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Abstract

In this dissertation we tise Lie symmetry analysis to obtain invariant solutions for
certain soil' water equations. These solutions are invariant under two-parameter
symmetry groups obtained by the group classification of the governing equation. We
also obtain all nontrivial conservation laws for a class of (2+1) nonlinear evolution
partial differential equations which are related to the soil water equations. It is shown
that nontrivial conservation laws exist for certain classes of equations which admit
point symmetries. We note that one cannot invoke Noether’s theorem here as there

is no Lagrangian for these partial differential equations.



Introduction

A class of non-linear partial differential equations which models soil water infiltration
and redistribution in a bedded soil profile irrigated by a drip irrigation system is
described by

CW)e = (K(¥)pe)e + (K () (¥: — 1))z — S(¥) (1)

where C(y) # 0, K(¢) # 0 and S(¢) are three arbitrary functions. Here 1 is a soil
moisture pressure head, C(1) is a specific water capacity, K(¢) is an unsaturated
hydraulic conductivity, S(1) is a sink or source term, ¢ is a time, z is a horizontal

and z is vertical axis, which is considered positive downward (see {1] and [2]).

Much work has been done on infiltration from line sources (see eg. [2] and references
there in), but most of it is limited to the solution of the linearized, steady-state
form of the flow equation. Analytical and numerical solutions of equation (1) for the
functions C(¢) and K () as constants and S(1)) as a linear function are given in the

literature.

Using group theoretic approach, Baikov et al. (3] (see also [4], Vol. 2, Chapter
2) studied equation (1) for special coefficients C(v), K(v) and S(¢) which are not
constants nor linear. Lie group classification of equation (1) with respect to admitted
point transformation groups was done in (3] and invariant solutions for two particular

equations of form (1) were also presented.

Exact/asymptotic invariant solutions of equation (1) for some particular types of the
coefficients C{1), K () and S(4) when an extension of the principal Lie algebra L,
occurs have also been obtained by Baikov and Khalique [5].



Conservation laws for some classes of soil water equations were obtained and their
association with the generators of Lie symmetries were given in Kara and Khalique
(6].

In this dissertation we obtain invariant solutions for certain soil water equations
(1). These solutions are invariant under two-parameter symmetry groups obtained
by the group classification of the governing equation. We also obtain all nontrivial
conservation laws for a class of (2-+1) nonlinear evolution partial differential equations

which are related to the soil water equations (1).
In more detail, the outline of the research project is as follows:

In chapter 1, we recall the basic definitions and theorems on the one-parameter
groups of transformations and present the notation that we will use in this project.

We also outline a few results on symmetry groups and conservation laws.
In chapter 2, we find invariant solutions of some classes of soil water equations,

In chapter 3, using the direct method, we determine all nontrivial conserved vectors
for a class of {2+1) nonlinear evolution partial differential equations which contain

three arbitrary elements and are related to the soil water equations.



Chapter 1

Symmetries of differential equation

‘1.1 Introduction

Formulation of fundamental natural laws and technological problems are prevalent
in terms of differential equations. These equations relate the behaviour of certain
unknown functions at a given point to their behaviour at neighbouring points. In

order to solve these equations we use symmetry and theory of continuous groups.

The idea of symmetry spreads through every part of the mathematical models, épe—
cially those ones formulated in terms of differential equations. Application of tixeory
of continuous groups, which combines algebra, analysis and geometry together with
symmetry reveals some knowledge of facts which had been unknown about diﬁereﬁ-

tial equations.

This theory (theory of continuous groups) was originated and elaborated by an out-
standing mathematician of the nineteenth century, Sophus Lie (1844-1899). It was
the final outcome of about three centuries of efforts by renowned mathematicians to

solve algebraic equations by radicals.

Lie group analysis based on symmetry and invariance principles is the only systematic

method for solving nonlinear differential equations analytically [11].

In this chapter, we present some of the most important parts of Lie theory of trans-



formation groups as applied to differential equations. There are several books on this
ares, e.g., Ovsiannikov [7], Olver (8], Bluman and Kumei [9], Stephani [10], Ibragi-
mov [11] and the original source Lie (see, e.g., one of Lie’s several contributions Lie
[12]), or more recently, Cantwell [13] and Mahomed [14]. One can also refer to the
CRC Handbooks on Lie group analysis of differential equations, edited by Ibragimov
[4].

1.2 thations, definitions and main result

In this section we give the notation as used by Mahomed [14]. Consider a kth-order
(k > 1) system of differential equations

E’(.’.D, U, (1), ...,'LL(k)) =0, o=1,..,m, (1.1)

where u = (ul!,...,u™), the dependent variable, is a function of the independent
variable z = (2, ..., 2") and u(y), u() up to %) are the collection of all first, second up
to kth-order partial derivatives: uqy = {uf}, up) = {ufih oupy = {ug ;) fora=

1,...,mi%,5,41...,% = 1,...,n. We also assume that the rank of the Jacobian matrix
OE® aEY
oz’ dug

(1.1) is k. Usually in applications 7 = m. If r is a single independent variable, then

is 7 on (1.1). The maximal order of the equations appearing in

(1.1) becomes a system of ordinary differential equations, otherwise it is a system of
partial differential equations.

Definition 1 We say that a transformation of the variables = and u, namely,

T = fiz,u), ©°=¢%(z,u), i=1,.,n a=1,.,m, (1.2)

is a symmetry transformation of the system (1.1) if (1.1) is form-invariant in the new

variables Z and .

Definition 2 We say that a set G of transformations

T, %= f(:t,u,a), = ¢a($’u’ a‘)x t=1,.,n a= yeeny My (13)



where a is a real parameter which continuously ranges in values from a neighbourhood
D C Rofa=0and f,¢* are differentiable functions, is a continuous one-parameter

(local) Lie group of transformations in R™*™ if the following properties are satisfied:
(i) Identity: Ty € G if and only if a = 0 such ;that W, =TTy=1T,
(ii) Closure: For ‘T'c,,TzJ in G,a,be D'c D,
TT,=T.€G, c=(ab)eD. (1.4)

(iii) Inverses: For T, € G,a € D' € D,T;' = Ty-+ € G,a~! € D such that
Tl =Ty T, =Ty

From (ii) the associativity property follows. Also, if the identity transformation
occurs at @ = ag # 0, i.e., Ty, is the identity, then a shift of the parameter e = @+ aq

will give T as above. One can write the group property (i) as

f‘l(a—:v a, b) =in($:u:(p(a'1 b))) ¢a(fv 4, b) = ¢a($1 u, (P(ll, b)) (15)
~ We say that a group parameter a is canonical if ¢(a,b) = a + b and we have the
following theorem.

Theorem 1 For any (a, b), there exist the canonical parameter

/ A(a’)

where

Afa) = atp(a 9p(a, b)

From now on, we consider one-parameter groups with the canonical parameter. If the

———lb=0.

transformations (1.3) of a group G are symmetry transformations of the equation
(1.1), then G is called a symmetry group of (1.1). According to Lie’s theory, the
construction of a one parameter group G is equivalent to the determination of the

corresponding infinitesimal transformations:

T~z +ab(z,u), T~ u® 4 an®(z,u). (1.6)

10



These are obtained by the Taylor series expansion in a of (1.3) about a = 0 taking

into account the initial conditions fi|,—p = 2%, $%|azo = u®. Thus

Euy= L0 e S ERD, )

We introduce the symbol X of the infinitesimal transformations by writing (1.6) as
T (1+aX)2, @ = (1+aX)u®,

where
X = B e P (1.8)
: 7 B " Bue
X is also known as the infinitesimal operator or generator of the group G. If G is
admitted by (1.1), then X is an admitted operator of (1.1). By means of the following

Lie’s theorem, one—para.méter groups can be obtained from their generators:

Theorem 2 Given the infinitesimal transformations (1.6) or its symbol X, the cor-
responding one-parameter group G is obtained by solution of the Lie equations
do? N da™ e X
o =89, 2o = 1@ a), (1.9)
subject to the initial conditions

T |acp = 2%, T*[g=p = u®.

