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CHAPTER FOUR

Phylogenetic Analyses  

The science of molecular phylogenetics consists of the estimation of the evolutionary past 

of a group of living organisms based on the comparison of DNA or protein sequences. 

Phylogenetic analyses have, therefore, become an important tool in evolutionary studies 

and are critical in eliciting the fundamental commonalities between living organisms in 

order to understand the genetic relationships of biologically complex systems. 

Phylogenetic relationships can be studied on most levels of classification of organisms, 

including humans, and can be presented as phylogenetic trees that are the representation 

of evolutionary ancestral relationships of sequence data, by using numerical calculations 

often incorporated in software algorithms (Nei, 1996). 

Initially the principles of phylogenetics were only applied to the systematic organisation of 

animal and plant species and only in later years did it start to focus more on the molecular 

sequence data that became available as sequencing technologies developed (Morrison, 

1996). The amount of information that is obtained from sequence variation data is much 

more powerful in terms of eliciting the evolutionary history of a group of living organisms 

than the previously used morphological data and fossil records (Cummings et al., 1995). In 

this regard, the development of automated sequencing technologies has increased the 

number of DNA sequences that are available to be used for evolutionary studies and has, 

therefore, contributed greatly to the development of more accurate and informative 

evolutionary histories. Furthermore, DNA sequences provide various types of markers that 

can be used to establish ancestry between and among individuals, of which the most 

common type is the SNP, which refers to the substitution, insertion or deletion of 

nucleotides (Pollock et al., 2000). 

4.1 THE ROLE OF GENETIC DIVERSITY IN PHYLOGENETIC ANALYSES 

Genetic distances between sequences are determined by evolutionary forces, as was 

discussed in Chapter 2. Sequences will over time become more varied and will eventually 

diverge from one another. Genetic diversity, therefore, plays an important role in the 

phylogenetic analysis of sequences and provides a measure of dissimilarity between 
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sequences, which reflects the time since evolutionary change has taken place in situations 

where a molecular clock can be assumed (Salemi and Vandamme, 2003). Evolutionary 

relations between DNA sequences are estimated by observing the commonalities or 

variation of a specific nucleotide site among the DNA sequences of a group of individuals 

or between populations (Morrison, 1996). These simplistic observations of genetic diversity 

are then further explored under certain assumptions of evolutionary models to interpret the 

observed genetic signals in terms of their evolutionary past. It has been reported that 

highly conserved gene regions, as well as highly variable sequence regions, are both of 

value in phylogenetic analyses and often these regions are used in combination to provide 

an accurate and highly resolved phylogenetic tree of evolutionary relationships between or 

among populations of individuals (Suárez-Díaz and Anaya-Muñoz, 2008). 

4.1.1 Homology and sequence alignment 

Genetic distances and therefore genetic diversity can only be determined by comparing 

DNA sequence data - site by site - to determine the amount of variation. To ensure the 

inference of accurate ancestral relationships between the sequences, it is essential that 

the comparisons being made between characters should be made between characters 

with the same evolutionary origin (Suárez-Díaz and Anaya-Muñoz, 2008). Sequence 

homology, which refers to the ability to match nucleotides with other nucleotides in 

molecular sequences that have a similar evolutionary origin, is, therefore, important to the 

validity of the phylogenetic outcome. Although homology can be determined by using 

different kinds of phylogenetic data types, such as morphological characters and 

behavioural characteristics (Morrison, 1996), the current investigation will limit the use of 

this term to the evolutionary similarity between nucleotide sites of molecular sequences. 

In practice, homology is, however, difficult to predict because it is not known whether two 

base pairs at a site are similar because of a homologous ancestral state or because of an 

independent homoplasious origin. Homoplasy can hide the number of true evolutionary 

events that have taken place at a specific site, which would be detrimental to the 

determination of ancestral phylogenetic relationships between molecular sequences and 

should, therefore, be prevented if possible. Regions of DNA sequences that exhibit high 

mutation rates are susceptible to homoplasy and the use of such sequence regions should 

for this reason preferably be avoided in phylogenetic analyses. 
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The genetic diversity between two or more sequences is determined by aligning the 

sequences with each other based on the evolutionary correspondence between the 

different sequences. Homologous nucleotides, in this context, therefore refer to the 

common ancestral origin of two nucleotides in different sequences (Page and Holmes, 

1998). Multiple sequence alignment arranges sequences in such a way that each 

sequence will correspond to other sequences according to its evolutionary history and 

ancestral origins. By aligning the sequences in such a manner, it is possible to obtain a 

measure of homology and to quantify the genetic diversity between the sequences. 

Sequence alignment was initially used to indicate the degree of structural similarities 

between protein sequences and homology would be inferred if the protein structures were 

30% similar or more. The concepts that underlie this theory are that the structure between 

proteins and also the amount of variation between molecular sequences would not exceed 

a certain point when the proteins or sequences are related (Suárez-Díaz and 

Anaya-Muñoz, 2008). 

A valid scientific approach to alignments are to exclude parts of sequence data that cannot 

be aligned reliably rather than include non-homologous data in the phylogenetic analysis. 

