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Group actions and ergodic theory
on Banach function spaces

Summary

This thesis is an account of our study of two branches of dynamical systems

theory, namely the mean and pointwise ergodic theory.

In our work on mean ergodic theorems, we investigate the spectral theory of

integrable actions of a locally compact abelian group on a locally convex vector

space. We start with an analysis of various spectral subspaces induced by the action

of the group. This is applied to analyse the spectral theory of operators on the

space generated by measures on the group. We apply these results to derive general

Tauberian theorems that apply to arbitrary locally compact abelian groups acting on

a large class of locally convex vector spaces which includes Fréchet spaces. We show

how these theorems simplify the derivation of Mean Ergodic theorems.

Next we turn to the topic of pointwise ergodic theorems. We analyse the Trans-

fer Principle, which is used to generate weak type maximal inequalities for ergodic

operators, and extend it to the general case of σ-compact locally compact Haus-

dorff groups acting measure-preservingly on σ-finite measure spaces. We show how

the techniques developed here generate various weak type maximal inequalities on

different Banach function spaces, and how the properties of these function spaces in-

fluence the weak type inequalities that can be obtained. Finally, we demonstrate how

the techniques developed imply almost sure pointwise convergence of a wide class of

ergodic averages.

Our investigations of these two parts of ergodic theory are unified by the tech-

niques used - locally convex vector spaces, harmonic analysis, measure theory - and

by the strong interaction of the final results, which are obtained in greater generality

than hitherto achieved.

Keywords

Tauberian theorems, harmonic analysis, group action, spectral theory, mean er-

godic theory, Transfer Principle, maximal inequalities, Banach function spaces, point-

wise ergodic theory
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Groep aksies en ergodiese teorie op Banach
funksieruimtes

Samevatting

Hierdie tesis is ’n verslag van ons bestudering van twee takke van dinamiese

stelselteorie, naamlik die middel en puntsgewyse teorie.

In ons werk in middel ergoiese teorie, ondersoek ons die spektraalteorie van inte-

greerbare aksies van ’n lokaal kompakte abelse groep op ’n lokaal konvekse ruimte.

Ons begin met ’n analise van verskeie spektrale deelruimtes wat deur die groep-aksie

gëınduseer word. Dit word toegepas om die spektraalteorie van operatore op die

ruimte voortgebring deur mate op die groep te analiseer. Ons pas hierdie resultate

toe om algemene Tauberse stellings af te lei wat toepasbaar is op arbitrêre lokaal

kompakte abelse groepe wat op ’n groot klas van lokaal kompakte vektorruimtes in-

werk - ’n klas wat Fréchet ruimtes insluit. Ons toon aan hoe hierdie stellings die

afleiding van middel ergodiese stellings vereenvoudig.

Daarna beskou ons die onderwerp van puntsgewyse ergodiese stellings. Ons

analiseer die Oordragsbeginsel, wat gebruik word om swak-tipe maksimale onge-

lykhede vir ergodiese operatore voort te bring, en brei die tegniek uit na die algemene

geval van σ-kompakte lokaal kompakte Hausdorff groepe wat maat-preserverend op

’n σ-eindige maatruimte inwerk. Ons toon aan hoe die tegnieke hier ontwikkel bring

voort verskeie swak-tipe maksimale ongelykhede op verskillende Banach funksieruimtes,

en hoe die eienskappe van hierdie funskieruimtes die swak-tipe ongelykhede wat ver-

werf word, bëınvloed. Laastens, wys ons hoe die tegnieke wat ontwikkel is byna-oral

puntsgewyse konvergensie van ’n wye klas van ergodiese gemiddeldes impliseer.

Ons ondersoeking van hierdie twee dele van ergodiese teorie word geünieer deur die

tegnieke wat gebruik word - lokaal konvekse ruimtes, harmoniese analise, maatteorie

- en deur die sterk interaksie tussen die finale resultate, wat in groter algemeenheid

as vantevore behaal word.

Sleutelwoorde

Tauber stellings, harmoniese analise, groep aksie, spektraalteorie, middel er-

godiese teorie, Oordragsbeginsel, maksimale ongelykhede, Banach funksieruimtes,

puntsgewyse ergodiese teorie
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Chapter 1

The scheme of this work

1.1 Overview of ergodic theory

Ergodic theory is a branch of dynamical systems theory where the long-term or

asymptotic behaviour of the system is studied. The abstract theory of dynamical

systems considered in this work is based on a distillation of experience in several fields

where concrete dynamical systems are essential. Physics of course provides a great

stimulus, as does number theory, where arguably ergodic theory has had even more

success. The dynamical systems viewpoint is also prominent in the representation

theory of topological groups [30] and even Ramsey theory [28]. One of the reasons

for these developments is the power of the abstract formulation of dynamics and the

ubiquity of questions of symmetry.

Perhaps surprisingly, it was in number theory, not physics, that ergodic ques-

tions concerning the asymptotic behaviour of systems first made an appearance.

As recounted in [36], Nicole Oresme (c. 1320-1382) had already anticipated Weyl’s

equidistribution result described below, and in his book Ad pauca respicientes used

it to prove that one cannot predict the position of planets long into the future, ren-

dering astrology devoid of meaning. In more modern times, one of the first profound

applications of the idea of examining the long term behaviour of a system was due

to Gauss, in his work on continued fractions. He found a limiting distribution (i.e. a

measure) that encodes the length of time the continued fraction algorithm will take

to approximate a given x ∈ (0, 1) by a rational number to a given degree of accuracy.

(See for example [2]).

1



2 CHAPTER 1. THE SCHEME OF THIS WORK

Of course the terms ergodicity and entropy were coined by the Austrian physicist

Karl Boltzmann in his work on statistical mechanics in the 1870s. The ergodic hy-

pothesis refers to the statement that if one takes the average of an observable over

time or over the phase space at a particular instant, one gets the same answer. Boltz-

mann’s goal was to develop statistical mechanics to the point where one could relate

macroscopic phenomena to the behaviour of the myriad elementary particles that

constitute the physical world. It is remarkable that he developed his theory in a time

where the atomic hypothesis of matter was in doubt.

In his work on celestial mechanics in the last decade of the 19th century, Henri

Poincaré introduced new statistical techniques to the study of dynamical systems.

He proved that if the system is closed (we would now say that the phase space is

compact), then the system would return infinitely often and arbitrarily closely to

any previous configuration. This notion is even more starkly expressed measure

theoretically, in what is known as the Poincaré Recurrence Theorem.

Returning to number theory, Hermann Weyl studied distribution problems in

number theory, greatly aiding the rise of statistical thinking in that deep and ancient

branch of mathematics. Bohl (1909), Weyl (1910) and Sierpinski (1910) proved that

if α is an irrational number, then the set {nα mod 1 : n ∈ N} is equidistributed

according to Lebesgue measure. Later in 1916, Weyl proved the same thing for {n2α

mod 1}, as did Vinogradov for the set {pnα mod 1}, where pn denotes the nth prime.

All these questions can be posed as an ergodic problem of certain dynamical systems.

Rosenblatt and Wierdl [40] is an excellent source for this material. At the forefront

of this line of thinking, we have for instance Bourgain [5] and [6], and Buczolich and

Mauldin [7]. These mathematicians consider far-reaching extensions of Birkhoff’s

original pointwise ergodic theorem. They show the pointwise convergence of averages

sampled on certain subsets of the natural numbers, such as the perfect squares. The

full ramifications of these results have yet to be fully explored.

In the 1930s, Erdős and Turán conjectured that any set of natural numbers with

positive upper Banach density must contain arbitrarily long arithmetic progressions.

This goes further than van der Waerden’s theorem of 1927, which states that if the

natural numbers are partitioned into a finite number of partitions, then at least one

of those partitions has arbitrarily long arithmetic progressions. The conjecture by

the two Hungarians was proved by another Hungarian, Szemerédi, in 1975. Hillel

Furstenberg [18] proved this result using ergodic theory, in particular multiple re-
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currence [18]. In conjunction with Katnelson and Ornstein, the proof was simplified

even further in [19]. The most spectacular success of this fusion of number theory

and ergodic theory in recent years has been Green and Tao’s proof that there are

arbitrarily long arithmetic progressions in the primes [23].

Broadly speaking, a measure-theoretic dynamical system consists of three ele-

ments: a Set X, a group G, and an action α, continuous in some sense, that binds

them together by mapping G into the group of automorphisms of X. In our work on

mean ergodic theorems, we take X to be a locally convex topological vector space, G

to be an abelian locally compact Hausdorff topological group and α to be a mapping

of G into the bicontinuous linear automorphism group Aut(X). This is made precise

in Definition 4.1.1. When dealing with pointwise ergodic theorems, X will be a σ-

finite measure space, G a locally compact Hausdorff group and α a mapping of G into

the group of measure preserving automorphisms of X. For the exact formulation, see

Definition 5.1.1.

The research contained in this thesis appears in two articles, [10] and [11]. The

first has already been published online on 25th February 2013, and the second has

been submitted and can be found at arxiv:1309.0125 [math.DS]. The material in

Sections 2.1, part of 2.2, 2.4 and Chapter 4 appears in [10]. The material in Sections

2.3, part of 2.2 and Chapters 3 and 5 appears in [11]. See Sections 4.5 and 5.7 for

further comments regarding the origin and attribution of the results.

1.2 Mean ergodic theorems

For the treatment of mean ergodic theorems, the aim of this thesis is to develop

enough spectral theory of integrable group actions on locally convex vector spaces

to prove Tauberian theorems, which are applicable to ergodic theory. A Tauberian

theorem is one where, given the convergence of a sequence or series in one sense, the

imposition of some condition on the sequence or series guarantees its convergence in

a stronger sense. The condition added is called a Tauberian condition. An excellent

overview of the subject, especially how it pertains to number theory, is given in

Korevaar [29]. It is noteworthy that Wiener proved a general Tauberian theorem

that has the Prime Number Theorem as a consequence. This proof, presented in

[43], is still one of the easiest proofs of that theorem.

The Tauberian theorems proved in Section 4.4 apply to the situation where a
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general locally compact abelian group acts on certain types of barrelled spaces, and

in particular all Fréchet spaces. This generalises the Tauberian theorem shown in

[15], which applies only to the action of the integers on a Banach space. We use these

theorems to simply derive mean ergodic theorems in a rather general context.

The bulk of our development of the mean ergodic theory consists of using spectral

theory to transfer properties and constructions on a locally compact abelian group G

to the topological vector space X on which it acts. Put another way, we use spectral

theory to derive properties of a dynamical system from harmonic analytic properties

of the group.

Firstly, we outline the correspondence between certain subsets of the Pontryagin

dual Ĝ and certain closed G-invariant subspaces of X, called spectral subspaces. This

work was initiated by Beurling, closely followed by Godement in [21] and extended

by many authors; we refer especially to [1],[51],[35] and [47].

Secondly, the action of G on X naturally generates many continuous linear map-

pings from X to itself, by associating to every finite Radon measure µ on G a con-

tinuous endomorphism on X, called αµ. We discuss some characteristics of such

maps, particularly how they relate to the spectral subspaces. Also important here is

how properties of µ that can be determined by harmonic analysis are transferred to

properties of αµ.

The Tauberian theorems 4.3.1 and 4.3.2 are the focal point of our work on mean

ergodic theorems, extending results of Dunford and Schwartz [15] to a very gen-

eral setting. Mean ergodic theorems are proved for very general dynamical systems,

involving arbitray locally compact Hausdorff groups acting on Fréchet spaces.

1.3 Pointwise ergodic theorems

Pointwise ergodic theorems have had an illustrious history spanning over 80 years

since G.D. Birkhoff first proved the foundational result in 1931. The proof of his

erogdic theorem has been so refined that one can give an elementary, leisurely demon-

stration in about two pages [26]. To work with more general ergodic averages however,

it seems one must still rely on a different approach. Indeed, one of the main tech-

niques that has been developed to prove pointwise ergodic theorems is supple enough

to deal with pointwise convergence phenomena for a great variety of different ergodic

averages, for different groups, function spaces and averages.
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This is the technique of maximal operators. The idea is that once one estimates

the behaviour of these maximal operators, proving the ergodic theorems becomes

quite simple. (We explain the proof strategy in Section 5.6 in the form of a three-

step programme). This is how the pointwise ergodic theorems are proved in [20] and

[40]. It is also how results on entropy and information are obtained in [36, Chapter

6].

In fact, Wiener [49] developed a method, later greatly embellished by Calderón

[8], for computing the requisite properties of the maximal operators, a method that

is the central theme of this work: the Transfer Principle. It is our goal to extend

the scope of this Principle and hence the scope of the maximal operator technique

in proving pointwise ergodic theorems. The Transfer Principle refers to a body of

techniques that allow one to transform certain types of operators acting on function

spaces over G to corresponding transferred operators acting on function spaces over

Ω, in such a way that many essential properties of the operator are preserved.

With regards to pointwise theorems and the technique of maximal operators, we

have four aims: firstly, to extend the Transfer Principle to a larger class of groups,

measure spaces and operators, secondly to broaden the reach of the techniques used

to determine the weak type of the transferred operator, thirdly to demonstrate how

properties of the function spaces on which the operators are defined influence the

weak type inequalities of the transferred operator, and finally to outline how these

results can be used to derive a number of new pointwise ergodic theorems.

We define the Transfer Principle in quite a general setting (Definition 5.1.2). If

the operator to be transferred - call it T - is linear, then G and Ω need only be σ-finite

(Definition 5.1.7) and if it is sublinear, then it must have separable and metrisable

range (Definiton 5.1.6). The determination of the weak type of the transferred oper-

ator - call it T#- rests on results requiring Ω to be countably generated and resonant

as defined just before Proposition 3.4.1. This fulfills the first aim.

Computing the weak type of the transferred operator T# is achieved with Corol-

lary 5.5.2, especially in combination with Lemma ??. A noteworthy feature of these

results is that they show how the most important factors determining the weak type

of T# are the fundamental functions associated with the function spaces defining the

weak type of T . In this way, the problem of computing the weak type of the trans-

ferred operator is reduced to computations involving certain well-behaved real-valued

functions. In particular, these results allow us to estimate the weak type of the max-
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imal operator associated with ergodic averages over a wide class of rearrangement

invariant Banach function spaces. This completes the second aim.

For the third aim, we use such properties as the Boyd and fundamental indices of

a rearrangement invariant Banach function space X and show how straightforward

weak type (p, p) inequalities of T can be transferred to weak type inequalites for T#

acting on X.

Finally, we address the fourth aim by proving pointwise ergodic theorems, trans-

ferring information obtained using Fourier analysis on the group to properties of the

ergodic averages, and information on the function space on which they act, that

is encoded in the fundamental function. The main results are Theorem 5.6.6 and

Corollaries 5.6.7 and 5.6.8.

The importance of the Transfer Principle in ergodic theory has long been ap-

preciated - see the excellent overview given in [3]. Apart from Calderón’s seminal

paper [8], this principle is treated in some detail in the monograph [9] and employed

extensively in [40]. In [34] the author makes use of Orlicz spaces to prove results

about the pointwise convergence of ergodic averages along certain subsets of the nat-

ural numbers. In [16] the Transfer Principle of Coifman and Weiss is extended to

Orlicz spaces with weight for group actions that are uniformly bounded in a sense

determined by the weighted Orlicz space.

1.4 Plan of the work on mean ergodic theorems

The plan of our work on mean ergodic theorems is as follows. Sections 2.4 and 2.1

contain some basic material on harmonic analysis and topological vector spaces. First,

there is a brief discussion on the harmonic analysis required and includes extensions

of known results, most notably Theorem 2.4.1. There follows some work on locally

convex topological vector spaces and vector-valued measures. These results form the

core of the techniques used to transfer information from the group to the topological

vector space upon which it acts.

In Section 4.1, we discuss integrable actions of G on E. We shall do so using gen-

eral topological considerations and employing a little measure theory of vector-valued

measures, in the hope that it will bring some clarity to the idea (Definition 4.1.1).

This definition elaborates on an idea introduced in [1] and is discussed elsewhere,



1.4. PLAN OF THE WORK ON MEAN ERGODIC THEOREMS 7

such as in [35], [47] and [51]. In this work, we stress the continuity properties that

a group action may have, and how such continuity properties can be analysed using

vector-valued measure theory. Next we introduce spectral subspaces by providing the

definitions that appear in [1], [35] and [21], namely Definitions 4.1.6 and 4.1.8. We

demonstrate that they are in fact the same. There is a third kind of spectral subspace

given in Definition 4.1.10. It is important because it is directly related to a given

finite Radon measure and provides a link to the associated operator. We show how

this type of spectral subspace is related to the first two mentioned. Finally we show

how to employ the tool of spectral synthesis in harmonic analysis to analyse spectral

subspaces. Here the highlight is Theorem 4.1.15.

We discuss properties of operators on E induced by finite Radon measures on

G in Section 4.2. A major theme is how properties of the Fourier transform of a

measure determine how the associated operator will act on spectral subspaces. This

underlines the intuition that the Fourier transform on the group side of an action

corresponds to spectral spaces on the vector space side. For the development of

the Tauberian theorems, we need to know how to transfer convergence properties of

sequences of measures to convergence properties of sequences of operators. This is

done in Proposition 4.2.3. We prove these results by applying our knowledge of the

relationship between a convergent sequence of measures and its sequence of Fourier

transforms as set out in Section 2.4, as well as the link between spectral synthesis

and spectral subspaces.

Having developed enough spectral theory, we come to the highlight of this work:

the Tauberian theorems 4.3.1 and 4.3.2. Apart from being generally applicable to

situations where a locally compact abelian group G acts on a Fréchet space X, it

also handles general topologies of the action − where the action is continuous in the

weak or strong operator topologies as well as intermediate topologies. We also discuss

some general cases in Remark 4.3.3 where the hypotheses of the Tauberian theorems

are automatically satisfied.

In Section 4.4 we show how, from the Tauberian results, we can quickly deduce

mean ergodic theorems for general locally compact abelian groups acting on Fréchet

spaces.
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1.5 Plan of the work on pointwise ergodic theorems

Let us briefly describe the organisation of the our work on pointwise ergodic theorems.

In Section 5.1, we define the Transfer Principle and analyse it in some detail. This

involves quite intricate measure-theoretic considerations, including the development

of a theory of locally Bochner integrable functions in parallel with the classical theory

of Bochner integrable functions.

In Section 3.1 we bring to mind some basic constructions and definitions in the

theory of rearrangement invariant Banach function spaces. We emphasise how in the

general theory a central role is played by the fundamental function of such spaces,

and how a great deal of their structure and behaviour is reflected in this function.

Propositions 3.4.2 and 3.4.3 extend work of O’Neil [33] on tensor and integral products

by showing how under certain conditions the hypotheses of Theorems 8.15 and 8.18

in [33] can be weakened. We also estimate other integrals that arise naturally for

functions on product spaces (Proposition 3.4.1).

Section 5.5 contains the main results for estimating the weak type of the trans-

ferred operator, namely Corollary 5.5.2, and is based on the work of the previous two

sections including an extension of an inequality of Kolmogorov (Theorem 5.4.1).

In the final part of the work, Section 5.6, we explain a general method for deriving

pointwise ergodic theorems from maximal inequalities. This reduces the tack of

proving almost everywhere convergence to checking certain group theoretic properties

of the desired average using harmonic analysis, in particular the Fourier transform.

We show again how properties of the averages, the space acted upon and the nature

of the action interact to yield the almost everywhere convergence of ergodic averages.



Chapter 2

Harmonic analysis and locally

convex vector spaces

The mean and pointwise ergodic theorems that are our ultimate goal depend on a

thorough understanding of two very subtle subjects, namely that of locally convex

topological vector spaces and harmonic analysis. Both have been central to the

development of 20th century mathematics and are associated with the great names in

analysis and number theory. We bring to mind some of the most important objects

and constructions in both.

For the material on locally convex spaces we draw principally from [38], but

also [24] and [45] for more advanced information. For harmonic analysis we follow

Folland [17], Rudin [41] and Katznelson [25]. Folland also deals with nonabelian

groups, taking the representation theoretic viewpoint, whereas Rudin covers abelian

group theory in detail, going more deeply into the structure theory of such groups.

Because we are dealing with topological group actions, quite a bit needs to be

said about the way measure spaces (such as the group) interact with vector spaces.

This leads us to vector-valued measure theory, which is masterfully treated by Diestel

and Uhl [14] and Ryan [44].

In Section 2.1 we discuss the algebraic concept of a dual pair of Banach spaces

and how one can use it to define three of the most important topologies on a vector

space: the weak, Mackey and strong topologies. These will play an essential role in

the mean ergodic theory.

In Section 2.2 we develop extensions of the standard vector-valued measure theory.

9
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In the mean ergodic theory, this extension is crucial to understanding the different

ways in which a group can act on a vector space. Section 4.1 relies heavily upon it. In

the pointwise ergodic theory, it will be crucial to working with the transfer principle,

in particular proving properties of the transferred operator in Section 5.1.

In Section 2.3 we shall use this theory of vector-valued measures combined with

results on injective and projective tensor products of locally convex vector spaces

to work with product measure spaces. This will be needed in the pointwise theory

where we must frequently work with the Cartesian product of the group with another

measure space. The vector-valued measure approach allows us to effectively deal with

these questions.

Section 2.4 covers harmonic analysis, including extensions of known results and

applications of the convex space theory to spaces that naturally arise out of the

harmonic analysis itself.

We shall denote the Haar measure on the locally compact group G by the symbol

h.

One final notational convention: if A is a measurable subset of a measure space

(Ω, µ), for brevity we shall write |A| := µ(A). Likewise, if K is a measurable subset

of the locally compact group G, we shall denote by |K| the Haar measure of K.

2.1 Locally convex vector spaces

We now mention some aspects of the theory of locally convex topological vector

spaces. A pair of complex vector spaces (E,E′) is said to be a dual pair if E′ can be

viewed as a separating set of functionals on E and vice versa. For example, a Banach

space X and its dual X∗ are in duality.

The spaces E and E′ induce upon each other certain topologies via their duality.

We denote the smallest such topology, the weak topology, by σ(E,E′), and the largest,

the strong topology, by β(E,E′). The latter is generated by sets of the form A◦ =

{x ∈ E : |〈x, a〉| ≤ 1 for all a ∈ A}, as A ranges over all σ(E′, E)-bounded subsets

of E′. The set A◦ is called the polar of A. There is also the Mackey topology,

called τ(E,E′), which is the finest locally convex topology on E such that under this

topology, E′ is exactly the set all continuous linear functionals on E.

Suppose (E,E′) and (F, F ′) are dual pairs. The set of all σ(E,E′) − σ(F, F ′)-

continuous linear mappings between topological vector spaces E and F is denoted
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by Lω(E,F ). The set of all β(E,E′)− β(F, F ′)-continuous linear mappings between

topological vector spaces E and F is denoted by Lσ(E,F ).

Now any linear map T : E → F is σ(E,E′)−σ(F, F ′)-continuous if and only if it is

τ(E,E′)− τ(F, F ′)-continuous. Also, if T : E → F is σ(E,E′)−σ(F, F ′)-continuous,

then it is β(E,E′)− β(F, F ′)-continuous. Hence Lω(E,F ) ⊂ Lσ(E,F ).

A linear map from a Fréchet space X to a locally convex topological vector space

is continuous if and only if it is bounded. Hence the set B(X) of all bounded linear

mappings from X to itself is precisely the set of all τ − τ and hence σ−σ-continuous

linear mappings. On a Fréchet space, the τ and β topologies are the same, so in this

case we have Lω(X) = Lσ(X) = B(X). Because of this, we automatically view a

Fréchet space as a pair in duality, given as (X,X∗).

A set A ⊂ E is said to be bounded if for every neighbourhood V ⊂ E of the

identity, there is a λ > 0 such that A ⊆ λV .

The weak operator topology (wot) and the strong operator topology (sot) can

be described in terms of dual pairs. The pair (Lω(E), E ⊗ E′) is in duality via the

bilinear form

〈T, x⊗ y〉 := y(T (x)).

(Here ⊗ denotes the algebraic tensor product between the two vector spaces.) Then

the wot on Lω(E) is generated by the polars of all finite subsets of E ⊗ E′. The

sot is generated by polars of the form A⊗B where A is a finite subset of E and B

a ξ-equicontinuous subset of E′. (This condition on B means that for every ε > 0,

there is a ξ-neighbourhood V of 0 in E such that b(V ) ⊆ [−ε, ε] for all b ∈ B.)

The theory of locally convex topological vector spaces is at the same time notori-

ously tricky and vastly general. Let us include two short results demonstrating some

of the techniques required to prove facts about different locally convex toplogies, and

how these topologies interact.

Lemma 2.1.1. Let (E,E′) and (F, F ′) be two pairs of vector spaces in duality. Sup-

pose that t : E → F and its transpose t′ : F ′ → E′ are both bijective linear maps.

Then t is a homeomorphism between E and F when both are given their weak topolo-

gies, their Mackey topologies or their strong topologies.

Proof. By [38, Ch. II, Prop 12, p38], both t and its inverse t−1 are continuous when

E and F have their weak topologies.
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Hence by [38, Ch. III, Prop 14, p62], both t and its inverse are continuous when

E and F have their Mackey topologies.

Finally, suppose that both E and F have their strong topologies. We show that

t is β(E,E′) − β(F, F ′)-continuous. If U ⊂ F is a neighbourhood in F , then under

the β(F, F ′)-topology there is a B ⊂ F ′ such that B◦ ⊆ U . Now as shown above,

t′ : F ′ → E′ is σ(F ′, F )− σ(E′, E)-continuous, so t′(B) is σ(E′, E)-bounded in E′.

By [38, Ch. II, Lemma 6, p39], (t−1(B◦))◦ = t′(B◦◦). By [38, Ch. II, Theorem 4,

p35] and [38, Ch. IV, Lemma 1, p44], B◦◦ ⊆ F ′ is also bounded. Hence by the weak

continuity of t−1, so is (t−1(B◦))◦.

Therefore t−1(B◦) is a neighbourhood in the β(E,E′)-topology, proving the con-

tinuity of t−1. In exactly the same way we can prove the strong continuity of t.

Lemma 2.1.2. Let (E,E′) be a dual pair with E barreled and let (tγ)γ∈Γ be a net

of continuous functionals in the β(E,E′)-topology. Suppose that tγ → t pointwise on

E. Then t is also β(E,E′)-continuous.

Proof. This is essentially the Banach-Steinhaus theorem. By [38, Ch. IV, Theorem

3, p69], the set {tγ} is equicontinuous on E. This means that for any ε > 0, there is

a neighbourhood U ⊂ E such that |tγ(U)| ≤ ε for all γ ∈ Γ. Then if x ∈ U ,

t(x) = lim
γ→∞

tγ(x) ∈ [−ε, ε].

Thus t is continuous too.

Finally, we frame a well-known mode of convergence in terms of a particular

topology constructed by the techniques developed in [38]. In the sequel, we shall

require several such reformulations, so it might be of use to see the process in action

in a simple case. Recall that M(X) is the space of all Radon measures on X.

Lemma 2.1.3. If X is a locally compact Hausdorff space and (fn) ⊂ Cb(X) is a

bounded sequence of continuous functions converging uniformly on compact subsets

of X, then (fn) is convergent in the σ(Cb(X),M(X))-topology.

Proof. For any Y ⊂ X and g ∈ Cb(X), let ‖g‖Y = sup{|g(y)| : y ∈ Y }. Let A =

sup{‖fn‖X}. Obviously, (fn) converges to a continuous function f , and ‖f‖X ≤ A.

For any µ ∈M(X), we must show that∣∣∣∣ ∫
X
fn dµ−

∫
X
f dµ

∣∣∣∣→ 0
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as n→∞.

Let ε > 0 be given. As µ is a finite Radon measure on X, there is a compact

subset K ⊂ X such that µ(X\K) < ε/4A. Furthermore, (fn) converges uniformly to

f on K, and so there is an N ∈ N such that for all n ≥ N , ‖fn − f‖K < ε/2µ(K).

