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Qpsomming 

Verspreide generasie of generators (VG) verwys na die opwekking van elektriese drywing op 'n 

kleiner skaal (produksie wissel in grootte van 'n paar kW tot menige MW) deur 'n eenheid wat nie deel 

is van 'n sentrale voorsiener nie. Hierdie eenheid (of eenhede op 'n netwerk) is nader aan die las 

waaraan dit elektrisiteit voorsien. VG tegnologie kan in die behoefles van 'n groot verskeidenheid van 

gebruikers voorsien, met toepassings in die residensiele (sonselle), kommersiele (brandstofselle) en 

industriele sektore (turbines). 

Drywingskwaliteit en beheer speel 'n belangrike rol in hierdie VG netwerke. Drywingskwaliteit het 'n 

groot bekommernis geword vir elektrisiteitsvoorsieners, vir hul kli13nte, en vir die vervaardigers van 

elektriese toerusting, a.g.v. die negatiewe impak wat drywingskwaliteitsteumisse op 

stelselbetroubaarheid en-operasie het. Groot hoeveelhede data, vaagheid in die data, en die 

oneindige hoeveelheid variasies van stelselkonfigurasies dra als by tot die kompleksiteit van 

drywingskwaliteitanalise endiagnose. Hierdie kompleksiteit het die behoefte vir gesofistikeerde 

hulpmiddels genoodsaak om stelselingenieurs te help. Kunsmatige intelligensie (KI) blyk die mees 

geskikte hulpmiddel vir drywingskwaliteit toepassings te wees. 

Die verhandeling voorsien aan die leser 'n oorsig oor VG en drywingskwaliteitprobleme in 

kragnetwerke. 'n Gedeeldte van 'n huidige kragnetwerk word gemodelleer en ge-evalueer. Twee VGs 

word op strategiese posisies aan die netwerk gekoppel met die doel om drywingskwaliteit parameters 

te optimeer. Die Kunsmatige Neurale Netwerk (KNN) metode van KI word in hierdie navorsing gebruik 

omdat dit ideaal gepas is vir patroonherkenning. Die KNN word gebruik vir die patroonherkenning van 

die laste en selekteer dan die uitsette van die VGs. Die opleidingsdata vir die KNN word geskep 

d.m.v. 'n kostefunksie. Die kostefunksie bepaal die optimale toestande van die VGs vir 'n spesifieke 

insettoestand. Die kostefunksie gebruik die gemiddelde spanningsafwyking van die toelaatbare 

gebied (V.,), die gemiddelde spanningsafwyking van die ideaal ( V U ~ ) ,  die koste van produksie (CT) 

en die netwerk aktiewe verliese (PL) as parameters vir optimering. Na hierdie optimeringsproses word 

die KNN opgelei met die willekeurig rangskikte opleidingsdata. 

Die aanpasbare gedrag van die KNN beheerder word ondersoek en vergelyk met die geval waar daar 

geen beheer toegepas word nie. Uit hierdie ondersoeke is daar gevind dat die KNN beheerder 

sinvolle besluite kon neem, selfs vir laspatrone buite die opleidingsversameling. Die gedrag van die 

KNN beheerder is egter baie afhanklik van die integriteit van die opleidingsdata. Verdere verfyning en 

kontinue opdatering van die opleidingsversameling m.b.t. die operasionele gebiede van die laste word 

aanbeveel vir verdere navorsing. Die gevolgtrekking wat gemaak kan word uit hierdie navorsing is dat 



dit sinvol is om VGs met KNN beheer in 'n elektriese kragnetwerk te plaas om die drywingskwalitiet te 

optimeer. 
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Chapter 3 a Introduction 

The aim of this chapter is to introduce distributed generation (DG) to the reader as an emerging 

technology in the power industry. DG can provide energy solutions to customers that are more cost- 

effective, more environmentally friendly, or provide higher power quality (PQ) and reliability than 

conventional solutions. PQ plays an important role in power networks and with the aid of DG and the 

proper control tools that incorporates artificial intelligence (Al), PQ can be analysed and controlled. 

This chapter gives a short overview of DG and Al, thus motivating the purpose of the study. 

Furthermore an overview of the dissertation is given. 

1 .I Distributed generation 

DG is a new approach in the electricity industry and the relevant literature shows there is no generally 

accepted definition for DG [I]. In the literature, a large number of terms and definitions are used for 

DG. The Institute of Electrical and Electronic Engineers (IEEE) defines DG as "The generation of 

electricity by facilities sufficiently smaller than central generating plants as to allow interconnection at 

nearly any point in a power system". 

DG is currently being used by some customers to provide some or all of their electricity needs. In 

some instances, DG technologies can be more cost effective than conventional solutions. There are 

many different potential applications for DG technologies. For example, some customers use DG to 

reduce demand charges imposed by their electric utility, while others use it to provide premium power 

or reduce environmental emissions. DG can also be used by electric utilities to enhance both their 

distribution and existing power systems. 

Current technologies for distributed generation vary widely. A summary of current technologies is 

shown in table 1.1. Some of these technologies are discussed in chapter 2. 



Technology Typical size per module 

1. Combined gas turbine 

2. Internal combustion engines 

3. combustion turbine 

4. Micro turbines 

Renewable sources 

5. Small hydro 

6. Micro hydro 

7. W~nd turbine 

8. Photovoltaic cells 

9. Solar thermal 

10. Biomass, e.g. based on gasification 

11. Fuel cells 

12. Geothermal 

13. Ocean energy 

14. Battery storage 

Table 1.1 Technologies for distributed generation. 

1.2 The power quality problem 

Electric power quality (PQ) has become a topic of increasing interest since the late 1980's. This 

interest involves all the parties concerned with PQ in the power business: firstly, the utility companies 

which is the origin of the electricity, the customers who use the electricity and the manufacturers of 

electric equipment. According to lbrahim and Morcos [2], the growing concern is due to the following 

reasons: 

End-user load equipment has become more sensitive to power quality due to many 

microprocessor-based controls; 

Complexity of industrial processes. The restart-up of these industries is a very costly affair; 

Development of sophisticated power electronic equipment used for improving system stability, 

operation, and efficiency. These devices are a major source of bad power quality and are 

themselves vulnerable to bad PQ; 

Complex interconnection of systems, which results in more severe consequences if any one 

component fails; 



e) Continuous development of high performance equipment: Such equipment is more 

susceptible to power disturbances. 

Power quality problems can be defined as any problem in power due to current, voltage or frequency 

deviations that result in the failure or malfunction of the customers' equipment [3]. Alternative 

definitions for PQ are used within the power industry, reflecting the different viewpoints of the parties 

involved. From a supplier and equipment manufacturets point of view, PQ is a perfect sinusoidal 

waveform with no distortion (consistent in voltage magnitude and frequency) and no noise on the 

grounding system. The customers' point of view may be that PQ is simply the power that works for 

their equipment without damaging it. 

While each of these viewpoints is clearly different, a definition that is properly focused is difficult to 

establish. A definition based upon the PQ parameters is also not feasible, because different PQ 

parameters will apply to different power network scenarios. To establish a PQ definition that is 

acceptable to all the parties is a field of interest on its own. As the appropriate literature suggests, the 

following PQ attributes are affected with the connection of DGs onto the power grid [4],[5]: 

a) Islanding; 

b) Steady state voltage regulation; 

c) Harmonic distortion; 

d) Reverse power flow effects; 

e) Direct current injection; 

f) Over-voltage conditions; 

g) System losses; 

h) Voltage unbalance; 

i) Under-voltage conditions; and 

j) Flicker. 

The PQ parameters that are applicable for the purpose of this research are defined in chapter 2. The 

use of DG in power networks has positive and negative effects on the PQ 131. Concerning voltage 

regulation, the response due to the use of discrete tap changing devices like regulators is not 

effectively smooth and fast. Impedance compensation devices like shunt capacitors may cause 

harmonic problems, whilst series capacitors may result in resonance and ferroresonance (in 

transformers). From the point of view of power system losses, electric power systems incorporate 

generation plants and loads that are interconnected by long transmission lines. These systems can 

suffer from significant losses [6]. It is therefore necessary to study the effect of integrated DG units on 

PQ control in the electric power system. 



The literature suggests that DG offers the following benefits for PQ problems [5]: 

a) Harmonic content produced by the generators are limited to below acceptable limits. This is 

primarily an equipment vendor design issue; 

b) DGs can have a beneficial impact on flicker caused by other loads if they are operated as 

controlled voltage sources; 

c) DG does not inject DC current into the grid; 

d) DG can counter the effect of ripple current, which is proportional to the amount of voltage 

unbalance. 

e) DG can be effective in counteracting voltage regulation problems because of its ability to 

impact the active and reactive power flow. 

1.3 Artificial intelligence and power quality 

Previous research has shown that Al tools are very suitable for PQ analysis and control. An important 

application of Al is the development of a PQ analysis and control system. According to lbrahim and 

Morcos [2], Al techniques are suitable for PQ applications for the following reasons: 

a) Knowledge about PQ is dispersed and fragmented; 

b) PQ experts are scarce in the electric power industry; 

c) Endless number of system configurations, making each PQ problem unique in its 

characteristics and diagnosis; 

d) Large domain analysis of PQ (equipment, standards, and methodologies); 

e) Distributed PQ monitoring systems that gather a huge amount of data, which is not feasible 

for a human expert to analyse; 

f) Large amount of data that require not only intelligent analysis but also intelligent data 

management; 

g) Imprecision of data, making conventional programs fail to identify PQ problems; 

h) PQ diagnosis requires expertise in a wide variety of power topics. Al tools can combine 

knowledge in several domains. 

These PQ parameters can be optimised and controlled with the aid of Al tools. Al tools include expert 

systems (ES), artificial neural networks (ANN), fuzzy logic (FL), and newer techniques like adaptive 

neuro-fuzzy systems (ANFS) and generic algorithms (GA). The algorithms and feasibility of these 

tools are discussed in chapter 2. 



1.4 Problem statement 

The aim of this study is to control the quality of power through the optimal utilisation of DGs in an 

electric power network. A scenario (part of a power network) needs to be investigated to determine 

the PQ control parameters. An ANN controller needs to be developed to assess the state of the power 

network (load conditions) and control the output of the DGs to optimise the PQ parameters The block 

diagram in figure 1.1 illustrates the principal of the connection between the proposed ANN, the DGs 

and the power network. 

Figure 1.1 Block diagram of the power network with ANN controller 

The ANN controller will typically use the active and reactive power flows of the loads as input and the 

output will be the optimal operating levels of the DGs. 

1.5 Methodology 

The power network under consideration, different DG technologies and typical interconnection 

methodologies are firstly evaluated to assess their impact on the PQ parameters. Based on this 

assessment, the PO parameters applicable to this study is identified and evaluated. The voltage and 

power loss sensitivities of the power network are evaluated to determine the optimal connection points 

of the DGs. Also, the different control types are reviewed and a control type for the DGs is selected. 

To optimise the PQ parameters identified, a cost function (CF) is developed to analyse the condition 



of the power network and select the optimal operating states of the DGs. The CF is developed from 

the basis of a well-known topic: "Reactive power flow optimisation [25], [26]". The active power flow of 

the system is optimised which results in optimised active power losses. Data is developed by the CF 

from the different load conditions. Loads are varied from minimum to maximum load capacity. 

Based on the data developed by the CF, an Al controller is developed for the DGs. The different Al 

technologies are firstly reviewed to identify the most suitable. The Al controller is trained with the 

network data and optimised. Several techniques are used to optimise and determine the topology of 

the Al controller. The controller is finally integrated into the system and the network conditions are 

evaluated for the DGs with an Al controller. 

1.6 Overview of dissertation 

The dissertation begins with a proposed definition of DG in Chapter 2. The different applications of 

DG are discussed emphasizing the potential interest of electric utilities and their customers to employ 

DG technology. The chapter gives insight into DG technologies by explaining the operating principles, 

applications and proslcons of these technologies. Different PQ phenomena are also discussed and 

investigated for the purpose of the PQ control parameters. Lastly, an introduction to ANNs is given 

and discussed. For the purpose of this study, only the ANN is used as Al control tool. 

To evaluate the control of PQ in an electric power network, a scenario is modelled. The model 

includes the interconnected electric power network and the DG sources. Chapter 3 discusses the 

modelling of the power network from the applicable scenario. The scenario forms part of an existing 

ESKOM (S.A. electric power utility) network. The simulation evaluates the steady state conditions of 

the network and assesses the condition of the network at different points. The simulation is interactive 

and allows power-flow analysis of the system. Steady state voltage and current information is 

gathered and used to calculate PQ parameters to provide the necessary information about network 

condition. 

Chapter 4 focuses on the development of the training data for the ANN controller. A cost function is 

firstly developed to determine the optimal output conditions of the DGs for a particular load pattern. 

The cost function comprises four objective functions: 

a) The average voltage deviation from the permitted range (V.,); 

b) The average voltage deviation from ideal (V,.,); 

c) The power network active losses (PL); 
d) The generation costs (CT). 



The objective is to control V,, to meet certain criteria while at the same time minimising PL, and 

CT. The training load patterns are restricted to an acceptable size of three operating states for each 

load in the power system. This ultimately leads to a data set size with 2187 load combinations, each 

evaluated by the cost function. This ordered training set resulted in the characteristic training patterns 

of the network. 

The training and optimisation of the ANN controller is done in Chapter 5. The topology of the ANN is 

determined by two methods: the network growing method and the leave-one-out method. Both 

methods identified a topology of 14:24:4 representing 14 input layer neurons, 24 hidden layer neurons 

and 4 output layer neurons. The training is done off-line with a randomly arranged training set, as 

discussed in the literature. Through a process of optimisation, the optimal training set is identified 

which gives the ANN controller the ability to learn as much about the load patterns as possible. The 

optimal learning parameten are identified and results in improved generalisation capability of the 

ANN. The optimised ANN controller is proved to control the DGs successfully. 

In Chapter 6, the adaptive behaviour of the ANN controller for the DGs is evaluated. The ANN 

controller is shown to closely mimic the response of the cost function for the load patterns trained 

with. The ability of the ANN controller to adapt its output for new load patterns in the electric power 

system is also investigated. The ANN controlled cases are compared to the cases where no control is 

active i.e. the DGs run at full generation capacity and to the optimal decision of the cost function. It is 

found that the ANN controller can sensibly adapt to the new load patterns and make meaningful 

decisions. 

Chapter 7 concludes the dissertation. The main conclusion of this dissertation is that it is viable to use 

DGs with ANN control to optimise the power quality in an electric power system. The performance of 

the ANN controller is however strongly dependent on the training data. Further research is 

recommended in the refinement and updating of the training data. Power quality issues other than the 

problems addressed in this research, are also an area for future exploration. An integrated control 

scheme (DG, tap-changer and capacitor bank control schemes) that assists other regulating devices 

is also suggested for further investigation. 



Chapter 2 - Distributed generation 

2.1 Introduction 

In any power system, the need for improvement and upgrading is unavoidable. This is due to a 

competitive electric power industry and the constant advancement in technology. The goal in any 

competitive market is ultimately lower electricity prices and higher energy efficiency. Distributed 

Generation (DG) has emerged as potentially the future of small-scale power generation, an alternative 

to the old central generation plant model. 

This chapter firstly gives a proposed definition for DG and an overview of the different DG 

technologies. The issues and applications of the DG technologies are discussed to point out the 

necessity for DG in power systems. The different power quality (PQ) phenomena are discussed and 

the most suitable PQ terms for this study are highlighted. The chapter lastly gives an overview of the 

operation of Artificial Neural Networks (ANNs). 

2.2 Distributed generation: A definition 

A study by the Electric Power Research lnstitute (EPRI) indicates that by 2010, 25% of the new 

generation will be distributed [7]. Distributed generation (DG) is a new approach in the electricity 

industry and the relevant literature shows that there is no generally accepted definition for DG [ I ]  or 

the definitions used are inconsistent. Some countries define DG based on the power level, whereas 

others define DG as facilities that directly supply consumer loads. Other countries define DG as 

having some basic characteristic (for example, using renewables). In regards to the rating of DG 

power units, the following different definitions are currently used: 

The Electric Power Research lnstitute (EPRI) defines DG as generation from 'a few kilowatts 

up to 50 MW' [7]; 

The Gas Research lnstitute defines DG as being 'typically behveen 25 kW and 25 MW' [a]; 
Preston and Rastler defines the size as 'ranging from a few kilowatts to over 100 MW 191; 

The International Conference on Large High Voltage Electric Systems (CIGRE) defines DG 

as 'smaller than 100 MW' [lo]; 

Due to the large variations in the definitions used in the literature, the following different issues have 

to be discussed to define DG more precisely: 



Purpose: There is an agreement among different organizations regarding the definition of the 

purpose of DG. 

Definition - The purpose of distributed generation is to provide a source of electric power. 

According to this definition, DG can be the only source of electric power, or complement the 

existing power network. 

Location: The location of DG is defined as an electric power source near the load or on the 

customer side of the meter. 

Definition - The installation and operation of electric power generation units 

connected directly to the power network near the load or connected to the network on 

the customer side of the meter. 

The idea of DG is to locate generation close to the load, hence on the distribution network or 

on the customer side of the meter. 

Rating of a DG unit: The maximum possible rating of the DG source is often used within the 

definition of DG, but is not relevant as the different technologies get better and more powerful 

everyday. The rating of a DG power source is thus not relevant for the definition. 

Technology: The term DG is often used in combination with a certain generation technology 

category, e.g, renewable energy technology. The definition of DG is not limited to specific 

types of energy sources. Current technologies for DG vary widely. A summary of current 

technologies is shown in chapter 1. A detailed technical description of some technologies is 

presented in the next section. 

Environmental impact: DG technologies are described as environmentally friendlier than 

centralized generation. The environmental impact of the DG technology is however not 

relevant for the definition. 

Ownership: It is frequently mentioned that DG has to be owned by independent power 

producers or by the customers themselves, to qualify as DG. Large power generation 

companies have become more and more interested in DG and there is no obvious reason 

why DG should be limited to independent ownership, thus the ownership is not relevant. 



2.2.1 Proposed definition for distributed generation 

Different definitions regarding DG are used in the literature. These variations in the definition can 

cause confusion. Therefore, a general definition is formulated after studying the various factors 

surrounding DG: 

Definition - DG is a modular electric power source sufficiently smaller than central 

generation that is used in applications that benefit the electric power nehuork, the 

utility customer, and the electric utdity. 

This definition does not define the rating of the generating source, as the maximum rating depends on 

the local power network conditions, e.g. voltage level. It is however useful to suggest categories of 

different ratings for DG. The following categories are suggested: 

0 Micro DG: 1 W to 5 kW; 

0 Small DG: 5 kW to 5 MW; 

0 Medium DG: 5 MW to 50 MW; and 

Large DG: 50 MW < 200 MW (PBMR). 