If alignments are not correct, it will result in further errors in the subsequent phylogenetic 

analyses and should preferably be verified manually before embarking on further 

phylogenetic analysis. This can however become problematic when working with large 

quantities of data in high throughput automated systems and the alignment methods or 

software used for this purpose should be robust enough not to have to verify the 

alignments manually (Levasseur et al., 2008). These quality-assessment measures of 

multiple alignments have, therefore, become critical to the accuracy of the subsequent 

phylogenetic analysis. The most commonly used objective functions used for this purpose 

are the sum-of-pairs score or the log-likelihood ratio, which both indicate the quality of the 

alignment by global scores and are used in large high-throughput studies where manual 

quality verification is not feasible (Levasseur, et al., 2008). 

Software programs are available to determine the alignment of large strings of sequences 

by using mathematical algorithms, of which ClustalX and ClustalW are the best known 

(Baldauf, 2003). Other widely used packages include T-Coffee, MAFFT and MUSCLE. 

The alignment of homologous sequences through comparison of sequences nucleotide by 

nucleotide, might be between identical characters or between substitutions, where a 

character has mutated, or between sequence characters that have been deleted or 
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inserted (indels). Indels are the most difficult to match appropriately (Kumar and Filipski, 

2007). Software algorithms will introduce gaps in areas where indels are present to 

accommodate insertions or deletions in the other sequences under alignment that do not 

contain the indel (Kumar and Filipski, 2007). However, gaps are highly unlikely 

phenomena, and the insertion of gaps to improve alignment should be performed with 

care. For this reason, software programs usually appoint penalties to gaps according to 

the length, number and position of the gaps and cannot remove them, only enlarge or add 

to them (Suárez-D�az and Anaya-Muñoz, 2008). Furthermore, software algorithms align 

sequences by seeking the optimal match criterion or match between sequences, which is 

referred to as the “cost” at which two (2) sequences are aligned (Needleman and Wunsch, 

1970). Usually it is based on a pattern-matching process in which gaps will be introduced 

to accommodate the indels and dynamic programming inserts gaps at a cost or gap 

penalty. The final alignment is thus determined by the alignment with the lowest cost 

(Needleman and Wunsch, 1970). The mathematical equation that is often used to 

determine gap penalties is, therefore, incorporated into the algorithms of software 

programs such as ClustalX (Larkin et al., 2007), as presented in Equation 4.1. 

Equation 4.1 Gap penalty  

GP = g +hl 
GP = Gap penalty; g = gap-opening penalty; h = gap-extension penalty; l = length of the gap. From Larkin et al., 2007. 

As with phylogenetic methodologies, there are different philosophies that underlie different 

approaches to sequence alignment (Gu et al., 1995; Qian and Goldstein, 2001; Rosenberg 

and Kumar, 2003). The software applications make use of different basic approaches to 

alignment. Global alignment algorithms involve all the characters of the sequences and are 

used for aligning closely related sequences in contrast to local alignment algorithms that 

build alignments only on areas with shared similarity (Kumar et al., 2004). Multiple 

alignment algorithms align many sequences and semi-global alignments are a hybrid of all 

the methods (Suárez-D�az and Anaya-Muñoz, 2008). Although these methods differ to a 

certain extent, they are all based on the same premise that alignments are scored in order 

of similarity (Kumar et al., 2004). Examples of software that use both the global and local 

approach for alignment purposes are dbClustal, TCoffee, MAFFT, MUSCLE and Probcons 

(Levasseur et al., 2008). 

Sequences are commonly aligned by using the dot plot or dot-matrix representation 

algorithm, which is based on a simple dot plot that is constructed for a pair of sequences. 
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The nucleotide positions at which the two (2) sequences are identical are indicated with a 

dot and the alignment is determined by a high similarity region that runs diagonally across 

the plot. This technique is based on the concept that high similarity between sequences is 

indicative of sequence homology (Salemi and Vandamme, 2003). 

Dynamic programming is another approach to sequence alignment, which aligns 

sequences by using a weighted sum of pairs value through which the similarity of 

sequences per column of the alignment is maximised and gap lengths are minimised. This 

method also uses the scoring approach by determining a score value for each pair of 

sequences, as well as a weight for each pair of sequences, giving an overall score 

according to which the alignment confidence is determined. This technique is 

computationally complex and therefore not commonly used (Salemi and Vandamme, 

2003). Examples of software programs that use this approach are the MSA, DCA, PRPP 

and SAGA programs, which are all software applications that are adjusted to perform the 

alignments according to the sum of weight pairs principle. 

The most commonly used algorithm for sequence alignment is the progressive alignment 

method, which uses the evolutionary relationships between homologous sequences to 

align them (Barton and Sternberg, 1987; Thompson et al., 1994). This procedure uses the 

branching order of a phylogenetic-guide tree to build up pairwise alignments of multiple 

sequences by building the alignment with the most similar sequences first, and aligning the 

more divergent sequences last, until a global alignment of all sequences is achieved 

(Kumar et al., 2004). Criticism against this approach is based on the fact that it does not 

construct a sequence alignment that is based on a global optimal alignment, but rather one 

based on an optimised pairwise sequence strategy (Brocchieri, 2001). It therefore differs 

from dynamic programming insofar as it does not guarantee an alignment that will 

necessarily have the best score and cannot guarantee the most optimal alignment. This is 

however not problematic in the alignment of closely related sequences and will only 

produce problem alignments in very complex cases (Kumar et al., 2004; Salemi and 

Vandamme, 2003). 