Hence for all n ≥ N ,∣∣∣∣ ∫
X
fn dµ−

∫
X
f dµ

∣∣∣∣ ≤ ∫
X
|fn − f | dµ =

∫
X\K

|fn − f | dµ+

∫
K
|fn − f | dµ

≤ ‖fn − f‖X\Kµ(X\K) + ‖fn − f‖Kµ(K)

< 2A.ε/4A+ (ε/2µ(K))µ(K)

= ε.

2.2 Basics of vector-valued measure theory

We make some remarks on measurable vector-valued functions on a measure space

(Ω, µ). We require an extension of the theories of Bochner and Pettis integrable func-

tions to functions taking values not in a Banach space, but more general locally convex

vector spaces. We will also need a theory of locally Bochner integrable functions. Let

(Ω, µ) be a σ-finite measure space and E a complete locally convex vector space whose

topology is defined by the family {pα}α∈Λ of seminorms. Here the theory and proofs

closely follow the standard treatments for Banach space-valued functions, such as [44]

or [14]. A µ-simple measurable function f : Ω → E is a function f =
∑N

i=1 χEixi,

where E1, . . . , EN are µ-measurable subsets of Ω and x1, . . . , xN ∈ E. A function

f : Ω → E is said to be µ-measurable if there is a sequence of µ-simple measurable

functions (fn) that converges µ-almost everywhere to f .

A function f : Ω → E is said to be µ-weakly measurable if the scalar-valued

function e′f is µ-measurable for every e′ ∈ E′ and Borel measurable if for every

open subset O of E, f−1(O) is a measurable subset of Ω. Finally, f is µ-essentially

〈separably/ metrisably〉 valued if there is a µ-measurable subset A of Ω whose comple-

ment has measure 0, such that f(A) is contained in a 〈separable/metrisable〉 subspace

of E.

It is worth noting that there are locally convex separable vector spaces that are

not metrisable. The strict inductive limit topology discussed in [38, Section VII.1]
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can be used to construct such topologies.

Theorem 2.2.1. (Pettis Measurability Theorem) For a σ-finite measure space

(Ω, µ) and dual pair (E,E′), the following are equivalent for a µ-essentially metrisably

valued function f : Ω→ E:

1. f is µ-measurable

2. f is µ-weakly measurable and essentially separably valued

3. f is Borel µ-measurable and essentially separably valued.

The proof of this theorem is a straightforward adaptation of the proof of the

Banach space-valued proof presented in [44]. In particular, if E is separable and

metrisable, the measurability and weak measurablility of a function are equivalent.

In the proof of this Theorem in [44], the following fact is quoted without proof. It

remains crucial when handling metrisably valued measurable functions, so we record

it here for completeness.

Lemma 2.2.2. In a separable metric space X, any open set U is the union of count-

ably many closed balls.

Proof. Let {xi} be a countable dense subset of U . For each xi, define

di = d(xi, U
c) = inf{d(xi, u

′) : u′ ∈ U c}

ri = di(1− 1/2i)

Bi = {x ∈ X : d(x, xi) ≤ ri}.

Then the sets Bi are closed and Bi ⊂ Ui. The proof will be complete when we show

that U = ∪iBi.
Take any u ∈ U . If u is an isolated point, then u ∈ {xi} and so u ∈ Bi for some i.

Otherwise, let d = d(u, U c) and S = {i : d(u, xi) < d/2}. By the triangle inequality,

for any u′ ∈ U c and i ∈ S, we have

d(u, u′) ≤ d(u, xi) + d(xi, u
′).

Taking infimums over the u′ first on the left and then on the right of the inequality

and using the fact that i ∈ S, we get d < d/2 + di and so

d/2 < di.
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As S is infinite, we can find an i such that d/2 < ri. Hence d(xi, u) < ri and

u ∈ Bi.

We define the integral of a simple measurable function s =
∑N

i=1 χEixi over a set

A ⊂ Ω of finite measure by defining∫
A
s dµ =

n∑
i=1

µ(A ∩ Ei)xi.

Turning to the question of the integrability of vector-valued functions, we shall re-

quire two different integrals. We define the integral of a µ-simple measurable function

f =
∑N

i=1 χEixi to be ∫
Ω
f dµ =

∫
Ω

N∑
i=1

xiχi dµ =
N∑
i=1

µ(Ei)xi (2.1)

Definition 2.2.3. Consider a σ-finite measure space (Ω, µ) and dual pair (E,E′)

under a topology ξ and let f : Ω→ E be a vector valued function.

1. If f is µ-weakly measurable, we say that it is µ-Pettis integrable if for every

µ-measurable subset A ⊂ Ω there is an element
∫
A f dµ ∈ E such that for all

e′ ∈ E′, 〈 ∫
A
f dµ, e′

〉
=

∫
A

〈
f(ω), e′〉 dµ(ω). (2.2)

2. If f is µ-measurable and Pettis integrable, we say that it is µ-Bochner inte-

grable if there exists a sequence (fn) of µ-simple measurable functions converg-

ing a.e. to f , such that for every equicontinuous subset A ⊂ E′∫
Ω

sup
e′∈A
|〈f(x)− fn(x), e′〉| d|µ|(x) −→ 0 (2.3)

as n→∞.

In the definition of the Bochner integral, the hypothesis that the function is Pettis

integrable ensures that the sequence (
∫

Ω fndµ) is not only Cauchy, but convergent.

We define the Bochner integral of a µ-Bochner integrable function by the limit∫
Ω
f(x) dµ(x) = lim

n→∞

∫
Ω
fn(x) dµ(x).

The proof of the existence of this limit and its independence from the particular

sequence of µ-simple measurable functions chosen, works exactly as in the Banach-

valued case.
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Lemma 2.2.4. If f is µ-Bochner integrable from the measure space (Ω, µ) into the

locally convex vector space E, then for any equicontinuous A ⊂ E′ we have

sup
e′∈A

∣∣〈 ∫
Ω
f dµ, e′

〉∣∣ ≤ ∫
Ω

sup
e′∈A
|〈f(x), e′〉| d|µ|(x). (2.4)

Equivalently, one can define local Bochner integrability in terms of the seminorms

definining the topology on E. In this language, f is locally Bochner integrable if there

exists a sequence of measurable simple functions (fn) converging almost everywhere

to f and satisfying

lim
n→∞

∫
A
pα(f − fn) = 0

for every finitely measurable subset A ⊂ Ω and every seminorm pα.

These integrability concepts will be crucial to understanding continuity properties

of the action of a group on a locally convex vector space and will be used in Definition

4.1.1.

2.3 Product spaces via vector-valued measure theory

On the space of measurable functions over a measure space (Ω, µ) we can define a

family of seminorms pA(f) :=
∫
A |f | dµ as A ranges over all subsets of Ω of finite

measure. Those measurable functions for which pA(f) is finite for all A of finite

measure form the locally convex vector space of locally integrable functions. This

space is called Lloc(Ω) and is topologised by the family {pA}.
If we have two measure spaces (Ω1, µ1) and (Ω2, µ2) then we can consider the

family of seminorms pA×B defined on the set of measurable functions on (Ω1×Ω2, µ1×
µ2) by setting pA×B(f) =

∫
A×B |f | dµ1×µ2 and define Lr−loc(Ω1×Ω2), the space of

all rectangular locally integrable functions, to consist of those measurable functions

for which all such seminorms are finite. As with the locally integrable functions, we

use the family {pA×B} to define the topology on Lr−loc(Ω1 × Ω2).

In the category of locally convex spaces, it is possible to topologise the tensor

product of two spaces in many ways. Two such tensor topologies can be distinguished:

the projective tensor product used above and the injective tensor product. Here is

one of two results on projective tensor products that we shall need.

Proposition 2.3.1. If (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) are two σ-finite measure spaces,

then there is a continuous linear injection ι1 : Lr−loc(Ω1 × Ω2)→ Lloc(Ω1)⊗̂πLloc(Ω2).



2.3. PRODUCT SPACES VIA VECTOR-VALUED MEASURE THEORY 17

Proof. The space Lloc(Ω1) may be recognised as the projective limit of the family of

spaces {L1(A)}, as A ranges over all finitely measurable subsets in Σ1 and mappings

{rBA : L1(B) → L1(A)} where B ⊇ A and rBA is the restriction map. Similarly for

Lloc(Ω2). Hence by [24, Theorem 15.2], Lloc(Ω1)⊗̂πLloc(Ω2) is the projective limit of

the family L1(A)⊗̂πL1(B), as A and B range over all finitely measurable subsets of

Ω1 and Ω2 respectively.

Now L1(A)⊗̂πL1(B) ' L1(A × B) as shown for example in [44]. As the re-

striction maps rA×B : Lr−loc(Ω1 × Ω2) → L1(A × B) are well-defined and con-

tinuous, from the universal property of the projective limit (as described in [31,

Chapter 3.4] or [48, Appendix L]) there is a unique continuous linear mapping

ι1 : Lr−loc(Ω1 × Ω2) → Lloc(Ω1)⊗̂πLloc(Ω2) such that the following diagrams com-

mute for all finitely measurable A ∈ Σ1 and B ∈ Σ2.

Lr−loc(Ω1 × Ω2)

L1(A×B)

Lloc(Ω1)⊗̂πLloc(Ω2)
ι1

rA×B
rA ⊗ rB

It is clear from this diagram that ι1 is injective: if f and g are distinct elements

of Lr−loc(Ω1 × Ω2), then there is some rectangle A×B on which they are not equal

a.e.; this means that rA×B(f − g) 6= 0 and so ι1(f − g) 6= 0.

We now note the result about the injective product that we shall employ, namely

that if X is locally compact Hausdorff and E is a complete locally convex vector

space then

C(X,E) ' C(X)⊗̂εE

where C(X,E) and C(X) denote respectively the continuous E-valued and C-valued

functions on X equipped with the compact-open topology and ⊗̂ε denotes the com-

pletion of the injective tensor product of the two spaces. This result is proved in [24,

Corollary 3, Section 16.6].

The locally convex space of all locally Bochner integrable E-valued functions is

called Lloc(Ω, E) and its topology is given by the family of seminorms πA,α defined

by πA,α(f) =
∫
A pα(f) dµ, where A is a subset of Ω of finite measure and pα is one

of the seminorms that defines the topology on E.
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In the case where E is a Banach space, it is well-known that L1(Ω, E) ' L1(Ω)⊗̂πE,

which is proved in detail in [44] and [14]. From this fact, we can construct a similar,

though weaker, relation between Lloc(Ω, E) and Lloc(Ω)⊗̂πE where E is a complete

locally convex space, which is given in the following lemma.

Lemma 2.3.2. There is a naturally defined continuous injective mapping ι2 : Lloc(Ω, E)→
Lloc(Ω)⊗̂πE.

Proof. We shall work once more with restriction maps as we did in Proposition

2.3.1. Any locally convex space E is the projective limit of a family of Banach spaces

Eα. For every α, let qα : E 7→ Eα be the continuous linear mapping induced by the

projective limit. Then we can define q′α : Lloc(Ω, E)→ Lloc(Ω, Eα) to be the mapping

f 7→ qα ◦ f .

For any subset A ⊆ Ω of finite measure, define rA : Lloc(Ω, E) → Lloc(A,E) to

be the restriction map f 7→ f
∣∣
A

.

Now we can define maps πA,α : Lloc(Ω, E) → L1(A,Eα) by setting πA,α := rA ◦
q′α = q′α ◦ rA. On the other hand, there are the mappings rA ⊗ qα : Lloc(Ω)⊗̂πE →
L1(A)⊗̂πEα. Identifying L1(A)⊗̂πEα and L1(A,Eα), we see that Lloc(Ω)⊗̂πE is the

projective limit of the family {L1(A,Eα)}. By the universal property of the projective

limit, there must be a unique mapping ι2 : Lloc(Ω, E) → Lloc(G)⊗̂πE such that the

diagrams

Lloc(Ω, E)

L1(A,Eα)

Lloc(Ω1)⊗̂πE
ι2

πA,α
rA ⊗ qα

commute for all α and finitely measurable A. From these diagrams the injectivity of

ι2 is clear.

There is a strong link between the spaces Lr−loc(G × Ω), Lloc(Ω, Lloc(G)) and

Lloc(G)⊗̂πLloc(Ω) that builds on Proposition 2.3.1 and Lemma 2.3.2. (Here G is a

locally compact Hausdorff group acting on the measure space Ω.) To establish this

link, we need the following elementary lemma.
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Lemma 2.3.3. If (Ω1, µ1) and (Ω2, µ2) are σ-finite measure spaces then the collection

of rectangular simple functions with support of finite measure is dense in Lr−loc(Ω1×
Ω2).

Proof. Let f ∈ Lr−loc(Ω1 × Ω2) be a [0,∞]-valued function. To prove the Lemma,

it suffices to show that there is an increasing sequence (fn) of non-negative rectan-

gular simple functions with support of finite measure such that limn→∞ fn(ω1, ω2) =

f(ω1, ω2) µ1 × µ2-a.e., because then by the Monotone Convergence Theorem

lim
n→∞

∫
A×B

|f − fn| dµ1 × µ2 = 0

for any µ1 × µ2-finite rectangle A×B. By [42, Theorem 1.17] there is an increasing

sequence of simple functions (gn) converging pointwise a.e. to f . We may assume

that each gn has µ1 × µ2-finite support: as Ω1 ×Ω2 is σ-finite, there is an increasing

sequence of finitely measurable sets (An) whose union is all of Ω1 × Ω2. Then the

sequence (gnχAn) has all the desired properties.

Let us observe how a simple function with finite-measured support can be ap-

proximated by a rectangular simple function of finite support. Fix an ε > 0. If

g =
∑m

i=1 χEici is a simple function with finite-measured support, the measurability

of each Ei in Ω1 × Ω2 implies that there is a set E′i ⊆ Ei such that E′i is the union

of finitely many rectangles and µ1 × µ2(Ei\E′i) < ε/2i. Then g′ =
∑m

i=1 χE′ici is a

rectangular simple function and g′ differs from g on a set of measure at most ε, and

g′ ≤ g.

Starting from the sequence (gn), define fn to be the approximation of gn as

described in the previous paragraph such that supp(fn+1) ⊇supp(fn) and

supp(gn)\supp(fn) < 1/n

for all n ∈ N. Clearly,

lim
n→∞

fn(ω1, ω2) = lim
n→∞

gn(ω1, ω2) = f(ω1, ω2)

for a.e. (ω1, ω2) ∈ Ω1 × Ω2, proving the Lemma.

Define ι3 : Lr−loc(G× Ω)→ Lloc(Ω, Lloc(G)) by setting f 7→ F where F (ω) = fω

and where fω(t) := f(t, ω). If f is a rectangular simple function then fω is a simple

function on G for every ω ∈ Ω and so for any subsets A ⊂ Ω and B ⊂ G of finite

measure, ∫
A

∫
B
|fω(t)| dt dµ(ω) <∞,
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which shows that ι3(f) is a simple function in Lloc(Ω, Lloc(G)). Furthermore, as

by Lemma 2.3.3 f ∈ Lloc(G × Ω) is the limit of rectangular simple functions, so

is F := ι3(f), implying the measurability of F . Denoting by pB the seminorm

g 7→
∫
B |g| dh on Lloc(G),∫

A
pB(F (ω)) dµ(ω) =

∫
A

∫
B
|f | dtdµ(ω) <∞,

proving the well-definedness and continuity of ι3. Clearly ι3 is injective. The map-

pings ι1, ι2 and ι3 are related by the following diagram.

Lr−loc(G× Ω)

Lloc(Ω, Lloc(G))

Lloc(Ω)⊗̂πLloc(G)
ι1

ι2ι3

The commutativity of this diagram can be checked for simple functions and ten-

sors. As these collections are dense in their respective spaces, the continuity of the

arrows yields the desired commutativity.

There is also a relation between the spaces Lloc(Ω, C(G)) and Lloc(Ω)⊗̂εC(G) '
C(G,Lloc(Ω)) that is of interest.

Lemma 2.3.4. The space Lloc(Ω, C(G)) may be continuously embedded in C(G,Lloc(Ω)).

Proof. Consider the mapping ι2 : Lloc(Ω, C(G))→ Lloc(Ω)⊗̂πC(G) given in Lemma

2.3.2, the canonical injection i : Lloc(Ω)⊗̂πC(G) → Lloc(Ω)⊗̂εC(G) and the isomor-

phism Lloc(Ω)⊗̂εC(G) ' C(G,Lloc(Ω)). The composition of these maps gives us the

required continuous linear injection of Lloc(Ω, C(G)) into C(G,Lloc(Ω)).

Lemma 2.3.5. Let f be an element of Lloc(Ω, C(G)). Then the function f ′(t, ω) :=

f(ω)(t) defined on (G× Ω, h× µ) is measurable.

Furthermore, if f has metrisable range then f ′ satisfies the following restricted

Fubini theorem: for any A ⊆ Ω of finite measure and compact K ⊂ G,∫
A

∫
K
f ′(t, ω) dtdµ =

∫
K

∫
A
f ′(t, ω) dµdt. (2.5)
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Proof. The function f is measurable, which means by definition that there is a

sequence (fn) of C(G)-valued simple functions converging µ-a.e. to f . For a C(G)-

valued simple function g, the function g′(t, ω) := g(ω)(t) is easily seen to be measur-

able.

Now for µ-a.e. ω ∈ Ω, fn(ω) → f(ω) in C(G). In particular, for any t ∈ G,

fn(ω)(t) → f(ω)(t). This is synonymous with the expression f ′n(t, ω) → f ′(t, ω),

which implies the measurability of f ′.

We turn now to the Fubini-type result. Let M be the subspace (in the rela-

tive topology) of all elements in Lloc(Ω, C(G)) with metrisable range. Consider the

following diagram.

M

Lloc(Ω)

C(G)

C

∫
A

∫
K

∫
A

∫
K

HereA is a subset of Ω of finite measure andK is a compact subset ofG. The maps

are naturally defined:
∫
A : Lloc(Ω, C(G)) → C(G) sends an F to

∫
A F (ω) dµ which

is well-defined because of the local integrability of F ;
∫
K : Lloc(Ω, C(G)) → Lloc(Ω)

sends an F to F̃ (ω) :=
∫
K F (ω) dh. The well-definedness of this map depends on

the Pettis Measurability Theorem 2.2.1, because the functional f 7→
∫
K f dt is a

continuous linear functional on C(G). The maps
∫
A : Lloc(Ω)→ C and

∫
K : C(G)→

C are defined in the obvious way.

So the arrows of the diagram are all continuous linear mappings. It is easy to see

that the diagram commutes for all simple functions in Lloc(Ω, C(G)). As the simple

functions form a dense subset, the commutativity of the diagram and the validity of

(2.5) is proved.

Alternatively, in the case that G is second countable, one can use the following

lemma to prove the measurability of f ′. It is an extension of [42, Ch. 7, exercise

8a)]. One of the reasons for including this result is to contrast the direct approach

in measure theory with our approach of using vector valued measure theory. Indeed

the previous lemma is stronger than the next one.
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Lemma 2.3.6. Let X be a second countable metric space with Borel σ-algebra ΣX

and Y a measure space with σ-algebra ΣY . Let f be a complex-valued function defined

on X × Y . Suppose that for almost every x ∈ X, the cross sections fx(y) := f(x, y)

are measurable and that for almost every y ∈ Y the cross sections fy(x) := f(x, y) are

continuous. Then f is measurable with respect to the σ-algebra generated by ΣX×ΣY .

Proof. We shall suppose, without loss of generality, that f is real-valued. For any

a ∈ R, we must show that f−1[a,∞) is a measurable subset of X × Y . We do this

by constructing measurable subsets En,m ⊂ X × Y for all m,n ∈ N such that⋃
n∈N

⋂
m∈N

Em,n = f−1[a,∞).

For the remainder of the proof, let Q be a countable dense subset of X. For

each n ∈ N, let Vi be the open ball of radius 1/2n centred on qi ∈ Q. Define

An to be the countable collection of pairwise disjoint measurable subsets of X with

nonempty interior of diameter less than 1/n where we set A1 = V1 and for i > 1, set

Ai = Vi\(A1
⋃
. . .
⋃
An−1). We remove empty sets and renumber if necessary.

Now for any A ∈ An, let fA be a function on Y defined by

fA(y) = inf
q∈Q

⋂
A
{fq(y)} = inf

q∈Q
⋂
A
{f(q, y)}.

As fA the the infimum of a countable collection of measurable functions, it is itself

measurable.

For any m,n ∈ N we define

Em,n =
⋃

A∈An

A× f−1
A

[
a− 1

m
,∞
)
,

which is clearly a measurable subset of X × Y . We shall show that
⋃
n∈N

⋂
m∈N

En,m ⊆

f−1[a,∞).

If (x, y) ∈
⋃
n∈N

⋂
m∈NEn,m, then for some n and all m, (x, y) ∈ En,m. Now x ∈ A

for some A ∈ An. For any q ∈ A
⋂
Q, fq ≥ fA, so

f−1
q

[
a− 1

m
,∞
)
⊇ f−1

A

[
a− 1

m
,∞
)

for all m ∈ N. Therefore fA(y) ≥ a− 1/m and so fq(y) ≥ a− 1/m for all q ∈ A
⋂
Q

and m ∈ N. As some subsequence in Q
⋂
A converges to x and as fy is continuous
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on X, this means that f(x, y) ≥ a − 1/m for all m ∈ N. Hence f(x, y) ≥ a and

(x, y) ∈ f−1[a,∞).

Now we complete the proof by demonstrating the reverse inclusion f−1[a,∞) ⊆⋃
n∈N

⋂
m∈N

En,m. If (x, y) ∈ f−1[a,∞), then for any m ∈ N, f(x, y) > a − 1/m. Hence

if we set U = {ω : f(ω, y) > a− 1/m}, then U is an open subset of X, owing to the

continuity of fy. Clearly x ∈ U . Let n ∈ N be a number such that d(x, U c) > 1/n.

Note that x ∈ A for some A ∈ A2n.

In fact A ⊂ U , because for any a ∈ A and u′ ∈ U c,

d(a, u′) +
1

2n
≥ d(a, u′) + d(a, x) ≥ d(x, u′) >

1

n
.

Hence d(a, u′) > 1/2n for all u′ ∈ U c, so a /∈ U c: that is, a ∈ U . Consequently,

fA(y) = inf
q∈A

⋂
Q
{fq(y)} ≥ a − 1/m, so (x, y) ∈ A × f−1

A [a − 1/m,∞). Therefore

(x, y) ∈ E2n,m for all m ∈ N and so (x, y) ∈
⋃
n∈N

⋂
m∈N

En,m, proving the lemma.

All the different integrability conditions used in this section can be unified by the

following concept. Let (Ω,Σ, µ) be a measure space and let A ⊂ Σ be an algebra of

measurable sets. A measurable function f on Ω is called A-integrable if∫
A
|f | dµ

is finite for every A ∈ A. On the product space (Ω1×Ω2,Σ1×Σ2, µ1×µ2), when A is

the algebra of rectangles A×B where A and B have finite measure, the A-integrable

functions on Ω1 × Ω2 are the rectangular locally integrable functions. On G × Ω,

where A consists of all rectangles K × A where K ⊂ G is compact and A ⊂ Ω has

finite measure, the functions considered in Lemma 2.3.5 are A-measurable.

2.4 Harmonic Analysis

We develop here the harmonic analysis of abelian locally compact Hausdorff groups

that we shall require for the mean ergodic theory. Thereafter, we discuss some locally

convex topologies on vector spaces.

By M(G) we shall mean the Banach *-algebra of all finite Radon measures on G,

where the multiplication of measures is given by their convolution. The closed ideal

of all those measures absolutely continuous with respect to the Haar measure is the
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Banach algebra L1(G). By Ĝ we shall mean the Pontryagin dual of G consisting of

all continuous characters of G; we will call continuous characters simply ‘characters’

in what follows. We denote by µ̂ the Fourier transform of a measure µ ∈M(G) and

by ν(µ) = {ξ ∈ Ĝ : µ̂(ξ) = 0} the null-set of µ.

We will need some results concerning the convergence of measures given the con-

vergence of their Fourier series. We recall some elements of the representation theory

of groups, as presented in Chapter 3 of [17]. We denote by P ⊂ Cb(Ĝ) the set of con-

tinuous functions of positive type. Such functions are also known as positive-definite

functions. (See [17] for the theory of functions of positive type, and both [17] and

[41] for material on positive-definite functions.)

Set P0 = {φ ∈ P : ‖φ‖∞ ≤ 1}. This set, viewed as a subset of the unit ball of

L1(G)∗, is weak*-compact.

We have the following extension of [41, Theorem 1.9.2]:

Theorem 2.4.1. Let (µn) be a bounded sequence of Radon measures on G and let K

be a closed subset of Ĝ, such that K is the closure of its interior. If (µ̂n) converges

uniformly on compact subsets of K to a function φ, then there is a bounded Radon

measure µ such that µ̂ = φ on K.

Proof. Without loss of generality, we may assume that (µn) ⊂ M+
1 (G), the set of

positive Radon measures of norm no greater than 1. Also, for those closed K ⊂ Ĝ as

in the hypotheses, the space Cb(K) may be identified with a norm-closed subspace

of L∞(K,m), where m is the Haar measure on Ĝ. In the sequel, all L∞-spaces will

be taken with respect to the Haar measure and so we shall simply write L∞(K) for

L∞(K,m).

First we prove the result for compact K. Note that P0 ⊂ Cb(Ĝ), which can

be identified with a closed subset of L∞(Ĝ). Furthermore, P0 is absolutely convex

and closed in the weak*-topology on L∞(Ĝ) and hence closed in the finer norm

topology. Now consider the restriction map R : L∞(G) → L∞(K). This map is not

only norm-continuous, but weak*-continuous. Hence R(P0) is weak*-compact and

absolutely convex in L∞(K), which implies that it is also norm-closed (This follows

from [39, Prop. 8, e34] and the fact that the weak* and norm topologies on L∞(G)

are respectively the topologies σ(L∞(G), L1(G)) and β(L∞(G), L1(G))) . Of course,

R(P0) ⊂ C(K), which can be identified with a closed subset of L∞(K).

By Bochner’s Theorem (cf [41] or [17]), the Fourier transform gives a bijection
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between M+
1 (G) and P0(Ĝ). This means that (µ̂n|K) ⊂ R(P0). By hypothesis, this

sequence converges uniformly to some φ ∈ R(P0) and so there is a φ̃ ∈ P0 such that

R(φ̃) = φ. Consequently there is a µ ∈M+
1 (G) such that µ̂ = φ̃ and so µ̂|K = φ.

This proves the result when K is compact. To prove it in the general case when

K is closed, we use the above result as well as the fact that Bochner’s Theorem states

that the Fourier transform is in fact a homeomorphism when M+
1 (G) and P0(Ĝ) are

each given their weak*-topologies.

As (µ̂n|K) is bounded and converges uniformly on compact subsets of K, its limit

φ is continuous and bounded on K. Let C be the collection of all compact subsets of

K which are the closures of their interiors. For any C ∈ C, define

S(C, φ) = {µ ∈M+
1 (G) : µ̂|C = φ|C} ⊂M+

1 (G).

As proved above, S(C, φ) is nonempty. Furthermore, S(C, φ) is a weak*-compact

subset of M+
1 (G). To see this, set

BC(φ) = {f ∈ L∞(G) : f |C = φ|C a.e.}

and note that BC(φ) is weak*-closed. Hence P0 ∩ BC(φ) is weak*-compact. Finally

P0 ∩BC(φ) is the image of S(C, φ) under the Fourier transform, so S(C, φ) must be

weak*-compact as well, by Bochner’s Theorem.

Now the collection {S(C, φ) : C ∈ C} is a collection of nonempty weak*-compact

subsets of M+
1 (G). This collection has the finite intersection property, because if

C1, C2, . . . , Cn ∈ C, then

S(C1, φ) ∩ S(C2, φ) ∩ . . . ∩ S(Cn, φ) = S(C1 ∪ C2 ∪ . . . ∪ Cn, φ),

which is of course also nonempty. Hence the intersection of all the sets S(C, φ) is

nonempty. Let µ be in this intersection.

Then µ̂|C = φ|C for every C ∈ C; hence µ̂|K = φ.

We take the opportunity to demonstrate the power of the techniques developed

for constructing various topologies on vector spaces. Indeed, one can build such a

topology to encode the convergence of Fourier transforms handled in the last result.

