, y) ∈ E and P has length at least 1. Denote
this path from x to y by [x, a1, . . . , ap, y], p > 3, and ai ∈ T, for i = 1, . . . , p.

The case x, y ∈ N is impossible, else (x, a1, . . . , ap, y, n) is an induced Cn, n > 6, a
contradiction. The only possibility that remains, is x ∈ SI and y ∈ N0.

Now, ia is adjacent to one of a1, a2. Indeed, ia is adjacent to some al, else we have that
(ia, x, a1, . . . , ap, y) is an induced cycle Cn, n > 6 in G. Let k > 1 be the smallest index
such that (ia, ak) ∈ E, then (ia, x, a1, . . . , ak) is an induced cycle, which implies that
k 6 2. Similarly, ja is adjacent to one of a1, a2. Hence, we can assume that (ia, a1) ∈ E
and (ja, a2) ∈ E. Then, Proposition 4.4.3 (iii), implies that (ia, a2), (ja, a1) /∈ E. However,
we then have that (ia, a1, . . . , ap, y) is an induced Cn, n > 5.

Thus, we may conclude that there exist no edges between the sets A and T \ A.

Now, T 6= ∅ implies that A 6= ∅. Moreover, there are no edges between A and the
sets T \ A, (SI ∪ N) \ Y (A) and N. Hence, if we delete the clique Y (A), the graph G
is disconnected, which shows that Y (A) is a clique-cutset, contradicting our assumption
that G contains no clique-cutsets. Consequently, T = ∅, which implies that S = SI . In
other words, every vertex in S is adjacent to every vertex in I.

Lemma 4.4.6. Every vertex in S is adjacent to every vertex in N.

Proof. We already know that every vertex in S is adjacent to every vertex in I. Thus,
it suffices to show that every vertex in S is adjacent to every vertex in N0.

The proof is by contradiction. Assume there exist two non-adjacent vertices s ∈ S,
n0 ∈ N0 and let n ∈ N. Then there exists some vertex t ∈ S adjacent to n0, per definition
of N. Note that t is adjacent to s and to every vertex in I. We then find A7, as an induced
subgraph, on the vertex set {n, s, t, n0, ia, ja, ib, jb} (see Figure 4.29).

Thus, every vertex in S is adjacent to every vertex in N0.

Thus, the structure of S and its interaction with N is now clear. Consequently, the
vertex set V has the form depicted in Figure 4.30, for ν ∈ {2, 3}.
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Figure 4.29: The complementary graph on the vertex set {n, s, ia, ja, ib, jb, x, y}
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Figure 4.30: The form of the set N for ν ∈ {2, 3}

We are now ready to show that G ∈ Gν , for ν ∈ {2, 3}.

Proposition 4.4.7. [20, Corollary 30]

(i) If ν = 2, then G ∈ G2.

(ii) If ν = 3, then G ∈ G3.

Proof. (i) Assume that ν = 2. If |S| = |N | = |Ia| = |Ja| = 1, for a = 1, 2, then we are
done (see Figure 4.30).

Now, assume, without loss of generality, that |S ∪ N | > 3. It then follows that |Ia| =
|Ja| = 1, for a = 1, 2. Indeed, assume that |Ia| = 2. It is then clear from Figure 4.30, that
we find A8, as an induced subgraph.

Therefore, G ∈ G2.
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(ii) Assume that ν = 3. Then |S| = |N | = |Ia| = |Ja| = 1, for a = 1, 2. Indeed, assume,
without loss of generality, that |N | = 2. It is then clear from Figure 4.30, that we find
A9, as an induced subgraph.

Therefore, G ∈ G3.

This completes the proof for Case II, and indeed, for Theorem 4.1.2.

4.5 Notes

Although the argumentation followed in this chapter relies on the work done in [20], there
are some significant changes. One of the main changes, which allowed us to organize
the proof in a more optimal way, is the relaxation of the assumption that I and J are
maximal stable sets in Proposition 4.2.1 (ii) . This allowed us to drop all assumptions
made regarding the existence of a stable set of some predetermined cardinality in G[N ].
Consequently, we could combine the two Cases A and B, found in [20], into one case, which
we called Case I. Case II is similar to Case C, found in [20], since the starting assumptions
are the same for both cases. However, we focused on describing the structure of the sets
N, S and N and the interaction between these three sets, as can be seen in Figures 4.26
and 4.30. Consequently, proving that G ∈ Gν , for ν ∈ {2, 3} followed almost immediately.
We also included graphs for all of the results shown here, which allows one to easily follow
the argumentation in each case.
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Chapter 5

The sparsity order of a graph

In this chapter we introduce the notion of the sparsity order of a graph and show that a
graph is chordal if and only if it has sparsity order less than or equal to 1. The sparsity
order of a graph has some interesting properties, as we will see in the first section. If a
graph has sparsity order equal to k and all induced subgraphs have order less than k,
even more can be said about the specific graph. Graphs having this property are called
k-blocks. We will see in the second section that knowledge of the k-blocks contained in
a graph is central in determining the sparsity order of a graph.

5.1 Extremal matrices and the sparsity order of a

graph

Definition 5.1.1 (Extremal matrices). A matrix A ∈ PSDG is called extremal if A =
A1 +A2, where A1, A2 ∈ PSDG implies that Aj = αjA, for some αj > 0, and for j = 1, 2.
Denote by EXTG the set of all extremal matrices in PSDG .

Note that the extremal matrices of PSDG are exactly the matrices which lie on the
extreme rays of PSDG . Furthermore, every element of PSDG can be written in terms of
the extremals of PSDG, as we will see in the next theorem.

Theorem 5.1.2. [1, p.107] Let A ∈ PSDG . Then A can be written as a linear combina-
tion, with positive coefficients, of elements from EXTG .

Proof. We first note that, if A = 0, the result follows immediately, since 0 ∈ EXTG .
Hence, we assume that A 6= 0. To prove this theorem, we will make use of the Krein-
Milman theorem (Theorem A.9).

Observe that K = {Y ∈ PSDG : tr(Y ) = 1} is a compact, convex subset of PSDG .
Therefore, by Krein-Milman, K = conv(ext(K)). Thus, A can be written as a linear
combination, with positive coefficients, of elements from EXTG, since a non-zero X ∈
PSDG is extremal if and only if tr(X)−1X is extremal in K.
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Definition 5.1.3 (Sparsity order of a graph). Let G be a graph. Then, the sparsity
order of G is defined as the maximum rank of an extremal matrix of the cone PSDG . We
will refer to the sparsity order of a graph as its order and denote it by ordF(G), where
F = R or C.

Theorem 5.1.4. [1, Theorem 4.1] Let G be a graph and let H be an induced subgraph of
G. Then

ordF(H) 6 ordF(G).

Proof. Let ordF(H) = k and ordF(G) = k̃. Let A be extremal in PSDH with rank(A) = k.
Define Ã ∈ PSDG as follows:

Ã =

[
A 0
0 0

]
.

Then, Ã is extremal in PSDG . To see this, consider Ã = Ã1 + Ã2, with Ãj ∈ PSDG,
j = 1, 2. Let

Ãj =

[
Aj Bj

B∗j Cj

]
,

where Aj, Cj ∈ PSDG . Then, C1 +C2 = 0 and since Cj, j = 1, 2, is positive semidefinite,
it follows that C1 = C2 = 0. This implies that Bj = 0, for j = 1, 2. Thus, Ãj has the form

Ãj =

[
Aj 0
0 0

]
.

Consequently,

Ã =

[
A 0
0 0

]
=

[
A1 0
0 0

]
+

[
A2 0
0 0

]
.

Since A is extremal, it follows that A = αjAj, for some αj > 0, j = 1, 2. Thus, Ã = αjÃj,
j = 1, 2. Moreover, rank(Ã) = rank(A) = k, since the zero rows and columns of Ã have
no effect on the rank. We may therefore conclude that k = rank(Ã) 6 k̃, since Ã is an
extremal matrix of PSDG and k̃ is the maximum rank of an extremal matrix of PSDG .

The next theorem is a slight variant on a result found in [16] regarding the order of a
clique-sum of graphs.

Theorem 5.1.5. [16, Theorem 3.1] Let G be a graph. If G is the clique-sum of the graphs
G1, . . . , Gp, then

ordF(G) = max
16i6p

(ordF(Gi)).

Proof. Note that since eachGi is an induced subgraph ofG, we have ordF(Gi) 6 ordF(G),
for i = 1, . . . , p, by Theorem 5.1.4. In particular, max16i6p(ordF(Gi)) 6 ordF(G).

We will now show that ordF(G) 6 max16i6p(ordF(Gi)). Without loss of generality we
may assume that there is only one clique-cutset in G (otherwise, use an induction argu-
ment). Let K denote a clique-cutset in G. Then every non-zero element X ∈ PSDG has
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the form

X =


Y1 0 · · · 0 Q1

0 Y2 · · · 0 Q2
...

...
. . .

...
...

0 0 · · · Yp Qp

Q∗1 Q∗2 · · · Q∗p Q

 .
Now, since X is positive semidefinite, it follows that ran(Qi) ⊆ ran(Yi), for i = 1, . . . , p.
Therefore, for some matrix Wi, we have Qi = YiWi. Thus, X can be factorized as follows:

X =


I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0
W ∗

1 W ∗
2 · · · W ∗

p I




Y1 0 · · · 0 0
0 Y2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Yp 0

0 0 · · · 0 Q̃




I 0 · · · 0 W1

0 I · · · 0 W2
...

...
. . .

...
...

0 0 · · · I Wp

0 0 · · · 0 I



=


I
0
...
0
W ∗

1

Y1
[
I 0 · · · 0 W1

]
+


0
I
...
0
W ∗

2

Y2
[
0 I · · · 0 W2

]
+ · · ·+


0
0
...
I
W ∗
p

Yp
[
0 0 · · · I Wp

]
+


0
0
...
0
I

 Q̃
[
0 0 · · · 0 I

]
,

where Q̃ = Q−
∑p

i=1W
∗
i YiWi. Note that Yi ∈ PSDGi

and Q̃ ∈ PSDK , since X is positive
semidefinite. Now, if X is extremal, the Yi’s and Q̃ are all extremal. Moreover, it follows
that Yi, for i = 1, . . . , p, and Q̃ is a linear combination of X. This implies that only one
of the Yi’s or Q̃ is non-zero.

Now, assume that Q̃ is non-zero. Then the rank of Q̃ is equal to 1, since K is a clique
(Theorem 5.2.2). Next we assume, without loss of generality, that Y1 is non-zero. Since[
I 0 · · · 0 W1

]
has full row rank, we may conclude that the rank of X is equal to

the rank of Y1.

Finally, since

rank(X) = rank(Y1) 6 ordF(G1) 6 max
16i6p

(ordF(Gi)),

it follows that ordF(G) 6 max16i6p(ordF(Gi)).

From this theorem it follows that there is no loss of generality if we assume that G has
no clique-cutset.

We now introduce the notion of k-blocks. These are in a sense the minimal graphs of
sparsity order k, since any induced subgraph of a k-block, has sparsity order strictly less
than k.
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Definition 5.1.6 (k-block). Let G be a graph. Then G is called a k-block if ordF(G) = k
and ordF(H) < k for every proper induced subgraph H of G.

Theorem 5.1.7. [1, Theorem 4.2] Let G be a graph. If ordF(G) = k, then G contains,
as an induced subgraph, a k-block. Conversely, if G has an induced subgraph which is a
k-block, then ordF(G) > k.

Proof. To see that the first statement holds let H be the minimal induced subgraph of
G with order k. The second statement is an easy consequence of Theorem 5.1.4.

