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Opsomming

Verspreide generasie of generators (VG) verwys na die opwekking van elektriese drywing op 'n
kleiner skaal {produksie wissel in grootte van ‘n paar kW iot menige MW) deur ‘n eenheid wat nie deel
is van 'n sentrale voorsiener nie. Hierdie eenheid {of eenhede op 'n netwerk) is nader aan die las
waaraan dit elektrisiteit voorsien. VG tegnologie kan in die behoeftes van ‘n groot verskeidenheid van
gebruikers voorsien, met toepassings in die residensi¢le (sonselle), kommersiéle (brandstofselle) en
industri¢le sektore (turbines).

Drywingskwaliteit en beheer speel ‘n belangrike rol in hierdie VG netwerke. Drywingskwaliteit het 'n
groot bekommernis geword vir elektrisiteitsvoorsieners, vir hul kliénte, en vir die vervaardigers van
elektriese toerusting, a.gv. die negatiewe impak wat drywingskwaliteitsteurnisse op
stelselbetroubaarheid en-operasie het. Groot hoeveelhede data, vaagheid in die data, en die
oneindige hoeveelheid variasies van stelselkonfigurasies dra als by tot die kompleksiteit van
drywingskwaliteitanalise en-diagnose. Hierdie kompleksiteit het die behoefte vir gesofistikeerde
hulpmiddels genoodsaak om stelselingenieurs te help. Kunsmatige intelligensie (KI} blyk die mees
geskikte hulpmiddet vir drywingskwaliteit toepassings te wees.

Die verhandeling voorsien aan die leser ‘n ocorsig oor VG en drywingskwaliteitprobleme in
kragnetwerke. ‘'n Gedeeldte van ‘n huidige kragnetwerk word gemodelieer en ge-evalueer. Twee VGs
word op strategiese posisies aan die netwerk gekoppel met die doel om drywingskwaliteit parameters
te optimeer. Die Kunsmatige Neurale Netwerk (KNN) metode van Kl word in hierdie navorsing gebruik
omdat dit ideaal gepas is vir patroonherkenning. Die KNN word gebruik vir die patroonherkenning van
die laste en selekteer dan die uitsette van die VGs. Die opleidingsdata vir die KNN word geskep
d.m.v. ‘n kostefunksie. Die kostefunksie bepaal die optimale toestande van die VGs vir ‘n spesifieke
insettoestand. Die kostefunksie gebruik die gemiddelde spanningsafwyking van die toelaatbare
gebied (V,y), die gemiddelde spanningsafwyking van die ideaal (Vig.a), die koste van produksie (Cr)
en die netwerk aktiewe verliese (P.) as parameters vir optimering. Na hierdie optimeringsproses word
die KNN opgelei met die willekeurig rangskikte opleidingsdata.

Die aanpasbare gedrag van die KNN beheerder word ondersoek en vergelyk met die geval waar daar
geen beheer toegepas word nie. Uit hierdie ondersoeke is daar gevind dat die KNN beheerder
sinvolle besluite kon neem, selfs vir laspatrone buite die opleidingsversameling. Die gedrag van die
KNN beheerder is egter baie afhanklik van die integriteit van die opleidingsdata. Verdere verfyning en
kontinue opdatering van die opleidingsversameling m.b.t. die operasionele gebiede van die laste word
aanbeveel vir verdere navorsing. Die gevolgtrekking wat gemaak kan word uit hierdie navorsing is dat




dit sinvol is om VGs met KNN beheer in 'n elektriese kragnetwerk te plaas om die drywingskwalitiet te
optimeer.
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Chapter 1 - Introduction

The aim of this chapter is to introduce distributed generation (DG) to the reader as an emerging
technology in the power industry. DG can provide energy solutions to customers that are more cost-
effective, more environmentally friendly, or provide higher power quality (PQ) and reliability than
conventional solutions. PQ plays an important role in power networks and with the aid of DG and the
proper control tools that incorporates artificial intelligence (Al), PQ can be analysed and controlled.
This chapter gives a short overview of DG and Al, thus motivating the purpose of the study.
Furthermore an overview of the dissertation is given.

1.1 Distributed generation

DG is a new approach in the electricity industry and the relevant literature shows there is no generally
accepted definition for DG [1]. In the literature, a large number of terms and definitions are used for
DG. The Institute of Electrical and Electronic Engineers (IEEE) defines DG as “The generation of
electricity by facilities sufficiently smaller than central generating plants as to allow interconnection at
nearly any point in a power system”.

DG is currently being used by some customers to provide some or all of their electricity needs. In
some instances, DG technologies can be more cost effective than conventional solutions. There are
many different potential applications for DG technoiogies. For example, some customers use DG to
reduce demand charges imposed by their electric utility, while others use it to provide premium power
of reduce environmental emissions. DG ¢an also be used by electric utilities to enhance both their
distribution and existing power systems.

Current technologies for distributed generation vary widely. A summary of current technologies is
shown in table 1.1. Some of these technologies are discussed in chapter 2.




Technology Typical size per module

1. Combined gas turbine 35 ~ 400 MW
2. Internal combustion engines 5 kW~ 10 MW
3. Combustion turbine 1—-250 MW
4. Micro turbines 35 kW - 1 MW
Renewable sources
5. Small hydro 1-100 MW
6. Micro hydro 25 kW -1 MW
7. Wind turbine 200 W -3 MW
8. Photovoltaic celis 20 W — 100 kW
9. Solar thermal 1-80 MW
10. Biomass, e.g. based on gasification 100 kw - 20 MW
11. Fuel cells 1kW-5MW
12. Geothermal 5 - 100 MW
13. Ocean energy 100 kW -1 MW
14. Battery storage 500 kW - 5§ MW

Table 1.1 Technologies for distributed generation.

1.2 The power quality problem

Electric power quality (PQ) has become a topic of increasing interest since the late 1980's. This
interest involves all the parties concerned with PQ in the power business: firstly, the utility companies
which is the origin of the electricity, the customers who use the electricity and the manufacturers of
electric equipment. According to Ibrahim and Morcos [2], the growing concern is due to the following
reasons:

a) End-user load equipment has become more sensitive to power quality due to many
microprocessor-based controls;

b) Complexity of industrial processes. The restart-up of these industries is a very costly affair;

c) Development of sophisticated power electronic equipment used for improving system stability,
operation, and efficiency. These devices are a major source of bad power quality and are
themselves vulnerable to bad PQ;

d} Complex interconnection of systems, which results in more severe conseguences if any ane
component fails;




e) Continuous development of high performance equipment. Such equipment is more
susceptible to power disturbances.

Power quality problems can be defined as any problem in power due to current, voltage or frequency
deviations that result in the failure or malfunction of the customers’ equipment [3]. Alternative
definitions for PQ are used within the power industry, reflecting the different viewpoints of the parties
involved. From a supplier and equipment manufacturer's point of view, PQ is a perfect sinusocidal
waveform with no distortion (consistent in voltage magnitude and frequency) and no noise on the
grounding system. The customers’ point of view may be that PQ is simply the power that works for
their equipment without damaging it.

While each of these viewpoints is clearly different, a definition that is properly focused is difficult to
establish. A definition based upon the PQ parameters is also not feasible, because different PQ
parameters will apply to different power network scenarios. To establish a PQ definition that is
acceptable to ail the parties is a field of interest on its own. As the appropriate literature suggests, the
following PQ attributes are affected with the connection of DGs onto the power grid [4],[5]:

a) Islanding;

b} Steady state voltage regulation;
c) Harmonic distortion;

d) Reverse power flow effects;

e) Direct current injection;

f) Over-voltage conditions;

g) System losses;

h) Voltage unbalance;

i) Under-voltage conditions; and
J)  Flicker.

The PQ parameters that are applicable for the purpose of this research are defined in chapter 2. The
use of DG in power networks has positive and negative effects on the PQ [3]. Concerning voltage
regulation, the response due to the use of discrete tap changing devices like regulators is not
effectively smooth and fast. Impedance compensation devices like shunt capacitors may cause
harmonic problems, whilst series capacitors may result in resonance and ferroresonance (in
transformers). From the point of view of power system losses, electric power systems incorporate
generation plants and loads that are interconnected by long transmission lines. These systems can
suffer from significant losses [6]. It is therefore necessary to study the effect of integrated DG units on
PQ control in the electric power system.




The literature suggests that DG offers the following benefits for PQ problems [5]:

a)

b)

¢
d)

€)

Harmonic content produced by the generators are limited to below acceptable limits. This is
primarily an equipment vender design issue;

DGs can have a beneficial impact on flicker caused by other loads if they are operated as
controlied voltage sources;

DG does not inject DC current into the grid;

DG can counter the effect of ripple current, which is proportional to the amount of voltage
unbalance.

DG can be effective in counteracting voltage regulation problems because of its ability to
impact the active and reactive power flow.

1.3 Artificial intelligence and power quality

Previous research has shown that Al tocls are very suitable for PQ analysis and control. An important

application of Al is the development of a PQ analysis and control system. According to Ibrahim and

Morcos [2], Al techniques are suitabie for PQ applications for the following reasons:

a)
b)
c)

d)
e)

)
h)

Knowledge about PQ is dispersed and fragmented;

PQ experts are scarce in the electric power industry;

Endless number of system configurations, making each PQ problem unique in its
characteristics and diagnosis;

Large domain analysis of PQ (equipment, standards, and methodologies),

Distributed PQ monitoring systems that gather a huge amount of data, which is not feasible
for a human expert to analyse;

Large amount of data that require not only intelligent analysis but also intelligent data
management;

Imprecision of data, making conventional programs fail to identify PQ problems;

PQ diagnosis requires expertise in a wide variety of power topics. Al tools can combine
knowledge in several domains.

These PQ parameters can be optimised and controlled with the aid of Al tools. Al tools include expert

systems (ES), artificial neural networks (ANN), fuzzy logic (FL), and newer techniques like adaptive

neuro-fuzzy systems (ANFS) and generic algorithms (GA). The algorithms and feasibility of these

tools are discussed in chapter 2.




1.4 Problem statement

The aim of this study is to control the quality of power through the optimal utilisation of DGs in an
electric power network. A scenario (part of a power network) needs to be investigated to determine
the PQ control parameters. An ANN controller needs to be developed to assess the state of the power
network (load conditions) and control the output of the DGs to optimise the PQ parameters. The block
diagram in figure 1.1 illustrates the principal of the connection between the proposed ANN, the DGs

and the power network.

Central
Generation ‘ @ ___________ E
Load 1 Load 2 Load 3 Load4| |
ANN ::f::::::.’:.’I::Z::I:::::.’:l:_i

Figure 1.1 Block diagram of the power network with ANN controller.

The ANN controller will typically use the active and reactive power flows of the loads as input and the
output will be the optimal operating levels of the DGs.

1.5 Methodology

The power network under consideration, different DG technologies and typical interconnection
methodologies are firstly evaluated to assess their impact on the PQ parameters. Based on this
assessment, the PQ parameters applicable to this study is identified and evaluated. The voltage and
power loss sensitivities of the power network are evaluated to determine the optimal connection points
of the DGs. Also, the different control types are reviewed and a control type for the DGs is selected.

To optimise the PQ parameters identified, a cost function {(CF) is developed to analyse the condition




of the power network and select the optimal operating states of the DGs. The CF is developed from
the basis of a well-known topic: "Reactive power flow optimisation [25], [26]". The active power flow of
the system is optimised which results in optimised active power losses. Data is developed by the CF
from the different load conditions. L.oads are varied from minimum to maximum load capacity.

Based on the data developed by the CF, an Al controller is developed for the DGs. The different Al
technologies are firstly reviewed to identify the most suitable. The Al controller is trained with the
network data and optimised. Several techniques are used to optimise and determine the topology of
the Al controller. The controller is finally integrated into the system and the network conditions are
evaluated for the DGs with an Al controlier.

1.6 Overview of dissertation

The dissertation begins with a proposed definition of DG in Chapter 2. The different applications of
DG are discussed emphasizing the potential interest of electric utilities and their customers to empioy
DG technology. The chapter gives insight into DG technologies by explaining the operating principles,
applications and pros/cons of these technologies. Different PQ phenomena are also discussed and
investigated for the purpose of the PQ control parameters. Lastly, an introduction to ANNs is given
and discussed. For the purpose of this study, only the ANN is used as Al control tool.

To evaluate the control of PQ in an electric power network, a scenario is modelled. The mode!
includes the interconnected electric power network and the DG sources. Chapter 3 discusses the
modelling of the power network from the applicable scenaric. The scenario forms part of an existing
ESKOM (S.A. electric power utility) network. The simulation evaluates the steady state conditions of
the network and assesses the condition of the network at different points. The simulation is interactive
and allows power-flow analysis of the system. Steady state voltage and current information is
gathered and used to calculate PQ parameters to provide the necessary information about network
condition.

Chapter 4 focuses on the development of the training data for the ANN controller. A cost function is
firstly developed to determine the optimal output conditions of the DGs for a particular load pattern.
The cost function comprises four objective functions:

a) The average voltage deviation from the permitted range (Vay);
b} The average voltage deviation from ideal (Vigeas);

c) The power network active losses (P.);

d} The generation costs (Cr).




The objective is to control V.4 to meet certain criteria while at the same time minimising Vigear, £, and
Cr. The training load patterns are restricted to an acceptable size of three operating states for each
load in the power system. This ultimately leads to a data set size with 2187 load combinations, each
evaluated by the cost function. This ordered training set resulted in the characteristic training patterns
of the network.

The training and optimisation of the ANN controlier is done in Chapter 5. The topology of the ANN is
determined by two methods: the network growing method and the leave-cne-out method. Both
methods identified a topology of 14.24:4 representing 14 input layer neurons, 24 hidden layer neurons
and 4 output layer neurons. The training is done off-line with a randomly arranged fraining set, as
discussed in the literature. Through a process of optimisation, the optimal training set is identified
which gives the ANN controller the ability to learn as much about the load patterns as possible. The
optimal learning parameters are identified and results in improved generalisation capability of the
ANN. The optimised ANN controller is proved to control the DGs successfully.

In Chapter 6, the adaptive behaviour of the ANN controller for the DGs is evaluated. The ANN
controller is shown to closely mimic the response of the cost function for the load patterns trained
with. The ability of the ANN controller to adapt its cutput for new load patterns in the electric power
system is also investigated. The ANN controlled cases are compared to the cases where no control is
active i.e. the DGs run at full generation capacity and to the optimal decision of the cost function. it is
found that the ANN controller can sensibly adapt to the new load patterns and make meaningful
decisions.

Chapter 7 concludes the dissertation. The main conclusion of this dissertation is that it is viable to use
DGs with ANN control to optimise the power quality in an electric power system. The performance of
the ANN controller is however strongly dependent on the training data. Further research is
recommended in the refinement and updating of the training data. Power quality issues other than the
problems addressed in this research, are also an area for future exploration. An integrated control
scheme (DG, tap-changer and capacitor bank control schemes) that assists other regulating devices
is also suggested for further investigation.




Chapter 2 - Distributed generation

2.1 Introduction

In any power system, the need for improvement and upgrading is unavoidable. This is due to a
competitive electric power industry and the constant advancement in technology. The goal in any
competitive market is ultimately lower electricity prices and higher energy efficiency. Distributed
Generation (DG) has emerged as potentially the future of small-scale power generation, an alternative
to the old central generation plant model.

This chapter firstly gives a proposed definition for DG and an overview of the different DG
technologies. The issues and applications of the DG technologies are discussed to point out the
necessity for DG in power systems. The different power quality (PQ) phenomena are discussed and
the most suitable PQ terms for this study are highlighted. The chapter lastly gives an overview of the
operation of Artificial Neural Networks (ANNs).

2.2 Distributed generation: A definition

A study by the Electric Power Research Institute (EPRI) indicates that by 2010, 25% of the new
generation will be distributed {7]. Distributed generation (DG) is a new approach in the electricity
industry and the relevant literature shows that there is no generally accepted definition for DG [1} or
the definitions used are inconsistent. Some countries define DG based on the power level, whereas
others define DG as facilities that directly supply consumer loads. Other countries define DG as
having some basic characteristic (for example, using renewables). In regards to the rating of DG
power units, the following different definitions are currently used:

¢ The Electric Power Research Institute (EPRI) defines DG as generation from ‘a few kilowatts
up to 50 MW" [7];

¢ The Gas Research Institute defines DG as being ‘typically between 25 kW and 25 MW’ [8];

e Preston and Rastier defines the size as ‘ranging from a few kilowatts to over 100 MW’ [9];

e The International Conference on Large High Voltage Electric Systems (CIGRE) defines DG
as ‘smaller than 100 MW’ [10};

Due to the large variations in the definitions used in the literature, the following different issues have
to be discussed to define DG more precisely:




Purpose: There is an agreement among different organizations regarding the definition of the

purpose of DG.
Definition - The purpose of distributed generation is to provide a source of efectric power.

According to this definition, DG can be the only source of electric power, or complement the

existing power network.

Location: The location of DG is defined as an electric power source near the load or on the
customer side of the meter.

Definition - The installation and operation of electric power generation units
connected directly to the power network near the load or connected fo the network on
the customer side of the meter.

The idea of DG is to locate generation close to the load, hence on the distribution network or
on the customer side of the meter.

Rating of a DG unit: The maximum possible rating of the DG source is often used within the
definition of DG, but is not relevant as the different technologies get better and more powerful
everyday. The rating of a DG power source is thus not relevant for the definition.

Technology: The term DG is often used in combination with a certain generation technology
category, e.g. renewable energy technology. The definition of DG is not limited to specific
types of energy sources. Current technologies for DG vary widely. A summary of current
technologies is shown in chapter 1. A detailed technical description of some technologies is
presented in the next section.

Environmental impact: DG technologies are described as environmentally friendlier than
centralized generation. The environmental impact of the DG technology is however not
relevant for the definition.

Ownership: It is frequently mentioned that DG has to be owned by independent power
producers or by the customers themselves, to qualify as DG. Large power generation
companies have become more and more interested in DG and there is no obvious reason
why DG should be limited to independent ownership, thus the ownership is not relevant.




2.2.1 Proposed definition for distributed generation

Different definitions regarding DG are used in the literature. These variations in the definition can
cause confusion. Therefore, a general definition is formulated after studying the various factors
surrounding DG:

Definition - DG is a modular electric power source sufficiently smaller than central
generation that is used in applications that benefit the electric power nefwork, the
utility custormner, and the eleclric utility.

This definition does not define the rating of the generating source, as the maximum rating depends on
the local power network conditions, e.g. voltage level. It is however useful to suggest categories of
different ratings for DG. The fcllowing categories are suggested:

e Micro DG: 1 Wto 5 kW,

o Small DG: 5 kW to 5 MW,

e« Medium DG: 5 MW to 50 MW, and

o Large DG: 50 MW < 200 MW (PBMR).

2.3 Issues surrounding distributed generation

DG is currently being used by scme customers to provide some or all of their electricity needs. There
are many different potential applications for DG technologies. Scme customers use DG to reduce
demand charges imposed by their electric utility, while others use it to provide premium power or
reduce environmental emissions. Many other applications for DG solutions exist. The following is a list

of those of potential interest to electric utilities and their customers.

2.3.1 Continuous power/stand alone

In this application, the DG technology is operated at least 6,000 hours a year to allow a facility to
generate some or all of its power on a relatively continuous basis. Important DG characteristics for
continuous power include:

High electric efficiency;

Low maintenance costs;

Low installation costs.
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DG is currently being utilized in a continuous power capacity for industrial applications such as food
manufacturing, plastics, rubber, metals and chemical production.

2.3.2 Combined heat and power (CHP)

This application is also referred to as cooling, heating, and power or cogeneration. This DG
technology is operated at least 6,000 hours per year to allow a facility to generate some or all of its
power. A portion of the DG waste heat is used for water heating, space heating, steam generation or
other thermal needs. Important DG characteristics for CHP include:

e High useable thermal output (leading to high overall efficiency),
¢ Low maintenance costs;

» Low emissions.

As with Continuous Power, CHP is most commoenly used by industry clients.

2.3.3 Peaking power/peak saving power

In a peaking power application, DG is operated between 200-3000 hours per year to reduce overall
electricity costs. Units can be operated to reduce the utility’'s demand charges, to defer buying
electricity during high-price periods. Important DG characteristics for peaking power include:

o Low installation costs;
s Quick start-up;

e | ow fixed maintenance costs.

The most commen applications are in educational facilities, lodging, miscellaneous retail sites and
some industrial facilities with peaky load profiles.

2.3.4 Green power

DG units can be operated by a facility to reduce environmental emissions from generating its power.
Important DG characteristics for green power applications include:

e Low emissions;
e High efficiency;

¢ Low variable maintenance costs.
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Applications for green power are mostly found near areas that are nature preservations or at facilities

in highly poiluted areas.

2.3.5 Premium power/grid support

DG is used to provide power at higher level of reliability and quality than typically available from the
grid. Customers typically demand uninterrupted power for a variety of applications, and for this

reason, premium power is broken down into three categories:

Emergency power system This independent system automatically provides electricity within
a specified period to replace the normal source if it fails. The system is used to power critical
devices whose failure would result in property damage and threatened health and safety.
Customers include apartment, office and commercial buildings, hotels, schools, and a wide
range of public gathering places.