2.3 Issues surrounding distributed generation 

DG is currently being used by some customers to provide some or all of their electricity needs. There 

are many different potential applications for DG technologies. Some customers use DG to reduce 

demand charges imposed by their electric utility, while others use it to provide premium power or 

reduce environmental emissions. Many other applications for DG solutions exist. The following is a list 

of those of potential interest to electric utilities and their customers. 

2.3.1 Continuous powerlstand alone 

In this application, the DG technology is operated at least 6,000 hours a year to allow a facility to 

generate some or all of its power on a relatively continuous basis. Important DG characteristics for 

continuous power include: 

0 High electric efficiency; 

Low maintenance costs; 

0 Low installation costs. 



DG is currently being utilized in a continuous power capacity for industrial applications such as food 

manufacturing, plastics, rubber, metals and chemical production. 

2.3.2 Combined heat and power (CHP) 

This application is also referred to as cooling, heating, and power or cogeneration. This DG 

technology is operated at least 6,000 hours per year to allow a facility to generate some or all of its 

power. A portion of the DG waste heat is used for water heating, space heating, steam generation or 

other thermal needs. lmportant DG characteristics for CHP include: 

High useable thermal output (leading to high overall efficiency); 

Low maintenance costs; 

Low emissions. 

As with Continuous Power, CHP is most commonly used by industry clients. 

2.3.3 Peaking powerlpeak saving power 

In a peaking power application, DG is operated between 200-3000 hours per year to reduce overall 

electricity costs. Units can be operated to reduce the utility's demand charges, to defer buying 

electricity during high-price periods. lmportant DG characteristics for peaking power include: 

Low installation costs; 

Quick start-up; 

Low fixed maintenance costs. 

The most common applications are in educational facilities, lodging, miscellaneous retail sites and 

some industrial facilities with peaky load profiles. 

2.3.4 Green power 

DG units can be operated by a facility to reduce environmental emissions from generating its power. 

Important DG characteristics for green power applications include: 

Low emissions; 

High efficiency; 

Low variable maintenance costs. 



Applications for green power are mostly found near areas that are nature presewations or at facilities 

in highly polluted areas. 

2.3.5 Premium powerlgrid support 

DG is used to provide power at higher level of reliability and quality than typically available from the 

grid. Customers typically demand uninterrupted power for a variety of applications, and for this 

reason, premium power is broken down into three categories: 

0 Emergency power system This independent system automatically provides electricity within 

a specified period to replace the normal source if it fails. The system is used to power critical 

devices whose failure would result in property damage and threatened health and safety. 

Customers include apartment, office and commercial buildings, hotels, schools, and a wide 

range of public gathering places. 

0 Standby power system This independent system provides electricity to replace the normal 

source if it fails and thus allows the customer's entire facility to continue to operate 

satisfactorily. Such a system is critical for clients like airports, fire and police stations, military 

bases, prisons, water supply and sewage treatment plants and dairy farms. 

True premium power system Clients who demand uninterrupted power, free of all power 

quality problems such as frequency variations, voltage transients, dips, and surges, use this 

system. Power of this quality is not available directly from the grid; it requires both power 

conditioning equipment and standby power. Alternatively, DG technology can be used as the 

primary power source and the grid as a backup. This technology is used by mission critical 

systems like airlines, banks, insurance companies, communications stations and hospitals. 

Important DG characteristics for premium power include: 

Quick start-up; 

Low installation costs; 

0 Low fixed maintenance costs 

2.3.6 Transmission and distribution deferral 

In some cases, placing DG units in strategic locations can help delay the purchase of new 

transmission or distribution systems and equipment (for example distribution lines and substations). 



Important DG characteristics for transmission and distribution include: 

Low installation costs; 

Low fixed maintenance costs. 

Figure 2.1 shows a DG network developed on the applications mentioned in this section. Some of the 

benefits of making use of these applications are: 

i. Customer benefits 

Ensures reliability of energy supply; 

Provides the right energy solution at the right location; 

Provides the power quality needed in many industrial applications; 

Enables savings on electricity rates during high-cost peak power periods; 

Provides a stand-alone power option for areas where transmission and distribution 

infrastructure does not exist or is too expensive to build; and 

0 Allows power to be delivered in environmentally sensitive areas by having a high 

efficiency and near-zero pollutant emissions. 

ii. Supplier benefits 

Avoids major investments in transmission and distribution system upgrades by placing 

new generation near the customer; 

Offers options in remote areas without transmission and distribution systems. 
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Figure 2.1 A small power network with DG applications.

2.4 Distributed generation technologies

DG technologies can meet the needs of a wide range of users, with applications in the residential,

commercial, and industrial sectors. A summary of DG technologies is provided in this section [11].

The technologies include reciprocating engines, micro turbines, gas turbines, combustion turbines,

fuel cells, photovoltaics, and wind turbine systems. For each technology its operation and

advantages/disadvantages are discussed.

2.4.1 Reciprocating engines

Almost all engines used for power generation are four-stroke and operate in four cycles (intake,

compression, combustion, and exhaust). The process begins with fuel and air being mixed. Some

engines are turbo-charged or supercharged to increase engine output, meaning that the intake air is

compressed by a small compressor in the intake system. The fuel/air mixture is introduced into the

combustion cylinder, and then compressed as the piston moves toward the top of the cylinder. As the
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piston nears the top of its movement, a spark is produced that ignites the mixture. The pressure of the 

hot, combusted gases drives the piston down the cylinder. Energy in the moving piston is translated to 

rotational energy by a crankshaft. As the piston reaches the bottom of its stroke, the exhaust valve 

opens and the combusted gases is expelled from the cylinder by the rising piston. Table 2.1 lists the 

advantages and disadvantages. 

Advantages Disadvantages 
-- - - ~~ 

Good electrical efficiencies (up to 45%) Atmospheric emissions (mainly  ox) 

Quick start-up Frequent maintenance intervals 

Ease of operation and maintenance Noise and vibration 

High reliability Inability to start itself from zero RPM 

Inexpensive 

Table 2.1 Advantages and disadvantages of reciprocating engines 

2.4.2 Micro turbines 

Micro turbines are typically in the size range of 35 kW to 1 MW. Micro turbines consist of a 

compressor, combustor, turbine, and generator. Most designs are single-shaft and use a high-speed 

generator producing variable voltage, variable frequency alternating current (AC) power. An inverter is 

employed to produce 50 Hz AC power. Most micro turbine units are currently designed for continuous- 

duty operation. Micro turbines have no gearbox, and the turbine and generator are on the same shaft. 

The distinctions of micro turbines are the presence of a recuperator used to heat the input air to keep 

internal temperature high and the use of air bearings. Micro turbines can be divided in two general 

classes: 

recuperated micro turbines, which recover the heat from the exhaust gas to boost the 

temperature of combustion and increase the efficiency; and 

unrecuperated (or simple cycle) micro turbines, which have lower efficiencies, but also lower 

capital costs. 

Table 2.2 lists the advantages and disadvantages 



Advantages Disadvantages 

Compact size and light weight High initial cost 

Relatively high reliability Maintenance skill requirements 

Low maintenance needs Noise and vibration 

Low emissions Moderate ratio for fuel wnsumption/efficiency 

Table 2.2 Advantages and disadvantages of micro turbines 

2.4.3 Gas turbines 

Gas turbines are based on the Brayton or Joule cycle, which consists of four processes: 

compression with no heat transfer; 

heating at constant pressure; 

expansion with no heat transfer; and 

a closed cycle system, cooling at constant pressure 

In open cycle gas turbines, the fourth step does not exist since inlet air is taken from the atmosphere 

and the exhaust is dumped to atmosphere. Due to its higher temperature, there is more energy 

available from the expansion process than is expended in the compression. The net work delivered to 

drive a generator is the difference between the two. The thermal efficiency of the gas turbine is a 

function of the pressure ratio of the compressor, the inlet temperature of the power turbine, and any 

parasitic losses (especially the efficiency of the compressor and power turbine). 

In closed cycle gas turbines, the fuel is not physically ignited. The fuel is heated and passed through 

stages of turbos and compressors The kinetic energy from the fuel is converted to mechanical energy 

and then to electrical energy by a generator. The system can be a single shaft system (only one 

turbo/compressor combination) or a twin or three shafl system. The Pebble Bed Modular Reactor 

(PBMR) is a three shaft closed cycle gas turbine system. Figure 2.2 shows a flow diagram of the 

system and figure 2.3 a picture of the micro plant. 
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Figure 2.2 Flow diagram of a three shaft closed cycle gas turbine.

Figure 2.3 A closed cycle gas turbine (the PBMR).

Table 2.3 lists the advantages and disadvantages of gas turbines.
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Advantages Disadvantages 

It is modular and adjustable High initial cost 

Relatively high reliability Maintenance skill requirements 

It is cost efficient Noise and vibration 

Low emissions Moderate ratio for fuel consumption/efficiency 

Short construction lead-time 

Table 2.3 Advantages and disadvantages of a gas turbine. 

2.4.4 Combustion turbines 

A combustion turbine is a device in which air is compressed and a fuel is ignited. The combustion 

products expand directly through the blades in a turbine to drive an electric generator. The 

compressor and turbine usually have multiple stages and axial blading. This differentiates them from 

smaller micro turbines that have radial blades and are single staged. Combustion turbines typically 

range in size from about 1 MW up to 200 MW. Table 2.4 lists the advantages and disadvantages. 

Advantages Disadvantages 

Short start time Low electric efficiency 

Multi-fuel capability 

Proven reliability and availability 

Low emissions 

High efficiency and low cost (large systems). 

High power-to-weight ratio 

Small system cost and efficiency not as 
good as larger systems 

Table 2.4 Advantages and disadvantages of a combustion turbine 

2.4.5 Fuel cells 

There are many types of fuel cells, but each uses the same basic principle, to generate power. A fuel 

cell consists of two electrodes (an anode and a cathode) separated by an electrolyte. Hydrogen fuel is 

fed into the anode, while oxygen (or air) enters the fuel cell through the cathode. With the aid of a 

catalyst, the hydrogen atom splits into a proton (H+) and an electron. The proton passes through the 

electrolyte to the cathode, and the electrons travel through an external circuit connected as a load, 



creating a DC current. The electrons continue on to the cathode, where they combine with hydrogen 

and oxygen, producing water and heat. Table 2.5 lists the advantages and disadvantages. 

Advantages Disadvantages 

High efficiency High initial cost 

Low pollution Fuel sensitivity 

Low noise and vibration Lack of maintenance experience 

Low emissions Absence of a long history of commercial usage 

Table 2.5 Advantages and disadvantages of fuel cells. 

2.4.6 Photovoltaics 

A photovoltaic cell is composed of several layers of different materials. The top layer is a glass cover 

to protect the cell from weather conditions. This is followed by an anti-reflective layer. The main layers 

are two semiconductor layers, creating the electron current. Photovoltaic cells, or solar cells, convert 

sunlight directly into electricity. The cells produce DC electricity. Photovoltaic cells are assembled into 

flat plate systems that can be mounted on rooftops or other sunny areas. However, the cost is 

currently too high for bulk power applications. Table 2.6 lists the advantages and disadvantages. 

Advantages Disadvantages 

No dangerous emissions Decisive importance of weather conditions 

Can be used in remote areas High initial costs 

Good system scalability (arrays can be built Additional equipment required (energy 
in sizes less than 0,5 w) storage devices, ac converters) 

PV have a few moving parts Strong site dependence 

Little maintenance 

Table 2.6 Advantages and disadvantages of photovoltaics. 

2.4.7 Wind turbines 

Wind turbines are packaged systems that include a rotor, generator, turbine blades, and coupling 

device. As the wind blows through the blades, the air exerts aerodynamic forces that cause the blades 

to turn the rotor. Most systems have a gearbox and generator in a single unit behind the turbine 



blades. The output of the generator is processed by an inverter that changes the electricity from DC to 

AC so that the electricity can be used. Wind conditions limit the amount of electricity that the turbines 

are able to generate, and the minimum wind speed required for electricity generation determines the 

turbine rating. Coastlines and hills are among the best places to locate a wind turbine, as these areas 

typically have more wind. Table 2.7 lists the advantages and disadvantages. 

Advantages Disadvantages 
- - 

No dangerous emissions Decisive importance of weather conditions 

Can be used in remote areas High initial costs 

Minimal land use - the land below each turbine Additional equipment required (energy 
can be used for example animal grazing storage devices, ac converters) 

Little maintenance Strong site dependence 

Table 2.7 Advantages and disadvantages of wind turbines 

Table 2.8 shows a summary of the suitability of the DG technologies discussed for the different 

applications discussed in the previous section. 

m a c o m  
a 

C c  m = a g c  g g  = - g m m 
c  

a 3 z 3 . 5  $ u =  a Application 2 & + 8 = - 0 

.- P C  s! m C 
c' 

y W  u  a gc' 2 B =  0 c  

w S O  P = 5 
Continuous @ @ @ @ @ @ a  

CHP @ @ @ @ @ 8 8  
Peaking @ a @ @ @ @ @  
Green 8 8 8  @ @ @ @  
Premium @ @ @ @ @ @ @  

Application Fit: @ = good @ = moderate 8 = poor 

Table 2.8 The suitability of DG technologies for the different power applications. 

2.5 Distributed generation and power quality 

A major issue related to interconnection of DG onto the power grid is the potential impacts on the 

quality of power provided to other customers connected to the grid. The main reason for PQ analysis 

in power systems is purely of economical value. The economic impacts are on utilities (main grid or 

DG), their customers and suppliers of load equipment. The electrical utilities are concerned with PQ 



issues as to maintain customer expectations and customer confidence. Customers and suppliers of 

load equipment are concerned because modern equipment is much more sensitive to voltage 

deviations. The main attributes that define PQ in systems with DG are: 

Voltage regulation - Maintaining the voltage at the point of delivery within an acceptable 

range. 

Flicker - Rapid and repetitive changes in voltage, which has the effect of causing 

unacceptable variations in light output. 

Voltage imbalance - Each phase of the grid voltage does not have identical voltage 

magnitude, and a 120" phase separation between each phases. 

Harmonic distortion - The injection of currents having frequency components that are 

multiples of the fundamental frequency. 

Direct current injection -This can cause saturation and heating of transformers and motors. 

This can also cause these passive devices to produce unacceptable harmonic currents. 

System losses -The active power losses in the power system (transformers, lines etc.). 

While the common term for describing this section is PQ, it is actually the quality of the voltage that is 

being addressed. In engineering terms, power is the rate of energy delivered and is proportional to the 

product of the voltage and the current. In most DG power systems, only the voltage is controlled and 

there is no control over the current that loads might draw. Therefore, the standard would be to 

maintain an acceptable supply voltage at all times. Any disturbance in the magnitude, frequency and 

purity of the supply voltage waveform, is a PQ problem. 

2.5.1 Classification of electromagnetic phenomena (Power quality 

disturbances) 

PQ refers to a wide spectrum of electromagnetic phenomena that describe the voltage and current at 

any given point in the system. The categorisation of electromagnetic phenomena is shown in table 2.9 

[4]. The reason for the categories and their descriptions are important to be able to classify the 

measurements. The main reasons for the categories are that there are different ways to solve a PQ 

problem for a particular variation and for analysis purposes. A short overview of the PQ phenomena is 

given in this section. Annexure A gives a summary of all the PQ terminology. Table 2.9 shows a 

classification of all the PQ phenomena. 



Categories Duration Voltage Magnitude 

1. Transients 

Impulsive 

Oscillatory 

2. Short duration variations 

lnstantaneous sag 

lnstantaneous swell 

Momentary interruption 

Momentarysag 

Momentary swell 

Temporary interruption 

Temporarysag 

Temporary swell 

3. Long duration variations 

Interruption sustained 

Unde~oltages 

Overvoltages 

4. Voltage imbalance 

5. Waveform distortion 

DC offset 

Harmonics 

Interharmonics 

Notching 

Noise 

6. Voltage fluctuations 

7. Power frequency variations 

0.5 - 30 cycles 

0.5 - 30 cycles 

0.5 cycles - 3 s 

30 cycles - 3 s 

30 cycles - 3 s 

3 s - 1 min 

3 s - 1 min 

3 s - 1 min 

> 1 min 

> 1 min 

> 1 min 

steady state 

steady state 0-0.1 % 

steady state 0 - 2 0 %  

steady state 0 - 2 %  

steady state 

steady state 0 - 1 %  

intermittent 0.1 - 7 %  

Table 2.9 PQ phenomena classification, 



2.5.1.1 Transients 

The term transient is used for a phenomenon or a quantity that varies between two consecutive 

steady states during a time interval that is short compared to the time scale of interest. Transients can 

be classified into two categories, impulsive and oscillatory. These terms reflect the wave shape of a 

current or voltage transient. 

An impulsive transient is a sudden, non-power frequency change in the steady state condition of 

voltage, current, or both, that is unidirectional in polarity (primarily either positive or negative). The 

most common cause of impulsive transients is lightning. 

An oscillatory transient is a sudden, non-power frequency change in the steady state condition of 

voltage, current, or both, that includes both positive and negative polarity values. An oscillatory 

transient consists of a voltage or current whose instantaneous value changes polarity rapidly. Back-to- 

back capacitor energization results in oscillatory transient currents. This phenomenon occurs when a 

capacitor bank is energized in close electrical proximity to a capacitor bank already in use. Figure 2.4 

shows an oscillatory transient. 

Figure 2.4 Oscillatory transient caused by capacitor-bank energization 

2.5.1.2 Short duration voltage variations 

The short duration variation is the general category of events that last for a period that is greater than 

0.5 cycles, but less than or equal to 1 minute. These voltage variations are usually caused by fault 



conditions, such as the energization of large loads that require a starting current that is a multiple of 

the operating current (motors). Figure 2.5 shows a time scale of the characterized groups of short 

duration voltage variations. These groups can be classified into two categories, sags and swells. 

Figure 2.5 Time scale of short duration voltage variations. 
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A sag is a decrease between 0.1 and 0.9 pu in rms voltage or current at the power frequency. Voltage 

sags are usually associated with system faults but can also be caused by switching of heavy loads or 

starting of large motors. Figure 2.6 shows a voltage sag that can be associated with a single line-to- 

ground (SLG) fault. 
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Figure 2.6 Instantaneous voltage sag caused by a SLG fault 
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A swell is an increase between 1.1 - 1.8 pu in rms voltage or current at the power frequency. As with 

sags, swells are usually associated with system fault conditions or switching off a large load or large 

capacitor bank. A swell can occur due to a SLG fault on the system resulting in a temporary voltage 

rise on the unfaulted phases. Figure 2.7 illustrates a voltage swell caused by a SLG fault. 



EMS Variation 

& 
u 
4 
0 
2 

100 

9 0 

- 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 
@ - Time (Secondsi  

I 0 25 50 75 100 125 150 175 200 
Tine (nseconds) 

Figure 2.7 Instantaneous voltage swell caused by a SLG fault 

2.5.1.3 Long duration voltage variations 

Long duration voltage variations is variations of the rms voltage from the nominal voltage for a time 

greater than 1 rnin. Long duration voltage variations can be either overvoltages or undervoltages. 