Recall that G[, the Bohr compactification of G, is a compact group in which

G can be embedded continuously. It is constructed by first considering Ĝ under

the discrete topology. (This is denoted Ĝd.) The Pontryagin dual of this discrete
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group is a compact group, namely G[. Recall also that AP (G), the set of almost

periodic functions on G, is simply the norm-closure in Cb(G) of all the trigonometric

polynomials. It so happens that AP (G) is precisely the set of continuous bounded

functions on G that can be extended to continuous functions on G[. So M(G[) is the

dual of AP (G) = C(G[).

By [41, Theorem 1.9.1], M(G) may be identified with a subspace of M(G[).

Theorem 2.4.2. Let (µn) be a bounded sequence of Radon measures on G such that

(µ̂n) converges pointwise. Then (µn) is Cauchy in the σ(M(G), AP (G))-topology.

The sequence has a limit point in M(G[).

In particular, if (µ̂n) converges uniformly on compact subsets of Ĝ, then (µn) is

convergent in M(G).

Proof. Let Φ(ξ) = limn→∞ µ̂n(ξ) for all ξ ∈ Ĝ. By the Fourier Uniqueness Theorem,

there is a measure on G[, say µ, such that µ̂ = Φ. Note that the σ(M(G), AP (G))-

topology is exactly the restriction of the weak*-topology on M(G[) to M(G). Define

D(Ĝ) to be the collection of all finite linear combinations of all Dirac measures on

Ĝ. Then the pair (C(Ĝd), D(Ĝ)) is a dual pair, where Ĝd has the discrete topology.

The Fourier transform F : M(G[) → C(Ĝd) has transpose F ′ : D(Ĝ) → AP (G). So

by [38], F is weakly convergent in this topology.

Now (µn) is relatively weak*-compact in M(G[) because this sequence is norm-

bounded. It has a convergent subsequence, (µnk). But then (µ̂nk) is convergent in

M(Ĝd) in the σ(M(Ĝd), D(Ĝ))-topology, which means that (µ̂nk) converges pointwise

on Ĝ to Φ. Hence µnk → µ. As all convergent subsequences of (µn) have the same

limit point, (µn) is convergent to a point in M(G[). It follows at once that (µn) is

Cauchy in the σ(M(G), AP (G))-topology.

For the second part of the theorem, note that by 2.4.1, the limit µ constructed

above belongs in fact to M(G).

There is an ideal of L1(G) that will be important for our purposes: K(G), the

set of all functions in L1(G) whose Fourier transforms have compact support. In [17]

and [41], it is shown that the ideal K(G) is a norm-dense subset of L1(G).

Turning to closed ideals I of L1(G), we can define the null-set ν(I) as we did for

individual functions and measures:

ν(I) = {ξ ∈ Ĝ : f̂(ξ) = 0, for all f ∈ I}.
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Thus to each closed ideal in L1(G) we can assign a unique closed subset of Ĝ.

However the converse is not in general true: for a closed subset K of Ĝ, there is

usually more than one ideal whose null-set is K. Among all such ideals, two can be

singled out: the largest, ι+(K) consisting of all f ∈ L1(G) such that f̂ is 0 on K,

and the smallest, ι−(K), consisting of all f ∈ L1(G) such that f̂ is 0 on some open

neighbourhood of K. From the definitions, it is clear that ι−(K) ⊆ ι+(K). In [17]

and [41] it is proved that if I is a closed ideal in L1(G) with ν(I) = K, then

ι−(K) ⊆ I ⊆ ι+(K).

There are some sets K for which there is only one associated ideal. Such closed

sets are called sets of synthesis, or S-sets for short. In this case, we shall call ι(K)

the unique ideal associated with the S-set K. The fact that such sets have only one

closed ideal in L1(G) associated with them will be used often in what follows.

Spectral synthesis will play a large part in the sequel. References for this material

are [41, §7.8] and [17, §4.6]. To fix notation, we make a few remarks here. Any

weak*-closed translation-invariant subset T of L∞(G) has a spectrum, denoted σ(T ),

consisting of all characters contained in T . The spectrum is always closed in Ĝ.

The following theorem is crucial in the use of spectral synthesis. It is a slight

restatement of [21, Théorème F, p132]. The second part is proved in [41, Theorem

7.8.2e)] (in [17, Proposition 4.75], a special case is shown.)

Theorem 2.4.3. (Spectral Approximation Theorem) Let V be a weak*-closed

translation-invariant subspace of L∞(G) with spectrum σ(V ) = Λ. Then for any

open set U containing Λ, any f ∈ V can be weak*-approximated by trigonometric

polynomials formed from elements of U .

Furthermore, if Λ is an S-set, then any f ∈ V can be weak*-approximated by

trigonometric polynomials formed from elements of Λ.

We need the following modification of [21, Théorème A, p124].

Theorem 2.4.4. Let K be a compact subset of Ĝ and let µ be a measure in M(G)

whose Fourier transform µ̂ does not vanish on K. Then there exists a g ∈ L1(G)

satisfying ĝ(ξ) =
1

µ̂(ξ)
for all ξ ∈ K.



28 CHAPTER 2. HARMONIC ANALYSIS & CONVEX VECTOR SPACES

Proof. By [17, Lemma 4.50] or [41, Theorem 2.6.2], there exists a summable h on

G such that ĥ = 1 on K. As µ ∗ h ∈ L1(G), we can apply [21, Théorème A, p124] to

obtain a g ∈ L1(G) such that

ĝ(ξ) =
1

µ̂ ∗ h(ξ)

for all ξ ∈ K. From the above equation and the fact that ĥ = 1 on K, we see that

this g is the one required.

As with Theorem 2.4.1, we will often be in a position where we must infer proper-

ties of a summable function µ from knowledge of its Fourier transform on a compact

subset K ⊂ Ĝ. Of course, there will be in general many functions whose Fourier

transforms agree on K.

To clarify the situation, we make use of a quotient space construction. Using

ι+(K), the largest ideal with nullset K, we can form the quotient L1(G)/ι+(K). Let

[µ] denote an element of this quotient; it is an equivalence class consisting of all

functions ν such that µ̂|K = ν̂|K .

The following lemma exemplifies some of the techniques employed when working

with quotient spaces of L1(G), and will come in handy when proving the main result,

Theorem 4.3.1.

Lemma 2.4.5. Let (ϕn) be a sequence in L1(G) and let K be a compact subset of Ĝ.

If ([ϕn]) ⊂ L1(G)/ι+(K) is a relatively weakly compact sequence and limn→∞ ϕ̂n(ξ)

exists for each ξ ∈ K, then ([ϕn]) is weakly convergent.

Proof. Suppose ([ϕn]) was not weakly convergent. Being relatively weakly compact,

it must then contain two weakly convergent subsequences ([ϕnk ]) and ([ϕn` ]) with

different limits [µ] and [ν] respectively.

The Gelfand transform FK : L1(G)/ι+(K)→ C(K), given by ϕ 7→ ϕ̂|K , is norm-

continuous and hence weakly continuous. Therefore (ϕ̂nk) and (ϕ̂n`) are weakly

convergent in C(K). By [13, Ch VII, Theorem 2], this means that limk→∞ ϕ̂nk(ξ) =

µ̂(ξ) and lim`→∞ ϕ̂n`(ξ) = ν̂(ξ). By hypothesis, then, µ̂ = ν̂ on K and so [µ] = [ν] in

L1(G)/ι+(K), a contradiction. Hence ([ϕn]) is weakly convergent.

We are also able to prove an interesting result that sheds light on the topological

vector space structure of the space L1(G)/ι+(K), a space which lies at the heart of

our Tauberian theorems. This result, Theorem 2.4.7, will not have a direct influence

on our work, but serves to illustrate the richness of the vector spaces that emerge
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from harmonic analytic considerations. The next Lemma appears in [43, Theorem

4.9]. We state it here for completeness.

Lemma 2.4.6. Let E be a Banach space with dual E′ and let A ⊂ E be a closed

subspace. Then the dual of A may be identified with E′/A◦.

It is well known that A′ = E′/A⊥. Since A is a linear subspace, it is moreover

easy to verify that A⊥ = A◦.

The above result inspires the following proof.

Theorem 2.4.7. If K is a compact subset of Ĝ, then L1(G)/ι+(K) is the dual of

sp{f̂ : f ∈ L1(Ĝ), supp f ⊂ K}.

Proof. Note that C0(G)∗ = M(G) and set

A = sp{f̂ : f ∈ L1(Ĝ), supp f ⊂ K} ⊂ C0(G)

MK(G) = {µ ∈M(G) : µ̂ ≡ 0 on K}.

We start by showing that A◦ = MK(G). For any f ∈ L1(Ĝ) and µ ∈ M(G), we

compute:

〈f̂ , µ〉 =

∫
G
f̂ dµ

=

∫
G

∫
Ĝ
f(ξ)〈ξ, x〉 dξdµ

=

∫
Ĝ
f(ξ)

∫
G
〈ξ, x〉 dµdξ

=

∫
Ĝ
f(ξ)µ̂ dξ.

So if 〈f̂ , µ〉 = 0 for all f̂ ∈ A, then µ̂ ≡ 0 on K. So MK(G) ⊃ A◦. On the other

hand, if µ ∈ MK(G), then by the above calculation 〈f̂ , µ〉 = 0 for all f̂ ∈ A and so

µ ∈ A◦.
Consequently, by Lemma 2.4.6, A◦ 'M(G)/MK(G). All that remains is to show

that M(G)/MK(G) ' L1(G)/ι+(K).

Consider the inclusion map i : L1(G)→M(G) and the quotient map q : M(G)→
M(G)/MK(G). Let T = q ◦ i. We shall prove two things: T is surjective and ker

T = ι+(K). Together, this means that

L1(G)/ι+(K) 'M(G)/MK(G).
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First T is surjective: let h ∈ L1(G) such that ĥ ≡ 1 on K. For any µ ∈ M(G),

µ − µ ∗ h ∈ MK(G), so [µ] = [µ ∗ h] ∈ M(G)/MK(G). But now µ ∗ h ∈ L1(G), and

T (µ ∗ h) = [µ].

Next, we compute the kernel of T . If f ∈ ι+(K), then f̂ ≡ 0 on K, so f ∈MK(G).

Hence ι+(K) ⊂ ker T . On the other hand, if f ∈ ker T , then f ∈MK(G) by definition

of T . So f ∈ ι+(K).



Chapter 3

Rearrangement invariant

Banach function spaces

This Chapter is about function spaces, in particular rearrangement invariant Banach

function spaces. The main reference works that set out the theory in detail include

especially Bennett and Sharpley [4], but also O’Neil [33] and Sharpley [46]. Rao and

Ren focus on the important subclass of Orlicz spaces in their book [37]. Section 3.1

deals with some basic definitions.

We focus on the fundamental function associated with a Banach function space

in Sections 3.2 and 3.3, as well as certain canonically constructed function spaces

derived from them. Using these spaces we can define the so-called weak type of an

operator, which is crucial for understanding the concept of a maximal inequality in

Chapter 5.

When working out the Transfer Principle and pointwise ergodic theorems, we

will need the integral estimates of Section 3.4. These results, requiring the measure

theoretic understanding of products of measure spaces gained in the previous Chapter,

plus the knowledge of functions spaces from Section 3.1, form the technical heart of

the work on the Transfer Principle and pointwise theorems.

3.1 Basic definitions and constructions

We start by recalling the definition of a rearrangement invariant Banach function

space (hereafter referred to as a r.i. BFS) over a resonant measure space (Ω, µ). Our

31
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source for this material is mainly [4], and also [33].

Recall first that given a µ-a.e. finite measurable function f on (Ω, µ), the distri-

bution function s 7→ m(f, s) is defined by

m(f, s) = µ({ω ∈ Ω : |f(ω)| > s})

for all s ≥ 0. The decreasing rearrangement f∗ is defined as

f∗(s) = inf{t : m(f, t) ≤ s}.

Two measurable functions f and g are equimeasurable if we have m(f, s) = m(g, s)

for all s ≥ 0. Note that the equimeasurability of f and g is the same as stating that

f∗(t) = g∗(t) for all t ≥ 0. By [4, Definition 2.2.3], the space (Ω, µ) is said to be

resonant if for each measurable finite a.e. functions f and g, the identity∫ ∞
0

f∗(t)g∗(t) dt = sup

∫
Ω
|fg̃| dµ

holds as g̃ ranges over all functions equimeasurable with g. As a special case of [4,

Theorem 2.2.6], let us mention that σ-finite nonatomic measure spaces and completely

atomic measure spaces, with all atoms having the same measure, are resonant.

One also defines a primitive maximal operator f 7→ f∗∗ as

f∗∗(s) =
1

s

∫ s

0
f∗(t) dt.

We call f∗∗ the double decreasing rearrangement of f .

When the function norm ρ that defines a Banach function space has the property

that ρ(f) = ρ(g) for all equimeasurable functions f and g, the Banach space is called

rearrangement invariant - see [4, Definitions 1.1, 4.1].

For any r.i. BFS X we define another r.i. BFS X ′, called the associate space, to

be the subset of the a.e.-finite measurable functions f on (Ω, µ) for which ‖f‖X′ is

finite, where

‖f‖X′ = sup
{∣∣ ∫

Ω
f(ω)g(ω) dµ(ω)

∣∣ : g ∈ X, ‖g‖X ≤ 1
}
.

We shall also have need of another Banach space Xb ⊆ X, which is the closure in

X of the set of all simple functions in X. This is not in general a r.i. BFS itself, but

is useful for the role it plays in the duality theory.
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Associated with any rearrangement invariant BFS X, there is a fundamental

function ϕX : [0,∞)→ [0,∞) defined by

ϕX(t) = ‖χE‖X ,

where E is any subset of Ω such that µ(E) = t. By the rearrangement invariance

of X, this function is well-defined. It is a quasi-concave function, as explained in [4,

Definition 2.5.6]. Such functions are automatically continuous on (0,∞), as proved

in [4, Corollary 2.5.3]. They also have the following useful property.

Lemma 3.1.1. Quasiconcave functions are subadditive.

Proof. Indeed, if s ≤ t are two nonnegative real numbers, the fact that the mapping

t 7→ ϕ(t)

t
is nonincreasing implies that

ϕ(s+ t)

s+ t
≤ ϕ(t)

t
≤ ϕ(s)

s

ϕ(s+ t) ≤
(
1 +

s

t

)
ϕ(t)

= ϕ(t) +
ϕ(t)

t
s

≤ ϕ(t) + ϕ(s).

We denote by ϕ∗X the associate fundamental function of ϕX , where ϕ∗X = ϕX′ .

We shall often make use of the identity

ϕX(t)ϕ∗X(t) = t

for all t ≥ 0, as proved in [4, Theorem 2.5.2].

Recall that a Young’s function is a convex, nondecreasing function Φ : [0,∞] →
[0,∞] for which Φ(0) = 0, limx→∞Φ(x) = ∞ and which is neither identically zero

nor infinite valued on all of (0,∞).

One class of spaces that we shall study is that of Orlicz spaces. The theory of

these important spaces, which include the standard Lp-spaces, is developed in [37].

In [4] and [33], they are also studied in some depth. We bring to mind the most

salient features of their construction. The Luxemburg norm ‖ · ‖L(Φ) is defined by a

Minkowski functional on the set of all finite a.e. measurable functions on (Ω, µ) by

the formula

‖f‖L(Φ) = inf
{
k−1 :

∫
Ω

Φ(k|f |) dµ ≤ 1
}
.
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The set of all f for which ‖f‖L(Φ) <∞ is the Orlicz space L(Φ).

By [4, Theorem 2.5.13], for any rearrangement invariant Banach function space

X we have the embeddings

Λ(X) ↪→ X ↪→M(X)

where the embeddings have norm 1.

There is also another Young’s function, called the complementary Young’s func-

tion. This is the function Ψ defined by

Ψ(x) = sup
y>0
{xy − Φ(y)}.

Using this complementary Young’s function, it is possible to define another, equiva-

lent norm on the Orlicz space L(Φ). To this end, define the Orlicz norm ‖ · ‖L(Φ) on

the space of measurable functions f on (Ω, µ) by setting

‖f‖L(Φ) = sup
{∫ ∞

0
f∗(s)g∗(s) ds : ‖g‖L(Ψ) ≤ 1

}
. (3.1)

Now the Orlicz and Luxemburg norms on the Orlicz space L(Φ) are equivalent.

In fact it is proved in [4, Theorem 4.8.14] that

‖f‖L(Φ) ≤ ‖f‖L(Φ) ≤ 2‖f‖L(Φ). (3.2)

We shall often have need of the inverse of Young’s functions and (less frequently)

fundamental functions. The following definition makes the notion precise.

Definition 3.1.2. Let ϕ : R+ → R+ be a monotone left-continuous function. for

any t ∈ R+, we form the sets St = {x : ϕ(x) ≤ t} and It = {x : ϕ(x) > t}. These

sets form a Dedekind cut of R+ and we define ϕ−1(t) to number determined by this

cut.

Hence we may write ϕ−1(t) = supSt = inf It if ϕ is nonincreasing.

Now for an Orlicz space L(Φ) equipped with the Luxemburg norm, its fundamen-

tal function ϕ is related to Φ by the equation

ϕ(t) = 1/Φ−1(1/t) (3.3)

for all 0 < t ≤ |Ω| as shown in [4, Lemma 4.8.17]. In the sequel, given a Young’s

function Φ we define the fundamental function associated to Φ to be the quasconcave

function defined by (3.3).
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Given a r.i. BFS X over (Ω, µ), we canonically associate two other r.i. BFSs with

X, apart from the Orlicz space. If ϕX is the fundamental function associated with

X, define the first space M(X) to consist of all the measurable functions f over Ω

such that

‖f‖M(X) = sup
s>0

f∗∗(s)ϕX(s) <∞.

The space M(X) is a Banach space with the norm ‖ · ‖M(X). This is the largest r.i.

BFS with fundamental function ϕX . In other words, if Y is any other r.i. BFS with

fundamental function ϕX , then Y is contractively embedded in M(X). Note that as

the quasiconcave function ϕX is the only property of X required to construct M(X),

we may just as well denote this space by M(ϕX).

The second space is the associate of M(X ′). We define Λ(X) to consist of all

measurable functions f over Ω such that

‖f‖Λ(X) = sup
{∫ ∞

0
f∗(s)g∗(s) ds : ‖g‖M(ϕ∗X) ≤ 1

}
<∞.

The set Λ(X) is a Banach space with norm ‖ · ‖Λ(X).

As in the case of M(X), we can just as well write Λ(ϕX), as ϕX is the only

property of X employed in the construction of Λ(X). This is the smallest r.i. BFS

with fundamental function ϕX ; if Y is any other r.i. BFS with this fundamental

function then there is a continuous injection of Λ(X) into Y .

There is another function space, denoted M∗(X), that can be constructed from

a given r.i. BFS X. Although complete, this space is in general not normable and

consists of all those finite a.e. measurable functions f on (Ω, µ) for which the quasi-

norm ‖ · ‖M∗(X) defined by

‖f‖M∗(X) = sup
s>0

f∗(s)ϕX(s)

is finite. Again, note that the only property of X required for this construction is

its fundamental function ϕX . While M∗(X) is not necessarily a Banach space, it is

a quasi-Banach space, in that ‖f‖M∗(X) = 0 if and only if f = 0 a.e., ‖λf‖M∗(X) =

|λ|‖f‖M∗(X) for all complex λ and

‖f + g‖M∗(X) ≤ 2(‖f‖M∗(X) + ‖g‖M∗(X))

for all f, g ∈M∗(X). This space was introduced in [46] - see also [4, Ch. 4, exercise

21].

We provide a useful equivalent definition of the M∗(X)-norm.
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Lemma 3.1.3. If ϕ is a fundamental function, then sup
t>0

f∗(t)ϕ(t) = sup
s>0

sϕ(m(f, s)).

Proof. We follow [22, Proposition 1.4.5.16, p46]. Given s > 0, pick ε ∈ (0, s). As

f∗(m(f, s)− ε) > s,

sup
t>0

f∗(t)ϕ(t) ≥ f∗(m(f, s)− ε)ϕ(m(f, s)− ε) > sϕ(m(f, s)− ε).

Because ϕ is continuous on (0,∞), as ε→ 0, we obtain

sup
t>0

f∗(t)ϕ(t) ≥ sϕ(m(f, s))

for all s > 0, which proves that supt>0 f
∗(t)ϕ(t) ≥ sups>0 sϕ(m(f, s)).

Conversely, given t > 0, if f∗(t) > 0 pick ε ∈ (0, f∗(t)). Then m(f, f∗(t)− ε)) > t,

meaning that

sup
s>0

sϕ(m(f, s)) ≥ (f∗(t)− ε)ϕ(m(f, f∗(t)− ε)).

As ϕ is nondecreasing, we have (f∗(t)−ε)ϕ(m(f, f∗(t)−ε)) ≥ (f∗(t)−ε)ϕ(t). Letting

ε→ 0, we obtain

sup
s>0

sϕ(m(f, s)) ≥ f∗(t)ϕ(t)

for all t > 0. If f∗(t) = 0, this inequality is trivially satisfied. Hence supt>0 f
∗(t)ϕ(t) ≤

sups>0 sϕ(m(f, s)).

Let us make some remarks on operators between function spaces, in particular

on the weak type of an operator. There are two standard definitions of this concept.

Let X and Y be rearrangement invariant BFSs. We say that a sublinear operator T

has Marcinkiewicz weak type (X,Y ) if T maps X into M∗(Y ) and that T has Lorentz

weak type (X,Y ) if it maps Λ(X) into M∗(Y ). Clearly if T is of Marcinkiewicz weak

type (X,Y ) then it is of Lorentz weak type (X,Y ). In the sequel, we shall write

‘weak type’ for ‘Marcinkiewicz weak type.’

For an operator T of weak type (X,Y ) there exists a c > 0 such that ‖Tf‖M∗(Y ) ≤
c‖f‖X . The smallest value of c for which this equation holds is called the norm of T .

As we shall mostly be working with Λ-, M - and Orlicz-spaces, let us fix some

terminology for dealing with the weak types associated with these kinds of spaces.

Definition 3.1.4. (Weak type) Let ΦA and ΦB be Young’s functions with associated

fundamental functions ϕA and ϕB respectively. We say that a sublinear operator T

has Λ-, M - or L-weak type (ϕA, ϕB) if it respectively maps Λ(ΦA), M(ΦA) or L(ΦA)

into M∗(ϕB).
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Bear in mind that if an operator is of M -weak type (ϕA, ϕB), then it is automat-

ically of L- and Λ-weak types (ϕA, ϕB) too.

3.2 Manipulations of fundamental functions

It is known (cf. [4, Propositions 2.5.10, 2.5.11]) that a fundamental function may

be replaced with a concave fundamental function for most purposes. On the other

hand, a Young’s function is always convex, and if one considers (3.3), one sees that

the associated fundamental function is automatically concave. (In other words, if

we consider an Orlicz space with the Luxemburg norm, its fundamental function

is concave). This is a consequence of the next Lemma, which will also show how

in certain cases one can start with a fundamental function and associate with it a

Young’s function.

Lemma 3.2.1. Let ϕ : R+ → R+ be a nondecreasing convex (respectively concave)

function. Then ϕ−1 is nondecreasing and concave (respectively convex).

Furthermore, t 7→ 1/ϕ(1/t) is nondecreasing and convex (respectively concave).

Proof. Suppose that ϕ is convex, let x, y ∈ R+ and 0 ≤ λ ≤ 1. We define three

subsets of R+ as follows.

SΣ = {s : ϕ(s) ≤ λx+ (1− λ)y}

Sx = {s : ϕ(s) ≤ x}

Sy = {s : ϕ(s) ≤ y}.

Fix an ε > 0 and let tx ∈ Sx and ty ∈ Sy, with tx ≥ supSx−ε and ty ≥ supSy−ε.
Then from the convexity of ϕ, we can estimate

ϕ(λtx + (1− λ)ty) ≤ λϕ(tx) + (1− λ)ϕ(ty)

≤ λx+ (1− λ)y.

Hence λtx+(1−λ)ty ∈ SΣ and supSΣ ≥ λ supSx+(1−λ) supSy−ε. As ε is arbitrary,

Definition 3.1.2 shows us that

ϕ−1(λx+ (1− λ)y) ≥ λϕ−1(x) + (1− λ)ϕ−1(y).
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For the second part, suppose that ϕ is concave, and again that x, y ∈ R+ and

0 ≤ λ ≤ 1. We define three subsets of R+ as follows.

IΣ = {s : ϕ(s) > λx+ (1− λ)y}

Ix = {s : ϕ(s) > x}

Iy = {s : ϕ(s) > y}.

Fix an ε > 0 and let tx ∈ Sx and ty ∈ Sy, with tx ≤ inf Ix + ε and ty ≤ inf Iy + ε.

Then from the concavity of ϕ, we get that

ϕ(λtx + (1− λ)ty) ≥ λϕ(tx) + (1− λ)ϕ(ty)

> λx+ (1− λ)y.

Hence λtx + (1− λ)ty ∈ IΣ and inf IΣ ≤ λ inf Ix + (1− λ) inf Sy + ε. As ε is arbitrary,

the result follows as before.

To prove the second part of the lemma, let I(t) = 1/t for t > 0. set φ(t) =

I ◦ ϕ ◦ I(t). As concave and convex functions have derivatives in L1(R+), we may

compute:

φ′(t) = I ′(ϕ ◦ I)(t).ϕ′(I(t)).I ′(t)

= −(ϕ ◦ I)−2(t)ϕ′(1/t)(−t−2).

If ϕ is concave, then ϕ′ is nonincreasing, so t 7→ ϕ′(1/t) is nondecreasing. Clearly

t 7→ (−t−2)ϕ−2(1/t) is nondecreasing, because t 7→ ϕ(t)/t is nonincreasing. Hence φ′

is nondecreasing and so φ is concave.

If ϕ is convex, the same reasoning shows that φ is convex.

From this lemma, we immediately deduce that if ϕ is concave, then t 7→ 1/ϕ−1(1/t)

is convex. Moreover if limt→0 ϕ(t) = 0 and limt→∞ ϕ(t) = ∞, then 1/ϕ−1(1/t) is a

Young’s function.

Finally, to round off the results pertaining to the taking of inverses, we have the

following result on double inverses.

Lemma 3.2.2. Let ϕ be a nondecreasing function, either concave or convex, on

(0,∞). Then for all t > 0, (ϕ−1)−1(t) = ϕ(t).

Proof. We shall prove the result for ϕ concave on (0,∞); the proof in the convex

case is virtually identical. Let us define `0 = limt→0 ϕ(t) and `∞ = limt→∞ ϕ(t). If
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ϕ is constant on an interval [a, b) then ϕ is constant on [a,∞), for if z = ϕ(a) and

s = sup{ξ : ϕ(ξ) = z} < ∞, then for ε > 0 small enough, ϕ(a/2 + (s + ε)/2) <

ϕ(a)/2 + ϕ(s + ε)/2, contradicting the concavity of ϕ. With this in mind, define

s0 =∞ if ϕ is strictly increasing and s0 = inf{ξ : ϕ(ξ) = `∞}.
The proof follows from studying the following two graphs.

`0

`∞

s0

ϕ

∞

s0

`∞`0

ϕ−1

Indeed, for all s > `∞, ϕ−1(s) = sup{t : ϕ(t) ≤ s} = ∞. For all s ≤ `0,

ϕ−1(s) = inf{t : ϕ(t) > s} = 0. Also, ϕ is injective on (0, s0] as it is strictly

increasing on this interval.

Hence (ϕ−1)−1(t) = ϕ(t) for all t ∈ (0, s0]. For t > s0, (ϕ−1)−1(t) = sup{s :

ϕ−1(s) ≤ t} = `∞ = ϕ(t).

3.3 Comparison of fundamental functions

It should be quite clear that a lot rests upon the analysis of the various fundamental

functions associated with r.i. BFSs. Indeed, based on techniques for comparing qua-

siconcave functions developed in the sequel, we will derive our results on the weak

type of the transferred operator.