Many software applications make use of the progressive alignment algorithm, of which 

Clustal W (Thompson et al., 1994), Clustal X (Thompson et al., 1994), and the updates 

Clustal W 2.0 and Clustal X 2.0 (Larkin et al., 2007) are the most widely used. Other 

software applications include T-Coffee, which is used routinely, and MAFFT and MUSCLE 

that are extremely fast and accurate (Larkin et al., 2007). 
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Another approach is called “motif finding” and selects ungapped stretches of sequence 

and aligns the most conserved areas. These methods are not as popular, since they only 

align extracted stretches of DNA or proteins and do not allow for gaps and insertions 

(Brocchieri, 2001). 

4.2 THE ROLE OF EVOLUTIONARY MODELS IN PHYLOGENETIC ANALYSES 

Evolution is the process by which a mutation in a DNA sequence results in an 

advantageous or deleterious characteristic that would be fixed or lost in a population 

through evolutionary forces of natural selection and/or genetic drift (Nei, 1996). Since it is 

impossible to infer evolutionary history from studying DNA sequence variation i.e. 

mutations and genetic distance alone, it is necessary to incorporate assumptions about the 

evolutionary processes that gave rise to observed genetic distances. Some of these 

processes include the rate of nucleotide substitution, the ratio of transitions to 

transversions that occurred over time and whether different regions of the sequence under 

investigation were submitted to different rates of variation (Page and Holmes, 1998). 

Evolutionary models make it possible to reconstruct evolutionary events of the past and 

predict future events. They are based on the fundamental principles that the number of 

nucleotide changes between two genome sequences can be counted and studied and that 

the nucleotide changes can be placed within a time frame by assuming that mutations take 

place at regular intervals. Evolutionary events along the branches of a phylogenetic tree 

are, therefore, described by a model (Brocchieri, 2001; Baldauf, 2003). 

4.2.1 Modelling evolution 

The phylogenetic analyses of a group of sequences consist of a phylogenetic tree and a 

set of assumptions that explain how the observed nucleotide diversity that is represented 

by the branches of the tree originated. One method to determine evolutionary models is to 

follow an empirical approach by using parametric values obtained from studying large 

numbers of observed sequences and to apply these fixed values to other sets of 

sequences that are submitted to phylogenetic analysis. Models can also be built 

parametrically by using values based on biological properties of sequence divergence 

events, such as transition:transversion rates. These values are determined for each 

dataset and can differ between datasets (Whelan et al., 2001). 
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Figure 4.1 Two approaches to construct evolutionary models  

Parametric here refers to the determination of quantitative values that can be applied to model evolutionary processes either empirically 
or parametrically. Nonparametric here refers to the use of specific values for specific sequences and are, therefore, not applied to sets 
of sequences. Examples of parametric models: Jukes-Cantor = all substitutions are equally likely; Kimura-2 = does not assume that the 
rate of transitions and transversions are equal; F81 = Felsenstein’s model that allows for different frequencies for different bases based 
on the base composition of sequences; HKY85 = combines Kimura-2 and F81. Examples of nonparametric models: Gamma = here 
refers to variable rates of substitution based on a gamma distribution. Adapted from Holmes, 2003. 

Markov process models consist of either empirical or parametrical data that describe the 

relative rates of occurrence of all possible replacements and determine the probabilities of 

all nucleotide changes or non-changes at all sites by using a Q matrix to specify the 

relative rate of change of each nucleotide along the sequence (Whelan et al., 2001). The 

Q matrix is a simple presentation of the base frequency and probability of substitution 

between two bases for all different types of bases. The base frequency and substitution 

probability parameters are the variables in these matrices that form the basis of the 

different evolutionary models. 

The most commonly used models of evolution are based on the parametric approach. 

Examples are the Jukes-Cantor (JC) model (Jukes and Cantor, 1969) in which all bases 

have equal frequencies and all substitutions are equally likely, the Kimura-2 parameter 

(K2P) model (Kimura, 1980) which incorporates the fact that transitions and transversions 

do not occur at equal frequencies and thus uses a transition:transversion rate in the 

correction of genetic distances, the Felsenstein’s (FEL/F81) model (1989) that allows for 

different frequencies for different bases based on the base composition of sequences, the 

Hasegawa, Kishino and Yano (HKY85) model (Hasegawa et al., 1985) that combines the 

theories of K2P and FEL/F81, the general reversible model (REV) that allows probabilities 

for each substitution and the REV + � (gamma distribution value) model that includes the 

random assignment of gamma distribution values (Yang, 1996). DNA substitution models 

are, therefore, based on parameters such as base frequency, base exchangeability and 

rate heterogeneity. The most efficient models use at least base frequency, the 

transition:transversion ratio parameter, all six base exchangeability parameters and the 

gamma rate heterogeneity values (Whelan et al., 2001). Additional factors are taken into 

Parametric models Nonparametric models 

Different rates for all 

Gamma values of 
variable rates 

HKY85 

Kimura-2 

Jukes-Cantor

F81 
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account when distances of protein coding DNA sequences are determined, such as the 

distinction between nonsynonymous and synonymous substitutions and by comparing 

codons rather than base pairs. Distance can also be determined by genotypic frequencies 

and restriction endonuclease data (Morrison, 1996).