It is clear from the preceding theorem that the sparsity order of a graph G is equal to

inf{k : G has no induced p-block with p > k}.

In the next proposition we see that all cycles with more than 4 vertices are k-blocks.

Proposition 5.1.8. [1, Theorem 6.5] Let Ck+2 be a cycle on k + 2 vertices, with k > 1,
then Ck+2 is a k-block, in the real and complex case.

5.2 The dimension theorem

We start this section with the following result on the sparsity order of chordal graphs.
This result leads to a list of equivalent conditions under which a graph has sparsity order
less than or equal to 1.

Theorem 5.2.1. Let G = (V,E) be a graph. G is chordal if and only if ordF(G) = 1.

The equivalence of these two statements follows from Proposition 3.2.1 and Theorem
5.1.2 (see also the proof of Proposition 2.2.4).

Theorem 5.2.2. [20, p.552] The following assertions are equivalent for a graph G :

(i) ordF(G) 6 1.

(ii) G does not contain, as an induced subgraph, a cycle Cn, n > 4, i.e. G is chordal.

(iii) G can be decomposed as a clique-sum of cliques.

Proof. (i) =⇒ (ii) An immediate consequence of Theorem 5.2.1.

(ii) =⇒ (iii) If G contains no cycles of length greater than or equal to 4 it is chordal.
Furthermore, by Corollary 4.1.4, a chordal graph is the clique-sum of cliques.

(iii) =⇒ (i) Follows from Theorem 5.1.5 and the fact that cliques are also chordal graphs
and therefore have sparsity order 1, by Theorem 5.2.1.

68



Our goal for the remainder of this chapter is to generalize this result to graphs of sparsity
order less than or equal to 2.

Recall that a subset F ⊆ PSDG is called a face of PSDG if X = Y + Z with X ∈ F ,
Y, Z ∈ PSDG implies that Y, Z ∈ F . The extreme rays of PSDG are its faces of dimension
1, where the dimension of F is defined as the dimension of its span,

dim(F) := dim(span(F)).

Since a face F is a cone itself, we have span(F) = F − F .

Proposition 2.2.3 gives a characterization of the facial structure of the smallest face of
PSDn containing some element X ∈ PSDn . In this case the underlying graph is Kn, the
complete graph on n vertices. In the next proposition we extend this result to arbitrary
graphs G. We omit the proof of this result, since it is similar to the proof of Proposition
2.2.3, where the underlying graph is now arbitrary.

Proposition 5.2.3. [3, Lemma 4] Let X ∈ PSDG . Then

FPSDG
(X) = {Y ∈ PSDG : ker(X) ⊆ ker(Y )}.

We will now define what is meant by a perturbation of X and show that the set of
perturbations of X is equal to the span of its smallest face, FPSDG

(X).

Definition 5.2.4 (Perturbation of X). Let X ∈ PSDG . Then, B ∈ HG is called a
perturbation of X if X ± λB ∈ PSDG, for some λ > 0. Denote the set of perturbations
of X by Pert(X).

Lemma 5.2.5. Let X ∈ PSDG . Then,

Pert(X) = span(FPSDG
(X)).

Proof. We will prove that the two inclusions (i) Pert(X) ⊆ span(FPSDG
(X)) and (ii)

span(FPSDG
(X)) ⊆ Pert(X) hold.

(i) Let B ∈ Pert(X), then X ± λB ∈ PSDG, for some λ > 0. Now,

X =
X + λB

2
+
X − λB

2
,

which implies that X±λB
2
∈ FPSDG

(X), since X ∈ FPSDG
(X) and FPSDG

(X) is a face.
Next,

λB =
X + λB

2
− X − λB

2
,

which implies that λB ∈ span(FPSDG
(X)). Therefore, B ∈ span(FPSDG

(X)), which proves
the first inclusion.

(ii) Let Y ∈ span(FPSDG
(X)), then Y = Y1 − Y2 for Y1, Y2 ∈ FPSDG

(X). Since ker(X) ⊆
ker(Yi), for i = 1, 2, it follows that ker(X) ⊆ ker(Y ).

If h ∈ ker(Y ), we have that

〈(X ± λY )h, h〉 = 〈Xh, h〉 > 0 for any λ > 0.
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Now, let h ∈ ran(Y ) = (ker(Y ))⊥, then h ∈ ran(X) = (ker(X))⊥. It is immediate that
〈(X + λY )h, h〉 > 0, since X, Y ∈ PSDG and λ > 0. To show that 〈(X − λY )h, h〉 > 0,
we first need to define

X̃ := P(ker(Y ))⊥X,

the projection of X onto (ker(Y ))⊥. Then, X̃ is invertible, which implies that 0 is not in
its spectrum. Thus, there exists a δ > 0, such that

〈X̃h, h〉 > δ〈h, h〉.

Therefore, for λ = δ/‖Y ‖ > 0, we have that

〈(X − λY )h, h〉 = 〈Xh, h〉 − λ〈Y h, h〉
= 〈X̃h, h〉 − λ〈Y h, h〉
> δ‖h‖2 − λ‖Y ‖‖h‖2

= δ‖h‖2 − δ‖h‖2

= 0,

where the first inequality follows from the fact that 〈h, h〉 = ‖h‖2 and the Cauchy-
Schwartz inequality.

Thus, 〈(X ± λY )h, h〉 > 0 for all h, which implies that Y ∈ Pert(X), and proves the
second inclusion.

We now apply the notion of Gram matrices (see Section 1.2) to study the extremals in
PSDG . To that end, let G = (V,E) be a graph with V = {1, . . . , n}. Recall that a matrix
is positive semidefinite if and only if it is the Gram matrix of some set of vectors (see
Corollary 1.2.13). So the n × n positive semidefinite matrix X is the Gram matrix of a
set of vectors, which we will denote by {u1, . . . , un}. It is clear that X ∈ PSDG if and
only if the vectors u1, . . . , un satisfy

〈uj, ui〉 = 0 for all (i, j) /∈ E.

We will call a set of vectors which satisfies this condition an orthogonal representation
of G. Let G = (V,E) be the complement of G. For a given subset A ⊆ E ∪E, define the
following subspace of Mn(F) :

UA = span{uiu∗j : (i, j) ∈ A}

UA is easily seen to be closed, since it is a finite dimensional subspace.

If X ∈ PSDG, then all the matrices in UE are orthogonal to the identity matrix. Indeed,
for U = uiu

∗
j , (i, j) ∈ E, we have

〈U, I〉 = tr(UI) = tr(uiu
∗
j) = tr(u∗jui) = u∗jui = 〈ui, uj〉 = 0.

Also, it is obvious that U ∈ UE implies that U∗ ∈ UE.

In the next lemma we show that the perturbations of X can always be written in terms
of the Gram representation of X and some Hermitian matrix, which respects the structure
imposed by G.
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Lemma 5.2.6. [8, Theorem 31.5.3] Let X ∈ PSDG with rank k and Gram representation
(u1, . . . , un) in Fk. Let U denote the k×n matrix whose columns are the vectors u1, . . . , un.
Then, B is a perturbation of X if and only if B = U∗RU for some k×k Hermitian matrix
R satisfying

〈R, uiu∗j〉 = 〈R, uju∗i 〉 = 0 for all (i, j) ∈ E.
Thus,

Pert(X) = {U∗RU : R ∈ Hk, 〈R, uiu∗j〉 = 〈R, uju∗i 〉 = 0 for all (i, j) ∈ E}.

Proof. Assume that B is a perturbation of X. Then, X ± λB ∈ PSDG, and bij = 0 for
all (i, j) ∈ E. Define the n× n matrix V as follows:

V =


U
x∗1
...

x∗n−k

 ,
where xi ∈ Fn, for i = 1, . . . n−k such that all the columns of V are linearly independent.
Consequently, V is non-singular. Now, set Q = (V −1)∗BV −1, so, B = V ∗QV. Then,

X ± λB = V ∗
[
Ik 0
0 0

]
V ± λV ∗QV = V ∗

([
Ik 0
0 0

]
± λ

[
R S
S∗ T

])
V,

setting Q =

[
R S
S∗ T

]
, where R is a k× k Hermitian matrix. Hence,

[
Ik 0
0 0

]
±λ

[
R S
S∗ T

]
are positive semidefinite, which implies that S and T are zero matrices, so B = U∗RU.
Furthermore, bij = u∗iRuj = 〈R, uiu∗j〉, and so

〈R, uiu∗j〉 = 〈R, uju∗i 〉 = 0

for all (i, j) ∈ E, since bij = 0 if (i, j) ∈ E.

Conversely, say B = U∗RU for some R satisfying the required conditions. Then,

X ± λB = U∗(I ± λR)U

is positive semidefinite for λ sufficiently small. Moreover, 〈R, uiu∗j〉 = 〈R, uju∗i 〉 =

0 for all (i, j) ∈ E, implies that bij = 0 for all (i, j) ∈ E and so X ± λB ∈ PSDG .

It is not hard to see that the mapping R 7→ U∗RU is a linear bijection between the
subspaces Pert(X) and {R ∈ Hk : 〈R, uiu∗j〉 = 〈R, uju∗i 〉 = 0 for all (i, j) ∈ E}, since U
has full row rank, which implies that it is surjective. We may therefore conclude that
they have the same dimension. Furthermore, the latter subspace is equal to Hk ∩ U⊥E ,
the orthogonal complement of UE, in the space Mk(F), intersected with the subspace of
k × k Hermitian matrices. We have therefore shown that the following theorem holds.

Theorem 5.2.7. [20, Theorem 6] Let X ∈ PSDG . Then,

dimR(FPSDG
(X)) = dimR(Hk ∩ U⊥E ).

In what follows we will distinguish between the real and complex case.
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5.2.1 The real case

It is assumed throughout this subsection that F = R. In this case Hk = Sk(R), the set of
k × k real symmetric matrices.

For the real case we need to define a new set. For a given subset A ⊆ E ∪ E let:

ŨA = span{uiuTj + uju
T
i : (i, j) ∈ A}.

Clearly ŨA is also closed.

If X ∈ PSDG, then all the matrices in ŨE are orthogonal to the identity matrix (see the
proof for UE).

Observe that the following is in general true for a k × k real symmetric matrix Q

〈Q,A〉 = 0⇐⇒ 〈Q,A+ AT 〉 = 0, for every A ∈Mk(R).

We start by showing that

〈M,N〉 = 〈MT , NT 〉, for M,N ∈Mk(R).

Note that 〈M,N〉 = tr(MNT ). Then

〈M,N〉 = tr(MNT ) = tr((MNT )T ) = tr(NMT ) = tr(MTN) = 〈MT , NT 〉,

where we have exploited the cyclic property of the trace and the fact that tr(B) = tr(BT ),
for all B ∈Mk(R).

Now, for Q = QT and A ∈Mk(R), we have

〈Q,A〉 = 〈Q,AT 〉.

Thus, 〈Q,A〉 = 0 implies that 〈Q,AT 〉 = 0, Therefore, 〈Q,A+ AT 〉 = 0. Conversely, if
〈Q,A+ AT 〉 = 0 it follows that 〈Q,A〉 = −〈Q,AT 〉. However, by the first part, we know
that 〈Q,A〉 = 〈Q,AT 〉. Consequently, 〈Q,A〉 = 〈Q,AT 〉 = 0.

Thus,
〈R, uiuTj 〉 = 〈R, ujuTi 〉 = 0 for all (i, j) ∈ E

implies that 〈R, uiuTj + uju
T
i 〉 = 0 and the converse also holds. Therefore,

dimR(Hk ∩ U⊥E ) = dimR(Sk(R) ∩ Ũ⊥
E

) = dimR(Ũ⊥
E

),

since Ũ⊥
E
⊆ Sk(R), where Ũ⊥

E
is understood to be the orthogonal complement of ŨE in

Sk(R).