These variations are generally not the result of system faults, but are caused by load variations. 

An overvoltage refen to a measured voltage having a value greater than the nominal voltage for a 

period greater than 1 min. Typical values are 1.1 to 1.2 pu. Overvoltages can be the result of a load 

switching off or variations in the reactive compensation in the system. Poor voltage regulation 

capabilities or control results in this PQ phenomenon. Figure 2.8 shows a typical overvoltage 

waveform 
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Figure 2.8 Overvoltage waveform. 



An undervoltage refers to a measured voltage having a value less than the nominal voltage for a 

period greater than 1 min. Typical values are 0.8 - 0.9 pu. Undervoltages are the result of the inverse 

events that cause ove~oltages. A load switching on can cause an undervoltage until voltage 

regulation equipment can bring the voltage back to optimum values. Overloaded systems can also 

result in unde~oltages. 

2.5.1.4 Voltage imbalance 

Voltage imbalance is sometimes defined as the maximum deviation among the three phases from the 

average three-phase voltages or currents, divided by the average of the three-phase voltages or 

currents. This ratio is usually expressed as a percentage. 

Voltage imbalance = 100 x (maximum deviation from average voltagelaverage voltage) 

Fri Sat Sun Mon 

Figure 2.9 Imbalance for a feeder measured over a week. 

2.5.1.5 Waveform distortion 

A waveform distortion can be classified as a steady state deviation from an ideal sine wave of power 

frequency characterized by the spectral content of the deviation. 

The DC offset is the presence of a dc voltage or current in an ac power system. This phenomenon 

can occur as the result of half-wave rectification. 



Harmonics are sinusoidal voltages or currents having frequencies that are integer multiples of the 

frequency at which the supply system is designed to operate (fundamental frequency). Harmonics 

combine with the fundamental voltage or current, and produce waveform distortion. Harmonic 

distortion exists due to the nonlinear characteristics of devices and loads in the system. Figure 2.10 

illustrates the harmonic content in the input current of a speed drive. 

Interharmonics are voltages or currents having frequency components that are not integer multiples of 

the frequency at which the supply system is designed to operate. The main sources of interharmonic 

waveform distortion are static frequency converters, cyclo-converters, induction motors and arcing 

devices 
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Figure 2.10 Current waveform and harmonic spectrum for an adjustable speed drive input current. 

Notching is a periodic voltage disturbance caused when current is commutated from one phase to 

another. During this period, there is a momentary short circuit between two phases. Three-phase 

converters that produce continuous dc current are the most cause of notching. 

Noise is defined as unwanted electrical signals superimposed upon the power system voltage or 

current. These signals are usually on the phase conductors or neutral conductors. Noise can be 

caused by power electronic devices such as solid-state rectifiers and switching power supplies. 



2.5.1.6 Voltage fluctuations 

Voltage fluctuations are random changes in the voltage magnitude. These changes normally do not 

exceed the voltage ranges from 0.95 pu to 1.05 pu. Loads that exhibit continuous, rapid variations in 

load current magnitude can cause fluctuations referred to as flicker. Arc furnaces are the most 

common cause of voltage fluctuations in power systems. Figure 2.11 shows voltage fluctuations 

caused by an arc furnace and figure 2.12 an example of voltage flicker. 
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Figure 2.1 1 Voltage fluctuations caused by arc furnace operation. 
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Figure 2.12 Voltage flicker. 



2.5.1.7 Power frequency variations 

Power frequency deviations are defined as the deviation of the power system frequency from its 

fundamental value (e.g. 50 Hz). This can be an increase or decrease in the power frequency. The 

power system frequency is directly related to the rotational speed of the generators on the system. At 

any instant, the frequency depends on the balance between the load and the capacity of the available 

generation. When this dynamic balance changes, small changes in frequency occur. The size and 

duration of the frequency shift depends on the load characteristics and the response of the generators 

to load changes. 

2.5.2 Improving the power quality 

W~thout DG, power flow is always unidirectional, and decreasing in real power (kW) magnitude with 

increasing distance from the generating source. The addition of DG to a power system can shift power 

flow patterns and can make it difficult to maintain adequate voltage regulation [IZ]. The main objective 

of the power delivery system is to supply customers with an acceptable voltage, which is within a 

prescribed range. Two voltage ranges are specified by ANSI C84.1. (American National Standards 

Institute): 

Range A, covering normal operation; 

Range B, covering a wider range for less frequent events 

Normal variations in load and DG operation fall in the category covered by Range A. The NRS 048 

[I31 standard in South Africa demands that voltage regulation must comply within *5 % of the nominal 

voltage level for voltage levels above 500 V This result in a range from 0.95 pu - 1.05 pu of the base 

voltage. Improving the voltage profile of the grid (minimising PQ indices like overvoltages and 

~nde~oltages) is thus possible with DG penetration and adequate control techniques. These PQ 

indices are likely to occur when large loads are switched on and off the power grid. 

2.6 Distributed generation and artificial intelligent control tools 

The control techniques chosen for DG control will mainly depend on the type of application the unit is 

used for and the control parameters. According to lbrahim and Morcos [Z], Al techniques are suitable 

for PQ analysis and control. Controlling the DG power source is important because the control mode 

will determine the following: 



Has the DG application goals been achieved (PQ control, back-up, power saving etc.)? 

Is the DG a profitable investment? 

The DG application goal for this study is PQ control. The fundamental goal of the control scheme is to 

determine the output control parameters of the DGs for a specific network condition. This section 

gives a short overview of the different Al techniques and types of control. The operation and internal 

structure of ANNs are also described. Most DG systems have properly engineered internal control 

systems (speed governing systems, exciter control etc.) which are not discussed. 

2.6.1 Artificial intelligence techniques for DG 

2.6.1.1 Expert systems (ES) 

ES uses knowledge and reasoning procedures to solve problems that are difficult and require 

significant human expertise for their solution. Just like human experts, ES are designed to be an 

expert in one knowledge domain. An advantage of ES is the explanation facility (used when there is a 

lack of PQ knowledge resources). 

2.6.1.2 Fuuy logic (FL) 

Fuuy set theory provides a means for representing uncertainties. Fuuy logic seems to be most 

successful in two kinds of situations: 

In models where understanding is limited or vague; or 

Processes where human reasoning and human decision-making are inextricably involved. 

Fuuy logic rule-based systems use a collection of fuuy conditional statements (rules). This means 

that fuzzy logic rule-based system identifiers, is generally model-free paradigms. Fuuy logic rule- 

based systems are nonlinear function approximators, and any nonlinear function can be approximated 

to any desired precision [14]. 

2.6.1.3 Artificial neural networks (ANNs) 

A neural network is a massively parallel distributed processor made up of several computing units, 

which is able to store experimental knowledge and to learn from examples and generalize. 

Generalization refers to the network producing reasonable outputs for inputs not encountered during 

training (learning) [15]. This means that the system has to be retrained with the new "knowledge" to 



optimise the precision of the system. The network learns from examples by constructing an input- 

output mapping for the problem at hand. With this kind of interconnected internal structure, it is able to 

represent functions and to learn these functions. 

2.6.1.4 Adaptive nero-fuzzy systems (ANFS) 

Adaptive nero-fuzzy systems combine the learning abilities of ANNs and the excellent knowledge 

representation and reasoning of fuzzy logic. ANFS are derived from a general category of intelligent 

networks known as adaptive networks, like ANNs. ANFS is an effective tool for tuning the 

membership functions and minimizing the output error measure of a FL system. 

Artificial intelligence has been applied to several PQ problems [16]. The following applications are 

summarised as follows: 

ANNs have been used to classify PQ patterns and the cause of the disturbance. 

ANNs have been used to classify events into PQ events (sags, swells, distortions, 

interruptions etc.) and non-PQ events. 

Fuzzy-ES systems have been used to diagnose PQ problems. FL is combined into these 

systems because of the imprecision and fuzziness of the data. 

ANN-ES systems have been used to classify PQ disturbances into respective classes (ES) 

while the ANN decided the cause of the disturbance (individual ANNs each trained for only 

one class of disturbance). 

As discussed in chapter 4, the main goal of the control scheme is to optimally control the DGs. The 

input to the control scheme is based on pattern-recognition and ANNs emerged as powerful pattern- 

recognition tools 121. For the purpose of this research, ANNs is chosen as Al control technique. 

2.6.2 Control Types for DG 

2.6.2.1 Threshold Control 

In threshold control, the DGs run whenever a facility's electrical load is greater than the predetermined 

threshold. The number of DGs initially installed is equal to the difference between the annual peak 

and the threshold divided by the nominal power output of each installed unit: 

Number installed = (kW ,k - kW mramou)lkW v u n a  



If the electrical load of the facility is greater than the threshold, then the number of DGs operating is 

equal to the number to reduce the grid load to the threshold limit: 

Number operating = (kW buildin,, - kW mnsho~d)lkW p r u n ~  

A problem with this type of control is deciding where to assign the threshold limit. A high limit means 

that the DGs is used only for peak saving (operating hours is small). A low limit means the DGs run 

more often and is a characteristic of base loading. A threshold of zero means the DGs will try to 

operate whenever possible. 

2.6.2.2 Net metering control 

In this metering scenario, the electrical meter runs backwards if excess electricity is produced on-site. 

If the meter reaches zero, buyback rates apply. 

2.6.2.3 Coolinglheating priority control 

This type of control is mainly used for on-site generation. DG units will be deployed as co-generators 

to satisfy a cooling or a heating load. In this mode of control, the DGs operate primarily to satisfy 

these loads, and the satisfaction of the electrical load is a secondary benefit. 

2.6.2.4 Optimal control 

This type of control is mainly used for on-site DGs. On-site generation is operated using an algorithm 

that reduces the operating cost such that the cost to the facility is minimized every hour. The cost of 

the grid electricity and locally produced electricity are compared each hour; and when the former is 

more expensive, the on-site DGs are operated. 

2.6.2.5 Complete optimisation 

Optimal control is sufficient for performing optimization-based control. An optimization routine must be 

able to keep track of all data acquired a period and provide cost estimates for the period. In this 

period, the optimization routine determines the capacity of DG needed for that period. A prediction of 

the load data for that period is usually required. 

2.6.2.6 Regulation control 

The objective of this control type is to regulate parameters in the system. The DG can control the 



following parameters: 

Real power; 

Reactive power; 

Frequency; 

Voltage magnitude; 

PF. 

The main goal is to deliver power to the load as reliably and economically as possible while 

maintaining the voltage and frequency within permissible limits. This control is most common at 

sensitive loads that are susceptible for voltage fluctuations. Frequency is mainly affected by changes 

in real power, whilst the voltage magnitude is mainly affected by changes in reactive power [17], [18]. 

Thus, the real and reactive powers must be controlled separately. The two techniques used to control 

the real and reactive powers are: 

Load frequency control (LFC); and 

Automatic voltage regulator (AVR). 

The LFC controls the real power and the frequency of the system and the AVR controls the reactive 

power and the voltage magnitude of the system. LFC is the basis of any large interconnected power 

system, and has made operation of such large systems possible. 

Another type of control technique is power factor (PF) control, where the DG is fixed ate a set PF. The 

PF is typically around unity. This mode allows the unit to follow the system voltage, with no attempt to 

regulate it. The reactive power follows the real power output so that the PF remains relatively constant 

while the real power is varied. While in the grid-dependent mode (connected to the grid), the DG 

operates at near unity power factor. 

2.6.3 System voltage control 

Kundur [I91 identifies the main objectives of system voltage control as: 

Voltage at the terminals of all equipment should be kept within acceptable limits, to avoid 

damage and malfunction; 

Keep voltages close to the values for which stabilising controls are designed for; 

Minimize reactive power flows, to reduce active and reactive power losses. 



The control of voltage in transmission systems are divided in three strategies, i.e. normal, preventive 

and emergency state control. Preventive and emergency state control are mostly focused on 

contingency plans in case of outage of major components or lines which may force the system to 

become unstable. Normal state control deals with the voltage regulation issues of the system in the 

normal state (all system components operational). A brief overview of the three control types for 

normal state control follows in the next paragraph [19], [20]. 

Primary Control is used to keep the terminal voltages of the generators close to reference 

values given by the operators or secondary controllers. Also, tap changers and their 

controllers belong to primary control layer. 

Secondary Control acts on a time scale of seconds to a minute and within certain regions of 

a power network. The network is divided in geographic regions. The aim of this control is to 

keep an appropriate voltage profile in a region, reduce circulating reactive power flows, and 

maximise reactive reserves. 

Tertiary Control acts system wide on a time scale of about ten to thirty minutes. This control 

type is based on the OPF (optimum power flow). The desired network conditions are specified 

in the form of a cost function, which main goal is to minimise system losses and regulate 

voltage profiles close to the rated values. The main control variables are generator voltage 

setpoints and switching orders of compensation devices such as shunt capacitors. 

2.6.4 Advantages of DG control 

Control and communication of DG is necessary in power systems. These devices can usually be 

controlled from a central location or control centre. Figure 2.13 illustrates a communication and control 

network overlaying a power network with DG. 



Figure 2.13 Communication and control of DG on a power network 

There are a number of advantages to providing control over the DG in the electric power system and 

they include: 

Scheduled Dispatching 

New DG technology has the capability to dispatch power quite rapidly to varying load 

conditions. The power dispatch of a 3-phase, 30 kW microturbine is shown in figure 2.14. The 

DG requires *20 s to vary its power output from one third to full power. 

Cold-Load Pickup 

DG can be controlled to reduce the amount of load that has to be picked up by central 

generation after an outage or fault in the system. 

Load Management 

DG can be controlled to reduce the load during peak periods. By controlling the amount of 

power delivered by the DG, the stress on central generation and transmission lines can be 

relieved. 

Voltage Regulation 

By controlling and coordinating existing distribution elements with DG, improved voltage 



profiles is possible. It may be necessary for distribution elements to be controlled to operate 

under different settings or modes when the DG is operable. If the equipment operates 

autonomously without control, undesirable conditions may occur and damage equipment. 
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Figure 2.14 Power output of a 30 kW microturbine. 

2.6.5 Artificial neural networks 

Artificial neural networks (ANNs) consist of simple processing units operating in parallel. This concept 

is motivated from its inception that the human brain consists of billions of neurons functioning as a 

parallel processing unit. The human brain has the ability to leam from experience and adapt to its 

surrounding environment. From this principal, an ANN is constructed to model the way the human 

brain performs a task, mainly the process of learning. 

The ANN is trained (the learning process) and adjusted so that a particular input leads to a target 

output. This process is called input-output mapping or supe~ised learning. It involves modification or 

adjusting the synaptic weights (values of the connections between elements) of the ANN. Figure 2.15 

illustrates the process of training. 
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Figure 2.15 Training process of an ANN. 

The benefits of using a NN are the following [15]: 

It can model non-linear input-output data, e.g. non-linear functions; 

The model is adaptive and can be retrained with data to adapt to a new surrounding; 

The network can provide information about the confidence of its decision. This can be used to 

improve the classification performance of the network. 

To design an ANN, the model of a neuron itself is firstly discussed. The neuron is the simplest building 

block of an ANN and is fundamental to the operation thereof. The model consists of three basic 

elements [15]: 

A set of synapses that is each characterised by its own weight; 

0 An adder to sum the inputs; 

An activation function for limiting the outputs of the neuron. 

Figure 2.16 shows the model of the neuron. 
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Figure 2.16 Nonlinear model of a neuron. 
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Figure 2.16 may be described in mathematical terms by the following equations: 

where x,, ... ,xm are the inputs; wk,, ... ,wkm are the synaptic weights; uk is the linear combiner output; bk 

is the bias; cpp) is the activation function and yk is the output of the neuron. 

The activation function, denoted by cpp), is determined by the type of data the ANN is trying to learn. 

The tangential sigmoid function limits the output to befween minus one and one, while the logarithmic 

sigrnoid function limits the output of the neuron to between zero and one. Figure 2.17 shows the 

transfer functions 

1 
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-1 
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Figure 2.17 ANN activation functions. 

The internal structure of the ANN is intimately linked with the learning algorithm that is used. The 

multilayer feedforward architecture has emerged as a suitable structure for the ANN. In this type of 

network architecture, the neurons are structured in layers. The input space is connected to the output 

space by means of a hidden layer. Every node in each layer is connected to every node in the next 

forward layer, but not to each other. Figure 2.18 shows the structure of a rnultilayer feedforward ANN. 

The training process and type of feedforward algorithm that is used are discussed in chapter 5. 
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Figure 2.18 Internal structure of a multilayer feedforward neural network. 

2.7 Conclusions 

Existing DG technologies are described and the major benefits and issues of using DG are discussed. 

The different technologies are evaluated in terms of their contribution to the listed benefits and issues. 

A definition for DG is proposed as there is no consensus on a precise definition for the concept (it 

encompasses many technologies and many applications in different environments). 

Electric PQ control is necessary in any power system to ensure effective operation of equipment and 

importantly to avoid damage to equipment. This means a consistent and controlled voltage magnitude 

and frequency. Many factors contribute to PQ problems, from lightning strikes to household 

computers, each resulting in different PQ phenomena. For the purpose of this study, the switching of 

large loads on a MVA power grid is investigated. This can result in PQ problems like overvoltages and 

unde~oltages. Proper control of strategically placed DGs in the power grid may improve these 

conditions. The main control strategy of the DGs will focus on tertiary normal state control as 

discussed in section 2.6.3. 

Al techniques have emerged as suitable solutions for the control scheme of DGs. The different Al 

techniques are discussed and evaluated. ANNs emerged as an appropriate Al control technique for 

the control of the DGs because of its ability to recognise patterns (e.g. the nehvork load patterns as 

discussed in chapter 4). To control the PQ in the grid, regulation control is chosen to as control 

scheme for the DGs. Choosing this control type makes it possible to control the power, voltage and 

frequency in the power grid. A proper control scheme for the DGs will ensure that the power quality 

and stability of the power network will be maintained. 



Chapter 3 - lectric power system model 

3.1 Introduction 

In this chapter, a simulation model is developed which integrates the DGs and the electric power 

system. The software environment chosen for the simulation platform is Matlab simulinkB and Matlab 

~ i m ~ o w e r ~ ~ s t e r n s ~  (SPS). The electric power network scenario is provided by ESKOM and forms 

part of an existing electric power network. The impact and penetration of DG in the electric power 

system is investigated and some key issues include voltage regulation and electrical power losses. 

This simulation model forms the basis for the analysis of the electric power system. 

3.2 Case study 

The scenario used in this research is part of an ESKOM power network that is under revision. The 

network may have power quality problems in the near future, as the network is loaded to full capacity. 

The main transmission lines are rated at 275 kV ac. Sub transmission or distribution is rated at 132 kV 

ac for cities, towns and big customers (e.g. mines). Figure 3.1 shows the line diagram of the ESKOM 

network under revision and the substation names are shown in table 3.1. 

