Show simple item record

dc.contributor.authorMason, Shayne
dc.contributor.authorReinecke, Carolus J.
dc.contributor.authorKulik, Willem
dc.contributor.authorVan Cruchten, Arno
dc.contributor.authorSolomons, Regan
dc.date.accessioned2016-09-28T12:49:52Z
dc.date.available2016-09-28T12:49:52Z
dc.date.issued2016
dc.identifier.citationMason, S. et al. 2016. Cerebrospinal fluid in tuberculous meningitis exhibits only the L-enantiomer of lactic acid. BMS infectious diseases, 16(1): Article no 251. [https://doi.org/10.1186/s12879-016-1597-9]en_US
dc.identifier.issn1471-2334 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/18912
dc.identifier.urihttps://doi.org/10.1186/s12879-016-1597-9
dc.identifier.urihttps://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-016-1597-9
dc.description.abstractBackground: The defining feature of the cerebrospinal fluid (CSF) collected from infants and children with tuberculous meningitis (TBM), derived from an earlier untargeted nuclear magnetic resonance (NMR) metabolomics study, was highly elevated lactic acid. Undetermined was the contribution from host response (L-lactic acid) or of microbial origin (D-lactic acid), which was set out to be determined in this study. Methods: In this follow-up study, we used targeted ultra-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UPLC–ESI–MS/MS) to determine the ratio of the L and D enantiomers of lactic acid in these CSF samples. Results: Here we report for the first time that the lactic acid observed in the CSF of confirmed TBM cases was in the L-form and solely a response from the host to the infection, with no contribution from any bacteria. The significance of elevated lactic acid in TBM appears to be that it is a crucial energy substrate, used preferentially over glucose by microglia, and exhibits neuroprotective capabilities. Conclusion: These results provide experimental evidence to support our conceptual astrocyte–microglia lactate shuttle model formulated from our previous NMR-based metabolomics study — highlighting the fact that lactic acid plays an important role in neuroinflammatory diseases such as TBM. Furthermore, this study reinforces our belief that the determination of enantiomers of metabolites corresponding to infectious diseases is of critical importance in substantiating the clinical significance of disease markersen_US
dc.language.isoenen_US
dc.publisherBioMed Centralen_US
dc.subjectL- and D-lactic aciden_US
dc.subjecttuberculous meningitis (TBM)en_US
dc.subjectcerebrospinal fluid (CSF)en_US
dc.subjectenantiomersen_US
dc.subjectultra-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UPLC–ESI–MS/MS)en_US
dc.titleCerebrospinal fluid in tuberculous meningitis exhibits only the L-enantiomer of lactic aciden_US
dc.typeArticleen_US
dc.contributor.researchID21487855 - Mason, Shayne William
dc.contributor.researchID10055037 - Reinecke, Carolus Johannes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record