Theorem 5.2.8. [20, Theorem 6] Let X ∈ PSDG with rank k and Gram representation

(u1, . . . , un) in Rk, and let ŨE be defined as before. Then,

dimR(FPSDG
(X)) =

(
k + 1

2

)
− dimR(ŨE)
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Proof. By the preceding discussion and Theorem 5.2.7 it suffices to find the dimension
of Ũ⊥

E
to prove the result.

Note that Sk(R) = UE ⊕ U⊥E . Therefore, by Theorem B.2, we may conclude that

dimR(U⊥
E

) = dimR(Sk(R))− dimR(UE).

Now, the dimension of Sk(R) is equal to
(
k+1
2

)
. To see this let Sij be the matrix with

ij-th and ji-th entries equal to 1 and all other entries equal to 0, in particular Sii is the
matrix with ii-th entry equal to 1 and all other entries equal to 0. Then the Sij’s form a

basis for Sk(R) and dimR(Sk(R)) = k2−k
2

+ k =
(
k+1
2

)
. Thus,

dimR(FPSDG
(X)) = dimR(U⊥

E
) =

(
k + 1

2

)
− dimR(UE).

Recall that the extreme rays of a cone are the faces of dimension 1. This gives rise to
the following corollary of Theorem 5.2.8. See [1] for two examples illustrating the use of
this corollary.

Corollary 5.2.9. [20, Proposition 5] Let X ∈ PSDG . Then X is extremal if and only if

dimR(ŨE) =

(
k + 1

2

)
− 1 =

1

2
(k2 + k − 2).

Theorem 5.2.10. [1, Theorem 4.3] Let G = (V,E) be a graph. If G is a k-block, then

|V | 6 k2 + k − 2.

Therefore, the number of k-blocks is finite for every k.

The next corollary gives an upper bound for the sparsity order of a graph in terms of
its non-edges.

Corollary 5.2.11. [1, Theorem 4.6] If ordR(G) = k, then

|E| > 1

2
(k2 + k − 2).

In particular,

k 6
−1 +

√
8|E|+ 9

2
.

Proof. If ordR(G) = k, then dimR(UE) = 1
2
(k2 + k − 2). From this it follows that there

are exactly 1
2
(k2 + k − 2) elements in a basis for UE which is only possible if there are

at least 1
2
(k2 + k − 2) edges in G. The second assertion is merely a reformulation of the

first.
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If the set of vectors {u1, . . . , un} in Rk is an orthogonal representation ofG, rank(U) = k,

where U =
[
u1 · · · un

]
and they satisfy dimR(ŨE) = 1

2
(k2 + k − 2), we call this set

of vectors a k-dimensional extremal orthogonal representation of G. Hence, the sparsity
order of G is equal to the largest k for which there exists a k-dimensional extremal
orthogonal representation of G.

Recall that the minimum fill-in of a graph G is the minimum number of edges required
to make G chordal, denoted by fill(G).

In the next theorem we show that there exists a connection between the minimum fill-in
and the sparsity order of a graph. We will show how this inequality may be derived from
Theorem 5.2.8. For an alternative approach see [26, Theorem B].

Theorem 5.2.12. [20, Proposition 3] Let G = (V,E) be a graph, then

ordR(G) 6 fill(G) + 1

Proof. Let G = (V,E) be a graph on n vertices. Set k = ordR(G) and p = fill(G).
Then, there exists a subset F of E of cardinality p such that the graph H = (V,E ∪F ) is
chordal. Now, let X be an extremal matrix in PSDG of rank k with Gram representation
{u1, . . . , un} in Rk. Clearly, X ∈ PSDH . By Corollary 5.2.9, we have that

dimR(ŨE) =

(
k + 1

2

)
− 1 (5.1)

and by Theorem 5.2.8

dimR(ŨE∪F ) =

(
k + 1

2

)
− dimR(FPSDH

(X)). (5.2)

On the other hand we have that

dimR(ŨE) 6 dimR(ŨE∪F ) + dimR(ŨF ) 6 dimR(ŨE∪F ) + |F |, (5.3)

where the first inequality follows from Theorem B.2, and the second inequality from
Corollary 5.2.11. Substituting (5.1) and (5.2) into (5.3) gives(

k + 1

2

)
− 1 6

(
k + 1

2

)
− dimR(FPSDH

(X)) + |F |,

which implies that
dimR(FPSDH

(X)) 6 |F |+ 1 = p+ 1.

Next, observe that there exists d 6 dimR(FPSDH
(X)) extremal matrices X1, . . . , Xd ∈

PSDH such that X = X1 + · · · + Xd (Theorem 5.1.2). This implies that rank(X) 6
rank(X1) + · · · + rank(Xd). Moreover, rank(Xi) = 1, for i = 1, . . . , d, since H is chordal
(Theorem 5.2.1). Thus, rank(X) 6 d. All that remains is to note that rank(X) = k and
d 6 p+ 1, therefore k 6 p+ 1. That is, ordR(G) 6 fill(G) + 1.
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Now, applying our new found knowledge we may further characterize the k-blocks over
R. A graph has order less than or equal to 1 if and only if it is chordal (Theorem 5.2.1).
We may therefore conclude that the only 1-block is the graph K1, the graph with a single
vertex, since chordality is a hereditary property.

By Proposition 5.1.8 we know that C4 is a 2-block. In the next proposition we will show
that it is in fact the only 2-block.

Proposition 5.2.13. [1, Theorem 7.1] C4 is the only 2-block over R.

Proof. Let G = (V,E) be a 2-block over R. By Theorem 5.2.10 G can have at most 4
vertices. Furthermore, G must have at least 4 edges, else it would be chordal and have
sparsity order equal to 1 (Theorem 5.2.1). This implies that |E| 6 2, since the maximum
number of edges a graph on 4 vertices can have, is 6. Now, Corollary 5.2.11 implies that
|E| > 2. Thus, |E| = 2 and G has exactly 4 edges. Consequently, there are only two
possibilities, shown in Figure 5.1. The graph on the right is clearly chordal, therefore,
G = C4 and we are done.

Figure 5.1: The graphs with 4 vertices and 4 edges

It was shown in [1] that the graphs A1 − A10, B1 − B6 (Figure 4.3) all have sparsity
order 3 and are in fact 3-blocks. We record this fact in the next proposition.

Proposition 5.2.14. [1, Section 8] The graphs A1 − A10, B1 − B6 (Figure 4.3) are
3-blocks over R.

We give a sketch of the proof: It is easily verified by Corollary 5.2.11 that all of the
graphs here can have sparsity order at most 3. It is then a routine exercise to find 3-
dimensional orthogonal representations for each graph, which proves that the sparsity
order of each graph is in fact equal to 3. All that remains is to verify that no proper
induced subgraph has sparsity order 3. For A1 − A10 this follows from Corollary 5.2.11,
since the number of non-edges of any proper induced subgraph of these graphs is at most
4. The same holds for B1, B2 and B4. Finally, for the graphs B3, B5 and B6 note that any
proper induced subgraph has minimum fill-in at most 1, that is, fill(G) 6 1. Therefore,
by Theorem 5.2.12, the sparsity order of any proper induced subgraph is at most 2.

Later on we will show that these graphs are indeed the only 3-blocks over R. However,
some work still needs to be done. The main tool which we will need is a theorem which
gives two equivalent conditions under which a graph has sparsity order less than or equal
to 2. These two conditions are exactly the two equivalent assertions of Theorem 4.1.2 in
the previous chapter. Recall that the following statements are equivalent for a graph G :

(i) G does not contain, as an induced subgraph, a cycle Cn, n > 5, nor any of the
graphs A2 − A10 and B1 −B6 (Figure 4.3).
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(ii) G is a clique-sum of a set of graphs belonging to
⋃4
i=1 Gi (Figure 4.2).

It is easy to see that a graph in any of the classes Gi, with i = 1, 2, 3, has a minimum
fill-in of at most i, while graphs in G4 may have an arbitrarily large minimum fill-in. We
need but consider the number of induced matchings of cardinality 2 in the complement
of each graph. Indeed, an induced matching of cardinality 2 in the complement, implies
that the graph contains C4, as an induced subgraph.

We now show that the sparsity order of a graph in
⋃4
i=1 Gi is less than or equal to 2.

Proposition 5.2.15. [20, Proposition 7] If G ∈
⋃4
i=1 Gi, then ordR(G) 6 2.

Proof. If G ∈ G1, then ordR(G) 6 2, by Proposition 5.2.12, since fill(G) 6 1.

Assume that G ∈ Gi for i = 2, 3, 4. Let X be an extremal matrix in the cone PSDG with
rank k = ordR(G) and with Gram representation {u1, . . . , un} in Rk. Then, by Corollary
5.2.9,

dimR(ŨE) =
1

2
(k2 + k − 2).

Using this fact, we compute in each case the dimension of the subspace ŨE.

If G ∈ G2, let A and B denote the vertex sets of the two connected stable sets in G
and set UA := span{ui : i ∈ A} and UB := span{uj : j ∈ B}. Let a and b denote the
dimension of UA and UB, respectively. Now, a basis for elements of the form uiu

T
j +uju

T
i ,

where ui ∈ UA and uj ∈ UB, has dimension ab. Indeed, any element uiu
T
j + uju

T
i , is

a linear combination of the basis elements of UA and UB, which shows that the only
elements which forms a basis for uiu

T
j + uju

T
i , are the different combinations of linearly

independent elements in UA and UB. We may therefore conclude that,

dimR(ŨE) 6 2 + ab,

where the 2 on the right hand side is obtained from the two edges in the complement of a
graph in G2. Since every ui ∈ UA is orthogonal to every uj ∈ UB, we have that a+ b 6 k
(Theorem 1.2.12 (iv)), and so

k2 > (a+ b)2 = a2 + 2ab+ b2 > 2ab+ 2ab = 4ab,

consequently ab 6 1
4
k2. Therefore,

1

2
(k2 + k − 2) 6 2 +

1

4
k2,

and so −1−
√

13 6 k 6 −1 +
√

13, which implies that k 6 2.

If G ∈ G3, then |E| 6 4. Thus, by Corollary 5.2.11,

1

2
(k2 + k − 2) 6 4,

implying again that k 6 2.
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Finally, if G ∈ G4, we obtain, in a similar way as in the case when G ∈ G2, that

1

2
(k2 + k − 2) 6

1

4
k2 +

1

4
k2,

which also implies that k 6 2.

We are now ready to characterize the graphs, in the real case, which have order less
than or equal to 2. This result is clearly a generalization of Theorem 5.2.2.

Theorem 5.2.16. [20, Theorem 9] The following assertions are equivalent for a graph
G :

(i) ordR(G) 6 2.

(ii) G does not contain, as an induced subgraph, a cycle Cn, n > 5, nor any of the
graphs A2 − A10 and B1 −B6.

(iii) G is a clique-sum of a set of graphs belonging to
⋃4
i=1 Gi.

Proof. (i) =⇒ (ii) Note that the graphs Cn, n > 5, all have sparsity order greater than
or equal to 3 over R (Proposition 5.1.8). Moreover, A1 − A10, B1 − B6 are all 3-blocks
(Proposition 5.2.14). Therefore, by Theorem 5.1.4, a graph with sparsity order less than
or equal to 2 over R, can not contain, as an induced subgraph, any of the graphs Cn,
n > 5, A1 − A10, B1 −B6.

(ii) =⇒ (iii) Holds by Theorem 4.1.2.

(iii) =⇒ (i) Follows from Theorem 5.1.5 and Proposition 5.2.15.

