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ABSTRACT

Drift along the wavy heliospheric neutral sheet is believed to play an important role in cosmic-ray modulation
and can explain the peaked versus flat intensity profiles during consecutive solar magnetic epochs. Modulation
models are becoming more and more realistic and in order to determine the role of the wavy neutral sheet more
accurately, we revisit a previous calculation for drift along it. While mathematically correct, we argue that the
previous expression for neutral sheet drift, which follows naturally from the standard expression for gradient and
curvature drift, must be adapted in order for the drift speed to be less than particle speed. We compare the effect
of both the previous and the current more accurate version of neutral sheet drift on cosmic-ray modulation with
results obtained by other methods.

Key words: cosmic rays – diffusion – magnetic fields – methods: analytical – Sun: heliosphere

1. INTRODUCTION

The drift pattern of cosmic rays that reach Earth during
successive solar magnetic polarity epochs is very different
within the termination shock. During the so-called A > 0 epochs
(e.g., 1970s and 1990s), positively charged particles drift from
the solar polar regions of the heliosphere toward Earth, and
then out along the wavy neutral sheet. During the alternate
A < 0 epochs (e.g., 1980s and 2000s), these particles drift
along the wavy heliospheric neutral sheet toward Earth and away
from it toward the solar polar regions. Since drift directions are
reversed for negatively charged particles, it is common practice
to refer to qA > 0 and qA < 0 epochs (here q is either positive
or negative and denotes the sign of the particle’s charge) during
each of which drift directions are the same. What happens
outside of the termination shock, inside the heliosheath (see,
e.g., Florinski 2011), and beyond is at the time of writing really
not clear and we will therefore consider only the region within
the termination shock.

Early studies confirmed the importance of drifts (Jokipii &
Levy 1977; Jokipii et al. 1977) and noted the role of drift
along the wavy heliospheric neutral sheet (see, e.g., Kóta 1979;
Isenberg & Jokipii 1978). Jokipii & Thomas (1981) first showed
that a flat intensity profile during qA > 0 epochs and a peaked
profile during qA < 0 epochs followed naturally by including
a wavy neutral sheet with a varying tilt angle. This leads to an
approximately 22 year cycle in cosmic-ray intensities, which
is double that of the solar activity cycle. Observational results
such as those of Lockwood & Webber (2005) show that for
qA < 0, the intensity of ∼1.6 GV protons at Earth increases
by almost a factor of two when the tilt angle decreases from
about 20◦ to 10◦ toward solar minimum. To determine whether
changes in the tilt angle alone are responsible for these changes
in intensity obviously requires a model for neutral sheet drift
that is as accurate as possible.

The first fully three-dimensional calculation that included
a wavy neutral sheet was reported by Kota & Jokipii (1982),
who provided more detail of their calculations in a subsequent
publication (Kóta & Jokipii 1983). Results from such earlier
drift studies have since been confirmed qualitatively and in some
cases quantitatively in numerous numerical modulation studies
(see, e.g., Potgieter & Moraal 1985; Burger & Hattingh 1995;
Hattingh & Burger 1995; Zhang 1999; Yamada et al. 1999;

Florinski & Jokipii 1999; Alanko-Huotari et al. 2007; Pei et al.
2010).

Calculating gradient and curvature drift away from the neutral
sheet is straightforward. A standard expression is used and
the effect of turbulence on the drift coefficient was recently
discussed by Burger & Visser (2010). However, when it comes
to drift along the neutral sheet, a variety of techniques are used.
For the case of a flat neutral sheet, Burger & Potgieter (1989)
show that a boundary condition method, first implemented by
Jokipii & Kopriva (1979), gives virtually identical results to
the drift velocity field method of Burger et al. (1985). In two-
dimensional modulation models, the effect of a wavy neutral
sheet is either simulated by taking averages over a solar rotation
(see, e.g., Burger & Potgieter 1989; Burger & Hattingh 1995;
Hattingh & Burger 1995) or by taking into account the drift
along the actual wavy neutral sheet but neglecting the azimuthal
component (Caballero-Lopez & Moraal 2003; Alanko-Huotari
et al. 2007). Note that Alanko-Huotari et al. (2007) carry out
this procedure at all longitudes and then find an average of the
radial and latitudinal components of the drift, while Caballero-
Lopez & Moraal (2003) assume azimuthal symmetry. Turning
now to fully three-dimensional models, Kóta & Jokipii (1983)
state that they use numerical differentiation to determine drift
velocities, and that this procedure gives finite drift at the neutral
sheet. According to these authors, it corresponds to smearing the
field transition between the grid points adjacent to the neutral
sheet. This procedure seems very similar if not identical to the
one described by Burger & Hattingh (1995), a conclusion borne
out by the qualitative and quantitative agreement between results
from these two three-dimensional codes, as illustrated in Burger
& Hattingh (1995) and again in Section 4 below.