By definition of symmetry, the transformations (1.3) form a symmetry group G of
the system (1.1) if the function % = @(Z) satisfies

E*(Z, 8,80y, ..., Bx)) =0, o=1,..,m, (1.10)

whenever the function u = u(z) satisfies (1.1). The transformed derivatives U1y ey gy
are found from (1.3) by using the formulae of change of variables in the derivatives,
D; = D;(f9)D;. Here »

8 .8 . 8
Dj—?+u,- ﬁ—*-uﬁ 3_11.?+m

is the total derivative operator with respect to z* and D is likewise given in terms
of the transformed variables. The transformations (1.3) together with the transfor-

matjons oh %) form a group, G, called the first prolonged group which acts in the

11



space of (,u,u(y)). Similarly, the prolonged groups G, - .., Gl are obtained. The

infinitesimal transformations of the prolonged groups are:
=+ agl(x: uau(l))’

g = ufy + al (2, u, uay, w),

(1.11)

o

M 3 @
uil...ik ~ uil...ik o E’Cil...ik (:Z:, Uy U(1)g ey u(k))

The functions (& (z, u, u(), (&(z,u, uq), ury) and G i (T u, uqy, oy UGy ), are given
by

¢ = Di(n*) — u§ Di(&),

5= Di(¢M) —ug D (€),

(1.12)
C:F:...i;, = Dik (C:F:‘..ik_‘) - uz...ileJ'(gl)l
and the generators of the prolonged groups are
' a . 3 6
XM = e, u)g s +n (,u)52 + (@, u(1))a—u;,,
(1.13)

; 15] a8 " d a
X = f'(x;")ax,- +ﬂa(1‘, u)"éF"'Ci (Z, u, “(n)%*“‘*‘(ﬁmsk(z. Uy eeey u’(k))w_'

1100k

12



Definition 3 We say that a differential function F(z,u,..., %)), p = 0, is a pth-
order differential invariant of a group G if

F(z,u, .., up) = F(Z,4, ..., Up),
ie., if F is invariant under the prolonged group G, For p = 0, we write Uy = U

and G = @G.

Theorem 3 A differential function F(z,u, ..., u(), p = 0, is a pth order differential
invariant of a group G if
XPF=o,

where X' is the pth prolongation of X and for p = 0, X% = X. The substitution
of (1.6} and (1.11) into (1.10) gives rise to

E%(Z,T,8(), ..., Gr)) = B (2, u,0q), .., um) + a(XWE?), o=1,2,..,m. (1.14)
Thus, for invariance of (1.1) we require
XME (z,u,uqy, .. ugy) =0, 0=1,2,...,m, (1.15)
whenever (1.1) is satisfied.

The converse is also true.

Theorem 4 The equations (1.15) define all infinitesimal symmetries of the system
(1.1}

We call equations (1.15) the determining equations and write them as
X["]E"(a:,'u., u(), ...,u(k))h,l =0, o=1,..1m, (1.18)

where |(,.1) means evaluated on the surface (1.1). They are linear homogeneous par-
tial differential equations of order k for the unknown functions £(z,u) and 7*(z, u)
and are consequences of the prolongation formulae (1.12). In general, (1.16) decom-
poses into an overdetermined system of equations, that is, there are more equations
than the n + m unknowns &' and n*. One'can use computer algebra programs to

obtain and, in some cases, solve the determining equations.

13



The solutions of the determining equations form a vector space L and furthermore,
if the generators
X, — ¢t a = ) KA
= @) + )5
and
; Z) i 3]
X2 = §(z, W) 5= +n3(z,u) 55

satisfy the determining equations, their commutator [X3, X3] = X1 Xs — X2 X,
D0, Xa] = (X1(69) — Xa(€D)) o2 + (Xa(18) — Xo(r)) o
% e v/ bz : Yy

which obeys the properties of bilinearity, skew-symmetry and Jacobi’s identity, is also
a solution of the determining equations. Thus, the vector space L of all solutions
of the determining equations froms a Lie algebra which generates a multi-parameter

group admitted by (1.1).

1.3 Symmetries and Conservation Laws

In the study of differential equations, the concept of a conservation law, which is
a mathematical formulation of the familiar physical laws of conservation of energy,
" conservation of momentum and so on, plays a very important role in the analysis of
basic properties of the solutions (see for example, [8] and [14]). In this section we

briefly comment on the relationship between symmetries and conservation laws.

Definition 4 A conserved vector of the differential equation E°(z, u, ..., uy) =01is
a tuple T = (T%,...,T"), T? = T%(z,u,uq), .., Uk-1)), § =1, ...,n, such that

DT =0 (1.17)

is satisfied for all solutions of the differential equation.

The equation (1.17) is called a local conservation law.

14



1.3.1 Noether symmetries and Noether’s theorem

In 1918, Emmy Noether proved the remarkable result: For Euler-Lagrange differen-
tial equations, to each Noether symmetry associated with a Lagrangian there cor-
responds a conservation law which can be determined explicitly by a formula [15].
The relationship between the Noether conserved vector components T%s and the

Lie-Backlund symmetry operator X is given by (see [16])
X(T7)+ Di(€*)(T") — Di(€)(T) = Nf(Dk(Bf))+Dk(§")(Bk)—Dk(ﬁ'“)(Bi) —X(B'),

i=1,..,n  (118)

Here N* are the Noether operators, see [16]. We now ask ourself a question. Does
the above relation apply to differential equations without a Lagrangian (like scalar

evolution differential equations)? The answer is provided in the result below.

1.3.2 Arbitrary differential equations: Symmetry and con-

servation laws

The fundamental relationship between the Lie-Bécklund symmetry generator X and

the conserved vector T' for a differential equation without a Lagrangian is given by

(see [17)) : '
X(T*) + Di(€")T" = Dp(€)T* =0, i=1,.;n. (1.19)

If this relation holds, the generator X is said to be associated with the conservation
law (1.17). ' ‘

There are many uses of the above result [14]. We list a few of them: Firstly, the
equations (1.19) relate 7' and X. These are simplifying conditions when one uses
them together with (1.17) to construct conservation laws with known symmetry.
Usually one utilises the direct method, viz., (1.17), without recourse to (1.19), in the

absence of a Lagrangian.

Secondly, one can calculate symmetries associated with given conservation law by

invoking (1.19).

15



Thirdly, the equations (1.19) can be invoked in the construction of Lagrangians for

differential equations.

An application of the above result can be seen in [18]. The authors of [18] have
used the invariance of a conservation law related to volume to obtain solutions for a

problem in thin films.

Recently, it has been shown that for a system of partial differential equations, one
can generate conservation laws from known ones using any Lie-Bécklund symmetry
operator of the system without having to make a conversion to a canonical Lie-

Béicklund symmetry operator. For more details on this see [19].