Sub Name Base kV 

Everest 

Peneus 

Haward 

Merapi 

Boundary 

Olien 

Fermm 

Garona 

Table 3.1 Substation names and voltage ratings of the electric power network. 
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Figure 3.1 Line diagram of the ESKOM network. 

The electric power network line, load, capacitor bank and substation data are shown in annexure 6. 

The transformation of line data from R, X and B (pu) to R (Nkm), L (Hlkm) and C (Flkm) is also 

shown in Annexure B. This is done because the line modelling blocks of SPS uses the line R, L and C 

values. Figure 3.2 shows the line diagram of the network with the real load capacities, line lengths, 

bus numbers, transformer ratings and capacitor banks. 
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Figure 3.2 Line diagram of the ESKOM power network 



3.3 Simulation environment 

Matlab6.5R13 [21] is a mathematical computing program with the capability of real time interfacing 

with external devices like monitoring devices and controllers. The full package constitutes several 

different computing toolboxes (control, neural networks, fuzzy logic, optimization, robust control etc.). 

Simulink is a toolbox of Matlab where complete systems can be modelled by means of blocksets. 

These blocksets are more user friendly than a string of programming code. The blocksets can be 

anything from simple connectors to advanced controllers with feedback and monitoring signals. SPS, 

which is a sub-toolbox of Simulink [22], constitutes the following sub-libraries: 

Electrical sources (dc, ac, current etc.) ; 

Elements (branches, lines, transformers, circuit breakers etc.); 

Power electronics (diodes, thyristors, bridge, mosfets etc.); 

Machines (regulators, dc, synchronous, asynchronous etc.); 

Connectors (ground, busbars etc.); 

Measurements (voltage, current, impedance, power etc.). 

The part of the ESKOM power network is simulated using these libraries. Figure 3.3 shows the main 

draw window in Simulink 
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Figure 3.3 The main draw window in Simulink with the SPS library browser. 



The power graphical user interface (GUI) in the library browser is used to provide a graphical user 

interface for the analysis of models created in Simulink. The power GUI allows you to evaluate and 

modify the initial states in order to start the simulation from any initial condition. It displays the steady 

state values of measured currents and voltages. The power GUI also performs load flow analyses and 

initialization of three phase networks containing machines so that the simulation starts in steady state. 

It also displays impedance versus frequency plots and FFT analyses of the system. The power GUI is 

used in the simulation to obtain the following data and results: 

steady state values of voltages and currents on each busbar; and 

load flow and machine initialisation to start the simulation in steady state. 

Figure 3.4 shows the main window of the power GUI tool. 

Figure 3.4 The main window of the power GUI 



3.4 Simulating the electric power network in Matlab 

The power system under consideration is modelled in Simulink using SPS. The model constitutes the 

following building blocks: 

Feeding sources; 

Transmission lines; 

Loads; 

Transformers. 

The network constitutes the following components: 

One 275 kV feeding source (275 kV transmission line); 

One 400 kV feeding source (400 kV transmission line); 

Seven 275 kV transmission lines; 

Three 275 kV capacitor banks; 

Seven 132 kV RLC loads; 

Seven 275 kV:132 kV transformer substations; 

One 400 kV:275 kV transformer substation; 

Two 30 kV:275 kV transformer substations; 

Two 30 kV ac generators; 

Two 30 kV resistive loads. 

Since the study mainly focuses on an artificial control scheme for the DGs in the power system, the 

Dower system constitutes the following constraints: 

There is no unbalance in the system. All three phases are balanced; 

The transformer tap positions are not control variables, so all the transformer tap positions 

are fixed at 1 pu; 

The generators do not inject any harmonics into the system; 

The power system is evaluated in steady state only (evaluated only at the fundamental 

frequency 50 Hz); 

All the loads are linear at 50 Hz and rated at 132 kV; 

Double lines are modelled as single lines with the equivalent values and ratings; 

Synchronous generators are used for the DGs (capable of delivering large-scale power [la]). 



3.4.1 The power system components 

3.4.1.1 Voltage source (Feeding sources) 

The grounded three-phase voltage source implements a pure three-phase sinusoidal voltage source 

with equivalent RLC impedance. This block is used to simulate a part of a power network feeding the 

existing network. It is typically used to simulate the network from the power station up to the point of 

wnnection. Figures 3.5 and 3.6 show the library block and the library dialog box of the voltage 

source. 

I 
3-Phase Source 

Figure 3.5 Simulink library block of a three-phase voltage source with equivalent RLC impedance. 

Figure 3.6 Dialog box parameters of a three-phase voltage source with equivalent RLC impedance. 



3.4.1.2 Transmission line 

The pi section transmission line implements a single-phase transmission line with parameters lumped 

in pi sections. For a transmission line, the resistance, inductance, and capacitance are uniformly 

distributed along the line. Figures 3.7 and 3.8 show the library block and the library dialog box of the 

transmission line. 

El PI Section Line 

Figure 3.7 Simulink library block of a pi section transmission line. 

Figure 3.8 Dialog box parameters of a pi section transmission line. 



3.4.1.3 Transformer 

The three-phase transformer with two windings (three windings is used to eliminate harmonics) block 

implements a three-phase transformer using three single-phase transformers. The transformers'in the 

network are used to step up the voltage at the generators from 15 kV to 275 kV (A - Yg) and to step 

down the voltage at the loads from 275 kV to 132 kV (Yg - A) 1181. Figures 3.9 and 3.10 show the 

library block and the library dialog box of the transformer. 

Figure 3.9 Simulink library block of a three-phase transformer. 

Figure 3.10 Dialog box parameters of a three-phase transformer 



3.4.1.4 Load 

The series RLC load block implements a linear load as a series combination of R, L, and C elements. 

At the specified frequency, the load exhibits constant impedance and its power is proportional to the 

square of the applied voltage. Figures 3.11 and 3.12 show the library block and the library dialog box 

of the load. 

3-Phase 
Series RLC Load 

Figure 3.1 1 Simulink library block of a three-phase series RLC load. 

Figure 3.12 Dialog box parameters of a three-phase series RLC load 



3.4.1.5 Generator (DG) 

The synchronous machine block models both the electrical and mechanical characteristics of a simple 

synchronous machine. The electrical system for each phase consists of a voltage source in series 

with a RL impedance, which implements the internal impedance of the machine. Figures 3.13 and 

3.14 show the library block and the library dialog box of the generator. 

Figure 3.13 Simulink library block of a synchronous machine 

Figure 3.14 Dialog box parameters of a synchronous machine. 



3.4.2 Placement of DGs in the electric power network 

To optimise the power quality in the electric power system, a maximum of two DGs must be integrated 

into the existing network. The voltage profile of the network is firstly evaluated without any DGs for 

two steady state conditions, firstly at minimum load and secondly at full load. Table 3.2 shows the 

voltage profile of the power network at minimum and maximum load without the DGs (transformer tap 

positions are fixed at 1 pu). 

Load Bus 1 Bus2 Bus3 Bus4 Bus 5 Bus6 Bus7 Bus8 

Min. 1.00 1.00 0.95 0.945 1.00 1.01 1.04 1.059 

Max. 1.00 1.00 0.91 0.883 1.00 0.945 0.945 0.96 

Table 3.2 Voltage profile of the power system at min. and max. load, 

Table 3.2 shows that the voltage profiles of busses 3 and 4 are the worst. To select the optimal 

injection points of the generators, the DGs are placed randomly at the six busbars in the network 

(DGs are not placed at busses with a feeding source or on the same transmission feeder). The 

network active power losses are evaluated for the load conditions at full capacity. Table 3.3 shows the 

power losses for the randomly placed DGs. From these results, the weakest points are identified. 

DG I DG 2 Total Power Loss 

(bus no.) (bus no.) (MW 

Table 3.3 Power losses of the network for the randomly placed DGs. 

Busses 3 and 5 were observed to have minimum loss reduction and hence considered to be the 

sensitive busses. The results show that DG 1 must be placed at bus 3 and DG 2 at bus 5. 



Figure 3.15 shows the final line diagram of the power network with the two integrated DGs. 
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Figure 3.15 Line diagram of the ESKOM power network with the two integrated DGs, 



3.4.3 Interconnection of the DGs on the grid 

The DG can either be operated in parallel with the grid or on a switched, rollover basis [23], [24]. In 

parallel operation, the DG and the grid are both always connected to each other and to the load. One 

advantage of this operation is that the outage of the primary supply causes no interruption of service. 

If the DG is supplying the power and fails, the grid instantaneously makes up the difference and no 

interruption of power flow to the load occurs. Similarly if the grid fails, the DG picks up the load. By 

contrast, in rollover mode, only one of the sources is connected to the load at any one time. The 

connection is operated by the "flip of a switch". The disadvantage of this mode is that a brief 

interruption of service occurs when the primary power source fails. Figure 3.16 shows the operation 

and interconnection of DG on the power grid. 

Grid 

I 
Parallel Operation Roll-Over Operation 

Figure 3.16 Operation and interconnection of DG on the power grid 

Parallel operation of DG with the power grid can solve voltage regulation problems 1231. As the load 

varies, the grid will support the DG and provide the instant transient response needed, allowing the 

DG to vary its output at its slow (compared to the power grid) rate. The result is far less variation in 

the supply voltage and improved power quality. The switching of large loads causes less voltage 

change than when sewed only by the power grid. Due to this advantage, parallel operation of the DGs 

is considered for the electric power network. The complete system as shown in figure 3.15 is 

modelled in Simulink with SPS. The Simulink model is shown in figure E.l in Annexure E. 

3.5 Conclusions 

To evaluate the electric power system under revision, a simulation model is developed which integrate 

the DGs and the electric power system. The software environment chosen for the simulation platform 

is Matlab sirnulink' and Matlab ~ i m ~ o w e r ~ ~ s t e m s ~ .  The strategic placement of the DGs in the power 



system is important and the loss sensitivities of the busses are investigated. The results show that the 

DGs must be placed at busses 3 and 5. The interconnection issues surrounding DG are discussed 

and it is concluded that the DGs must operate in parallel with the electric power grid. The integrated 

model is lastly modelled in Simulink, which forms the basis for the analysis of the electric power 

system. 



Chapter 4 -ANN data development 

4.1 Introduction 

This chapter focuses on the development of training data for the ANN controlling the DGs on the 

power grid. This procedure firstly involves the development of a cost function to determine the optimal 

output values for the DGs. The main goal of the cost function is to optimise the voltage profile of the 

system for a particular network condition. The cost function must also determine the level of 

contribution by each DG to minimise total system losses. 

The cost function incorporates a voltage constraint and optimises the function until the point where the 

best voltage profile with minimum system losses is obtained. The final training set developed contains 

the operating parameters for each DG for the different load conditions of the network. 

4.2 Development of the training data 

4.2.1 Network parameters 

The input space to the ANN must give some information about the network conditions and status. 

Many feedback parameters can be monitored in the power network, ranging from load conditions to 

generator power factors. For the purpose of this study, the load conditions are monitored on all the 

system busbars. This means that from the 132 kV substation transformers to the 220 V distribution 

systems are modelled as an entire load. To extract the most information from the minimum amount of 

measurements, the network parameters as given in table 4.1 are measured: 

Measurement Description 

VL The load voltage magnitude 

L VL The load voltage phase angle 

h The load current magnitude 

H L  
The load current phase angle 

Table 4.1 The measured pararneters for each load in the network. 



Fundamental calculations can be made from these parameters. To calculate the active and reactive 

powers at the fundamental frequency, the following equations are used: 

with T = llfundamental frequency. 

These calculations are done for every load in the network. All the calculated and measured 

parameters of the power network are listed in table 4.2. 

Input parameter Description 

The load voltage magnitude 

The load voltage phase angle 

The load current magnitude 

The load current phase angle 

The load real power 

The load reactive power 

The generatorslsources voltage magnitude 

The generators/sources voltage phase angle 

The generatorslsources real power 

The generators/sources reactive power 

Table 4.2 Measured and calculated parameters of the loads and sources in the network 

4.2.2 Power flow analysis 

To develop a training data set for the ANN, a cost function is used to find the optimum generation 

levels of the DGs for the various input conditions. To ensure the credibility of the training data, the 

cost function must accurately represent the network model. To do this, a power flow solution of the 

power network is done using the Newton-Raphson Power Flow solution. This method is found to be 

more efficient than the Gauss-Seidel Power Flow solution [18]. To solve the power flow solution, the 

system is assumed to operate under balanced conditions and only a single-phase model is used. To 

solve the power flow of the system, four quantities are associated with each bus in the network: 

56 



Voltage magnitude IVl; 
Phase angle 6; 

0 Real power P; 

Reactive power Q; 

The system busses are classified into three different types [18]: 

Slack Bus (Swing Bus) 

This bus is taken as reference for the voltage magnitude and phase angle. The difference 

between the loads and the generated power caused by the network losses is made up by 

this bus. 

Load Busses (P-Q Busses) 

The real and reactive powers are specified at these busses. The voltage magnitude and 

phase angle of these busses are unknown. 

Regulated Busses (P-V Busses) 

These are the generator or voltagecontrolled busses. The real power, voltage magnitude 

and limit of the reactive power are specified. 

The following two equations describe the active and reactive powers on the busses (Newton-Raphson 

Power Flow solution): 

with Vi= voltage magnitude of bus i 

y =  voltage magnitude of bus j 

Yg = bus admittance matrix. 

The Matlab program named lfnewton [I81 is used to obtain the power flow solution for a given 

network condition. The credibility of this algorithm is validated against the power flow solution of 

SimPowerSystems. For this validation process, a test model is created in Matlab and the two 

simulations are compared. The results of the power flow solutions for the two different modelling 

environments (Newton-Raphson code vs. SimPowerSystems) are shown in Annexure C. The results 



show close correlation, thus verifying the credibility of the Newton-Raphson method. 

4.2.3 Power losses analysis 

The first step in determining the optimal generation levels of the generators is to express the system 

losses in terms of the generators real power outputs. The method used to determine the system 

losses is known as Kmn's Power Loss formula or the Emefficient method [18]. 

The total power at bus i, denoted by Si, is given by (4.5) as 

The total system losses are given as the summation over all the buses as 

with PL = Real power losses of the system 

QL = Reactive power losses of the system 

Vbus = Column vector of the bus voltages 

Iws = Column vector of the injected bus currents 

The bus currents in terms of the bus voltages is given as 

Ib, = LVb, 

with Yws the bus admittance matrix. Solving equation (4.7) for YbIm gives 

v,, = &;I~~ = ZbWIbW 

with Zbus the bus impedance matrix. 

T Also. Zb, is symmetrical, thereforez,, = Zb,. Substituting (4.8) into (4.6), results in 

Equation (4.9) can be rewritten in index notion as 



The bus impedance matrix is also symmetrical (ZU= &), thus (4.10) becomes 

Splitting (4.1 1) in the real and imaginary components, the power loss becomes 

with R, the real element and XU the imaginary element of the bus impedance matrix. 

Since Rg= 51, the real power given by (4.12) can be rewritten as 

The system real power loss (4.14) can be rewritten in matrix form as 

PL = I;wRbwI;u 

with Rhs the real component of the bus impedance matrix. 

The total load current is expressed as the sum of all the individual load currents. This is done to obtain 

a general formula for the system power loss in terms of the generator powers. 



- - - 

Assuming the ind~vidual bus currents vary as a constant complex fraction of the total load current, i.e. 

Taking the reference or slack bus as bus 1, the first row in (4.8) becomes 

v, = ZllZ1 + Z12Z2 + ... + Zl"I" 

If the number of generator busses is n, and nd is the number of load busses, equation (4.18) can be 

written in terms of the generator and load currents as 

Substituting I ,  from (4.17) into (4.19), the results in 

nd 

with T = CI,Z,, 
k=l 

If we define 1, as the current flowing away from bus 1, with all other currents set to zero, then 

Substituting (4.21) in (4.20) and solving ID, results in 

Substituting ID from equation (4.21) into (4.17), the load currents then become 

4 with p = -- 
T 



Substituting the generator currents with the above relation in matrix form, yields the matrix C 

Ibur = c I ~ ~  (4.24) 

Substituting (4.24) into (4.15) yields 

Given S# the complex power at bus i, the generator current becomes 

Q, l - j -  
S'. P .  - 'Q 

I = L =  " J " -  P .  
- " y: " P, = yipgi v,' y ' 

Q, 1 - j  - 

with y, = p, 
q' 

If the current I ,  is added to the column vector current in (4.26), it becomes 

I", = &I 

Substituting (4.27) into (4.25), the loss equation results in 

T T 
PL = [vPGII C R,C'v'P,, 

T T = P , T , ~  c R,,c'I,u'P;, 

= PGT, HP;, 
T T with H = y C R,,c'~' 

The real power loss is found from the real part of the complex resultant matrix above. H is a 

Hermittian matrix and is symmetrical. The real part is obtained from 

(4.30) represents the system loss coefficients or B-coefficients. Kron's Loss Formula can thus be 

written as 



4.2.4 Cost function development 

When transmission lines are long and the load density areas are very low (loads are far from one 

another), transmission or system losses become a major factor in determining the optimal generation 

levels of the DGs. Optimal generation levels influence the following factors: 

Generator efficiencies; 

Bus tension profile (effective bus voltages); 

Transmission or system losses; 

Fuel costs. 

This means that the generation levels are determined by expressing these variables in terms of the 

generator output powers. The input to a DG or generation plant is usually measured in Btulh (British 

thermal units per hour) and the output in MW (delivered power). Figure 4.1 shows an input-output 

curve of a DG or known as a heat-rate curve. 

Power output 

(MW) 

Figure 4.1 Heat-rate curve of a DG unit. 

The heat-rate curve can be converted to a fuel-cost curve by changing the ordinate of the heat-rate 

curve [18]. Figure 4.2 shows the fuelcost curve of the DG. 

This relationship can be represented by a quadratic function of the real power generation by the DG 

with a,, b, , c, constants 

4 the output powers of the DGs 



(Mw) 

Figure 4.2 Fuel-cost curve of a DG unit, 

The following objective functions that are considered for the cost function are [18], [25], [26]: 

4.2.4.1 Generation costs 

For a system with i generating units, the production costs as a function of the output powers is 

where C, = total production cost 

Ci= production cost of the i m  plant 

4 = generation level of the i m  plant 

The generation levels are limited, so (33) is subject to the following constraints 

5 < < <(-) 

with e(,, 8 <(-) the minimum and maximum generating levels of the plants 

4.2.4.2 Active power losses 

Since the system losses is taken into account, the total amount of generated power is given by the 

load demand plus the system losses and is given by 

with PD ,P, ,PC the total load, real losses (Kron's) and generation in the system. 