Standby power system This independent system provides electricity to replace the normal
source if it fails and thus allows the customers entire facility to continue to operate
satisfactorily. Such a system is critical for clients like airports, fire and police stations, military
bases, prisons, water supply and sewage treatment plants and dairy farms.

True premium power system Clients who demand uninterrupted power, free of all power
quality problems such as frequency variations, voltage transients, dips, and surges, use this
system. Power of this quality is not avaiiable directly from the grid; it requires both power
conditioning equipment and standby power. Alternatively, DG technoiogy can be used as the
primary power source and the grid as a backup. This technology is used by mission critical
systems like airlines, banks, insurance companies, communications stations and hospitals.

Important DG characteristics for premium power include:

Quick start-up;
Low installation costs;

Low fixed maintenance costs.

2.3.6 Transmission and distribution deferral

In some cases, pllacing DG units in strategic locations can help delay the purchase of new

transmission or distribution systems and equipment (for example distribution lines and substations).
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Important DG characteristics for transmission and distribution include:

e | ow instailation costs;

e | ow fixed maintenance costs.

Figure 2.1 shows a DG network developed on the applications mentioned in this section. Some of the
benefits of making use of these applications are:

i. Customer benefits

s Ensures reliability of energy supply;

e Provides the right energy solution at the right location;

¢ Provides the power quality needed in many industrial applications,

s Enables savings on electricity rates during high-cost peak power pericds;

» Provides a stand-alone power option for areas where transmission and distribution
infrastructure does not exist or is {co expensive to build; and

» Allows power to be delivered in environmentally sensitive areas by having a high

efficiency and near-zero pollutant emissions.
ii. Supplier benefits
* Avoids major investments in transmission and distribution system upgrades by piacing

new generation near the customer;

o Offers options in remote areas without transmission and distribution systems.
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Figure 2.1 A small power network with DG applications.

2.4 Distributed generation technologies

DG technologies can meet the needs of a wide range of users, with applications in the residential,
commercial, and industrial sectors. A summary of DG technologies is provided in this section [11].

The technologies include reciprocating engines, micro turbines, gas turbines, combustion turbines,

fuel cells, photovoltaics, and wind turbine systems. For each technology its operation and

advantages/disadvantages are discussed.

2.4.1 Reciprocating engines

Almost all engines used for power generation are four-stroke and operate in four cycles (intake,

compression, combustion, and exhaust). The process begins with fuel and air being mixed. Some

engines are turbo-charged or supercharged to increase engine output, meaning that the intake air is

compressed by a small compressor in the intake system. The fuel/air mixture is introduced into the

combustion cylinder, and then compressed as the piston moves toward the top of the cylinder. As the
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piston nears the top of its movement, a spark is produced that ignites the mixture. The pressure of the
hot, combusted gases drives the piston down the cylinder. Energy in the moving piston is translated to
rotational energy by a crankshaft. As the piston reaches the bottom of its stroke, the exhaust valve
opens and the combusted gases is expelled from the cylinder by the rising piston. Table 2.1 lists the
advantages and disadvantages.

Advantages Disadvantages
Good electrical efficiencies (up to 45%) Atmospheric emissions (mainly Nox)
Quick start-up Frequent maintenance intervais
Ease of operation and maintenance Noise and vibration
High reliability Inability to start itself from zero RPM

Inexpensive

Table 2.1 Advantages and disadvantages of reciprocating engines.

2.4.2 Micro turbines

Micro turbines are typically in the size range of 35 kW to 1 MW. Micro turbines consist of a
compressor, combustor, turbine, and generator. Most designs are single-shaft and use a high-speed
generator producing variable voltage, variable frequency alternating current (AC) power. An inverter is
employed to praduce 50 Hz AC power. Most micro turbine units are currently designed for continuous-
duty operation. Micro turbines have no gearbox, and the turbine and generator are on the same shaft.
The distinctions of micro turbines are the presence of a recuperator used to heat the input air to keep
internal temperature high and the use of air bearings. Micro turbines can be divided in two general
classes:

e recuperated micro turbines, which recover the heat from the exhaust gas to boost the
temperature of combustion and increase the efficiency; and

» unrecuperated {or simple cycle) micro turbines, which have lower efficiencies, but also lower
capital costs.

Table 2.2 lists the advantages and disadvantages.
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Advantages Disadvantages

Compact size and light weight High initial cost

Relatively high refiability Maintenance skill requirements

Low maintenance needs Noise and vibration

Low emissions Mcderate ratio for fuel consumption/efficiency

Table 2.2 Advantages and disadvantages of micro turbines.

2.4.3 Gas turbines

Gas turbines are based on the Brayton or Joule cycle, which consists of four processes:

s compression with no heat transfer;

e heating at constant pressure;

s expansion with no heat transfer; and

* aclosed cycle system, cooling at constant pressure.

In open cycle gas turbines, the fourth step does not exist since inlet air is taken from the atmosphere
and the exhaust is dumped to atmosphere. Due to its higher temperature, there is more energy
available from the expansion process than is expended in the compression. The net work delivered to
drive a generator is the difference between the two. The thermal efficiency of the gas turbine is a
function of the pressure ratio of the compressor, the inlet temperature of the power turbine, and any
parasitic losses (especially the efficiency of the compressor and power turbine).

In closed cycle gas turbines, the fuel is not physically ignited. The fuel is heated and passed through
stages of turbos and compressors. The kinetic energy from the fuel is converted to mechanical energy
and then to electrical energy by a generator. The system can be a single shaft system (only one
turbo/compressor combination} or a twin or three shaft system. The Pebble Bed Modular Reactor
(PBMR) is a three shaft closed cycle gas turbine system. Figure 2.2 shows a flow diagram of the
system and figure 2.3 a picture of the micro plant.
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Figure 2.2 Flow diagram of a three shaft closed cycle gas turbine.

Figure 2.3 A closed cycle gas turbine (the PBMR).

Table 2.3 lists the advantages and disadvantages of gas turbines.
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Advantages Disadvantages

It is modular and adjustable High initial cost

Relatively high reliability Maintenance skill requirements

It is cost efficient Noise and vibration

Low emissions Moderate ratic for fuel consumption/efficiency

Short construction lead-time

Table 2.3 Advantages and disadvantages of a gas turbine.

2.4.4 Combustion turbines

A combustion turbine is a device in which air is compressed and a fuel is ignited. The combustion
products expand directly through the blades in a tfurbine to drive an electric generator. The
compressor and turbine usually have multiple stages and axial blading. This differentiates them from
smaller micro turbines that have radial blades and are single staged. Combustion turbines typically
range in size from about 1 MW up to 200 MW. Table 2 4 lists the advantages and disadvantages.

Advantages Disadvantages

Short start time Low electric efficiency

Small system cost and efficiency not as

Multi-fuel capability good as larger systems

Proven reliability and availability

Low emissions

High efficiency and low cost {large systems).
High power-to-weight ratio

Table 2.4 Advantages and disadvantages of a combustion turbine.

2.4.5 Fuel cells

There are many types of fuel cells, but each uses the same basic principle, to generate power. A fuel
celi consists of two electrodes (an ancde and a cathode) separated by an electrolyte. Hydrogen fuel is
fed into the anode, while oxygen (or air) enters the fuel cell through the cathode. With the aid of a
catalyst, the hydrogen atom splits into a proton (H+) and an electron. The proton passes through the
electrolyte to the cathode, and the electrons travel through an external circuit connected as a load,
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creating a DC current. The electrons continue on to the cathode, where they combine with hydrogen
and oxygen, producing water and heat. Table 2.5 lists the advantages and disadvantages.

Advantages Disadvantages
High efficiency High initial cost
Low pollution Fuel sensitivity
Low noise and vibration Lack of maintenance experience
Low emissions Absence of a long history of commercial usage

Table 2.5 Advantages and disadvantages of fuel cells.

2.4.6 Photovoltaics

A photovoltaic cell is composed of several layers of different materials. The top layer is a glass cover
to protect the cell from weather conditions. This is followed by an anti-reflective layer. The main layers
are two semiconductor layers, creating the electron current. Photovoltaic cells, or solar cells, convert
sunlight directly into electricity. The cells produce DC electricity. Photovoltaic cells are assembled into
flat plate systems that can be mounted on rooftops or other sunny areas. However, the cost is
currently too high for bulk power applications. Table 2.6 lists the advantages and disadvantages.

Advantages Disadvantages
No dangerous emissions Decisive importance of weather conditions
Can be used in remote areas High initial costs
Good system scalability (arrays can be built  Additional equipment required (energy
in sizes less than 0,5 w) storage devices, ac converters)
PV have a few moving parts Strong site dependence

Little maintenance

Table 2.6 Advantages and disadvantages of photovoltaics.

2.4.7 Wind turbines

Wind turbines are packaged systems that include a rotor, generator, turbine blades, and coupling
device. As the wind blows through the blades, the air exerts aerodynamic forces that cause the blades
to turn the rotor. Most systems have a gearbox and generator in a single unit behind the turbine
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blades. The output of the generator is processed by an inverter that changes the electricity from DC to
AC so that the electricity can be used. Wind conditions limit the amount of electricity that the turbines
are able to generate, and the minimum wind speed required for electricity generation determines the
turbine rating. Coastlines and hills are ameng the best places to locate a wind turbine, as these areas
typically have more wind. Table 2.7 lists the advantages and disadvantages.

Advantages Disadvantages
No dangerous emissions Decisive importance of weather conditions
Can be used in remote areas High initial costs
Minimal land use - the land below each turbine Additional equipment required (energy
can be used for example animal grazing storage devices, ac converters)
Little maintenance Strong site dependence

Table 2.7 Advantages and disadvantages of wind turbines.

Table 2.8 shows a summary of the suitability of the DG technologies discussed for the different

applications discussed in the previous section.
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Table 2.8 The suitability of DG technologies for the different power applications.

2.5 Distributed generation and power quality

A major issue related to interconnection of DG onto the power grid is the potential impacts on the
quality of power provided to other customers connected to the grid. The main reason for PQ analysis
in power systems is purely of economical value. The economic impacts are on utilities (main grid or
DG), their customers and suppliers of load equipment. The electrical utilities are concerned with PQ
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issues as to maintain customer expectations and customer confidence. Customers and suppliers of
load equipment are concerned because modemn equipment is much more sensitive to voltage
deviations. The main attributes that define PQ in systems with DG are:

« Voltage regulation — Maintaining the voltage at the point of delivery within an acceptable
range.

o Flicker - Rapid and repetitive changes in voltage, which has the effect of causing
unacceptable variations in light output.

» Voltage imbalance — Each phase of the grid voltage does not have identical voltage
magnitude, and a 120° phase separaticn between each phases.

« Harmonic distortion - The injection of currents having frequency components that are
multiples of the fundamental frequency.

« Direct current injection - This can cause saturation and heating of transformers and motors.
This can also cause these passive devices to produce unacceptable harmonic currents.

= System losses - The active power losses in the power system (transformers, lines etc.).

While the common term for describing this section is PQ, it is actually the quality of the voltage that is
being addressed. In engineering terms, power is the rate of energy delivered and is proportional to the
product of the voltage and the current. In most DG power systems, only the voltage is controlled and
there is no control over the current that loads might draw. Therefore, the standard would be to
maintain an acceptable supply voltage at all times. Any disturbance in the magnitude, frequency and
purity of the supply voltage waveform, is a PQ problem.

2.5.1 Classification of electromagnetic phenomena (Power quality

disturbances)

PQ refers to a wide spectrum of electromagnetic phenomena that describe the voltage and current at
any given point in the system. The categorisation of electromagnetic phenomena is shown in table 2.9
[4]. The reason for the categories and their descriptions are important to be able to classify the
measurements. The main reasons for the categories are that there are different ways to solve a PQ
problem for a particular variation and for analysis purposes. A short overview of the PQ phenomena is
given in this section. Annexure A gives a summary of all the PQ terminology. Table 2.9 shows a
classification of all the PQ phenomena.
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Categories Duration Voltage Magnitude

1. Transients

* Impulsive 1ns->1ms

e Oscillatory Sps-50ms 0-4pu
2. Short duration variations

* Instantaneous sag 0.5 - 30 cycles 0.1-09pu

e Instantaneous swell 0.5 - 30 cycles 1.1-1.8pu

e Momentary interruption 0.5cycles-3s <0.1pu

¢ Momentary sag 30cycles-3s 0.1-08pu

e Momentary swell 30cycles-3s 1.1-14pu

e« Temporary interruption 3s-1min <0.1pu

e Temporary sag 3s-1min 0.1-08pu

e Temporary swell 3s-1min 1.1-1.2pu
3. Long duration variations

¢ Interruption sustained >1 min 0.0pu

e Undervoltages >1 min 0.8-0.9pu

* Overvoltages >1 min 1.1-12pu
4. Voltage imbalance steady state 05-2%
5. Waveform distortion

e DC offset steady state 0-01%

e Harmonics steady state 0-20%

s Interharmonics steady state 0-2%

e Notching steady state

+» Noise steady state 0-1%
6. Voltage fluctuations intermittent 01-7%
7. Power frequency variations <10s

Table 2.9 PQ phenomena classification.
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2.5.1.1 Transients

The term transient is used for a phenomenon or a guantity that varies between two consecutive
steady states during a time interval that is short compared to the time scale of interest. Transients can
be classified into two categories, impulsive and oscillatory. These terms reflect the wave shape of a

current or voltage transient.

An impulsive transient is a sudden, non-power frequency change in the steady state condition of
voltage, current, or both, that is unidirectional in polarity (primarily either positive or negative). The

most common cause of impulsive transients is lightning.

An oscillatory transient is a sudden, non-power frequency change in the steady state condition of
voltage, current, or both, that includes both positive and negative polarity values. An oscillatory
transient consists of a voltage or current whose instantaneous value changes polarity rapidly. Back-to-
back capacitor energization resuits in oscillatory transient currents. This phenomenon occurs when a
capacitor bank is energized in close electrical proximity to a capacitor bank already in use. Figure 2.4

shows an oscillatory transient.
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Figure 2.4 Oscillatory transient caused by capacitor-bank energization.

2.5.1.2 Short duration voltage variations

The short duration variation is the general category of events that last for a period that is greater than
0.5 cycles, but less than or equal to 1 minute. These voltage variations are usually caused by fault
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conditions, such as the energization of large loads that require a starting current that is a multiple of
the operating current (motors). Figure 2.5 shows a time scale of the characterized groups of short
duration voltage variations. These groups can be classified into two categories, sags and swells.
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Figure 2.5 Time scale of short duration voltage variations.

A sag is & decrease between 0.1 and 0.9 pu in rms voltage or current at the power frequency. Voltage
sags are usually associated with system faults but can also be caused by switching of heavy loads or
starting of large motors. Figure 2.6 shows a voltage sag that can be associated with a single line-to-

ground (SLG) fault.
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Figure 2.8 Instantaneous voltage sag caused by a SLG fault.

A swell is an increase between 1.1 - 1.8 pu in rms voitage or current at the power frequency. As with
sags, swells are usually associated with system fault conditions or switching off a large load or large
capacitor bank. A swell can occur due to a SLG fault on the system resuiting in a temporary voltage
rise on the unfaulted phases. Figure 2.7 illustrates a voltage swell caused by a SLG fault.
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Figure 2.7 Instantaneous voltage swell caused by a SLG fault.

2.5.1.3 Long duration voltage variations

Long duration voltage variations is variations of the rms voltage from the nominal voltage for a time

greater than 1 min. Long duration voltage variations can be either overvoltages or undervoltages.

These variations are generally not the result of system faults, but are caused by load variations.

An overvoltage refers to a measured voltage having a value greater than the nominal voitage for a

period greater than 1 min. Typical values are 1.1 to 1.2 pu. Overvoltages c¢an be the result of a load

switching off or variations in the reactive compensation in the system. Poor voltage regulation

capabilities or control results in this PQ phenomenon. Figure 2.8 shows a typical overvoltage

waveform.
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Figure 2.8 Overvoltage waveform.
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An undervoltage refers to a measured voltage having a value less than the nominal voitage for a
period greater than 1 min. Typical values are 0.8 - 0.9 pu. Undervoltages are the result of the inverse
events that cause overvoltages. A load switching on can cause an undervoltage until voltage
regulation equipment can bring the voltage back to optimum values. Overloaded systems can also

result in undervoltages.

2.5.1.4 Voltage imbalance

Voltage imbalance is sometimes defined as the maximum deviation among the three phases from the
average three-phase voltages or currents, divided by the average of the three-phase voltages or

currents. This ratio is usually expressed as a percentage.

Voltage imbalance = 100 x (maximum deviation from average voltage/average voitage)
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Figure 2.9 Imbalance for a feeder measured over a week.

2.5.1.5 Waveform distortion

A waveform distortion can be classified as a steady state deviation from an ideal sine wave of power

frequency characterized by the spectral content of the deviation.

The DC offset is the presence of a dc voltage or current in an ac power system. This phenomenon

can occur as the result of half-wave rectification.




Harmonics are sinusoidal voitages or currents having frequencies that are integer muitiples of the
frequency at which the supply system is designed to operate (fundamental frequency). Harmonics
combine with the fundamental voltage or current, and produce waveform distortion. Harmonic
distortion exists due to the nonlinear characteristics of devices and loads in the system. Figure 2.10
illustrates the harmonic content in the input current of a speed drive.

Interharmonics are voltages or currents having frequency components that are not integer multiples of
the frequency at which the supply system is designed to operate. The main sources of interharmonic
waveform distortion are static frequency converters, cyclo-converters, induction motors and arcing

devices.
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Figure 2.10 Current waveform and harmonic spectrum for an adjustable speed drive input current.

Notching is a periodic voltage disturbance caused when current is commutated from one phase to
another. During this period, there is a momentary short circuit between two phases. Three-phase
converters that produce continuous dc current are the most cause of notching.

Noise is defined as unwanted electrical signals superimposed upon the power system voltage or
current. These signals are usually on the phase conductors or neutral conductors. Noise can be
caused by power electronic devices such as solid-state rectifiers and switching power supplies.
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2.5.1.6 Voltage fluctuations

Voltage fluctuations are random changes in the voltage magnitude. These changes normally do not
exceed the voltage ranges from 0.95 pu to 1.05 pu. Loads that exhibit continuous, rapid variations in
load current magnitude can cause fluctuations referred to as flicker. Arc furnaces are the most
common cause of voltage fluctuations in power systems. Figure 2.11 shows voltage fluctuations
caused by an arc furnace and figure 2.12 an example of voltage flicker.
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Figure 2.11 Voltage fluctuations caused by arc furnace operation.
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Figure 2.12 Voltage flicker.
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2.5.1.7 Power frequency variations

Power frequency deviations are defined as the deviation of the power system frequency from its
fundamental value (e.g. 50 Hz). This can be an increase or decrease in the power frequency. The
power system frequency is directly related to the rotational speed of the generators on the system. At
any instant, the frequency depends on the balance between the load and the capacity of the available
generation. When this dynamic balance changes, small changes in frequency occur. The size and
duration of the frequency shift depends on the load characteristics and the response of the generators

to load changes.

2.5.2 Improving the power quality

Without DG, power flow is always unidirectional, and decreasing in reai power (kW) magnitude with
increasing distance from the generating source. The addition of DG to a power system can shift power
flow patterns and can make it difficult to maintain adequate voltage regulation {12]. The main objective
of the power delivery system is to supply customers with an acceptable voltage, which is within a
prescribed range. Two voltage ranges are specified by ANS| C84.1, (American National Standards
Institute):

¢ Range A, covering narmal operation;
¢ Range B, covering a wider range for less frequent events.

Normal variations in load and DG operation fall in the category covered by Range A. The NRS 048
[13] standard in South Africa demands that voltage regulation must comply within £5 % of the nominal
voltage level for voltage levels above 500 V This result in a range from 0.95 pu - 1.05 pu of the base
voltage. Improving the voltage profile of the grid (minimising PQ indices like overvoltages and
undervoltages) is thus possible with DG penetration and adequate control techniques. These PQ
indices are likely to occur when large loads are switched on and off the power grid.

2.6 Distributed generation and artificial intelligent control tools

The control techniques chosen for DG control will mainly depend on the type of application the unit is
used for and the control parameters. According to lbrahim and Morcos [2], Al technigues are suitable
for PQ analysis and control. Contralling the DG power source is important because the control mode
will determine the following:
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e Has the DG application goals been achieved (PQ control, back-up, power saving etc.)?

¢ |sthe DG a profitable investment?

The DG application goal for this study is PQ control. The fundamental goal of the control scheme is to
determine the output control parameters of the DGs for a specific network condition. This section
gives a short overview of the different Al techniques and types of control. The operation and internal
structure of ANNs are also described. Most DG systems have properly engineered internal control
systems {speed governing systems, exciter control etc.) which are not discussed.