4.2.2 Base composition parameter in evolutionary models 

Base composition is determined by the frequencies of all the types of bases and averaged 

over all the sites of the sequences. Base composition varies among and within sequences 

because of G + C content, neighbour bases and differences in the efficiency of DNA repair 

in the heavy and light strands of the DNA (Liò and Goldman, 1998). Base composition 

differences can lead to problems in the branch length of phylogenetic trees and thus this 

needs to be compensated for (Hasegawa et al., 1993). A parameter for base composition 

is used to represent the constraints on base frequencies and gives weight to the type of 

substitutions that are most likely to be observed in DNA sequences (Whelan et al., 2001). 

The most important reason for the variation in base composition is ascribed to large 

regions in the DNA with uniform G and C content, which varies from the G and C content 

in other isochores. Several theories exist about the reasons for these differences in G and 

C content. It has been proposed that the misincorporation errors during DNA replication 

and repair cause a directional mutation pressure that is responsible for these variations in 

G + C content (Sueoka, 2002). It is further believed that this phenomenon is an adaptation 

in animals and plants to protect the organisms against high temperatures because the G-C 

bonds protect the DNA against denaturation (Mooers and Holmes, 2000). Neutralists 

however claim that the isochores are the result of normal genetic mutation that takes place 

in all genomes and could be caused by DNA replication, DNA repair or recombination (Liò 

and Goldman, 1998). The LogDet transformation method accommodates datasets that 

violate the assumption of base composition equilibrium and is used to circumvent the 

problem of variable base composition between sequences in a dataset (Lockhart et al., 

1994). 

4.2.3 Base substitution parameters in evolutionary models  

Functional constraint in a gene is demonstrated by the probability that mutations occurring 

in a specific position within a coding region of a gene will be deleterious and result in a 

lower rate of substitution. The codon sequence positions demonstrate this theory by 
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displaying higher functional constraints within the first and second position of the codons 

than in the third position of the codon. The non-coding regions of the DNA evolve faster 

than the coding regions and have more deletions and insertions because the functional 

constraints on these areas of the DNA are low and therefore substitution rates are high. 

(Page and Holmes, 1998) In mitochondrial DNA, for example, the mutation rate of the 

control area is known to be very high and therefore the control region is also referred to as 

hyper-variable areas (Page and Holmes, 1998). 

Base substitution parameters therefore describe the probabilities of types of base 

substitutions and the rate of the type of change that could be expected. For example, 

transition substitutions are generally more probable than transversions; this phenomenon 

is referred to as the transition bias (Brown et al., 1979; Strandberg and Salter, 2004). 

Mathematically, the rate for a transition substitution is given as � in relation to a 

transversion rate of 1, in which case the transition rate � would usually be more than 1 

(Kimura, 1980). The ratio of transitions to transversions is an important parameter that 

needs to be incorporated into phylogenetic relationships because it is an indication of the 

measure of variability of DNA sequences over time and therefore gives an understanding 

of the patterns of evolution. It also plays a role in evolutionary distance correction 

methods. For this reason, transition:transversion ratios are calculated for the purpose of 

phylogenetic tree drawing by using distance-based methods that use pairwise distance 

measures, parsimony methods and likelihood function methods (Kimura, 1980; Strandberg 

and Salter, 2004).  

The distance methods determine the transition:transversion ratio for each possible pair of 

sequences in the dataset and average the pairwise estimates into a single 

transition:transversion ratio estimate. In the parsimony approach, a maximum parsimony 

(MP) tree is determined and the transitional:transversional incidences are counted in each 

branch of the tree. The transition:transversion ratio is the total number of transitions to the 

total number of transversions. Certain transition:transversion ratio methods are adjusted to 

incorporate the time to divergence by plotting the transversion changes against the time 

since divergence. The F84 evolutionary models and HKY85 evolutionary model both 

include a transition:transversion ratio parameter and maximum likelihood (ML) methods 

are used to estimate the parameters in these models (Strandberg and Salter, 2004). 
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4.2.4 Rate heterogeneity parameters in evolutionary models 

Base rate heterogeneity parameters describe the variation of evolution at different sites of 

a sequence and vary according to biochemical factors, functional constraints or natural 

selection (Whelan et al., 2001). The main reason for substitution rate variation is not, as 

would be expected, the variation of mutation rate among sites, but rather the functional 

constraints on certain sites, resulting in specific sites with a high rate of change in contrast 

to other sites that display low rates of change (Yang, 1996). 

Different models can be used to describe this phenomenon. Some models, such as the 

HKY85, denote a fraction of the sites of a sequence as one rate and the rest of the sites at 

an invariable rate (Hasegawa et al., 1985). The most widely used approaches, however,

entail describing the rate of variation at each sequence site through a random draw from a 

gamma distribution (Nei and Gojoborit, 1986; Tamura and Nei, 1993; Yang, 1996). In 

addition, the “invariable-sites model” assigns a value of zero to sites that presumably do 

not have a high rate of change and assumes that other sites change at the same rate. 

However, based on biological expectations, this is not realistic and a continuous model is 

more suitable to describe rate variation (Steel et al., 2000). 

Rate variation can be described by using random values from a continuous gamma 

distribution. The distribution plots the proportion of sites (y-axis) against the substitution 

rates (x-axis) to represent the � parameter or range of rate variation among sites in a bell-

shaped or L-shaped / reverse J-shaped curve (Page and Holmes, 1998). Under a gamma 

distribution, the number of substitutions at sites follows a negative binomial distribution and 

the variation of substitution rate (�) is formulated, as is presented in Equation 4.2 (Yang, 

1996; Gu and Zhang, 1997). 