The growth properties of a Young’s function have great bearing on the properties

of the associated Orlicz space. The same holds more generally for the growth prop-

erties of a fundamental function and its associated BFSs. This part of the work will

be concerned with translating some standard growth conditions on Young’s functions

into conditions on fundamental functions. Then we shall analyse these conditions in

terms of inequalities prominent in O’Neil’s work [33].
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Recall from [37] that a Young’s function Φ is said to satisfy the ∆2 condition

(globally), denoted Φ ∈ ∆2 (Φ ∈ ∆2 (globally)) if

Φ(2x) ≤ KΦ(x), x ≥ x0 ≥ 0 (x0 = 0)

for some absolute constant K > 0. The Young’s function Φ satisfies the ∇2 condition

(globally), denoted Φ ∈ ∇2 (Φ ∈ ∇2 (globally)) if

Φ(x) ≤ 1

2`
Φ(`x), x ≥ x0 ≥ 0 (x0 = 0)

for some ` > 1.

We now state these definitions in terms of fundamental functions.

Definition 3.3.1. A fundamental function ϕ is said to satisfy the ∆2 condition

(globally), denoted ϕ ∈ ∆2 (ϕ ∈ ∆2 (globally)) if

ϕ(Kx) ≥ 2ϕ(x), x ≥ x0 ≥ 0 (x0 = 0) (3.4)

for some absolute constant K > 0.

A fundamental function ϕ is said to satisfy the ∇2 condition (globally), denoted

ϕ ∈ ∇2 (ϕ ∈ ∇2 (globally)) if

ϕ(x) ≥ 2

`
ϕ(`x), x ≥ x0 ≥ 0 (x0 = 0) (3.5)

for some absolute constant ` > 1.

Suppose that ϕ satisfies the ∆2 condition. Note that as ϕ is nondecreasing, if

K < 1, then ϕ(Kx) ≤ ϕ(x), so 2ϕ(x) ≤ ϕ(x) for every x ≥ x0 - a contradiction as

ϕ(x) = 0 if and only if x = 0. Hence K ≥ 1. But then ϕ(Kx) ≤ Kϕ(x), which follows

from the nonincreasing behaviour of x 7→ ϕ(x)/x. Hence 2ϕ(x) ≤ ϕ(Kx) ≤ Kϕ(x).

This shows that K ≥ 2.

Likewise, we can provide a crude bound for ` in the case that ϕ satisfies the ∇2

condition. As ` > 1, ϕ(`x) ≥ ϕ(x) ≥ 2

`
ϕ(`x) for every x ≥ x0, so 1 ≥ 2/`, which

implies that ` ≥ 2.

Note that the same reasoning applies to the selection of K and ` for Young’s

functions respectively satisfying the conditions ∆2 and ∇2. Indeed, let Φ ∈ ∆2. By

[37, Corollary I.3.2], we may write

Φ(x) =

∫ x

0
φ(t) dt
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for some nondecreasing left continuous function φ : [0,∞)→ [0,∞] for which φ(0) =

0. Hence

Φ(2x) =

∫ x

0
φ(t) dt+

∫ 2x

x
φ(t) dt

≥
∫ x

0
φ(t) dt+

∫ x

0
φ(t) dt

= 2Φ(x)

on account of the fact that φ is nondecreasing. Therefore 2Φ(x) ≤ Φ(2x) ≤ KΦ(x),

implying that K ≥ 2.

If Φ ∈ ∇2 and Φ(x) ≤ (1/2`)Φ(`x) for some ` < 2, note that by the convexity of

Φ and the identity Φ(0) = 0,

Φ(`x) = Φ((1− `/2)0 + (`/2)2x) ≤ `

2
Φ(2x).

Consequently, Φ(x) ≤ (1/2`)Φ(`x) ≤ (1/2`)(`/2)Φ(2x) = (1/4)Φ(2x). So Φ satisfies

the ∇2 condition with ` = 2.

Proposition 3.3.2. Suppose that the quasiconcave function ϕ satisfies the ∆2 con-

dition globally. Then there exist constants 1 ≥ ε > 0 and A > 0 such that for all

y ≥ 1, 0 < p < ε and x ∈ R+,

ϕ(yx) ≥ Aypϕ(x).

Furthermore, if ϕ satisfies the ∇2 condition globally, then there exist constants

1 > ε ≥ 0 and B > 0 such that for all y ≥ 1, ε ≤ p < 1 and x ∈ R+, it holds that

ϕ(yx) ≤ Bypϕ(x).

Proof. Suppose that ϕ satisfies the ∆2 condition. As noted in the remarks preceding

this Proposition, we can choose a K ≥ 2 such that (3.4) holds. Set ε = ln 2/ lnK and

let y ≥ 1. By iterating the definition of the ∆2 condition, we see that for any n ∈ N
and x ≥ 0,

2nϕ(x) ≤ ϕ(Knx).

There is a natural number n such thatKn−1 ≤ y < Kn. Define λ such that y/Kn = λ.

Then 1/K ≤ λ < 1, which allows the following computation:

ϕ(yx) = ϕ(λKnx) ≥ λϕ(Knx)

≥ λ2nϕ(x). (3.6)
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Now y/λ = Kn implies that n =
ln y − lnλ

lnK
and

2n = en ln 2 = e
ln y
lnK

ln 2− lnλ
lnK

ln 2

2n = y
ln 2
lnK λ−

ln 2
lnK

λ2n = y
ln 2
lnK λ1− ln 2

lnK .

Setting A = (1/K)1−ln 2/ lnK , we see that

λ2n ≥ Ayε. (3.7)

Combining (3.6) and (3.7), for any 0 < p < ε and y ≥ 1, we have

ϕ(yx) ≥ Aypϕ(x).

Now suppose that ϕ satisfies the ∇2 condition, that is, inequality (3.5) with

` ≥ 2. Define ε = 1− ln 2/ ln ` and let y ≥ 1. There is a natural number n such that

`n−1 ≤ y < `n. Set λ = y/`n. Then 1/` ≤ λ < 1 and

ϕ(yx) = ϕ(λ`nx) ≤ ϕ(`nx)

≤ `n

2n
ϕ(x). (3.8)

Now n =
ln y − lnλ

ln `
, so

`n

2n
= en ln `−n ln 2 = eln y−lnλ−(ln y−lnλ) ln 2

ln `

= e

(
1− ln 2

ln `

)
ln y/λ

= y1− ln 2
ln ` λ

ln 2
ln `
−1. (3.9)

Because 0 < ln 2/ ln ` ≤ 1 and 1/` ≤ λ < 1, we have that λln 2/ ln `−1 ≤ `1−ln 2/ ln `.

Hence for any 1 > p ≥ 1− ln 2/ ln ` = ε, from (3.9) we have

`n

2n
≤ Byp,

where B = `1−ln 2/ ln `. Substituting this into (3.8) yields the result.

The inequalities ϕ(yx) ≥ Aypϕ(x) and ϕ(yx) ≤ Bypϕ(x) obtained in the Propo-

sition above are instances of tail growth conditions: they are valid for y large enough.

A larger class of fundamental functions satisfying such conditions is provided in [46],

which we now recall.



3.3. COMPARISON OF FUNDAMENTAL FUNCTIONS 43

Definition 3.3.3. We define two classes of fundamental functions as follows.

1. ϕ ∈ U if for some 0 < α < 1, there are positive constants A and δ such that

ϕ(ts) ≤ Atαϕ(s) if t ≥ δ.

The U-index of ϕ, denoted ρϕU , is the infimum of all α for which the above

inequality obtains.

2. ϕ ∈ L if for some α > 0, there are positive constants A and δ such that

ϕ(ts) ≥ Atαϕ(s) if t ≥ δ.

The L-index of ϕ, denoted ρϕL, is the supremum of all α for which the above

inequality obtains.

We shall often require the equivalent forms of this definition as provided in the

next result.

Lemma 3.3.4. Let ϕ be a fundamental function.

1. ϕ ∈ U if and only if Aϕ(uv) ≥ vαϕ(u) for some constants A, δ > 0 and u >

0, v ≤ δ.

2. ϕ ∈ L if and only if Aϕ(uv) ≤ vαϕ(u) for some constants A, δ > 0 and u >

0, v ≤ δ.

Moreover, by adjusting A if necessary, we may always take δ = 1.

Proof. Suppose ϕ ∈ U so that ϕ(ts) ≤ Atαϕ(s) if t ≥ δ. By the change of variables

u = ts and v = 1/t, we get Aϕ(uv) ≥ vαϕ(u) for u > 0, v ≤ 1/δ. Part (2) is treated

with the same change of variables.

For the last part, suppose ϕ ∈ U so that ϕ(ts) ≤ Atαϕ(s) if t ≥ δ. If δ ≤ 1, then

this inequality is certainly true for all t ≥ 1. If δ > 1, then for all t ≥ 1, s > 0,

ϕ(ts) ≤ ϕ(δts) ≤ A(δt)αϕ(s)

because ϕ is nondecreasing. Setting A′ = Aδα, we have proven that ϕ(ts) ≤ A′tαϕ(s)

if t ≥ 1. The same reasoning can be used for the case ϕ ∈ L.

We have thus shown that U and L defined above are identical to the classes as

defined in [46]. Furthermore, the U- and L- indices of ϕ are equal to the fundamental
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indices introduced by Zippin and defined in [46]. We will prove this later in the

chapter.

Proposition 3.3.2 shows that if ϕ satisfies the ∆2 condition, then ϕ ∈ L and if ϕ

satisfies the ∇2 condition then ϕ ∈ U .

In a far-reaching extension of the U and L classes, we shall use relations between

three quasiconcave functions ϕA, ϕB and ϕC that satisfy one of the inequalities

ϕC(st) ≤ θϕA(t)ϕB(s) for all t, s > 0 (3.10)

ϕC(st) ≤ θϕA(t)ϕB(s), s > 0, t ≥ δ (3.11)

ϕC(st) ≤ θϕA(t)ϕB(s), s > 0, t ≤ δ (3.12)

for some δ > 0. Inequalities such as (3.10) are common and have been extensively

studied by O’Neil in [33] and [32].

The inequalities (3.11) and (3.12), which are more general that (3.10), shall be the

basis for our analysis of the maximal inequalities for a transfer operator. Note that

the classes U and L satisfy (3.11) and (3.12) respectively. Inequalities of these types

are common for fundamental functions. For example, note that for any quasiconcave

function ϕ we have

ϕ(st) ≤ ϕ(s)t

for all s > 0 and t ≥ 1, which is true because t 7→ ϕ(t)/t is nonincreasing. Another

general O’Neil-type inequality appears in Lemma 3.3.5.

We recall the construction of the Boyd indices of a r.i. BFS X which is defined by

a function norm ρ. First, by the Luxemburg Representation Theorem [4, Theorem

2.4.10] there is a (not necessarily unique) r.i. BFS X over the positive reals with

Lebesgue measure, defined by a function norm ρ which is related to ρ by the formula

ρ(f∗) = ρ(f)

for every f ∈ X. Now for each t ∈ R+ we define the dilation operator Et by

(Etg)(s) = g(st)

for all s ∈ R+ and g a measurable and finite a.e. function on [0,∞). Let hX(t)

denote the operator norm of E1/t: that is, hX(t) = ‖E1/t‖B(X) for t > 0. Define

hX(0) = 0. In [4, Section 3.5], the authors thoroughly develop the basics of the theory,

including the fact that hX is submultiplicative. Note that it is also quasiconcave, for
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by [4, Proposition 3.5.11], hX is nondecreasing and hX(t)/t = hX′(1/t), which is

nonincreasing. Furthermore, hX(t) > 0 for t > 0, which is a consequence of the next

Lemma. The Lemma also provides an interesting general example of the O’Neil-type

inequality (3.10).

Lemma 3.3.5. If X is a r.i. BFS then for all s, t > 0,

ϕX(st) ≤ hX(t)ϕX(s)

ϕX(st) ≥ h∗X′(t)ϕX(s).

Proof. Consider the function space X over the positive reals given by the Luxemburg

Representation Theorem mentioned above and fix s, t ∈ R+. Note that

ϕX(st) = ‖χ(0,st)‖X
= ‖E1/tχ(0,s)‖X
≤ ‖E1/t‖B(X)‖χ(0,s)‖X
= hX(t)ϕX(s).

From this inequality, we immediately deduce that ϕ∗X(st) ≥ h∗X(t)ϕ∗X(s). As ϕ∗X =

ϕ′X , this can be written as ϕX′(st) ≥ h∗X(t)ϕX′(s). Equivalently, ϕX(st) ≥ h∗X′(t)ϕX(s).

It is worth mentioning that by [4, Proposition 3.5.11], h∗X′(t) = 1/hX(1/t). Note

also that as hX is submultiplicative, h∗X′ is supermultiplicative, in that h∗X′(st) ≥
h∗X′(s)h

∗
X′(t). We have shown that any fundamental function ϕX can be bounded

above by a submultiplicative and below by a supermultiplicative function (up to a

constant factor), in that

ϕ(1)h∗X′(t) ≤ ϕ(t) ≤ ϕ(1)hX(t).

The lower and and Boyd indices of X, denoted respectively by αX and αX are

given by

αX = lim
t→0+

lnhX(t)

ln t
, αX = lim

t→∞

lnhX(t)

ln t
.

For a r.i. BFS X with fundamental function ϕ, if M(t,X) = sups>0 ϕ(st)/ϕ(s),

recall than Zippin [50] defines the fundamental indices as

β
X

= lim
t→0+

lnM(t,X)

ln t
, βX = lim

t→∞

lnM(t,X)

ln t
.
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Recall from Definition 3.3.3 the definitions of the L- and U-indices of a funda-

mental function. Note that the fundamental indices of a fundamental function are

always defined, even if the L- or U- indices are not. The relation between the Boyd

and fundamental indices given in the next Lemma is well known - see for example [4,

Chapter 3, exercise 14].

Lemma 3.3.6. Let X be a r.i. BFS with fundamental function ϕ. Then

0 ≤ αX ≤ βX ≤ βX ≤ αX ≤ 1.

Moreover, ϕ ∈ U if and only if βX < 1 and in this case βX = ρϕU , and ϕ ∈ L if and

only if β
X
> 0 and in this case β

X
= ρϕL.

Proof. From Lemma 3.3.5 it is easy to see that M(t,X) ≤ hX(t). Hence if t >

1, lnM(t,X)/ ln t ≤ lnhX(t)/ ln t, so βX ≤ αX . On the other hand, if t < 1,

lnM(t,X)/ ln t ≥ lnhX(t)/ ln t, so β
X
≥ αX . The fact that M(t,X) is nondecreasing

shows that β
X
≤ βX .

The rest of the Lemma follows directly from the definition of the U- and L-

indices.

3.4 Estimates of integrals and function norms

When working with maximal inequalities, there are certain integrals that we will need

to estimate. The following Proposition covers the cases that we will need.

First, some terminology, following [27]: consider a measure space (Ω,Σ, µ) and a

countable collection D ⊂ Σ of measurable subsets of µ-finite measure. The σ-algebra

σ(D) generated by D is contained in Σ. If for any F ∈ Σ there is a D ∈ σ(D)

such that F∆D has null measure, where F∆D denotes the symmetric difference

between D and F , we say that (Ω,Σ, µ) is countably generated modulo null sets, or

just countably generated. We call D the generators of Σ. Moreover, we may assume

that D is an algebra, for if D is countable, so is the algebra it generates. If D is an

algebra of sets that generates Σ in the above sense, it is easy to see that if F ⊂ Ω

is any µ-finite subset and ε > 0, then there is a D ∈ D such that µ(D∆F ) < ε and

|µ(D)− µ(F )| < ε.
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Proposition 3.4.1. Let (Ω1, µ1) and (Ω2, µ2) be resonant spaces with Ω2 countably

generated. Let ΦA,ΦB and ΦC be Young’s functions and ϕA, ϕB and ϕC be their

respective associated fundamental functions satisfying

θϕA(st) ≥ ϕB(s)ϕC(t) (3.13)

for all s, t > 0 and some θ > 0. Let f be a measurable function on Ω1 × Ω2 and

E ⊂ Ω1 a subset of finite measure.

1) If f ∈M(ΦA), then

ϕC(|E|)
|E|

∫
E
‖fω1‖M(ΦB) dµ1(ω1) ≤ 4e3θ‖f‖M(ΦA).

2) If f ∈ Λ(ΦA) and limt→0 ϕ
∗
B(t) = 0, then

ϕC(|E|)
|E|

∫
E
‖fω1‖Λ(ΦB) dµ1(ω1) ≤ 6θ‖f‖Λ(ΦA).

3) If f ∈ L(ΦA) and limt→0 ϕ
∗
B(t) = 0, then

ϕC(|E|)
|E|

∫
E
‖fω1‖L(ΦB) dµ1(ω1) ≤ θ‖f‖L(ΦA).

This theorem is to some extent an adaptation of [33, Theorem 8.18] to the

needs of the present program. In particular here g is replaced by χE and h(ω) =∫
f(ω1, ω2)g(ω2)dµ(ω2) by

∫
‖fω1‖X(ΦB)dµ(ω2).

As the proof of this Proposition relies heavily on [33, Theorem 8.18], it is worth

mentioning that the condition on the fundamental functions given there, namely

Φ−1
A (st)Φ−1

B (t) ≤ θtΦ−1
C (s), can with the help of (3.3) and the identity ϕB(t)ϕ∗B(t) = t

be written in the equivalent form

θϕA(st) ≥ ϕ∗B(t)ϕC(s).

Proof. Let D be a countable algebra that generates (Ω2, µ2).

Suppose f ∈M(ΦA). For any subset ∆ ⊂ Ω2 of finite measure, define h∆ by

h∆(ω1) =
1

ϕ∗B(|∆|)

∫
∆
|f(ω1, ω2)| dµ2(ω2).

Thus h∆(ω1) =

∫
Ω2

|f |(ω1, ω2)(χ∆(ω2)/ϕ∗B(|∆|)) dµ2(ω2). Note that (3.13) can be

written in the form

θϕA(st) ≥ (ϕ∗B)∗(s)ϕC(t)



48 CHAPTER 3. BANACH FUNCTION SPACES

because for any fundamental function ϕ, (ϕ∗)∗ = ϕ. We apply [33, Theorem 8.18,

part 1◦] to conclude that h∆ ∈ M(ΦC), with ‖h∆‖M(ΦC) ≤ 4e3θ‖f‖M(ΦA). We also

used the obvious fact that ‖χ∆/(ϕ
∗
B(|∆|))‖Λ(ϕ∗B) = 1.

Now define

h̃ = sup
∆∈D

h∆.

As h̃ is the supremum of a countable number of functions, it is itself a measurable

function.

For any ∆ ∈ D and µ1-almost every ω1 ∈ Ω1,

h̃(ω1) =
1

ϕ∗B(|∆|)

∫
∆
|fω1 | dµ2 =

1

|∆|

∫
∆
|fω1 | dµ2.ϕB(|∆|)

≤ f∗∗ω1
(|∆|)ϕB(|∆|) ≤ ‖fω1‖M(ΦB),

by definition of the norm ‖ · ‖M(ΦB). Hence h̃(ω1) ≤ ‖fω1‖M(ΦB) a.e.

On the other hand for any fixed ε > 0, there is a t > 0 such that f∗∗ω1
(t)ϕB(t) >

‖fω1‖M(ΦB) − ε. As (Ω2, µ2) is a resonant space, by [4, Proposition 2.3.3], there is a

subset F such that |F | = t and

1

|F |

∫
F
|fω1 | dµ2 > f∗∗ω1

(t)− ε/ϕB(t).

Hence
1

ϕ∗B(|F |)

∫
F
|fω1 | dµ2 > f∗∗ω1

(t)ϕB(t)− ε.

Because D is dense in the Borel σ-algebra, there is a ∆ ∈ D such that∣∣∣∣ 1

ϕ∗B(|∆|)

∫
∆
|fω1 | dµ2 −

1

ϕ∗B(|F |)

∫
F
|fω1 | dµ2

∣∣∣∣ < ε.

Therefore

h∆(ω1) =
1

ϕ∗B(|∆|)

∫
∆
|fω1 | dµ2

>
1

ϕ∗B(|F |)

∫
F
|fω1 | dµ2 − ε

> f∗∗ω1
(t)ϕB(t)− 2ε > ‖fω1‖M(ΦB) − 3ε,

whence

h̃(ω1) > ‖fω1‖M(ΦB) − 3ε.
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As ε > 0 was arbitrary, it is clear that h̃(ω1) ≥ ‖fω1‖M(ΦB). So we have proved that

h̃(ω1) = ‖fω1‖M(ΦB) for almost all ω1 ∈ Ω1. Also, ‖h̃‖M(ΦC) ≤ 4e3θ‖f‖M(ΦA) because

as we have already shown, ‖h∆‖M(ΦC) ≤ 4e3θ‖f‖M(ΦA) for all ∆ ∈ D. Combining

these two facts yields part 1) of the Proposition.

For the second part, we shall follow a similar strategy to that of the first part.

Consider the space M(ϕ∗B)b over Ω2, which is the closure of the space of all simple

functions in M(ϕ∗B) whose support has finite measure. The condition limt→0 ϕ
∗
B(t) =

0 means that by [4, Theorem 2.5.5], M(ϕ∗B)b is separable and that (M(ϕ∗B)b)
∗ =

Λ(ΦB). Let D be a countable dense subset of the unit ball of M(ϕ∗B)b. By the above

remarks, this is a norming set for Λ(ΦB), in that for any g ∈ Λ(ΦB), we have

‖g‖Λ(ΦB) = sup
δ∈D

∫
Ω2

|g(ω2)δ(ω2)| dµ1(ω2).

Now for each δ ∈ D, define the functions

hδ(ω1) =

∫
Ω2

|f(ω1, ω2)δ(ω2)| dµ2(ω2)

h̃(ω1) = sup
δ∈D

hδ(ω1).

Note that as h̃ is the supremum of a countable number of measurable functions, it is

itself measurable.

By [33, Theorem 8.18, part 3◦], ‖hδ‖L(ΦC) ≤ 6θ‖f‖Λ(ΦA)‖δ‖M(ϕ∗B) ≤ 6θ‖f‖Λ(ΦA).

Hence ‖h̃‖L(ΦC) ≤ 6θ‖f‖Λ(ΦA).

On the other hand, for each ω1 ∈ Ω1,

h̃(ω1) = sup
δ∈D

∫
Ω2

|f(ω1, ω2)δ(ω2)| dµ2(ω2)

= ‖fω1‖Λ(ΦB)

where the last equality is true on account of D being a norming subset of M(ϕ∗B)b

for Λ(ΦB).

Hence if E ⊂ Ω1 is any set of finite measure, then by Hölder’s inequality

ϕC(|E|)
|E|

∫
E
‖fω1‖Λ(ΦB) dµ1(ω1) ≤ ϕC(|E|)

|E|
‖h̃‖L(ΦC)‖χE‖L(Φ∗C)

= ‖h̃‖L(ΦC) ≤ 6θ‖f‖Λ(ΦA),

proving part 2).
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For the third part, let ΨB denote the Young’s function complementary to ΦB and

note that because L(ΦB) is an Orlicz space with the Luxemburg norm, its associate

space is the Orlicz space L(ΨB) under the Orlicz norm and with fundamental function

ϕ∗B.

The proof now proceeds as for the second part. Because limt→∞ ϕ
∗
B(t) = 0, by

[4, Theorem 2.5.5], L(ΨB)b is separable and that (L(ΨB)b)
∗ = L(ΦB). Let D be a

countable dense subset of the unit ball of L(ΨB)b and define as before the functions

hδ and h̃. By [33, Theorem 8.18, part 2◦],

‖hδ‖L(ΦC) ≤ θ‖f‖L(ΦA)‖δ‖L(ΦB) ≤ θ‖f‖L(ΦA)‖δ‖L(ΦB) ≤ θ‖f‖L(ΦA),

where ‖ · ‖L(ΦB) and ‖ · ‖L(ΦB) denote the Luxemburg and Orlicz norms respectively

and we used the fact that by (3.2), ‖δ‖L(ΦB) ≤ ‖δ‖L(ΦB) ≤ 1. Hence ‖h̃‖L(ΦC) ≤
θ‖f‖L(ΦA).

For each ω1 ∈ Ω1,

h̃(ω1) = sup
δ∈D

∫
Ω2

|f(ω1, ω2)δ(ω2)| dµ2(ω2)

= ‖fω1‖L(ΦB)

where the last equality is true on account of D being a norming subset of L(ΨB)b for

L(ΦB).

For a subset E ⊂ Ω1 of finite measure, Hölder’s inequality reveals that

ϕC(|E|)
|E|

∫
E
‖fω1‖L(ΦB) dµ1(ω1) ≤ ϕC(|E|)

|E|
‖h̃‖L(ΦC)‖χE‖L(Φ∗C) ≤ θ‖f‖L(ΦA),

proving part 3).

In the above Proposition, we used the condition θϕA(st) ≥ ϕB(s)ϕC(t) for all

s, t > 0. In [33] the author devotes quite a bit of effort to proving that such a

condition is the best possible for his Theorems 8.15 and 8.18. However, we shall

need versions of these results where the condition is not satisified for all s, t > 0 but

only for t ≥ δ for some δ. We now state and prove the results corresponding to the

aforementioned Theorems 8.15 and 8.18 of O’Neil. The extension of these results

here are that the inequalities governing the fundamental functions, namely (3.14)

and (3.16), do not have to apply for all s, t > 0, but only for s > 0, t ≥ δ for some

δ > 0. This naturally widens the possibilities for funcamental functions comparable

by such inequalities. On the other hand, now we cannot state results for arbitrary
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simple tensors of functions, but only tensors between an arbitrary function and a

characteristic function.

Proposition 3.4.2. Let (Ω1, µ1) and (Ω2, µ2) be measure spaces. Let ΦA,ΦB and ΦC

be Young’s functions and ϕA, ϕB and ϕC be their respective fundamental functions.

Suppose that f is a measurable function on (Ω1, µ1) and K is a subset of Ω2 of finite

measure. If

h(ω1, ω2) = f(ω1)χK(ω2)

then h is measurable. Suppose that there is a δ > 0 such that

ϕC(st) ≤ θϕA(s)ϕB(t) for all s > 0, t ≥ δ. (3.14)

Then for K large enough that ϕB(|K|) ≥ δ, we have

1) if f ∈ L(ΦA) then h ∈ L(ΦC) and ‖h‖L(ΦC) ≤ θ‖f‖L(ΦA)ϕB(|K|)

2) if f ∈M(ΦA) then h ∈M(ΦC) and ‖h‖M(ΦC) ≤ 3θ‖f‖M(ΦA)ϕB(|K|)

3) if f ∈ Λ(ΦA) then h ∈ Λ(ΦC) and ‖h‖Λ(ΦC) ≤ 2θ‖f‖Λ(ΦA)ϕB(|K|).

Proof. The inequality (3.14) is equivalent to θΦ−1
C (st) ≥ Φ−1

A (s)Φ−1
B (t) for all s >

0, t ≤ 1/δ. Using the fact that for a Young’s function Φ and x ≥ 0, we have x ≤
Φ−1(Φ(x)) and Φ(Φ−1(x)) ≤ x, we compute for all s > 0, t ≤ 1/δ:

st ≤ Φ−1
A (ΦA(s))Φ−1

B (ΦB(t)) ≤ θΦ−1
C (ΦA(s)ΦB(t))

ΦC(st/θ) ≤ ΦC(Φ−1
C (ΦA(s)ΦB(t))) ≤ ΦA(s)ΦB(t).

Proof of 1) Suppose without loss of generality that ‖f‖L(ΦA) = 1. For a fixed

ω1 ∈ Ω1, set s = |f(ω1)| and t = 1/ϕB(|K|). As t ≤ 1/δ, we have

ΦC(|f(ω1)|/θϕB(|K|)) = ΦC(st/θ) ≤ ΦA(|f(ω1)|)ΦB(1/ϕB(|K|)).