16



Chapter 2

Invariant Solutions of certain Soil

Water Equations

2.1 Introduction

In this chapter we shall use Lie group analysis to obtain exact/asymptotic invariant

solutions of soil water equations

C)e = (K(¥)e)z + (K () (¥: — 1)) — S(¥) (2.1)

for some special forms of the functions C(y), K (%) and S(1). For each case we shall
look for solutions invariant under two-dimensional subalgebras of the symmetry Lie
algebra.

We first describe the general algorithm due to Lie [20] and Ovsiannikov [21] for
constructing invariant solutions.

We choose two operators’
0 8 7} ]
— ¢0 D g 2
X, = gl.(trzvzl u) 3t T fl(ta I, %, u)am + gl(t: z,z, 'U.) Bz + ﬂl(t;m, 2, u) Bu
and

i) 0 8
Xo = §3(t,a:,z, u)§+ 5%(t!xl Z, u)% =+ 5%(?3,3» 2, u)é‘; + m(t,.’l:, z, u)%

17



admitted by equation (2.1) such that they form a two-dimensional Lie algebra,
that is, [Xi, Xo] = M X1 + A2 X, where Ay, Ag are constants, and

rank &€ & & m)=2.
2 & & m

Now under these conditions, the system
XiI=0, X I=0

has exactly two functionally independent solutions I (t, z, z,u), Ix(t, z, z,u) and the

invariant solution has the form
L = ¢(). (2.2)

We solve this for 1 and substitute into the corresponding equation (2.1). This will
give us an ordinary differential equation for the function ¢, which is then solved.

According to the group classification results (see [3]) the principal Lie algebra L,
which is the Lie algebra of the Lie transformation group admitted by equation (2.1)
for arbitrary functions C(v), K () and S(3), is the three dimensional Lie algebra
spanned by the operators which generate translations along ¢, ¢ and z-axis, namely

2] 0 o

Xl=§) X2=55, X3=5;

respectively.

2.2 Invariant solutions

We now obtain invariant sclutions for certain soil water equations. We shall consider

those cases in which the principal Lie algebra L, extends by one or more operators.

2.2.1 Casel

1

We first consider the case from Baikov and Khalique (5], that is, when K () = 1
C(¢) = ¢, where ¢ is an arbitrary constant and S(3) = 0. k

18



In this case equation (1) has the form
P = "ﬁ_d ('ﬁb:u: 3F '!/’zz) . (23)

This equation admits a six-dimensional Lie algebra Lg (see [3]) obtained by an ex-
tension of the principal Lie algebra L, by the following three operators:

a 0
K e T

7} a
X5 =ﬂ5t—+¢ﬂ’

and

a a e/
Xe=o0x— — = 2p—.
B O Y e ~ oy
We can now construct invariant solutions by considering two operators at a time.

Case 1.1. Let us start by considering the operators X; and X; and use them to
construct invariant solutions. These two operators span a two-dimensional subalge-
bra Ly of the algebra L¢ and have two functionally independent invariants. We first
calculate a basis of invariants I(t, z, z, %) by solving the system of linear first-order

partial diffefential equations:
X4l =0, X;I=0.
Since we have (X, X5] = 0, the subalgebra L, is Abelian. Therefore we can solve

the equations X4I = 0, X5J = 0 successively in any order. From X, = 0, we have

z z 0 0’

First equation gives us

zdz + zdz = 0,

and intergrating, we obtain z? + 2% = C, where C is a constant. Thus we have the

following three functionally independent solutions

Ji=2242% k=1 and JL=t

19



Rewriting the action of X5 on the space of J;, J; and J; by the formula

] : 8 a8
Xs = Xs(-h)—“- + )(5(.72)8—‘]2 + XB(JS)EZ

dJ1
we obtain
) 7] a
X5 = Jz'é']—2 -+ Ujs'aTa.
Now from the second equation X5I = 0, we have
oI oI
J25J_2 + G’Jga—']a =0,
This gives us
dly _ iy
Jg - G'J3

and intergréting both sides, we obtain
1

InJ; = Eans +InC

or
6= i, (2.4)

Thus our first invariant, from (2.4), is given by
v . 1

I = J2J2 T =Pt

The second invariant is
L=z 4+ 2%

Hence we have obtained two functionally independent invariants and so the invariant

solution of equation (2.3) can be written as

I = ¢(I),

that is,
PYtT = p(z® + 2,

or

¥=t-4(a’ + ). (25)

20



We now substitute the value of 9 from equation (2.5) into equation (2.3). For this

we need to determine 4, ¥g and ... We obtain
Liig, 2 2
1/1.3 = ;t" (f)(ﬂ.‘ + z ),
wzm =, 2t%7 {¢I o 21:2¢'II}
and
Ve = 27 (¢ +22%¢") .

Here ’ denotes the derivative of ¢ with respect to its argument. Substituting these

values in (2.3), we obtain ‘ ,

1 i -0 1
—telg = (t7¢) " {447 +4¢"(a” + )+ ).
Simplyfying we have
11 o1 ey e o2 24,1
SEETT = 4¢te +44"(z" + )i,

or

§¢a+l s 4(E¢” +¢/) where € = (xz +z2),

and finally we obtain
L o
49" + 49 — =¢° 1=l 1 (2.6)

Equation (2;6) is a nonlinear second-order ordinary differential equé,tion which is not
easy to solve. Here we will find a particular solution of the form

¢=AL" (2.7)
Substituting into (2.6), we obtain
4én(n — 1)AE™? + dnAgn! — % ATtign(e+l) — o
or

1
4An(n — 1)§" + 4nAgnt — —ATHEEH) = 0, (2.8)

21



In order for £ to have the same power in the above equation, we must have
n—1=n(oc+1)
il
n—-l=no+4+n _=>n=—;

and we then obtain
1
4An(n — 1)+ 4nA — ;A"’H =0

which gives us

and equation (2.5) gives us

or i
4t B
W= (o(xz T zz))

which is an invariant solution of equation (2.3).

Case 1.2

We now use the operators Xy and Xg to find the invariant solutions of équa.tion
(2-3). Using the above algorithm, in this case, the first equation X,J = 0 provides
us with three functionally independent solutions J; = 2 + 2%, J, = ¢ and J; = t.
Now writing X§ in the space of Ji, J, and J3, we obtain

a 3]
Xs = 26'}13—.]2 = 2.1'23—.]2

and using the second equation XsI = 0 we following two functionally independent

solutions (invariants) are obtained:

L
o

11=J1%~725 (-'324'22) ¥, L=J=t.

22



Thus the invariant solution is given by I; = ¢(I2), that is
1
(& +2%)7 ¥ =4(t)
or
hy
P = (2% +2°) 7 4(t). (2.9)
Differentiating ¢ with respect to ¢, and twice with respect to z and 2z, we obtain:
2 2\'% J
'/Jt = (:ZI +z Ji ¢ )
2 (02, 2\l 2( 1 ) | —%-2}
zz = —— 25| —— =
oY U¢{(m+z) +22° (—— 1 (:z:—i—z)
and
__2 2 2y el 2 1 2, 2\~ F2
b= Bof(e o) wan () e
Substituting these values of ¥, 1., and 9., in equation (2.3), we obtain
(zz +22)—% of = 2 (:zz . z2) gt {2 (x2 +z2)“%—1 +2(22 + ) (_l _ 1) (1;2 +22)“%-2}
o o '
This simplifies to
4 2 L 1
24 2)TF g 2 (g2 1 2) T gt [ 1
(F+2) ¢ == (4 2) T 22 (-2 -1))
or

o4

@+2) P o= -2 T[]

Further simplification gives

(z2+z2)_?1' ¢ = % (3:24-22)_% g+

or
/ 4. o
=0 (2.10)
Re-writing equation (2.10), we have
dp 4 , ,
@ o'2¢s

23



This is a first-order separable equation. Separating the variables, we obtain
‘ 4
=124 —
@7 dg = th

Integrating gives us

. :
4

¢—=—§t+cl
o a

or

4

c=2¢+0).