We will now consider two applications of Theorem 5.2.16. As a first application we
may determine whether a graph has sparsity order less than or equal to 2 in polynomial
time, by making a clique-sum decomposition (see [27]) and checking whether the graph
is contained in one of the classes G1−G4. In the next chapter we will show that checking
whether a graph has sparsity order less than or equal to 2, can also be done by means of
the forbidden induced subgraphs Cn, n > 5, A2 − A10 and B1 −B6.

The second application is the classification of the 3-blocks over R, which was obtained
by [1]. By Proposition 5.2.14 we know that A1 − A10, B1 − B6 are 3-blocks, but using
Theorem 5.2.16 we see that these are indeed the only 3-blocks over R. Indeed, if G is
a 3-block it necessarily contains one of the graphs A1 − A10, B1 − B6, as an induced
subgraph, by Theorem 5.2.16. Thus, G is equal to it (by the definition of a block).

Theorem 5.2.17. [20, Theorem 10] In the real case, the only 3-blocks are the graphs
A1 − A10 and B1 −B6.

5.2.2 The complex case

The complex case is in a sense more direct than the real case, since we do not need to
define a new set and use UE as defined before.
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Theorem 5.2.18. [20, Theorem 6] Let X ∈ PSDG with rank k and Gram representation
(u1, . . . , un) in Fk, and let UE be defined as before. Then,

dimR(FPSDG
(X)) = k2 − dimC(UE).

Proof. By Theorem 5.2.7 it suffices to find the dimension of Hk ∩ U⊥E over R to prove
the result.

The real dimension of the set Hk ∩U⊥E is equal to the complex dimension of its superset

Mk(C) ∩ U⊥
E
. To prove that this is indeed true, we start by showing that

R1, R2 ∈ Hk ∩ U⊥E ⇐⇒ R := R1 + iR2 ∈Mk(C) ∩ U⊥
E
.

If R1, R2 ∈ Hk ∩ U⊥E it is clear that R := R1 + iR2 ∈ Mk(C) ∩ U⊥
E
. For the converse,

observe that T ∈ U⊥
E

if and only if T ∗ ∈ U⊥
E
, for T ∈ Mn(C). Indeed, if U ∈ UE and

T ∈ U⊥
E
, we have that

0 = 〈T, U〉 = tr(TU∗) = tr(U∗T ) = 〈U∗, T ∗〉,

which implies that T ∗ ∈ U⊥
E
, since U∗ ∈ UE. Now, assume that R ∈ Mk(C) ∩ U⊥

E
, and

define R1 and R2 as follows:

R1 =
R +R∗

2
and R2 =

R−R∗

2i
.

Then R = R1 + iR2 and since R ∈ U⊥
E

it follows that R∗ ∈ U⊥
E
. Consequently, R1, R2 ∈

Hk ∩ U⊥E .

We may now define a mapping (X, Y ) 7→ X + iY from (Hk ∩ U⊥E ) × (Hk ∩ U⊥E ) to

Mk(C) ∩ U⊥
E
. It is clear that this mapping is indeed a linear bijection, therefore the

dimension of these two subspaces is equal. Thus,

dimR((Hk ∩ U⊥E )× (Hk ∩ U⊥E )) = dimR(Mk(C) ∩ U⊥
E

)

We may therefore conclude that the real dimension of (Hk ∩U⊥E ) is equal to the complex

dimension of Mk(C) ∩ U⊥
E
, since the real dimension of (Hk ∩ U⊥E ) × (Hk ∩ U⊥E ) is twice

the real dimension of (Hk ∩ U⊥E ) and the complex dimension ofMk(C)∩ U⊥
E

is twice the

real dimension of Mk(C) ∩ U⊥
E
.

Note that Mk(C) ∩ U⊥
E

= U⊥
E
, since U⊥

E
⊆Mk(C). Now, Mk(C) = UE ⊕ U⊥E . Thus, by

Theorem B.2, we have that

dimC(Mk(C)) = dimC(UE) + dimC(U⊥
E

).

It is easy to see that dimC(Mk(C)) = k2, thus,

dimR(FPSDG
(X)) = dimR(U⊥

E
) = k2 − dimC(UE).

The next corollary is the complex analogue of Corollary 5.2.9 and follows easily from
Theorem 5.2.18.
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Corollary 5.2.19. [20, Proposition 5] Let X ∈ PSDG . Then X is extremal if and only
if

dimC(UE) = k2 − 1

Theorem 5.2.20. [1, Theorem 4.3] Let G = (V,E) be a graph. If G is a k-block, then

|V | 6 2(k2 − 1).

It therefore follows that the number of k-blocks in the complex case, is also finite.

In the next corollary we again obtain an upper bound for the sparsity order of a graph
in terms of its non-edges.

Corollary 5.2.21. [1, Theorem 4.6] If ordC(G) = k, then

|E| > 1

2
(k2 − 1).

In particular,

k 6
√

2|E|+ 1.

Proof. If ordC(G) = k, then dimC(UE) = k2−1. Thus, there are k2−1 elements in a basis
for UE. However, it is important to note that if uiu

∗
j is in UE we have that uju

∗
i is also in

UE which gives the same edge in G. Therefore, there must be at least 1
2
(k2 − 1) edges in

G to give a basis of k2 − 1 elements. The second assertion is merely a reformulation of
the first.

Similar to the real case, if the set of vectors {u1, . . . , un} in Ck is an orthogonal represen-
tation of G, rank(U) = k, where U =

[
u1 · · · un

]
and they satisfy dimC(UE) = k2 − 1,

we call this set of vectors a k-dimensional extremal orthogonal representation of G. Con-
sequently, the sparsity order of G is equal to the largest k for which there exists a
k-dimensional extremal orthogonal representation of G. So we see that while the details
differ for the real and complex case, the two cases are in many ways analogous.

We know that in the real case the only 2-block is C4 (Proposition 5.2.13). This remains
true for the complex case, as we will now see.

Proposition 5.2.22. [1, Theorem 7.1] C4 is the only 2-block over C.

Proof. Let G = (V,E) be a 2-block over C. By Theorem 5.2.10 G can have at most
6 vertices. Furthermore, since G is a 2-block it has sparsity order 2, which implies, by
Theorem 5.2.2, that it contains a cycle of length greater than 3. Consequently, G has
at least 4 vertices. Therefore, G can have 4,5 or 6 vertices. We will treat each case
separately. If G has 4 vertices we can show in a similar way as the real case (Proposition
5.2.13) that G = C4. Now, if G has 5 vertices it can not contain C4, as an induced
subgraph, since C4 has sparsity order 2. Thus, G = C5, but by Theorem 5.1.8, we know
that C5 has sparsity order 3, a contradiction. This shows that G can not have 5 vertices
and in a similar fashion we can show that if G has 6 vertices, it leads to a contradiction.
We can thus conclude that G = C4, which completes the proof.
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The next result is the complex analogue of Theorem 5.2.12. We will omit the proof,
since it is almost exactly the same as the real case.

Theorem 5.2.23. [20, Proposition 3] Let G = (V,E) be a graph, then

ordC(G) 6 2 · fill(G) + 1.

We will again characterize the graphs having sparsity order less than or equal to 2, by
giving two equivalent conditions under which this is true. These two conditions are also
in terms of forbidden induced subgraphs and a decomposition into a clique-sum, similar
to the real case. However, the forbidden induced subgraphs are different from those in
the real case and we will need an additional class of graphs for our decomposition. We
start by introducing this new class of graphs, which we will denote by G5. A graph in
this class can be obtained from a complete graph by deleting a matching of cardinality at
most 3. The form of the class G5 and its complementary class G5 are depicted in Figure
5.2. As was the case for G1 − G4, we use the following convention:

A small dark dot indicates a vertex, a big dark circle indicates a clique, while a big white
circle indicates a stable set; edges are indicated by lines, while a thick line between two
spheres or between two sets of vertices shows that every vertex in one set is adjacent to
every vertex in the other set.

G5 G5

Figure 5.2: The class G5 and its complementary class G5

The following proposition shows that the sparsity order of a graph in either of the classes
G4 or G5 is less than or equal to 2 over C.

Proposition 5.2.24. [20, p.555] If G ∈ G4 ∪ G5, then ordC(G) 6 2.

The proof for the case when G ∈ G4 is rather involved and can be found in [22, Propo-
sition 2.6]. The case when G ∈ G5 easily follows from Corollary 5.2.21, since |E| 6 3, for
any graph in G5.

We will also need four new graphs, which we denote by D1 − D4. The form of the
complements of these four graphs can be seen in Figure 5.3.

Proposition 5.2.25. [22, Lemma 2.8] [20, p.556] The graphs A1, A4, B1, D1 −D4 (Fig-
ures 4.3 and 5.3) are 3-blocks over C.
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D1 D2 D3 D4

Figure 5.3: Complements of the graphs D1 −D4

As in the real case we only give a sketch of the proof: By Corollary 5.2.21 we may con-
clude that all of these graphs have sparsity order at most 3. Again, finding 3-dimensional
orthogonal representations for each graph is routine (see [22, Lemma 2.8] and [20, p.556]).
All that remains, is to show that no proper induced subgraph of any of these graphs has
sparsity order equal to 3. For the graphs A1, D1 −D4 this follows from Corollary 5.2.21,
since any proper induced subgraphs has at most 3 non-edges. Finally, for the graphs
A4 and B1 the only possible subgraph with sparsity order equal to 3, is the graph with
complement isomorphic to a path of length five. However, this graph is the clique-sum
of a C3 and C4, therefore it has sparsity order equal to two, since C4 is a 2-block and the
sparsity order of a clique-sum is equal to the maximum sparsity order of its components
(Theorem 5.1.5).

Lemma 5.2.26. [20, Lemma 12, p.556]

(i) If G ∈ G1 is non-chordal and contains neither D1 nor D2, as an induced subgraph,
then G ∈ G4.

(ii) If G ∈ G2 does not contain D3, as an induced subgraph, then G ∈ G5.

(iii) If G ∈ G3 does not contain D4, as an induced subgraph, then G ∈ G5.

Proof. (i) Let G ∈ G1 and let H denote the chordal part in G. Assume that H is not
a clique, else we are done. If G is non-chordal, it follows that G has two non-adjacent
vertices (see Figure 4.2), adjacent to every element in H. Thus, if G contains neither D1

nor D2, as induced subgraphs, then H does not contain an induced path of length 3 and
α(H) = 2. Therefore, by Lemma 4.3.9, the vertex set of H may be partitioned in such a
way that G is indeed in G4.

(ii) Let G ∈ G2. If G does not contain D3, then the two non-adjacent cliques each have
only one vertex. Indeed, if one considers the complement of G we see that if one of the
adjacent stable sets contain more than one vertex, we find D3, as an induced subgraph.
Thus, G ∈ G5.

(iii) Let G ∈ G3. If G does not contain D4, its complement may contain a matching of
cardinality at most 3, which is exactly the form of a graph in G5.

The next theorem is the complex variant of Theorem 5.2.16, and the proof of this result
again relies on a decomposition result, which follows from Theorem 4.1.2.

Theorem 5.2.27. [20, Theorem 13] The following assertions are equivalent for a graph
G :
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(i) ordC(G) 6 2.

(ii) G does not contain, as an induced subgraph, any of the graphs Cn, n > 5, A4, B1,
D1 −D4 (Figures 4.3 and 5.3).

(iii) G is a clique-sum of set of graphs belonging to G4 ∪ G5 (Figures 4.2 and 5.2).