4.2.4.3 Average voltage deviation from permitted range (AVDP) 

The average voltage deviation from permitted range is the voltage deviation of the actual voltages at 

the busbars and the permitted voltage range of the system. This is given by 

with V, =actual voltage at busbar i 

v,' =desired voltage range at busbar i (0.95 pu - 1.05 pu) 

N =number of busbars in power system 

4.2.4.4 Average voltage deviation from ideal (AVDI) 

The average voltage deviation from ideal is the voltage deviation of the actual voltages at the busbars 

from the ideal voltage level. i.e. 1 pu. This is given by 

with y =actual voltage at busbar i 

v*, =ideal voltage (1 pu) 

N = number of busbars in power system 

The optimization problem to solve is the following 

F = min[F, F, 

that is 

F = min 

subject to <&, I < I <(-, and the load flow equations: 



Figure 4.3 illustrates the process for the development of the training data 

Seled load combination - I 
f 

Seled starting parameters for DGs (Vw= 0.95 pu, P, = 1 MW) 

4 
Determine network parameters with SPS 

I 
f 

Determine bus admittance matrix 

i 
f 

Determine system power flow solution 

(Newton-Raphson Power Flow) 

I 

Determine average voltage deviation 

from permined range (AVDP) 

Determine average voltage deviation 

from ideal (AVDI) 

I Determine inuemental fuel costs I 
+ 

Select new parameters for DG1 and DG2 

(V,, = 0.96 -1.05 pu. 

P,=10-150MW) 

Figure 4.3 Flow diagram of the process for the development of the training data. 



4.3 The formulated training data 

As discussed in chapter 2, the training data must be randomly organised to prevent the ANN from 

classifying the data into certain groups. For the purpose of this study, the training data representing 

the network includes the following: 

Load conditions (seven loads that each has a real and reactive power value); 

Generator outputs (two DGs that each has a real power and voltage magnitude level). 

All the loads (input variables) can take one of 3 different normalised values: 0, X, 1. Since there are 7 

loads, the training table consists of 3' = 2187 entries, i.e. 2187 different load combinations. The 

optimum generation levels for the two DGs need to be determined for each of these input 

combinations. The cost function is used for this optimisation process. The result of this optimisation 

process is the training data. This data is normalised to represent the training table for the ANN. Table 

4.3 shows the normalised training table for the input load combinations. Take note that the input 

values are incremented in steps of X. The output values of the DGs are determined by the cost 

function. 

Input Normalised Inputs Outputs 

number ~7 L6 L5 L4 L3 L2 L1 DGI DG2 

Table 4.3 Normalised training table. 



The values corresponding to the normalised input values 0, % and 1, are discussed in chapter 5. To 

minimise the input combinations to the cost function to 2187, all the loads are set to operate at a 

power factor of 0.95. The reactive power can thus only vary in that ratio (the active and reactive power 

of the load is set to produce a power factor of 0.95). 

4.3.1 Sequential optimistaion 

The training data are determined for all 2187 different input states with the cost function. This is done 

by sequentially testing each output state for all 2187 input states. The two DGs in the power system 

can each operate w.ith an incremental power of 10 MW and a maximum of 150 MW. This means that 

the output power can take on one of 16 different states (1 MW, 10 MW, 20 MW, ..., 150MW). The DGs 

terminal voltage levels can be varied from 0.95 pu to 1.05 pu, which translates to 11 different states. 

Since there are 2187 input states, 2187'16'11'11 = 4 234 032 possible outputs must be tested. To 

minimise the different possible outputs that has to be determined by the cost function, the output 

powers of the DGs are the same. If not so and each DG could increment its power independently, the 

DGs output powers could take on one of 16' = 256 different combinations. For 2187 different input 

states. the cost function would have to evaluate 2187'256'1 1'1 1 = 67 744 512 states. 

The program determines the cost function for each of the different outputs states (1936 times) for 

each of the input states (2187 times). The parameters used to determine the cost function are 

graphically displayed against the input state number below. This is done to visualise the training data 

as a behavioural pattern that the ANN should adopt. The parameters chosen to plot against the input 

state numbers are: 

the system real losses (P'); 

the system average voltage deviation from permitted range (V,, ); 

the system average voltage deviation from ideal (V& ); 

Figures 4.4 and 4.5 show some of the results of the cost function parameters plotted against the input 

state number. The output power of the DGs for the 2187 input states, are graphically displayed in 

figure 4.6. The maximum output powers of the DGs are limited to 150 MW per unit. 
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Figure 4.4 Power losses for the system versus the input state number, 

Figure 4.5 Average voltage deviations from ideal (Ipu) versus the input state number. 
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Figure 4.6 Output powers of the DGs Venus the input state number 



4.4 Conclusions 

The chapter describes the development of the training data for the ANN. To do this, the power system 

is firstly analysed and certain network parameters are measured and processed. Voltage and current 

magnitudes as well as phase angles are measured on each system bus. These measurements allow 

us to determine the active and reactive powers on each system bus. All these parameters are 

necessary to compute a power flow analysis of the power system. Two power flow environments are 

tested against each other, one in SimPowerSystems and the other with the Newton-Raphson Power 

Flow solution. Both these environments showed similar results and the power flow solution could be 

done with either. The Newton-Raphson Power Flow solution is chosen for the analysis. 

The system power losses are determined with Kmn's Power Loss formula. The loss formula is 

discussed and explained. The power losses of the system are used as a measurement in the cost 

function analysis. The cost function uses four different measurements to determine the suitability of 

each result. These results form the data used for the ANN training table. Sequential optimisation is 

used for the cost function optimisation technique. The technique allowed the cost function to test 1936 

different output states for each of the 2187 input states. To minimise the different output states to only 

1936, both DGs are incremented with the same generation level. If not so, the different output 

combinations would increase 16 times to 30 976 different output combinations for each input. 



Chapter 5 - ining the ANN controller 

5.1 Introduction 

This chapter focuses on the use of an Artificial Neural Network (ANN) to optimally control the DGs in a 

power network. The ANN is firstly trained offline (not integrated in the power system) and then 

evaluated with the power system. The aim is mainly to let the ANN learn the generation patterns for 

the normalised training data. The ANN must then make decisions about optimal generation 

parameters for the DGs to improve system losses, bus voltage profiles and generation costs. 

The internal structure of the ANN must firstly be determined, i.e. the hidden units. This ANN stmcture 

must ensure a minimum training and test error with the minimum number of epochs (training 

iterations). The main training data set is split into smaller data sets used for training and testing. The 

test data set is used to determine how well the ANN generalises for data it has not been trained with. 

Lastly, the ANN controller is optimised to evaluate minimum training versus maximum performance. 

5.2 Compiling the training and test Data 

5.2.1 Training data set 

The training data set for the ANN is normalised to limit the input data to a certain domain. The data 

interval is limited to the domain between [0, I]. The interval [0, I ]  is thus associated with a minimum 

and maximum scaling or normalisation vector. Table 5.1 shows the input components and the 

appropriate minimum and maximum normalisation values. Table 5.2 shows a sample of the 

normalised input data table of the ANN. The following equation is applied to normalise the data set 

1271: 

with d,,,,, = The normalised data point; 

nv,, ,nv, = Minimum and maximum normalisation values e.g. 0 and 1; 

d,, ,dm = Minimum and maximum data point values. 



It is very important to randomise the training data set, as to allow the training data set to equally 

represent the likelihood of each outcome. This means that the training set should contain all the 

dominant features of the entire inputoutput data space. 

Component Min. Nor. (P) Max. Nor. (P) Min. Nor. (Q) Max. Nor. (a) 

Load 1 150 MW 250 MW 49.303 MVAr 82.171 MVAr 

Load 2 300 MW 400 MW 98.605 MVAr 131.47 MVAr 

Load 3 100 MW 160 MW 32.868 MVAr 52.589 MVAr 

Load 4 200 MW 250 MW 65.737 MVAr 82.1 71 MVAr 

Load 5 100 MW 130 MW 32.868 MVAr 42.729 MVAr 

Load 6 200 MW 250 MW 65.737 MVAr 82.171 MVAr 

Load 7 42 MW 50 MW 13.805 MVAr 16.434 MVAr 

Table 5.1 Maximum and minimum normalisation values of the loads. 

Normalised Input Values 

Load 1 (P) 

Load 2 (P) 

Load 3 (P) 

Load 4 (P) 

Load 5 (P) 

Load 6 (P) 

Load 7 (P) 

Load I (Q) 

Load 2 (a) 

Load 3 (a) 

Load 4 (Q) 

Load 5 (Q) 

Load 6 (Q) 

Load 7 (a) 

Table 5.2 Sample of the normalised input data set (load condition 1513 to 1517). 



5.2.2 Test data set 

When choosing a test data set to test the performance of the ANN, two important factors must be 

considered: 

The test set must have the same characteristics as the training set; 

The test and training sets must be mutually exclusive. 

The test set must also be chosen to represent the entire input-output data space. The method used to 

choose a training and test set, is to generate a uniformly distributed random input-output data space. 

The data space is generated using Matlab's Uniformly Distributed Random Generator (211. This data 

set is then subdivided into two mutually exclusive data sets, one for training, and one for testing. The 

size of the training set is much larger than the test set, typically around 70% of the entire data set. The 

test set is then made up of the remaining 30%. Since the entire inputatput data set consists of 2187 

entries, the size of test set is initially chosen as 655. 

5.3 ANN structure 

The structure of the ANN as discussed in chapter 2, is chosen as a multilayer feedforward network, 

i.e. multilayer perceptron (MLP). A MLP consist of a set of source nodes that constitute an input layer, 

one or more hidden layers and an output layer. The input signal propagates through the network layer 

by layer in a forward direction. The training of the network is done with the e m r  back-propagation 

algorithm [ I  51. 

Firstly, the number of hidden layers and neurons must be determined. Most problems can be solved 

using only one hidden layer 1281. To find the optimum number of neurons in the hidden layer, two 

methods are used and compared. Firstly, a method named constructive approach or network growing 

1151 is used. The network is firstly trained with one hidden layer and one hidden neuron until the 

training error reaches a minimum and stabilises. The weights of the network are fixed and a hidden 

neuron is added. The network is retrained and tested. Eventually the training error will approach zero 

and the network will have learned the data exactly. This must be avoided because the network will 

generalise poorly for data not initially trained with. To stop adding hidden neurons, the network is 

tested with both the training and test data. If the performance error of both does not improve, the 

optimal number of neurons is reached. Adding more hidden neurons at this point, will improve the 

training error but to the detriment of the test error. All the training and testing of the network is done 

with the Neural Network Toolbox (Annexure D) in Matlab. 



Table 5.3 summarises the sum squared errors of the constructive approach method and figures 5.1 - 
5.8 shows the average training and test errors of some of these test runs. 

- - 

No. Neurons Hidden Layers Epochs Training Error Test Error 

Table 5.3 Training and test error versus number of neurons for the constructive approach method. 
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Figure 5.1 One hidden layer and 14 neurons. Figure 5.2 One hidden layer and 16 neurons. 
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Figure 5.3 One hidden layer and 17 neurons. Figure 5.4 One hidden layer and 21 neurons. 

Figure 5.5 One hidden layer and 23 neurons. Figure 5.6 One hidden layer and 24 neurons. 



Figure 5.7 One hidden layer and 25 neurons. Figure 5.8 One hidden layer and 29 neurons. 

Secondly, a method named the leave-one-out method is used [15]. The data set of (n - 1) examples 

are used to train the model, and the example left out is used to test the model. The training and 

testing is repeated for a total of n times (n is the number of examples in the entire data set), each time 

using a different test example. The training and testing error is then averaged over the n trial runs. 

The experiment is repeated for different numbers of neurons in the hidden layer. Figure 5.9 shows an 

illustration of the leaveoneout method. 

Trial I . 

Trial 2 r1 . 

Trial 3 I] . 1 r 
Trial n 

I Test set = 1 example 
0 Training set = (n - 1) examples 

Figure 5.9 Illustration of the leaveoneout method 

Table 5.4 summarises the results of the leaveoneout method. The experiment is repeated for the 

same number of hidden neurons as for the constructive approach method summarised in table 5.3. 



No. Neurons Hidden Layers Epochs Training Error Test Error 

Table 5.4 Training and test error versus number of neurons for the leave-one-out method. 

Table 5.3 and 5.4 shows that the optimum st~cture for the ANN is 14:24:4 representing 14 input layer 

neurons, 24 hidden layer neurons and 4 output layer neurons. Figure 5.10 shows a graphical 

representation of the ANN. 
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Figure 5.10 ANN structure. 

5.4 Training the ANN 

The training of the ANN is done off-line with Matlab. As discussed in section 5.2, the training data 

developed in chapter 4 are used for the training of the ANN. Finding the optimum training point of the 

ANN is done with the following procedure: 

The ANN is trained until the test error reaches a minimum whilst the training error is still 

decreasing; 

Test the ANN with several smaller new test sets. 

Figure 5.1 1 graphically illustrates this training process in terms of the training and test errors. 



I t 

Epochs 

Figure 5.1 1 Training process in terms of the training and test errors. 

The training error is defined as the sum of the squared errors between the output of the ANN and the 

desired target values for each output neuron over the entire training data set (151. The test error is 

determined similarly between the test output of the ANN and the desired test values. The average 

training and test errors are the average of the training and test errors. This means that for four output 

neurons the test and training errors is the sum squared errors for each of the four output neurons over 

the test and training sets. The following equations show the training and test errors: 

1532 4 

Training error= x x ( e y ( d u i r o d ,  - e,(-, )2 

with e,(,,,,, the desired output of neuron j for the im training input value; 

e,(m, the ANN output of neuron j for the fh training input value. 

with e,(,,,,, the desired output of neuron j for the im test input value; 

e,(-, the ANN output of neuron j for the fh test input value. 



To show the training process of the ANN, the average training and test errors are recorded for the 

ANN developed in section 5.3. Figure 5.12 shows the average training and test errors of the network 

plotted against the number of epochs. To show the average test error on a more visible scale, the 

error is plotted in figure 5.13 with a restricted range. 
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Figure 5.13 Average test error versus the number of epochs (resvicted range). 

To determine the optimum point of training, the ANN weights and biases are recorded for a few points 

beyond the point of the minimum test error. Table 5.5 shows the results of the training and test errors 

of these points. 

Point Training Error Test Error 

98(min. test error) 1.354885 1.324148 

101 1.327263 1.333187 

104 1.304069 1.354933 

107 1.289974 1.377203 

Table 5.5 Training data recorded for selected points beyond the minimum test error 

The weights and biases o f  these points can now be used for further evaluation of the ANN model. To 

verify the contents of the training data set the ANN model is now tested with 100 random test sets, 

each of size 100. Figure 5.14, 5.15, 5.16 and 5.17 show the results of the average test errors for the 

different points 

Figure 5.14 Average test errors versus test set numbers (weights and biases at point 98). 
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Figure 5.15 Average test errors versus test set numbers (weights and biases at point 101). 
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Figure 5.16 Average test errors versus test set numbers (weights and biases at point 104). 
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Figure 5.17 Average test errors versus test set numbers (weights and biases at point 107). 



Table 5.6 summarises the results for the different points recorded in terms of the average and 

maximum test errors for the 100 test sets. 

Average Test Error Maximum Test Ermr 
Point 

(1 0e-3) (1 0e-3) 

98 1.2092 2.7903 

101 1 .2081 3.0049 

Table 5.6 Results of the smaller test sets. 

The results obtained from the different points show that there is no extreme test errors for the 100 

smaller test sets. It shows that the contents of the training data set include all the dominant 

components of the DGs output space. From the results summarised in table 5.6, the optimum point of 

training of the model is not so easily seen. The results show that for points beyond the minimum test 

error, the average test error becomes smaller but to the detriment of a larger maximum test error. The 

point of minimum test error, i.e. 98, is thus used for further evaluation. 

5.5 Optimisation of the ANN 

This section aims at optimising the ANN controller with regards to the following: 

the training data set; 

the training parameters. 

Optimising the controller means improving its performance. The back-propagation used in this section 

to train the ANN model, is based on minimising its cost function defined as the sum of the squared 

errors. The importance of this criterion is the ability of the network to generalise and its mathematical 

tractability [15]. A good ANN with minimum size is less likely to learn the noise in training data and 

may thus generalise better for new data. Also, improving the training data and training parameters of 

the model can improve the performance of the ANN controller. Improving the performance of the 

controller means minimising the training and test errors, thus improving the ability of the ANN 

controller to generalise. 



5.5.1 Training data 

To find the optimum training region in the data set (training and test errors a minimum), a process 

known as the hold-out method is used 1151. The entire data set of n examples is divided into k 

subsets, with k > 1. The model is then trained with (k - 1) of the subsets and tested with the remaining 

subset for each of the k subsets. The performance of the model is assessed by averaging the test 

errors over all the subsets. Figure 5.18 illustrates the hold-out method for 5 subsets. 

Test set 
0 Training set 

Figure 5.18 Illustration of the hold-out method. 

For a data set size of 2187 examples, 9 subsets are selected for evaluation. Table 5.7 shows the 

results of the 9 trials and figure 5.19 the results of the selected subset with the best training and test 

errors. 



Run Average Training Average Test Error Average Minimum Test 

no. Error (10e-3) (1 0e-3) Error (IOe-3) 

- - - - - - - - - - - - - - - - 

Table 5.7 Average training and test errors for 9 different subsets. 

-- -- - 
t 

Epochs 

Figure 5.19 Average training and test errors for subsets no.4 

From the results shown in table 5.7 it is observed that the best training data set is no. 4 and that there 

is clearly a difference in the average training and test errors for the different subsets. Table 5.8 shows 

the improvement of the network outputs. 



Training Set Epochs Training Error Minimum Test Error 

Old 98 1.3548851 1.324148 

New 95 0.8965264 1.296965 

Table 5.8 Network outputs for the new and old training sets. 

To verify the contents of the new training data set, the ANN model is also tested with the 100 random 

test sets, each of size 100. Figure 5.20 shows the results of the average test errors for the new 

training set. 

Twt set wrnk 

Figure 5.20 Average test errors versus test set numbers for 100 smaller test sets. 

Table 5.9 summarises the results for the new training set in terms of the average and maximum test 

errors for the 100 smaller test sets. 

Average Test Error Maxlmum Test Error 
Training Set 

(1 0e-3) (1 0e-3) 

Old 1.20920 

New 0.98627 

Table 5.9 Results of the smaller test sets for the new and old training sets. 



The results obtained from the 100 smaller test sets show that there are no extreme test errors. It is 

thus also concluded that the contents of the new training data set include all the dominant 

components of the DGs output space. The results summarised in table 5.8 and 5.9 shows that the 

new training set has smaller training and test errors and also revealed a decrease in the average and 

maximum test errors for the smaller test sets. 

5.5.2 Model parameters 

The back-propagation algorithm used in the training of the ANN provides an 'approximation' to the 

trajectory in its weight space. The delta rule for the correction Aw, (n) applied to the synaptic weight 

connecting neuron i to neuron j is given by: 

Aw,, (n) = aAw,, (n - 1) + 76, (nb, (n) 

with r]  the learning-rate parameter and a the momentum constant. 

The signal-flow diagram illustrating the effect of the learning-rate parameter and momentum constant 

is shown in figure 5.21. 