# =2(+0)

Thus we obtain ¢ g
4 z
o= (5e+0)

and substituting this in equation (2.9) gives

. (U(EQ_I_zz))—%

4t +C)
which is an invariant solution of equation (2.3).
Case 1.3
Likewise using operators X5 and Xg one can obtain an invariant solution of equation
(2.3).
Case 1.4
We now construct invariant solutions under the operator X and a combination of
the operaters X; and Xj, that is X; + X5, where
L
o’
The operators X; + X5 and X span a two-dimensional subalgebra L of the algebra

X+ Xe=(14at) D 4y

Lg and have two functionally independent invariants. To find these we calculate &
basis of invariants I(t, z,z,%) by solvﬁlg the two equations (X; + X;5)}I = 0 and
XsI = 0. Since [X; + X5, Xs) = 0, the subalgebra is Abelian. Therefore we can
solve the eciua.tions in any order. The second equation gives us three functionally
independent solutions. We obtain these as follows: The equation XsI = 0 implies

that
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We first consider
dz dz
ocr oz

Integrating, we obtain

or
E = Cl =
z

Secondly
& _ &y
oz —21

gives
2ds _ db
cz Y

Integrating, we obtain

or

z%1p =Cy=J,.

Thus we have obtained three functionally independent solutions Ji, J; and J;. Hence
the common solution I(%,z, z,1) of our system is defined as a function of Jj, Jo and
J3 only. Therefore we rewrite the action of X1+ X5 on the space of J1, J; and J3 by

the formula, ' .

a . o 7]
Xi+Xs=(X1+ Xs)(Jl)a—Jl + (X2 +X5)(J2)a—12 + (X1 + Xs)(Js)a—Js

to obtain
X: + X, —Ji+(1+ J3) |
L= 75
Thus from the second equation (X + X;5)}I = 0, we obtain
dly _ _dl
Jo T 14 ady’

Integrating, gives us
InJ;, = -}[n(l -+ UJa) +InC}
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or

Cl = Jz(l + UJa)uTl
Thus the two functionally independent solutions (invariants) are:
L =Jy(1+ n'Ja)_Tl = z%'(lz(l +a’t)_Tl,

and

L=4J,

z
z -
Consequently, the invariant solution is given.by I; = ¢(I,), that is
2 = o
Ay +on? = o(%)
or

2

v=2F(1+ot) ¢(3). (2.11)
We now find v, ¢¥zr and ¥,..
b=z (1+at)s ™ g,

VYo = 275 (14 0t)7 ¢
and '
Yor = (1+0t) 727272 {% (; + 1) $+2 (; + 1) ¢+ :—jcfa} .
Substituting the above values of the derivatives of 9 in equation (2.3}, we obtain

o) Te=2 Qoo (7R ¢+ (ot 2

o
2 2 z, z*,
(E+1)¢+2(a‘+1)z¢+z2¢ )
This simplifies to

2

(1+8)¢" +2 (; +1)¢ + -f; (G+1)e-¢", whee ¢=Z  (212)

S

It can be seen that



is & constant solution of equation (2.12)., We now obtain an approximate solution of
eguation (2.12) near ¢y. By letting ¢ = ¢ + ¢1 we linearize equation (2.12) near the

constant solution ¢. We obtain
2 1 4 ! 2
L+ + (2+2) e -2 (5 +1) & =0
whose general solution is given by (see for example [22])

&1 = Cign1 + Caa

where C; and C, are arbitrary constants,

a 2@a 2 11 .
su=F(5+ 5+ +gig¢)
and
pu=F(-f+ 2452+ 20150,
= 3 2'2

Here F is a hypergeometric function and a satisfies the quadra.tic equation

Hence the approximate invariant solution of equation (2.3) is given by

Y =27 (1+0t) [(% (% & 1))% +Cign + Cz¢12] .

2.2.2 Case 2

In our last example of constructing invariants solutions we consider equation (2.1)
when K()=1, C()) = 1 and S(¢) = —¢?, that is

wt = lba:z + 1}”:: & 'wz- (2.13)

Group classification results in (4] tells us that equation (2.13) admits a five-dimensional
Lie algebra Ls obtained by an extension of the principal Lie algebra L, by the fol-
lowing operators:

a a

- ] ' X4=255_x5
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and

8 el 0 lé]
X5 = 2t— — — = 2—.
st T Wy
Let us now construct invariant solutions under the operators X; + X5 and X4, where

a a I} 8
X1+X5=(l+2t)§+$$+25—21/)%.

Since [X4, X; + X;5] = 0, the subalgebra L, is Abelian. Therefore we can solve the
equations X4I = 0, X5/ = 0 successively in any order. The first equation provides us
with three functionally independent solutions J; = 22+ 22, J; = ¢ and Jz = ¢. Hence
the common solution I(t,z, z,1) of the system‘ is defined as a funcltion of Ji, J> and

J3 only. Writing the action of X; + X5 on the space of Ji, J; and J3 we obtain

5} o 0

or’
7] 8 9
i e e e e
X1+ X5 2J13J1 2J23J2+(1+2 3)3.]3
Consequently, the second equation (X + X5)I = 0 yields
dJl ng . d-].'i

35, 28 (+F2d)

From the first equation, we obtain
InJ/i+Ilnd;=InC, or SfJ,=C.
Thus
L= (?+ 2 | SO

and from the second equation, we obtain

d) _ _dJs
2~ 14245

Integrating, we obtain

1 1

§h’lJ1 - Ehl(l + 2.]3) = lnCl .
or

Jy
1+42J; =
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Hence

_ (z*+2%)

= . 2.15
L L2t )

Thus the invariant solution is given by

L= ¢(I2)7
that is,
z? + 22
(Zz + 22)111 = ¢ (m)
= ' 2., 2
1 "+ z
P = mq&(ﬁ), where £= TY o
No
) W
Y= T
_ 422" 2 8z2 ,
Ve = T+ ) T (@ T 059 GE0@@ T A } ¢
g 8z2
+ {_(zz + 22)2 + (22 + zz)a} ¢
and ' '
T 2 _ 822 ,
Vo= @A)\ GF @A) AT m@ T 7 } ¢

2 822
-+ {“(Iz + 22)2 = (z® + 22)3 } ¢-
Substituting the above in equation (2.13), we obtain
_2¢l 4(1.2 +22)¢u 4 8(1:2 +'22) }¢,

1+ 2t)2 - (14 2t)2(z2 +2%) {(1 +2t)(z2 +22)  (1+ 2t)(z? + 22)2
» 4 8(z? + 22) ¢?
- (22 4+22)2 (224 22) ¢ (x® + 22)2
which simplifies to

4£%¢" + (26° — )¢’ + 49+ ¢ =0
This is a second-order nonlinear ordinary differential equation. We note that ¢ = —4
is a constant solution of this equation.’ By letting ¢ = @o+¢; we linearize the equation

and obtain

" L 1y, 1
o+ (5 - E) # - gt =0, (2.16)
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If we let

q_l)l = yg_%f(%_%)de (217)
then
¢ =yt I-Dd o [(G-Dae ( + L)
and
2
o = yteH (1) | oyt [(3-D)ak (_i o 2_5) 4ot S(-Dae (nlz + %)
+ye_§ (%_%)df (—515;2)