2.6.1 Artificial intelligence techniques for DG

2.6.1.1 Expert systems (ES)

ES uses knowledge and reasoning procedures to solve problems that are difficult and require
significant human expertise for their solution. Just like human experts, ES are designed to be an
expert in one knowledge domain. An advantage of ES is the explanation facility (used when there is a
lack of PQ knowledge resources).

2.6.1.2 Fuzzy logic (FL)

Fuzzy set theory provides a means for representing uncertainties. Fuzzy logic seems to be most
successful in two kinds of situations:

* In models where understanding is limited or vague; or
e Processes where human reasoning and human decision-making are inextricably involved.

Fuzzy logic rule-based systems use a collection of fuzzy conditional statements (rules). This means
that fuzzy logic rule-based system identifiers, is generally model-free paradigms. Fuzzy logic rule-
based systems are nonlinear function approximators, and any nonlinear function can be approximated
to any desired precision [14].

2.6.1.3 Artificial neural networks (ANNs)

A neural network is a massively parallel distributed processor made up of several computing units,
which is able to store experimental knowledge and to learn from examples and generalize.
Generalization refers to the network producing reasonable cutputs for inputs not encountered during
training (learning) [15]. This means that the system has to be retrained with the new "knowledge” to
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optimise the precision of the system. The network learns from examples by constructing an input-
output mapping for the problem at hand. With this kind of interconnected internal structure, it is able to
represent functions and to learn these functions.

2.6.1.4 Adaptive nero-fuzzy systems (ANFS)

Adaptive nero-fuzzy systems combine the learning abilities of ANNs and the excellent knowledge
representation and reasoning of fuzzy logic. ANFS are derived from a general category of intelligent
networks known as adaptive networks, like ANNs. ANFS is an effective tool for tuning the
membership functions and minimizing the output error measure of a FL system.

Artificial intelligence has been applied to several PQ problems [16]. The following applications are
summarised as follows:

e ANNs have been used to classify PQ patterns and the cause of the disturbance.

s ANNs have been used to classify events into PQ events (sags, swells, distortions,
interruptions etc.) and non-PQ events.

¢ Fuzzy-ES systems have been used to diagnose PQ problems. FL is combined into these
systems because of the imprecision and fuzziness of the data.

e ANN-ES systems have been used to classify PQ disturbances into respective classes (ES)
while the ANN decided the cause of the disturbance (individual ANNs each trained for only
one class of disturbance).

As discussed in chapter 4, the main goal of the control scheme is to optimally control the DGs. The
input to the control scheme is based on pattern-recognition and ANNs emerged as powerful pattern-
recognition tools [2]. For the purpose of this research, ANNs is chosen as Al control technigque.

2.6.2 Control Types for DG

2.8.2.1 Threshold Control

In threshold control, the DGs run whenever a facility's electrical load is greater than the predetermined
threshold. The number of DGs initially installed is equal to the difference between the annual peak
and the threshold divided by the nominal power output of each installed unit:

Number installed = (KW geak = KW tresnoid/KWV per unit
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If the electrical load of the facility is greater than the threshold, then the number of DGs operating is
equal to the number to reduce the grid load to the threshold limit:

Number operating = (kW building = kW mmmm)fkw per unit

A problem with this type of control is deciding where to assign the threshold limit. A high limit means
that the DGs is used only for peak saving (operating hours is small). A fow limit means the DGs run
more often and is a characteristic of base loading. A threshold of zero means the DGs will try to

operate whenever possible.

2.6.2.2 Net metering control

In this metering scenario, the electrical meter runs backwards if excess electricity is produced on-site.
If the meter reaches zero, buyback rates apply.

2.6.2.3 Cooling/heating priority control

This type of control is mainly used for on-site generation. DG units will be deployed as co-generators
to satisfy a cooling or a heating lead. In this mode of control, the DGs operate primarily to satisfy
these loads, and the satisfaction of the electrical load is a secondary benefit.

2.6.2.4 Optimal control

This type of control is mainly used for on-site DGs. On-site generation is operated using an algorithm
that reduces the operating cost such that the cost to the facility is minimized every hour. The cost of
the grid electricity and locally produced electricity are compared each hour; and when the former is
more expensive, the on-site DGs are operated.

2.6.2.5 Complete optimisation

Optimal control is sufficient for performing optimization-based control. An optimization routine must be
able to keep track of all data acquired a period and provide cost estimates for the period. In this
period, the optimization routine determines the capacity of DG needed for that period. A prediction of
the load data for that period is usually required.

2.6.2.6 Regulation control

The objective of this control type is to regulate parameters in the system. The DG can control the
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following parameters:

e Real power,

e Reactive power;

e Frequency,

o Voltage magnitude;
o PF.

The main goal is to deliver power to the load as reliably and economically as possible while
maintaining the voltage and frequency within permissible limits. This control is most common at
sensitive loads that are susceptible for voltage fluctuations. Frequency is mainly affected by changes
in real power, whilst the voltage magnitude is mainly affected by changes in reactive power [17], [18].
Thus, the real and reactive powers must be controlled separately. The two techniques used to control
the real and reactive powers are:

e Load frequency control (LFC); and
e Automatic voltage regulator (AVRY).

The LFC controls the reat power and the frequency of the system and the AVR controls the reactive
power and the voltage magnitude of the system. LFC is the basis of any large interconnected power
system, and has made operation of such large systems possible.

Another type of control technique is power factor (PF} control, where the DG is fixed ate a set PF. The
PF is typically around unity. This mode allows the unit to follow the system voltage, with no attempt to
regulate it. The reactive power follows the real power output so that the PF remains relatively constant
while the real power is varied. While in the grid-dependent mode (connected to the grid), the DG
operates at near unity power factor.

2.6.3 System voltage control

Kundur [19] identifies the main objectives of system voltage control as:

s Voltage at the terminals of all equipment should be kept within acceptable limits, to avoid
damage and malfunction;

* Keep voltages close to the values for which stabilising controls are designed for;

» Minimize reactive power flows, to reduce active and reactive power losses.
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The control of voltage in transmission systems are divided in three strategies, i.e. normal, preventive

and emergency state control. Preventive and emergency state control are mostly focused on

contingency plans in case of cutage of major components or lines which may force the system to

become unstable. Normal state control deals with the voltage regulation issues of the system in the

normal state (all system components operational). A brief overview of the three control types for

normal state control follows in the next paragraph {19}, [20].

Primary Control is used to keep the terminal voltages of the generators close to reference
vaiues given by the operators or secondary controliers. Also, tap changers and their
controllers belong to primary control layer.

Secondary Control acts on a time scale of seconds to a minute and within certain regions of
a power network. The network is divided in geographic regions. The aim of this control is to
keep an appropriate voltage profile in a region, reduce circulating reactive power flows, and
maximise reactive reserves.

Tertiary Control acts system wide on a time scale of about ten to thirty minutes. This control
type is based on the OPF (optimum power flow). The desired network conditions are specified
in the form of a cost function, which main geal is to minimise system losses and regulate
voltage profiles close to the rated values. The main control variables are generator voltage
setpoints and switching orders of compensation devices such as shunt capacitors. -

2.6.4 Advantages of DG control

Control and communication of DG is necessary in power systems. These devices can usually be

controlled from a central location or control centre. Figure 2.13 illustrates a communication and control

network overlaying a power network with DG.
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Figure 2.13 Communication and control of DG on a power network.

There are a number of advantages to providing control over the DG in the electric power system and

they include:

Scheduled Dispatching

New DG technology has the capability to dispatch power quite rapidly to varying load
conditions. The power dispatch of a 3-phase, 30 kW microturbine is shown in figure 2.14. The
DG requires +20 s to vary its power output from one third to full power.

Cold-Load Pickup
DG can be controlled to reduce the amount of load that has to be picked up by central
generation after an outage or fault in the system.

Load Management

DG can be controlled to reduce the load during peak periods. By controiling the amount of
power delivered by the DG, the stress on central generation and transmission lines can he
relieved.

Voltage Regulation
By controlling and coordinating existing distribution elements with DG, improved voltage
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profiles is possible. It may be necessary for distribution elements to be controlled to operate
under different seftings or modes when the DG is operable. If the equipment operates
autonomously without control, undesirable conditions may occur and damage equipment.
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Figure 2.14 Power output of a 30 kW microturbine.

2.6.5 Artificial neural networks

Artificial neural networks (ANNs) consist of simple processing units operating in parallel. This concept
is motivated from its inception that the human brain consists of billions of neurons functicning as a
parallel processing unit. The human brain has the ability to learn from experience and adapt to its
surrounding environment., From this principal, an ANN is constructed to model the way the human
brain performs a task, mainly the process of learning.

The ANN is trained (the learning process) and adjusted so that a particular input leads to a target
output. This process is called input-output mapping or supervised learning. It involves modification or
adjusting the synaptic weights (values of the connections between elements) of the ANN. Figure 2.15
illustrates the process of training.
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Figure 2.15 Training process of an ANN.

The benefits of using a NN are the following [15]:

It can model non-linear input-output data, e.g. non-linear functions;

The model is adaptive and can be retrained with data to adapt to a new surrounding;
The network can provide information about the confidence of its decision. This can be used to '
improve the classification performance of the network.

To design an ANN, the model of a neuron itself is firstly discussed. The neuron is the simplest building
bleck of an ANN and is fundamental to the operation thereof. The model consists of three basic
elements [15]:

A set of synapses that is each characterised by its own weight;
An adder to sum the inputs;

An activation function for limiting the outputs of the neuron.

Figure 2.16 shows the model of the neuron.

Bias
by
Output
) ——»0
—>| o) n
Summing Activation
junaion funcﬂon

Synaptic weights

Figure 2.16 Nonlinear model of a neuron.
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Figure 2.16 may be described in mathematical terms by the following equations:

Uy = WX, (2.1)
j=l
y=olu, +b;) (2.2)

where Xj,...,Xm are the inputs; wis,...,Wkn are the synaptic weights; uy is the linear combiner output; by
is the bias; @(+) is the activation function and y, is the output of the neuron.

The activation function, denoted by @(*}, is determined by the type of data the ANN is trying to learn.
The tangential sigmoid function limits the output to between minus one and one, while the logarithmic
sigmoid function limits the output of the neuron to between zero and one. Figure 2.17 shows the
transfer functions.

Output 0

Tangential sigmoid function Logarithmic sigmoid function

Figure 2.17 ANN activation functions.

The internal structure of the ANN is intimately linked with the learning algorithm that is used. The
multitayer feedforward architecture has emerged as a suitable structure for the ANN. In this type of
network architecture, the neurons are structured in layers. The input space is connected to the output
space by means of a hidden layer. Every node in each layer is connected to every node in the next
forward layer, but not to each other. Figure 2.18 shows the structure of a multilayer feedforward ANN.
The training process and type of feedforward algorithm that is used are discussed in chapter 5.
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Figure 2.18 Internal structure of a multilayer feedforward neural network.

2.7 Conclusi.ons

Existing DG technologies are described and the major benefits and issues of using DG are discussed.
The different technologies are evaluated in terms of their contribution to the listed benefits and issues.
A definition for DG is proposed as there is no consensus on a precise definition for the concept (it
encompasses many technologies and many applications in different environments).

Eiectric PQ control is necessary in any power system to ensure effective operation of equipment and
importantly to avoid damage to equipment. This means a consistent and controlled voltage magnitude
and frequency. Many factors contribute to PQ problems, from lightning strikes to household
computers, each resulting in different PQ phenomena. For the purpose of this study, the switching of
large loads on a MVA power grid is investigated. This can result in PQ problems like overvoltages and
undervoltages. Proper control of strategically placed DGs in the power grid may improve these
conditions. The main control strategy of the DGs will focus on tertiary normal state control as
discussed in section 2.6.3.

Al techniques have emerged as suitable solutions for the control scheme of DGs. The different Al
technigues are discussed and evaluated. ANNs emerged as an appropriate Al control technique for
the control of the DGs because of its ability to recognise patterns (e.g. the network load patterns as
discussed in chapter 4). To control the PQ in the grid, regulation control is chosen to as control
scheme for the DGs. Choosing this control type makes it possible to control the power, voltage and
frequency in the power grid. A proper control scheme for the DGs will ensure that the power quality
and stability of the power network will be maintained.




Chapter 3 - Electric power system model

3.1 Introduction

In this chapter, a simulation model is developed which integrates the DGs and the electric power
system. The software environment chosen for the simulation platform is Matlab Simulink® and Matlab
SimPowerSystems° (SPS). The electric power network scenario is provided by ESKOM and forms
part of an existing electric power network. The impact and penetration of DG in the electric power
system is investigated and some key issues include voltage regulation and electrical power losses.
This simulation model forms the basis for the analysis of the electric power system.

3.2 Case study

The scenario used in this research is part of an ESKOM power network that is under revision. The
network may have power quality problems in the near future, as the network is loaded to full capacity.
The main transmission lines are rated at 275 kV ac. Sub transmission or distribution is rated at 132 kv
ac for cities, towns and big customers (e.g. mines). Figure 3.1 shows the line diagram of the ESKOM
network under revision and the substation names are shown in table 3.1.

Sub Name Base kV
A Everest 275
B Perseus 275
cC Harvard 275
D Merapi 275
E Boundary 275
F Olien 275
G Ferrum 275
H Garona 275

Table 3.1 Substation names and voltage ratings of the electric power network.
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Figure 3.1 Line diagram of the ESKOM network.

The electric power network line, load, capacitor bank and substation data are shown in annexure B.
The transformation of line data from R, X and B (pu) to R (Q/km), L (Hkm) and C (F/km) is also
shown in Annexure B. This is done because the line modelling blocks of SPS uses the line R, L and C
values. Figure 3.2 shows the line diagram of the network with the real load capacities, line lengths,
bus numbers, transformer ratings and capacitor banks.
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Figure 3.2 Line diagram of the ESKOM power network.
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3.3 Simulation environment

Matiab6.5R13 [21] is a mathematical computing program with the capability of real time interfacing
with external devices like monitoring devices and controliers. The full package constitutes several
different computing toolboxes (control, neural networks, fuzzy logic, optimization, robust control etc.).
Simulink is a toolbox of Matlab where complete systems can be modelled by means of blocksets.
These blocksets are more user friendly than a string of programming code. The blocksets can be
anything from simple connectors to advanced controllers with feedback and monitoring signals. SPS,

which is a sub-toolbox of Simulink [22], constitutes the following sub-libraries:

e Electrical sources (dc, a¢, current etc.) ;

= Elements (branches, lines, transformers, circuit breakers etc.);

« Power electronics (diodes, thyristors, bridge, mosfets etc.);

¢ Machines (regulators, dc, synchronaus, asynchronous etc.);

s Connectors (ground, bushars efc.);

e Measurements (voltage, current, impedance, power etc.).

The part of the ESKOM power network is simulated using these libraries. Figure 3.3 shows the main

draw window in Simulink.
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Figure 3.3 The main draw window in Simulink with the SPS library browser.
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The power graphical user interface (GUI) in the library browser is used to provide a graphical user
interface for the analysis of models created in Simulink. The power GUI allows you to evaluate and
modify the initial states in order to start the simulation from any initial condition. It displays the steady
state values of measured currents and voltages. The power GUI also performs load flow analyses and
initialization of three phase networks containing machines so that the simulation starts in steady state.
It also displays impedance versus frequency plots and FFT analyses of the system. The power GUl is
used in the simulation to obtain the following data and results:

o steady state values of voltages and currents on each busbar; and
¢ Ioad flow and machine initialisation to start the simulation in steady state.

Figure 3.4 shows the main window of the power GUI tool.

Figure 3.4 The main window of the power GUL.
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3.4 Simulating the electric power network in Matlab

The power system under consideration is modelled in Simulink using SPS. The mode! constitutes the
following building blocks:

¢ Feeding sources;

¢ Transmission lines;
e Loads;

e Transformers.

The network constitutes the following components:

+ One 275 kV feeding source (275 kV transmission line},
e One 400 kV feeding source (400 kV transmission line);
¢ Seven 275 kV transmission lines;

e Three 275 kV capacitor banks;

e Seven 132 KV RLC ioads;

e« Seven 275 kV:132 kV transformer substations;

» One 400 kV:275 kV transformer substation;

¢ Two 30 kV:275 kV transformer substations;

o Two 30 kV ac generators;

s Two 30 KV resistive loads.

Since the study mainly focuses on an artificial control scheme for the DGs in the power system, the
power system constitutes the following constraints:

o There is no unbalance in the system. All three phases are balanced,

« The transformer tap positions are not control variabies, so all the transformer tap positions
are fixed at 1 pu;

+ The generators do not inject any harmonics into the system;

» The power system is evaluated in steady state only (evaluated only at the fundamental
frequency 50 Hz);

¢ All the loads are linear at 50 Hz and rated at 132 kV,;

» Double lines are modelled as single lines with the equivalent values and ratings;

* Synchronous generators are used for the DGs (capable of delivering large-scale power [18]).
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3.4.1 The power system components
3.4.1.1 Voltage source (Feeding sources)

The grounded three-phase voltage source implements a pure three-phase sinusoidal voltage source
with equivalent RLC impedance. This block is used to simulate a part of a power network feeding the
existing network. It is typically used to simulate the network from the power station up to the point of

connection. Figures 3.5 and 3.6 show the library block and the library dialog box of the voltage
source.

A
C
3-Phase Source

Figure 3.5 Simulink library block of a three-phase voltage source with equivalent RLC impedance.

Block Parameters: 3-Phase Source
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Figure 3.6 Dialog box parameters of a three-phase voltage source with equivalent RLC impedance.
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3.4.1.2 Transmission line

The pi section transmission line implements a single-phase transmission line with parameters lumped
in pi sections. For a transmission line, the resistance, inductance, and capacitance are uniformly
distributed along the line. Figures 3.7 and 3.8 show the library block and the library dialog box of the
transmission line.

T

Pl Section Line

Figure 3.7 Simulink library block of a pi section transmission line.

Block Parameters: PI.Set:tiun Lin

Figure 3.8 Dialog box parameters of a pi section transmission line.
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3.4.1.3 Transformer

The three-phase transformer with two windings (three windings is used to eliminate harmonics) block
implements a three-phase transformer using three single-phase transformers. The transformers in the
network are used to step up the voltage at the generators from 15 kV {o 275 kV (A - Yg) and to step
down the voltage at the loads from 275 kV to 132 kV (Yg - A) [18]. Figures 3.9 and 3.10 show the
library block and the library dialog box of the transformer.

> 3

) ———}:i %::_uu b

p! 3
g a
Three-phase
Transformer

(Two Windings)

Figure 3.9 Simulink library block of a three-phase transformer.
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3.4.1.4 Load

The series RLC load block implements a linear load as a series combination of R, L, and C elements.
At the specified frequency, the load exhibits constant impedance and its power is proportional to the
square of the applied voltage. Figures 3.11 and 3.12 show the library block and the library dialog box
of the load.

bV S 4
E Y @ [Z]
3-Phase
Series RLC Load

Figure 3.11 Simulink library block of a three-phase series RLC load.

Black Parameters; 3-Phase Serie
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Figure 3.12 Dialog box parameters of a three-phase series RLC load.
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3.4.1.5 Generator {DG)

The synchronous machine block models both the electrical and mechanical characteristics of a simple
synchronous machine. The electrical system for each phase consists of a voltage source in series
with a RL impedance, which impiements the internal impedance of the machine. Figures 3.13 and
3.14 show the library block and the library dialog box of the generator.

Ap
»NPm
Bp
293
AE
m_Sip
Synchronous

Machine 51 Units

Figure 3.13 Simulink library block of a synchronous machine.
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Figure 3.14 Dialog box parameters of a synchronous machine.
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3.4.2 Placement of DGs in the electric power network

To optimise the power quality in the electric power system, a maximum of two DGs must be integrated
into the existing network. The voltage profile of the network is firstly evaluated without any DGs for
two steady state conditions, firstly at minimum load and secondly at full load. Table 3.2 shows the
voltage profile of the power network at minimum and maximum load without the DGs (transformer tap
positions are fixed at 1 pu).

Load Bus1 Bus2 Bus3 Bus4 Bus5 Bus6 Bus? Bus8

Min. 1.00 1.00 095 0945 1.00 1.0 1.04 1.059
Max. 1.00 1.00 0.91 0.883 1.00 0945 0945 096

Table 3.2 Voltage profile of the power system at min. and max. load.

Table 3.2 shows that the voltage profiles of busses 3 and 4 are the worst. To select the optimal
injection points of the generators, the DGs are placed randomly at the six busbars in the network
(DGs are not placed at busses with a feeding source or on the same transmission feeder). The
network active power losses are evaluated for the load conditions at full capacity. Table 3.3 shows the
power losses for the randomly placed DGs. From these results, the weakest points are identified.

DG 1 DG 2 Total Power Loss
{bus no.) {bus no.) {MW)
3 5 49.6099
3 6 53.8522
3 7 50.7263
3 8 51.8229
4 5 51.8207
4 6 52.7379
4 7 49.7470
4 8 49.9336

Table 3.3 Power losses of the network for the randomly placed DGs.