A re-evaluation of the drift field model presented by Burger
& Hattingh (1995) shows that while it is mathematically correct,
there is a subtlety when it comes to the magnitude of the drift
speed along the wavy neutral sheet. It can become larger than
particle speed, and this unintended unphysical behavior needs
to be corrected. In this paper, a detailed calculation of the drift
velocity field at and away from the neutral sheet is given. The
starting point of this calculation is the standard expression for
the drift velocity of a nearly isotropic particle distribution. We
compare with results of Kóta & Jokipii (1983) and also with
results from a paper by Pei et al. (2012), the latter where the
drift velocity field of Burger et al. (1985) for a flat current sheet
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Figure 1. Vector N, normal to the wavy neutral sheet, and its components in
terms of γ , β, and ν. Here, all three angles are positive. The gray surface is
tangential to the normal, and the white dashed lines are intersections of this
plane with the (θ , φ)-plane and the (r, θ )-plane. Note that the white dashed line
in each plane is perpendicular to the black dashed line in the same plane.

is implemented in a three-dimensional modulation model. As
was the case for the drift model of Burger & Hattingh (1995),
the main advantage of the present model is that it requires no
more computing time for a wavy neutral sheet than for a flat
sheet.

A clear understanding of how to implement neutral sheet drift
effectively but accurately inside the termination shock could
help to address the challenge of implementing it at the same
level of accuracy in the heliosheath.

2. DERIVATION OF DRIFT VELOCITY FIELD

A key assumption for the validity of the transport equation
given in Section 3 is that the particle distribution is nearly
isotropic, and therefore the drift velocity field must be derived
for such a distribution. In this case we have that (see, e.g., Jokipii
et al. 1977; Jokipii & Thomas 1981; Burger et al. 1985; Minnie
et al. 2007; Burger & Visser 2010)

vd = −∇ · kA ≡ ∇ × (κAeB), (1)

where kA is the antisymmetric part of the diffusion tensor and
κA is the drift coefficient. The drift velocity field is clearly
divergence free and any simulation of neutral sheet drift must
take this into account. The wavy neutral sheet is defined by
(Kóta & Jokipii 1983)

θns = π

2
− tan−1(tan α sin φ∗), (2)

with φ∗ = φ+φ0+r(Ω/Vsw). This expression defines the surface
across which the heliospheric magnetic field, here taken to be
the Parker field (Parker 1958),

B = A

r2

(
er − rΩ sin θ

Vsw
eφ

)
, (3)

reverses direction as function of radial distance and azimuth.
Note that while the magnitude of the magnetic field is formally
zero at the neutral sheet, this is of no consequence from the point
of view of the particle since it spends only an infinitesimally
small time crossing it.

We now consider the geometry of the wavy neutral sheet.
For a cut through it in the (r, θ )-plane, the angle β between the
normal to the line tangent to the sheet and the −eθ direction (see
Figure 1) follows from

tan β = rΔθns

Δr
, (4)

where rΔθns is the infinitesimal change in the θ -direction as r
changes by Δr . Note that −π/2 < β < π/2. Similarly, we find
that in the (θ , φ)-plane (see Figure 1)

tan γ = rΔθns

r sin θΔφ
, (5)

and again −π/2 < γ < π/2. For the wavy neutral sheet defined
in Equation (2), it then follows that

tan β = r∂θns

∂r
= −

r Ω
Vsw

tan α cos φ∗

1 + tan2αsin2φ∗ (6)

and

tan γ = r∂θns

r sin θ ∂φ
= − tan α cos φ∗

sin θ (1 + tan2αsin2φ∗)
. (7)

From Equation (6), we find that

cos β =
⎡
⎣1 +

(
r Ω

Vsw
tan α cos φ∗

1 + tan2αsin2φ∗

)2
⎤
⎦

−1/2

(8)

in agreement with the corresponding expression given by
Caballero-Lopez & Moraal (2003) if the tilt angle is sufficiently
small so that tan α ≈ α 	 1. Note that the expression for the
wavy neutral sheet used by these authors is different from the
more generally valid one in Equation (2).