Substituting these values in equation (2.16), we obtain

to (L L) (L1 s 1 1 L o
v+ (g -3)+v(z-3) (i) r(E-a) e
or o
1 il 1 1 1 1 1 1
”“’{(2& 4) 75?‘*(5_5)(%‘2)‘?}:0

which gives us
1 1 1 1 1 1 1 1 1
3 s B P e e e o i ki —
: ”’{(16 FE TR EE) )
Simplifying the above equation, we get
iy 1 1 i
¥ +y 45 452
This equation can be rewritten in the form
¥ =al&)y ; (2.18)
where
1 L. T
28) =15~ it
The Liouville-Green approximation for the general solution of equation {2.18) is given

by (see for example [22])

= y.= qutlgfq}df + Bq:ﬂ—le_.rqédé,
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where A and B are arbitrary constants.Therefore an approximate invaraint solution

of equation {2.13) is given by

p= 2 i 22 [_4 et /G-)% {Aq_Tlefqi‘if + Bq_Tle_fqidﬁ}] )
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Chapter 3

Conservation Laws for Equations

Related to Soil Water Equations

In this chapter we obtain all nontrivial conservation laws for a class of (2+1) nonlinear
evolution partial differential equations which are related to the soil water equations

(see [23]).
We first note that the soil water equation
Gl = (K(WYbe), + (K) (9 — 1)), - S@), (3.1)
can be rewritten as (see [3])
w = (k(u)ug)s + (k(u)us): + 1w, +p(u), (32)
where ‘ k
u= [ CW)dp, k() = KH)/CW), I(w) = —K'($)/C), p(v) = ~S().

The group classification of this equation with respect to admitted point transfor-
mation groups was performed in {24]. Group classification of equation (3.2) when
l{u) = 0 with respect to Lie point symmetries was given in [25, 26 (see also [27] and
(4], Vol. 1, Section 10.7).

Conservation laws were obtained for some special cases of (3.2) in [6] and symmetries

were associated with them in the sense of [17)].
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Here we obtain all nontrivial conservation laws for equation (3.2). We list all the
classes of equations (3.2) which admit point symmetries and for which nontrivial

conservation laws exist.

‘We construct a conservation law
DT + D, T+ DT =0 (8.3)

on the solutions of (3.2). See [23]. This gives us

oTt or' T oT!
—8T+k(uz+kum+ku”+luz+p)%—u—+uﬂ%+u¢m-a—u-;

o Ju, oz e Bu ek Ouy s Ouy Hone Ou,

+£3+u§gf-+u ;ﬂi-i—u -als--ku E—D
9z ' T oOu | tOu | TOuy T Ou,

The separation of the second-order partial derivatives of u in the determining equa-

tion of (3.3) results in the following system of equations:

Uy %HL: =0, (3.4)

Uz o %+%=0' (35)
Uz - ZZ: + éﬁu: =0, (3.6)
Upg & :TTj -+ %: =0, (3.7
Ugp k(u)(;T—u'1 + % =0, (3.8)
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ort  orTd

u¥, 3 k(u)—éu— + auz = 0, (39)
1 1
rest : % + aaiu(k'ug + Kl + 2, + pu)) (3.10)
o> oT*  8T® oIt
ke e + uz = 0.

5 T T T
Equation (3.4) gives us T" = T*(¢, , z, u, us, ;)
Differentiating (3.5) with respect to u;, we obtain

8°1?

-7 =

Oug

Integrating, we get

7%= alt, T, 2, u, ug, Uz Juy + B(t, T, 2,8, Ug, Uz ).

Equation (3.5) now gives us
1

B, + aft, T, 2, U, Ug, uz) = 0, (3.11)

and equation (3.8) gives us

art 8
k(u)ﬁ = _aut +

a8
Oug ¢

Bu,

Spliting on u;, we obtain

da

1
 : k(u) - + ;—i- —0. (3.13)

From (3.12) we obtain

a = oft, , 2, u, Uz),

and equation (3.11) gives us

_—=—a.
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Integrating we obtain

T! = —aft, T, 2, u, u;)ug + ¥(t, z, 2, u, u,)

and from equation (3.13), we have

Oa o a
k(u) {—%U:,"i‘ 3—1} + af =0.

This gives
o8

T = ko 2 — ()Y

Integrating with respect to u., we obtain

2
B = k(u)auTE — ku)vaus + 5(t, 3, 2,u,us).

Thus

T! = —al(t, T, 2, u, v )ue + (7, 2,4, u;)
2
T? = a(t, T, 2,4, Uz)us + k(u)a.,%’— — k{u)vyus +6(t, 7, 2,u,u;).

~ Equation (3.6) gives us :
e &y or
Bu, =" Bu, " Ou

Integrating with respect to u;, we obtain

T3 = aa: —_ Ba—'yut-i-’r(t I,z u,u:,uz)

=0.

Equation (3.9) also gives us
da oyl ©a 0%y ar
k(u) [_%"z o “é;l s ruguaut = a_’llgut + 57: =0.
Splitting on u;, we have

& %y
Ug : 6—’“‘2!11.3 — 51;3'

-~

=0 (3.14)
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Or
rest  R(u)[-ayuy - Yo -+ )“— = () (3.15)

Splitting (3.14) on uz, we obtain

o
Uy 1 — =0
ous
Q Py
i, ==
T ou?

Integrating the above equations we obtain
a=uqa(l,z, FIRT)LTE ag(t, w, 2, u)

v =bi(t, T, 2, wu, + bt T, 5, ).

Equation (3.15) now becomes

801 0&2 31)1 o Ql_)“i ) or _
_k(u){—a}: ;- '(,'):} g I-k( ){bu s + l}h} - au: =,

Integrating with respect Lo Uy, we obtain

Oa, u? oby ul NS
r‘— k(u)g Uy 7 +h(u) Bu LT —k(u)ﬁ 5 h(u.)mw <t B8, At e s
So
T = —‘[al(tv L, Z, ")'Ul o G/J(t,iﬂ, znu)]uz + by (61 &, zv“)uz Al b?(tnz' ) u)i
, u“ Bal 3“2 dbl Bbq
2 o I o oo Lty de [P FHE] s (G0 G
T% = |ay{l, 2, 2, u)u,+aq(t, 5, 2, w)|uc-k(u) 5 [Bu Uy -+ 5u k{1, 30 4 Bu
+6(t,m, 2,1, uy),
: e u? oby u?
T = wuglay (b, 2, 2,4)] ~ wlbi (¢, 5, 2, u)] + k(u) 5 o, 22 k()
2 ou 2
»i--k(1t,);9;: Ug Uy — k(u) L+ E(L 2, 2,0, ug).
3y equation (3.7 ), we obtain
u’ da, db{ 94 8ay ul ég.g O
a;u.tikz-au-kugau 6 iu1u¢+ka 2-!1-76 -+-a—%-—l).