Busses 3 and 5 were observed to have minimum loss reduction and hence considered to be the
sensitive busses. The results show that DG 1 must be placed at bus 3 and DG 2 at bus 5.

51



Figure 3.15 shows the final line diagram of the power network with the two integrated DGs.
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Figure 3.15 Line diagram of the ESKOM power network with the two integrated DGs.
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3.4.3 Interconnection of the DGs on the grid

The DG can either be operated in parallel with the grid or on a switched, roll-over basis [23], [24]. In
paralle! operation, the DG and the grid are both always connected to each other and to the load. One
advantage of this operation is that the outage of the primary supply causes no interruption of service.
If the DG is supplying the power and fails, the grid instantaneously makes up the difference and no
interruption of power flow to the load occurs. Similarly if the grid fails, the DG picks up the load. By
contrast, in roll-over mode, only one of the sources is connected to the load at any one time. The
connection is operated by the “flip of a switch”. The disadvantage of this mode is that a brief
interruption of service occurs when the primary power source fails. Figure 3.16 shows the operation
and interconnection of DG on the power grid.

= Grid E Grid
) ()
- -
“ 7 oA
Load Load
Parallel Operation Roll-Over Operation

Figure 3.16 Operation and interconnection of DG on the power grid.

Parallel operation of DG with the power grid can sclve voltage regulation problems [23]. As the load
varies, the grid will support the DG and provide the instant transient response needed, allowing the
DG to vary its output at its slow {compared to the power grid) rate. The result is far less variation in
the supply voltage and improved power quality. The switching of large loads causes less voltage
change than when served only by the power grid. Due to this advantage, parallel operation of the DGs
is considered for the electric power network. The complete system as shown in figure 3.15 is
modelled in Simulink with SPS. The Simulink mode! is shown in figure E.1 in Annexure E.

3.5 Conclusions

To evaluate the electric power system under revision, a simulation mode! is developed which integrate
the DGs and the electric power system. The software environment chosen for the simulation platform
is Matlab Simulink® and Matlab SimPowerSystems®. The strategic placement of the DGs in the power
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system is important and the loss sensitivities of the busses are investigated. The results show that the
DGs must be placed at busses 3 and 5. The interconnection issues surrounding DG are discussed
and it is concluded that the DGs must operate in parallel with the electric power grid. The integrated
medel is lastly modelled in Simulink, which forms the basis for the analysis of the electric power

system.




Chapter 4 - ANN data development

4.1 Introduction

This chapter focuses on the development of training data for the ANN controlling the DGs on the
power grid. This procedure firstly involves the development of a cost function to determine the optimal
output values for the DGs. The main goal of the cost function is to optimise the voltage profile of the
system for a particular network condition. The cost function must also determine the level of
contribution by each DG to minimise total system losses.

The cost function incorporates a voltage constraint and optimises the function until the point where the
best voltage profile with minimum system losses is obtained. The final training set developed contains
the operating parameters for each DG for the different load conditions of the network.

4.2 Development of the training data

4.2.1 Network parameters

The input space to the ANN must give some information about the network conditions and status.
Many feedback parameters can be monitored in the power network, ranging from load conditicns to
generator power factors, For the purpose of this Study, the load conditions are monitored on all the
system busbars. This means that from the 132 kV substation transformers to the 220 V distribution
systems are modelled as an entire load. To extract the most information from the minimum amount of
measurements, the network parameters as given in table 4.1 are measured:

Measurement Description
Vi The load voltage magnitude
ZV, The load voltage phase angle
I The load current magnitude

/I The load current phase angle

Table 4.1 The measured parameters for each load in the network.
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Fundamental calculations can be made from these parameters. To calculate the active and reactive
powers at the fundamental frequency, the following equations are used:

t+7

P = Jitoe o @)

t+7

O =% [ ) i{et - 71 2))et (4.2)

with T = 1/fundamental frequency.

These calculations are done for every load in the network. All the calculated and measured
parameters of the power network are listed in table 4.2.

Input parameter Description
Vi The load voltage magnitude
LV, The load voltage phase angle
5 The load current magnitude
I, The load current phase angle
Plosd The load real power
Qioad The load reactive power
Vigen The generators/sources voltage magnitude
ZVW The generators/sources voltage phase angle
Pgen The generators/sources real power
Qen The generators/sources reactive power

Table 4.2 Measured and calculated parameters of the loads and sources in the network.

4.2.2 Power flow analysis

To develop a training data set for the ANN, a cost function is used to find the optimum generation
levels of the DGs for the various input conditions. To ensure the credibility of the training data, the
cost function must accurately represent the network model. To do this, a power flow solution of the
power network is done using the Newton-Raphson Power Flow solution. This method is found to be
more efficient than the Gauss-Seidel Power Flow solution [18]. To solve the power flow solution, the
system is assumed to operate under balanced conditions and only a single-phase model is used. To
solve the power flow of the system, four quantities are associated with each bus in the network:
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» Voltage magnitude |V];
o Phase angle 5,

s Real power P,

e Reactive power Q;

The system busses are classified into three different types [18]:

o Slack Bus (Swing Bus) _
This bus is taken as reference for the voltage magnitude and phase angle. The difference
between the loads and the generated power caused by the network losses is made up by
this bus.

o Load Busses {P-Q Busses)
The real and reactive powers are specified at these busses. The voltage magnitude and
phase angle of these busses are unknown.

o Regulated Busses (P-V Busses)
These are the generator or voltage-controlled busses. The real power, voltage magnitude
and limit of the reactive power are specified.

The following two equations describe the active and reactive powers on the busses (Newton-Raphson
Power Flow solution);

AR =37 |5 |ooslg, - 5, +4,) 3
=

AQ, = —i]r/,. |7, |¥,|sin6, —&,+5, ) (4.4)
j=

with V;= voltage magnitude of bus i
V= voltage magnitude of bus |
Y; = bus admittance matrix.

The Matlab program named Ifnewton [18] is used to obtain the power flow solution for a given
network condition. The credibility of this algorithm is validated against the power flow solution of
SimPowerSystems. For this validation process, a test model is created in Matlab and the two
simulations are compared. The results of the power flow solutions for the two different modelling
environments (Newton-Raphson code vs. SimPowerSystems) are shown in Annexure C. The results
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show close correlation, thus verifying the credibility of the Newton-Raphson method.

4.2.3 Power losses analysis

The first step in determining the optimal generation levels of the generators is to express the system

losses in terms of the generators real power outputs. The method used to determine the system

losses is known as Kron's Power Loss formula or the B-coefficient method [18].

The total power at bus i, denoted by S, is given by (4.5) as
S, =P +jQ, =V]I
The total system losses are given as the summation over all the buses as

B +jO, = ZV:'I: = Vbzsf.;us
i

with P, = Real power losses of the system
Q. = Reactive power losses of the system
Viys = Column vector of the bus voltages
Ivus = Column vector of the injected bus currents

The bus currents in terms of the bus voltages is given as

Ibm‘ = Ybury;m.r

with Yaus the bus admittance matrix. Solving equation (4.7} for Ys.s gives

Vm = K:;:Ibm = Zb 1,

us* bus

with Zsus the bus impedance matrix.

Also, Z,,s is symmetrical, therefore Z fm = £,,.. Substituting (4.8) into (4.6), results in
P+jo =[Z2 I VI =721 =I 27 I,
A ) %42 busLous | Lbus = L pus@pus ous ™ L bus L bus? bus

Equation (4.9) can be rewritten in index notion as

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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P +Q, = iil,.zylj' (4.10)

i=1 j=1

The bus impedance matrix is also symmetrical (Z;= Z;), thus (4.10} becomes

. 1 “ 2 L] *
P +jO, =EZZZU(IE.IJ. +1I) (4.11)

i=1 j=l

Splitting (4.11) in the real and imaginary components, the power ioss becomes

1E . .
P, =E§§R'}'Ui‘rj +IJ‘II') (4.12)
0, =%ZZXﬂ.(I,I; +LI)) (4.13)
=1 j=1

with R; the real element and Xj the imaginary element of the bus impedance matrix.

Since Ry= Ry, the real power given by (4.12) can be rewritten as

P, = ii‘rfRyI; (4.14)

i=] j=1
The system real power loss (4.14) can be rewritten in matrix form as

P, =1 R, 1, (4.15)

with Ry, the real component of the bus impedance matrix.

The total load current is expressed as the sum of all the individual load currents. This is done to obtain
a general formula for the system power loss in terms of the generator powers.

In=I+1,,+..+1, (4.16)
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Assuming the individual bus currents vary as a constant complex fraction of the total load current, i.e.
I, =11,  k=12..n4 (4.17)
Taking the reference or slack bus as bus 1, the first row in (4.8) becomes
Vi=Z L, +Z,0,+..+Z, 1 (4.18)

1n*n

If the number of generator busses is ng and ng is the number of load busses, equation (4.18) can be
written in terms of the generator and load currents as

V, = Z y g,+kz;:zl,,lu (4.19)

Substituting I, from {(4.17) into (4.19), the resuits in

V= Z;,Zu +1p ;lkzlk =Zl:zl,lg, +I,T (4.20)

with T =Y 1, Z,,
k=1

If we define Iy as the current flowing away from bus 1, with all other currents set to zero, then
Vi=-2Z,1, (4.21)

Substituting (4.21) in (4.20) and solving /p, results in

1
= *“221. o —=2Zud, (4.22)
T
Substituting /p from equation (4.21) into (4.17), the load currents then become

Z g — anI -szzu Iy +pilidy {4.23)

r=1

with p =~

e Eoay
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Substituting the generator currents with the above relation in matrix form, yields the matrix C

I, =CI

us new

Substituting (4.24) into (4.15) yields
PL = [CImzw ]T Rbusc‘l;ew = I:WCTRme‘I;ew

Given S, the complex power at bus i, the generator current becomes

. , I_JQ_g‘
S, =Pg,. -jQ _
V.

i i i

with W, =T

If the current /, is added to the column vector current in (4.26), it becomes

Lo, =P
Substituting (4.27) into (4.25), the loss equation results in
P, =[yP )" C" R, C'y' Py,
=Py C'R,C'y P,

=PLHP,
with H =y C"R,C'y'

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

The real power loss is found from the real part of the complex resultant matrix above. H is a

Hermittian matrix and is symmetrical. The real part is obtained from

H+H

RH] =~

(4.30)

{(4.30) represents the system loss coefficients or B-coefficients. Kron’s Loss Formula can thus be

written as

P = iiPlBy‘l)j +zn:BofPf + By
p

i=l ;=1
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4.2.4 Cost function development

When transmission lines are long and the load density areas are very low (loads are far from one
another), transmission or system losses become a major factor in determining the optimal generation
levels of the DGs. Optimal generation levels influence the following factors:

e Generator efficiencies;

e Bus tension profile (effective bus voltages);
s Transmission or system losses;

s Fuel costs.

This means that the generation levels are determined by expressing these variabies in terms of the
generator output powers, The input to @ DG or generation plant is usually measured in Btu/h (British
thermal units per hour) and the output in MW (delivered power). Figure 4.1 shows an input-output
curve of a DG or known as a heat-rate curve.

Fuel input
(Btu/h)

A 4

Power output

(MW)

Figure 4.1 Heat-rate curve of a DG unit.

The heat-rate curve can be converted to a fuel-cost curve by changing the ordinate of the heat-rate
curve [18). Figure 4.2 shows the fuel-cost curve of the DG.

This relationship can be represented by a quadratic function of the real power generation by the DG

C,=c,+bP +aP’ (4.32)
with a,, b, , ¢, constants

Py

P, the output powers of the DGs
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Fuel cost, C;
($/h)

A J

Power output, P;
(MW)

Figure 4.2 Fuel-cost curve of a DG unit.
The foliowing objective functions that are considered for the cost function are [18], [25], [26]:

4.2.4.1 Generation costs
For a system with i generating units, the production costs as a function of the output powers is

FR=C=)C =Y¢+bP +aP’ (4.33)

i=1 =1
where C; = total production cost

C, = production cost of the i " plant

P, = generation level of the i ™ plant

The generation levels are limited, so (33) is subject to the following constraints

Py € P, S Piay (4.34)

with B & Py the minimum and maximum generating levels of the plants

4.2 4.2 Active power logsses

Since the system losses is taken into account, the total amount of generated power is given by the
load demand plus the system losses and is given by

Fy=Y P =P,-P,20 (4.35)
i=1

with P, P, ,F; the total load, real losses (Kron’s) and generation in the system.
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4.2.4.3 Average voltage deviation from permitted range (AVDP)

The average voltage deviation from permitted range is the voltage deviation of the actual voltages at
the busbars and the permitted voltage range of the system. This is given by

n

V-7,
F,=V, ——Zl: 4
3= Tawe — N ( 36)

with ¥V, = actual voltage at busbar /

V,-' =desired voltage range at busbar i (0.95 pu - 1.05 pu)

N = number of busbars in power system

4.2.4.4 Average voltage deviation from ideal (AVDI)

The average voltage deviation from ideal is the voltage deviation of the actual voltages at the busbars
from the ideal voltage level. i.e. 1 pu. This is given by

Z'K = Videar
F,=Vyu= —'=1—N— (4.37)

with ¥, = actual voltage at busbar i
Ve =ideal voltage (1 pu)

N =number of busbars in power system

The optimization problem to solve is the following

F=min[F, F, F,  F] (4.38)
that is
n , sz_Vr‘ Z|V:"vmhar|
F=min| ) ¢,+b,P, +a,P, P.-P fel =1 4.39
; ¢ 1Ip N N (4.39)
subjectto P, < P, £ P, and the load flow equations:

64



sinfg, -6, +5, )

f 7

aB =Y,

i=l

i

Vj

coslg, ~6,+6,) and A0, =3 W[V, |1,
=

Figure 4.3 illustrates the process for the development of the training data.

Select load combination [«

¥
Select starting parameters for DGs (Voen= 0.95 pu, Pgen = 1 MW)

v

Determine network parameters with SPS

r

A
Determine bus admittance matrix

v

Determine system power flow solution
(Newton-Raphson Power Flow)

h 4
Determine system loss coefficients
(Kron's Loss Formula)

A 4
Determine average voltage deviation
from permitted range (AVDP)

r
Determine average voltage deviation
from ideal (AVDI)

!

Determine incremental fuel costs

y

Select new parameters for DG1 and DG2
(Vgen =0.96 -1.05 pu,
Fi=10 - 150 MW)

P; 5 Pimax?

Vian S Vgen(may)?

a ZFV-"V;- 2V |
F=min|Y ¢ +8P +aP} P;-P, il =i
t=l N N

Figure 4.3 Flow diagram of the process for the development of the training data.
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4.3 The formulated training data

As discussed in chapter 2, the training data must be randomly organised to prevent the ANN from
classifying the data into certain groups. For the purpose of this study, the training data representing
the network includes the following:

e Load conditions (seven loads that each has a real and reactive power value),
o Generator outputs {two DGs that each has a real power and voltage magnitude level).

All the loads (input variables) can take one of 3 different normalised values: 0, %2, 1. Since there are 7
loads, the training table consists of 3" = 2187 entries, i.e. 2187 different load combinations. The
optimum generation levels for the two DGs need to be determined for each of these input
combinations. The cost function is used for this optimisation process. The result of this optimisation
process is the training data. This data is normalised to represent the training table for the ANN. Table
4.3 shows the normalised training table for the input load combinations. Take note that the input
values are incremented in steps of 2. The output values of the DGs are determined by the cost
function.

Input Normalised Inputs Outputs
number L7 L6 L5 L4 L3 L2 11 DG1 DG2

1 0 0 0 0 .0 0 ? ?

2 0 0 0 0 0 0 % ? ?

3 0 0 0 0 0 0 1 ? ?

4 0 0 0 0 0 % 0 ? ?

5 0 0 0 0 0 % % ? ?

6 0 0 0 0 0 % 1 ? ?

7 0 0 0 0 ] 1 0 ? ?

8 0 0 0 0 0 1 % ? ?

9 0 0 0 0 0 1 1 ? 7
10 0 0 0 0 % 0 0 ? ?
1 0 0 0 0 % 0 % ? ?
12 0 0 0 0 % 0 1 7 ?
13 0 0 0 0 % % 0 ? ?
2187 1 1 1 1 1 1 1 ? ?

Table 4.3 Normalised training table.
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The values corresponding to the normalised input values 0, % and 1, are discussed in chapter §. To
minimise the input combinations to the cost function to 2187, all the loads are set to operate at a
power factor of 0.95. The reactive power can thus only vary in that ratio (the active and reactive power
of the load is set to produce a power factor of 0.95).

4.3.1 Sequential optimistaion

The training data are determined for all 2187 different input states with the cost function. This is done
by sequentially testing each output state for all 2187 input states. The two DGs in the power system
can each operate with an incremental power of 10 MW and a maximum of 150 MW. This means that
the output power can take on one of 16 different states {1 MW, 10 MW, 20 MW,..., 150MW). The DGs
terminal voltage levels can be varied from 0.95 pu to 1.05 pu, which transiates to 11 different states.
Since there are 2187 input states, 2187*16*11*11 = 4 234 032 possible outputs must be tested. To
minimise the different possible outputs that has to be determined by the cost function, the output
powers of the DGs are the same. If not so and each DG could increment its power independently, the
DGs output powers could take on one of 16? = 256 different combinations. For 2187 different input
states, the cost function would have to evaluate 2187*256*11*11 = 67 744 512 states.

The program determines the cost function for each of the different outputs states (1936 times) for
each of the input states (2187 times). The parameters used to determine the cost function are
graphicaily displayed against the input state number below. This is done to visualise the training data
as a behavioural pattern that the ANN should adopt. The parameters chosen to plot against the input
state numbers are:

¢ the system real losses ( P, );

s the system average voltage deviation from permitted range (Vm )

* the system average voltage deviation from ideal (V. )

Figures 4.4 and 4.5 show some of the results of the cost function parameters plotted against the input
state number. The output power of the DGs for the 2187 input states, are graphically displayed in
figure 4.6. The maximum output powers of the DGs are limited to 150 MW per unit.
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4.4 Conclusions

The chapter describes the development of the training data for the ANN. To do this, the power system
is firstly analysed and certain network parameters are measured and processed. Voltage and current
magnitudes as well as phase angles are measured on each system bus. These measurements aliow
us to determine the active and reactive powers on each system bus. All these parameters are
necessary to compute a power flow analysis of the power system. Two power flow environments are
tested against each other, one in SimPowerSystems and the other with the Newton-Raphson Power
Flow solution. Both these environments showed similar results and the power flow solution could be
done with either. The Newton-Raphson Power Flow solution is chosen for the analysis.

The system power losses are determined with Kron's Power Loss formula. The loss formula is
discussed and explained. The power losses of the system are used as a measurement in the cost
function analysis. The cost function uses four different measurements to determine the suitability of
each resuit. These results form the data used for the ANN training table. Sequential optimisation is
used for the cost function optimisation technique. The technique allowed the cost function to test 1936
different output states for each of the 2187 input states. To minimise the different output states to only
1938, both DGs are incremented with the same generation level. If not so, the different output
combinations would increase 16 times to 30 976 different output combinations for each input.
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Chapter 5 - Training the ANN controller

5.1 Introduction

This chapter focuses on the use of an Artificial Neural Network (ANN) to optimally control the DGs in a
power network. The ANN is firstly trained offline {not integrated in the power system) and then
evaluated with the power system. The aim is mainly to let the ANN learn the generation patterns for
the normalised training data. The ANN must then make decisions about optimal generation
parameters for the DGs to improve system losses, bus voltage profiles and generation costs.

The internal structure of the ANN must firstly be determined, i.e. the hidden units. This ANN structure
must ensure a minimum training and test error with the minimum number of epcchs (training
iterations). The main training data set is split into smaller data sets used for training and testing. The
test data set is used to determine how well the ANN generalises for data it has not been trained with.
Lastly, the ANN controller is optimised to evaluate minimum training versus maximum performance.

5.2 Compiling the training and test Data

5.2.1 Training data set

The training data set for the ANN is normalised to limit the input data to a certain domain. The data
interval is limited to the domain between [0, 1]. The interval [0, 1] is thus associated with a minimum
and maximum scaling or normalisation vector, Table 5.1 shows the input components and the
appropriate minimum and maximum normalisation values. Table 5.2 shows a sample of the
normalised input data table of the ANN. The following equation is applied to normalise the data set
[27]:

d,—d

Brorm; = Mg + (rvy, —nv_, )% (d_l—ﬁm_) (5.1)

max [“i]l

with d

norm Jj

= The normalised data point;
BV i » PV, = Minimum and maximum normalisation values e.g. 0 and 1;

d i »d pax = Minimum and maximum data point values.
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It is very important to randomise the training data set, as to allow the training data set to equally
represent the likelihood of each outcome. This means that the training set should contain all the

dominant features of the entire input-output data space.