Hence ∫
Ω1×Ω2

ΦC(|h(ω1, ω2)|/θϕB(|K|)) dµ1 × µ2

=

∫
Ω1×Ω2

ΦC(|f(ω1)χK(ω2)|/(θϕB(|K|))) dµ1 × µ2

= |K|
∫

Ω1

ΦC(|f(ω1)|/θϕB(|K|)) dµ1(ω1)

≤ |K|ΦB(1/ϕB(|K|))
∫

Ω1

ΦA(|f(ω1)|) dµ1(ω1)

≤ 1.
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The last inequality follows from ΦB(1/ϕB(|K|)) = ΦB(Φ−1
B (1/|K|)) ≤ 1/|K| and

‖f‖L(ΦA) = 1. By definition of the Luxemburg norm, ‖h‖L(ΦC) ≤ θϕB(|K|), giving

us the desired estimate.

Proof of 2) As in the proof of 1), set g = χK/ϕB(|K|) and suppose that ‖f‖M(ΦA) =

1. Then ‖g‖M(ΦB) = 1 and by [33, Lemma 7.1 part 1◦],

m(h/θ, z) =

∫
K
m(f, zθ/|g(ω2)|) dµ2(ω2) = |K|m(f, zθϕB(|K|)).

Then for any a > 0,

∫ ∞
a

m(h/θ, z) dz = |K|
∫ ∞
a

m(f, zθϕB(|K|)) dz. With the

change of variables u = zθϕB(|K|), we get∫ ∞
a

m(h/θ, z) dz =
|K|

θϕB(|K|)

∫ ∞
zθϕB(|K|)

m(f, u) du

≤ a|K|/ΦA(aθϕB(|K|)), (3.15)

where the last inequality follows from [33, Lemma 8.14].

Set s = aθϕB(|K|) and t = 1/ϕB(|K|). As in the proof of part 1), we turn to the

inequality ΦC(rs/θ) ≤ ΦA(s)ΦB(t). Hence

ΦC(a) ≤ ΦA(aθϕB(|K|))ΦB(1/ϕB(|K|))

≤ ΦA(aθϕB(|K|)) 1

|K|

where we have used that fact that ΦB(1/ϕB(|K|)) ≤ 1/|K|. Combining this with

(3.15), we obtain

∫ ∞
a

m(h/θ, z) dz ≤ a/ΦC(a). Hence by [33, Lemma 8.14], h ∈

M(ΦC) and ‖h‖M(ΦC) ≤ 3θ.

Proof of 3) We compute:

‖h‖Λ(ϕC) ≤ 2

∫ ∞
0

ϕC(m(h, t)) dt by [33, Theorem 8.5 part 1◦]

= 2

∫ ∞
0

ϕC(|K|m(f, tϕB(|K|))) dt by (3.15)

≤ 2θϕB(|K|)
∫ ∞

0
ϕA(m(f, tϕB(|K|))) dt by (3.14)

= 2θ

∫ ∞
0

ϕA(m(f, s)) ds by a change of variables

≤ 2θ‖f‖Λ(ϕA) by [33, Theorem 8.5 part 2◦].

Proposition 3.4.3. Let (Ω1, µ1) and (Ω2, µ2) be measure spaces. Let ΦA,ΦB and ΦC

be Young’s functions and ϕA, ϕB and ϕC be their respective fundamental functions.
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Suppose that f is a measurable function on Ω1×Ω2 and K is a subset of Ω2 of finite

measure. If

h(ω1) =

∫
Ω2

f(ω1, ω2)χK(ω2) dµ2(ω2)

then h is measurable. Suppose that there is a δ > 0 such that

ϕA(st) ≥ θϕC(s)ϕ∗B(t) for all s > 0, t ≥ δ. (3.16)

Then for K large enough that ϕB(|K|) ≥ δ, we have

1) if f ∈ L(ΦA) then h ∈ L(ΦC) and ‖h‖L(ΦC) ≤ (4/θ)‖f‖L(ΦA)ϕB(|K|)

2) if f ∈ Λ(ΦA) then h ∈ Λ(ΦC) and ‖h‖Λ(ΦC) ≤ 3θ‖f‖Λ(ΦA)ϕB(|K|)

3) if f ∈M(ΦA) then h ∈M(ΦC) and ‖h‖M(ΦC) ≤ 2θ‖f‖M(ΦA)ϕB(|K|).

Proof. The proofs of all three parts are similar, relying on associate spaces for the

norm estimates required. We shall use Proposition 3.4.2 together with Hölder-type

estimates involving associate spaces. Using the identity ϕ(t)ϕ∗(t) = t, we reformulate

(3.16):

st

ϕ∗A(st)
≥ θ

s

ϕ∗C(s)

t

ϕB(t)

ϕ∗A(st) ≤ (1/θ)ϕ∗C(s)ϕB(t). (3.17)

Let ΨA,ΨB and ΨC be the Young’s functions complementary to ΦA,ΦB and ΦC

respectively. The Orlicz spaces L(ΨA), L(ΨB) and L(ΨC) with Orlicz norms are

respectively associate spaces of L(ΦA), L(ΦB) and L(ΦC) with Luxemburg norms

and hence their fundamental functions are ϕ∗A, ϕ
∗
B and ϕ∗C respectively.

We shall have need of L(ΨA), L(ΨB) and L(ΨC) equipped with Luxemburg norms.

Let ϕA, ϕB and ϕC be their respective fundamental functions. By [4, Lemma 4.8.16]

1/w ≤ Φ−1
A (1/w)Ψ−1

A (1/w) ≤ 2/w

for all w > 0. As ϕA(w) = 1/Φ−1
A (1/w) and ϕA(w) = 1/Ψ−1

A (1/w),

w ≥ ϕA(w)ϕA(w) ≥ w/2.

Therefore

ϕ∗A(w) ≥ ϕA(w) ≥ ϕ∗A(w)/2.
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The same inequalities hold of course for ϕC . From (3.17), we derive

ϕA(st) ≤ (2/θ)ϕC(s)ϕB(t). (3.18)

Proof of 1) By Definition of the Orlicz norm (3.1),

‖h‖L(ΦC) = sup
{∫

Ω1

|h(ω1)ν(ω1)| dµ1(ω1) : ‖ν‖L(ΨC) ≤ 1
}

= sup
{∫

Ω1×Ω2

|f(ω1, ω2)χK(ω2)ν(ω1)| dµ1 × µ2 : ‖ν‖L(ΨC) ≤ 1
}
.

By part 1) of Proposition 3.4.2 and (3.18), ‖χK ⊗ ν‖L(ΨA) ≤ (2/θ)‖ν‖L(ΨC)ϕB(|K|).
Hence for some ν with ‖ν‖L(ΨC) ≤ 1,∫

Ω1

|h(ω1)ν(ω1)| dµ1(ω1) ≤ ‖f‖L(ΦA).(2/θ)ϕB(|K|)

≤ 2‖f‖L(ΦA)(2/θ)ϕB(|K|)

where we used the estimate given in (3.2) in the last line. Using (3.2) again, we

finally obtain

‖h‖L(ΦC) ≤ (4/θ)‖f‖L(ΦA)ϕB(|K|).

Proof of 2) By [33, Theorem 8.5 part 3◦], because the associate space of Λ(ΦC) is

M(ΨC),

‖h‖Λ(ΦC) = sup
{∫

Ω1

|h(ω1)ν(ω1)| dµ1(ω1) : ‖ν‖M(ΨC) ≤ 1
}

= sup
{∫

Ω1×Ω2

|f(ω1, ω2)χK(ω2)ν(ω1)| dµ1 × µ2 : ‖ν‖M(ΨC) ≤ 1
}
.

By Proposition 3.4.2 and (3.17), ‖χK ⊗ ν‖M(ΨA) ≤ 3θ‖ν‖M(ΨC)ϕB(|K|). Hence

for some ν with ‖ν‖Λ(ΨC) ≤ 1,∫
Ω1

|h(ω1)ν(ω1)| dµ1(ω1) ≤ 3θ‖f‖Λ(ΦA)ϕB(|K|),

which proves that ‖h‖Λ(ΦC) ≤ 3θ‖f‖Λ(ΦA)ϕB(|K|).

Proof of 3) By [33, Theorem 8.7], because the associate space of M(ΦC) is Λ(ΨC),

‖h‖M(ΦC) = sup
{∫

Ω1

|h(ω1)ν(ω1)| dµ1(ω1) : ‖ν‖Λ(ΨC) ≤ 1
}

= sup
{∫

Ω1×Ω2

|f(ω1, ω2)χK(ω2)ν(ω1)| dµ1 × µ2 : ‖ν‖Λ(ΨC) ≤ 1
}
.
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By Proposition 3.4.2 and (3.17), ‖χK ⊗ ν‖Λ(ΨA) ≤ 2θ‖ν‖Λ(ΨC)ϕB(|K|). Hence for

some ν with ‖ν‖M(ΨC) ≤ 1,∫
Ω1

|h(ω1)ν(ω1)| dµ1(ω1) ≤ 2θ‖f‖M(ΦA)ϕB(|K|),

which proves that ‖h‖M(ΦC) ≤ 2θ‖f‖M(ΦA)ϕB(|K|).

We end off this Chapter with a result that is to Λ-spaces what [4, Lemma 8.14] is

for M -spaces. One difference is that the latter result is an equivalence, whereas our

result is merely an implication. It would be interesting to know if the converse holds

as well.

Lemma 3.4.4. Suppose that f is a measurable function on some measure space

(Ω, µ), that ϕ is a fundamental function and that f ∈ Λ(ϕ). Then

ϕ
( ∫ ∞

z
m(f, y)

dy

y

)
≤ e

z(e− 1)
‖f‖Λ(ϕ).

Proof. We compute:

ϕ
( ∫ ∞

z
m(f, y)

dy

y

)
= ϕ

( ∞∑
n=0

∫ zen+1

zen
m(f, y)

dy

y

)
≤

∞∑
n=0

ϕ
( ∫ zen+1

zen
m(f, y)

dy

y

)
(as ϕ is subadditive)

≤
∞∑
n=0

ϕ
(
m(f, zen)

)
as

∫ zen+1

zen

dy

y
= 1

≤
∞∑

n=−1

1

zen(e− 1)

∫ zen+1

zen
ϕ(m(f, y)) dy

≤ e

z(e− 1)

∞∑
n=−1

∫ zen+1

zen
ϕ(m(f, y)) dy

=
e

z(e− 1)

∫ ∞
z/e

ϕ(m(f, y)) dy

≤ e

z(e− 1)
‖f‖Λ(ϕ)

where the last inequality follows from [33, Theorem 8.5, 2◦].



Chapter 4

Mean ergodic theorems

Having laid the foundations in the previous two Chapters, in this Chapter and the

next we produce the main results of this thesis. The mean ergodic theorems produced

here in Section 4.4 are derived from yet more general results, namely Theorems 4.3.1

and 4.3.2 of Section 4.3. As explained in Section 1.2, these are Tauberian theorems:

starting from the convergence of a sequence of averages on the group, we end up with

the convergence of averages on the space acted upon by the group.

In this way, these results echo the Transfer Principle of the next Chapter in spirit.

They arise of course through very different techniques. The essence of the procedure

for transferring the convergence from group to vector space is presented in Section

4.2, where we show how one can define operators on the vector space starting from

Radon measures on the group.

In doing so, we build upon the results of Section 4.1, which contain a careful

analysis of different types of group actions, based upon continuity considerations.

Finally, in Section 4.4, we can easily derive general mean ergodic theorems.

4.1 Integrable Actions and Spectral Subspaces

We first describe the general type of Group Actions that shall concern us. In [35] for

example, the author uses the central concept of an integrable action. Earlier in [21],

Godement considered bounded group actions on Banach spaces in order to study

Tauberian theorems. However, we shall work more generally, considering actions on

locally convex vector spaces. Many of these ideas are important in Operator Theory

56
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and so expositions of various aspects of this material can be found in [35] and [47].

We differentiate between two types of integrability − weak and strong − and express

our definition in the language of vector-valued integration theory. We use [38] as our

reference for the theory of locally convex topological vector spaces.

We take as our starting point the concept of an integrable action, given in Defi-

nition 4.1.1. We pay special attention to the different topologies on Lω(E) and how

this affects the continuity properties of α. From there, as in Arveson’s work [1], we

define various kinds of spectral subspaces in Definitions 4.1.6 and 4.1.8, stressing their

equivalence. Other kinds of spectral subspaces are considered in Definition 4.1.10. In

this section, we will stress the importance of S-sets, a notion from harmonic analysis

that fruitfully links all these different kinds of spectral subspaces. One advantage

of this is that, depending on the situation, it will be easier to recognise invariant

subspaces as being spectral subspaces of one of these types; the general theory pre-

sented below will show how to view each of these subspaces in the light of the other,

complementary definitions.

Definition 4.1.1. An action α of a locally compact group G on a dual pair of

topological vector spaces (E,E′) is a homomorphism t 7→ αt from G into Lω(E).

The action α is a weak action if it is bounded and continuous when Lω(E) has

the wot. The action α is a strong action if it is bounded and continuous when

Lω(E) has the sot.

We call a weak action α a weak integrable action if for each x ∈ E, the function

t 7→ αt(x) is µ-Pettis integrable for every finite Radon measure µ on G.

We call a strong action α a strong integrable action if for each x ∈ E, the

function t 7→ αt(x) is µ-Bochner integrable for every finite Radon measure µ on G.

From the definitions it is immediate that the transposed map t 7→ α′t of an action

on E is an action on E′ and that α′ is weak or strong integrable if and only if α has

that property. Indeed, we work with the space Lω(E) because it contains an operator

T if and only if the transpose T ′ lies in Lω(E′). With a view to our applications in

Section 4.4, recall from Section 2.1 that if E is a Fréchet space, then Lω(E) = Lσ(E).

It is also clear that an integrable action yields a map, also called α, from M(G) to

Lω(E), sending µ to αµ, where αµ is the Pettis integral of equation (2.2) in Definition

2.2.3:
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〈αµ(x), y〉 =

∫
G
〈αt(x), y〉 dµ(t).

The validity of this equation for the action α is the definition of an integrable

action in [1] and [35].

In the sequel, all actions will be weak actions unless otherwise stated. Note that

all other cases covered in Definition 4.1.1 are strengthenings of this.

Definition 4.1.2. For each x ∈ E and y ∈ E′, we define the function ηx,y : G→ C
by

ηx,y : t 7→ 〈αt(x), y〉. (4.1)

Note that each ηx,y is in Cb(G) ⊂ L∞(G).

For each x ∈ E, we also define a weak*-closed subspace Ex of L∞(G) by

Ex = {ηx,y : y ∈ E′} wk∗. (4.2)

Note that Ex is translation-invariant. Indeed, for any x ∈ G,

ηx,y(t+ s) = 〈αt+s(x), y〉 = 〈αt(x), α′s(y)〉

and so the function t 7→ ηx,y(t+ s) ∈ Ex.

Part of the importance of the above definition stems from the fact that the well-

defined map η : E⊗E′ : x⊗y 7→ ηx,y is the transpose of α : M(G)→ Lω(E) : µ 7→ αµ.

Lemma 4.1.3. Let E be a convex vector space with topology ξ and dual E′. Let α

be an action of G on E.

1. If α is weak integrable then the map M(G) → Lω(E) defined by µ 7→ αµ is

weak-wot and norm-sot continuous.

2. If α is strong integrable then the map M(G) → Lω(E) defined by µ 7→ αµ is

weak-sot and norm-sot continuous.

Proof. For the first part, define as above η : E ⊗ E′ → Cb(G) by η(x ⊗ y) = ηx,y.

By definition of the Pettis integral, η is the transpose of α : M(G) → Lω(E). As

Cb(G) may be identified with a subspace of M(G)∗, by [38, Ch II, Prop. 12 p38], α is

σ(M(G),M(G)∗)− σ(Lω(E), E ⊗E′)-continuous, that is, weak-wot continuous. As

noted in Section 2.1, this means that α is also β(M(G),M(G)∗)−β(Lω(E), E⊗E′)-
continuous, that is, norm-sot continuous.
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For the second part, recall that a neighbourhood base of the sot topology on

Lω(E) is given by sets of the form W (A, V ), where A is a finite subset of E, V is an

absolutely convex ξ-neighbourhood in E and W (A, V ) = {T ∈ Lω(E) : T (A) ⊆ V }.
To prove the result, we must show that for every such W (A, V ) there is a weak

neighbourhood U of M(G) such that U is mapped into W (A, V ).

As α is a strong bounded action, for each x ∈ E and V as above, fx,V : t 7→
supe′∈V ◦ |〈αt(x), e′〉| is bounded and continuous. In fact, the strong boundedness of

α implies that for each x ∈ E, there is an M ∈ R+ such that {αt(x) : t ∈ G} ⊂
M.W (A, V ). The polar of the finite subset {fx,V : x ∈ A} ⊂ Cb(G) ⊂ M(G)∗ is

a weak-neighbourhood in M(G). Call this set U . Then by (2.4) of Lemma 2.2.4,

(1/M)U ⊂W (A, V ).

From the above, the norm-sot continuity is trivial.

We now show that, in the case for Fréchet spaces, mild hypotheses on the action

actually ensure far more - that it is in fact integrable. Recall that a Fréchet space X

with dual X∗ has the Mackey topology τ(X,X∗) and is metrisable and complete.

Proposition 4.1.4. Let G be a locally compact σ-compact abelian group and X a

Fréchet space with dual X∗. If (αt)t∈G is a family of continuous isomorphisms from

X to itself such that the mapping t 7→ αt from G into B(X) is continuous and bounded

when B(X) has the wot, then α is a weak integrable action of G on the dual pair

(X,X∗).

Proof. In the sequel, fix an x ∈ X. From the hypotheses, the map t 7→ αt(x) is

continuous when X has its weak topology. Hence, if K is a compact subset of G, the

set αK(x) = {αt(x) : t ∈ K} is weakly compact. As a Fréchet space is barrelled, by

[38, Ch IV, Corollary 3, p66], the closed convex hull of αK(x), denoted by co
(
αK(x)

)
,

is also weakly compact. Suppose that µ is a Radon probability measure on K. By

[13, Theorem 1 p148], there is a unique xK,µ ∈ co
(
αK(x)

)
such that

〈xK,µ, y〉 =

∫
K
〈αt(x), y〉 dµ(t)

for all y ∈ X∗. By the same token, if µ ∈ M(G) is not a probability measure, there

exists a unique xK,µ ∈ ‖µ‖co
(
αK(x)

)
.

Now fix a µ ∈ M(G) and a sequence of compact sets Kn ⊂ G whose union is

all of G. Write xn = xKn,µ for each n ∈ N. We will show that the sequence (xn) is

Cauchy in X under the τ(X,X∗)-topology and hence convergent.
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A neighbourhood base of 0 in the Mackey topology is by definition given by the

polar sets Y ◦, where Y ⊂ X∗ is σ(X∗, X)-compact and absolutely convex.

Now as the map t 7→ αt(x) is bounded, the orbit set {αt(x) : t ∈ G} is bounded

in all topologies of the dual pair (X,X∗), including the Mackey topology. Hence

there is an M ∈ R such that

|〈αt(x), y〉| ≤M

for all t ∈ G and y ∈ Y .

Take N ∈ N such that |µ|(G\KN ) ≤ 1/M. Then for n > m > N ,

|〈xn − xm, y〉| =
∣∣ ∫

Kn

〈αt(x), y〉 dµ(t)−
∫
Km

〈αt(x), y〉 dµ(t)
∣∣

=
∣∣ ∫

Kn\Km
〈αt(x), y〉 dµ(t)

∣∣
≤

∫
Kn\Km

|〈αt(x), y〉| d|µ|(t)

≤
∫
G\Km

|〈αt(x), y〉| d|µ|(t) ≤ 1.

Hence xn − xm ∈ Y ◦ and (xn) is Cauchy in X under the Mackey topology. As a

Fréchet space is complete in this topology, the sequence has a limit. Call its limit

αµ(x). We have shown that

〈αµ(x), y〉 = lim
n→∞

∫
Kn

〈αt(x), y〉 dµ(t) =

∫
G
〈αt(x), y〉 dµ(t).

Therefore the action is weak integrable.

Proposition 4.1.5. Let α be a strong action of a locally compact σ-compact abelian

group G on a Fréchet space X. Then α is a strong integrable action for any finite

Radon measure.

Proof. Let µ be a finite Radon measure and x ∈ X. We are going to show that

f(t) = αt(x) is µ-measurable by constructing a sequence of µ-simple measurable

functions converging a.e. to it. Fix an ε > 0 in all the constructions that follow. As G

is σ-compact, there is a compact K ⊂ G such that µ(G\K) < ε. Because α is strongly

continuous, αK(x) = {αt(x) : t ∈ K} is compact and so for any open neighbourhood

U of 0, there is a finite set t1, . . . , tn ∈ G such that the sets αt1(x)+U, . . . , αtn(x)+U
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cover αK(x). Let E1 = αK(x)∩ (αt1(x) +U) and Ei =
(
αK(x)∩ (αti(x) +U)

)
\Ei−1

for i = 2, . . . , n. Define the µ-simple function

fU,K(t) =

n∑
i=1

αti(x)χEi(t).

Then µ({t ∈ G : f(t) − fU,K(t) /∈ U}) < ε. As X is metrisable we may choose a

decreasing sequence of open neighbourhoods of 0, say (Ui), that generate the topology.

Owing to the σ-compactness of G, we can choose an increasing sequence of compact

subsets of G, say (Ki), whose union is all of G and such that µ(G\Ki) < 1/i. Define

fi := fUi,Ki .

This sequence of µ-measurable functions converges a.e. to f . (Note that the functions

fi do not depend on ε for their construction).

Next we show that f is µ-Bochner integrable. Take any equicontinuous set A ⊂
X∗. Its polar A◦ is a neighbourhood of 0 in X and so there is an N1 ∈ N such that

Un ⊂ (ε/2|µ|(G))A◦ for all n ≥ N1. Let M = supt∈G supe′∈A |〈f(t), e′〉|. This value is

finite because the boundedness of the action ensures that f is bounded too. There is

an N2 ∈ N such that M/n < ε/2 for any n ≥ N2.

For any n ≥ N = max{N1, N2}, we compute:∫
Ω

sup
e′∈A
|〈f(t)− fn(t), e′〉| d|µ|(t)

≤
∫
Ki

sup
e′∈A
|〈f(t)− fn(t), e′〉| d|µ|(t) +

∫
G\Ki

sup
e′∈A
|〈f(t)− fn(t), e′〉| d|µ|(t)

≤
∫
Ki

ε

2|µ|(G)
d|µ|(t) +

∫
G\Ki

sup
e′∈A
|〈f(t), e′〉| d|µ|(t) +

∫
G\Ki

sup
e′∈A
|〈fn(t), e′〉| d|µ|(t)

≤ ε

2
+
M

n
+ 0

≤ ε

2
+
ε

2
= ε.

As ε is arbitrary throughout the above constructions, we see that (2.3) of Defini-

tion 2.2.3 is satisfied. Hence α is a strong integrable action.

Now we turn to the definition and elementary characteristics of spectral subspaces.

In the sequel, α will denote a weak integrable action, unless otherwise specified. We

define certain closed subspaces of E and E′, which are α-invariant.
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Definition 4.1.6. (Arveson) [1] For each open subset Ω ∈ Ĝ define the spectral

R-subspace Rα(Ω) as the σ(E,E′)-closure in E of the linear span of the elements

αf (x), where x ∈ E, f ∈ K(G) and supp f̂ ⊂ Ω. Similarly we define Rα
′
(Ω) in E′.

For each closed subset Λ of Ĝ we define the spectral M-subspace Mα(Λ) as the

polar (or equivalently the annihilator) of Rα
′
(Ĝ\Λ). Similarly we define Mα′(Λ) in

E′.

If we need to emphasise the space on which G acts, we will write Mα
E(Λ) and

RαE(Ω).

Looking at the definition of Mα(Λ) given above, x ∈ Mα(Λ) if and only if

〈x, α′f (y)〉 = 0 for all y ∈ E′ and all f in K(G) with supp f̂ ⊂ Ĝ\Λ; i.e. if αf (x) = 0.

In [35, Theorem 8.1.4], the author lists several elementary properties of these

subspaces, several of which also appear in [1] and [51].

Definition 4.1.7. Let V be a σ(E,E′)-closed subspace of E. We define γ(V ) to be

the weak*-closure in L∞(G) of the subspace

{ηx,y : x ∈ V, y ∈ E′}.

Furthermore, we define the spectrum of V to be σ(V ), where σ(V ) = σ(γ(V )).

Although the conclusion of the following Proposition is a fairly natural one to

make, the author is unaware of a proof or statement of this fact in the literature.

Definition 4.1.8. (Godement) [21] For each closed subset Λ ⊂ Ĝ, we define Γ(Λ)

to be the set of all x ∈ E such that the spectrum of the set Ex defined in Definition

4.1.2, is contained in Λ.

The subspace Γ(Λ) is invariant under the action α. This is because if x ∈ Γ(Λ)

then the spectrum of Ex is contained in Λ and Eαt(x) = Ex.

Again it is clear that γ(V ) is a translation-invariant subspace of L∞(G).

The definitions of Γ(Λ) and Mα(Λ) for a given closed subset Λ of Ĝ are in fact

equal. We have produced both here because their constructions provide a slightly dif-

ferent emphasis, which will be useful when proving the main theorems and discussing

examples.

Proposition 4.1.9. For a given closed subset Λ of Ĝ, Γ(Λ) = Mα(Λ).
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Proof. Let x ∈ Γ(Λ). Take any g ∈ K(G) such that supp ĝ is in Ĝ\Λ, and any

y ∈ E′. We show that

〈x, α′g(y)〉 =

∫
G
〈αt(x), y〉g(t) dt = 0. (4.3)

From this equation, we see at once that x ∈
(
Rα
′
(Ĝ\Λ)

)◦
= Mα(Λ) and so Γ(Λ) ⊆

Mα(Λ). Now let U be an open subset containing Λ such that ĝ vanishes on U . As

the space of functions in L∞(G) vanishing on Λ is weak*-closed, we can apply the

Spectral Approximation Theorem (Theorem 2.4.3). For any ε > 0 we can find a

trigonometric polynomial
∑N

n=0 an〈t, ξn〉 where ξ1, . . . , ξn ∈ U such that

∣∣ ∫
G
〈αt(x), y〉g(t) dt−

∫
G

N∑
n=0

an〈t, ξn〉g(t) dt
∣∣ < ε

and as

∫
G

N∑
n=0

an〈t, ξn〉g(t) dt =
N∑
n=0

anĝ(ξn) = 0, we can conclude that

∣∣ ∫
G
〈αt(x), y〉g(t) dt

∣∣ < ε.

As ε is arbitrary, (4.3) is proved.

For the reverse inclusion, take any x ∈ Mα(Λ) and y ∈ E′. If x /∈ Γ(Λ), then

σ(Ex) 6⊆ Λ. This means that there is a character ξ ∈ σ(Ex)\Λ which can be weak*-

approximated by a finite combination of functions ηx,y1 , . . . , ηx,yn . Any such combi-

nation is again of the form ηx,y, where y is a linear combination of y1, . . . , yn. We

can in fact find a net y′i in E′ such that ηx,y′i converges in the weak* topology to ξ .

Hence 〈αt(x), y′i〉 → ξ(t) as i→∞ and for any f ∈ L1(G),

〈x, α′f (y′i)〉 =

∫
G
〈αt(x), y′i〉f(t) dt→ f̂(ξ)

as i → ∞. But we can find an f ∈ K(G) such that f̂(ξ) 6= 0 and f̂ is 0 on an open

neighbourhood of Λ not containing ξ. Thus 〈x, α′f (yi)〉 6= 0, contradicting the fact

that x ∈Mα(Λ) =
(
Rα
′
(Ĝ\Λ)

)◦
.

This contradiction shows that Mα(Λ) ⊆ Γ(Λ), and the proof is complete.

Apart from the invariant subspaces described above, there are other invariant

subspaces that will be useful to us.
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Definition 4.1.10. Let µ ∈M(G). The nullspace of µ is given by

N(µ) = {x ∈ E : αµ(x) = 0}.

Similarly,

N ′(µ) = {x ∈ E′ : α′µ(x) = 0}.

The range space of µ is given by

R(µ) = {αµ(x) : x ∈ E} σ

where σ denotes the σ(E,E′)-closure of the space. One can likewise define

R′(µ) = {α′µ(x) : x ∈ E′} σ.

Again, it is easy to see that these spaces are invariant under the action α of G.