Proof. (i) =⇒ (ii) Note that the graphs Cn, n > 5, all have sparsity order greater than
or equal to 3 over C (Proposition 5.1.8). Moreover, A1, A4, B1, D1 −D4 are all 3-blocks
over C (Proposition 5.2.25). Therefore, by Theorem 5.1.4, a graph with sparsity order
less than or equal to 2 over C can not contain, as an induced subgraph, any of the graphs
Cn, n > 5, A4, B1, D1 −D4.

(ii) =⇒ (iii) Let G be a graph satisfying Theorem 5.2.27 (ii) . Then, G satisfies Theorem
5.2.16 (ii), since the graphs A2, A3, B2 − B6 all contain D2, while A5 − A7 contain D1,
A8, A9 contain D3, and finally A10 contains D4. Therefore, G is a clique-sum of a set of
graphs belonging to

⋃4
i=1 Gi. If G ∈ G1 is a chordal graph, it can be decomposed as a

clique-sum of cliques (Corollary 4.1.4), from which it follows that it is a clique-sum of
graphs belonging to G4 ∪ G5. If G ∈ G1 is a non-chordal graph satisfying Theorem 5.2.27
(ii), it belongs to G4, by Lemma 5.2.26. Finally, by the same lemma, a graph belonging
to G2 ∪ G3 and satisfying Theorem 5.2.27 (ii) necessarily belongs to G5.

(iii) =⇒ (i) Follows from Theorem 5.1.5, Proposition 5.2.24 and Theorem 5.2.2.

Again we consider two applications of Theorem 5.2.27. A first obvious application is
that we may determine whether a graph has sparsity order less than or equal to 2 over
C in polynomial time, in a similar fashion as the real case.

The second application of Theorem 5.2.27 is the classification of the 3-blocks over C.
The proof of this corollary is similar to the proof of Corollary 5.2.17.

Theorem 5.2.28. [20, Corollary 14] In the complex case, the only 3-blocks are the graphs
A1, A4, B1, D1 −D4.

5.3 Notes

In [1, Theorem 7.1] it is shown that C4 is the only 2-block, in the real and complex case.
In the proof of this theorem, they apply the notion of k-superblocks. We were able to
provide a new proof of this result, which, essentially, only relies on the fact that a 2-block
necessarily contains a cycle of length at least equal to 4 and Corollary 5.2.9, in the real
case, and Corollary 5.2.19 and Theorem 5.2.20, in the complex case. In the real case, we
prove that A1 − A10 and B1 − B6 contain no induced subgraphs of sparsity order 3, by
applying Corollary 5.2.9 and Theorem 5.2.12. Since each of these graphs have sparsity
order 3, this shows that they are 3-blocks over R. In this way we have applied more recent
work to prove known results. In the complex case, we have also shown that A1, A4, B1,
D1−D4 contain no induced graphs of sparsity order 3, by applying Corollary 5.2.21 and
Theorem 5.1.5. This, then implies that all of these graphs are 3-blocks over C. Although
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this fact is used in [20], it is not immediately clear that these graphs are, indeed, 3-blocks.
All that seems to be shown, is that they each have sparsity order equal to 3. Finally,
Lemma 12 (ii) in [20], seems to be only partially correct, since it requires that both of the
non-adjacent vertices, adjacent to all the vertices in the chordal part, be present in the
class G1. However, this obviously need not always be the case, since any chordal graph
is an induced subgraph of G1. It should be noted though that the main result, Theorem
5.2.27, remains unaffected, since a chordal graph can be decomposed as the clique-sum
of cliques and a non-chordal graph in G1, containing neither D1 nor D2, as an induced
subgraph, is in fact in G4.
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Chapter 6

Relating the sparsity order of a
graph and its spectrum

6.1 Spectrum of a graph and cospectral mates

In this final chapter, we will show how one can determine whether a graph has sparsity
order less than or equal to 2 by means of the forbidden induced subgraphs mentioned in
the previous chapter. We introduce the notion of the spectrum of a graph and provide
a novel way to find induced subgraphs by calculating the characteristic polynomial of
principal submatrices. In this way we move from a graph theoretic setting to a linear
algebra setting to determine whether the sparsity order of a graph is less than or equal
to 2.

Note that when we refer to the spectrum of a graph, we also refer to the characteristic
polynomial of the graph. So in some cases when we say that a certain property of a
graph is determined by its spectrum, it may actually mean that it is determined by its
characteristic polynomial, in particular, the coefficients of the characteristic polynomial.
The context in which it is used should make the distinction clear. The reason why we
distinguish between these two notions, which may seem like the same thing, is that nu-
merically the characteristic polynomial is easy to compute, while the spectrum is usually
only an approximation.

We start with some preliminary results on the spectrum of a graph and introduce some
more graph theoretic notions which will be relevant in our study.

Definition 6.1.1 (Walk, Closed Walk). A walk [v1, . . . , vk] in a graph G = (V,E) is a
sequence of vertices (not necessarily distinct) such that (vj, vj+1) ∈ E for j = 1, . . . , k−1.
The walk [v1, . . . , vk] is referred to as a walk between v1 and vk. Furthermore, if v1 = vk
we say the walk is closed.

Note that the main difference between a walk and a path is that a walk is permitted
to use vertices more than once. The closed walks of a graph can easily be obtained by
calculating powers of the adjacency matrix, which we define next.

Definition 6.1.2 (Adjacency matrix of a graph). Let G = (V,E) be a graph on n
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vertices. Define the n× n adjacency matrix of G as follows:

AG = [aij]
n
i,j=1, where aij =

{
1, if (i, j) ∈ E
0, if (i, j) /∈ E.

If the underlying graph is clear. we will drop the subscript and simply write A.

The following proposition shows that the number of closed walks, of any length, between
two vertices can be obtained by calculating the powers of the adjacency matrix.

Proposition 6.1.3. [11, Lemma 8.1.2] Let G be a graph with adjacency matrix A. The
number of walks from the vertex i to the vertex j in G with length r is equal to the ij-th
entry of the matrix Ar.

The proof of this result follows by induction on r. From this proposition it follows that
the number of closed walks of length r in G is equal to tr(Ar), hence we have the following
corollary.

Corollary 6.1.4. [11, Corollary 8.1.3] Let G be a graph with e edges and t triangles. If
A is the adjacency matrix of G, then

(i) tr(A) = 0, (ii) tr(A2) = 2e, (iii) tr(A3) = 6t.

Since the trace of a square matrix is also equal to the sum of its eigenvalues, and
the eigenvalues of Ar are the r-th powers of the eigenvalues of A, we see that tr(Ar) is
determined by the spectrum of A. Therefore, it makes sense to define the spectrum of a
graph G as the spectrum of its adjacency matrix, as we do now.

Definition 6.1.5 (Spectrum of a graph). Let G be a graph. Then, the spectrum of G is
defined as the spectrum of the adjacency matrix of G.

More will be said on the relationship between the spectrum of a graph and its structural
properties, such as number of vertices, edges and triangles, later on.

To illustrate the notion of the spectrum of a graph, we give some examples of graphs
and their spectrum.

Example 6.1.6. Let G = Kn, the complete graph on n vertices. Then the adjacency
matrix of G is given by AG = Jn− In, where Jn is the n×n matrix with all entries equal
to 1, and In is the n×n identity matrix. The spectrum of G is given by {−1(n−1), n− 1}
where the exponent indicates the multiplicity of the eigenvalue -1.

Let G = K4, the complete graph on 4 vertices. Then the adjacency matrix of G is given
by

AG =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
The characteristic polynomial of AG is given by p(t) = t4−6t2−8t−3 and so the spectrum
of AG is {−1(3), 3} where the exponent indicates the multiplicity of the eigenvalue -1.

85



Example 6.1.7. Let G = Cn, the cycle on n vertices. Then the spectrum of G is given
by

2 cos

(
2πj

n

)
,

for j = 0, . . . , n− 1.

Let G = C4 with edges {(1, 2), (2, 3), (3, 4), (4, 1)}. Then the adjacency matrix of G is
given by

AG =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .
The characteristic polynomial of AG is given by p(t) = t4 − 4t2, and so the spectrum of
AG is {−2, 0(2), 2} where the exponent indicates the multiplicity of the eigenvalue 0.

Note that since the adjacency matrix is always symmetric when G is a simple undirected
graph (as is the case here), the eigenvalues are always real (Theorem 1.1.2).

Definition 6.1.8 (Bipartite Graph). A graph G is bipartite if its vertex set can be
partitioned into two subsets X and Y so that every edge has one end in X and one end
in Y . Such a partition (X, Y ) is called a bipartition of the graph, and X and Y its parts.
We denote a bipartite graph G with bipartition (X, Y ) by G[X, Y ].

If the bipartite graph G[X, Y ] is complete in the sense that every vertex in X is adjacent
to every vertex in Y we denote G by Kn,m where n and m are the number of vertices in
X and Y, respectively.

Recall that the adjacency set of a vertex v is defined as the set

Adj(v) = {u ∈ V : (u, v) ∈ E}.

Definition 6.1.9 (Degree of a vertex). Let G = (V,E) be a graph on n vertices. The
degree of a vertex v in a graph G, denoted by dG(v), is equal to the cardinality of its
adjacency set. We denote by δ(G) and ∆(G) the minimum and maximum degrees of the
vertices of G, and by d(G) their average degree, 1

n

∑
v∈V d(v).

It is not hard to see that the sum of all the degrees of the vertices of a graph is equal
to twice the number of edges of the graph. We now introduce a special class of graphs
where all the vertices have the same degree.

Definition 6.1.10 (Regular Graph). A graph G = (V,E) is k-regular if d(v) = k for all
v ∈ V. In particular, we call a graph regular if it is k-regular for some k.

An easy example of a regular graph is the complete graph on n vertices, Kn, which is
(n− 1)-regular. Another example is the cycle on n vertices, Cn, which is 2-regular.

Definition 6.1.11 (Circumference and Girth of a graph). Let G be a graph which con-
tains at least one cycle. Then, the circumference of G is the length of a longest cycle in
the graph and the girth of G is the length of a shortest cycle in the graph.
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The spectrum of a graph is a very useful thing, since some structural properties of a
graph can be determined by calculating the spectrum. We list these properties in the
next lemma.

Lemma 6.1.12. [14, Lemma 4] The following can be deduced from the spectrum of a
graph:

(i) The number of vertices.

(ii) The number of edges.

(iii) Whether G is regular.

(iv) Whether G is regular with any fixed girth.

(v) The number of closed walks of any fixed length.

(vi) Whether G is bipartite.

We will now show how the characteristic polynomial can be used to obtain the number
of closed walks, of any length, of a graph G. Let p(t) = tn + an−1t

n−1 + an−2t
n−2 +

an−3t
n−3 + · · ·+ a1t+ a0 be the characteristic polynomial of the adjacency matrix A of a

graph G. Then, using Newton’s identities (see Appendix D), we have the following

tr(Ak) + an−1 tr(Ak−1) + · · ·+ an−k+1 tr(A) = −kan−k if 1 6 k 6 n.

Now, working recursively for k = 1, . . . , n we obtain the following equations:

an−1 = − tr(A),

an−2 = −1

2
(tr(A2) + an−1 tr(A)),

an−3 = −1

3
(tr(A3) + an−1 tr(A2) + an−2 tr(A)),

an−4 = −1

4
(tr(A4) + an−1 tr(A3) + an−2 tr(A2) + an−3 tr(A),

. . . .

Note that for the adjacency matrix of a graph, the trace is equal to zero, so we have that

an−1 = 0, an−2 = −1

2
tr(A2), an−3 = −1

3
tr(A3), an−4 =

1

8
tr(A2)2 − 1

4
tr(A4), . . . ,

where A is the adjacency matrix of G. From this we see that the number of closed walks
of the graph G can be calculated simply by using the coefficients of the characteristic
polynomial. In particular, |an−2| and |an−3| are the number of edges and twice the number
of triangles of G, respectively.