Component Min.Nor.(P) Max.Nor.(P) Min. Nor. (Q) Max. Nor.{Q)
Load 1 150 MW 250 MW 49.303 MVAr 82.171 MVAr
Load 2 300 MW 400 MW 98.605 MVAr 131.47 MVAr
Load 3 100 MW 160 MW 32.868 MVAr 52.589 MVAr
Load 4 200 MW 250 MW 65.737 MVAr 82.171 MVAr
Load 5 100 MW 130 MW 32.868 MVAr 42.729 MVAr
Load 6 200 MW 250 MW 65.737 MVAr  82.171 MVAr
Load 7 42 MW 50 MW 13.805 MVAr  16.434 MVAr

Table 5.1 Maximum and minimum normalisation values of the loads.

Normalised Input Values

------ 1513 1514 1515 1516 1517
Load1(P) ... 0.8 06 1 0.8 08 .
Load2{P) ... 0.75 0.75 0.75 0.75 0875 .
Load3(P) ... 0.62353 0.81177 0.82353 0.62353 081177
Load 4 (P) ... 1 0.89968 0.89968 0.89968 07993 .
Load5(P) ..... 1 1 0.76786 1 T
Load6(P) ... 0.79936 0.79936 0.80968 0.79936 079936
Load 7 (P) ... 0.83728 1 1 1 L
Load1(Q) ... 0.8 0.6 1 0.8 68 .
Load 2(Q) ... 0.75 0.75 0.75 0.75 0875
Load3(Q) ... 0.62054 0.81027 0.62054 0.62054 o.81027
Load 4(Q) ... 1 0.89902 0.89902 0.89902 0.79804
Load5(Q) ... 1 1 0.76503 1 L
Load 6(Q) ... 0.79804 0.79804 0.89902 0.79804 079804
Load 7(Q) ... 0.83148 1 1 1 T

Table 5.2 Sample of the normalised input data set (load condition 1513 to 1517).
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5.2.2 Test data set

When choosing a test data set to test the performance of the ANN, two important factors must be
considered:

s The test set must have the same characteristics as the training set;
¢ The test and training sets must be mutually exclusive.

The test set must also be chosen to represent the entire input-output data space. The method used to
choose a training and test set, is to generate a uniformly distributed random input-output data space.
The data space is generated using Matlab's Uniformly Distributed Random Generator [21]. This data
set is then subdivided into fwo mutually exclusive data sets, one for training, and one for testing. The
size of the training set is much larger than the test set, typically around 70% of the entire data set. The
test set is then made up of the remaining 30%. Since the entire input-output data set consists of 2187
entries, the size of test set is initially chosen as 655.

5.3 ANN structure

The structure of the ANN as discussed in chapter 2, is chosen as a multilayer feedforward network,
i.e. multilayer perceptron {MLP). A MLP consist of a set of source nodes that constitute an input layer,
one or more hidden layers and an output layer. The input signal propagates through the network layer
by layer in a forward direction. The training of the network is done with the error back-propagation
algorithm [15].

Firstly, the number of hidden layers and neurons must be determined. Most problems can be solved
using only one hidden layer [28]. To find the optimum number of neurons in the hidden layer, two
methods are used and compared. Firstly, a method named constructive approach or network growing
[15] is used. The network is firstly trained with one hidden layer and one hidden neuron until the
training error reaches a minimum and stabilises. The weights of the network are fixed and a hidden
neurcn is added. The network is retrained and tested. Eventually the training error will approach zero
and the network will have learned the data exactly. This must be avoided because the network will
generalise poorly for data not initially trained with. To stop adding hidden neurons, the network is
tested with both the training and test data. If the performance error of both does not improve, the
optimal number of neurons is reached. Adding more hidden neurons at this point, will improve the
training error but to the detriment of the test error. All the training and testing of the network is done
with the Neural Network Toolbox {(Annexure D)} in Matlab.
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Table 5.3 summarises the sum squared errars of the constructive approach method and figures 5.1 -
5.8 shows the average training and test errors of some of these test runs.

No. Neurons  Hidden Layers Epochs Training Error Test Error
14 1 150 3.130488 3.027082
15 1 150 5.342390 5.336285
16 1 150 3.613222 5.158387
17 1 150 3.754472 2.846108
18 1 134 2.360199 3.836269
19 1 129 1.996196 4.618863
20 1 150 3.238494 5.464665
21 1 150 3.117620 2.994529
22 1 150 4.475431 4457668
23 1 106 1.326712 2.619345
24 1 105 1.289944 1.377203
25 1 78 2.595208 12.38539
26 1 92 1.821701 11.36163
27 1 131 2.235801 7.015050
28 1 86 2.008911 10.52061
29 1 63 3.003792 12.61006
30 1 93 1.627750 7.677910
50 1 150 1.538434 9.142491

Table 5.3 Training and test error versus number of neurons for the constructive approach method.
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Figure 5.5 One hidden layer and 23 neurons.
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Figure 5.2 One hidden layer and 16 neurons.
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Figure 5.6 One hidden layer and 24 neurons.




Ermor Squaed Sum (Treining-Blue Test-Red)

Efror Squared Sum (Training-Blue Test-Red)

Epochs

Figure 5.7 One hidden layer and 25 neurons. Figure 5.8 One hidden layer and 29 neurons.

Secondly, a method named the leave-one-out method is used [15). The data set of (n - 1) examples
are used to train the model, and the example left out is used to test the model. The training and
testing is repeated for a total of n times (n is the number of examples in the entire data set), each time
using a different test example. The training and testing error is then averaged over the n trial runs.
The experiment is repeated for different numbers of neurons in the hidden layer. Figure 5.9 shows an
illustration of the leave-one-put method.

a1t | | . -
Tial2z | . -
Trial3s | -

Trial n -

Il Test set = 1 example
3 Training set = (n - 1) examples

Figure 5.9 lllustration of the leave-one-out method.

Table 5.4 summarises the results of the leave-one-out method. The experiment is repeated for the
same number of hidden neurons as for the constructive approach method summarised in table 5.3.
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No. Neurons Hidden Layers Epochs Training Error Test Error

14 1 150 5.846112 11.573189
15 1 150 6.066413 20.11636
16 1 150 2.225536 18.13105
17 1 150 4.112041 5602327
18 1 150 5.861585 5.846726
19 1 150 3.242324 3.943034
20 1 150 2.365254 20.71135
21 1 150 3.415287 15.01456
22 1 150 2.024997 2.270819
23 1 150 1.906267 2623078
24 1 150 0.886568 1.271093
25 1 150 6.681622 24.49372
26 1 150 1.941044 9.931765
27 1 150 46.03966 44.08936
28 1 1560 21.17224 13.66526
29 1 150 0.9765956 1.894916
30 1 150 23.87464 16.98764

Table 5.4 Training and test error versus number of neurons for the leave-one-out method.

Table 5.3 and 5.4 shows that the optimum structure for the ANN is 14:24:4 representing 14 input layer
neurons, 24 hidden layer neurons and 4 output layer neurons. Figure 5.10 shows a graphical
representation of the ANN.
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Figure 5.10 ANN structure.

5.4 Training the ANN

The training of the ANN is done off-line with Matlab. As discussed in section 5.2, the training data
developed in chapter 4 are used for the training of the ANN. Finding the optimum training point of the
ANN is done with the following procedure:

e« The ANN is trained until the test error reaches a minimum whilst the training error is still
decreasing;

se Test the ANN with several smaller new test sets.

Figure 5.11 graphically illustrates this training process in terms of the training and test errors.

e N T b b o S o T T e .S 5 18
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Figure 5.11 Training process in terms of the training and test errors.

The training error is defined as the sum of the squared errors between the output of the ANN and the
desired target values for each output neuron over the entire training data set [15). The test error is
determined similarly between the test output of the ANN and the desired test values. The average
training and test errors are the average of the training and test errors. This means that for four output
neurons the test and training errors is the sum squared errors for each of the four output neurons over
the test and training sets. The following equations show the training and test errors:

1532 4
Training error= 2 Z (ey(dgst‘red) ~Ejean) )z 5.2)

=l j=

with €, ..4) the desired output of neuron j for the i" training input value;

€,.0w) the ANN output of neuron j for the i" training input value.

655 4
=l j=1
with €, .. the desired output of neuron | for the i" test input value;

€,.anvy the ANN output of neuron j for the i" test input value.




To show the training process of the ANN, the average training and test errors are recorded for the
ANN developed in section 5.3. Figure 5.12 shows the average training and test errors of the network
plotted against the number of epochs. To show the average test error on a more visible scale, the

o

error is plotted in figure 5.13 with a restricted range.
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Figure 5.13 Average test error versus the number of epochs (restricted range).
To determine the optimum point of training, the ANN weights and biases are recorded for a few points
beyond the point of the minimum test error, Table 5.5 shows the results of the training and test errors
of these points.

Point Training Error Test Error
98(min. test error) 1.354885 1.324148
101 1.327263 1.333187
104 1.304068 1.354933
107 1.289974 1.377203

Table 5.5 Training data recorded for selected points beyond the minimum test error.

The weights and biases of these points can now be used for further evaluation of the ANN model. To
verify the contents of the training data set, the ANN model is now tested with 100 random test sets,
each of size 100. Figure 5.14, 5.15, 5.16 and 5.17 show the results of the average test errors for the
different points.

O l_ e e N S S EN o N R
0 10 20 30 40 50 80 70 80 4] 100
Test set number

Figure 5.14 Average test errors versus test set numbers (weights and biases at point 98).
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Figure 5.15 Average test errors versus test set numbers (weights and biases at point 101).

x10°

S.SI T T T T T — T j

3t

Tast set number

Figure 5.17 Average test errors versus test set numbers (weights and biases at point 107).
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Table 5.6 summarises the results for the different points recorded in terms of the average and
maximum test errors for the 100 test sets.

Average Test Error Maximum Test Error

Point
(10e-3) (10e-3)
98 1.2092 2.7903
101 1.2081 3.0049
104 1.2026 3.0644
107 1.1941 3.1382

Table 5.6 Results of the smaller test sets.

The results obtained from the different points show that there is no extreme test errors for the 100
smaller test sets. It shows that the contents of the training data set include ail the dominant
components of the DGs output space. From the results summarised in table 5.6, the optimum point of
training of the model is not so easily seen. The results show that for points beyond the minimum test
error, the average test error becomes smaller but to the detriment of a larger maximum test error. The
point of minimum test error, i.e. 98, is thus used for further evaluation.

5.5 Optimisation of the ANN

This section aims at optimising the ANN controller with regards to the following:

e the training data set;
e the training parameters.

Optimising the controller means improving its performance. The back-propagation used in this section
to train the ANN model, is based on minimising its cost function defined as the sum of the squared
errors. The importance of this criterion is the ability of the network to generalise and its mathematical
tractability [15]. A good ANN with minimum size is less likely to learn the noise in training data and
may thus generalise better for new data. Also, improving the training data and training parameters of
the model can improve the performance of the ANN controller. Improving the performance of the
controller means minimising the training and test errors, thus improving the ability of the ANN
controller to generalise.
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5.5.1 Training data

To find the optimum training region in the data set (training and test errors a minimum), a process

known as the hold-out method is used [15]. The entire data set of n examples is divided intc k

subsets, with k > 1. The model is then trained with (k - 1) of the subsets and tested with the remaining

subset for each of the k subsets. The performance of the model is assessed by averaging the test
errors over all the subsets. Figure 5.18 illustrates the hold-out method for 5 subsets.

Trial 1

Trial 2

Trial 3

Triai 4

Trial 5

Figure 5.18 lllustration of the hold-out method.

Bl Test set

1 Training set

For a data set size of 2187 exampies, 9 subsets are selected for evaluation. Table 5.7 shows the
results of the § trials and figure 5.19 the results of the selected subset with the best training and test

errors.
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Run  Average Training  Average Test Error Average Minimum Test

no. Error (10e-3) (10e-3) Error (10e-3)
1  1.4952 7.1226 48548
2 1.7252 7.0812 6.7846
3 1.0131 7.8964 2.8401
4 0.5852 2.0734 1.9801
5 2.6498 7.4807 7.1270
6 0.6673 6.3094 2.2529
7 0.8767 4.1989 41989
8 1.2294 21573 7.4713
9 0.9128 42179 3.5167

Table 5.7 Average training and test errors for 9 different subsets.
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Figure 5.19 Average training and test errors for subsets no.4.
From the results shown in table 5.7 it is observed that the best training data set is no. 4 and that there

is clearly a difference in the average training and test errors for the different subsets. Table 5.8 shows
the improvement of the network outputs.



Training Set Epochs Training Error  Minimum Test Error

Oud 98 1.3548851 1.324148
New 95 0.8965264 1.296965

Table 5.8 Network outputs for the new and old training sets.

To verify the contents of the new training data set, the ANN model is also tested with the 100 random
test sets, each of size 100. Figure 5.20 shows the results of the average test errors for the new
training set.

Test set number

Figure 5.20 Average test errors versus test set numbers for 100 smaller test sets.

Table 5.9 summarises the results for the new training set in terms of the average and maximum test
errors for the 100 smaller test sets.

Average Test Error Maximum Test Error

Training Set
(10e-3) (10e-3)
Old 1.20920 2.7903
New 0.98827 27276

Table 5.9 Results of the smaller test sets for the new and old training sets.
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The results obtained from the 100 smaller test sets show that there are no exireme test errors. If is
thus also concluded that the contents of the new training data set inciude all the dominant
components of the DGs output space. The results summarised in table 5.8 and 5.9 shows that the
new training set has smaller training and test errors and also revealed a decrease in the average and
maximum test errors for the smaller test sets.

5.5.2 Model parameters

The back-propagation algorithm used in the training of the ANN provides an ‘approximation’ to the
trajectory in its weight space. The delta rule for the correction Aw, (n) applied to the synaptic weight

connecting neuron i ta neuron j is given by:

Aw, (n)=ahw, (n-1)+ 18, (n)y,(n) (5.4)

with 7 the learning-rate parameter and & the momentum constant.

The signal-flow diagram illustrating the effect of the leamning-rate parameter and momentum constant
is shown in figure 5.21.

J; (n)y,.(n)

A —

iji (n - 1) Aw:r'f (n)
Figure 5.21 Signal-flow diagram of the delta rule.

The smaller we make the learning-rate parameter, the smoother the trajectory will be in weight space.
This improvement is attained at the cost of a slower learning rate. The bigger we make it, the faster
the learning process, but the network may become unstable (oscillatory). This problem is overcome
by including the momentum constant. The inclusion of the momentum constant results in the
following:
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» it tends to accelerate descent;
e it has a stabilizing effect;
s it prevents the learning process from stopping in a small minimum on the error surface.

Using the 14:24:4 ANN and combinations of the learning-rate parameter n € {0.01,0. 1,0.5,0.9} and

momentum constanta € {0.01,0.1,0.5,0.9}, the network is simulated to find the best learning curves.
Figure 5.22 shows the resulits of the average training and test errors of the best four combinations and

table 5.10 summarises the results.
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Figure 5.22 Learning curves of the network.

Combination  Learning-rate Momentum Training Error Test Error
1 0.01 0.9 1.153125676 15.60734
2 0.1 0.5 0.645741064 1.242207
3 0.5 0.1 2.025089520 1.935787
4 09 0.01 0.947198832 12.83407

Table 5.10 Results of the leaming-rate parameter and momentum constant combinations.
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Table 5.11 shows the improvement of the network outputs (learning-rate = 0.1 and momentum

constant = 0.5).

Training Set Epochs Training Error  Minimum Test Error

85 0.8965264 1.296965

Oid
150 0.6457411 1.242207

New

Table 5.11 Network outputs for the new and old network parameters.

To verify the contents of the new network parameters, the ANN model is also tested with the 100
random test sets, each of size 100. Figure 5.23 show the results of the average test errors for the new

network parameters.

Test Emor

Test set number

Figure 5.23 Average test errors versus test set numbers for 100 smaller test sets.

Table 5.12 summarises the resuits for the new training parameters in terms of the average and

maximum test errors for the 100 smaller test sets.



Average Test Error Maximum Test Error

Parameters
(10e-3) {10e-3)
Old 0.98627 2.7276
New 0.87622 27125

Table 5.12 Results of the smaller test sets for the new and old training sets.

The results obtained from the new parameters showed that a smaller learning-rate parameter #

resulted in a slower convergence, but it reached a smaller local minimum in the error surface. The use
of a big learning-rate parameter and momentum constant & caused oscillaticn in the error surface
and a higher value for the error at convergence. The best learning curve selected showed a smaller
sum squared error, but took longer o converge to a minimum. As training of the ANN is done off-line
and speed of convergence is not an issue, this curve is selected as the optimal learning curve of the
model. The new network parameters summarised in table 5.11 and 5.12 shows that the new training
set has smaller training and test errors and also revealed a decrease in the average and maximum
test errors for the smaller test sets.

5.6 Conclusions

The training of the ANN is done off-line in this section and the performance of the model is evaluated.
The training of the model suggested that it is good practice to check the system against data that it is
not trained with. This practice improved the generalisation of the network for data not trained with. If
the ANN is trained to an absclute minimum in the training error, the network showed good response to
the data trained with, but made bad decisions upon new data. This is a typical characteristic of poor
generalisation.

The ANN structure is determined by means of two methods, the constructive approach method and
the /eave-one-out method. Both these methods suggested that the best response of the network is
with 24 neurons in the hidden layer. This structure showed a minimum in the error squared sum of the
training and testing data. The network is tested against smaller test sets to evaluate the generalisation
of the model. These tests showed similar results and it is concluded that the training data of the
network included all the components of the DGs output space.

The network is finally optimised to improve the performance of the mode!. Firstly, the data set is
divided into subsets by the hold-out method and trained with new subsets. This method showed that
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the network performance in terms of the different training subsets improved. By selecting the correct
training data, the sum squared errors of both the training and testing improved. Secondly, the network
learning parameters are varied and the results showed that the model showed different learning
curves with the different combinations of parameters. The improved learning curve showed better
training and test errors.

The overall results of the model are satisfactory, but it still leaves much room for improvement.
Further improvements would be to obtain better training and testing errors and train the system with
real life data from the network, rather than simulated data. For the scope of this project, the model is
feasible and the controller can be implemented in the power system.
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Chapter 6 - Evaluation of the cost function and
ANN controller

6.1 Introduction

The focus of this chapter is the evaluation of the Artificial Neural Network (ANN) controller controlling
two optimally placed DGs in a power network. The power network modelled in chapter 3, serves as the
basis for this analysis. The power network is characterised by large loads {in the MW region) switching
on and off the grid, which results in undervoltages and overvoltages at certain points in the system.
This power quality (PQ) problem is rectified by controlling the power flow in the network and thus
regulating the voltage levels.

Chapter 4 showed that the optimal generation and voltage levels are determined by the active and
reactive power drawn by the loads. As the active and reactive power consumed by the loads change,
the DGs power and voltage levels determined by the ANN also changes. The optimal condition of the
network is determined by means of a cost function developed in chapter 4. The behaviour of the ANN
controller is also evaluated for operating states (load conditions) beyond the training region as well as
the operating states trained with. These results wili give an overall indication of the performance of the
ANN controller.

This chapter is based on simulation only, as constructing a laboratory scale power network with two
controlled DGs is not feasible. The latter is however not the objective of the project.

6.2 Integration of the ANN controller in the power system

The power system model illustrated in figure 3.1 of chapter 3 is used as basis for the analysis. The
optimised 14:24.4 ANN (representing an ANN structure with 14 input layer neurcns, 24 hidden neurons
and 4 output neurons) developed in chapter 5 is used in the evaluations. The power network consists
of seven linear loads with a total switching capacity of 398 MW. The two DGs are placed at optimal
points in the network to control certain PQ parameters as shown in figure 3.4 of chapter 3. The ANN
controller is integrated in the power system with regards to the following:

e Inputs - Measuring the PQ busses (loads);
¢ Outputs - Contrelling the PV busses (DGs).




The power system is divided into two distinct radial transmission feeders. The switching capacity is
divided as follows: 100 MW on the slack bus, 160 MW on feeder 1 and 138 MW on feeder 2. Figure
6.1 shows a line diagram of the power network with the integrated ANN controller.

Bus 1(Slack Bus)

SUBA
"""""""""" Load 1
L
SUB B mmpma'® 2
..... -
7
'E
| -
E
: ANN |~
::rl - Controller
F SEh F
= R ;
Bus 6 vl N
D SUBF “ S 5
E P D
R Load § ' ' R
2 E 1
-
[ |
SUB G wemmm - - - - - - - - - N SUBD -
Load 6 T Load 3
SUB H - R
Load 7

Figure 6.1 Line diagram of the power network with the integrated ANN controller.
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6.3 Evaluation of the cost function

6.3.1 No DGs connected to power petwork

The cost function (CF) deveiloped in chapter 4 selects the optimal control parameters for the DGs for a
specific load condition. As discussed in chapter 4, the power system parameters are measured on
each busbar in the system. The cost function then uses four objective functions to select optimal
control parameters to improve the network conditions. The power network is firstly analysed without
any voltage regulation (no DGs) with the lcads switching over the entire spectrum of load capacity
(transformer tap changers are fixed at 1 pu). The transformer tap changers are not used as control
variables, as the effect of regulation and control with DG is investigated in this project. Figures 6.2 - 6.4
shows the CF objective functions over the load-switching spectrum, The blue figures visualise the CF
objective functions as behavioural patterns of the load conditions and the red figures show the
objective functions for increasing active power drawn by the loads {sum of all active power).
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Figure 6.2 Average voitage deviations from permitted range (0.95 pu - 1.05 pu) (no DG).
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Figure 6.3 Average voltage deviations from ideal (1pu) (no DG).
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Figure 6.4 System active power losses (no DG).