Equation 4.2 Variation of substitution rate (�) 

���� = 
�

����
��	
�	��

� = shape parameter; � = scalar; ���) = the coefficient of variation (1/
�); � = gamma shaped parameter. From Gu and Zhang,1997. 

Large values of � parameters result in a bell-shaped curve, suggesting low rate 

heterogeneity, whereas small values of � result in a reverse-J shaped curve suggesting 

high rate heterogeneity (Gu and Chang., 1997). Two main methodologies for determining 

the � value are presented in the literature. The first is based on a ML framework with 

likelihood functions that are so time-consuming that they are difficult to apply to more than 
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five sequences. The second is based on the principle of parsimony to estimate the number 

of substitutions, which has been determined to lead to an underestimation of the number 

of substitutions (Yang, 1996). Gu and Zhang (1997) developed a method that is also 

based on ML principles but is not as time-consuming. This method is used in this study to 

determine the � values of the datasets and consists of two steps. During the first step, the 

expected number of substitutions that is corrected for multiple hits is determined for each 

site by a likelihood approach and during the second step, the ML estimate of � is 

determined under a negative binomial distribution (Gu and Zhang, 1997). 

Rate variation has been determined to have an important effect on phylogenetic analyses. 

When site rate variability is ignored, genetic distances and branch lengths are 

underestimated, with a bias for large distances and long branches. Since the lengths of 

especially long branches are underestimated, it results in an overestimation of the 

divergence time estimations. It also underestimates the transition:transversion rate ratio 

calculations because the transitions at the high rate variation sites will invariably also be 

ignored. It is, therefore, essential to apply an adequate rate variation model in instances 

where rate variation is high, as in the case of the mitochondrial genome (Yang, 1996). 

Sequences with high rate variation tend to provide low levels of phylogenetic information 

because the sites that have low substitution rates contribute little information about 

evolutionary history and sites with high substitution rates will also provide little evolutionary 

information owing to mutational saturation. If rate variation is, therefore, present but 

ignored, the distance matrix and ML tree-building methods can be misleading. Even the 

parsimony-based methods have been determined to be misleading (Yang, 1996). 

4.3 PHYLOGENETIC METHODS 

Phylogenetic tree analysis is the most popular method to analyse genetic variation and 

was first proposed by Cavalli-Sforza and Edwards in 1964 (Cavalli-Sforza and Edwards, 

1967).It not only represents the genetic diversity but also includes all the fissures that took 

place during the history of a population. Phylogenetic trees therefore offer a mathematical 

method for ordering large quantities of genetic information in a meaningful way (Nei, 

1996). In response to the large amounts of sequencing data that have become available 

over the years, phylogenetic methods have developed dramatically and currently not only 

include information about the methodology, but also the complex computer software 

programs and computer hardware requirements required to perform these types of 
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analyses successfully. The difficulty lies in the decision on which methodology and 

underlying principles of homology to follow to reconstruct the most objective and accurate 

history of evolutionary events (Suárez-D�az and Anaya-Muñoz, 2008). 

4.3.1 Basic principles of tree-building methods  

The first phylogenetic tree was constructed according to the graphical representation 

methods of subsets of molecular characters by Fitch and Margoliash (1967). It was based 

on a distance matrix constructed from the amount of sequence variation observed in a 

sequence alignment from which the ancestral relationships were determined (Fitch, 1971). 

The development of computer technology resulted in software programs with algorithms 

that currently automatically perform these and even more complex tasks (Suárez-D�az and 

Anaya-Muñoz, 2008). 

Phylogenetic tree building is based on two basic processes. The first process entails the 

construction of the tree topology and the order of the branches and the second process is 

therefore, aimed at estimating the branch lengths. In cases where phylogenetic trees are, 

constructed from large sets of sequences (more than 50), thousands of different tree 

topologies are possible and the greatest difficulty lies in the selection of the most optimal 

tree topology. The current tree-building methods are classified into three major groups, 

namely methods based on determination of genetic distance, methods based on discrete 

data and methods based on ML (Nei, 1996). 

4.3.1.1 Tree building by using distance or discrete data 

The principle behind using distance data is to determine the evolutionary distances 

between a group of sequences based on the nucleotide differences between the 

sequences and to use these distances to build a phylogenetic tree to indicate the 

evolutionary relationships between them. Sequences that are identical between a pair will 

have a distance of zero, as opposed to a sequence that is totally different from the other 

having a distance of one. The sum of all the character state differences for all the 

characters are called the Manhattan distances or euclidian distances and they refer to the 

square root of the sum of the squared differences (Morrison, 1996). These methods 

convert the differences between aligned sequences into distance matrices and use the 

matrix values in tree-building methods (Baldauf, 2003). 
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The distances in the distance matrix are represented in the tree as branch lengths. 

Branches represent evolutionary divergence i.e. the more divergence in the data, the 

longer the tree branches will be (Baldauf, 2003). Tree distances are obtained from trees 

and observed distances are obtained from datasets. The observed distances are rarely 

represented in a tree with 100% accuracy and the fit can be regarded as a measure of the 

best tree representation (Page and Holmes, 1998). 