Two graphs G and H are said to be isomorphic if there exists a bijection between the
vertex sets of G and H

f : VG → VH

such that (u, v) ∈ EG if and only if (f(u), f(v)) ∈ EH . In other words, G and H are the
same after a relabelling of the vertices of one of these graphs. This is, in essence, what is
done in the next theorem.
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Theorem 6.1.13. Two simple graphs, G = (VG, EG) and H = (VH , EH), with finite
vertex sets are isomorphic if and only if their adjacency matrices are permutation similar,
that is,

AG = P−1AHP,

where P is a permutation matrix.

Proof. Assume that G and H are isomorphic. Then there exists a bijection between the
vertex sets of G and H

f : VG → VH

such that (u, v) ∈ EG if and only if (f(u), f(v)) ∈ EH . Let AG and AH denote the
adjacency matrices of G and H, respectively. Let VG = {1, . . . , n} and VH = {1, . . . , n};
this holds since both vertex sets are finite and have the same dimension. Then

f : {1, . . . , n} → {1, . . . , n}

is a permutation of these n elements. We can represent this permutation in matrix form
as follows: (

1 2 · · · n
f(1) f(2) · · · f(n)

)
.

Now, let

P =


ef(1)
ef(2)

...
ef(n)

 ,

where ei denotes a row vector of length n with 1 in the i-th position and 0 in every
other position. Clearly P is a permutation matrix, furthermore AG = P−1AHP (where
P−1 = P T ). Therefore, AH and AG are permutation similar.

Conversely, assume that AG and AH are permutation similar. Then, there exists a n×n
permutation matrix P such that AG = P−1AHP. Since P simply reorders the rows and
columns of AH to give AG, it is clear that the only difference between G and H is the
labelling of their vertices; therefore the graphs must be isomorphic.

From this theorem, it easily follows that the spectrum of two isomorphic graphs is
always equal. However, the converse need not be true, that is, if two graphs have the
same spectrum they are not necessarily isomorphic, as can be seen in the next example.
We will call non-isomorphic graphs with the same spectrum cospectral.

Example 6.1.14. Let G and H be the graphs given in Figure 6.1. Then the adjacency
matrices of G and H are as follows:

AG =


0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 1 0 0
0 0 0 0 0

 , AH =


0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
1 1 1 1 0
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The characteristic polynomial for both of these matrices is p(t) = t5 − 4t3, and conse-
quently G and H have the same spectrum, namely {−2, 0(3), 2}. However, they are clearly
not isomorphic.

G H

1 2

34

5

1 2

4 3

5

Figure 6.1: The graphs G and H of Example 6.1.14

We say that a graph G is determined by its spectrum if any other graph with the
same spectrum is isomorphic to G, in other words, G has no cospectral mates. In the
previous example we saw that not all graphs with the same spectrum are isomorphic.
Consequently, calculating the spectrum of two graphs to see whether they are isomorphic
is sufficient if and only if one of the graphs is determined by its spectrum. Some classes
of graphs are known to be determined by their spectrum (as we will soon see), however,
in general it is not known which graphs are determined by their spectrum. In [13]
it is conjectured that almost no graphs have cospectral mates (graphs with the same
spectrum), as the number of vertices tends to infinity. The problem though in showing
that a graph is determined by its spectrum, is that to do this, the graph must exhibit
some specific structure, which is of course not the case for most arbitrary graphs. In the
next proposition, we list some graphs which are determined by their spectrum; note that
all these graphs have a specific structure.

Proposition 6.1.15. [14, Proposition 4] The following graphs and their complements
are determined by their spectrum:

(i) The complete graph Kn.

(ii) The regular complete bipartite graph Km,m.

(iii) The path Pn.

(iv) The cycle Cn.

The proofs of (i)− (iii) can be found in Proposition 4 [14, p.16] and the proof of (iv) in
Proposition 1 [14, p.3] and [9].
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6.2 The forbidden induced subgraphs have no

cospectral mates

In this section, we show that all the forbidden induced subgraphs (A1−A10, B1−B6, D1−
D4) of the previous chapter are determined by their spectrum. We will use this fact in
an algorithm to determine whether a graph has sparsity order less than or equal to 2.
Unfortunately, these graphs exhibit no obvious structural property which we can use to
show that they are determined by their spectrum. Therefore, we will have to rely on
computer results. Note that, by Proposition 6.1.15, the cycles Cn, n > 5, are determined
by their spectrum, with spectrum given by

2 cos

(
2πj

n

)
,

for j = 0, . . . , n− 1.

We start with the following table, where the characteristic polynomial of each graph is
given:

Graph Characteristic polynomial

A1 p(t) = t5 − 5t3 + 5t− 2

A2 p(t) = t6 − 10t4 − 6t3 + 3t2

A3 p(t) = t7 − 16t5 − 24t4

A4 p(t) = t6 − 10t4 − 8t3 + 9t2 + 4t− 1

A5 p(t) = t7 − 16t5 − 26t4 + 4t3 + 16t2

A6 p(t) = t7 − 16t5 − 26t4 + 2t3 + 16t2 + t− 2

A7 p(t) = t8 − 23t6 − 56t5 − 27t4 + 24t3 + 12t2

A8 p(t) = t8 − 23t6 − 56t5 − 29t4 + 20t3 + 11t2 − 4t

A9 p(t) = t9 − 31t7 − 100t6 − 102t5 − 8t4 + 24t3

A10 p(t) = t10 − 40t8 − 160t7 − 240t6 − 128t5

B1 p(t) = t6 − 9t4 − 4t3 + 12t2

B2 p(t) = t6 − 9t4

B3 p(t) = t7 − 14t5 − 16t4 + 8t3

B4 p(t) = t6 − 8t4 + 4t2

B5 p(t) = t6 − 9t4 − 4t3 + 7t2

B6 p(t) = t7 − 15t5 − 20t4 + 8t3 + 8t2

D1 p(t) = t6 − 11t4 − 12t3 + 5t2 + 4t

D2 p(t) = t5 − 6t3

D3 p(t) = t7 − 17t5 − 32t4 − 8t3 + 8t2

D4 p(t) = t8 − 24t6 − 64t5 − 48t4

We will make use of the computer results of [5] and [6] to show that all of the graphs
here are determined by their spectrum. Let n be the number of vertices, e the number

90



of edges and t be the number of triangles. The results from [6] show that there are no
cospectral graphs on:

n e

5 5,6

6 8,9,10,11,12

7 17

8 23,24

9 31

10 40

Therefore, the graphs A1, A2, A4, A7 −A10, B1, B2, B4, B5, D1 −D4 are all determined by
their spectrum. All that remains is to show that A3, A5, A6, B3, B6 are also all determined
by their spectrum. Note that n = 7 for all of these graphs. In the following table we list
e and t, for the remaining graphs.

Graph e t

A3 16 12

A5 16 13

A6 16 13

B3 14 8

B6 15 10

Recall that the number of triangles is determined by the spectrum of a graph, therefore,
for two graphs to be cospectral they must have the same number of triangles. Now,
according to [5] we have the following for n = 7 :

� There is only one graph with e = 16 and t = 12.

� There are three graphs with e = 16 and t = 13 (Figure 6.2).

� There are 12 graphs with e = 14 and t = 8 (Figure 6.3).

� There are six graphs with e = 15 and t = 10. (Figure 6.4)

We may therefore conclude that the graph A3 is determined by its spectrum. For
the remaining four graphs, it suffices to calculate the characteristic polynomial of all the
graphs given in Figures 6.2-6.4 to see that the spectrum of all of these graphs are different.
One easily verifies that this is the case, therefore, each is determined by their spectrum.
In particular, note that the first two graphs of Figure 6.2 are A5 and A6, the first graph
of Figure 6.3 is B3 and the first graph of Figure 6.3 is B6.
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Figure 6.2: The complements of the graphs on 7 vertices with 16 edges and 13 triangles

Figure 6.3: The complements of the graphs on 7 vertices with 14 edges and 8 triangles

6.3 Sparsity order algorithm

To determine whether a graph G has sparsity order less than or equal to 2, it suffices
to calculate the spectrum of the principal submatrices, of the adjacency matrix of G,
of appropriate size. If the spectrum of one of these principal submatrices is equal to
that of one of the forbidden induced subgraphs, we know that the forbidden induced
subgraph is in fact a subgraph of G, since these graphs are determined by their spectrum.
Therefore, G must have sparsity order greater than 2. Unfortunately, calculating all the
principal submatrices of appropriate size can be very expensive if the number of vertices
of G is large. To partially overcome this problem we introduce the notion of eigenvalue
interlacing, which will greatly simplify matters.

Theorem 6.3.1. [17, Theorem 4.3.15] Let A ∈Mn(C) be a Hermitian matrix, let A[K]
be a principal submatrix of A, where K ⊆ {1, . . . , n} and card(K) = k. Let λi, i =
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Figure 6.4: The complements of the graphs on 7 vertices with 15 edges and 10 triangles

1, . . . , n, and µj, j = 1, . . . , k denote the eigenvalues of A and A[K], respectively, and
assume that they have been arranged in increasing order, i.e, λ1 6 · · · 6 λn and µ1 6
· · · 6 µk. Then, for each integer r such that 1 6 r 6 k, we have

λr 6 µr 6 λr+n−k.

If we consider principal submatrices of size (n− 1)× (n− 1), the inequality of Theorem
6.3.1 gives the following

λ1 6 µ1 6 λ2 6 · · · 6 λn−1 6 µn−1 6 λn,

which makes it clear why we refer to eigenvalue interlacing.

Turning back to the problem at hand we may now describe an algorithm to determine
whether a graph has sparsity order less than or equal to 2, where we will also incorporate
the notion of eigenvalue interlacing:

Sparsity order algorithm

Let G be a graph on n vertices. Let λi, i = 1, . . . , n, be the eigenvalues of G arranged
in increasing order, i.e., λ1 6 · · · 6 λn. To determine whether G has sparsity order less
than or equal to 2, we will apply the following procedure:

Step 1

� Calculate the spectrum of the graphG and arrange the eigenvalues ofG in increasing
order.

� If the spectrum of a forbidden induced subgraph does not interlace the spectrum
of G, as described in Theorem 6.3.1, it is not an induced subgraph of G.

Step 2

� Calculate the characteristic polynomial of each principal submatrix, of appropriate
size w.r.t. the remaining forbidden induced subgraphs.
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� If the characteristic polynomial of one of these principal submatrices is equal to the
characteristic polynomial of one of the forbidden induced subgraphs, G has sparsity
order greater than 2, if not, it has sparsity order less than 2 (Theorem 5.2.16 and
5.2.27).

We will illustrate the use of this algorithm in the next example.

Example 6.3.2. Let G be the graph with adjacency matrix

AG =



0 0 0 1 1 1 1

0 0 1 0 1 1 1

0 1 0 0 1 1 1

1 0 0 0 0 1 1

1 1 1 0 0 0 0

1 1 1 1 0 0 1

1 1 1 1 0 1 0


.

The characteristic polynomial of AG is p(t) = t7 − 14t5 − 18t4 + 15t3 + 30t2 + 6t − 4
and the spectrum is {−2.4397,−1.191,−1,−1, 0.2706, 1.2326, 4.1275}. The only forbidden
induced subgraphs we need to check for are those on 7 vertices or less.

Clearly none of the forbidden induced subgraphs on 7 has the same characteristic poly-
nomial as G, so all that remains is to check for C6, A1, A2, A4, B1, B2, B4, B5 in the real
case; and A4, B1, D1, D2 in the complex case.