For a Parker field, the angles β and γ are related through

tan β

tan γ
= r sin θ

Ω
Vsw

≡ tan Ψ, (9)

with Ψ the winding angle.
The tangent of the angle ν between the normal N to the sheet

and the −eθ -direction readily follows from Figure 1 as

tan ν = ±
√

tan2β + tan2γ = tan β

sin Ψ
(10)

or
cos ν = (1 + tan2β + tan2γ )−1/2. (11)

As was the case for β and γ , −π/2 < ν < π/2, and all three
angles have the same sign.

To model the presence of a wavy neutral sheet in a numerical
modulation model, we now multiply κA in Equation (1) with a
transition function, so that

κA → κA tanh [k (θns − θ ) cos ν] . (12)

This procedure ensures that the global drift velocity field
remains divergence free. Note however that the terms that follow
from it are not necessarily divergence free when considered
individually. The hyperbolic tangent models the reversal in the
magnetic field direction across the neutral sheet, and the cos ν
adjusts the width of the meridional region over which neutral
sheet drift is modeled. Since cos ν is closest to 1 near the crests
and troughs of the neutral sheet, its effect there is negligible.
However, its minimum values occur where the neutral sheet
crosses the ecliptic plane, and there its effect is the largest,
increasing the angular distance over which neutral sheet drift is
modeled.
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The drift velocity from Equation (1) with κA redefined as in
Equation (12) is then

vd = (∇ × κAeB) tanh [k (θns − θ ) cos ν]

− k cos ν

cosh2 [k (θns − θ) cos ν]
κAeB × ∇(θns − θ )

− k(θns − θ )

cosh2 [k (θns − θ) cos ν]
κAeB × ∇ cos ν. (13)

The first term, which is zero at the neutral sheet, represents
gradient and curvature drift away from the sheet, while the
second term (denoted by vdns in what follows) represents neutral
sheet drift. The third term on the right-hand side, which is
zero at the current sheet, depends on the gradient of the cos ν
term. It turns out that the cross product has a θ -component
only, and this component alternates between the positive and
negative values. Differences between the absolute values of the
positive and negative peaks are most pronounced in the inner
heliosphere but become negligible beyond about 10 AU. This
drift therefore moves particles up and down in latitude but does
not contribute significantly to the drift flux in a realistic-sized
heliosphere. It is therefore neglected.

Because the reversal in the magnetic field direction across the
neutral sheet is now modeled by the hyperbolic tangent function,
the unit vector eB is always that for A > 0 in the Northern
hemisphere of the heliosphere. (If either the magnetic polarity
changes to A < 0 or the particles are negatively charged, all
drift directions reverse.) Therefore

eB = cos Ψer − sin Ψeφ, (14)

and by calculating

∇(θns − θ ) ≡ ∂θns

∂r
er − 1

r
eθ +

1

r sin θ

∂θns

∂φ
eφ (15)

using Equation (2), it follows that the second term of
Equation (13) becomes

vdns = k

rcosh2 [k (θns − θ ) cos ν]
κAens (16)

with the unit vector in the direction of neutral sheet drift given
by

ens = sin Ψ cos ν er + sin ν eθ + cos Ψ cos ν eφ. (17)

Without the cos ν in the transition function in Equation (12), a
cos ν would still appear in the denominator of Equation (16) but
now multiplying the hyperbolic cosine term and not as part of its
argument. This is of no consequence for a flat sheet for which
cos ν = 1, but as the tilt angle increases and cos ν becomes
smaller than 1, the neutral sheet drift speed can become much
larger than the particle speed in a rather narrow region. This leads
to unphysically large drift speed gradients and consequently
instabilities when solving the Parker transport equation on a
finite grid using the alternating direction implicit technique.