Discrete methods use each nucleotide site for the tree-building method, thereby including 

information about ancestral states. It not only calculates the differences between 

nucleotides, but uses the type of change that has taken place to determine possible 

ancestral states by applying certain rules (Page and Holmes, 1998). 

4.3.1.2 Tree building by clustering or searching 

Tree-building methods are based on the principle of either clustering sequences stepwise 

by constructing a tree with initial data and then adding onto that tree as additional data are 

considered, or by searching through optimality criteria that select the best fitting tree 

between a set of possibilities. Clustering or constructive methods follow steps in an 

algorithm and have the advantage of producing a single tree that can be computed fast 

and accurately (Morrison, 1996). There is no way, however, to determine how well the tree 

fits the data and tree topology will be dependent on the order in which sequences are 

processed. So although the output of these methods is one tree, it is not necessarily the 

best tree for the data (Page and Holmes, 1998). 

By using optimality criteria, a weight is determined for each tree indicating the fit to data 

suitability. Search methods allow for the comparison of different trees representing 

different hypotheses of the evolutionary relationship of a set of data (Morrison, 1996). They 

demand great computational power and can be very expensive to perform, especially 

when large datasets are analysed. In view of the high demand for computational ability, 

heuristic methods are often used to search for the most optimal tree in large datasets. 

Heuristic methods do not guarantee an optimal tree in the end (Nei, 1996). Heuristic 

methods search randomly for the best solution to a problem and should produce an 

outcome that is close to the most accurate outcome. These methods try to determine the 

most optimal tree by sequentially adding sequences to the most optimal branches of the 

growing tree and searching through the other trees to find a more optimal one, or making 

the tree more optimal by branch swapping (Morrison, 1996). 
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4.3.2 Distance methods 

The goal of genetic distance methods is to match a distance matrix with a phylogenetic 

tree topology. P-distances are the fraction of positions at which a pair of sequences differ 

and from which a tree topology is inferred by generally using the least squares and 

minimum evolution (ME) principles (Nei, 1996). When using the least squares principle, 

the tree topology is determined by using the smallest minimum squared sum of differences 

between pairs of sequences (Bulmer, 1991). Tree topologies of phylogenetic trees that are 

constructed by using the minimum tree principle consist of the tree topology that displays 

the smallest sum of tree lengths of all the possible tree topologies for a set of sequences 

(Rzhetsky and Nei, 1992). Searching for the optimal ME tree is highly labour-intensive and 

nearly impossible for large datasets. For this reason some methods have built-in 

algorithms to search for the optimal tree while determining the topology, which produces 

the optimal tree automatically. Examples of these methods are the neighbour-joining (NJ) 

method of Saitou and Nei (1987), Wagner method, modified Farris method and the 

neighbourliness method (Nei, 1996). 

The true number of substitutions between pairs of sequences is nearly impossible to 

determine, based only on the number of observed substitutions, and the accuracy of these 

additive tree topologies can therefore be fallible. The reason for this phenomenon is that 

distance methods are based on simple sequence difference calculations; they do not take 

into account reverse mutation events and can therefore underestimate the true 

evolutionary distances. Furthermore, it does not take substitution heterogeneity into 

account (Nei, 1996; Suárez-Díaz and Anaya-Muñoz, 2008). To overcome this problem it is 

critical to model the distance calculations against evolutionary models that make 

adjustments to correct for the less informative states that are used, as was discussed in 

Section 4.2 (Brocchieri, 2001). The fact that the distance methods are based on distance 

parameters only has also resulted in criticism of this approach and necessitates the use of 

statistical tests to estimate the confidence of the tree topologies constructed according to 

this method, such as the bootstrap method (Suárez-Díaz and Anaya-Muñoz, 2008). 
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4.3.2.1 Unweighted pair-group method  

Methods such as the unweighted-pair group method with arithmetic means (UPGMA) or 

the weighted-pair group method with arithmetic means use sequential clustering 

techniques to construct phylogenetic trees. By these methods trees are built stepwise by 

grouping the most similar sequences together, from which point they are regarded as a 

single operational taxonomic unit (OTU), which again is grouped with the next most similar 

OTU. By continuing with this process all OTUs can be clustered into a tree. Clustering 

requires ultrametricity, which is the actual distances between sequences as represented in 

branch lengths, with a focus on molecular clock-like behaviour because it assumes that 

evolution takes place at a uniform rate over time. Many recent methods have been 

developed that deal with non-ultrametricity and non-clock-like behaviour and therefore 

clustering has become less popular (Morrison, 1996). 

4.3.2.2 Neighbour-Joining method 

Although the NJ method of Saitou and Nei (1987) is very similar in principle to the 

clustering method, it is an example of an ME distance method (Saitou and Nei, 1987), is 

computationally relatively fast and can handle large datasets (Suárez-Díaz and Anaya-

Muñoz, 2008). The search for an optimal tree topology is embedded in the algorithms of 

the software used to construct NJ trees and therefore this method produces a single tree. 