We now have to check for induced subgraphs on 5 and 6 vertices. Thus, applying
eigenvalue interlacing, we obtain the following:

LetH be a graph on 5 vertices, with eigenvalues λi, i = 1, 2, 3, 4, 5, arranged in increasing
order. Then,

� λ1 ∈ [−2.4397,−1],

� λ2 ∈ [−1.191,−1],

� λ3 ∈ [−1, 0.2706],

� λ4 ∈ [−1, 1.2326],

� λ5 ∈ [0.2706, 4.1275].

Let F be a graph on 6 vertices, with eigenvalues µi, i = 1, 2, 3, 4, 5, 6, arranged in
increasing order. Then,

� µ1 ∈ [−2.4397,−1.191],

� µ2 ∈ [−1.191,−1],

� µ3 ∈ [−1,−1],
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� µ4 ∈ [−1, 0.2706],

� µ5 ∈ [0.2706, 1.2326],

� µ6 ∈ [1.2326, 4.1275].

Next, calculating the spectrum of the forbidden induced subgraphs gives:

σ(C6) = {−2,−1,−1, 1, 1, 2},
σ(A1) = {−1.618,−1.6180, 0.618, 0.618, 2},
σ(A2) = {−2.7177,−1, 0, 0, 0.3254, 3.3923},
σ(A4) = {−2.247,−1.5758,−0.555, 0.1873, 0.8019, 3.3885},
σ(B1) = {−2,−2, 0, 0, 1, 3},
σ(B2) = {−3, 0, 0, 0, 0, 3},
σ(B4) = {−2.7321,−0.7321, 0, 0, 0.7321, 2.7321},
σ(B5) = {−2.5086,−1.2855, 0, 0, 0.702, 3.0922},
σ(D1) = {−2.2307,−1.618,−0.4829, 0, 0.6180, 3.7136},
σ(D2) = {−2,−2, 0, 0, 0, 4},

It is not hard to verify that none of the graphs here satisfy the required eigenvalue
interlacing. Therefore, the sparsity order of G is less than or equal to 2, in the real and
complex case.

We saw in this example that it was sufficient to check for eigenvalue interlacing to verify
that the graph has sparsity order less than or equal to 2. Thus, all that was required
of the sparsity order algorithm, was Step 1. In the next example we will see that Step
1 is not sufficient and will have to apply Step 2 of the algorithm, that is, calculate the
characteristic polynomial of the principal submatrices of appropriate size and compare
with the characteristic polynomials of the forbidden induced subgraphs.

Example 6.3.3. Let G be the graph with adjacency matrix

AG =



0 1 1 1 1 1 0

1 0 0 0 0 1 1

1 0 0 0 1 0 1

1 0 0 0 1 1 0

1 0 1 1 0 0 1

1 1 0 1 0 0 0

0 1 1 0 1 0 0


.

The characteristic polynomial of AG is p(t) = t7 − 12t5 − 10t4 + 23t3 + 20t2 − 9t− 6 and
the spectrum is {−2.2083,−1.7053,−1.1268,−0.4663, 0.6585, 1.2968, 3.5515}. The only
forbidden induced subgraphs we need to check for are those on 7 vertices or less.

Again the only graphs we need to check for are C6, A1, A2, A4, B1, B2, B4, B5 in the real
case; and A4, B1, D1, D2 in the complex case.

LetH be a graph on 5 vertices, with eigenvalues λi, i = 1, 2, 3, 4, 5, arranged in increasing
order. Then,
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� λ1 ∈ [−2.2083,−1.1268],

� λ2 ∈ [−1.7053,−0.4663],

� λ3 ∈ [−0.4663, 1.2968],

� λ4 ∈ [−1, 1.2326],

� λ5 ∈ [0.6585, 3.5515].

Let F be a graph on 6 vertices, with eigenvalues µi, i = 1, 2, 3, 4, 5, 6, arranged in
increasing order. Then,

� µ1 ∈ [−2.2083,−1.7053],

� µ2 ∈ [−1.7053,−1.1268],

� µ3 ∈ [−1.1268,−0.4663],

� µ4 ∈ [−0.4663, 0.6585],

� µ5 ∈ [0.6585, 1.2968],

� µ6 ∈ [1.2968, 3.5515].

From the previous example we know the spectrum of the forbidden induced subgraphs
are:

σ(C6) = {−2,−1,−1, 1, 1, 2},
σ(A1) = {−1.618,−1.6180, 0.618, 0.618, 2},
σ(A2) = {−2.7177,−1, 0, 0, 0.3254, 3.3923},
σ(A4) = {−2.247,−1.5758,−0.555, 0.1873, 0.8019, 3.3885},
σ(B1) = {−2,−2, 0, 0, 1, 3},
σ(B2) = {−3, 0, 0, 0, 0, 3},
σ(B4) = {−2.7321,−0.7321, 0, 0, 0.7321, 2.7321},
σ(B5) = {−2.5086,−1.2855, 0, 0, 0.702, 3.0922},
σ(D1) = {−2.2307,−1.618,−0.4829, 0, 0.6180, 3.7136},
σ(D2) = {−2,−2, 0, 0, 0, 4},

We can now easily verify that the only possibility which remains is A5. Therefore, we
need to consider all possible 5 × 5 principal submatrices and calculate their character-
istic polynomials. Using the following Matlab script we see that one of the principal
submatrices does indeed have the same characteristic polynomial as A1.
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function[t,x]=sparse2(G) %if t=1 G contains A1, else G does not contain
%A1.

n=length(G);
v=nchoosek(1:n,5); %gives all the possible permutations of 7 elements
%into groups of 5 elements

[c,d]=size(v);
y=zeros(c,1);
x=zeros(c,d);
p=zeros(c,d+1);

for i=1:c
p(i,:)=charpoly(G(v(i,:),v(i,:))); %calculate the characteristic
%polynomial of each 5x5 principal submatrix
if(p(i,:)==charpoly(A1)) %test whether the characteristic
%polynomial of A1 is equal to one of the characteristic
%polynomials of the principal submatrices

y(i,1)=1;
x(i,:)=v(i,:); %store the permutation for which the
%characteristic polynomials are equal

else
y(i,1)=0;

end
end

x=x(any(x,2),:); %delete all zero rows of x

if(norm(y)==0)
t=0;

else
t=1;

end
end

>> [t,x]=sparse2(A G)

t =

1

x =

2 4 5 6 7

Thus, A1 is a induced subgraph of G on the vertex set {2, 4, 5, 6, 7} and so G has sparsity
order greater than 2, in the real and complex case.

Note that the algorithm proposed here is expensive, since calculating all possible per-
mutations can be very time consuming. A possible solution would be to use a kind of
divide-and-conquer approach, in the sense that we delete only one row and column of the
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adjacency matrix at a time and apply eigenvalue interlacing on the resulting principal
submatrix to determine whether or not it contains a possible forbidden induced subgraph.
If it does not contain a possible forbidden induced subgraph, we need not consider the
particular principal submatrix further. However, if it does contain a possible forbidden
induced subgraph we apply the same method described here to form smaller principal
submatrices and repeat this process until all possibilities are exhausted. The rationale
behind this method is that we repeatedly consider induced subgraphs of the graph by
deleting a single vertex at a time, to determine which vertices can possibly induce a
forbidden subgraph.

The algorithm proposed here runs in polynomial time when we wish to determine
whether a graph contains a 3-block, as an induced subgraph, since the 3-blocks have
a fixed number of vertices, which implies that the number of principal submatrices is
bounded by a polynomial function, i.e., the number of k × k principal submatrices in a
n× n matrix is equal to

(
n
k

)
, which is bounded by nk. Unfortunately a problem arises in

determining whether the sparsity order is less than or equal to 2, since the graph may
not contain any induced cycle of length 5 or greater. Consequently, we need to check
every k × k principal submatrix, for k = 5, . . . , n, to determine whether there is a cycle
present, as an induced subgraph, which could turn out to be a very expensive exercise.
Consequently, a different method needs to be applied to determine whether the graph
contains any induced cycles Cn, n > 5. One way of doing this can be found in [23], who
showed that one can determine in polynomial time whether the graph contains a cycle
Cn, n > 5. Therefore, combining these two algorithms, one can determine in polynomial
time whether a graph has sparsity order less than or equal to 2.

In conclusion the connection between between the sparsity order of a graph and its
spectrum is not at all obvious. However, it is interesting that all graphs with sparsity
order less than or equal to 2, can also be characterized in terms of forbidden characteristic
polynomials of principal submatrices.
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Appendix A

Inner product and Hilbert spaces

In the following two definitions, we define the concept of an inner product, an inner
product space and a Hilbert space.

Definition A.1 (Inner product). Let U be a vector space over the field F (R or C).
A function, 〈·, ·〉 : U × U → F is an inner product if, for all x, y, z ∈ U :

〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = 0 (A.1)

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (A.2)

〈αx, y〉 = α〈x, y〉, ∀α ∈ F (A.3)

〈x, y〉 = 〈y, x〉 (A.4)

An inner product on U defines a norm on U given by

‖x‖ =
√
〈x, x〉,

and a metric on U given by

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉.

Definition A.2 (Inner product space, Hilbert space). An inner product space is a
vector space U with an inner product defined on U . A Hilbert space is a complete inner
product space (complete in the metric d(x, y) = ‖x− y‖ =

√
〈x− y, x− y〉).

Hence inner product spaces are normed spaces, and Hilbert spaces are Banach spaces,
with norm ‖x‖ =

√
〈x, x〉. The converse is not necessarily true.

Inner product spaces retain many useful features of Euclidean space, and may be con-
sidered to be a natural generalization of Euclidean space. One such feature that will be
of particular interest in our study, is that of orthogonality, which we define next.

Definition A.3 (Orthogonality). An element x of an inner product space X is said to
be orthogonal to an element y ∈ X if

〈x, y〉 = 0.

We also say that x and y are orthogonal, and write x ⊥ y. Similarly, for subsets U ,V ⊂ X
we write x ⊥ U if x ⊥ u for all u ∈ U , and U ⊥ V if u ⊥ v for all u ∈ U and all v ∈ V .
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Definition A.4 (Orthogonal Complement). The orthogonal complement of a set
U ⊆ H is the set

U⊥ = {h ∈ H : 〈h, u〉 = 0, for all u ∈ U}.

Another property of the inner product is its continuity, which will be especially useful
to prove the closedness of a set.

Lemma A.5. [19, Lemma 3.2.2] If in an inner product space, xn −→ x and yn −→ y,
then 〈xn, yn〉 −→ 〈x, y〉.

In the next theorem, we see that a subspace of a Hilbert space is itself a Hilbert space
if it is closed or finite dimensional. In particular, every finite dimensional subspace of a
Hilbert space is closed.

Theorem A.6. [19, Theorem 3.2,4] Let Y be a subspace of a Hilbert space H. Then

(i) Y is complete if and only if Y is closed in H.

(ii) If Y is finite dimensional, then Y is complete.

The next result ensures that there exists a unique vector, in a convex subset of an inner
product space, that minimizes the metric on the inner product space for every element
of the inner product space.

Theorem A.7. [19, Theorem 3.3.1] Let X be an inner product space and Y 6= ∅ a convex
set which is complete (in the metric induced by the inner product). Then, for every given
x ∈ X , there exists a unique y ∈ Y such that

δ = inf
ỹ∈Y
‖x− ỹ‖ = ‖x− y‖.

In other words, there exists a vector y ∈ Y nearest to x, for every x ∈ X , which is unique.

Theorem A.8. Let Y be any closed subspace of a Hilbert space H. Then

H = Y ⊕ Y⊥.

The following result is true for much more general spaces than Hilbert spaces. We only
state it at the generality required in this thesis.