For completeness, we note that in the code we set the
parameter k = 27.52 P −0.25 if P > 3.5 GV, and k = 20.12
if P � 3.5 GV. This ensures that the angular width over which
neutral sheet drift is assumed to occur for cos ν = 1 is equivalent
to two gyroradii at 16 GV (∼11.′′7) and constant at ∼ 6◦ below
3.5 GV. This means that in our code the neutral sheet drift
profile is distributed over at least four grid points on either side

of the wavy neutral sheet. Although the drift velocity field is
divergence free for any choice of k, its actual value is not totally
free. One should keep in mind that gradient and curvature drift
that occurs away from the neutral sheet is also affected by the
choice of k through the hyperbolic tangent function in the first
term of Equation (13). If k is too small and the angular width
over which the modeled neutral sheet drift occurs therefore too
large, the region over which gradient and curvature drift operates
and moves particles either toward or away from the neutral
sheet becomes too small. When this happens, drift effects are
reduced and intensities can approach no-drift values. If, on the
other hand, k is too large, the neutral sheet drift profile will
not be properly sampled in a numerical code that solves the
cosmic-ray transport equation on a grid; its effect will either be
over-estimated or the code can become unstable, as discussed
above.

3. MODULATION MODEL

We have set up our modulation model to be as close as possible
to the one described in Kota & Jokipii (1982) and Kóta & Jokipii
(1983). We also solve Parker’s transport equation (Parker 1965)
in a frame corotating with the Sun and in which structures
such as the wavy neutral sheet are static. Time dependence is
eliminated from Parker’s equation through

∂f

∂t
+ (� × r) · ∇f = 0, (18)

which leads to

∇ · (KS · ∇f ) − (vd + V∗) · ∇f + 1
3 (∇ · V∗)

∂f

∂ ln p
= 0. (19)

Here V∗ = Vsw − � × r with Vsw the solar wind velocity, � is
the solar rotational velocity, vd is the drift velocity, with r the
position and p the momentum of the cosmic rays, and KS is the
symmetric part of the diffusion tensor. The distribution function
f is related to the differential intensity with respect to kinetic
energy, jT , by jT = p2f.

The solar wind speed is taken as 400 km s−1 and the outer
boundary is set at 10 AU where a local interstellar spectrum
(LIS) is specified, given by

jLIS
T = 10β P −2.6 (20)

in units of particles m−2 s−1 sr−1 MeV−1. Here, P is particle
rigidity and β is the ratio of particle speed to the speed of light.
The functional form is equivalent to that of the distribution
function given in Kóta & Jokipii (1983).

The parallel- and perpendicular-diffusion coefficients and the
drift coefficient as given in Kóta & Jokipii (1983) are

κ|| = κ0βP 1/2 BEarth

B
(21)

κ⊥ = 0.05κ|| (22)

and κA = pv

3qB
(23)

with v the particle speed, q the particle charge, κ0 = 5 ×
1021 cm2 s−1, and B the magnitude of the Parker field (3), with
BEarth its magnitude at Earth, taken to be 5 nT.
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Figure 2. Proton spectra at 1 AU for A < 0 and for tilt angles 0◦ and 30◦.
“KJ 1983” denotes the results of Kóta & Jokipii (1983), “New” denotes results
with the drift velocity field (16), “Old” denotes results when the transition
function in Equation (12) is used without the cos ν term, and “CP et al. 2012”
denotes results from Pei et al. (2012). Note that the solutions for A > 0 for Old
and New are identical.

4. MODEL RESULTS AND COMPARISONS

In what follows, we refer to Equation (16) as the new drift
velocity field, and the same equation but with cos ν in the
denominator multiplying the hyperbolic cosine and not as part of
its argument, i.e., using the transition function in Equation (12)
without the cos ν term, as the old drift velocity field, as used by,
e.g., Burger & Hattingh (1995).