From figures 6.2 - 6.4 (blue), three distinct sub-patterns are identified in each of the figures. These
sub-patterns correspond to the three distinct levels of active power drawn by each load. Figures 6.2 -
6.4 (red) shows the objective functions against the Ioad number for increasing active power. Load
condition € is the minimum power drawn by the loads, i.e. 1092 MW and load condition 2188 is the
maximum power drawn by the loads, i.e. 1450 MW. These figures give a better indication of what is
happening in the power network with increasing power drawn by the loads. The voltage levels on
feeder 1 results in underveoltages throughout the increase in power. Feeder 2 however shows under-
and overvoltages throughout the increase in power. This was expected as there is no voltage
regulation from the sources and onwards. Table 6.1 shows a summary of the line parameters for the
two transmission feeders:
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Parameter Feeder 1 Feeder 2

Lot 179 km 489 km
R 0.062 Q/km 0.062 Q/km
X 0.32 Q/km 0.32 Q/km
B 3.621e-6 milimhofkm  3.614e-6 mili mho/km
Vie 275 kv 275 kV
Load min) 421 MVA 570 MVA
Loadmax 590 MVA 718 MVA

Table 6.1 Line parameters for the two transmission feeders.

To verify the results, the program linepref {18] is used to simulate the voltage profiles of the two
transmission feeders with the line parameters given in table 6.1. Figures 6.5 and 6.6 show the results

of the simuiations.
400
350
300
s
< a0
5
150
100 : E f : : :
) SR S O S S e o
: \\:\\ Shortickt
b i i i i N
a 100 200 300 400 S00 600
Sending end Line Length (lim) Receiving end Sending snd Line Length (km) Raeceiving end
Figure 6.5 Voltage profile of feeder 1. Figure 6.6 Voltage profile of feeder 2.

The simulations (light blue - Rated load) verify the results obtained by the cost function. Feeder 1
shows undervoltages at the end of the feeder (179 km from the source) for the given load condition.
Feeder 2 however shows undervoltages close to the source, but overvoltages at the end of the feeder
{489 km from the source). The system active loss pattern aiso shows a definite incline in the losses
with the increase in load. This is because of larger currents drawn by the loads that results in the
heating of lines and transformers. Proper voltage regulation is thus necessary to control under-and
overvoltages in the network and reduce system losses. Reducing the system losses will prolong the life
of network components.
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Table 6.2 shows the bus voltage profiles of the power network with no DGs. It can be noticed that
some system busses exceed the permissible limit of voltage drop up to 11.72 %. The average voltage
drop for buses 3 and 4 is below the permitted range. The percentage of load conditions in the
permitted range in table 6.2 reveals that only three of the eight buses stay within limits over the entire
switching spectrum, and that the voltage profile of one bus never gets to the permissible range. This
drop must be reduced within acceptable limits with the aid of DG and proper control.

Average Voltage Maximum Voltage

Bus no. Bus Voltage Drop % Drop/Rise % " R;nge
(kv) (no DG, no tapping} (no DG, no tapping)

1 275 0 0 100

2 275 0 t 100

3 275 6.96 9.1 11.11
4 275 845 11.72 0

5 275 0 0 100

6 275 1.81 5.5 92.59

7 275 0.35 5.35 96.29

8 275 0 5.94 (rise) 88.89

Table 6.2 Bus voltage profiles of the power network with no DGs and no tapping.

6.3.2 DGs connected to power network with no control

To iflustrate the effect of DG units in the power network, two DGs are connected to the network at
proper positioning points as determined in chapter 3. The results for this paragraph are obtained with
the DGs running at full capacity with no control. With no control, the output active power is set to the
maximum capacity of the DG and the terminal voltage is set to 1 pu. The load conditions are varied
over the same switching spectrum as used in sections 6.2 and 6.3.1. Figures 6.7 - 6.9 shows the CF
objective functions over the load-switching spectrum for the network with two DGs running at full
capacity. Tabie 6.3 shows a comparison between the network with no DGs and the network with DGs.
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Figure 6.7 Average voltage deviations from permitted range (0.95 pu - 1.05 pu) (DG, no control).
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Figure 6.8 Average voltage deviations from ideal (1pu) (DG, no controf).
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Average voltage Average voltage

Network Power losses
deviation (permitted  deviation {ideal)
{all busses) {MW)
range) (%) (%)
No DGs 0.6898 2.8176 78.7110
2 DGs({no control) 0.3097 1.9743 547117

Table 6.3 Comparison between the networks with no DGs and two DGs with no control.

with the two DGs connected to the network, it is more difficult to identify the sub-pattems in figures 6.7
to 6.9 (blue). The figures (red) also reveal that there is a definite increase in the maximum voltage
deviation and network active losses with the increase in load. The average voitage deviation from the
permitted range rise to a maximum of 3.8%, mostly because of overvoltages at buses near the DGs
and undervoltages at buses far from the DGs. This is an increase of 2.3%, whilst the deviation from
ideal increased with 2.5%.

Table 6.3 shows that there is a decrease in the average deviation from the system with no DGs. The
most positive effect of the DGs on the system is the decrease in the average power losses of 24 MW.
Because the DGs are modelled as PV busses, they influence the flow of active and reactive powers in
the network. The power flow simulations show a decrease in active and reactive power flows from the
two main sources, thus a decrease in the network losses. The power losses at maximum load capacity
also reveals a decrease from 115 MW to only 80 MW.

Table 6.4 shows the bus voltage profiles of the power network. The resuits show that the DGs bring
feeder 1 within the permissible limits and that the average voltage drop for busses 3 and 4 is reduced
by almost 6.5%. The DGs however degrade the performance of feeder 2. The percentage of load
conditions within range is reduced by almost 15% for busses 6, 7 and 8. This is because of a
maximum voltage drop increase of almost 10%. These large voitage drops are observed for the last
few maximum load capacities.

The percentage of load conditions in the permitted range however reveals that five of the eight buses
are now within limits. With the proper control of the DGs, busses 6, 7 and 8 can also be kept within the
permissible limits. The bus average voltage drop/rise statistics show that all the busses have better
voltage profiles, except for the few large load conditions. The implementation of the two DGs in the
network shows that the network conditions, i.e. power losses and voltage profiles had successfully
been improved.
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Average Voltage Maximum Voltage

Busno, BusVoltage Drop/Rise % Drop/Rise % " R;nge
(kv) (2DGs, no tapping) (2 DGs, no tapping) ’
1 275 0 0 100
2 275 2.45 (rise) 3 (rise) 100
3 275 0.3 1 100
4 275 15 3.1 100
5 275 0.6 5 100
6 275 2.82 14.5 79
7 275 15 15.7 77.77
8 275 0 15.25 73.25

Table 6.4 Bus voltage profiles of the power network with two DGs with no control.

6.3.3 DGs connected to power network with cost function control

In section 6.3.2, the effect of the two DGs with no control is investigated. it revealed that some network
parameters improved whilst others worsened. The need for control of the DGs is thus important. The
results of this paragraph illustrate the effect of the DGs on the network with the proper control. The CF
derived in chapter 4 is used to determine the optimal network conditions for a specific load condition
and selects the best possible control parameters for each of the DGs. The DGs active power and
terminal voltage are controlled as determined in chapter 3. The load conditions are varied over the
same switching spectrum as used in sections 6.2 and 6.3.1. Figures 6.10 - 6.12 shows the CF
objective functions over the load-switching spectrum for the two DGs with CF control. Table 6.5 shows
a comparison between the network with DGs with no control and with CF cantrol.




Averaga voltage devistion (%)
[ =]

4
dat E
06} 1

08 4

i " L s L " i " L L
0 20 400 600 8900 1000 1200 1400 1500 1800 2000 2200
Load condition number

Figure 6.10 Average voltage deviations from permitted range (0.95 pu - 1.05 pu) {DG, CF control).
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Figure 6.12 System active power losses (DG, CF control).

100



Average voltage Average voltage

Network . Power losses
deviation {permitted deviation (ideal)
(all busses) {MW)
range) (%) (%)
2 DGs(no control) 0.3097 1.9743 54,7117
2 DGs(CF control) 0 1.1107 54.6043

Table 6.5 Comparison between the networks with DGs with no control and with CF control.

From figures 6.11 - 6.12 (blue), the three sub-patterns that correspond to the three levels of power
drawn by each load, can be identified. The figures also reveal that there is a slight increase in the
average voltage deviation and network losses, but to a much smaller degree than shown in sections
6.3.1 and 6.3.2 for the other simulations. The CF keeps the objective functions much closer to a central
operating point. The CF main objective goal to keep the voltage profile of all the network busses within
the permissible range is accomplished. Figure 10 shows that the average voltage deviation from the
permitted range is zero over the entire load-switching spectrum.

Table 6.5 shows that all three objective functions improved. The average voltage deviation from the
ideal value reveals a decrease of 0.86%. The network power losses improved slightly with 0.1%. The
overall result is a much improved voltage profile for the network over the entire load spectrum. The
system power losses are aiso reduced by an average of 24 MW over the network with no DGs. From
this optimum control of the DGs it is observed that the voltage profile of the network can be kept within
the permissible limits with two proper positioned DGs.

Table 6.6 shows the bus voltage profiles of the power netwark. The results show that all the busses on
both the transmission feeders are within the permissible limits. The big voltage drops on busses 6, 7
and 8 for maximum load capacity are significantly reduced from a maximum of 15.7 % to only 3.78 %.
The average voltage drop for the busses is also improved and four busses reveal an average voltage
drop/rise of 0% over the load switching spectrum.
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Average Voltage Maximum Voltage

Busno, DusVoltage Drop/Rise % Drop/Rise % " R;nge
(kv) (2 DGs, no tapping) (2 DGs, no tapping) ’
1, 275 0 0 100
2 275 2.6 (rise) 5 (rise) 100
3 275 0 3 (rise) 100
4 275 0.8 2.04 100
5 275 a 2 100
6 275 1.6 ' 3.87 100
7 275 0 35 100
8 275 1.4 (rise) 2.35 100

Table 6.6 Bus voltage profiles of the power network with DGs with CF control.

Since the main objectives of the CF control are to minimise system losses and improve the bus voltage
profiles of the network, P, and Vs, are discussed. P. is significantly reduced from a maximum of 115
MW to only 93 MW and P,y to only 55 MW. The bus voltage profile of the busses showed an
improvement of 6.7% and all the busses can be kept within the permissible limits with the introduction
of DGs and CF control to the power system. This way under- and overvoltages are controlled over the
load switching spectrum. Figure 6.13 illustrates the results of the bus voltage profiles and table 6.7
shows a summary of all the resuits for the power network.

Yoltage Magnitude (pu)
Voltage Magnitude {pu)

—# NoDG3 \l
085H = DGs, no control —-
~#- DOs, CF coniral "
=== Lower Limt
08 T A i . . 1
1 2 3 4 5 B 7 :}

Bus number Bus number

Figure 6.13 Bus voltage profiles of the power network (average and maximum drop/rise).
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£0L

No DGs

DGs, no control

DGs, CF control

Bus no./
Objective Avg. drop Max. drop In range Avg. drop Max. drop In range Avg. drop Max. drop In range
function % % % % % % % % %
1 0 0 100 0 ] 100 0 0 100
2 0 ] 100 245 3 100 26 5 100
3 6.96 9.1 1.1 03 1 100 0 3 100
4 8.45 11.72 0 1.5 31 100 0.8 2 100
5 0 0 100 0.6 5 100 0 2 100
6 1.81 55 92.59 2.82 145 79 1.6 3.87 100
7 0.35 5.35 96.29 15 15.7 77.97 0 35 100
8 0 5.94 88.89 0 15.25 73.25 14 235 100
Vavg Pormitind 0.6898 0.3097 ]
Vaavg idost 28176 1.9743 1.1107
Pravy 78. 7110 MW 54.7117 MW 54.6043 MW
Variable Vogr, Vog2 =1 pu Va1, Vpez = 0.98 pu - 1.05 pu
parameters None

Poar, Pog2 = 150 MW

me. PDG2= 1MW - 150 MW

Table 6.7 Evaluation of the power network (Summary of results).




6.4 Evaluation of the ANN controller

The data used to train the ANN controller is developed in chapter 4 by the CF. The ANN controller is
then trained in chapter 5 until optimum performance is reached for the training and test data. To
evaiuate the performance of the ANN controller, it is tested against the optimum solution of the power
system as determined by the CF. The following criteria for comparison are selected:

e power system voltage profile for a selected operating state; and
e power system losses.

Since the ANN controller has been trained to the CF results, it is expected that they will perform better
than the base case (no DGs) and close to the performance of the CF. Figures 6.14 - 6.15 shows the
response of the ANN controller and the CF for the control variables of the DGs. A random load
combination of 100 is chosen fram the test data to show the results.

DG1 DG 2
T T T T T .

Yoltage Magniluda (pu)
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099t W E ‘.
098 i . . . " . . 0% . . L L L L L L .
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Random load combination Random load combination

Figure 6.14 Voltage magnitudes of the DGs for a random load combination.
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Figure 6.15 Power outputs of the DGs for a random load combination.,
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The response of the CF and ANN controller show a close resemblance. To show the performance of
the ANN controller in the power system, the average voltage profiles of the network busses are
investigated for the 2187 load combinations. In addition to the voltage profiles, a histogram comparison
of the ANN controller performance to the CF results regarding reduction of active power losses over
the base case is shown in figure 6.16. Histograms can illustrate the frequency of certain parameters
{i.e. power losses/bus voitages levels) in a power system for all the operating states in the data set.

[

Frequency of test samples (%)
)

0 5 10 15 20 25 30 35 40 45 50
Amelioration over base case(no DGs) MW

Figure 6.16 ANN and CF improvement of active power losses compared to base case (no DGs).

In figure 6.16, a significant improvement of the network power losses in percentage over the base case
losses is evident, whereas the frequency distribution of the ANN controller results resembles the CF
distribution. The frequency on the vertical axis describes the percent of the 2187 load conditions in the
data set developed in chapter 4. The voltage profiles of the network busses are shown in figure 6.17
for the CF and the ANN controller. The figures show that the ANN controller kept the bus voltages
between the permissibie limits over the entire load switching spectrum. The voltage profiles of the
network busses show that the results of the ANN controller closely resemble the results of the CF. A
voltage histogram comparison between the ANN controller and CF is shown in figures 6.18 and 6.19.
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Figure 6.17 Bus voltage profiles of the network for the CF and ANN (avg. and max. drop/rise}.
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Figure 6.18 Voltage histogram {frequency of cases) for the ANN controller.
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In figures 6.18 and 6.19, the frequency of voltage distribution for the ANN controlier closely resembles
that of the CF. The frequency on the vertical axis describes the percent of the load conditions for a
specific voltage range. The frequency plot in figure 6.19 shows that the PV busses controlled by the
DGs have a smaller voltage spectrum around 1 pu. This is expected because one of the CF objective
functions and hence the ANN controller is to keep the bus voltage profiles as close to 1 pu as possible.
Both frequency plots reveal that the voltage levels on busses 7 and 8 vary over a much bigger
spectrum.

From the resuits shown in this section it is safe to conclude that the behaviour of the ANN controller
closely mimics the response of the CF. The results of the ANN controller also revealed that the
introduction of the controller and the DGs to the power system improved network conditions
considerately over the base case where no DGs support the power system. These results however are
limited to the restricted load-switching spectrum derived in chapter 4 (load variations are limited to only
three operating states). The next section will evaluate the behaviour of the ANN controller over a much
bigger load-switching spectrum. The integrity of the ANN controller will then be vaiidated to make
meaningfu! decisions about load conditions that are more likely to occur in real time.

6.5 Evaluation of the ANN controller beyond the training limits

Section 6.4 discussed the evaluation of the ANN controller and the power network. These results
however were obtained with load conditions used in the original random data set (data set contains the
training and testing load conditions) and the ANN controller may have been trained with the specific
load conditions. This section deals with load conditions beyond the scope of the original data set, i.e.
variable load conditions (loads are not restricted to only three operating states). The operating states of
the loads are randomly varied with an incremental value of 10 MW. The performance of the ANN
controiler and the power network are now evaluated with these new random load conditions. Several
simulation runs are performed as summarised in table 6.14, of which a few are discussed in the
following sections.

6.5.1 Loads at 55% of switching capacity

The loads are varied with Matlab’s random permutation (‘randperm’} command. The loads are
randomly varied between the minimum and maximum switching capacity. This case still represents a
load condition within the minimum and maximum training boundaries of the ANN controller, but not
encountered before. Table 6.8 describes the Ioad conditions of the network at 55 %. Figure 6.20 shows
the response of the CF and the ANN controller for the control parameters of the DGs. Table 6.9 shows
the resuits of the ioad conditions at 55% for the base case, CF, DGs with no control and response of
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the ANN controller. The bus voltage profile of the network is shown in figure 6.21

Pioaa (MW) Qioaq (Mvar)  Switch (%)

Load 1 210 69.024 60
Load 2 400 131.47 100
Load 3 120 39.442 333
Load 4 220 72.311 40
Load 5 100 32.868 0
Load 6 220 72.311 40
Load 7 44 14.312 25
Lrota 1314 431.73 55.77

Table 6.8 Load conditions for a total load-switch of 55 %.

CF and ANN outputs
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Figure 6.20 Response of the CF (left) and the ANN controller {right).

L Average voltage  Average voltage  System active
Statistics around

deviation deviation power loss
55 % {permitted) % (ideal) % (MW)
Base case (no DGs) 0.85348 2.8053 73.688
CF evaluation 0 0.96441 48.197
DGs (no control) 0 1.3162 48.685
DGs (ANN controller) 0 1.1304 48.409

Table 6.9 Results of the power network.
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Figure 6.21 Bus voltage profiles of the power network.

From the results in figure 6.20 it is evident that the ANN controller could make a meaningful decision
about the network load condition. The response of the ANN controller closely resembles that of the CF,
but with a much better response time. The CF took 69 s (real-time) to find the optimum network
condition and control variables, whereas the ANN controller took only 0.062 s (real-time). The results in
table 6.9 show that the network conditions improved considerably over the base case. The average
voltage deviations are established in the permissible range for both cases of DGs. This is expected
because the power output parameters of the CF and ANN controlier nears full power (DGs with no
control run at full output power).

From the resuilts in table 6.9, it is evident that control over the DGs improved the system power losses
and the voltage deviation from 1 pu. Figure 6.21 shows that the bus voltage profiles improved over the
base case, and that the voltage profiles for both cases of DGs are within the permissible limits. This
conciudes that the ANN controlled DGs improved network conditions and held the bus voltage profiles
within the limits. As can be seen from these resuits, the behaviour of the ANN beyond the training load
conditions showed a meaningful decision about the network conditions with much less computational
time (compared to the CF).

6.5.2 Loads at 34% of switching capacity

The loads are randomly varied to 1228 MW within the boundaries of the load-switching spectrum.
Table 8.10 describe the load conditions of the netwoerk at 34 %. Figure 6.22 show the response of the
CF and the ANN controller for the control parameters of the DGs. Table 6.11 shows the results of the
load conditions for the base case, CF, DGs with no control and response of the ANN controller. The
bus voltage profile of the network is shown in figure 6.23.




Pioaa (MW) Qioea (Mvar)

Switch (%)

Load 1
Load 2
Load 3
Load 4
Load 5
Load 6
Load 7

L Total

160
320
130
240
110
220
48
1228

52,5689
105.18
42.729
78.884
36.1585
7231
15.777
403.62

10
20
50
80
33.3
40
75
3417

Table 8.10 Load conditions for a total load-switch of 34 %.
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Figure 6.22 Response of the CF (left) and the ANN controller (right).

Average voltage

Average voltage System active

Statistics around deviation deviation power loss
34 % (permitted) % (ideal) % (MW)
Base case (no DGs) 0.48597 2.1846 73.772
CF evaluation 0 0.84334 58.345
DGs (no control) 0 1.0108 58.814
DGs (ANN controller) 0 0.96834 58.606

Table 6.11 Results of the power network.
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Figure 6.23 Bus voltage profiles of the power network.

The results in figure 6.22 show that the ANN controller and CF decisions about the network load
conditions were closely matched. The response of the ANN controller and CF closely resembles each
other. The results in table 6.11 show similar trends than the results in section 6.5.1. The network
conditions improved considerably over the base case. The active network losses of the system are
reduced by 15 MW, to only 58 MW. The average voltage deviation from the permissible range is also
reduced to 0 % by the DGs. The results show that the DGs with ANN control produced better resuits
over the DGs with no control. Figure 6.23 shows that the ANN controller improved the bus voltage
profile over the base case for busses 3 and 4. The undervoltages at these busses are regulated within
the permissible range with the ANN controller.