Splittiug Lhe abuve equation vu u;, we obtain

U iog =0
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oby 86 Y Oas ¢

i — 2 == ), 1
Ou r Ou, ou Bk Ou, 4 (8-18)

ud @ —ku,

Rewriting out T*, T? and T° we have

Tl = _aQ(t} I, u, z)u:z: + bl(t)zl z, u)uz + b2(ta$1 21’”’)7

U
2

2
T? = ag(t, z, 2, u)us + k(u) -2 %2— — k(u)ug {%uz + %} + 6(t, 7, 2, u, u,),

2
T3 = —by(t, 7, 2, w)uy — k(w) %— —f—+k(u) %‘—3— Uz, — k(u) %u,+€(t,x,z, U,y Uz)-

We now use equation (3.10 ). This gives us

Bag 8b1 abz o 8a2 ab % /D _% 92]; Qﬁ
IR S Rl e i e Tl T

0 b ab 0 0b 0 0
+i(u) u, (——ﬂz—uz + au, + —2) + p(u) (——ﬂ?—u;E + U, + bz) + =2u,

du Su Ou du du o Bz

2 %y 8%b; 8%, 08 ,u Bay

Hhle )?Bux k“a ”’azau+£+” au Wb Bu
§ Py, (B, B\ (O B 5

s [k(u) 2 Ou? ( ku? iz T 2 + ou

oy T . 0% ud a, b, B¢
w2 P2t W 2 Beou P i T
oby. . , Bb1 u? 8%by ug : ?2 B2
+ug|i—'az —k a 2 —6—1—‘? 2+k ou u,u,+k32u1u3
Bbo 8%, o€
’_ =
e ["k YR ol R
Splitting the above equation, we obtain
. aaa Baz 661 ab1 _
% g T Bz Y
-and splitting this equation gives us
day
et gy =0
b,
U, -6-17 =0
rest : —3_1" — B2 = 0, ) (317)



and rewriting the above equation yields

_6a2 6b1 abz ’ Bb ;2 abz
at’u;‘f'a +3t + kK u ’8_+ku’au

Oby
()5, ~k e g e TF =

85 _, &b 0
+u$% =& 8200 = B2 u = 2

Equation (3.16) then becomes

o)
6+6§

Ou, Oug =L

Differentiating equation (3.19) with respect to u,, we obtain

2
2 i
ou2
This gives us .
€ =clt,z,z,v)us; + c2(t, 7, 7,5)

and substituting back into equation (3.18), we obtain
by

TGt =T gy T Ey
361 ady 2 0%by %
Tt g TE az+“=[ Bu
~k575u ou

520u ‘+a B " BB

Splitting the above equation, we obtain
0%by

_km 0.

by B¢ 8% be
% By * Z(U)BTL T8z kazau

38
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2 2
07 +Bcg k?—gzuz+u,[§fluz+

ddy
Bu

8%b,
* Bzdu

“z] =0

© (3.18)

(3.19)

(3.20)



, abg abz 8d1 362 _
rest : Gy +P(U) 5, + 5 T =0

From equation (3.20), we have
be = A (t, 7, 2)u + Aq(t, z, 2).

Substituting this value of b, in the above three equations, we obtain

Oas 0A; 0d1  Oa
_Ef— — .’GE a— o e 32 =0 (3.21)

Bbl 301 8A1 BCZ

F +l(u)A; — k-g Bu 0 (3.22)
9A; 04, 0dy | Bc,
T U+ Bt +p(u)A1 + ™ + T =0 v (3.23)

From equation (3.21), we obtain
dd, _ dasy + 0A; BCI_
du ot oz 0z’
and differentiating with respect to z, we obtain

Bzdl- Bzag 62A1 6261
8zdu Ozt +¥ 9r2  9z0z (3.24)

We now differentiate equation (3.23) with respect to u to obtain

8%d; _0A 8¢,

Sada @ P A (3.25)
Now equations (3.24) and (3.25) give us '
3‘2612, 32A1 3201 aAl 6
520t T 5oz ~Bwaz Tt TP WAt 55, =0 (3.48)
Differentiating equation (3.22) with respect to z, we obtain
3 b]_ 3261 62A1 6262 2,
Tage ¥ 1M )5 Bz ~Bz8s " b8 T Babu (8.27)
From equation (3.17 ), we have
8’@ 62b1
8tdx ~ 8tdz’ (3:28)

Substracting equation (3.27) from (3.26), and using equation (3.28) we obtain

2 2
ka—41+a—(;il+p’A1—l%+kaAl

i e T ggE =0
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that is

P4, 82A. 94 94
i )(amzl az;) l(u )—1+p( )A1+—6ti—0 (3.29)

Rewriting our conserved vector T%, T2 and T again, we obtain
Tt = —ay(t, 7, 2)ug + bu(t, T, 2)u, + Ai(t, T, 2)u + Az(t‘, @ 2);
T? = aa(t, z, 2)uy — k(w)uy Ay (t, T, 2) — a1(t, z, 2, w)u, + di (L, T, 2, ),

T3 = —by(t, z, 2)us — k(u)u, AL, z, 2) + c1(t, T, 2, W)us + ca(t, 7, 2, 1),

and relabelling @ —+ a, by — b, 4y — A, Ao — B, di — d, gives us the

conserved vector

T = —a(t,z,2)us +b(t,z,2)u, + A(t, z, z)u + Blt, z, z),
T? = a(t,z, 2)w — k(v)usAlt, 3, 2) — c1(t, z, 2, u)u, + d(t, z, 2, u),
T3 =

—b(t, z, 2)us — k(u)u AL, z, 2) + a1 (t, T, 2, wus + oty z, z,u), (3.30)

‘where the functions a to B satisfy the following system of equations:

oa_ob _
8x 9z
da k( )_OE _9d_ 0o _
ot s az gu g‘z T
8b e A B
§+Z(U)Aa_?§:; k( )E-’-? 0, .
B 8
%‘%u+ 5 +pwA+ 8—: + -£ =0. (3.31)
Also, equation (3.29) becomes
PA %A 8A 8A
k() (W 3z2) 1A+ pwa+r 2o (3.32)

The use of equation (3.32) enables us to classify all cases for which conservation laws
for equation (3.2) exist.

We first consider the case when the functions k(u),!(u) and p(u) are arbitrary. From
equation (3.32), we obtain A = 0. Thus

T! = —qu, + bu, + B,
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T? = auy — crus + d,
T3 = —buy + ez + Ca.
Now

DT 4 D,T? + D, T? = —agu, — Qg + byw, + by + By + azi; + alyg
—Clglz —ClUzg — Clulaglz + Az +dutly — bty — bug, + Cratte + €1 Uzz + 2z + Coutlz + CruizlUis
= —Oylly + bty + By — C1zu; + dp + dylis + €Uz + €2+ cu;

or
D,T' + D,T? + D,T? = (—a; + du + €12)ug + (B — €1 + Ceu)ts + By + dz + 2
and so
DT + D,T? + D,T® = (kAz)us + (—lA+ kAz)u. — A —pA =0,

because A = 0. Thus D,T' + D, T? + D,T® = 0 is satisfied without the equation,
which means that the conservation law is trivial.

We now consider other cases. Differentiating the equation

PA 94 0A 8A
with respect to u, we obtain
K(Age + As) —U'A, +p"A=0. - (3.33)

CASE A
If " = 0 (that is, p(w) = py + p1(u), where po and p; are constants), then we have

kl(Azz + Azz) - l,Ax =0.
CASE A(i)
If ' = 0 (that is, I = Iy, where Iy is a constant), then k'(Azz + A;,) = 0.

CASE A(i)1

If k' = 0 (that is, k = ko, where kg is a constant), then we have

kﬂ(Azz ) Au) - lOAz +P1A + A; = 0.
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CASE A(i)2

If &' £ 0 (that is, & = k(u) ), then we have Azz +A4,; =0 and —lgA, +p A+ A = 0.