Theorem A.9. [7, Theorem V.7.4] If K is a non-empty compact convex subset of a
Hilbert space H, then ext(K) 6= ∅ and K = conv(ext(K)), where ext(K) is the set of
extreme points of K and conv(S) is the closure of the convex hull of the set S.
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Appendix B

Linear algebra preliminaries

We will start by showing that the set of all n× n complex matrices, denoted byMn(C),
is a Hilbert space over C. A proof is added since some of the argumentation reappears in
Chapter 1.

Theorem B.1. Let Mn(C) be the vector space of all n×n matrices in C. Then Mn(C)
is a Hilbert space over C, with respect to the inner product

〈A,B〉2 = tr(AB∗),

where tr(M) denotes the trace of the square matrix M and B∗ denotes the complex con-
jugate transpose of the matrix B.

Proof. We start by showing thatMn(C) is an inner product space. First of all we state
some properties of the trace of a matrix. Let A and B be matrices inMn(C) and c ∈ C.
Then:

(i) tr(A+B) = tr(A) + tr(B);

(ii) tr(cA) = c tr(A);

(iii) tr(AB) = tr(BA).

Now for all A,B,C ∈Mn(C) and c ∈ C we have:

(A.1) 〈A,A〉2 = tr(AA∗) =
∑n

i=1

∑n
j=1 aij āij =

∑n
i=1

∑n
j=1 |aij|2, which is of course al-

ways greater than or equal to zero. Furthermore it is exactly zero if and only if
aij = 0 for all i, j, which in turn means that A = 0.

(A.2) 〈A+B,C〉2 = tr((A+B)C∗) = tr(AC∗ +BC∗) = tr(AC∗) + tr(BC∗) = 〈A,C〉2 +
〈B,C〉2.

(A.3) 〈cA,B〉2 = tr(cAB∗) = c tr(AB∗) = c〈A,B〉2.

(A.4) 〈B,A〉2 = tr(AB∗) =
∑n

i=1

∑n
j=1 bij āij =

∑n
i=1

∑n
j=1 b̄ijaij = tr(B∗A) = tr(AB∗) =

〈A,B〉2.
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This proves that 〈A,B〉2 = tr(AB∗) is an inner product and thereforeMn(C) is an inner
product space.

Moreover,Mn(C) is finite dimensional and so, by Theorem A.6, it is complete. We have
therefore shown that Mn(C) is a Hilbert space over C.

Next we mention a few results from linear algebra.

Theorem B.2. [29, Theorem 1.1] Let V be a finite dimensional vector space, and let V1
and V2 be subspaces of V. Then

dim(V1) + dim(V2) = dim(V1 + V2) + dim(V1 ∩ V2).

In particular, if V = V1 ⊕ V2, i.e., V is the direct sum of V1 and V2, we have that

dim(V ) = dim(V1 + V2) = dim(V1) + dim(V2).

Theorem B.3 (QR factorization). [17, Theorem 2.6.1] If A ∈ Mn,m(C) and n > m,
there is a matrix Q ∈Mn,m(C) with orthonormal columns and an upper triangular matrix
R ∈Mm(C) such that A = QR. If m = n, Q is unitary. Moreover, if A is non-singular,
we may choose R in such a way that all of its diagonal entries are positive, and in this
case, the factors Q and R are both unique. If A ∈ Mn,m(R), then both Q and R may be
taken to be real.

See Section 1.2 for the definition of positive (semi)definite matrices.

Theorem B.4. [17, Theorem 7.2.6] Let A ∈ Mn(C) be positive semidefinite and let
k > 1 be a given integer. Then there exists a unique positive semidefinite Hermitian
matrix B such that Bk = A. We also have

(i) BA = AB and there is a polynomial p(t) such that B = p(A);

(ii) rank(B) = rank(A), so B is positive definite if A is;

(iii) B is real if A is real.

The matrix C − B∗A−1B is known as the Schur complement of M with respect to the
matrix A.

Lemma B.5. [2, Lemma 1.2.5] Let A ∈Mn(C) be positive definite Then

M =

[
A B

B∗ C

]
∈Mn+m(C)

is positive (semi)definite if and only if C −B∗A−1B is positive (semi)definite.
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Appendix C

Graph theory preliminaries

We collect here various basic graph theory definitions that will be used throughout the
thesis.

Definition C.1 (Undirected Graph). A simple undirected graph is a pair G = (V,E) in
which V , the vertex set, is finite and the edge set E ⊆ V × V = {(u, v) : u, v ∈ V } is a
symmetric binary relation on V such that (v, v) /∈ E for all v ∈ V.

In what follows all graphs are assumed to be simple and undirected.

Definition C.2 (Complement of a graph). Let G = (V,E) be a graph. The complement
of G is the graph which has the same vertices as G and its edges coincide with non-edges
of G. We denote the complement of G by G = (V,E), where (i, j) ∈ E if and only if
(i, j) /∈ E.

Definition C.3 (Induced subgraph). Given a subset A ⊂ V, the subgraph of G induced
by A is G[A] = (A,E[A]), where E[A] = {(u, v) ∈ E : u, v ∈ A}.

Definition C.4 (Complete Graph). We call a graph G = (V,E) complete if every pair
of distinct vertices in V is connected by an edge in E. We will denote complete graphs
on n vertices by Kn.

Definition C.5 (Clique, Stable set). A subset S ⊆ V is called a clique if (i, j) ∈ E for
all i 6= j ∈ S and a stable set if (i, j) /∈ E for all i 6= j ∈ S. The clique number of a graph
G is the maximum cardinality of a clique in G and is denoted by ω(G). Similarly, the
stability number of a graph G is defined as the maximum cardinality of a stable set in G
and is denoted by α(G).

It is easy to see that the clique and stability number are related in the following way

ω(G) = α(G),

with G the complement of the graph G.

Definition C.6 (Adjacency Set). The adjacency set of a vertex v ∈ V is the set of all
vertices u ∈ V such that (u, v) ∈ E. It is denoted by Adj(v). In other words

Adj(v) = {u ∈ V : (u, v) ∈ E}.
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If the adjacency set of a vertex v is empty, i.e., there are no other vertices adjacent to
v, we call v an isolated vertex.

Definition C.7 (Path). A path [v1, . . . , vk] in a graph G = (V,E) is a sequence of distinct
vertices such that (vj, vj+1) ∈ E for j = 1, . . . , k − 1. The path [v1, . . . , vk] is referred to
as a path between v1 and vk. We denote a path on n vertices by Pn.

Definition C.8 (Connected and Disconnected Graphs). A graph is called connected if
there exists a path between any two different vertices in the graph. If this is not the case
we say the graph is disconnected.

Definition C.9 (Cycle). A cycle of length k > 2 is a path [v1, . . . , vk, v1] in which
v1, . . . , vk are distinct. We will use the notation (v1, . . . , vk) to indicate that a set of
vertices form a cycle and denote arbitrary cycles of length k by Ck.

Definition C.10 (Null graph). The null graph is the graph with no vertices.

The null graph may be seen as a graph theoretic analogue of the empty set. Note that
the null graph is vacuously a clique and a stable set, since it has no vertices nor edges.
This can be seen in the same light as the empty set being both open and closed. The
usefulness of the null graph is discussed in [15].
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Appendix D

Newton’s identities

Newton’s identities relate sums of powers of roots of a polynomial with the coefficients
of the polynomial.

Theorem D.1 (Newton’s identities). [18] Let p(x) = xn + an−1x
n−1 + · · · + a0 be a

polynomial in C of degree n, with roots rj, j = 1, . . . , n. Define sk =
∑n

j=1 r
k
j . Then

sk + an−1sk−1 + · · ·+ a0sk−n = 0 if k > n

and
sk + an−1sk−1 + · · ·+ an−k+1s1 = −kan−k if 1 6 k 6 n.

Before we prove the theorem, we translate these identities to a matrix algebra setting.
To start with, let C be as follows:

C =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1

 .

Then the characteristic polynomial of C is given by p, since C is the companion matrix
of p. So the roots of p are exactly the eigenvalues of C. From this, it follows that the k-th
powers of the roots of p are the eigenvalues of Ck. Note that the sum of the eigenvalues
of Ck is equal to the trace of Ck. Consequently, we have that sk =

∑n
j=1 r

k
j =

∑n
j=1 λ

k
j =

tr(Ck), where λj, j = 1, . . . , n are the eigenvalues of C. We are now ready to prove the
theorem.

Proof of Theorem D.1. Let k > n. Since the trace is a linear function and p(C) =
Cn + an−1C

n−1 + · · ·+ a0, we have that

tr(Ck) + an−1 tr(Ck−1) + · · ·+ a0 tr(Ck−n) = tr(Ck + an−1C
k−1 + · · ·+ a0C

k−n)

= tr(Ck−n(Cn + an−1C
n−1 + · · ·+ a0))

= tr(Ck−np(C))
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By the Cayley-Hamilton theorem, p(C) = 0, therefore tr(Ck−np(C)) = 0 which completes
the proof for the case k > n.

Let 1 6 k 6 n. Our approach here is a bit different from the previous case and will
become clear as we go along. Let X = xI, x ∈ C. Note that, since p(C) = 0, we have the
following factorization

p(X) = (X − C)[Xn−1 + (C + an−1I)Xn−2 + (C2 + an−1C + an−2I)Xn−3 + · · ·
+ (Cn−1 + an−1C

n−2 + · · ·+ a1I)I].

To confirm that this factorization indeed holds it suffices to multiply the (X −C) factor
into the brackets.

Now, we wish to introduce the trace operation, however, the factor (X−C) complicates
matters. Fortunately, we know that X −C = xI −C is non-singular, if we choose x such
that it is not an eigenvalue of C. Then, for such an x, we have

(X − C)−1p(X) = Xn−1 + (C + an−1I)Xn−2 + (C2 + an−1C + an−2I)Xn−3 + · · ·
+ (Cn−1 + an−1C

n−2 + · · ·+ a1I)I.

We now take the trace on both sides and obtain

tr
[
(X − C)−1p(X)

]
= nxn−1 + tr(C + an−1I)xn−2 + · · ·

+ tr(Cn−1 + an−1C
n−2 + · · ·+ a1I),

(D.1)

since tr(I) = n and tr(XkA) = tr(xkIA) = xk tr(A) for any matrix A.

Our next goal is to show that p′(x) = tr [(X − C)−1p(X)] . To that end, let A = (X −
C)−1p(X). Observe that p(X) = p(xI) = p(x)I, hence A = p(x)(xI − C)−1. Therefore,

tr(A) = p(x) tr[(xI − C)−1].

Since the trace is equal to the sum of the eigenvalues and the eigenvalues of (xI − C)−1

are 1/(x− λ1), 1/(x− λ2), . . . , 1/(x− λn), we have that

tr(A) = p(x)

(
1

x− λ1
+

1

x− λ2
+ · · ·+ 1

x− λn

)
.

Using the fact that p(x) = (x − λ1)(x − λ2) · · · (x + λn), it is immediately clear that
tr [(X − C)−1p(X)] is in fact equal to p′(x), as we wished to show.

Finally, comparing the coefficients of p′(x) with the corresponding coefficients of the
right-hand side of (D.1) completes the proof. Indeed, equating the coefficient of xn−k−1

in p′(x) with the corresponding coefficient on the right-hand side of (D.1) gives

(n− k)an−k = tr(Ck + an−1C
k−1 + · · ·+ an−k+1C + an−kI)

or
tr(Ck + an−1C

k−1 + · · ·+ an−k+1C) = −kan−k,
since tr(an−kI) = nan−k. This completes the proof for the case 1 6 k 6 n, and we are
done.
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