We will have need of the following straightforward relations between these four sets.

Lemma 4.1.11. The following equalities hold between the spaces N(µ), R(µ), N ′(µ)

and R′(µ) defined above:

N(µ) =
(
R′(µ)

)◦
R(µ) =

(
N ′(µ)

)◦
.

Proof. If x ∈
(
R′(µ)

)◦
, then by definition, for any y ∈ E′,

0 = 〈x, α′µ(y)〉 = 〈αµ(x), y〉.

Hence αµ(x) = 0 and x ∈ N(µ). Thus
(
R′(µ)

)◦ ⊆ N(µ).

On the other hand, if x ∈ N(µ), then for any y ∈ E′, 〈x, α′µ(y)〉 = 0. As the

set {α′µ(y) : y ∈ E′} is by definition σ(E′, E)-dense in R′(µ), we see that for any

z ∈ R′(µ), 〈x, z〉 = 0. Hence N(µ) ⊆
(
R′(µ)

)◦
.

Putting the two inclusions together, N(µ) =
(
R′(µ)

)◦
.

The second equation is proved in the same manner as the first.

Although the subspaces given in Definition 4.1.10 are similar to the spectral sub-

spaces specified in Definition 4.1.6, they are not in general the same. Whether or not

they are equal depends on the structure of the nullset ν(µ) of the measure. To prove

the results linking the two types of subspaces, we first define certain types of ideals.
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Definition 4.1.12. Let x ∈ E and set Ix = {f ∈ L1(G) : αf (x) = 0}. Similarly for

x ∈ E′ we define Ix.

These closed ideals are called the isotropy ideals, to borrow a term from the study

of group actions on sets. Takesaki uses them in [47] as the basis for his analysis of

spectral subspaces.

Lemma 4.1.13. Let µ be a measure in M(G). The inclusion N(µ) ⊆ Mα(ν(µ))

always holds. If, furthermore, the null set ν(µ) is an S-set, then N(µ) = Mα(ν(µ)).

Proof. Let x ∈ N(µ): this means αµ(x) = 0. Now take any α′f (y) ∈ Rα′(Ĝ\ν(µ))

and set K = supp f̂ ⊂ {ξ : µ̂(ξ) 6= 0}. By Theorem 2.4.4, there is an h ∈ L1(G) such

that µ̂ĥ = 1 on K. Hence (h∗µ∗f )̂ = f̂ and so by the Fourier Uniqueness Theorem,

h ∗ µ ∗ f = f . We conclude that

〈x, α′f (y)〉 = 〈αf (x), y〉 = 〈αhαµαf (x), y〉 = 0,

which shows that x ∈Mα(ν(µ)).

To prove the second part of the lemma, we must prove the reverse inclusion

under the additional hypothesis that ν(µ) is an S-set. Let x ∈ Mα(ν(µ)). Consider

f ∈ K(G) such that f has compact support in Ĝ\ν(µ). By definition, Mα(ν(µ)) =(
Rα
′
(Ĝ\ν(µ))

)◦
, so

0 = 〈x, α′f (y)〉 = 〈αf (x), y〉

for all y ∈ E′. Hence it must be that αf (x) = 0; so f ∈ Ix. Now because ν(µ) is an

S-set, the set of all f ∈ K(G) with supp f̂ ⊂ Ĝ\ν(µ) generates ι(ν(µ)), the unique

ideal with nullset ν(µ). Therefore Ix ⊇ ι(ν(µ)).

Let (gi)i∈Γ be an approximate identity for L1(G). We have that µ ∗ gi ∈ Ix for

each i ∈ Γ. As µ ∗ gi → µ in norm, αµ = limi→∞ αµ∗gi in the sot and in fact

αµ(x) = lim
i→∞

αµ∗gi(x) = 0.

Therefore x ∈ N(µ) and Mα(ν(µ)) ⊆ N(µ).

In discussing the properties of operators induced by measures in the next Section

4.2, we will need to know how to approximate the functions ηx,y by trigonometric

polynomials. This is presented in Theorem 4.1.15. To prove this theorem, we proceed

via the following calculation of the spectra of certain invariant subspaces.
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Lemma 4.1.14. Let µ be a finite Radon measure on G and Λ be a closed subset of

Ĝ. The spectra of the subspaces Mα(Λ) and N(ν(µ)) are given by

σ(Mα(Λ)) = Λ (4.4)

σ(N(µ)) ⊆ ν(µ). (4.5)

Proof. Equation (4.4) is derived directly from Definitions 4.1.8, 4.1.7 and Proposi-

tion 4.1.9.

For (4.5), note that by Lemma 4.1.13N(µ) ⊆Mα(ν(µ)) and so by (4.4), σ(N(µ)) ⊆
ν(µ).

Theorem 4.1.15. Let µ be a finite Radon measure on G, x ∈ N(µ) and y any

element in E′.

Then for any open neighbourhood U containing ν(µ), ηx,y can be weak*- approxi-

mated by a finite linear combination of characters in U .

Furthermore, if ν(µ) is an S-set, each ηx,y can be weak*-approximated by a finite

linear combination of characters in ν(µ).

Proof. If x ∈ N(µ) then Ex ⊂ γ(N(µ)) and σ(Ex) ⊂ σ(N(µ)), by Definitions 4.1.7

and 4.1.8. So by Lemma 4.1.14, σ(Ex) ⊂ ν(µ). Hence, by the Spectral Approximation

Theorem 2.4.3, for any y ∈ E′, ηx,y can be approximated by finite linear combinations

of characters from U .

For the second part, if ν(µ) is an S-set, then reasoning as above but appealing to

the second part of Theorem 2.4.3, the result follows at once.

The space L1(G)/ι+(K) can be used to underscore the inherent dual character-

istics that arise between the group and the space upon which it acts, via the group

action α. Indeed, take a weak integrable action α and define

η : Mα(K)⊗ E′ → ι+(K)◦ : η(x⊗ y) = 〈αt(x), y〉 = ηx,y(t).

By Definitions 4.1.8, 4.1.8 and Proposition 4.1.9, this is well-defined. (Note that

ι+(K)◦ is the weak*-closure of the characters in K in L∞(G); see [17]).

We have that α : L1(G)/ι+(K)→ Lω(Mα(K)) and η are each other’s transpose.

Pictorially:
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L1(G)/ι+(K)

ι+(K)◦

Lω(Mα(K)).

Mα(K)⊗ E′

α

η

This result is stated using the wot. The analogous result for the sot is also true

and can be proved in the same way.

The fact that Mα({ξ}) is complemented in E is already known; it may be found

for example in [51]. It can easily be seen that the Mean Ergodic Theorem for the

fixed point space is just a special consequence of this result. Indeed, the fixed point

subspace is just the eigenspace corresponding to the eigenvalue 1. These matters are

fully dealt with in Proposition 4.4.1.

4.2 Operators on Spectral Subspaces

A large class of operators on a vector space can be induced via the integrable action

by finite Radon measures on the group. In this section we discuss how properties of

the measures relate to properties of the corresponding operators. In particular, we

are interested in what can be gleaned from the Fourier transform of the measures

and how to handle sequences of measures and their associated operators.

Let us take a sequence of bounded L1(G)-functions (ϕn). We are looking for

conditions on the functions ϕn, n ∈ N, which cause the corresponding operators αϕn

to converge.

Lemma 4.2.1. Let U be an open subset of Ĝ and µ, ν be finite Radon measures such

that µ̂ = ν̂ on U . Then the operators αµ and αν are equal on Mα(K) for any compact

subset K of U .

In particular, let µ ∈M(G) such that µ̂ ≡ 1 on U . If x ∈Mα(K) then αµ(x) = x.

Proof. First of all, there is an open subset V of U with compact closure such that

K ⊂ V ⊂ V ⊂ U and an h ∈ L1(G) such that ĥ = 1 on V . Then h ∗ µ and h ∗ ν are

in L1(G) and the Fourier transform of h ∗ µ− h ∗ ν is zero on V ⊃ K. It follows that

supp(h ∗ µ− h ∗ ν )̂ ⊂ Ĝ\V ⊂ Ĝ\K.

Thus for x ∈Mα(K) we have by definition,

αh∗µ(x) = αh∗ν(x).
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Now this equality holds for any h ∈ L1(G) because µ̂
∣∣V = ν̂

∣∣V , so we get

αh(αµ(x)) = αh∗µ(x) = αh∗ν(x) = αh(αν(x)),

and the arbitrariness of h yields the claim.

Corollary 4.2.2. Let K be a compact set in Ĝ and let U be an open set containing

K. Furthermore, let µ ∈ M(G) such that µ̂ is never 0 on U . Then αµ is invertible

on Mα(K) and its inverse is continuous.

Proof. There is an open set V with compact closure such that K ⊂ V ⊂ V ⊂ U and

µ̂ is never 0 on V . By Theorem 2.4.4, there is a function g ∈ L1(G) such that ĝµ̂ = 1

on V . By Lemma 4.2.1, αg∗µ(x) = x for all x ∈ Mα(K). Because αg∗µ = αgαµ, the

inverse of αµ on Mα(K) is αg.

Proposition 4.2.3. Let α be an action of a locally compact abelian Hausdorff group

G on the dual pair (E,E′). Let K ⊂ Ĝ be a compact set and let (µn) be a sequence of

functions in L1(G) such that the sequence ([µn]) ⊂ L1(G)/ι−(K) is weakly convergent.

If α is weak integrable, then there is a function Φ in L1(G) such that the sequence

(αµn) converges to αΦ on Mα(K) in the wot.

If α is strong integrable, then (αµn) converges to αΦ on Mα(K) in the sot.

Proof. Suppose that α is weak integrable. We shall show that the map

αK : L1(G)/ι−(K)→ Lω(Mα(K)) : [µ] 7→ αµ
∣∣
Mα(K)

is well-defined and weak-wot continuous. If µ and ν are in L1(G) such that [µ] =

[ν] ∈ L1(G)/ι−(K), then µ̂ = ν̂ on some open set containing K and so by Lemma

4.2.1, αµ = αν on Mα(K). Hence αK is well-defined.

Now by Definition 4.1.6, the dual of Mα(K) is the quotient space E′/Rα
′
(Ĝ\K).

For any y ∈ E′, let [y] denote the equivalence class of y in E′/Rα
′
(Ĝ\K). The

spaces Lω(Mα(K)) and Mα(K)⊗E′/Rα′(Ĝ\K) are in duality via the bilinear form

〈T, x⊗ [y]〉 = 〈Tx, [y]〉 and the map

ηK : Mα(K)⊗ E′/Rα′(Ĝ\K)→ Cb(G) : x⊗ [y] 7→ ηx,y,

is well-defined. By Proposition 4.1.9, ηx,y ∈ ι+(K)◦ ⊆ ι−(K)◦, the dual of L1(G)/ι−(K).

From this we see that ηK is the transpose of αK . Hence by [38, Ch II, Prop. 12 p38]

and the fact that ηK is the transpose of αK , the map αK is weak-wot continuous.



4.2. OPERATORS ON SPECTRAL SUBSPACES 69

As ([µn]) is weakly convergent to [Φ] say, the sequence (αµn
∣∣
Mα(K)

) is convergent

to αΦ

∣∣
Mα(K)

in the wot on Lω(Mα(K)).

If α is strong integrable and A ⊂ E′/Rα
′
(Ĝ\K) is ξ-equicontinuous, for any

x ∈ Mα(K), the maps t 7→ ηx,y(t) where [y] ∈ A are uniformly bounded and so is

t 7→ sup[y]∈A |〈αt(x), [y]〉|. As in the proof of Lemma 4.1.3, this implies that αK is

weak-sot continuous, and hence that (αµn) converges to αΦ in the sot.

Lemma 4.2.4. Let K ⊂ Ĝ be a compact S-set and let µ, ν be finite Radon measures

such that µ̂ = ν̂ on K. Then the operators αµ and αν are equal on Mα(K).

Proof. First of all, note that there is an h ∈ L1(G) such that ĥ = 1 on a neigh-

bourhood of K. Thus µ̂ ∗ h = ν̂ ∗ h on K. Note that we convolve both µ and ν by

h ∈ L1(G). Now L1(G) is a closed ideal of M(G) (cf [41, Theorem 1.3.4 p16]), so

both h ∗ µ and h ∗ ν are in L1(G). Hence the lemma is proved for all finite Radon

measures µ, ν if it is proved whenever µ and ν are functions in L1(G).

Now fix an x ∈ Mα(K) and a y ∈ E′. As K is an S-set, by Theorem 4.1.15, for

any ε > 0 and any f ∈ L1(G), there is a trigonometric polynomial
n∑
i=0

ci〈t, ξi〉 with

ξi ∈ K such that ∣∣ ∫
G
ηx,y(t)f(t) dt−

∫
G

n∑
i=0

ci〈t, ξi〉f(t) dt
∣∣ < ε.

Taking f = µ− ν, we have∣∣〈αµ(x), y〉 − 〈αν(x), y〉
∣∣ =

∣∣ ∫
G
〈αt(x), y〉(µ− ν)(t) dt

∣∣
< ε+

∣∣ n∑
i=0

ci
(
µ̂− ν̂

)
(ξi)
∣∣ = ε

due to the equality of µ̂ and ν̂ on K. As ε and y are arbitrary, we have shown that

for any x ∈Mα(K), αµ(x) = αν(x).

Corollary 4.2.5. Let K ⊂ Ĝ be a compact S-set and let µ be a finite Radon measure

such that µ̂ never vanishes on K. Then the restriction of αµ to Mα(K) is invertible.

Proof. By Theorem 2.4.4, there is a g ∈ L1(G) such that ĝµ̂ = 1 on K, and so

by Lemma 4.2.4, αg∗µ(x) = x for x ∈ Mα(K). Thus αg is the inverse of αµ on

Mα(K).
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Remark 4.2.6. One virtue of proving these results for the abstract dual pair (E,E′)

is that all these results remain true if E and E′ are swapped around. In particu-

lar, Proposition 4.2.3 now states that α′ϕn → α′Φ on Mα′(K) in the wot or sot,

according as the action α is weak or strong integrable.

4.3 Tauberian Theorems for Ergodic Theory

The Tauberian theorems of this section are the culmination of our development of

the spectral theory of integrable actions given in the previous sections.

Theorem 4.3.1. Let α be a weak integrable action of a locally compact abelian Haus-

dorff group G on a barrelled space E with dual E′. Let µ ∈ M(G) be such that ν(µ)

is a compact S-set and let (ϕn) be a sequence in M(G) such that

1. {αϕn(x)} is relatively weakly compact

2. ([ϕn]) ⊂ L1(G)/ι(ν(µ)) is relatively weakly compact

3. for each ξ ∈ ν(µ), limn→∞ ϕ̂n(ξ) exists, and for some A > 0, limn→∞ ϕ̂n(ξ) > A

for all ξ ∈ ν(µ)

4. αµ∗ϕn → 0 in the wot.

Then we have that:

(1′) (αϕn) converges in the wot to an invertible operator on N(µ), and 0 on R(µ)

(2′) E = R(µ)⊕N(µ).

Note that because ν(µ) is an S-set, ι+(ν(µ)) = ι−(ν(µ)), so we write ι(ν(µ)) for

this ideal, as explained on our introduction to S-sets before Theorem 2.4.3.

Proof. Because ν(µ) is compact, without loss of generality, we may assume that

(ϕn) ⊂ L1(G), by replacing it if necessary by the sequence (ϕn ∗h), where h ∈ L1(G)

such that ĥ is identically 1 on ν(µ). We prove the result in three steps:

1. (αϕn) converges weakly to an invertible operator on N(µ)

2. R(µ) ∩N(µ) = {0} and (αϕn) converges weakly to 0 on R(µ)

3. (αϕn) converges weakly to an operator on E and R(µ)⊕N(µ) = E.
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Step 1. By Lemma 2.4.5, hypotheses (2) and (3) imply that ([ϕn]) is weakly con-

vergent. So by Proposition 4.2.3, the sequence (αϕn) converges on Mα(ν(µ)) in the

wot to an operator αΦ, where Φ ∈ L1(G). By hypothesis (3), Φ̂ doesn’t vanish

on ν(µ), so by Corollary 4.2.5, αΦ is invertible on Mα(ν(µ)). Finally, note that

N(µ) = Mα(ν(µ)) by Lemma 4.1.13.

Step 2. As both R(µ) and N(µ) are α-invariant subspaces of E, so is R(µ)∩N(µ). As

noted above, αΦ restricted to N(µ) is invertible. Hence αΦ restricted to R(µ)∩N(µ)

is also invertible. Pick any y ∈ R(µ) ∩N(µ).

The sequence (αϕn) is pointwise bounded on N(µ) and each one is continuous in

the τ(E,E′)-topology on E. As E is barrelled, this is exactly the strong topology

on E and we may use the Banach−Steinhaus theorem [38, Ch IV, Theorem 3 p69]

to conclude that (αϕn) is equicontinuous on N(µ). In other words, for any weak

neighbourhood V of 0 in N(µ), there is a τ(E,E′)-neighbourhood U such that

αϕn(U) ⊂ V/3

for all n ∈ N. Furthermore, as R(µ) is the closure of the space of elements of the

form αµ(e) for e ∈ E, we can find a y′ ∈ E such that αµ(y′)− y ∈ U .

Hence αϕnαµ(y′) − αϕn(y) ∈ V/3 for all n ∈ N. By hypothesis (4), there exists

an N1 such that αϕnαµ(y′) ∈ V/3 for all n ≥ N1. Because αϕn → αΦ in the wot on

N(µ), there exists an N2 such that αϕn(y)− αΦ(y) ∈ V/3 for all n ≥ N2. Hence

αΦ(y) = αϕnαµ(y)−
(
αϕnαµ(y)−αϕn(y)

)
−
(
αϕn(y)−αΦ(y)

)
∈ V/3+V/3+V/3 = V

for all n ≥ max{N1, N2}. As V is arbitrary, αΦ(y) = 0.

But since y was an arbitrary element of R(µ)∩N(µ) with αΦ invertible on N(µ),

this ensures that R(µ) ∩N(µ) = {0}.
The same technique shows that αϕn → 0 in the wot on R(µ). For any weak

neighbourhood V , there is a τ(E,E′)-neighbourhood U such that αϕn(U) ⊂ V/2, as

we have seen above. Furthermore, there is a y′ ∈ E such that αµ(y′) − y ∈ U . As

αϕn∗µ → 0 weakly, there is an N ∈ N such that αϕnαµ(y) ∈ V/2 for all n ≥ N . Hence

αϕn(y) = αϕn(y)− αϕn(αµ(y)) + αϕn(αµ(y))

∈ V/2 + V/2 = V

for all n ≥ N ; hence αϕn(y)→ 0 as n→∞.



72 CHAPTER 4. MEAN ERGODIC THEOREMS

Step 3. First we show that (αϕn(x)) converges weakly for every x ∈ E. As this

sequence is relatively weakly compact, if it is not convergent, we can find two subse-

quences with different limits:

αϕni (x)→ x0 and αϕnj (x)→ x1

with x0 6= x1. As lim
i→∞

αµαϕni (x) = 0 = lim
j→∞

αµαϕnj (x) by hypothesis, x0 and x1 are

in N(µ).

So x0 − x1 /∈ R(µ), because R(µ) ∩N(µ) = {0}. This means that there is a y in

R(µ)◦ such that 〈x0 − x1, y〉 6= 0. By Lemma 4.1.11, R(µ)◦ = N ′(µ) and

〈x0, y〉 = lim
n→∞

〈αϕni (x), y〉

= lim
n→∞

〈x, α′ϕni (y)〉

= 〈x, α′Φ(y)〉

where in the last equality we invoked the Remark 4.2.6 of the previous section. Sim-

ilarly,

〈x1, y〉 = 〈x, α′Φ(y)〉

and so 〈x0, y〉 = 〈x1, y〉, which is a contradiction. Hence (αϕn(x)) is weakly convergent

for all x ∈ E.

We define T (x) = lim
n→∞

αϕn(x) , so that T is continuous by the Banach-Steinhaus

Theorem and the range of T is N(µ) by hypothesis (4). Furthermore, ker(T ) = R(µ),

for if x ∈ ker(T ), then for all y ∈ E′,

0 = 〈Tx, y〉 = 〈x, T ′y〉.

As T ′y ∈ N ′(µ), x ∈
(
N(µ)

)◦
= R(µ), so ker(T ) ⊆ R(µ). By the hypotheses of the

theorem and the definition of T , R(µ) ⊆ker(T ).

Now if ρ ∈ L1(G) such that ρ̂Φ̂ = 1 on ν(µ), then αρ and αΦ are inverses on N(µ)

and so the operator P = αρT is a projection whose range is N(µ) and whose kernel

is ker(T ) = R(µ). This proves that E = R(µ)⊕N(µ).

We can prove Theorem 4.3.1 for other topologies on Lω(E).

Theorem 4.3.2. Let α be a strong integrable action of a locally compact abelian

Hausdorff group G on a barrelled space E with dual E′. Let µ ∈ M(G) such that

ν(µ) is an S-set and let (ϕn) be a sequence in M(G) such that



4.3. TAUBERIAN THEOREMS FOR ERGODIC THEORY 73

1. {αϕn(x)} is relatively weakly compact

2. ([ϕn]) ⊂ L1(G)/ι(ν(µ)) is relatively weakly compact

3. limn→∞ ϕ̂n(ξ) > A for some A > 0 and all ξ ∈ ν(µ)

4. αµ∗ϕn → 0 in the sot.

Then we have that:

(1′) (αϕn) converges in the sot to an invertible operator on N(µ), and 0 on R(µ)

(2′) E = R(µ)⊕N(µ).

Proof. All parts of Theorem 4.3.2 but the strong convergence of (αϕn) to T follow

immediately from Theorem 4.3.1. But E = R(µ) ⊕ N(µ) and by Proposition 4.2.3

the convergence is strong on N(µ) and by hypothesis it is also strong on R(µ).

Remark 4.3.3. We now make some remarks on further generalisations as well as

specific situations where the hypotheses of the Tauberians theorems can always be

shown to hold.

Different operator topologies: The above theorem remains true when the sot

on Lω(E) is replaced by any weaker topology in the following sense. If A is a collection

of σ(E′, E)-bounded subsets of E′, we can form the topology of A-convergence on

Lω(E) given by the neighbourhood base

WA,V = {L ∈ Lω(E) : L(A◦) ⊆ V },

where A ∈ A and V is a bounded set in E. Then (αϕn) will converge in the topology

of A-convergence to an operator invertible on N(µ) and 0 on R(µ).

Reflexive spaces: The condition that {αϕn(x)} be relatively weakly compact is

routinely satisfied in a number of general cases: for instance, if (ϕn) ∈ M(G) is

bounded, then {αϕn(x)} is weakly bounded for all x ∈ E and if E is in addition

reflexive, then {αϕn(x)} is automatically relatively weakly compact.

Relatively weakly compact sequences: If in the above theorems the sequence

(ϕn) ⊂ L1(G) is relatively weakly compact, by Lemma 4.1.3 the set {αϕn} is relatively

weakly compact in the wot and so for any x ∈ E, {αϕn(x)} is relatively weakly

compact in E. Also, as the quotient map from L1(G) to L1(G)/ι+(K) is weakly

continuous, the sequence ([ϕn]) is also relatively weakly compact in L1(G)/ι+(K).
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Thus the relative weak compactness of (ϕn) ensures that the first two hypotheses of

the Tauberian theorems are satisfied.

4.4 Applications to Ergodic Theorems

In this section, we show how to use the Tauberian theorems 4.3.1 and 4.3.2 to prove

results in ergodic theory. By a judicious choice of the measures µ and ϕn, we can

quickly prove several Mean Ergodic theorems.

By F (E) we mean the (closed) subspace of all α-invariant elements in E. By

Lemma 4.2.4, the elements of Mα({0}) are fixed because δ̂t = δ̂0 on {0}, so αt =

α0 = id on Mα({0}) for all t ∈ G. Hence Mα({0}) ⊆ F (E). On the other hand, if

x ∈ F (E), then for any t ∈ G and y ∈ E′, 〈αt(x), y〉 = 〈x, y〉, so by Definition 4.1.8,

x ∈ Γ({0}), which equals Mα({0}) by Proposition 4.1.9. Hence F (E) = Mα({0}).
Let us now discuss a generalisation of the classical Mean Ergodic Theorem in

the context of Fréchet spaces. Suppose that X is a Fréchet space and that T is a

power-bounded automorphism of X − that is, for any bounded subset C of X, there

is a bounded subset B such that Tn(C) ⊆ B for all n. By Proposition 4.1.5, T

induces a strong integrable action α of the group Z on X. Suppose that the convex

hull of {Tn(x) : n ∈ Z} is weakly relatively compact for each x ∈ X. (This is always

true if X is reflexive, for example, because then every weakly bounded set is weakly

relatively compact, as shown in [38]).

Then the Mean Ergodic Theorem states that there is a projection PF of X onto

F (X) and

lim
n→∞

1

n

n−1∑
i=0

T i −→ PF (4.6)

in the sot. To prove this, on Z define the measures µ = δ0 − δ1 and ϕn =
1

n
χ[0,n−1]

for each n ∈ N, where χ[0,n−1] is the characteristic function of the set {0, 1, . . . , n−1}.
As µ ∗ ϕn converges to 0 in norm, by Lemma 4.1.3 we conclude that αµ∗ϕn → 0 in

the sot.

Now ν(µ) = {1}, where 1 is the identity element of T. Being a singleton, {1} is an

S-set. (The fact a singleton is an S-set is a direct consequence of [17, Corollary 4.67]).

Furthermore, on {1}, we see that obviously limn→∞ ϕ̂n(1) = 1, and [ϕn] = [ϕm] in

L1(Z)/ι({0}), which is one-dimensional, for all n,m ∈ N.
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As the convex hulls of the orbits {Tn(x) : n ∈ Z} are weakly relatively compact,

so are the sets {αϕn(x) : n ∈ N} for all x ∈ X. Indeed, by the theory of vector-valued

integration outlined in [43], because ‖ϕn‖ ≤ 1 for all n ∈ N, αϕn(x) lies in the closure

of the convex hull of {Tn(x) : n ∈ Z}. Hence all the hypotheses of Theorem 4.3.2 are

satisfied; this theorem hence establishes the validity of (4.6).

Similarly for actions of R on X, we obtain the formula

lim
n→∞

1

2n

∫ n

−n
αt(x) dt −→ PF (x). (4.7)

Here we set µ(x) = xe−x
2

and ϕn =
1

2n
χ[−n,n] and follow the same steps as in

the proof of (4.6).

Firstly condition 1) of Theorem 4.3.2 is satisfied using precisely the same reasoning

as above.

We start by computing the Fourier transform of f(x) = e−x
2
. Note that the

function

s 7→
∫ ∞
−∞

e−(x+is)2dx

is constant. Its derivative is∫ ∞
−∞

2i(x+ is)e−(x+is)2dx =

∫ ∞
−∞

i
d

dx
e−(x+is)2dx = 0.

Using completion of the square we compute:

f̂(y) =

∫ ∞
−∞

e−x
2
e−ixydx

= ey
2/4

∫ ∞
−∞

e−(x+iy/2)2 dx

= ey
2/4

∫ ∞
−∞

e−x
2
dx

=
√
πey

2/4.

As µ(x) = −f ′(x)/2,

µ̂(y) = π
√
πiyey

2/4

and hence ν(µ) = {0}.
Let us verify condition 3). Clearly ϕ̂n(0) =

∫∞
−∞ ϕn(x)dx = 1.

Let us verify condition 2). As L1(R)/ι(ν(µ)) is one dimensional, [ϕn] = [ϕm] in

L1(R)/ι(ν(µ)) for all n,m ∈ N.
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Let us verify condition 4). We compute:

µ ∗ ϕn(x) =

∫ ∞
−∞

ϕn(t)µ(x− t) dx

= =
1

2n

∫ n

−n
(x− t)e−(x−t)2 dt

= − 1

2n

∫ n

−n
ye−y

2
dy (with the substitution y = x− t)

= − 1

2n

[
− 1

2

]
e−y

2

∣∣∣∣n
−n

=
1

4n

[
e−n

2 − e−n2]
= 0.

Hence ϕn ∗ µ = 0 for all n and so αϕn∗µ = 0.