Figure 5.21 SignaCtlow diagram of the delta rule. 

The smaller we make the learning-rate parameter, the smoother the trajectory will be in weight space. 

This improvement is attained at the cost of a slower learning rate. The bigger we make it, the faster 

the learning process, but the network may become unstable (oscillatory). This problem is overcome 

by including the momentum constant. The inclusion of the momentum constant results in the 

following: 



it tends to accelerate descent; 

it has a stabilizing effect; 

it prevents the learning process from stopping in a small minimum on the error surface. 

Using the 14:24:4 ANN and combinations of the learning-rate parameter 7 € {0.01,0.1,0.5,0.9) and 

momentum constanta E {0.01,0.1,0.5,0.9}, the network is simulated to find the best learning curves. 

Figure 5.22 shows the results of the average training and test errors of the best four combinations and 

table 5.10 summarises the results 

I Epochs 

Figure 5.22 Learning curves of the network. 

Combination Learning-rate Momentum Training Error Test Error 

Table 5.10 Results of the learning-rate parameter and momentum constant combinations. 



Table 5.11 shows the improvement of the network outputs (learning-rate = 0.1 and momentum 

constant = 0.5). 

Training Set Epochs Training Error Minimum Test Error 

Old 95 0.8965264 1.296965 

New 150 0.645741 1 1.242207 

Table 5.1 1 Network outputs for the new and old network parameters. 

To verify the contents of the new network parameters, the ANN model is also tested with the 100 

random test sets, each of size 100. Figure 5.23 show the results of the average test errors for the new 

network parameters. 

LL--d 
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Figure 5.23 Average test errors versus test set numbers for 100 smaller test sets. 

Table 5.12 summarises the results for the new training parameters in terms of the average and 

maximum test errors for the 100 smaller test sets. 



Average Test Error Maximum Test Error 
Parameters 

(10e-3) (1 0e-3) 

Old 0.98627 2.7276 

New 0.87622 2.7125 

Table 5.12 Results of the smaller test sets for the new and old training sets 

The results obtained from the new parameters showed that a smaller learning-rate parameter 7] 

resulted in a slower convergence, but it reached a smaller local minimum in the error surface. The use 

of a big learning-rate parameter and momentum constant a caused oscillation in the error surface 

and a higher value for the error at convergence. The best learning curve selected showed a smaller 

sum squared error, but took longer to converge to a minimum. As training of the ANN is done off-line 

and speed of convergence is not an issue, this curve is selected as the optimal learning curve of the 

model. The new network parameters summarised in table 5.11 and 5.12 shows that the new training 

set has smaller training and test errors and also revealed a decrease in the average and maximum 

test errors for the smaller test sets. 

5.6 Conclusions 

The training of the ANN is done off-line in this section and the performance of the model is evaluated. 

The training of the model suggested that it is good practice to check the system against data that it is 

not trained with. This practice improved the generalisation of the network for data not trained with. If 

the ANN is trained to an absolute minimum in the training error, the network showed good response to 

the data trained with, but made bad decisions upon new data. This is a typical characteristic of poor 

generalisation. 

The ANN structure is determined by means of two methods, the constructive approach method and 

the leave-one-out method. Both these methods suggested that the best response of the network is 

with 24 neurons in the hidden layer. This structure showed a minimum in the error squared sum of the 

training and testing data. The network is tested against smaller test sets to evaluate the generalisation 

of the model. These tests showed similar results and it is concluded that the training data of the 

network included all the components of the DGs output space. 

The network is finally optimised to improve the performance of the model. Firstly, the data set is 

divided into subsets by the hold-out method and trained with new subsets. This method showed that 



the network performance in terms of the different training subsets improved. By selecting the correct 

training data, the sum squared errors of both the training and testing improved. Secondly, the network 

learning parameters are varied and the results showed that the model showed different learning 

curves with the different combinations of parameters. The improved learning curve showed better 

training and test errors. 

The overall results of the model are satisfactory, but it still leaves much room for improvement. 

Further improvements would be to obtain better training and testing errors and train the system with 

real life data from the network, rather than simulated data. For the scope of this project, the model is 

feasible and the controller can be implemented in the power system. 



Chapter 6 Evaluation of the cost function and 
ANN controller 

6.1 Introduction 

The focus of this chapter is the evaluation of the Artificial Neural Network (ANN) controller controlling 

two optimally placed DGs in a power network. The power network modelled in chapter 3, serves as the 

basis for this analysis. The power network is characterised by large loads (in the MW region) switching 

on and off the grid, which results in undervoltages and overvoltages at certain points in the system. 

This power quality (PQ) problem is rectified by controlling the power flow in the network and thus 

regulating the voltage levels. 

Chapter 4 showed that the optimal generation and voltage levels are determined by the active and 

reactive power drawn by the loads. As the active and reactive power consumed by the loads change, 

the DGs power and voltage levels determined by the ANN also changes. The optimal condition of the 

network is determined by means of a cost function developed in chapter 4. The behaviour of the ANN 

controller is also evaluated for operating states (load conditions) beyond the training region as well as 

the operating states trained with. These results will give an overall indication of the performance of the 

ANN controller. 

This chapter is based on simulation only, as constructing a laboratory scale power network with two 

controlled DGs is not feasible. The latter is however not the objective of the project. 

6.2 Integration of the ANN controller in the power system 

The power system model illustrated in figure 3.1 of chapter 3 is used as basis for the analysis. The 

optimised 14:24:4 ANN (representing an ANN structure with 14 input layer neurons, 24 hidden neurons 

and 4 output neurons) developed in chapter 5 is used in the evaluations. The power network consists 

of seven linear loads with a total switching capacity of 398 MW. The two DGs are placed at optimal 

points in the network to control certain PQ parameters as shown in figure 3.4 of chapter 3. The ANN 

controller is integrated in the power system with regards to the following: 

Inputs - Measuring the PQ busses (loads); 

Outputs - Controlling the PV busses (DGs) 



The power system is divided into two distinct radial transmission feeders. The switching capacity is 

divided as follows: 100 MW on the slack bus. 160 MW on feeder 1 and 138 MW on feeder 2. Figure 

6.1 shows a line diagram of the power network with the integrated ANN controller. 

\ 
SUB A C 

Bus I(Slack Bus) 

Load 1 E- z 

b Load 2 E 
R 

ZiL Load 3 

Figure 6.1 Line diagram of the power network with the integrated ANN controller. 



6.3 Evaluation of the cost function 

6.3.1 No DGs connected to power petwork 

The cost function (CF) developed in chapter 4 selects the optimal control parameters for the DGs for a 

specific load condition. As discussed in chapter 4, the power system parameters are measured on 

each busbar in the system. The cost function then uses four objective functions to select optimal 

control parameters to improve the network conditions. The power network is firstly analysed without 

any voltage regulation (no DGs) with the loads switching over the entire spectrum of load capacity 

(transformer tap changers are fixed at 1 pu). The transformer tap changers are not used as control 

variables, as the effect of regulation and control with DG is investigated in this project. Figures 6.2 - 6.4 

shows the CF objective functions over the load-switching spectrum. The blue figures visualise the CF 

objective functions as behavioural patterns of the load conditions and the red figures show the 

objective functions for increasing active power drawn by the loads (sum of all active power). 

Figure 6.2 Average voltage deviations from permitted range (0.95 pu - 1.05 pu) (no DG) 



Figure 6.3 Average voltage deviations from ideal (lpu) (no DG) 

From figures 6.2 - 6.4 (blue), three distinct sub-patterns are identified in each of the figures. These 

sub-patterns correspond to the three distinct levels of active power drawn by each load. Figures 6.2 - 
6.4 (red) shows the objective functions against the load number for increasing active power. Load 

condition 0 is the minimum power drawn by the loads, i.e. 1092 MW and load condition 2188 is the 

maximum power drawn by the loads, i.e. 1490 MW. These figures give a better indication of what is 

happening in the power network with increasing power drawn by the loads. The voltage levels on 

feeder 1 results in undervoltages throughout the increase in power. Feeder 2 however shows under- 

and overvoltages throughout the increase in power. This was expected as there is no voltage 

regulation from the sources and onwards. Table 6.1 shows a summary of the line parameters for the 

two transmission feeders: 



Parameter Feeder I Feeder 2 

Lrof-91 179 km 489 km 

R 0.062 Wkm 0.062 Wkm 

X 0.32 Wkm 0.32 nlkm 

B 3.621eS mili mholkm 3.614e-6 mili mholkm 

VL-L 275 kV 275 kV 

Loadpi.) 421 MVA 570 MVA 

LOadr~px~ 590 MVA 716 MVA 

Table 6.1 Line parameters for the two transmission feeders. 

To verify the results, the program linepref 1181 is used to simulate the voltage profiles of the two 

transmission feeders with the line parameters given in table 6.1. Figures 6.5 and 6.6 show the results 

of the simulations. 

0 lrn no 3m 4n 5m Bn 
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Figure 6.5 Voltage profile of feeder 1. 

The simulations (light blue - Rated load) verify the results obtained by the cost function. Feeder 1 

shows unde~oltages at the end of the feeder (179 km from the source) for the given load condition. 

Feeder 2 however shows unde~oltages close to the source, but overvoltages at the end of the feeder 

(489 km from the source). The system active loss pattern also shows a definite incline in the losses 

with the increase in load. This is because of larger currents drawn by the loads that results in the 

heating of lines and transformers. Proper voltage regulation is thus necessary to control under-and 

overvoltages in the network and reduce system losses. Reducing the system losses will prolong the life 

of network components. 
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Figure 6.6 Voltage profile of feeder 2. 



Table 6.2 shows the bus voltage profiles of the power network with no DGs. It can be noticed that 

some system busses exceed the permissible limit of voltage drop up to 11.72 %. The average voltage 

drop for buses 3 and 4 is below the permitted range. The percentage of load conditions in the 

permitted range in table 6.2 reveals that only three of the eight buses stay within limits over the entire 

switching spectrum, and that the voltage profile of one bus never gets to the permissible range. This 

drop must be reduced within acceptable limits with the aid of DG and proper control. 

-- 

Average Voltage Maximum Voltage 
Bus Voltage In Range Bus no. Dmp % DmplRise % 

% (kV) (no DG, no tapping) (no DG, no tapping) 

5 275 0 0 100 

6 275 1.81 5.5 92.59 

7 275 0.35 5.35 96.29 

8 275 0 5.94 (rise) 88.89 

Table 6.2 Bus voltage profiles of the power network with no DGs and no tapping. 

6.3.2 DGs connected to power network with no control 

To illustrate Ute effect of DG units in the power network, two DGs are connected to the network at 

proper positioning points as determined in chapter 3. The results for this paragraph are obtained with 

the DGs running at full capacity with no control. With no control, the output active power is set to the 

maximum capacity of the DG and the terminal voltage is set to 1 pu. The load conditions are varied 

over the same switching spectrum as used in sections 6.2 and 6.3.1. Figures 6.7 - 6.9 shows the CF 

objective functions over the load-switching spectrum for the network with two DGs running at full 

capacity. Table 6.3 shows a comparison between the network with no DGs and the network with DGs. 



Figure 6.7 Average voltage deviations from permitted range (0.95 pu - 1.05 pu) (DG, no control). 

Figure 6.8 Average voltage deviations from ideal (Ipu) (DG, no control). 
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Figure 6.9 System active power losses (DG, no control). 



Average voltage Average voltage 
Network Power losses 

deviation (permitted deviation (ideal) 
(all busses) 

range) (%) 
(MW) 

No DGs 0.6898 2.8176 78.71 10 

2 DGs(no control) 0.3097 1.9743 54.71 17 

Table 6.3 Comparison between the networks with no DGs and two DGs with no control 

With the two DGs connected to the network, it is more dimcult to identify the sub-pattems in figures 6.7 

to 6.9 (blue). The figures (red) also reveal that there is a definite increase in the maximum voltage 

deviation and network active losses with the increase in load. The average voltage deviation from the 

permitted range rise to a maximum of 3.8%, mostly because of overvoltages at buses near the DGs 

and undervoltages at buses far from the DGs. This is an increase of 2.3%, whilst the deviation from 

ideal increased with 2.5%. 

Table 6.3 shows that there is a decrease in the average deviation from the system with no DGs. The 

most positive effect of the DGs on the system is the decrease in the average power losses of 24 MW. 

Because the DGs are modelled as PV busses, they influence the flow of active and reactive powers in 

the network. The power flow simulations show a decrease in active and reactive power flows from the 

two main sources, thus a decrease in the network losses. The power losses at maximum load capacity 

also reveals a decrease from 115 MW to only 80 MW. 

Table 6.4 shows the bus voltage profiles of the power network. The results show that the DGs bring 

feeder 1 within the permissible limits and that the average voltage drop for busses 3 and 4 is reduced 

by almost 6.5%. The DGs however degrade the performance of feeder 2. The percentage of load 

conditions within range is reduced by almost 15% for busses 6, 7 and 8. This is because of a 

maximum voltage drop increase of almost 10%. These large voltage drops are observed for the last 

few maximum load capacities. 

The percentage of load conditions in the permitted range however reveals that five of the eight buses 

are now within limits. With the proper control of the DGs, busses 6, 7 and 8 can also be kept within the 

permissible limits. The bus average voltage droplrise statistics show that all the busses have better 

voltage profiles, except for the few large load conditions. The implementation of the two DGs in the 

network shows that the network conditions, i.e. power losses and voltage profiles had successfully 

been improved. 



Average Voltage Maximum Voltage 
Bus Voltage In Range Bus no. DroplRise % DroplRise % 

(kV) 
% 

(2 DGs, no tapping) (2 DGs, no tapping) 

1 275 0 0 100 

2 275 2.45 (rise) 3 (rise) 100 

3 275 0.3 1 100 

4 275 1.5 3.1 100 

5 275 0.6 5 100 

6 275 2.82 14.5 79 

7 275 1.5 15.7 77.77 

8 275 0 15.25 73.25 

Table 6.4 Bus voltage profiles of the power network with two DGs with no control 

6.3.3 DGs connected to power network with cost function control 

In section 6.3.2, the effect of the two DGs with no control is investigated. It revealed that some network 

parameters improved whilst others worsened. The need for control of the DGs is thus important. The 

results of this paragraph illustrate the effect of the DGs on the network with the proper control. The CF 

derived in chapter 4 is used to determine the optimal network conditions for a specific load condition 

and selects the best possible control parameters for each of the DGs. The DGs active power and 

terminal voltage are controlled as determined in chapter 3. The load conditions are varied over the 

same switching spectrum as used in sections 6.2 and 6.3.1. Figures 6.10 - 6.12 shows the CF 

objective functions over the load-switching spectrum for the two DGs with CF control. Table 6.5 shows 

a comparison between the network with DGs with no control and with CF control. 



Figure 6.1 1 Average voltage deviations from ideal (lpu) (DG, CF control). 
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Figure 6.12 System active power losses (DG. CF control) 
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Figure 6.10 Average voltage deviations from permitted range (0.95 pu - 1.05 pu) (DG, CF control) 



Average voltage Average voltage 
Network Power losses 

deviation (permitted deviation (ideal) 
(all busses) 

range) ("7'0) ("4 (MW) 

2 DGs(no control) 0.3097 1.9743 54.7117 

2 DGs(CF control) 0 1.1107 54.6043 

Table 6.5 Comparison between the networks with DGs with no control and with CF control 

From figures 6.11 - 6.12 (blue), the three sub-patterns that correspond to the three levels of power 

drawn by each load, can be identified. The figures also reveal that there is a slight increase in the 

average voltage deviation and network losses, but to a much smaller degree than shown in sections 

6.3.1 and 6.3.2 for the other simulations. The CF keeps the objective functions much closer to a central 

operating point. The CF main objective goal to keep the voltage profile of all the network busses within 

the permissible range is accomplished. Figure 10 shows that the average voltage deviation from the 

permitted range is zero over the entire load-switching spectrum. 

Table 6.5 shows that all three objective functions improved. The average voltage deviation from the 

ideal value reveals a decrease of 0.86%. The network power losses improved slightly with 0.1%. The 

overall result is a much improved voltage profile for the network over the entire load spectrum. The 

system power losses are also reduced by an average of 24 MW over the network with no DGs. From 

this optimum control of the DGs it is observed that the voltage profile of the network can be kept within 

the permissible limits with two proper positioned DGs. 

Table 6.6 shows the bus voltage profiles of the power network. The results show that all the busses on 

both the transmission feeders are within the permissible limits. The big voltage drops on busses 6, 7 

and 8 for maximum load capacity are significantly reduced from a maximum of 15.7 % to only 3.78 %. 

The average voltage drop for the busses is also improved and four busses reveal an average voltage 

droplrise of 0% over the load switching spectrum. 



Average Voltage Maximum Voltage In Range 

Bus no. Bus voltage 
DroplRise % DroplRise % 

(kv) 
% 

(2 DGs, no tapping) (2 DGs, no tapping) 

0 

2.6 (rise) 

0 

0.8 

0 

1.6 

0 

1.4 (rise) 

0 

5 (rise) 

3 (rise) 

2.04 

2 

3.87 

3.5 

2.35 

Table 6.6 Bus voltage profiles of the power network with DGs with CF control 

Since the main objectives of the CF control are to minimise system losses and improve the bus voltage 

profiles of the network, PL and Vp,,s,i are discussed. PL is significantly reduced from a maximum of 115 

MW to only 93 MW and Po, to only 55 MW. The bus voltage profile of the busses showed an 

improvement of 6.7% and all the busses can be kept within the permissible limits with the introduction 

of DGs and CF control to the power system. This way under- and overvoltages are controlled over the 

load switching spectrum. Figure 6.13 illustrates the results of the bus voltage profiles and table 6.7 

shows a summary of all the results for the power network. 
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Figure 6.13 Bus voltage profiles of the power network (average and maximum droplrise) 



DGs, no control DGs, CF control 
Bus no./ 

Objective 

function 
In range 

% 

Max. drop 

% 

In range 

% 

P u s  

Variable 

parameters 
None 

Table 6.7 Evaluation of the power network (Summary of results). 



6.4 Evaluation of the ANN controller 

The data used to train the ANN controller is developed in chapter 4 by the CF. The ANN controller is 

then trained in chapter 5 until optimum performance is reached for the training and test data. To 

evaluate the performance of the ANN controller, it is tested against the optimum solution of the power 

system as determined by the CF. The following criteria for comparison are selected: 

power system voltage profile for a selected operating state; and 

power system losses. 

Since the ANN controller has been trained to the CF results, it is expected that they will perform better 

than the base case (no DGs) and close to the performance of the CF. Figures 6.14 - 6.15 shows the 

response of the ANN controller and the CF for the control variables of the DGs. A random load 

combination of 100 is chosen from the test data to show the results. 

Figure 6.14 Voltage magnitudes of the DGs for a random load combination. 

Figure 6.15 Power outputs of the DGs for a random load combination. 