6.5.3 Loads at 70% of switching capacity

The loads in the power network are randomly varied to 1368 MW within the boundaries of the load-
switching spectrum. Table 6.12 describes the new load conditions of the network at 70 % of the total
rated switching spectrum. Figure 6.24 shows the response of the CF and the ANN controller for the
control parameters of the DGs. Table 6.13 shows the results of the load conditions for the base case,
CF, DGs with no control and of the ANN controller. The bus voltage profile of the network is shown in
figure 6.25.
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Pioag (MW) Qrea (Mvar)  Switch (%)

Load 1 250 82.171 100
Load 2 380 124.9 80
Load 3 130 42729 50
Load 4 210 69.024 20
Load § 120 39.442 66.67
Load 6 230 75.597 60
Load 7 48 18.777 75
Lrotat 1368 44964 70

Table 8.12 Load conditions for a total load-switch of 70 %.
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Figure 6.24 Response of the CF (left) and the ANN controller (right).

Average voltage  Average voitage System active

Statistics around deviation deviation power loss
70 % (permitted) % {ideal) % {(MW)
Base case (no DGs) 0.84647 26152 82.565
CF evaluation 0 0.91342 61.592
DGs (no control) 0 1.5199 62.615
DGs (ANN controller) 0 1.0691 61.789

Table 6.13 Results of the power network.
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Figure 6.25 Bus voltage profiles of the power network,

Figure 6.24 describes the response of the CF and ANN controller to the load condition. The results
reveal that the ANN controller closely mimics the response of the CF, thus making an appropriate
decision again. The response shows that the best network conditions are achieved with the DGs
running at about half-rated power. The time response of the ANN controller also topped the CF
response with only 0.071s of computational time. Table 6.13 captures the statistics of the power
network for this simulation run. The resuits obtained here also reveal that the network conditions
improved over the base case. The rest of the findings are similar to the analysis of paragraphs 6.5.1
and 6.5.2 where the load conditions were set to other levels. Voltage levels are within the permissible
range and the network power losses are minimized.

Figure 6.25 describes the voltage profile on all the system busses. The results reveal that the DGs
improved the profile for all the busses over the base case. The profiles also reveal that the
uncontrolled and controlled cases are more or less the same. The controlled case however shows
better average deviation and network power losses. From all these results it is clear that the ANN
controller chooses appropriate control parameters for the DGs for this simuiation run.

6.5.4 Discussion of results

Resuits were obtained for changing load conditions in the power network and the adaptive behaviour
of the ANN controller was investigated. The response of the ANN controller to such varying load
conditions is the key issue to discuss. To facilitate the evaluation of the ANN controller, the results of
the simulation runs are summarised in table 6.14.
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The results of the ANN controller should primarily be compared to the base case, i.e. the original
power network with no DGs. Since the main objectives of the ANN controller are to regulate the
voltage profile of the network and minimise the active power losses, Vaw, View and P, are evaluated.
The base case showed that the voltage profile of busses 3, 4, 6, 7 and 8 drifted outside the limits for
certain load conditions. In the simulation runs, busses 3 and 4 mainly posed a problem area in the
network. The voltage profile of the network is improved for all the cases to within the permissible
voltage range with the aid of the DGs and ANN control. The voltage parameters showed better results
for all the simulations if the DGs were controiled.

The power losses of the system are significantly improved for all the cases over the base case. The
lowest values are obtained with ANN control with a reduction of over 38 MW. This is a reduction of
almost 40 % in the network power losses. This reduction is because sources closer to the load provide
the necessary power and regulation as to central sources kilometres away. This concludes that the
DGs with control reduce power flows in the power network and lines, thus reducing network losses.

As seen in table 6.14, the ANN controller made inadequate decisions on two occasions. The response
of the ANN controller improved the network conditions over the base case, but degraded it for the case
where no control over the DGs was active. The integrity of the ANN controller has to be improved to
enable it to make meaningful decisions for any load condition in the switching spectrum. This couid be
achieved by analysing the power network with a much larger variety of lcad conditions and training the
ANN controller to accommodate these conditions. This however would increase the training data
considerably and may form the basis for future research.
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SLl

Load conditions Base case CF Output ANN Qutput

Run
"1 2| 13| Lal s | L6 | L7 |Switch| Vie |Viww| £ |PST|PS! ng2 2| Ve | Viw| P | O pet D21 D521 Ve |Viw| P

(MW) [ (MW} (MW) | (MW) | (W) | (MW} (MW) | (%) | (%) | (%) | (MW) (ou) |(MW| (puy | v (%) | (%) | (MW) ou) [MW)| (ou) | (MW (%) | (%) ] (MW)
1 | 210 | 400 | 120 | 220 | 100 | 220 | 44 55 0.85 [2.81]73.68|1.01( 150 |0.99| 150 0 0.96 | 48.19 (1.015| 150 |0.995: 150 0 1.13| 48.41
2 | 160 | 320 | 130§ 240 | 110 | 220 | 48 34 049 |2.18(73.77|1.00| 60 [1.01] 60 0 0.84 | 58.34 11.005( 65 |1.012| &5 0 0.96 | 58.61
3 | 250|380 (130|210 | 120 | 230 | 48 70 0.85 |261|8257|1.02| 80 (1.02| 80 0 091 |61.59(1.015| 83 |1.018( 83 0 1.07|61.78
4 (150 | 340 { 130§ 230 | 110 | 200 ; 46 28 0.60 [2.8867.50;1.00] 150 |0.99| 150 0 1.19 148.20 | 1.002( 149 [0.991| 149 0 1.33[ 47.88
5 | 250 | 300 | 130 | 210 | 110 | 230 | 42 45 037 |203(68.73|1.00| 40 [1.02{ 40 4] 080 (59.26 (1.003| 46 (1.022; 46 0 1.00 ( 57.84
6 | 190 | 330 160 ) 250 | 100 | 220 | 48 51 090 1269|78.38|1.01| 70 |1.01] 70 0 1.05|595811.014| 65 |1.009| 65 0 1.18|60.59
7 | 210 | 330 [ 150 | 210 | 100 | 210 | 42 40 0.78 [3.09|65.88( 1.01) 150 |0.99| 150 0 1.27 | 48.07 | 1.012| 150 {0.991| 150 | 0.008 |1.75|47.01
8 | 170 | 380 : 140 | 230 | 120 | 240 | 48 60 097 [(3.19(9221|1.04 | 150 |1.04{ 150 0 1.10t57.2211.028| 150 11.042) 150 0 1.09}56.98
9 | 240 | 390 | 150 | 240 | 130 | 220 | 42 81 1.16 (2.84(90.08]1.03] 140 (1.00( 140 0 1.02 | 56.54 [ 1.037| 137 (1.005] 137 0 1.17| 56.33
10 { 160 | 320 | 110 | 200 | 110 | 210 | 44 15 0.27 |227(61.78| 1.00| 130 {0.99 130 0 0.98 {49.29 (1.003( 133 {0.993| 133 0 1.13|48.86
11 | 230 | 370 | 150 | 240 | 100 | 220 | 46 66 1.03 [2.87(7945{1.01 | 150 (0.99]| 150 4] 1.01 | 51.36 | 1.009| 148 (0.991 148 0 1.01|51.38
12 | 230 | 350 | 130 | 210 | 120 | 200 | 44 418 066 |2.81|67.49|1.00} 150 |0.99| 150 0 1.16 (48.511.003] 150 (0.991} 150 | 0.009 |1.29|48.17

Table 6.14 Evaluation of the adaptive behaviour of the ANN controller (Summary of results).




6.6 Conclusions

The results of the CF and ANN controller to optimise network parameters are evaluated in this chapter.
The power network is firstly evaluated for the case where DGs are present in the network, but with no
control. The results showed that the network environment in terms of voitage profiles improved to a
certain extent for some busses, but to the detriment of other busses. The network poWer losses
improved considerably over the base case. The CF is then used to analyze network conditions for a
given load profile. The CF is tested against the base case, i.e. the original power system without the
DGs. Using the CF to analyze and improve the network environment seems viable. The regulating
requirements in terms of deviation from the permitted and ideal values are met while the network active
power losses are kept to @ minimum.

The ANN contreller is evaluated for load conditions within the original data set developed by means of
the CF. The ANN controller showed similar resuits as the CF and it is concluded that the ANN
controller can make meaningful decisions for these load profiles. The ANN controller alsc made proper
decisions for load conditions beyond the training limits. To improve the capabilities of the ANN
controller, it should be trained with a broader spectrum of load possibilities. This would enable the ANN
controller to make informed control decisions for a bigger region of load conditions. In practice this
wouid be a requirement, but to the expense of a much bigger and more complex training data set. The
ANN controller developed for the purpose of this project however showed adequate network conditions
and improved power quality parameters.
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Chapter 7 - Conclusion and Recommendations

7.1 Introduction

The traditional way of delivering power to a consumer is from a centralised utility. With the rapid
growth of technology, generation of power at all levels is possible whether at transmission, distribution
or at the end user level. The confluence of decentralisation with advances in distributed generation
(DG) and artificial intelligence {Al) has opened new opportunities to deliver power closer to the point
of consumption. The purpose of this research was to investigate the feasibility of using Al to control
power quality (PQ) parameters through the optimal utifisation of DG in an electric power system. This
chapter concludes the research conducted and summarises the significance of the study.

7.2 The significance of the research

The electric power system under investigation is characterised by large loads switching on-and off the
electric grid. As described in the |[EEE Std. P1433, these conditions are likely to cause PQ
phenomena termed under-and overvoltages. These phenomena are the result of poor system voltage
regulation capabilities and controls. The NRS 048 standard in South Africa demands that voltage
regulation must comply within +5 % of the nominal voltage level for voltage levels above 500 V. To
find a solution to these conditions, DG with Al controls is evaluated in this research to regulate the
voltage profile of the electric power systern and reduce the active power losses.

To evaluate the behaviour of an Artificial Neural Network (ANN) controller controlling the DGs, a
simulation model is developed which integrates the DGs and the electric power system. The strategic
placement of the DGs in the power system is important to complement their voltage regulation
capabilities. For the purpose of simulation, the Matlab® environment facilitates all the software tools
necessary to analyse the power system and develop an Al controller. The electric power system is
modelled in SimPowerSystems®, a toolbox integrated into Matlab to model electric networks and
systems. This simulation model forms the basis for the analysis of the electric power system.

The ANN emerged as the most suitable Al technique for the control algorithm. Using ANN control is
shown to minimise the network active power losses while optimising the bus voltage profile of the
network in terms of the average voltage deviations from the permissible and ideal values. The cost
function is initially used to develop training data for the ANN. This data incorporate load-switching
patterns for the network and the optimal deployment of the DGs. The ANN is trained with this
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randomised data set and the ANN topology used is 14:24:4 representing 14 input neurons, 24 hidden
layer neurons and 4 output layer neurons.

The ANN controlied cases are compared to conditions of no control where the DGs are deployed at
full power and a nominal voltage level of 1 pu. For the load conditions analysed by the cost function,
the ANN controlier proved to be very effective in controlling the DGs. The bus voltage profiles as well
as the average voltage deviations are successfully kept within the permissible voltage range. From
the results, the system active power losses are reduced by an average of 24 MW. Comparing the
results obtained, the optimal utilisation of DGs showed that the network conditions improved vastly
over the original power system.

The adaptive behaviour analysis of the ANN controller beyond the training limits reveals that the ANN
controller can make meaningful output decisions when subjected to load conditions not in the training
set. Beyond the training limits means that the load conditions are increased to different randomly
selected power levels. What becomes clear from these analyses is that the behaviour of the ANN
controller closely mimics the response of the cost function. This behaviour of the ANN justifies the
ability of the cost function to select the optimal network conditions as the same improvements are
seen in the network as discussed in the previous paragraph.

Table 7.1 describes the results of improvement in the network conditions over the original power
network. The results conclude that the integrated power system with DGs could be controlled to
eliminate under-and overvoltages due to the switching of large loads.

Ave. voltage Max. voitage  Ave. voltage  Max. voltage Ave. active

Electric Power System deviation - deviatlon - deviation - deviation - power
Permitted Permitted Ideal Ideal losses
(%) (%) (%) (%) (MW)
Original 0.6898 11.72 28176 4.501 78.7110
DGs with ANN controller 0 0 1.1107 1.982 54.6043
Improvement (%) 100 100 60 56 N

Table 7.1 Summary of the results of the research conducted.

7.3 Further research

Based on the research conducted during this study, the following areas can be improved or be
recommended for future research:




a) Refinement of the ANN training data;

b) Other power network configurations;

¢) DG penetration on distribution level;

d) The impact of DG on other power quality issues.

The training data developed by the CF are based on the same active output power for all the DGs.
This constraint limited the output combinations of the DGs to an acceptable size. The output
combinations of the DGs could be refined to a larger domain of output voltage and active power
levels. This refinement would affect the developed model and ultimately the performance of the power
network. The load boundaries of the network are set to the network load capacity and not to the
current operational boundaries of the loads. Changing the training data to the operational boundaries
and updating it as the boundaries change need to be devised.

The primary objective of distribution systems is to supply customers at a voltage that is within a
prescribed range. Adding DGs on a distribution feeder at different locations and increasing the DG
penetration level directly affects the control of voltage regulation devices like LTCs (load tap
changers), SVRs (step voltage regulators) and switched capacitor banks. Devising an integrated
control scheme can be used to assist these devices in the averali voltage regulation of the distribution
feeder. Implementation of such a control scheme, however, requires a communication infrastructure
not currently available in most distribution systems.

The primary power quality phenomena addressed in this research is under-and overvoltages. Adding
DG to a power system potentially influences the quality of power provided to other customers
connected to the grid. Some of the other power quality attributes that is of concern include harmonic
distortion, flicker and voltage imbalance. These key issues could be considered in further
investigations into the effect of DG on the quality of supply.

7.4 Closure

The conclusion of this dissertation is that the use of DGs with ANN control fo optimise the power
quality in an electric power system is meaningful. This is achieved through proper positioning and
control. The evaluation of the power quality in the electric power system is however subject to power
quality definitions used to optimise only certain parameters and it is recommended that further
research be done on power quality and DG as discussed in section 7.3.
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Transient A phenomenon or quantity that varies between two consecutive steady states during a time
interval that is short compared to the time scale of interest.

tindervoltage A voitage having a value of at least 10% under the nominal voltage.

Voltage Change A variation of the rms value of a voltage between two consecutive levels.

Voltage Sag See Sag.

Voltage Distortion Distortion of the ac line voltage.

Voltage Fluctuation A series of voltage changes.

Voitage Unbalance A condition in which the three phase voltages differ in amplitude or are displaced
from their normal 120° phase relationship.

Voltage Interruption Disappearance of the supply voltage on one or more phases.

Voltage Regulation The degree of control or stability of the rms voltage at the load.

Voltage Magnification The magnification of capacitor switching oscillatory transient voltage on the
primary side by capacitors on the secondary side of a transformer.

Waveform Distortion A steady-state deviation from an ideal sine wave of power frequency.
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B ESKOM case study

B.1 Substation diagrams
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Figure B.1 Substation diagram of Boundary.
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Figure B.2 Substation diagram of Everest.
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Figure B.3 Substation diagrams of Ferrum and Garona.
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B.2 Line data transformation

The line data provided by ESKOM are shown in table B.1:

Line R X B S Length
Subl Subd o) (pu) (bu)  (MVA)  (km)

1 A B 0.01207 0.06310 0.39655 478 147.01
2 B C 0.00559 0.02888 0.18582 956 68.180
3 C D 0.00909 0.04667 0.30279 478 110.47
4 B E 0.007365 0.03783 0.24545 956 89.550
5 E F 0.01096 0.05661 0.36608 956 133.905
6 F G 0.00809 0.04110 0.27119 956 98.505
7 G H 0.01365 0.07071 0.45483 478 166.80

Table B.1 Electric power network line data.

The line R, X and B values are in per unit on a 100 MVA (S) base. To calculate the line R, L and C
transformations, the foflowing formulas are used.

Zpase = Rase = Xbvase = Vpase! lass = Vzbasel Spase (B.1)
Zrase @ 275 KV = 2752 1 100 = 756.25
Yoase™ 1/ Zoase = 1.322-3

The R, X and B values for the full length of the line are:

Rag= Rpu X Zbase (BZ)
X = XpuX Zpase {B.3)
Bfu]f = BPU X ngse (B4)

The new values of R, X and B per kilometer are:

Ruew = R/ Line Length (B.5)




Table B.2 shows the R, X and B values of the lines per kilometer;

Table B.3 shows the R, L and C values of the lines per kilometer:

Xnew = Xt/ Line Length

Brew = By / Line Length

_ R X B
Lineno. okm) (Q/km)  (mili mholkm)
1 6.26-2 3.25e-1 3.567E-6
2 6.2e-2 3.20e-1 3.604E-6
3 6.2e-2 3.19e-1 3.624E6
4 6.26-2 3.19e-1 3.624E-6
5 6.2e-2 3.20e-1 3.615E-6
6 6.2¢-2 3.16e-1 3.640E-6
7 6.26-2 3.21e-1 3.606E-6

Table B.2 Line R, X and B per kilometer.

Line no. R L ¢

(QYkm) (H/km) (F/km)
1 6.2e-2 1.0345e-3 1.14e-8
2 6.2e-2 1.0186e-3 1.15e-8
3 6.2e-2 1.0154e-3 1.15e-8
4 6.2e-2 1.0154e-3 1.15e-8
5 6.2e-2 1.0186e-3 1.15e-8
6 6.2e-2 1.005%e-3 1.16e-8
7 6.2e-2 1.0218e-3 1.15e-8

Table B.3 Line R, L and C per kilometer.

(B.6)

(B.7)
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B.3 Loads and capacitance in ESKOM power network

Capacitor banks are installed at various places in the electric power network. The sizes and locations
of the capacitor banks are shown in table B.4.

. Size Voltage Level
Location (MVAr) (kV)
Everest 144 275
Merapi 18 275
Ferrum 80 275

Table B.4 Capacitor banks and sizes.

The load capacities in the electric power network are shown in table B.5.

Current load Max. load Switching capacity

Load (MW) (MW) (MW)
Load 1 (Sub A) 150 250 100
Load 2 (Sub C) 300 400 100
Load 3 (Sub D) 100 160 60
Load 4 (Sub E) 200 250 50
Load 5 (Sub F) 100 130 30
Load 6 {Sub G) 200 250 90
Load 7 (Sub H) 42 50 8

Total 1092 1480 398

Table B.5 Load capacities in the electric power network.

The generating capacities of the feeding transmission lines are shown in table B.6.

Max. capacity
Source (MVA)
275 kV Trans. line 1000
400 kV Trans. fine 1500

Table B.6 Power capacities of the feeding transmission lines.
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All the load values supplied by ESKOM are only the real power values. Assuming a 0.95 power factor
at all the loads, the following formulas are used to calculate the reactive power vaiues.

PF = cos(8) (B.8)

8=18°

sin(18°) = 0.309

S=P+jQ
S = [VIif|cos(8) + j| VIl|sin(6) (B.9)
P = |Vllficos(6) (B.10)
IVI|/| = P10.95

Q = (PI0.95) x (0.309)
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C Power flow analysis

To validate the two simulation environments, a smaller network was created with only one source and

one DG. A flow diagram of the system is shown in figure C.1.

275 kv
1S B
SUB A Bus 1({Slack Bus)
68 km
2
SUB B it

Figure C.1 Test network used for the power flow simulation.

The test network is firstly analysed with SimPowerSystems. The flow diagram of the network is shown

in figure C.2.
3-Phass = 3-Phase
Load 1 Load 2
k3 o X u} Bus 4 oG
0.
: 2 O,
Bus 2 Bus 3 E m 8l
278 kV Souroa Bus? N o —
A L2 > L4 "rl L1
E-" Pm s T r —rl"- r |
c T L4 T
E m_8l
E:

Figure C.2 Test network modelied in SimPowerSystems.
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The test network is secondly modelled with the Newton-Raphson Power Flow solution. The results of

the two simulations are shown in table C.1.

Bus no. Parameter SimPowerSystems Newton-Raphson
Bus 1 Vi (pu) 1.00 1.00
(Slack) 3, (deg.) 0.000 0.000

Vz(pu) 0.970 0.967
Bus2 &, (deg) 629 6671

Va (pu) 0.981 0.984
Bus3 5 (deg.) 918 -9.810
Bus 4 V4 (pu} 1.00 1.00
DG)  Os(deg) -9.41 -9.989

Table C.1 Results of the two power flow solutions.

The results show a close resemblance and the credibility of the two modelling environments are

verified.
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D Matlab neural network toolbox

The Matlab 'Neural Network Toolbox (NNTY is used in to train the model described in chapter 5. The
simulations are done using both the graphical user interface (GUI} and the command line. The GUI

allows the user to quickly and easily do the following:
» Create new networks with different parameters and learning algorithms;
» |nitialize, train, and test networks;

» Export the training and testing results from the GUI to the command line workspace.