We can now apply Theorem 4.3.2 to prove (4.7).

It is possible to extend this technique to all projections onto eigenspaces of the

group action. Recall that x ∈ X is an eigenvector corresponding to the eigenvalue

ξ ∈ Ĝ if αt(x) = 〈t, ξ〉x for all t ∈ G. Using the same arguments as where we

showed that Mα({0}) is the fixed point space of the action, it is possible to show

that Mα({ξ}) is the eigenspace with eigenvalue ξ.

We shall prove that it is a consequence of our Tauberian theorem that there is a

projection Pξ of X onto Mα({ξ}), and that it can be computed by an ergodic limit

in the sot. In the case of an action of Z given by a power bounded automorphism

as above, the formula can be determined explicitly:

lim
n→∞

1

n

n−1∑
i=0

〈i, ξ〉T i(x) −→ Pξ(x).

To prove it, we take µ = δ0 − 〈1, ξ〉δ1 and ϕn(i) =
1

n
〈i, ξ〉χ[0,n−1](i) for all i ∈ Z and

n ∈ N.

Using an approximation result in harmonic analysis, we can prove these ideas in

full generality.

Proposition 4.4.1. Let G be a σ-compact locally compact abelian group and α a

weak integrable action of G on the dual pair (E,E′) where E is a Fréchet space, such

that the convex hulls of the orbits {αt(x) : t ∈ G} are weakly relatively compact for

each x ∈ X.
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If ξ ∈ Ĝ, then there is a projection Pξ of E onto Mα({ξ}) and a bounded sequence

ϕn of functions in L1(G) such that

αϕn → Pξ

in the wot. In particular, each Mα({ξ}) is a complemented subspace of E.

Proof. Let µ ∈ M(G) such that ν(µ) = {ξ} and Wn, n ∈ N a sequence of open

neighbourhoods of {ξ} with compact closure such that ∩Wn = {ξ}. By [41, Theorem

2.6.3 p49], we can choose a bounded sequence (ϕn) ⊂ L1(G) such that ‖ϕn ∗ µ‖1 <
1/n, ϕ̂n(ξ) = 1 and supp ϕ̂n ⊂Wn for all n ∈ N.

We see that (ϕn ∗ µ) converges to 0 in norm and hence that αϕn∗µ → 0 in the

sot (and hence certainly in the wot). Clearly ϕ̂n is convergent on ν(µ) = {ξ}, as

ϕ̂n(ξ) = 1. Furthermore, [ϕn] = [ϕm] ∈ L1(G)/ι({ξ}), which is one-dimensional, for

all n,m ∈ N.

Because (ϕn) ⊂ L1(G) is bounded and the convex hull of {αt(x) : t ∈ G} is

relatively weakly compact for each x ∈ X, αϕn(x) lies in the compact closure of the

convex hull of ‖ϕn‖1{αt(x) : t ∈ G}. Hence {αϕn(x) : n ∈ N} is also relatively weakly

compact for each x ∈ E.

Applying Theorem 4.3.1, the result follows.

4.5 Notes and Remarks

The author’s thinking on the proof of mean ergodic theorems in a general context

- that is, for more general groups and vector spaces - evolved from studying the

Tauberian theorems of [15] on the one hand, and harmonic analysis from [17] on the

other. The first link was made in Lemma 4.1.14. Indeed, this was the first novel

result in all this work obtained by the author. In attempting to copy Dunford and

Schwarz’s proof of their Tauberian theorem, the author was led to the study of the

correct kinds of locally convex vector spaces.

Prof. L. Labuschagne immediately noticed an egregious error in an early draft

of [10], which is worth repeating, if only as an illustration of the subtleties involved

in working with convex vector spaces. Suppose that (E,E′) is a dual pair and that

X ⊂ E is a dense subspace. Then the β(X,E′)-topology is in general strictly stronger

than the relative β(E,E′) topology induced on X. At first, the author believed that

they were identical topologies.
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This serves to illustrate how strong the β-topology is. It is essential for applica-

tions of the Banach-Steinhaus theorem, which is why it is so important for the proof

of the Tauberian Theorems 4.3.1 and 4.3.2, as a look at the proofs of those results

will show.

On the group theoretic side, it has long been known that certain invariant sub-

spaces of the space acted upon serve as a kind of analogue of the Fourier transform

on the group. There are several definitions discussed in the text, due to Arveson [1],

Godement [21] and Takesaki [47]. These are compared and shown to be essentially

the same in Section 4.1. However, the slightly different viewpoints combined with the

innovation of using sets of synthesis, allowed the Tauberian theorems to have greater

scope than they may otherwise have had.



Chapter 5

Maximal inequalities and

pointwise ergodic theorems

The pointwise ergodic theory of this thesis is more intricate than the mean ergodic

theory. Anyone familiar with von Neumann’s mean ergodic theorem (1929) and

Birkhoff’s pointwise theorem (1931) will find in this an echo of a long standing dis-

crepancy in difficulty.

We start by formalising the notion of the Transfer Principle and establishing some

of its basic properties in Sections 5.1, 5.2 and 5.3. This work requires the full force of

the vector-valued measure theory and our understanding of product measure spaces

developed in Sections 2.2 and 2.3.

Thereafter our goal is the very general maximal inequalities of Corollary 5.5.2.

The proof of the Corollaries is based on a generalisation of an inequality of Kol-

mogorov, which in a sense provides a local interpretation of what a maximal inequal-

ity is: this is Theorem 5.4.1. This plus Lemma 5.5.1 and Proposition 3.4.1 constitute

the proof of these Corollaries.

Finally, in Section 5.6 we first demonstrate how one can use these Corollaries to

get maximal inequalities from various properties of the function spaces combined with

simpler maximal inequalities on the group. This requires some work on Definition ??

to link the seminorms provided there to more standard BFS norms. It is for this end

that Propositions 3.4.2 and 3.4.3 were developed. Thereafter we can derive pointwise

ergodic theorems in a wide variety of situations, over very general abelian groups and

ergodic averages. The key here is a standard three step strategy for using maximal

79
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inequalities to derive the pointwise theorems.

5.1 The Transfer Principle

In the sequel, all groups shall be considered to be multiplicative, with identity 1.

Definition 5.1.1. A dynamical system consists of a locally compact group G, a mea-

sure space (Ω, µ) and an action of G on Ω denoted by α, which is a group homomor-

phism from G into the group of all invertible measurable mappings from Ω onto itself.

This action is measure-preserving in the sense that for any measurable subset A ⊆ Ω

and g ∈ G, µ(α−1
g (A)) = µ(A). Furthermore, the map α̃ : G×Ω→ Ω : t×ω 7→ αt(ω)

is also measurable. The data is summarised by these four objects:

(Ω, µ,G, α).

The condition that α̃ : G×Ω→ Ω : t×ω 7→ αt(ω) be measurable is equivalent to

stating that if f is a measurable function of Ω, then the function F (t, ω) := f(αt(ω))

is measurable on G×Ω because F = f ◦ α̃. With a slight abuse of notation, then, for

any measurable function f on Ω and t ∈ G we can define αt(f) by setting αt(f)(ω) :=

f(αt(ω)) for a µ-almost all ω ∈ Ω.

The first order of business is to specify what the Transfer Principle is and to

which operators the procedure applies. A word on terminology. If T is a mapping

between locally convex vector spaces, we say that T has metrisable range if the relative

topology on the range is metrisable. An operator T whose domain is some linear

subspace of the measurable functions on (Ω, µ) and mapping into the measurable

functions on a measure space (Ω1, µ1) is said to be sublinear if for any f and g in

the domain of T and complex λ, we have |T (f + g)| ≤ |T (f)|+ |T (g)| and |T (λf)| =
|λ||T (f)|.

Definition 5.1.2. (Transferable operators) Let T be an operator having the class

of locally integrable functions over G as domain and having C(G), the space of con-

tinuous functions on G given the compact-open topology, as range. It is called trans-

ferable if it satisfies the following conditions:

1. T is either a sublinear mapping with metrisable range or a continuous linear

mapping
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2. T is semilocal: there exists an open neighbourhood U of 1 ∈ G with compact

closure such that if suppf is contained in a set V , then suppT (f) is contained

in UV .

3. T is translation invariant: for all t ∈ G and f ∈ Lloc(G),

τt ◦ T (f) = T ◦ τt(f),

where τt(f) is the function defined by s 7→ f(ts) for all locally integrable f and

s ∈ G.

Note that if C(G) is metrisable under the compact-open topology, then T auto-

matically has metrisable range. For instance, this occurs when G is second countable

and metrisable. Moreover, if {gn} is a countable dense subset of G we can form the

countable collection of closed balls {B(gn, q) : n ∈ N, q ∈ Q}, and as any compact

set can be covered by a finite number of these balls, we can see that C(G) under the

compact-open topology is a Fréchet space.

For a given transferable operator T , the remainder of this section is devoted to the

construction of the transfer of T , denoted by T#, and some of its basic properties. It

shall be defined as the composition of maps that arise naturally in the study of vector-

valued measure theory, which we shall define and analyse. These constructions will

allow us to handle the delicate measure theory on product spaces that shall appear.

We shall pay special attention to separability and countability properties of the

space (Ω, µ) and group G and how they affect the transfer operator. As we will see in

the sequel, if Ω and G are σ-finite, the transfer operator will be well-defined. If T is

also metrisably valued (whether sublinear or linear) we will be able to write down the

construction of the Transfer Principle in an even more intuitively direct way, as given

in Remark 5.1.9. Indeed, on a first reading, one may skip directly to this Remark as

it is this construction that shall be used in the rest of the paper.

We now turn to some tensor constructions of functions that will be necessary

when defining and working with the transfer operator.

Definition 5.1.3. Given a dynamical system (G,α,Ω, µ) as in Definition 5.1.1, let f

and g be measurable functions on G and Ω respectively. The α-skew tensor f ⊗α g
is a measurable function on G× Ω defined by

f ⊗α g(t, ω) = f(t)g(αt(ω)).
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There is a strong link between the skew tensor product and the standard tensor

product of two functions that will come in handy.

Lemma 5.1.4. Given f and g as above, the functions f ⊗α g and f ⊗ g on G × Ω

are equimeasurable.

Proof. Let λ ∈ R+ be fixed and define the following sets:

E = {(t, ω) ∈ G× Ω : |f ⊗α g(t, ω)| > λ}

E′ = {(t, ω) ∈ G× Ω : |f ⊗ g(t, ω)| > λ}.

Moreover, for a fixed t ∈ G, we define

Et = {ω ∈ Ω : |g(αt(ω))| > λ/|f(t)|}

E′t = {ω ∈ Ω : |g(ω)| > λ/|f(t)|}.

Now because αt(g) and g are equimeasurable,

µ(Et) = m(αt(g), λ/|f(t)|) = m(g, λ/|f(t)|) = µ(E′t).

Furthermore, h× µ(E) =

∫
G
µ(Et)dt =

∫
G
µ(E′t)dt = h× µ(E′). Hence

m(f ⊗α g, λ) = m(f ⊗ g, λ).

If f is a measurable function on Ω, we define

F := ⊗α,G(f) := χG ⊗α f. (5.1)

In other words, F (t, ω) = f(αt(ω)). This function is measurable on G × Ω. To see

this, recall from Definition 5.1.1 that α̃ : G× Ω→ Ω : t× ω 7→ αt(ω) is measurable,

which implies that F = f ◦ α̃ is measurable too.

We define the Banach space L1+∞(Ω) to be the set of a.e.-finite measurable func-

tions on (Ω, µ) that can be written in the form f+g, where f ∈ L1(Ω) and g ∈ L∞(Ω).

The norm on L1+∞(Ω) is given by

‖h‖L1+∞(Ω) = inf{‖f‖L1 + ‖g‖L∞ : f ∈ L1(Ω), g ∈ L∞(Ω), h = f + g}.

Such a space is a rearrangement invariant Banach function space, as discussed in

Section 3.1.
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Lemma 5.1.5. If f ∈ L1+∞(Ω), then F is rectangular-locally integrable on G × Ω.

Furthermore ⊗α,G is a continuous mapping from L1+∞(Ω) to Lr−loc(G× Ω).

Proof. Let us write f = g1 + g2, where g1 ∈ L1(Ω) and g2 ∈ L∞(Ω). Now for any

subsets K ⊂ G and A ⊂ Ω of finite measure, we must show that

∫
K×A

|F | dh× µ is

finite, where as per our convention, h denotes the Haar measure on G.

Note that for any t ∈ G, the measure-invariance of α ensures that∫
A
|f |(αt(ω)) dµ(ω) =

∫
αt−1 (A)

|f |(ω) dµ(ω)

≤
∫
αt−1 (A)

|g1|(ω) dµ(ω) +

∫
αt−1 (A)

|g2|(ω) dµ(ω)

≤ ‖g1‖1 + |A|‖g2‖∞.

By Fubini’s theorem and the measurability of F ,∫
K×A

|F | dh× µ =

∫
K

∫
A
|f(αt(ω))| dµ(ω)dh(t)

≤
∫
K
‖g1‖1 + |A|‖g2‖∞ dh

= |K|(‖g1‖1 + |A|‖g2‖∞) <∞.

Hence F is rectangular locally integrable. Furthermore, as

|K|(‖g1‖1 + |A|‖g2‖∞) < |K|(1 + |A|)(‖g1‖1 + ‖g2‖∞),

we have ∫
K×A

|F | dh× µ ≤ |K|(1 + |A|)‖f‖1+∞,

which implies the continuity of ⊗α,G.

Now we are in a position to define the transfer operator. We do so first for the

case of transferable operators that are sublinear with metrisable range, then for the

linear case. Thereafter we show that the two definitions agree for linear transferable

operators with metrisable range.

Definition 5.1.6. (Sublinear transfer operators with metrisable range) Let

T be a sublinear transferable operator on Lloc(G) with metrisable range. We define

the transfer operator T# on L1+∞(Ω) as the composition



84 CHAPTER 5. POINTWISE ERGODIC THEOREMS

L1+∞(Ω)

Lr−loc(G× Ω)

Lloc(Ω, Lloc(G))

Lloc(Ω, C(G))

Lloc(Ω).
⊗α,G ι3 T̃ ε̃1

Here T̃ is defined as T̃ (f) = T ◦ f for all f ∈ Lloc(Ω, Lloc(G)), ε1 : C(G)→ C is the

evaluation map at t = 1 in G, and ε̃1(g) = ε1 ◦ g for all g ∈ Lloc(Ω, C(G)).

Fix an f ∈ Lloc(Ω, Lloc(G)). To ensure the well-definedness of T̃ , note that

there is a sequence of simple functions (fn) converging a.e. to f . Then (T̃ (fn)) is a

sequence of simple functions in Lloc(Ω, C(G)) converging a.e. to T̃ (f). To ensure the

well-definedness of ε̃1 we invoke the fact that T̃ (f) has metrisable range. The Pettis

Measurability Theorem 2.2.1 then implies that as T̃ (f) is weakly measurable and ε1

is a continuous linear functional on C(G), ε̃1 ◦ T̃ (f) is indeed measurable. That it is

locally integrable is now easy to confirm.

Definition 5.1.7. (Linear transfer operator) Let T be a linear transferable oper-

ator on Lloc(G). We define the transfer operator T# on L1+∞(Ω) as the composition

L1+∞(Ω)

Lr−loc(G× Ω)

Lloc(Ω)⊗̂πLloc(G)

Lloc(Ω)⊗̂εC(G)

Lloc(Ω).
⊗α,G ι1 I ⊗ T

I ⊗ ε1

As in Definition 5.1.6, ε1 : C(G)→ C is the evaluation map at t = 1 in G, so I ⊗ ε1
maps Lloc(Ω)⊗̂εC(G) to Lloc(Ω)⊗C which is naturally isomorphic to Lloc(Ω), which

explains the slight abuse of notation in the diagram.

Lemma 5.1.8. Let T be a linear and metrisably valued transferable operator. Then

the two Definitions 5.1.6 and 5.1.7 agree.

Proof. The proof is encapsulated in the following diagram, which combines the two

diagrams of Definitions 5.1.6 and 5.1.7.
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Lr−loc(G× Ω)

Lloc(Ω, Lloc(G)) Lloc(Ω, C(G))

Lloc(Ω)

Lloc(Ω)⊗̂πLloc(G) Lloc(Ω)⊗̂εC(G)

ι3

T̃

ε̃1

ι1

I ⊗ T

I ⊗ ε1

Its commutativity can be easily checked for simple functions in Lr−loc(G × Ω),

and so by continuity of all the arrows, the commutativity of the diagram follows.

Now that the well-definedness of the Transfer Principle has been established and

it is clear what countability assumptions are used, let us give a simpler, working

definition. We emphasise that this working definition depends on the above analysis

for its correctness.

Remark 5.1.9. Let T be a sublinear transferable operator with metrisable range.

Starting with a function f ∈ L1+∞(Ω), define as before F (t, ω) := f(αt(ω)) and

F ′(t, ω) := (T (Fω))(t), where Fω is the cross section of F at ω ∈ Ω. Finally, we set

T#(f) := F ′(1, ω). Note that F ′ as defined above is in Lloc(Ω, C(G)).

Obviously, the steps followed in this Remark are exactly the steps used in Defini-

tion 5.1.6. As we will be working quite a bit with the functions F and F ′ given above,

there is another point that must be made about them. Firstly F is measurable on

G × Ω and indeed rectangular locally integrable as shown in Lemma 5.1.5. For F ′,

the situation is a little more tricky. By Lemma 2.3.5, F ′ is a well-defined measurable

function. However, it is not necessarily locally integrable or even rectangular locally

integrable. But when working out the maximal inequalities of Section 5.5, we shall

need only the Fubini result of equation (2.5).

Note that of course in the case where G is second countable, one could use Lemma

2.3.6 instead of Lemma 2.3.5 to prove the measurability of F ′.

5.2 The effect of semilocality and translation invariance

Let T be a transferable operator with metrisable range. We now describe some

approximation properties of T# that will be useful in the next section. We start by
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extending some constructions that we have used earlier. Let K be any measurable

subset of G. As in equation (5.1), we can define the operator ⊗α,K on the set of

measurable functions on Ω by setting FK := ⊗α,K(f) := χK ⊗α f on G × Ω using

Definition 5.1.3. Hence

FK(t, ω) =

{
f(αt(ω)) if t ∈ K

0 if t /∈ K.
(5.2)

In this notation, FG = F . We shall also use the notation F ′K = T̃ (FK) where T̃ is

as given in Definition 5.1.6. In particular, F ′ = F ′G. By Lemma 2.3.5, the functions

F ′K are measurable on G× Ω.

Lemma 5.2.1. Let T be a transferable operator with metrisable range and let U be

the open neighbourhood satisfying the conditions stated in Definition 5.1.2(2). Let K

and E be measurable subsets of G such that EU−1 ⊆ K. For any f ∈ L1+∞(Ω), and

almost all (t, ω) ∈ E × Ω, we have

|F ′(t, ω)| ≤ |F ′K(t, ω)|. (5.3)

Proof. First note that FKc = (χG − χK) ⊗α f = χG ⊗α f − χK ⊗α f = F − FK .
Consequently,

|F ′| = |T̃ (F )| = |T̃ (F − FK + FK)|

≤ |T̃ (FKc)|+ |T̃ (FK)|

= |F ′Kc |+ |F ′K |.

By the semilocality of T , for almost every ω ∈ Ω, the measurable map t 7→ F ′Kc(t, ω)

has support in KcU . Because EU−1 ⊆ K, it follows that (KcU) ∩ E is empty since

a ∈ (KcU) ∩ E implies that there is a b ∈ U so that ab−1 ∈ Kc ∩ (EU−1), which is

impossible if EU−1 ⊆ K. Hence |F ′(t, ω)| ≤ |F ′K(t, ω)| for almost all ω ∈ Ω and all

t ∈ E.

Translation invariant operators, a class that includes all convolution operators, are

automatically equimeasurability-preserving, in a sense made precise by the following

Lemma.
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Lemma 5.2.2. Let T be a transferable operator with metrisable range. For any

f ∈ L1+∞(Ω), all s, t ∈ G and almost all ω ∈ Ω,

F ′(t, αs(ω)) = F ′(ts, ω).

Moreover, for any t1, t2 ∈ G, the mappings ω 7→ F ′(t1, ω) and ω 7→ F ′(t2, ω) are

equimeasurable.

Proof. By definition of F , for µ-a.e. ω and any s, t ∈ G, we have

F (t, αs(ω)) = f ◦ αt(αs(ω)) = f ◦ αts(ω) = F (ts, ω).

Let τt : G → G be defined by τt(s) = ts for all s, t ∈ G as in Definition 5.1.2. By

definition of F ′ and the translation-invariance of T , we have

F ′(t, αs(ω)) = T̃ ◦ F (t, αs(ω))

= T̃ ◦ F (ts, ω)

= T̃ ◦ τt ◦ F (s, ω)

= τt ◦ T̃ ◦ F (s, ω)

= F ′(ts, ω).

Finally, let s = t−1
1 t2 and λ > 0. Then as F ′(t2, ω) = F ′(t1, αs(ω)), we see that

µ({ω : |F ′(t2, ω)| > λ}) = µ({ω : |F ′(t1, αs(ω))| > λ})

= µ({α−1
s (ω) : |F ′(t1, ω)| > λ})

= µ({ω : |F ′(t1, ω)| > λ}),

proving the equimeasurability of the maps ω 7→ |F ′(t1, ω)| and ω 7→ |F ′(t2, ω)|.

The last two lemmas will both be needed in the proof of Lemma 5.5.1.

5.3 An example

One of the main sources of transferable operators in applications is convolution op-

erators. The straightforward construction of ergodic averaging operators from con-

volution operators demonstrates the utility and ubiquity of the transfer operator

construction.
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Suppose that O is a measure-preserving automorphism on the measure space

(Ω, µ). It induces an action α of Z on Ω via α(n) := On. If S is a finite subset of

Z, let TS be the convolution operator defined on the space of all locally integrable

functions f on Z by

TS(f) :=
1

|S|
χ−S ∗ f,

where of course χ−S is the characteristic function of −S. Bearing in mind that

the set of locally integrable functions on Z is precisely the set of all complex-valued

functions, we see that TS is well-defined, linear and takes its values in C(Z), which

is metrisable. From the properties of convolution, it is clearly semi-local. Indeed, if

N = max{|s| : s ∈ S} and f is a function with support in [−M,M ], then TS(f) will

have support in [−M −N,M +N ].

Let us now determine the transfer operator T#
S . Let f ∈ L1+∞(Ω). With the

help of Definition 5.1.6 and Lemma 2.3.5, we compute:

T̃S(F (t, ω)) = T̃S(f(αt(ω)))

=
1

|S|
∑
s∈S

f(αt+s(ω)).

Hence

T#
S (f)(ω) = ε̃0 ◦ T̃S(F )(ω) =

1

|S|
∑
s∈S

f(αs(ω)),

which is a locally integrable function on Ω. (Note that we write ε̃0 above because 0

is the identity element of Z).

5.4 Kolmogorov’s inequality for r.i. BFSs

The next two Sections are devoted to calculating the type of the transfer operator

T# from information on the type of T .

The following theorem will be useful in determining the weak type of an operator.

It is an extension of Kolmogorov’s criterion as found in [12].

Theorem 5.4.1. Let (Ω, µ) be a measure space and let T be an operator on some

class of measurable functions on Ω that maps into the set of measurable functions on

Ω. Suppose that T is of weak type (X,Y ) for r.i. BFSs X and Y and has norm c.

Let ϕ be the fundamental function of the space Y . If 0 < σ < 1 and A is any subset
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of Ω of finite measure, then for any f ∈ X we have∫
A
|Tf |σ dµ(x) ≤ cσ

1− σ
[
ϕ∗(|A|)

]σ|A|1−σ‖f‖σX . (5.4)

Conversely, if T satisfies this inequality for some c and 0 < σ < 1, and for each

f ∈ X and each A ⊂ Ω with finite measure, then T is of weak type (X,Y ).

Proof. Suppose 0 < σ < 1. As t 7→ ϕ(t)/t is nondecreasing, if s ≤ t, we have the

implications

ϕ(s)

s
≥ ϕ(t)

t
=⇒ ϕ(t)

ϕ(s)
≤ t

s
=⇒ ϕσ(t)

ϕσ(s)
≤
( t
s

)σ
=⇒ s

t
ϕσ(t) ≤

( t
s

)σ−1
ϕσ(s).

Note that χ[1,∞)(t/s) = χ(0,t](s) for all s, t ∈ R+. On the multiplicative group of

the positive reals, we now compute, using the convolution of the functions [(Tf)σ]∗(x)ϕσ(x)

and xσ−1χ[1,∞)(x) at t ∈ R:

ϕσ(t)

t

∫ t

0
[(Tf)σ]∗(s)ds ≤

∫ t

0
[(Tf)σ]∗(s)ϕσ(s)

( t
s

)σ−1ds

s

=

∫ ∞
0

[(Tf)σ]∗(s)ϕσ(s)
( t
s

)σ−1
χ(0,t](s)

ds

s

=

∫ ∞
0

[(Tf)σ]∗(s)ϕσ(s)
( t
s

)σ−1
χ[1,∞)(t/s)

ds

s

= [(Tf)σ]∗(x)ϕσ(x) ∗ xσ−1χ[1,∞)(x)
∣∣
t
.

With this in hand, we exploit the inequality

‖[(Tf)σ]∗(x)ϕσ(x) ∗ xσ−1χ[1,∞)(x)‖∞ ≤ ‖[(Tf)σ]∗(x)ϕσ(x)‖∞‖xσ−1χ[1,∞)(x)‖1.

As ‖xσ−1χ[1,∞)(x)‖1 =

∫ ∞
1

sσ−2ds =
1

σ − 1
sσ−1

∣∣∞
1

=
1

1− σ
, we have

sup
t>0

ϕσ(t)

t

∫ t

0
[(Tf)σ]∗(s)ds ≤ 1

1− σ
sup
t>0

[(Tf)σ]∗(t)ϕσ(t) =
1

1− σ
[

sup
t>0

(Tf)∗(t)ϕ(t)
]σ
.

Here we used the fact that (|f |σ)∗ = (|f |∗)σ for all 0 < σ < ∞ (see Prop 2.1.7

p41 of [4]). We thus have the following inequality.

ϕσ(t)

t

∫ t

0
[(Tf)σ]∗(s)ds ≤ 1

1− σ
‖Tf‖σM∗(Y )

≤ cσ

1− σ
‖f‖σX ,
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by our hypothesis. It is obvious that

∫
A
|Tf |σ dµ ≤

∫ |A|
0

[(Tf)σ]∗(s)ds, and so we

obtain ∫
A
|Tf |σ dµ ≤ cσ

1− σ
|A|

ϕσ(|A|)
‖f‖σX

=
cσ

1− σ
[
ϕ∗(|A|)

]σ|A|1−σ‖f‖σX .
To get the last equality, we used the identity ϕ(|A|)ϕ∗(|A|) = |A|.

To prove the converse, suppose that T satisfies (5.4) for some 0 < σ < 1 and fix

λ > 0. Consider a set K ⊂ {ω : |Tf(ω)| > λ} of finite measure. By hypothesis,

|K| ≤
∫
K

|Tf |σ

λσ
dµ ≤ 1

λσ
cσ

1− σ
[ϕ∗(|K|)]σ|K|1−σ‖f‖σX .

Consequently, the following computations are valid:

|K|σ

ϕ∗(|K|)σ
≤ 1

λσ
cσ

1− σ
‖f‖σX ;

ϕ(|K|) ≤ 1

λ

c

(1− σ)1/σ
‖f‖X ;

λϕ(m(|Tf |, λ)) ≤ c

(1− σ)1/σ
‖f‖X ;

‖Tf‖M∗(Y ) ≤
c

(1− σ)1/σ
‖f‖X ;

where in the last line we used the identity ‖Tf‖M∗(Y ) = supλ>0 λϕY (m(|Tf |, λ)) of

Lemma 3.1.3. This proves the converse.

Note that the proof remains correct even if ‖ · ‖X is a seminorm.

Although we shall not need the concept here, this theorem, and especially the

inequality (5.4), suggest a further refinement of the idea of weak-type operators.