The response of the CF and ANN controller show a close resemblance. To show the performance of 

the ANN controller in the power system, the average voltage profiles of the network busses are 

investigated for the 2187 load combinations. In addition to the voltage profiles, a histogram comparison 

of the ANN controller performance to the CF results regarding reduction of active power losses over 

the base case is shown in figure 6.16. Histograms can illustrate the frequency of certain parameters 

(i.e. power losseslbus voltages levels) in a power system for all the operating states in the data set. 

Amelioration over base case(no DGs) MW 

Figure 6.16 ANN and CF improvement of active power losses compared to base case (no DGs) 

In figure 6.16, a significant improvement of the network power losses in percentage over the base case 

losses is evident, whereas the frequency distribution of the ANN controller results resembles the CF 

distribution. The frequency on the vertical axis describes the percent of the 2187 load conditions in the 

data set developed in chapter 4. The voltage profiles of the network busses are shown in figure 6.17 

for the CF and the ANN controller. The figures show that the ANN controller kept the bus voltages 

between the permissible limits over the entire load switching spectrum. The voltage profiles of the 

network busses show that the results of the ANN controller closely resemble the results of the CF. A 

voltage histogram comparison between the ANN controller and CF is shown in figures 6.18 and 6.19. 
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Figure 6.17 Bus voltage profiles of the network for the CF and ANN (avg. and max. droplrise), 
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Figure 6.18 Voltage histogram (frequency of cases) for the CF. 

Bus number 

Figure 6.19 Voltage histogram (frequency of cases) for the ANN controller. 



In figures 6.18 and 6.19, the frequency of voltage distribution for the ANN controller closely resembles 

that of the CF. The frequency on the vertical axis describes the percent of the load conditions for a 

specific voltage range. The frequency plot in figure 6.19 shows that the PV busses controlled by the 

DGs have a smaller voltage spectrum around 1 pu. This is expected because one of the CF objective 

functions and hence the ANN controller is to keep the bus voltage profiles as close to 1 pu as possible. 

Both frequency plots reveal that the voltage levels on busses 7 and 8 vary over a much bigger 

spectrum. 

From the results shown in this section it is safe to conclude that the behaviour of the ANN controller 

closely mimics the response of the CF. The results of the ANN controller also revealed that the 

introduction of the controller and the DGs to the power system improved network conditions 

considerately over the base case where no DGs support the power system. These results however are 

limited to the restricted load-switching spectrum derived in chapter 4 (load variations are limited to only 

three operating states). The next section will evaluate the behaviour of the ANN controller over a much 

bigger load-switching spectrum. The integrity of the ANN controller will then be validated to make 

meaningful decisions about load conditions that are more likely to occur in real time. 

6.5 Evaluation of the ANN controller beyond the training limits 

Section 6.4 discussed the evaluation of the ANN controller and the power network. These results 

however were obtained with load conditions used in the original random data set (data set contains the 

training and testing load conditions) and the ANN controller may have been trained with the specific 

load conditions. This section deals with load conditions beyond the scope of the original data set, i.e. 

variable load conditions (loads are not restricted to only three operating states). The operating states of 

the loads are randomly varied with an incremental value of 10 MW. The performance of the ANN 

controller and the power network are now evaluated with these new random load conditions. Several 

simulation runs are performed as summarised in table 6.14, of which a few are discussed in the 

following sections. 

6.5.1 Loads at 55% of switching capacity 

The loads are varied with Matlab's random permutation ('randperm') command. The loads are 

randomly varied between the minimum and maximum switching capacity. This case still represents a 

load condition within the minimum and maximum training boundaries of the ANN controller, but not 

encountered before. Table 6.8 describes the load conditions of the network at 55 %. Figure 6.20 shows 

the response of the CF and the ANN controller for the control parameters of the DGs. Table 6.9 shows 

the results of the load conditions at 55% for the base case, CF, DGs with no control and response of 



the ANN controller. The bus voltage profile of the network is shown in figure 6.21 

Phd (MW) QlWd (Mvar) Switch (%) 

Load 1 210 69.024 60 

Load 2 400 131.47 100 

Load 3 120 39.442 33.3 

Load 4 220 72.31 1 40 

Load 5 100 32.868 0 

Load 6 220 72.31 1 40 

Load 7 44 14.312 25 

Table 6.8 Load conditions for a total load-switch of 55 %. 

CF and .ANN outputs 

106 

Q 
1 0 4  

DG Number 

Figure 6.20 Response of the CF (left) and the ANN controller (right). 

Average voltage Avenge voltage System active 
Statistics around deviation deviation power loss 

55 % (permitted) % (ideal) % (Mw) 

Base case (no DGs) 0.85348 2.8053 73.686 

CF evaluation 0 0.96441 48.197 

DGs (no control) 0 1.3162 48.685 

DGs (ANN controller) 0 1.1304 48.409 

Table 6.9 Results of the power network. 
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Figure 6.21 Bus voltage profiles of the power network. 

From the results in figure 6.20 it is evident that the ANN controller could make a meaningful decision 

about the network load condition. The response of the ANN controller closely resembles that of the CF. 

but with a much better response time. The CF took 69 s (real-time) to find the optimum network 

condition and control variables, whereas the ANN controller took only 0.062 s (real-time). The results in 

table 6.9 show that the network conditions improved considerably over the base case. The average 

voltage deviations are established in the permissible range for both cases of DGs. This is expected 

because the power output parameters of the CF and ANN controller nears full power (DGs with no 

control run at full output power). 

From the results in table 6.9, it is evident that control over the DGs improved the system power losses 

and the voltage deviation from 1 pu. Figure 6.21 shows that the bus voltage profiles improved over the 

base case, and that the voltage profiles for both cases of DGs are within the permissible limits. This 

concludes that the ANN controlled DGs improved network conditions and held the bus voltage profiles 

within the limits. As can be seen from these results, the behaviour of the ANN beyond the training load 

conditions showed a meaningful decision about the network conditions with much less computational 

time (compared to the CF). 

6.5.2 Loads at 34% of switching capacity 

The loads are randomly varied to 1228 MW within the boundaries of the load-switching spectrum. 

Table 6.10 describe the load conditions of the network at 34 %. Figure 6.22 show the response of the 

CF and the ANN controller for the control parameters of the DGs. Table 6.11 shows the results of the 

load conditions for the base case, CF, DGs with no control and response of the ANN controller. The 

bus voltage profile of the network is shown in figure 6.23. 



Pmd (MW) Qlmd (Mvar) Switch (%) 

Load 1 

Load 2 

Load 3 

Load 4 

Load 5 

Load 6 

Load 7 

L T ~ ~ I  

Table 6.10 Load conditions for a total load-switch of 34 % 

DG Number 

CF and ANN outputs 

Figure 6.22 Response of the CF (left) and the ANN controller (right) 

1.06 

- 1 .M 
2 

4 i m ,  

Avenge voltage Avenge voltage System active 
Statistics around deviation deviation mwer loss 

- 

- 

34 % (prmithd) % (Ideal) % (Mw) 

Base case (no DGs) 0.48597 2.1 846 73.772 

CF evaluation 0 0.84334 58.345 

DGs (no control) 0 1.0108 58.814 

DGs (ANN controller) 0 0.96834 58.606 

Table 6.1 1 Results of the power nelwork 
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Figure 6.23 Bus voltage profiles of the power network 

+ Bare care 

The results in figure 6.22 show that the ANN controller and CF decisions about the network load 

conditions were closely matched. The response of the ANN controller and CF closely resembles each 

other. The results in table 6.11 show similar trends than the results in section 6.5.1. The network 

conditions improved considerably over the base case. The active network losses of the system are 

reduced by 15 MW, to only 58 MW. The average voltage deviation from the permissible range is also 

reduced to 0 % by the DGs. The results show that the DGs with ANN control produced better results 

over the DGs with no control. Figure 6.23 shows that the ANN controller improved the bus voltage 

profile over the base case for busses 3 and 4. The undervoltages at these busses are regulated within 

the permissible range with the ANN controller. 

0.92 

6.5.3 Loads at 70% of switching capacity 

- 

The loads in the power network are randomly varied to 1368 MW within the boundaries of the load- 

switching spectrum. Table 6.12 describes the new load conditions of the network at 70 % of the total 

rated switching spectrum. Figure 6.24 shows the response of the CF and the ANN controller for the 

control parameters of the DGs. Table 6.13 shows the results of the load conditions for the base case, 

CF, DGs with no control and of the ANN controller. The bus voltage profile of the network is shown in 

figure 6.25. 
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phd (MW) Qhd (Mvar) Switch (%) 

Load 1 

Load 2 

Load 3 

Load 4 

Load 5 

Load 6 

Load 7 

L~0t.l 

Table 6.12 Load conditions for a total load-switch of 70 % 

CF and ANN outputs 

1.06 _ 1.04 

Figure 6.24 Response of the CF (left) and the ANN controller (right), 

Avenge voltage Average voltage System active 
Statistics around deviation deviation vower loss 

70 % (permitted) % (ideal) % (Mw) 

Base case (no DGs) 0.84647 2.6152 82.565 

CF evaluation 0 0.91342 61.592 

DGs (no control) 0 1.5199 62.615 

DGs (ANN controller) 0 1.0691 61.789 
- -- -- 

Table 6.13 Results of the power network. 



Bus number 

Figure 6.25 Bus voltage profiles of the power network. 

Figure 6.24 describes the response of the CF and ANN controller to the load condition. The results 

reveal that the ANN controller closely mimics the response of the CF, thus making an appropriate 

decision again. The response shows that the best network conditions are achieved with the DGs 

running at about half-rated power. The time response of the ANN controller also topped the CF 

response with only 0.071s of computational time. Table 6.13 captures the statistics of the power 

network for this simulation run. The results obtained here also reveal that the network conditions 

improved over the base case. The rest of the findings are similar to the analysis of paragraphs 6.5.1 

and 6.5.2 where the load conditions were set to other levels. Voltage levels are within the permissible 

range and the network power losses are minimized. 

Figure 6.25 describes the voltage profile on all the system busses. The results reveal that the DGs 

improved the profile for all the busses over the base case. The profiles also reveal that the 

uncontrolled and controlled cases are more or less the same. The controlled case however shows 

better average deviation and network power losses. From all these results it is clear that the ANN 

controller chooses appropriate control parameters for the DGs for this simulation run. 

6.5.4 Discussion of results 

Results were obtained for changing load conditions in the power network and the adaptive behaviour 

of the ANN controller was investigated. The response of the ANN controller to such varying load 

conditions is the key issue to discuss. To facilitate the evaluation of the ANN controller, the results of 

the simulation runs are summarised in table 6.14. 



The results of the ANN controller should primarily be compared to the base case, i.e. the original 

power network with no DGs. Since the main objectives of the ANN controller are to regulate the 

voltage profile of the network and minimise the active power losses, V,,, VM and PL are evaluated. 

The base case showed that the voltage profile of busses 3, 4, 6, 7 and 8 drifted outside the limits for 

certain load conditions. In the simulation runs, busses 3 and 4 mainly posed a problem area in the 

network. The voltage profile of the network is improved for all the cases to within the permissible 

voltage range with the aid of the DGs and ANN control. The voltage parameters showed better results 

for all the simulations if the DGs were controlled. 

The power losses of the system are significantly improved for all the cases over the base case. The 

lowest values are obtained with ANN control with a reduction of over 36 MW. This is a reduction of 

almost 40 % in the network power losses. This reduction is because sources closer to the load provide 

the necessary power and regulation as to central sources kilometres away. This concludes that the 

DGs with control reduce power flows in the power network and lines, thus reducing network losses. 

As seen in table 6.14, the ANN controller made inadequate decisions on two occasions. The response 

of the ANN controller improved the network conditions over the base case, but degraded it for the case 

where no control over the DGs was active. The integrity of Utte ANN controller has to be improved to 

enable it to make meaningful decisions for any load condition in the switching spectrum. This could be 

achieved by analysing the power network with a much larger variety of load conditions and training the 

ANN controller to accommodate these conditions. This however would increase the training data 

considerably and may form the basis for future research. 
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Table 6.14 Evaluation of the adaptive behaviour of the ANN controller (Summary of results). 

Run. 
no. 

1 

L1 
(MW) 

210 

I I I I 

12 

PL 
( W  

73.68 

L2 
(MW) 

400 

V, 
(%) 

0.85 

230 

DGI 

(pu) 

1.01 

L3 
(MW) 

120 

V- 
(%) 

2.81 

350 

DO1 

(pu) 

1.015 

U 
(MW) 

220 

130 

DGI 

(W 

150 

L5 
(MW) 

100 

210 

Switch 
(%) 

55 

L6 
(MW) 

220 

120 

DG2 

(pu, 

0.99 

DG1 

(MW) 

150 

L7 
(MW) 

44 

200 

DO2 

(pu) 

0.995 

DG2 

(MW 

150 

48 44 

DO2 

(MW) 

150 

Vn. 
(%) 

0 

VW 
(%) 

0 

0.66 

vM 
(%) 

1.13 

2.81 

V,ru 
(%) 

0.96 

pL 

(MW) 

48.41 

67.49 

PL 
(W 

48.19 

1.00 150 0.99 150 0 1.16 1.003 48.51 150 0.991 150 0.009 1.29 48.17 



6.6 Conclusions 

The results of the CF and ANN controller to optimise network parameters are evaluated in this chapter. 

The power network is firstly evaluated for the case where DGs are present in the network, but with no 

control. The results showed that the network environment in terms of voltage profiles improved to a 

certain extent for some busses, but to the detriment of other busses. The network power losses 

improved considerably over the base case. The CF is then used to analyze network conditions for a 

given load profile. The CF is tested against the base case, i.e. the original power system without the 

DGs. Using the CF to analyze and improve the network environment seems viable. The regulating 

requirements in terms of deviation from the permitted and ideal values are met while the network active 

power losses are kept to a minimum. 

The ANN controller is evaluated for load conditions within the original data set developed by means of 

the CF. The ANN controller showed similar results as the CF and it is concluded that the ANN 

controller can make meaningful decisions for these load profiles. The ANN controller also made proper 

decisions for load conditions beyond the training limits. To improve the capabilities of the ANN 

controller, it should be trained with a broader spectrum of load possibilities. This would enable the ANN 

controller to make informed control decisions for a bigger region of load conditions. In practice this 

would be a requirement, but to the expense of a much bigger and more complex training data set. The 

ANN controller developed for the purpose of this project however showed adequate network conditions 

and improved power quality parameters. 



Chapter 7 = Conclusion and Recommendations 

7.1 Introduction 

The traditional way of delivering power to a consumer is from a centralised utility. With the rapid 

growth of technology, generation of power at all levels is possible whether at transmission, distribution 

or at the end user level. The confluence of decentralisation with advances in distributed generation 

(DG) and artificial intelligence (Al) has opened new opportunities to deliver power closer to the point 

of consumption. The purpose of this research was to investigate the feasibility of using Al to control 

power quality (PQ) parameters through the optimal utilisation of DG in an electric power system. This 

chapter concludes the research conducted and summarises the significance of the study. 

7.2 The significance of the research 

The electric power system under investigation is characterised by large loads switching on-and off the 

electric grid. As described in the IEEE Std. P1433, these conditions are likely to cause PQ 

phenomena termed under-and ove~oltages. These phenomena are the result of poor system voltage 

regulation capabilities and controls. The NRS 048 standard in South Africa demands that voltage 

regulation must comply within *5 % of the nominal voltage level for voltage levels above 500 V. To 

find a solution to these conditions, DG with Al controls is evaluated in this research to regulate the 

voltage profile of the electric power system and reduce the active power losses. 

To evaluate the behaviour of an Artificial Neural Network (ANN) controller controlling the DGs, a 

simulation model is developed which integrates the DGs and the electric power system. The strategic 

placement of the DGs in the power system is important to complement their voltage regulation 

capabilities. For the purpose of simulation, the  atl lab' environment facilitates all the software tools 

necessary to analyse the power system and develop an Al controller. The electric power system is 

modelled in ~ i m ~ o w e r ~ y s t e m s ~ ,  a toolbox integrated into Matlab to model electric networks and 

systems. This simulation model forms the basis for the analysis of the electric power system. 

The ANN emerged as the most suitable Al technique for the control algorithm. Using ANN control is 

shown to minimise the network active power losses while optirnising the bus voltage profile of the 

network in terms of the average voltage deviations from the permissible and ideal values. The cost 

function is initially used to develop training data for the ANN. This data incorporate load-switching 

patterns for the network and the optimal deployment of the DGs. The ANN is trained with this 



randomised data set and the ANN topology used is 14:24:4 representing 14 input neurons, 24 hidden 

layer neurons and 4 output layer neurons. 

The ANN controlled cases are compared to conditions of no control where the DGs are deployed at 

full power and a nominal voltage level of 1 pu. For the load conditions analysed by the cost function, 

the ANN controller proved to be very effective in controlling the DGs. The bus voltage profiles as well 

as the average voltage deviations are successfully kept within the permissible voltage range. From 

the results, the system active power losses are reduced by an average of 24 MW. Comparing the 

results obtained, the optimal utilisation of DGs showed that the network conditions improved vastly 

over the original power system. 

The adaptive behaviour analysis of the ANN controller beyond the training limits reveals that the ANN 

controller can make meaningful output decisions when subjected to load conditions not in the training 

set. Beyond the training limits means that the load conditions are increased to different randomly 

selected power levels. What becomes clear from these analyses is that the behaviour of the ANN 

controller closely mimics the response of the cost function. This behaviour of the ANN justifies the 

ability of the cost function to select the optimal network conditions as the same improvements are 

seen in the network as discussed in the previous paragraph. 

Table 7.1 describes the results of improvement in the network conditions over the original power 

network. The results conclude that the integrated power system with DGs could be controlled to 

eliminate under-and overvoltages due to the switching of large loads. 

Ave. voltage Max. voltage Ave. voltage Max. voltage Ave. active 
Electric Power System deviation - deviation - devlatlon - deviation - power 

Permitted Permitted Ideal Ideal losses 
(%I (%) (%) (-4 ( Mw) 

Original 0.6898 11.72 2.8176 4.501 78.7110 

DGs with ANN controller 0 0 1.1107 1.982 54.6043 

Improvement (%) 100 100 60 56 31 

Table 7.1 Summary of the results of the research conducted. 

7.3 Further research 

Based on the research conducted during this study, the following areas can be improved or be 

recommended for future research: 



a) Refinement of the ANN training data; 

b) Other power network configurations; 

c) DG penetration on distribution level; 

d) The impact of DG on other power quality issues. 

The training data developed by the CF are based on the same active output power for all the DGs. 

This constraint limited the output combinations of the DGs to an acceptable size. The output 

combinations of the DGs could be refined to a larger domain of output voltage and active power 

levels. This refinement would affect the developed model and ultimately the performance of the power 

network. The load boundaries of the network are set to the network load capacity and not to the 

current operational boundaries of the loads. Changing the training data to the operational boundaries 

and updating it as the boundaries change need to be devised. 