CASE A(ii)
If I! #0, (that is, { = I(u)), from eguation (3.33), we obtain

4
T, (Amx +Azz) = Az =0.
Differentiating this equation with respect to u, we obtain

1% ’ .
(l_') (Azz + Azz) = 0.

CASE A(ii)1

(3.34)

If (%'—)’ =0 (that is, k' = I'N or k = NI + M, where N and M are constants), we

have from equation (3.34),
N(Ap+A)—A. =0
and from equation (3.32), we obtain

(NI 4+ M)(Agz + Azz) — L(w)A. + D1 A+ A =0

which gives us

M(Aa:z +sz) +p1A+ At =0.

CASE A(ii)2
If (%-)I # 0 (that is k # NI+ M), we have

Azz + Azz =0

and so from equation (3.35), we obtain A, = 0. This gives A;; = 0 and so
p1A + At =0,

CASE B

If p £ 0, from equation (3.33), we have

l’
—(Agz + Azz) — FA‘ +A=0.

42
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Differentiating the above equation with respect to u, we obtain

(2 = (5 em )

CASE B(i)
If (;ﬂ,’—,)r =0, (that is, IL;,— = N, or I = Np' + M) we obtain

(g)'mu +A) =0, (3.38)

CASE B(i)1
If (p%)' = 0 (that is, ¥’ = Rp”, or k = Rp’ + S, where R and S are constants), from

equation (3.36), we obtain
R(Ass+ Ay) — NA, + A=0 (3.39)
and from equation (3.32), we obtain |
(Rp' + 5)(Ayr + Agy) = (NP + MYA, + PA+ A =0
and so we have

S(Azz I Azz) - MA: + At = 0- (3.40)

CASE B(i)2 _
if (f,';)' # 0, then from equation (3.38), we obtain A;; + A, = 0 and equation (3.36)

gives
-;f,'-, A +A=0.
Since I' = Np”, we obtain
—-NA,+A=0 (3.41)
and equation (3.32) gives
| —(Np' + M)A, +p'A+ A, =0. (3.42)
Using equation (3.41), we obtain
—MA;+ A =0 (3.43)
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CASE B(ii)
If (}‘)—,i,)l # 0, we have from equation (3.37),

(&)
(#)

Differentiating with respect to u, we obtain

(Azz 5 Amz) - Az =0. (344)

Y
[(}:’) (Azz + -A-:r.::) =0

)|

CASE B (ii)1

If ol
K
L(‘*H -
that is, if ( ,
15
5
L F = 1
. )

k! l’
— =Ll —
7= (7)

where L and @ are constants, from equations (3.44) and (3.36), we obtain the fol-

lowing equations:

L{Azz + Az) — A, =0, (3.45) :
lI H ll
— zz z) — :+A=0. .
[L (p”) +Q] (Azz + Azz) pﬂA + 0 (3.46)

Now using equation (3.44) in equation (3.45), we obtain

Also since ¥’ = LI’ +p"Q, we have k(u) = Li+p'Q+ R, where R is a constant. Thus

equation (3.32) becomes
(L +PQ+ R)(Asz+ Azs) — A+ PA+ A =0
and using equations (3.44) and (3.46), we obtain

R(Azz + Azz) + A= 0. (3.48)
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CASE B(ii)2
I

Ape+ A, =0

then

and so from equation (3.43), we have A, = 0, and from equation (3.36), we obtain

A =0 and so we have only trivial conservation laws for this case.

‘We now summarize the above results:

1. For arbitrary k(u), {(u) and p(u) we obtain A =0 and we get trivial conservation

laws.

Nontrivial conservation laws are obtained in the following cases:

2. p=pg+piu,l = lp,k = kg # 0, where pg, p1,lo and ky are arbitrary constants.
The function A satisfies ‘

(Az:: £l Azz)ko = lOAx + plA T At =0

together with the system (3.31).

3. p=py+ pru,l = lp, k = k(u) with k(u) # 0, where py,p1 and I are arbitrary
constants and A satisfies

—pA+pA+A =0

A+ A,.=0
We solve for A as follows:
dr _dz _dt _ dA
0 -l 1 -pA

This gives
z+lt=c, T=c3

InA+pt=Inc-2
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or
A
— =exp(—pit)
C2

i.e' A = ¢y exp(—p1t)

¢z = f(c1,¢a)

Thus
A = exp(—pit) f(z, 2 + lot),
and .
Az + Az =0
A Implies that f must satisfy .
faz + fre == 0

where 7 = z + [pt. The system (3.31) also must be satisfied.

4. p = pg+ pru, | = l(u) with I'(u) # 0,k = NI+ M, where po,p1, N and M are
arbitrary constants. In this case A satisfies the two equations

N(Az:+ Apz) — A: =0 ' (3.49)
and
M(Azs + Agz) + 1A+ A, =0 ‘ (3.50)
From (4.36) we have A
At Aes = 35

and substituting this value of Az + A, in (4.37), we obtain

My k4 e

N
or
MA,+ NA;=—pmNA
‘We have
de_di__dA__ds
M N —-pNA )



which gives Nz — Mt = ¢, Ae™' = ¢, and T = ¢3 and finally, we obtain
A=ePif(g Nz — Mt)‘,
Substituting this value of A in equation (3.36), we obtain
N(e Pty + &Pt f, N?)) — e PN =0
or
foz+ N2 for — fr=0

Thus
A = exp(—pit) f(z, Nz — M)

where f satisfies foz + N2frr — fr =0, 7= Nz — Mt. The system (3.31) needs to

be satisfied as well.

5. p = po+ pu,l = l(u) with I'(x) # 0,k = k(u) with k(u) # Ni(u) + M, where
po,p1, N and M are arbitrary constants, and A satisfies A, = 0, Azz = 0 and
p1A + A, = 0. From the first two equations, we have

A=At z) = zf(t) +9(t)

and substituting in the third equation, we obtain

pi(zf(E) +9(t) + f'(t) +g'(£) =0
Splitting on 'z’, we have p; f + f' = 0 and pig + ¢’ = 0 and this gives
f(t) = foexp(—pat) and g(t) = goexp(—pit), whose fo and gy are arbitrary
constants. Thus in this case

A = fozexp(=pit) + go exp(—pit)
and it must satisfy the system (3.31).

6. p = p(u) with p"(u) # 0,(u) = Np'(u) + M, and k(u) = Rp/(u) + S, where
N, M, R and S are arbitrary constants. Here the function A satisfies the following

two equa.tions:

R(Azp+ Azs) —NA, +A=0 (3.51)
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and
S(Ase+ Asz) — MA. + A =0 (3.52)
From equation (3.39) we have
N A .
A+ A, = ﬁA‘ -® provided R # 0

Substituting this value of A, + A., in equation (3.40), we have

N A
8 (EAz ‘—'—-R') —Mflz‘*‘At =0
or
0A 8A
(SN — MR)a—z + RE =SA
Thus we have '
dz dt _dA _ds

SN-MR R _SA 0
and this gives

c1= (SN - MR)t— Rz, ¢o= Aexp(-—-%t) and c3 =2z
Hence
A exp'(%t) f(z, (SN — MR)t — Rz, R # 0) (3.53)
and substituting this value of A in equation (3.38), we obtain
R{e% for+eF £ R} + NeHf,R+eRf=0

Where
7=(SN—-MR)t - Rz

Thus A is given by equation (3.40), where f solve
Rfeo+ R¥frr + NRf, + f =0, 7=(SN—MR)t— Rz

Further A is constrained by fhe system (3.31). Now if R = 0, from equation (3.39),

we obtaix_l
~NA,+A=0
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which can be solved for A to obtain
A=exp(3)f(ta), N#0, R=0 (3.59)

Substituting this value of A in equation (3.40), we obtain

Z g2\ 1 M z z
s (o () fe+om () at) ~ o (7) 1+ e () -0
Thus if R = 0, the function A is given by equation (3.54), where f satisfies

SN*foz+(s—MN)f 4+ N?f, =0

and f is further constrained by the system (3.31).