Neighbours in the context of this method can be defined as a pair of OTUs that are 

connected to a single node in an unrooted bifurcating tree. In this method the tree topology 

is determined by joining sets of neighbours that give the smallest branch length and 

represent the minimum evolutionary change, to become a new OTU that can be joined 

with a new neighbour with the smallest branch length and so on until the full tree topology 

is resolved. Since the true neighbours are not defined, the sum of branch lengths are 

computed for all pairs of OTUs and the pair with the smallest value is chosen as the next 

neighbour to become a single OTU. The procedure is applied again until there is only three 

OTUs left (Saitou and Nei, 1987; Nei, 1996). Criticism against the NJ method is that it uses 

a “greedy approach” to construct a tree topology, in which the clustering of sequences are 

progressive and does not always lead to the most optimal tree. The algorithm of NJ is 

similar to UPGMA, but differs in the fact that each pair of groups is adjusted according to 

its distance from all the other groups (Morrison, 1996). However, computer simulations 

performed by Saitou and Nei (1987) indicated that the NJ method is a reliable tree-building 
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method and compares well with other methods in terms of accuracy (Saitou and Nei, 

1987). 

4.3.3 Discrete methods  

These methods are also based on the principles of ME methods to determine tree 

topologies and use optimality criteria. Phylogenetic trees are constructed based on the 

smallest sum of all branch lengths (Morrison, 1996). In contrast to distance methods, 

discrete methods use the actual nucleotide site information to construct evolutionary trees 

and allow inference about the character content of the ancestor. Nucleotide site 

information could either be the type of substitution that took place or functional information 

of a site (Page and Holmes, 1998). The MP and ML methods are the two most common 

discrete methods used in phylogenetic analyses (Nei, 1996). 

4.3.3.1 Maximum parsimony 

This method seeks to reconstruct the ancestral sequences by assigning a hypothetical 

ancestral sequence to each internal node of the tree. These character states are predicted 

by using parsimony rules and are not always ambiguous. The ambiguous character sets 

imply that there is more than one possibility of an ancestral state, which is determined by 

the MP method as the least number of evolutionary changes required to satisfy an 

ancestral character set (Whelan et al., 2001; Brocchieri, 2001; Nei, 1996). 

Although this method can easily incorporate insertions and deletions into the phylogenetic 

analysis, the least number of evolutionary event estimates made by the MP method can 

lead to incorrect estimates of evolutionary rates (Suárez-Díaz and Anaya-Muñoz, 2008). 

The biggest criticism against the MP method is based on the heavy consistency 

constraints placed on substitution rates. The MP method is expected to determine 

accurate trees under conditions where there are no multiple substitutions at each site and 

when enough informative sites are examined. Therefore, backward and parallel 

substitutions will make the outcome of an MP tree uncertain (Nei, 1996). Kumar criticised it 

for not always constructing accurate branch lengths and Felsenstein argued that it did not 

increase in accuracy as the number of sequences increased (Brocchieri, 2001). 

Furthermore, there is no manner in which to estimate the means and variances of the 

minimal number of substitutions, making it difficult to treat the MP tree in a statistical 

framework (Nei, 1996). 
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In generalised parsimony, substitution models are used to allocate different “costs” to 

different types of substitutions. The smaller the probability of an evolutionary event, the 

higher the cost assigned. This relates especially to the transition bias and substitution rate 

heterogeneity present in the mitochondrial genome sequence, where a large weight is 

given to transversions or slowly evolving sites. In weighted parsimony, sites are weighted 

according to their phylogenetic value and can be determined a priori or a posteriori (Nei, 

1996). 

Examples of a priori weighting is the Dollo-parsimony where no parallelisms or 

convergences are included and the Camin-Sokal-parsimony where reverse mutations are 

not taken into account (Morrison, 1996). Many of these a priori types of methods are 

designed for use with molecular data because of the fact that nucleotides cannot be 

regarded as substituting at equal probabilities. Sites that mutate at a high rate will become 

saturated and have low phylogenetic value and will accordingly be appointed as having 

low parsimony weight. Functional inequalities along the sequences are indicated by using 

character weighting that allocates weight to different sequence positions, for example 

different codon positions and positions that play a critical role in the formation of protein or 

RNA structures. Character-state weighting is the allocation of different weights to the same 

sequence positions. This type of weighting refers to mutational biases, for example the 

probability of transversions versus transition-type substitutions, types of substitution 

frequencies, the base composition, and the presence of synonymous versus non-

synonymous type substitutions (Morrison, 1996). 

A major disadvantage of this method is that it can produce more than one most 

parsimonious tree and that the final tree must ultimately be chosen by the analyst 

(Suárez-D�az and Anaya-Muñoz, 2008). Thus subjectivity is brought into the process, 

which is not optimal. Furthermore, the MP methods have been determined to be 

inconsistent because of “long branch attraction” (Nei, 1996). This can occur when rates of 

evolution differ dramatically between sequences under circumstances of rapid evolution, 

and leads to extremely long branches. Branches are joined when the same substitutions 

take place in two separate branches and the tree-building algorithm incorrectly joins it. 

This problem can be overcome by using the MP method in conjunction with other tree-

building methods (Suárez-D�az and Anaya-Muñoz, 2008). 
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4.3.3.2 Maximum likelihood 

ML is based on the most likely tree to describe the observed dataset and this method, 

therefore, includes the evaluation of different hypotheses statistically. ML incorporates 

complex models of evolution in its inference of phylogeny and is regarded as a method 

that can make accurate inferences not only about the patterns of evolution but also about 

the processes of evolution. It is often regarded as the most powerful phylogenetic method 

(Whelan et al., 2001). 