Definition 5.4.2. Let T be an operator on a BFS X on the measure space (Ω, µ)

taking values in the space of measurable functions on (Ω, µ). Let A be a class of

measurable µ-finite subsets of Ω. We say that T is of A-weak type (X,Y ) if∫
A
|Tf |σ dµ(x) ≤ cσ

1− σ
[
φ∗|A|

]σ|A|1−σ‖f‖σΛ(ψ)

holds for all A ∈ A.

In particular if Ω is a product space and A is the class of all µ-finite measurable

rectangles, we say that T is of rectangular weak-type (X,Y ).
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5.5 Computation of the weak type of the transferred

operator

In the rest of the paper, we shall work with dynamical systems (G,Ω, µ, α) as given in

Definition 5.1.1, where (Ω, µ) is a countably generated σ-finite and resonant measure

space and G is a σ-finite locally compact group.

We can now state and prove results on the weak type of the transfer operator,

which form one of the main themes of this work. The next lemma is the key technical

ingredient. It is in this Lemma that the semilocality and equimeasurability-preserving

properties of the transferable operator are used.

Lemma 5.5.1. Let X,Y be r.i. BFSs over G with fundamental functions ϕX and

ϕY respectively and let T be a transferable operator of weak type (X,Y ) with metris-

able range. Let U be the open neighbourhood satisfying the conditions in Definition

5.1.2(2). Then for any subset A ⊂ Ω of finite measure, and 0 < σ < 1, there is a

compact neighbourhood K̃ of the identity such that

1

|A|

∫
A
|T#f |σ(ω)dµ ≤ 2cσ

1− σ
[ϕY (|K̃|)]−σ

(
1

|A|

∫
A
‖(F

K̃U−1)ω‖X dµ

)σ
,

where for each ω ∈ Ω the cross section (F
K̃U−1)ω is the measurable function defined

on G by t 7→ F
K̃U−1(t, ω).

Proof. By the Fubini-type Lemma 2.3.5 and Lemma 5.2.1, which we employ by iden-

tifying E with K̃ and K with K̃U−1, we have:∫
K̃

∫
A
|F ′(t, ω)|σ dµdt =

∫
A

∫
K̃
|F ′(t, ω)|σ dtdµ

≤
∫
A

∫
K̃
|F ′
K̃U−1(t, ω)|σ dtdµ.

As T is of weak type (X,Y ), using Kolmogorov’s criterion (5.4) we have that∫
K̃
|F ′
K̃U−1(t, ω)|σdt ≤ cσ

1− σ
[ϕ∗Y (|K̃|)]σ|K̃|1−σ‖(F

K̃U−1)ω‖σX .

From Jensen’s inequality and the identity ϕ∗Y (t)ϕY (t) = t,∫
K̃

∫
A
|F ′(t, ω)|σ dµdt ≤ cσ

1− σ
[ϕ∗Y (|K̃|)]σ|K̃|1−σ

∫
A
‖(F

K̃U−1)ω‖σX dµ

≤ cσ

1− σ
[ϕY (|K̃|)]−σ|K̃||A|1−σ

(∫
A
‖(F

K̃U−1)ω‖X dµ

)σ
.
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We rewrite this as

1

|K̃|

∫
K̃

[
1

|A|

∫
A
|F ′(t, ω)|σ dµ

]
dt ≤ cσ

1− σ
[ϕY (|K̃|)]−σ

(
1

|A|

∫
A
‖(F

K̃U−1)ω‖X dµ

)σ
.

As

t 7→ 1

|A|

∫
A
|F ′(t, ω)|σdµ

is continuous, and as |F ′(1, ω)| = |T#f |(ω) by definition, from the Lebesgue differ-

entiation Theorem we obtain

1

|A|

∫
A
|T#f |σ(ω)dµ = lim

K̃→{1}

1

|K̃|

∫
K̃

[
1

|A|

∫
A
|F ′(t, ω)|σ dµ

]
dt.

Hence for some K̃ small enough,

1

|A|

∫
A
|T#f |σ(ω)dµ ≤ 2

|K̃|

∫
K̃

[
1

|A|

∫
A
|F ′(t, ω)|σ dµ

]
dt

≤ 2cσ

1− σ
[ϕY (|K̃|)]−σ

(
1

|A|

∫
A
‖(F

K̃U−1)ω‖X dµ

)σ
.

Corollary 5.5.2. Let (Ω, µ,G, α) be a dynamical system with (Ω, µ) countably gen-

erated and resonant and let T be a transferable operator of weak type (X,Y ) and

suppose that ΦA and ΦB are Young’s functions with respective associated fundamen-

tal functions ϕA and ϕB satisfying

θϕA(st) ≥ ϕX(s)ϕB(t)

for some θ > 0 and all s, t > 0.

1) If X is an Orlicz space and limt→0 ϕ
∗
X(t) = 0, then T# is of weak type (L(ΦA), ϕB).

2) If X is an M - space then T# is of weak type (M(ϕA), ϕB).

3) If X is a Λ-space and limt→0 ϕ
∗
X(t) = 0, then T# is of weak type (Λ(ϕA), ϕB).

Proof. We prove part 3). Let A ⊂ Ω have finite measure and let U be the open

neighbourhood guaranteed by Definition 5.1.2(2). Then for any 0 < σ < 1, by

Lemma 5.5.1, there is a compact neighbourhood of the identity K ⊂ G such that

1

|A|

∫
A
|T#f |σ(ω)dµ ≤ 2cσ

1− σ
[ϕY (|K|)]−σ

(
1

|A|

∫
A
‖(FKU−1)ω‖Λ(X) dµ

)σ
.
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From Proposition 3.4.1, part 2),

ϕB(|A|)
|A|

∫
A
‖(FKU−1)ω‖Λ(X) dµ(ω) ≤ 6θ‖FKU−1‖Λ(ΦA).

Combining these last two inequalities yields

1

|A|

∫
A
|T#f |σ(ω)dµ ≤ 2(6θc)σ

1− σ
[ϕY (|K|)]−σ[ϕ∗B(|A|)]σ|A|−σ‖FKU−1‖σΛ(ΦA).(5.5)

A simple calculation shows that ϕA(st) ≤ ϕA(s) max(1, t). Now note that the condi-

tion in [33, Theorem 8.15] on the Young’s functions may be rephrased as ϕA(st) ≤
θϕA0(s)ϕB0(t) for all s, t > 0. Hence, that theorem is applicable here. Together with

Lemma 5.1.4 we may conclude that ‖FKU−1‖Λ(ΦA) ≤ max(1, |KU−1|)‖f‖Λ(ΦA) and

so

1

|A|

∫
A
|T#f |σ(ω)dµ ≤ 2(6θc)σ

1− σ
[ϕY (|K|)]−σ[ϕ∗B(|A|)]σ|A|−σ max(1, |KU−1|σ)‖f‖σΛ(ΦA)

=
cσ0

1− σ
[ϕ∗B(|A|)]σ|A|−σ‖f‖σΛ(ΦA)

where c0 = 21/σ6θcϕY (|K|)−1 max(1, |KU−1|).
Therefore ∫

A
|T#f |σ(ω) dµ ≤ cσ0

1− σ
[ϕ∗B(|A|)]σ|A|1−σ‖f‖σΛ(ΦA),

and so by Theorem 5.4.1, T# is of weak type (Λ(ΦA), ϕB).

5.6 Pointwise ergodic theorems via the transfer principle

In the last part of this work, we turn to the derivation of pointwise ergodic theorems.

Henceforth, in the dynamical system (Ω, µ,G, α), not only will (Ω, µ) be countably

generated and resonant, but G will be an abelian, additive, second countable locally

compact Hausdorff group with identity element 0, and X will be a r.i. BFS over the

countably generated and resonant measure space (Ω, µ). We shall work with transfer

operators generated by sequences of convolution operators. That is, we consider a

sequence (Tn) of operators on Lloc(G) given by

Tn(f) = kn ∗ f, (5.6)

where kn ∈ L1(G) is bounded and has bounded support, and f is locally integrable.

It is easy to see that the operators Tn are semilocal. As kn∗f is a continuous function
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and C(G) is metrisable, we see that these operators satisfy the definition of linear

transferable operators with metrisable range given in Definition 5.1.2. We also define

Tf := supn |Tn(f)|. Using the Transfer Principle and given information about the

functions kn and the space X, we show that the transferred operators T#
n satisfy a

pointwise convergence theorem: that is, T#
n f(ω) converges a.e. for all f ∈ X as n

tends to infinity.

To achieve this goal, our strategy is the following three step programme.

1. Given the weak type of the operator T , find the weak type of T#.

2. In the domain of T# computed in step (1), identify a dense subset D for which

the pointwise convergence of (T#
n f) can be verified for all f ∈ D.

3. Use an appropriate version of Banach’s Principle to extend the a.e. convergence

of step (2) to the whole domain of T#.

To do step (1), we shall use results such as the following:

Proposition 5.6.1. Let (Tn) be a sequence of operators given by (5.6). Suppose

there are Young’s functions ΦA, ΦB,ΦC ,ΦD and ΦE with associated fundamental

functions ϕA, . . . , ϕE satisfying

ϕC(t)ϕ∗B(s) ≤ θ1ϕA(st)

ϕA(st) ≤ θ2ϕD(s)ϕE(t)

for all s, t > 0.

Suppose further that there are measurable functions `0 and `1 on G such that

sup |kn(s−1)| = `0(s)`1(s), `0 ∈ L(ΦB) and `1 ∈ L(ΦE). Then the operator T#

defined by T#f(ω) = supn∈N |T
#
n f |(ω) is a sublinear operator mapping L(ΦD) into

L(ΦC).

Proof. For each N ∈ N, let SNf(ω) := max1≤n≤N |T#
n f |(ω). By [33, Theorem 8.18],

‖SNf‖L(ΦC) ≤ ‖ max
1≤n≤N

∣∣ ∫
G
kn(s−1)f(αs(ω)) ds

∣∣‖L(ΦC)

≤ ‖
∫
G

max
1≤n≤N

|kn(s−1)||f(αs(ω))|ds‖L(ΦC)

≤ θ‖`1‖L(ΦB)‖`0 ⊗α f‖L(ΦA)

= θ1‖`1‖L(ΦB)‖`0 ⊗ f‖L(ΦA)(by Lemma 5.1.4)

≤ θ1θ2`1‖L(ΦB)‖`0‖L(ΦE)‖f‖L(ΦD)
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where the final inequality follows from [33, Theorem 8.15].

For step (3), we prove the following variation on the theme of [4, Corollary 4.5.8]

and [20, Theorem 1.1.1], which provides the final link between maximal inequalities

and pointwise ergodic theorems.

The following result in essence amounts to an extension of that part of the Banach

principle cycle of ideas that we need to complete our program.

Proposition 5.6.2. Let X and Y be r.i. BFSs over a measure space (Ω, µ). Let

(Tn) be a sequence of linear operators on X and define the maximal operator T by

T (f) = supn |Tn(f)|. If

1. there is a dense subset D ⊆ X such that for all f ∈ D, (Tn(f)(ω)) converges

for µ-a.e. ω ∈ Ω,

2. T is of weak-type (X,Y ),

then (Tn(f)(ω)) converges for µ-a.e. ω ∈ Ω and all f ∈ X.

Proof. Define the oscillation Of of f ∈ X as follows. For any ω ∈ Ω set

Of (ω) = lim sup
n,m→∞

|Tn(f)(ω)− Tm(f)(ω)|.

Clearly the linearity of the operators Tn implies that Of (ω) ≤ Og(ω) +Of−g(ω).

For any g ∈ D, (Tng) converges µ-a.e. and thus Og = 0 µ-a.e.

Pick an f ∈ X. Now for any η > 0, there is a g ∈ D such that ‖f − g‖X < η and

µ({ω : Of (ω) > δ}) ≤ µ({ω : Of−g(ω) > δ}).

Furthermore, by the definition of the oscillation, Of (ω) ≤ 2T (f)(ω) a.e. Similarly

for Of−g. Hence

µ({ω : Of (ω) > δ}) ≤ µ({ω : 2T (f − g)(ω) > δ})

= m(2T (f − g), δ).

As T is of weak-type (X,Y ), ‖2T (f−g)‖M∗(Y ) ≤ 2β‖f−g‖X < 2βη where β depends

only on T . Rewriting this using Lemma 3.1.3,

sup
s>0

sϕY (m(2T (f − g), s)) ≤ 2βη,
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In particular, δϕY (m(2T (f − g), δ)) ≤ 2βη. Therefore

ϕY (µ({ω : Of (ω) > δ})) ≤ 2βη

δ
.

As η is arbitrary, ϕY (µ({ω : Of (ω) > δ})) = 0. Because a fundamental function is

0 only at the origin, µ({ω : Of (ω) > δ}) = 0. Because δ is arbitrary, Of = 0 µ-a.e.

which implies that (Tnf) does indeed converge µ-a.e.

The fundamental result towards completing step (2) of the three-step programme

is given in Proposition 5.6.4. From this, many interesting pointwise ergodic theo-

rems can be deduced, given further information on the nature of X. We start by

constructing subsets D of X for whose elements a.e. convergence is easy to check. To

this end, for any f ∈ L1(G) and x ∈ X, we define

αf (x) =

∫
G
αt(x)f(t) dt, (5.7)

where the integral is a Bochner integral. Because the action of G on (Ω, µ) is measure-

preserving, on any r.i. BFS the automorphism αt is an isometry and so αf (x) ∈ X
too.

Note that the above equation actually gives a bounded bilinear mapping from

L1(G)×X into X, given by (f, x) 7→ αf (x).

Definition 5.6.3. Let Y be a set of measurable functions on (Ω, µ) and L ⊆ L1(G).

Define

DX(Y,L) = {αf (x) : f ∈ L, x ∈ X ∩ Y },

which is a subset of X. In particular, if F0 consists of those integrable functions on

G with vanishing integral, we shall simply write DX for DX(L∞(Ω),F0).

Proposition 5.6.4. Let (Ω, µ,G, α) be a dynamical system and (Tn) a sequence of

convolution operators given by (5.6). Suppose that (kn ∗ φ) converges weakly in L1

for all φ ∈ L1(G) with vanishing integral.

Then given a r.i. BFS X, the sequence (T#
n f) converges a.e. for every f ∈ DX .

Proof. We begin by describing T#
n explicitly, using the construction of Remark

5.1.9. Let f ∈ X. For almost every ω ∈ Ω, the function t 7→ f(αtω) is locally

integrable by Lemma 5.1.5 and so by definition of Tn we have

Tnf(αtω) =

∫
G
kn(−s)f(αs−tω) ds.
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Because we have assumed that kn is bounded and has bounded support, the integral

converges for any locally integrable f , and in particular for any f ∈ X. Setting t = 0,

we obtain

T#
n f(ω) =

∫
G
kn(−s)f(αsω) ds. (5.8)

We prove that for any f ∈ DX , the sequence (T#
n (f)) converges a.e. By definition

of DX , there exists a g ∈ L∞(Ω) ∩ X and ψ ∈ L1(G) with vanishing integral, such

that f = αψ(g). We compute:

T#
n f(ω) =

∫
G
kn(−t)f(αtω) dt

=

∫
G
kn(−t)

∫
G
g(αt+sω)ψ(s) ds dt

=

∫
G
g(αtω)

∫
G
kn(s− t)ψ(s) ds dt.

As the inner integrals converge weakly in L1(G), and bearing in mind that g ∈
L∞(Ω), we have proved that (T#

n (f)) converges a.e.

In the light of Propositions 5.6.2 and 5.6.4, to complete the three-step programme

and prove pointwise ergodic theorems, we indicate situations where we can use the

space DX to construct dense subsets of X.

First, we must establish a lemma that will allow us to construct invariant subsets

for a given dynamical system. Recall from [4, Definition 1.3.1] that a function norm

on a r.i. BFS X over a measure space (Ω, µ) is absolutely continuous if for every nested

decreasing sequence (An) of measurable subsets of Ω such that χAn → 0 µ-a.e. as

n→∞, and any f ∈ X, we have ‖fχAn‖X → 0 as n→∞.

Lemma 5.6.5. Let X be a r.i. BFS over a σ-finite measure space (Ω, µ), f be a

function in X and λ > 0. If X has absolutely continuous norm then m(f, λ) <∞.

In particular, the conclusion holds if X is reflexive.

Proof. Suppose to the contrary that there is a λ > 0 and f ∈ X such that m(f, λ) =

∞. Set Λ = {ω : |f(ω)| > λ}. As Ω is σ-finite there is an increasing sequence of

finite-measure sets Kn such that ∪Kn = Λ. Set Cn = Λ\Kn. Clearly µ(Cn) =∞.

Because λχΛ ≤ |f |, λχΛ, and hence χΛ itself, are in X. So are the characteristic

functions χCn for all n.
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But as Cn ↓ ∅, the hypothesis that X has absolutely continuous norm implies

that

lim
n→∞

‖χCn‖X = lim
n→∞

‖χΛχCn‖X = 0. (5.9)

However, it is easy to compute that χ∗∗Cn(t) = 1 for all t > 0 and so

ϕX(1) ≤ sup
t>0

χ∗∗Cn(t)ϕX(t) = ‖χCn‖M(X) ≤ ‖χCn‖X .

This contradicts (5.9) and so we conclude that our hypothesis m(f, λ) = ∞ is

false.

In the case that X is reflexive, note that by [4, Corollary 1.4.4], its norm is

absolutely continuous.

Theorem 5.6.6. In the setup of Proposition 5.6.4, suppose that X is reflexive and

that T# has weak type (X,Y ). Then (T#
n f) converges a.e. for every f ∈ X.

Proof. By hypothesis, T# is of weak type (X,Y ). The plan of the proof is to

execute steps (2) and (3) of the three step programme: identify a dense subset D of

X and use Proposition 5.6.4 to show the a.e. convergence of the sequence (T#
n f) for

f ∈ D, prove that D is dense in X, and then finally invoke Proposition 5.6.2 to show

that (T#
n f) converges a.e. for all f ∈ X.

We consider the set D = DX+F , where F is the subspace of all fixed points of the

action α in X. We have already seen in Proposition 5.6.4 that (T#
n (f)) converges a.e.

for all f ∈ DX . Similarly, if g ∈ F , it is easy to see from (5.8) that as t 7→ g(αtω) =

g(ω) for almost every ω ∈ Ω, T#
n g(ω) = g(ω)

∫
G
kn(−s) ds a.e. From the assumption

that the sequence
( ∫

G kn(s) ds
)

converges, it follows that (T#
n g(ω)

)
converges a.e.

for all g ∈ F . Therefore (T#
n (f)) converges a.e. for all f ∈ D.

The next task is to demonstrate that D is dense in X. By [4, Corollary 1.4.3],

the associate space X ′ is also the dual of X. Let ` ∈ X ′ be orthogonal to D. We

must show that ` = 0 µ-a.e. We may assume that ` is real-valued, because if ` is

orthogonal to D, so is `.
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For any f = αψ(g) ∈ DX ⊆ D we have

0 =

∫
Ω
`(ω)f(ω) dµ(ω) =

∫
Ω
`(ω)

∫
G
g(αtω)ψ(t) dtdµ(ω)

=

∫
Ω

∫
G
`(ω)g(αtω)ψ(t) dtdµ(ω)

=

∫
Ω

∫
G
`(α−tω)g(ω)ψ(t) dtdµ(ω)

=

∫
Ω
g(ω)

∫
G
ψ(t)`(α−tω) dtdµ(ω).

The absolute continuity of the norm of X and [4, Theorem 1.3.11] imply that

Xb = X. Hence L∞(Ω) ∩ X is dense in X. By definition of DX , g is an arbitrary

element of L∞(Ω) ∩X and therefore∫
G
ψ(t)`(α−tω) dt = 0.

Now we use some basic ideas from spectral synthesis, as presented in [17, Section

4.6] and [41, Section 7.8]. We write

F⊥0 =
{
ξ ∈ L∞(G) :

∫
G
ψ(t)ξ(t) dt = 0 for all ψ ∈ F0

}
.

Clearly F⊥0 is a translation-invariant subspace of L∞(G) and F0 is a closed ideal in

L1(G). Furthermore,

ν(F0) = {ξ ∈ Ĝ : f̂(ξ) = 0 for all f ∈ F0} = {0}.

To see this, first note that for any f ∈ L1(G),
∫
G f(t) dt = f̂(0), so the fact that

each f ∈ F0 has vanishing integral means that 0 ∈ ν(F0).

Now suppose there was a ξ ∈ Ĝ, ξ 6= 0, such that ξ ∈ ν(F0). Then f ∈ F0 implies

that f̂(ξ) = 0. In other words, ker ξ ⊇ F0 =ker 0.

But as 0 and ξ are linear functionals, this means that ker 0 =ker ξ, and that there

is a non zero λ ∈ C such that 0 = λξ.

Now take any two f, g ∈ L1(G) such that 0(f), 0(g) 6= 0. Then

λξ(f ∗ g) = 0(f ∗ g) = 0(f)0(g) = λ2ξ(f ∗ g),

so λ = 1 . Hence 0 = ξ and ξ = 0, a contradiction.

Recall that for any translation-invariant subspace M ⊆ L∞(G), the spectrum

σ(M) is the set of all continuous characters in M:

σ(M) =M∩ Ĝ.
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By [17, Proposition 4.73], σ(F⊥0 ) = ν(F0) = {0}. By [17, Proposition 4.75 b)], F⊥0 is

the linear span of the constant character and so consists of the constant functions.

From this analysis we conclude that t 7→ `(α−tω) ∈ F⊥0 is a constant for a.e.

ω ∈ Ω. We can write this fact as αt(`) = ` for all t ∈ G.

To complete the proof that D is dense in X, we must show that ` = 0 a.e. Fix

a λ > 0 and define Λ = {ω : `(ω) > λ}. By the reflexivity of X ′ = X∗ and Lemma

5.6.5, |Λ| ≤ m(f, λ) < ∞. This set is invariant under α (because αt(`) = ` for all

t ∈ G) and of course χΛ ∈ X. So a fortiori χΛ ∈ F . As ` is orthogonal to F as well,

we have

0 =

∫
Ω
χΛ` dµ ≥ λ|Λ|,

which implies that |Λ| = 0. As this holds for all λ > 0, we have proved that ` ≤ 0

µ-a.e. But now the same argument applied to the sets Λ′ = {ω : `(ω) < −λ}, where

λ is an arbitrary positive number, shows that |Λ′| = 0 for all λ > 0, and so ` = 0

µ-a.e.

Thus we have shown that any function in X ′ orthogonal to D must be the zero

function, proving the density of D in X. We have already proved that (T#
n (f))

converges a.e. for all f ∈ D. Applying Proposition 5.6.2, the Theorem is proved.

If we have more information about the action α, we can relax the conditions on

the space X. In the next corollary, given additional assumptions about the group

action, we shall not need the reflexivity of X.

Corollary 5.6.7. In the setup of Theorem 5.6.6, if X has absolutely continuous

norm and the fixed point space F is finite dimensional, then (T#
n f) converges a.e. for

every f ∈ X.

In particular, the result holds if the dynamical system is ergodic.

Proof. As F is finite dimensional, we can find a finite number of mutually disjoint

subsets {An}Nn=1 such that F is spanned by χAn for 1 ≤ n ≤ N . Indeed if f ∈ F ,

then for every λ > 0, if we set Eλ = {ω : |f(ω)| > λ}, then χEλ ∈ F . As F is finite

dimensional, there can only be a finite number of different sets Eλ, and so f is a

linear combination of a finite number of characteristic functions, making f a simple

function. Hence F is spanned by a collection of simple functions. As F is finite

dimensional, such a collection must be finite.

By [4, Corollary 1.4.3], X ′ = X∗. Reasoning as in Theorem 5.6.6, we consider

the set D = DX + F , where F is the subspace of all fixed points of the action α in
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X and let ` ∈ X ′ orthogonal to D. To prove the density of D in X, we must again

show that ` = 0 µ-a.e.

Firstly, as shown in the proof of Theorem 5.6.6, ` is invariant under the action

α. Hence for any λ > 0, {ω : |`(ω)| > λ} is an invariant subset of Ω. This implies

that {ω : |`(ω)| > λ} ∩ An is invariant and is either empty or equal to An. Hence

{ω : |`(ω)| > λ} either equals the empty set, An, or Acn. From this we conclude that `

is a (possibly trivial) linear combination of the characteristic functions χAn and χAcn

for 1 ≤ n ≤ N . Note that as χAcn ∈ F , it is a linear combination of the functions

{χAn}Ni=1, so ` is really just a linear combination of the functions χAn .

As ` is orthogonal to F , this implies that ` = 0 a.e. Hence D is dense in X.

Applying Proposition 5.6.2, the Corollary is proved.

It is easy to prove that the action of G on (Ω, µ) is ergodic if and only if the only

invariant function is the characteristic function χΩ. In this case, F has dimension one

if Ω has finite measure, for then χΩ ∈ F , and F = {0} if Ω has infinite measure. This is

because if there was a non-zero f ∈ F , then as we have seen above, {ω : |f(ω)| > λ} is

an invariant subset of Ω for each λ > 0, contradicting the ergodicity of the action.

Finally, let us mention another way to obtain a dense subset of a r.i. BFSs on

which the pointwise convergence of the ergodic averages can readily be checked.

Corollary 5.6.8. In the setup of Theorem 5.6.6, if T# is also of weak type (E,Z)

for r.i. BFSs E and Z where E is reflexive and X ∩ E is dense in X, then (T#
n f)

converges a.e. for every f ∈ X.

Proof. By Theorem 5.6.6, (T#
n f) converges a.e. for all f ∈ Y . Hence we have a

dense subset of X, namely X ∩Y , on which the ergodic averages converge pointwise.

Applying Proposition 5.6.2 finishes the proof.

If for example X = L1(Ω) and Y = Z = Lp(Ω) for some 1 < p <∞, this Corollary

is applicable. A special case of this setup in given in [8, Theorem 3].

5.7 Notes and Remarks

Proposition 5.6.1 is due to Prof L. Labuschagne. He also corrected an earlier state-

ment in Proposition 3.4.1 and is also responsible for the current proof of part (3)

of Theorem 3.4.2, which is a lot shorter than the one originally offered. He and an
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external examiner spotted an error in an earlier draft of Section 5.5 and was instru-

mental in finding a fix to the problem. These are just a few instances of his influence

which can be felt on every page of this work.

With three exceptions, all the results proved in this thesis are original (to the

author’s knowledge). One exception is the duly attributed first part of Lemma 3.3.6.

Nevertheless, it has a novel proof. The others are Lemmas 2.2.2 and 3.1.1, which we

included for completeness: many quote the results, though without proof.

Let us make a few remarks on the development of the ideas used in the pointwise

ergodic theory.

The author’s original intention was to follow Calderón’s lead in [8] and prove his

Theorem 2 for more general r.i. BFSs and locally compact abelian groups. Follow-

ing Calderón’s proof strategy closely, the author could only prove Corollary 5.5.2,

in a restricted sense: the measure space (Ω, µ) had to have finite measure and the

fundamental function had to be submultiplicative (i.e. essentially satisfy the ∆′ con-

dition. The breakthrough occurred in two stages: first was the generalisation of

Kolmogorov’s inequality 5.4.1, from its classical statement in [12]. A different proof

strategy also had to be found.

The power of Kolmogorov’s inequality is that it allows the determination of the

weak type of a operator to be related to an integral over a finitely measurable subset

- a localisation if you will. However, one must then estimate the integral of a func-

tion whose value is the norm of a cross section. This is why Proposition 3.4.1 was

developed. Note that it is to apply this result that the most stringent condition on

(Ω, µ) has to be imposed: that it be a countably generated measure space.
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de l’École Normale Supérieure. Troisième Série, 64:119–138 (1948), 1947.

[22] L. Grafakos. Classical Fourier analysis, volume 249 of Graduate Texts in Math-

ematics. Springer, New York, second edition, 2008.

[23] B. Green and T. Tao. The primes contain arbitrarily long arithmetic progres-

sions. Annals of Mathematics (Second Series), 167(2):481–547, 2008.

[24] H. Jarchow. Locally convex spaces. B. G. Teubner, Stuttgart, 1981. Mathema-

tische Leitfäden.
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