The GU! is user friendly and figures A.1 — A4 shows the different windows of the GUI.

Networkﬂ)aia Manager

nput Detay States: Laver Delay States: -/

NE*WD{RS ar‘ld Data . ..: ;-;_; .‘ L ..:-:‘.:: - .«
5 [ Help ][NewData ]rewNebﬁork } S
{ Impurt J[ Export _: ; q;,.,v”"’:“""_-,. Er .138_3:39-

»Netmrks nniy o

]
sl

P i e i - L S |

Figure D.1 Network manager of the NNT GUI.
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* Create New Network

Network Name:networki 3

~MNetwork Type: éFeed-fonward backprop

“inputranges: EEEREE (R )
Training functior: - {TRAINLM
Adaption learning funétion] LEARNGDM
Performance function: - |MSE
Number of lavers: 2

y9r1_

Number of neurons:1
| Transfer Function: -|LOGSIG

[ 5 ‘v‘”lew lL Defal;n%s [Cancel ] [ Create ]

Figure D.2 Window in the GUI to create a new network.

- Metwork: network1

View . i Initialize Simul
4 TrainingInf ~ Training Parameters - Optionalinfo 10 o i

‘epochs . 100 ‘'searchFen. - Jsrohbac

‘show = ° |25 scale_fol - |20
Sgoal -l alpha = ln.o01
tme beta o

min_grad " [1e-006 detta oot bmax. .. 128 N :_ -

minstep "' }16-006

. max_fail 5 gama S0 PR

[ Man; ger] rcmse l ot e e

Figure D.3 Window in the GUI to train the network.




- Netwoark: networkl

view | Intialize

[ Ma.ﬁ;gerf” .-Cl-n;s.e } o .__-::_;

Figure D.4 A graphical view of the network created.
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Figure 6.21 Bus voltage profiles of the power network.

From the results in figure 6.20 it is evident that the ANN controller could make a meaningful decision
about the network load condition. The response of the ANN controlier closely resembles that of the CF,
but with a much better response time. The CF took 69 s (real-time) to find the optimum network
condition and control variables, whereas the ANN confroller took only 0.062 s (real-time). The results in
table 6.9 show that the network conditions improved considerably over the base case. The average
voltage deviations are established in the permissible range for both cases of DGs. This is expected
because the power output parameters of the CF and ANN controller nears full power (DGs with no
control run at full output power).

From the results in table 6.9, it is evident that control over the DGs improved the system power losses
and the voltage deviation from 1 pu. Figure 6.21 shows that the bus voltage profiles improved over the
base case, and that the voltage profiles for both cases of DGs are within the permissible limits. This
conciudes that the ANN controlled DGs improved network conditions and held the bus voltage profiles
within the limits. As can be seen from these results, the behaviour of the ANN beyond the training load
conditions showed a meaningful decision about the network conditions with much less computational
time (compared to the CF).

6.5.2 Loads at 34% of switching capacity

The loads are randomly varied to 1228 MW within the boundaries of the load-switching spectrum.
Table 6.10 describe the load conditions of the network at 34 %. Figure 6.22 show the response of the
CF and the ANN controller for the control parameters of the DGs. Table 6.11 shows the results of the
load conditions for the base case, CF, DGs with no control and response of the ANN controller. The
bus voltage profile of the network is shown in figure 6.23.
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Pioag (MW) Quoeq (Mvar)  Switch (%)
Load 1 160 52.589 10
Load 2 320 105.18 20
Load 3 130 42,729 50
Load 4 240 78.884 80
Load 5 110 36.155 333
Load 6 220 72.311 40
Load 7 48 15,777 75
Ltota 1228 403.62 34.17

Table 6.10 Load conditions for a total load-switch of 34 %.

CF and ANN outputs

Woltage(pu)
- B & 8

=]
&

—

B cr |
-ANN+

Power (MW)
B

E

DG Number

Figure 6.22 Response of the CF {left) and the ANN controller (right).

L Average voltage  Average voltage  System active
Statistics around deviation deviation power loss
34 % {permitted) % {ideal) % (vMw)
Base case {no DGs) 0.48597 2.1846 73.772
CF evaluation 0 0.84334 58.345
DGs (no control) 0 1.0108 58.814
DGs (ANN controlier) 4] 0.96834 58.606

Table 6.11 Results of the power network.
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Figure 6.23 Bus voltage profiles of the power network.

The results in figure 6.22 show that the ANN controller and CF decisions about the network load
conditions were closely matched. The response of the ANN contreller and CF clasely resembles each
other. The results in table 6.11 show similar trends than the results in section 6.5.1. The network
conditions improved considerably over the base case. The active network losses of the system are
reduced by 15 MW, to only 58 MW. The average voltage deviation from the permissible range is also
reduced to 0 % by the DGs. The results show that the DGs with ANN control produced better results
over the DGs with no control. Figure 6.23 shows that the ANN controller improved the bus voltage
profile over the base case for busses 3 and 4. The undervoltages at these busses are regulated within
the permissible range with the ANN controller.

6.5.3 Loads at 70% of switching capacity

The loads in the power network are randomly varied to 1368 MW within the boundaries of the load-
switching spectrum. Table 6.12 describes the new load conditions of the network at 70 % of the totai
rated switching spectrum. Figure 6.24 shows the response of the CF and the ANN controller for the
control parameters of the DGs. Table 6.13 shows the results of the load conditions for the base case,
CF, DGs with no control and of the ANN controller. The bus voltage profile of the network is shown in
figure 86.25.



Pioaa (MW) Qosg (Mvar)  Switch (%)
Load 1 250 82.174 100
Load 2 380 124.9 80
Load 3 130 42.729 50
Load 4 210 69.024 20
Load 5 120 39.442 66.67
Load 6 230 75.597 60
Load 7 48 15.777 75
Lrotat 1368 44964 70

Table 6.12 Load conditions for a total load-switch of 70 %.

CF and ANN gutputs

1.06
104
1.02

Voltage(pu

08

15EI|-

100+

Powsr (MW)

S0}

DG Mumber

Figure 6.24 Response of the CF {left) and the ANN controller (right).

o Average voltage  Average voltage System active
Statistics around deviation deviation power loss
70 % (permitted) % (ideal) % (MW)
Base case (no DGs) 0.84647 2.6152 82.565
CF evaluation 0 0.91342 61.592
DGs (no control) 0 1.5199 62.615
DGs (ANN controller) 0 1.0691 61.789

Table 8.13 Resdults of the power network.
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Figure 6.25 Bus voltage profiles of the power network.

Figure 6.24 describes the response of the CF and ANN controller to the load condition. The results
reveal that the ANN controller closely mimics the response of the CF, thus making an appropriate
decision again. The response shows that the best network conditions are achieved with the DGs
running at about half-rated power. The time response of the ANN controller also topped the CF
response with only 0.071s of computational time. Table 6.13 captures the statistics of the power
network for this simulation run. The results obtained here also reveal that the network conditions
improved over the base case. The rest of the findings are similar to the analysis of paragraphs 6.5.1
and 6.5.2 where the load conditions were set to other levels. Voltage levels are within the permissible
range and the network power losses are minimized.

Figure 6.25 describes the voltage profile on all the system busses. The results reveal that the DGs
improved the profile for all the busses over the base case. The profiles also reveal that the
uncontrolled and controlled cases are more or less the same. The controlled case however shows
better average deviation and network power losses. From all these results it is clear that the ANN
controller ¢chooses appropriate control parameters for the DGs for this simulation run.

6.5.4 Discussion of results

Results were obtained for changing load conditions in the power network and the adaptive behaviour
of the ANN controller was investigated. The response of the ANN controller to such varying load
conditions is the key issue to discuss. To facilitate the evaluation of the ANN controller, the results of
the simulation runs are summarised in table 6.14.



The results of the ANN controller should primarily be compared to the base case, i.e. the original
power network with no DGs. Since the main objectives of the ANN controller are to regulate the
voltage profile of the network and minimise the active power losses, Vi, Vises and P, are evaluated.
The base case showed that the voltage profile of busses 3, 4, 6, 7 and 8 drifted outside the limits for
certain load conditions. In the simulation runs, busses 3 and 4 mainly posed a problem area in the
network. The voltage profile of the network is improved for all the cases to within the permissible
voitage range with the aid of the DGs and ANN control. The voltage parameters showed better results
for all the simulations if the DGs were controlled.

The power losses of the system are significantly improved for all the cases over the base case. The
lowest values are obtained with ANN control with a reduction of over 36 MW. This is a reduction of
almost 40 % in the network power losses. This reduction is because sources closer to the load provide
the necessary power and regulation as to central sources kilometres away. This concludes that the
DGs with controi reduce power flows in the power network and lines, thus reducing network losses.

As seen in table 8.14, the ANN controller made inadequate decisions on two occasions. The response
of the ANN controller improved the network conditions over the base case, but degraded it for the case
where no control over the DGs was active. The integrity of the ANN controller has to be improved to
enable it to make meaningful decisions for any load condition in the switching spectrum. This could be
achieved by analysing the power network with a much larger variety of load conditions and training the
ANN controller to accommodate these conditions. This however would increase the training data
considerably and may form the basis for future research.
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Gl

Load condlitions Base case CF Output ANN Output

Run
"1 11 (12 | 13 | L4 | 15 | L6 | L7 |Switch| Ve |Viw| P {P5' [P81DEYDE20 v, 1y, | p, | PE1/DC1 DE21DG2Y \ iy, P,

(MW)| (MW ] (MW) | (MW)| (MW) | (MW) | (MW)| (%) (%) | (%) | (MW) tou) || (owy | MWy (%) | (%) | (MW) ou |l u) | vy (%) 1} (%) | (MW)
1 | 210 | 400 | 120 | 220 | 100 | 220 | 44 55 085 |2.81(7368|1.01| 150 (0.99( 150 0 0.96 | 46.19 (1.015] 150 10.995| 150 0 1.13| 48.41
2 [ 160 | 320 | 130 | 240 | 110 | 220 | 48 34 049 (2.18|73.77(1.00( 60 (1.01| 80 Q 0.84 (58.34(1.005| 65 !1.012} 65 0 0.96| 58.61
3 (250380130 210 [ 120 | 230 | 48 70 0.85 (2.61/8257 102, 80 (1.02{ 80 0 0.91 {61.59/1.015f 83 (1.018; 83 0 1.07(61.78
4 | 150 | 340 | 130 | 23C | 110 | 200 | 46 28 060 |2.88)67.50|1.00 | 150 |0.99| 150 0 1.19 | 48.20 | 1.002} 149 |0.991! 149 0 1.33]47.89
5 | 250 | 300 : 130 | 210 | 110 | 230 | 42 45 0.37 |2.03[68.73(1.00| 40 [1.02] 40 0 0.80 | 59.26 (1.003| 46 [1.022] 46 0 1.00]57.84
6 1190 | 330 | 160} 250 | 10D | 220 | 48 51 090 |269(7838(1013 70 {1.01; 70 0 1.05|69.58 (1.014| 65 |1.009| 65 0 1.1860.59
7 | 210 ]330 (150 | 210 | 100 [ 210 | 42 40 0.78 |3.09|65.88(1.011| 150 |0.99! 150 0 1.27 | 48.07 (1.012] 150 |0.991| 150 | 0.008 |1.75; 47.01
8 | 170 | 380 140 | 230 | 120 | 240 | 48 60 0.97 [3.1919221|1.04| 150 [1.04 ’_150 ¢ 110 | 57.22 [1.028] 150 ’T{MZ 150 0 1.09{ 56.98
9 1240 | 350 | 150 | 240 | 130 | 220 | 42 81 116 |2.84190.08)1.03 | 140 |1.00/ 140 0 1.02 | 55.54 1.037] 137 |1.005] 137 0 1.17] 56.33
10 | 160 | 320 | 110 | 200 | 110§ 210 | 44 15 027 |2.27|61.78(1.00] 130 |0.99| 130 0 0.98 | 49.29(1.003( 133 [0.993| 133 o 1.13| 48.86
11 | 230 | 370 | 150 | 240 | 100 | 220 | 46 66 1.03 |2.87|79.45|1.01 3 150 |0.99] 150 0 1.01 (51.36(1.009 | 148 [0.991| 148 0 1.01| 51.38
12 | 230 ( 350 | 130 { 210 | 120 | 200 | 44 48 066 12.81|67.49|1.00( 150 |0.99] 150 D 1.16 | 48.51 [1.003 | 150 {0.991| 150 | 0.009 (1.29(48.17

Table 6.14 Evaluation of the adaptive behaviour of the ANN controller (Summary of resuits).




6.6 Conclusions

The results of the CF and ANN controller to optimise network parameters are evaluated in this chapter.
The power network is firstly evaluated for the case where DGs are present in the network, but with no
control. The results showed that the network environment in terms of voltage profiles improved to a
certain extent for some busses, but to the detriment of other busses. The network poWer losses
improved considerably over the base case. The CF is then used to analyze network conditions for a
given load profite. The CF is tested against the base case, i.e. the original power system without the
DGs. Using the CF to analyze and improve the network environment seems viable. The regulating
requirements in terms of deviation from the permitted and ideal values are met while the network active
power losses are kept to a minimum.

The ANN controller is evaluated for load conditions within the original data set developed by means of
the CF. The ANN controller showed similar results as the CF and it is concluded that the ANN
controller can make meaningful decisions for these load profiles. The ANN controller also made proper
decisions for load conditions beyond the training limits. To improve the capabilities of the ANN
controller, it should be trained with a broader spectrum of load possibilities. This would enable the ANN
controller to make informed control decisions for a bigger region of load conditions. In practice this
would be a requirement, but to the expense of a much bigger and more complex training data set. The
ANN controiler developed for the purpose of this project however showed adequate network conditions
and improved power quality parameters.




Chapter 7 - Conclusion and Recommendations

7.1 Introduction

The traditional way of delivering power to a consumer is from a centralised utility. With the rapid
growth of technology, generation of power at all levels is possible whether at transmission, distribution
or at the end user level. The confluence of decentralisation with advances in distributed generation
(DG) and artificial intelligence (Al) has opened new cpportunities to deliver power closer to the point
of consumption. The purpose of this research was to investigate the feasibility of using Al to control
power quality (PQ) parameters through the optimal utilisation of DG in an electric power system. This
chapter concludes the research conducted and summarises the significance of the study.

7.2 The significance of the research

The electric power system under investigation is characterised by large loads switching on-and off the
electric grid. As described in the |EEE Std. P1433, these conditions are likely to cause PQ
phenomena termed under-and overvoltages. These phenomena are the result of poor system voltage
regulation capabilities and controls. The NRS 048 standard in South Africa demands that voltage
regulation must comply within £5 % of the nominal voltage level for voltage levels above 500 V. To
find a solution to these conditions, DG with Al controls is evaluated in this research to regulate the
voltage profile of the electric power system and reduce the active power losses.

To evaluate the behaviour of an Artificial Neural Network {ANN) controller controlling the DGs, a
simulation model is developed which integrates the DGs and the electric power system. The strategic
placement of the DGs in the power system is important to complement their voltage regulation
capabilities. For the purpose of simulation, the Matlab® environment facilitates all the software tools
necessary to analyse the power system and develop an Al controller. The electric power system is
modelled in SimPowerSystems®, a tooibox integrated into Matlab to model electric networks and
systems. This simulation model forms the basis for the analysis of the electric power system.

The ANN emerged as the most suitable Al technique for the control algorithm. Using ANN control is
shown to minimise the network active power losses while optimising the bus voltage profile of the
network in terms of the average voltage deviations from the permissible and ideal values. The cost
function is initially used to develep training data for the ANN. This data incorporate load-switching
patterns for the network and the optimal deployment of the DGs. The ANN is trained with this




randomised data set and the ANN topology used is 14:24:4 representing 14 input neurons, 24 hidden
layer neurons and 4 output layer neurons.

The ANN controlled cases are compared to conditions of no control where the DGs are deployed at
full power and a nominal voltage level of 1 pu. For the load conditions analysed by the cost function,
the ANN controller proved to be very effective in controlling the DGs. The bus voltage profiles as well
as the average voltage deviations are successfully kept within the permissible voltage range. From
the results, the system active power losses are reduced by an average of 24 MW. Comparing the
results obtained, the optimal utilisation of DGs showed that the network conditions improved vastly
over the original power system.

The adaptive behaviour analysis of the ANN controller beyond the training fimits reveals that the ANN
controlier can make meaningful output decisions when subjected to load conditions not in the training
set. Beyond the training limits means that the load conditions are increased to different randomly
selected power levels. What becomes ciear from these analyses is that the behaviour of the ANN
controller closely mimics the response of the cost function. This behaviour of the ANN justifies the
ability of the cost function to select the optimal network conditions as the same improvements are
seen in the network as discussed in the previous paragraph.

Table 7.1 describes the results of improvement in the network conditions over the original power
network. The results conclude that the integrated power system with DGs could be controlied to
eliminate under-and overvoltages due to the switching of large loads.

Ave. voltage Max. voltage  Ave. voltage  Max. voltage  Ave. active

Electic Power Systom  Geviten.  devitlon  davition doviation-  power
(%) {%) {%) (%) {MW)
Original 0.6898 11.72 28176 4.501 78.7110
DGs with ANN controller 0 4] 1.1107 1.982 54.6043
Improvement {%) 100 100 &0 56 3

Table 7.1 Summary of the results of the research conducted.

7.3 Further research

Based on the research conducted during this study, the following areas can be improved or be
recommended for future research:;
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a) Refinement of the ANN training data;

b) Other power network configurations;

¢) DG penetration on distribution level;

d) The impact of DG on other power quality issues.

The training data developed by the CF are based on the same active output power for all the DGs.
This constraint limited the output combinations of the DGs to an acceptable size. The output
combinations of the DGs could be refined to a larger domain of output voltage and active power
levels. This refinement would affect the developed model and ultimately the performance of the power
network. The load boundaries of the network are set to the network load capacity and not to the
current operational boundaries of the loads. Changing the training data to the operational boundaries
and updating it as the boundaries change need to be devised.

The primary objective of distribution systems is to supply customers at a voltage that is within a
prescribed range. Adding DGs on a distribution feeder at different locations and increasing the DG
penetration level directly affects the control of voltage regulation devices like LTCs (load tap
changers), SVRs {step voltage regulators) and switched capacitor banks. Devising an integrated
control scheme can be used to assist these devices in the overall voltage regulation of the distribution
feeder. Implementation of such a control scheme, however, requires a communication infrastructure
not currently available in most distribution systems.

The primary power quality phenomena addressed in this research is under-and overvoltages. Adding
DG to a power system potentially influences the quality of power provided to other customers
connected to the grid. Some of the other power quality attributes that is of concern include harmonic
distortion, flicker and voltage imbalance. These key issues could be considered in further
investigations into the effect of DG on the quality of supply.

7.4 Closure

The conclusion of this dissertation is that the use of DGs with ANN control to optimise the power
quality in an electric power system is meaningful. This is achieved through proper positioning and
control. The evaluation of the power quality in the electric power system is however subject to power
quality definitions used to optimise only certain parameters and it is recommended that further
research be done on power quality and DG as discussed in section 7.3.
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Annexures

A Power quality definitions

Current Distortion Distortion in the ac line current. See also Distortion.

Distortion Any deviaticn from the normal sine wave for any ac quantity.

Dropout Voltage The voltage at which a device ceases operation.

Flicker Impression of unsteadiness of visual sensation induced by a light stimulus whose luminance
or spectral distribution fluctuates with time.

Frequency Deviation An increase or decrease in the power frequency.

Frequency Response |n power quality usage, it refers to the variation of impedance as a function of
frequency.

Fundamental (Component) The component of order one of the Fourier series of a periodic guantity.
Ground A conducting component by which the circuit is connected to the earth.

Harmonic (Component) The compaonent of order greater than one of the Fourier series of a periodic
quantity.

Harmoni¢c Content The quantity obtained by subtracting the fundamental component from an
alternating quantity.

Harmonic Distortion Periodic distortion of the sine wave.

Harmonic Number An integer multiple of the fundamental frequency.

Harmonic Resonance A condition were the power system resonates near cne of the major
harmonics produced by non-linear components.

Interharmonic (Component) A frequency component of a periodic quantity that is not an integer
multiple of the fundamental frequency.

Low-Side Surges A current surge that's injected into the transformers secondary terminals upon a
lightning strike to the grounded conductors in the vicinity.

Noise Unwanted electrical signalis that produce undesirable effects in the circuits.

Non-Linear Load Electrical load whose impedance varies throughout the cycle of the ac input
voltage.

Notch A switching disturbance of the normal power voltage; lasting less than a half cycle.

Oscillatory Transient A sudden, non-power frequency change in the steady-state condition of the
voltage or current.

Overvoltage A voltage having a value of at least 10% above the nominai voltage.

Phase Shift Dispiacement in time of one voltage waveform relative to another.

Sag A decrease to between 0.1 and 0.9 pu in rms voltage or current.

Swell A temporary increase in the rms voltage or current of more than 10% the nominal voltage.
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