The ML method is a model of sequence evolution that produces a tree from a set of 

observed data. It aims to determine the most likely tree to support the observed data by 

evaluating which tree topology will make the observed data most likely. Thus, what is 

important is not which tree is the most probable, but rather which makes the set of data 

most likely (Page and Holmes, 1998). It does this by using the probabilities for a specific 

nucleotide to be substituted to another nucleotide as described by an evolutionary model. 

Likelihood is determined by multiplying the probability of the nucleotide at a position with 

the probability of a specific transformation at that position. The product of the likelihoods at 

a position between two sequences equals the likelihood of divergence of those two 

sequences at that position and the product of all the likelihoods of all the branches equals 

the likelihood of the tree (Morrison, 1996). Therefore, given an observed nucleotide at a 

specific site, it needs to be calculated what ancestral state will have the highest probability 

of giving rise to that observed state. This probability will constitute the likelihood and is 

usually performed in a computationally demanding and time-consuming manner. As with 

parsimony, the method allows for the inclusion of weighting factors such as substitution 

rate, transition:transversion ratios and base composition. With ML, these values would 

constitute those that lead to ML and are easy to estimate (Suárez-D�az and Anaya-Muñoz, 

2008). 

Another advantage of this method is that different hypotheses can be compared by using 

the likelihood ratio test. The use of a model compared to observed data can be tested by 

using the likelihood ratio statistic. Since the evolutionary model used will have a great 

influence on the branch lengths of the tree, it is sometimes necessary to reject a model if it 

does not fit the data. On the same basis, trees are compared to find the most likely tree to 

fit the observed data (Page and Holmes, 1998). 
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Edwards and Cavalli-Sforza postulated that a parsimonious tree can under some 

circumstances also be the most likely tree and can be used in cases where the 

computational power for ML is lacking (Cavalli-Sforza and Edwards, 1967). In cases where 

the substitution rate varies between branches, the ML and MP trees might, however, differ 

significantly (Page and Holmes, 1998). The biggest problem with the ML method is that it 

is computationally inefficient. The optimal tree is chosen from a large number of trees and 

using exact methods for this purpose is one of the mathematical problems for which no 

solution has been determined yet in terms of the time and power it takes to achieve this 

goal (Morrison, 1996). 

4.3.4 Choosing a phylogenetic tree-building method 

There are many different phylogenetic tree-building methods that are based on the basic 

principles discussed in the previous sections, and to decide upon the most appropriate 

method is not an easy task. Tree-building methods need to be computationally efficient, 

which refers to the speed at which a tree can be constructed (Morrison, 1996). This 

criterion is dependent on the type of algorithm used and it can therefore be expected that 

the optimality methods will score low on this criterion (Nei, 1996). The MP, ME and ML 

methods all search for optimal trees, making them computationally demanding. The NJ 

tree scores very high on this criterion, since it can handle large datasets and performing 

the bootstrapping is easy (Suárez-D�az and Anaya-Muñoz, 2008). 

The power of a method, which is the amount of data needed to deliver a single tree and is 

used to construct a tree, is another criterion to consider (Sanderson and Shaffer, 2002). 

The distance methods score low on this criterion owing to loss of informative data in the 

distance matrix (Nei, 1996). 

Tree-building methods need to be consistent, which refers to the chance that if more data 

are added, the method will still deliver the same single accurate tree (Sanderson and 

Shaffer, 2002). The NJ, ME and ML methods produce consistent trees, provided that the 

correct nucleotide substitution model is used. The MP method, however, seems not to be 

as consistent (Nei, 1996). But according to Nei (1996), if the number of nucleotides is in 

the thousands, all of the methods seem to be problematic in terms of consistency.  

It also needs to be robust, which is the most important criterion and refers to how 

consistent the method will be when the assumptions underlying it are changed (Sanderson 
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and Shaffer, 2002). The ML method has proven to be the most robust method and the 

UPGMA and invariants methods the least robust (Morrison, 1996). 

Tree-building methods need to be verified statistically and in this category the NJ and ME 

trees score highest (Sanderson and Shaffer, 2002). Statistical methods for testing these 

methods are well established. Statistical testing of the ML method however seems 

problematic and therefore scores low (Nei, 1996). 

The probability of getting accurate tree topologies is the most important factor to take into 

account when choosing a tree-building method (Nei, 1996). This is, however, also the 

most difficult to determine. Computer simulations are the most effective way to study the 

accuracy of tree topology and have been performed many times in order to answer this 

question. But comparing results is difficult, since the type of simulations varied greatly and 

to such an extent that there is no obviously better or worse tree-building method currently 

in use. Each of these methods has strong and weak points and needs to be used 

accordingly (Sanderson and Shaffer, 2002). 

Another important factor that goes with tree topology is the reliability of branch length 

estimations (Sanderson and Shaffer, 2002). In this category, it is likely that the ML, NJ and 

ME trees give more reliable branch length estimates than MP trees (Nei, 1996). 

Phylogenetic analyses are always based on a degree of uncertainty because of the 

incompleteness of data and it is important to be able to compare alternative trees to decide 

on the most optimal topology (Morrison, 1996). For this reason, different tree-building 

methods are often used in conjunction to provide an objective estimate of the true tree 

topology of a set of sequences (Nei, 1996). 