7. p = p(u) with p"(u) # 0,1(u) = Np'(u) + M, k = k(u) with k(u) # Rp'(u) + S,
where N, M, R and S are arbitrary constants. In this case A satisfies the following
three conditions:
—NA,+A=0, —MA,+ A, =0 and A;; + A,, = 0. Solving the first equation
gives k
A =exp (%) f(¢,z)

. and substituting the second equation yields a first order partial differential equation,

which on solving gives

76,2) = o (5F) 9@

where g(z) is an arbitrary function. Thus

. (z '+NMt) gl

and substituting this value of A in the third equation yields
1
9"+ NzI9= 0

which gives
T 2
g(z) = focos (ﬁ) + gosin (%) , N#0

where fy and go are constants. Thus
z+ Mt T o [
A=exp( N ) [focos (N)-FQQSID (ﬁ)]
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and it must also satisfy the system (3.31).

8. p = p(u) with p"(u) # 0,1 = Uu) with I(u) # No'(w) + M, k(u) = Li(u) +
Qp'(u) + R, where L,Q, R, M and N are arbitrary constants. Here A satisfies the

three equations:

L(Aza: + Azz) —-A:=0 (355)

Q(Ac:: + Azz) o= A=0 (3‘56)
and |

R(Az+ Aus) + A =0 - (387)

Substituting the value of A, + A,; from equation (3.47) into equations (3.48) and
(3.45), we obtain, respectively

R
——A+A =0
Q t
.and
L.
——A—-A, =0
Q

Solving the first equation gives
, Rt
A=exp|— | f(z, 2
»(5) @)

and substituting this value of 4 in the second equation, we obtain

L
'—af - f.=0.
The solution of this equation is

f=exp (—%) zg(z)

Rt — Lz
A = ex] - x).
»(B5E) s
Now substituting this value of A in equation (3.48) gives :
L? 1
9zt g 9+ 590

and hence
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" Hence the above yields

T' = f(z,z+ lt)uexp(—pit),

T = —k(uusexp(~pit)f(s, 2+ lot) + exp(—pit)fe [ K(w)du’ + alt,3,2),
T = —h(us exp(—pit) (@, 2 + lot) + exp(-pit)f [ k(w)dn!
_lﬂuf exp(_Plt) =hs ﬂ(t’ Z‘, 2)1 (364)

where f satisfies foz + frr = 0, 7 = 2z + lot and o« and f are constrained by
poexp(—pit)f + o + B, = 0. Equations (3.64) give rise to an infinite number of

conserved vectors.

[Verification:

: i)DtTl + D,T? 4+ D,T® = ~pyuexp(p;) fz + exp(—p1t) foz _/: k(u)du' + o
+ug{—K'uz exp(—~p1t) f. + exp(—p1t) fok} — tssk exp(—pat) f — ku, exp(—pit) fr
+exp(—pt)frr [ k() ~ louexp(—pifs + B
+ug{—k'u; exp(—pit) f + exp(—pit) frk — lo exp(—pat) f} — vazkexp(—pit) f
= exp(—pit) fF{—pru + w — k'u2 — kugz — K'u? — lou, — ku,,} + ulp exp(—prt) fr
—kutg exp(—p1t) fu + Ftiz exp(—p1t)f — ktiz exp(—pit) fr — louexp(—pit) fr
hu, exp(—p1t) fr + o + Be ‘

=poexp(—pit)f +az + B =0)]

Similarly, for Case 5 with the choices & = b =¢; = B = 0, we obtain

T' = [foz exp(—pit) + go exp(~pit)lu,
T? = ~k(u)uz|foz exp{—pit) + g0 exp(—pit)] + foexp(—pit) /D—“ k(u)du' + aft, z, z),
T® = —k(u)u.[forexp(—pit) + go exp(=p1t)] — [foz exp(—pit)

+g0 exp(—p1t)] /: l(W)du' + B2, 2, 2), (3.65)

where o and 3 are constrained by

Polfoz exp(—pit) + go exp(—pit)] + oz + B, = 0.
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[Verification:

DT + D, T* + D,T® = —p; exp(—pit) [fox + go]u + us exp(—p1t){fox + go)
—kug exp(—p1t) fo + vz [—k'uz exp(—p1t) | fox + go] + foexp(—pit)k]

+tog [~k exp(—p1t)[fox + gol] + @z + B + u; [—k"u, exp(—pit)[foz + go]

= exp(~pit)[fo + gol{—pru + ue — K'ul ~ ks — k'uf — I, — kuz} + oz + B:
= exp(—p1t){foz + go]{po} + oz + B: = 0]

Thus the components (3.65) result in two conserved vectors.

The conservation laws for the other cases can be constructed in a similar fashion.

The only classes in the symmetry classification (see [4]) which have nontrivial con-

servation laws are (the notation used in the following corresponds to that of [4])
1.2. k(u) arbitrary, p(u) = 0,I(u) = 0.
IL k(u) = e
1. l(u) = Ae*,p(u) = Be* + C (A, B and C ere arbitrary constants, A # 0)
4. l(u)=0, ({)p=He*+66==1, (ii)p(u)=460d%1, (iv)p(u)=0.

IIT. k(u) = u°,0 #0,—1
1. i(u) = Au®, p(u) = Bu®*! — (C/o)u (A, B,C and o are constants, A # 0)
2. l(u) = Cu*,p(u) = Au1+2““;p =20 :
3.0w) =0 ()pu) ==, v#0,1,r=0+l, (i) p(u) = tu4du,d = £1,
o=const (iii) p(u) =du,6£1, (iv) pu)=0.
IV. k() = w1, l(u) =0
(i) p(uw) =6fu+ 1,6 =1 (i) p(u) = £1, (iv} p(u) = éu,d = %1,
(v) p(w) =0 '
V. k(u) =1,
3. l(v) = Alnu,p(u) = u(Blnu+ C)
6. l(u) = Au,p(u) = Bu+C
8. () =0 (i) p(u)=du,6==%1, (i)p(u)==+1, (i) pu)=0.
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Chapter 4

Conclusion

In this project we have first reviewed some useful definitions and theorems of mod-
ern group analysis which were later used in our work. We have determined ex-
act/asymptotic invariant solutions of certain sbil water equations using reduction
by Lie symmetry subalgebras. Furthermore, we have obtained all non-trivial con-
servation laws for soil water type equations. It has been shown that for arbitrary
functions these equations possess trivial conservation laws. Seven cases arise for
which we have nontrivial conserved vectors. Among these, three ¢ases result in each
admitting two nontrival conserved vectors. Each of the other cases gives us infi-
nite number of nontrivial conservation laws. We also provided all the classes in the

symmetry classification which have nontrivial conserved vectors.

Further work can be done on the reduction and solutions of the soil water equations

which admit symmetries that preserve the conservation laws.
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