The agreement in Figure 2 between the 1 AU spectra
calculated using the old drift velocity field (black solid line) and
the new one for α = 0◦ is exact as one would expect, because in
this case cos ν = 1. When α = 30◦, the agreement between the
old drift velocity field (black dashed line) and the new one (black
dash-dot-dot line) is very good with differences of less than 2%.
Moreover, the agreement with the results of Kóta & Jokipii
(1983) for both α = 0◦ (gray solid line) and α = 30◦ (gray
dashed line) is also very good except at the lowest energies. This
difference may be an artifact of the way Kóta & Jokipii (1983)
plotted their results; their spectra do not show the adiabatic limit
where the intensity becomes proportional to kinetic energy, as
is the case for the spectra from the current study. We note that
if our neglect of the third term in Equation (13) had significant
consequences, we would have expected it to show up in this
comparison with a small heliosphere. While the spectrum of
Pei et al. (2012) agrees very well with the other two for α = 0◦
(solid circles), it is clearly different from both for α = 30◦ (open
circles).

In Figure 3, the intensity-tilt curves of 1.6 GeV protons at
Earth for the old- and the new-drift velocity field for A > 0
(black dashed lines) are identical, and less than 2% higher than
the result of Kóta & Jokipii (1983) (gray dashed line) at small
tilt angles where the difference is at its largest. For A < 0, the
old- (black solid line) and the new-drift (black dash-dot-dot line)
velocity field differ by less than 1% at this energy. While the
value of Kóta & Jokipii (1983) appears to be some 5% higher
at α = 0◦, we note that when this value is calculated directly
from the spectra given by these authors, it is about 2% lower
than the value found in the present study. Similarly, the value at
α = 30◦ may actually be some 4% lower than the value found
in the present study. However, even taking into account these
ambiguities, the intensity-tilt curves for both the old- and the

Figure 3. Intensity of 1.6 GeV protons at Earth, normalized with respect to the
LIS, as a function of tilt angle. Legend for the different lines is the same as for
Figure 2.

new-drift field agree quite well with the results of Kóta & Jokipii
(1983).

Figure 4 shows intensity contours of 1.6 GeV protons at
1 AU for a tilt angle of 30◦, for both magnetic polarity epochs,
produced with the new drift velocity field. This figure shows
good agreement with the corresponding Figure 1 of Kóta &
Jokipii (1983).

5. SUMMARY AND CONCLUSIONS

We present a new three-dimensional drift velocity field that
includes the effect of a wavy neutral sheet in a very simple
manner. The derivation follows that of Burger & Hattingh
(1995) which has the standard expression for drift of a nearly
isotropic distribution of particles as its starting point and is
mathematically correct, but yields a drift speed along the wavy
neutral sheet that can exceed particle speed. The problem is
similar to that of the δ-function concept of neutral sheet drift
for a flat sheet, a result that must be reinterpreted for it to
make physical sense (see, e.g., Isenberg & Jokipii 1979; Burger
1987). This new and more accurate neutral sheet drift velocity
field model yields results that agree very well with that of
Kóta & Jokipii (1983), calculated for a small heliosphere. Runs
performed thus far show that when a more realistic size for the
heliosphere is used so that cos ν becomes sufficiently small, the
old model causes instabilities while the new model does not.
This was also verified with an ab initio code under construction
(E. Engelbrecht 2012, private communication). It seems that
while the code remains stable, the results for the old- and
the new-drift velocity field model do not differ hugely. As an
example, when the code is run for a 40 AU heliosphere with
tilt angles up to 40◦ but with the same parameters as in Kóta &
Jokipii (1983), an intensity-tilt comparison shows that the old
model gives higher intensities than the new one, varying from
3% at 10◦ tilt for 1.6 GeV protons at Earth for A < 0 to 13%
at 30◦ tilt; at 40◦ tilt the old model goes unstable but the new
one does not. The higher intensities for the old model are to be
expected because the neutral sheet drift speeds are larger and
the effect of the neutral sheet is therefore reduced. For A > 0
the models give virtually identical result up to a tilt angle of 30◦,
but the old one again goes unstable when the tilt angle is at 40◦.

A key advantage of the method described in this paper is that
it requires no more computing time for a wavy neutral sheet
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Figure 4. Intensity contours of 1.6 GeV protons at 1 AU for a tilt angle of 30◦, for A > 0 (top panel) and A < 0 (bottom panel).

than for a flat one. Moreover, it explicitly includes the effect of
scattering on the drift coefficient.

Financial support of the South African National Research
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The author thanks the referee for vital comments and Eugene
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