The primary objective of distribution systems is to supply customers at a voltage that is within a 

prescribed range. Adding DGs on a distribution feeder at different locations and increasing the DG 

penetration level directly affects the control of voltage regulation devices like LTCs (load tap 

changers), SVRs (step voltage regulators) and switched capacitor banks. Devising an integrated 

control scheme can be used to assist these devices in the overall voltage regulation of the distribution 

feeder. Implementation of such a control scheme, however, requires a communication infrastructure 

not currently available in most distribution systems. 

The primary power quality phenomena addressed in this research is under-and overvoltages. Adding 

DG to a power system potentially influences the quality of power provided to other customers 

connected to the grid. Some of the other power quality attributes that is of concern include harmonic 

distortion, flicker and voltage imbalance. These key issues could be considered in further 

investigations into the effect of DG on the quality of supply. 

7.4 Closure 

The conclusion of this dissertation is that the use of DGs with ANN cc )I to optimise tt le power 

quality in an electric power system is meaningful. This is achieved through proper positioning and 

control. The evaluation of the power quality in the electric power system is however subject to power 

quality definitions used to optimise only certain parameters and it is recommended that further 

research be done on power quality and DG as discussed in section 7.3. 



Transient A phenomenon or quantity that varies between two consecutive steady states during a time 

interval that is short compared to the time scale of interest. 

Undewoltage A voltage having a value of at least 10% under the nominal voltage. 

Voltage Change A variation of the rms value of a voltage between two consecutive levels. 

Voltage Sag See Sag. 

Voltage Distortion Distortion of the ac line voltage. 

Voltage Fluctuation A series of voltage changes. 

Voltage Unbalance A condition in which the three phase voltages differ in amplitude or are displaced 

from their normal 120" phase relationship. 

Voltage Interruption Disappearance of the supply voltage on one or more phases. 

Voltage Regulation The degree of control or stability of the rms voltage at the load. 

Voltage Magnification The magnification of capacitor switching oscillatory transient voltage on the 

primary side by capacitors on the secondary side of a transformer. 

Waveform Distortion A steady-state deviation from an ideal sine wave of power frequency. 



B ESKOM case study 

B.l Substation diagrams 
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Figure 8.1 Substation diagram of Boundary. 
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Figure 8.2 Substation diagram of Everest. 
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Figure 8.3 Substation diagrams of Ferrum and Garona. 
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Figure 8.4 Substation diagram of Harvard. 
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Figure B.5 Substation diagram of Merapi 
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B.2 Line data transformation 

The line data provided by ESKOM are shown in table B.l: 

Table 6.1 Electric power network line data. 

The line R. X and B values are in per unit on a 100 MVA (S) base. To calculate the line R, L and C 

transformations, the following formulas are used. 

Z m  @ 275 kV = 275' 1 100 = 756.25 

YbaSe= 1 I Zba, = 1.322e-3 

The R, Xand B values for the full length of the line are: 

The new values of R, Xand B per kilometer are: 

R.., = Rml1l Line Length (8.5) 



X,, = X ~ j l  Line Length 

B,, = &I Line Length 

Table 6.2 shows the R, Xand B values of the lines per kilometer: 

R X B 
Line no. 

( N W  (Nkm) (mili mholkm) 

Table 8.2 Line R, Xand B per kilometer. 

Table 6.3 shows the R, Land C values of the lines per kilometer: 

Line no. 
R L C 

Wkm) ( ~ l k m )  (~lkm) 

- ~p 

Table 8.3 Line R, L and C per kilometer. 



8.3 Loads and capacitance in ESKOM power network 

Capacitor banks are installed at various places in the electric power network. The sizes and locations 

of the capacitor banks are shown in table B.4. 

Size Voltage Level 
Location 

(MVAr) (kv) 

Everest 1 44 275 

Merapi 18 275 

Ferrum 80 275 

The 

Table 8.4 Capacitor banks and sizes. 

:ities in the electric power network are shown in table 8.5 load capac 

Current load Max. load Switching capacity 
Load (m) (MW) (MW 

Load 1 (Sub A) 

Load 2 (Sub C) 

Load 3 (Sub D) 

Load 4 (Sub E) 

Load 5 (Sub F) 

Load 6 (Sub G) 

Load 7 (Sub H) 

Total 

Table 8.5 Load capacities in the electric power network. 

The generating capacities of the feeding transmission lines are shown in table B.6. 

Max. capacity 
Source 

(MVA) 

275 kV Trans. line 1000 

400 kV Trans. line 1500 

Table B.6 Power capacities of the feeding transmission lines 



All the load values supplied by ESKOM are only the real power values. Assuming a 0.95 power factor 

at all the loads, the following formulas are used to calculate the reactive power values. 



C Power flow analysis 

To validate the two simulation environments, a smaller network was created with only one source and 

one DG. A flow diagram of the system is shown in figure C. 1. 

275 kV 

SUB A 
Bus l(Slack Bus) 9 

Figure C. l  Test network used for the power flow simulation, 

The test network is firstly analysed with SimPowerSystems. The flow diagram of the network is shown 

in figure C.2 

I 

Figure C.2 Test network modelled in SimPowerSystems. 



The test network is secondly modelled with the Newton-Raphson Power Flow solution. The results of 

the two simulations are shown in table C.1. 

Bus no. Parameter SimPowerSystems Newton-Raphson 

Bus 1 'JI (Pu) 1 .OO 1 .OO 
(Slack) 6, (deg.) 0.000 0.000 

'Jz (PU) 0.970 0.967 
Bus 2 

6~(deg.) -6.29 -6.671 

'43 (Pu) 0.981 0.984 

Bus 63 (deg.) -9.18 -9.810 

v4 (PU) 1 .oo 
Bus 4 
~DGI  64 (deg.1 -9.41 

Table C. l  Results of the two Dower flow solutions 

The results show a close resemblance and the credibility of the two modelling environments are 

verified. 



D Matlab neural network toolbox 

The Matlab 'Neural Network Toolbox (NNT)' is used in to train the model described in chapter 5. The 

simulations are done using both the graphical user interface (GUI) and the command line. The GUI 

allows the user to quickly and easily do the following: 

Create new networks with different parameters and learning algorithms; 

Initialize, train, and test networks; 

Export the training and testing results from the GUI to the command line workspace. 

The GUI is user friendly and figures A.l  - A.4 shows the different windows of the GUI. 

Figure D.l  Network manager of the NNT GUI. 
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Figure D.2 Window in the GUI to create a new network. 

Figure D.3 Window in the GUI to train the network. 



Figure D.4 A graphical view of the network created 
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Bus number 

Figure 6.21 Bus voltage profiles of the power network 

From the results in figure 6.20 it is evident that the ANN controller could make a meaningful decision 

about the network load condition. The response of the ANN controller closely resembles that of the CF, 

but with a much better response time. The CF took 69 s (real-time) to find the optimum network 

condition and control variables, whereas the ANN controller took only 0.062 s (real-time). The results in 

table 6.9 show that the network conditions improved considerably over the base case. The average 

voltage deviations are established in the permissible range for both cases of DGs. This is expected 

because the power output parameters of the CF and ANN controller nears full power (DGs with no 

control run at full output power). 

From the results in table 6.9, it is evident that control over the DGs improved the system power losses 

and the voltage deviation from 1 pu. Figure 6.21 shows that the bus voltage profiles improved over the 

base case, and that the voltage profiles for both cases of DGs are within the permissible limits. This 

concludes that the ANN controlled DGs improved network conditions and held the bus voltage profiles 

within the limits. As can be seen from these results, the behaviour of the ANN beyond the training load 

conditions showed a meaningful decision about the network conditions with much less computational 

time (compared to the CF). 

6.5.2 Loads at 34% of switching capacity 

The loads are randomly varied to 1228 MW within the boundaries of the load-switching spectrum. 

Table 6.10 describe the load conditions of the network at 34 96. Figure 6.22 show the response of the 

CF and the ANN controller for the control parameters of the DGs. Table 6.11 shows the results of the 

load conditions for the base case. CF, DGs with no control and response of the ANN controller. The 

bus voltage profile of the network is shown in figure 6.23. 
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P,, (MW) Qw (Mvar) Switch (%) 

Load 1 

Load 2 

Load 3 

Load 4 

Load 5 

Load 6 

Load 7 
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Table 6.10 Load conditions for a total load-switch of 34 % 
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Figure 6.22 Response of the CF (left) and the ANN controller (right). 

Avenge voltage Average voltage System active 
Statistics around deviation deviation power lorur 

34 % (permitted) % (ideal) % (nnw) 
- - - - - - - - - 

Base case (no DGs) 0.48597 2.1846 73.772 

CF evaluation 0 0.84334 58 345 

DGs (no control) 0 1.0108 58 814 

DGs (ANN controller) 0 0.96834 58 606 

Table 6.1 1 Results of the power network. 



Figure 6.23 Bus voltage profiles of the power network. 

The results in figure 6.22 show that the ANN controller and CF decisions about the network load 

conditions were closely matched. The response of the ANN controller and CF closely resembles each 

other. The results in table 6.11 show similar trends than the results in section 6.5.1. The network 

conditions improved considerably over the base case. The active network losses of the system are 

reduced by 15 MW, to only 58 MW. The average voltage deviation from the permissible range is also 

reduced to 0 % by the DGs. The results show that the DGs with ANN control produced better results 

over the DGs with no control. Figure 6.23 shows that the ANN controller improved the bus voltage 

profile over the base case for busses 3 and 4. The ~nde~0ltageS at these busses are regulated within 

the permissible range with the ANN controller. 

6.5.3 Loads at 70% of switching capacity 

The loads in the power network are randomly varied to 1368 MW within the boundaries of the load- 

switching spectrum. Table 6.12 describes the new load conditions of the network at 70 % of the total 

rated switching spectrum. Figure 6.24 shows the response of the CF and the ANN controller for the 

control parameters of the DGs. Table 6.13 shows the results of the load conditions for the base case, 

CF, DGs with no control and of the ANN controller. The bus voltage profile of the network is shown in 

figure 6.25. 
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Table 6.12 Load conditions for a total load-switch of 70 %. 
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Figure 6.24 Response of the CF (left) and the ANN controller (right) 

Avenge voltage Average voltage System active 
Statistics around deviation deviation power loas 

70 % (permitted) % (ideal) X (m 

Base case (no DGs) 0.84647 2.6152 82.565 

CF evaluation 0 0.91342 61.592 

DGs (no control) 0 1.5199 62.615 

DGs (ANN controller) 0 1.0691 61.789 

Table 6.13 Results of the Dower network. 
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Figure 6.25 Bus voltage profiles of the power network. 

Figure 6.24 describes the response of the CF and ANN controller to the load condition. The results 

reveal that the ANN controller closely mimics the response of the CF, thus making an appropriate 

decision again. The response shows that the best network conditions are achieved with the DGs 

running at about half-rated power. The time response of the ANN controller also topped the CF 

response with only 0.071s of computational time. Table 6.13 captures the statistics of the power 

network for this simulation run. The results obtained here also reveal that the network conditions 

improved over the base case. The rest of the findings are similar to the analysis of paragraphs 6.5.1 

and 6.5.2 where the load conditions were set to other levels. Voltage levels are within the permissible 

range and the network power losses are minimized. 

Figure 6.25 describes the voltage profile on all the system busses. The results reveal that the DGs 

improved the profile for all the busses over the base case. The profiles also reveal that the 

uncontrolled and controlled cases are more or less the same. The cont-oiled case however shows 

better average deviation and network power losses. From all these results it is clear that the ANN 

controller chooses appropriate control parameters for the DGs for this simulation run. 

6.5.4 Discussion of results 

Results were obtained for changing load conditions in the power network and the adaptive behaviour 

of the ANN controller was investigated. The response of the ANN controller to such varying load 

conditions is the key issue to discuss. To facilitate the evaluation of the ANN controller, the results of 

the simulation runs are summarised in table 6.14. 



The results of the ANN controller should primarily be compared to the base case, i.e. the original 

power network with no DGs. Since the main objectives of the ANN controller are to regulate the 

voltage profile of the network and minimise the active power losses, V,,, V m ,  and PL are evaluated. 

The base case showed that the voltage profile of busses 3, 4. 6, 7 and 8 drifted outside the limits for 

certain load conditions. In the simulation runs, busses 3 and 4 mainly posed a problem area in the 

network. The voltage profile of the network is improved for all the cases to within the permissible 

voltage range with the aid of the DGs and ANN control. The voltage parameters showed better results 

for all the simulations if the DGs were controlled. 

The power losses of the system are significantly improved for all the cases over the base case. The 

lowest values are obtained with ANN control with a reduction of over 36 MW. This is a reduction of 

almost 40 % in the network power losses. This reduction is because sources closer to the load provide 

the necessary power and regulation as to central sources kilometres away. This concludes that the 

DGs with control reduce power flows in the power network and lines, thus reducing network losses. 

As seen in table 6.14, the ANN controller made inadequate decisions on two occasions. The response 

of the ANN controller improved the network conditions over the base case, but degraded it for the case 

where no control over the DGs was active. The integrity of the ANN controller has to be improved to 

enable it to make meaningful decisions for any load condition in the switching spectrum. This could be 

achieved by analysing the power network with a much larger variety of load conditions and training the 

ANN controller to accommodate these conditions. This however would increase the training data 

considerably and may form the basis for future research. 



Load conditions Base case CF Output ANN Output 

Run 
no. DO1 DO1 DO2 DG2 

vm p' L1 LZ L3 U L5 L6 L7 Switch V, V ,  PL DG1 DG1 DGZ DGZ 
v p v p v, V ,  PL 

(Mw) (Mw) (Mw) (Mw) (Mw) (Mw) (Mw) (%) (%) (%) (Mw) 
(p") (Mw (pu) (Mw 

(%) (%) (Mw) (pu) (Mw) (pu) (MW) 
(%) (%) (Mw) 

1 210 400 120 220 100 220 44 55 0.85 2.61 73.68 1.01 150 0.99 150 0 0.96 48.19 1.015 150 0.995 150 0 1.13 48.41 

12 230 350 130 210 120 200 44 48 0.66 2.81 67.49 1.00 150 0.99 150 0 1.16 48.51 1.003 150 0.991 150 0.W9 1.29 48.17 

Table 6.14 Evaluation of the adaptive behaviour of the ANN controller (Summary of results). 



6.6 Conclusions 

The results of the CF and ANN controller to optimise network parameters are evaluated in this chapter. 

The power network is firstly evaluated for the case where DGs are present in the network, but with no 

control. The results showed that the network environment in terms of voltage profiles improved to a 

certain extent for some busses, but to the detriment of other busses. The network power losses 

improved considerably over the base case. The CF is then used to analyze network conditions for a 

given load profile. The CF is tested against the base case, i.e. the original power system without the 

DGs. Using the CF to analyze and improve the network environment seems viable. The regulating 

requirements in terms of deviation from the permitted and ideal values are met while the network active 

power losses are kept to a minimum. 

The ANN controller is evaluated for load conditions within the original data set developed by means of 

the CF. The ANN controller showed similar results as the CF and it is concluded that the ANN 

controller can make meaningful decisions for these load profiles. The ANN controller also made proper 

decisions for load conditions beyond the training limits. To improve the capabilities of the ANN 

controller, it should be trained with a broader spectrum of load possibilities. This would enable the ANN 

controller to make informed control decisions for a bigger region of load conditions. In practice this 

would be a requirement, but to the expense of a much bigger and more complex training data set. The 

ANN controller developed for the purpose of this project however showed adequate network conditions 

and improved power quality parameters. 



Chapter 7 - Conclusion and Recommendations 

7.1 Introduction 

The traditional way of delivering power to a consumer is from a centralised utility. With the rapid 

growth of technology, generation of power at all levels is possible whether at transmission, distribution 

or at the end user level. The confluence of decentralisation with advances in distributed generation 

(DG) and artificial intelligence (Al) has opened new opportunities to deliver power closer to the point 

of consumption. The purpose of this research was to investigate the feasibility of using Al to control 

power quality (PQ) parameters through the optimal utilisation of DG in an electric power system. This 

chapter concludes the research conducted and summarises the significance of the study. 

7.2 The significance of the research 

The electric power system under investigation is characterised by large loads switching on-and off the 

electric grid. As described in the IEEE Std. P1433, these conditions are likely to cause PQ 

phenomena termed under-and overvoltages. These phenomena are the result of poor system voltage 

regulation capabilities and controls. The NRS 048 standard in South Africa demands that voltage 

regulation must comply within i5 % of the nominal voltage level for voltage levels above 500 V. To 

find a solution to these conditions, DG with Al controls is evaluated in this research to regulate the 

voltage profile of the electric power system and reduce the active power losses. 

To evaluate the behaviour of an Artificial Neural Network (ANN) controller controlling the DGs, a 

simulation model is developed which integrates the DGs and the electric power system. The strategic 

placement of the DGs in the power system is important to complement their voltage regulation 

capabilities. For the purpose of simulation, the   at lab^ environment facilitates all the software tools 

necessary to analyse the power system and develop an Al controller. The electric power system is 

modelled in ~ i m ~ o w e r ~ y s t e m s ~ ,  a toolbox integrated into Matlab to model electric networks and 

systems. This simulation model forms the basis for the analysis of the electric power system. 

The ANN emerged as the most suitable Al technique for the control algorithm. Using ANN control is 

shown to minimise the network active power losses while optimising the bus voltage profile of the 

network in terms of the average voltage deviations from the permissible and ideal values. The cost 

function is initially used to develop training data for the ANN. This data incorporate load-switching 

patterns for the network and the optimal deployment of the DGs. The ANN is trained with this 



randomised data set and the ANN topology used is 14:24:4 representing 14 input neurons, 24 hidden 

layer neurons and 4 output layer neurons. 

The ANN controlled cases are compared to conditions of no control where the DGs are deployed at 

full power and a nominal voltage level of 1 pu. For the load conditions analysed by the cost function, 

the ANN controller proved to be very effective in controlling the DGs. The bus voltage profiles as well 

as the average voltage deviations are successfully kept within the permissible voltage range. From 

the results, the system active power losses are reduced by an average of 24 MW. Comparing the 

results obtained, the optimal utilisation of DGs showed that the network conditions improved vastly 

over the original power system. 

The adaptive behaviour analysis of the ANN controller beyond the training limits reveals that the ANN 

controller can make meaningful output decisions when subjected to load conditions not in the training 

set. Beyond the training limits means that the load conditions are increased to different randomly 

selected power levels. What becomes clear from these analyses is that the behaviour of the ANN 

controller closely mimics the response of the cost function. This behaviour of the ANN justifies the 

ability of the cost function to select the optimal network conditions as the same improvements are 

seen in the network as discussed in the previous paragraph. 

Table 7.1 describes the results of improvement in the network conditions over the original power 

network. The results conclude that the integrated power system with DGs could be controlled to 

eliminate under-and overvoltages due to the switching of large loads. 

Ave. voltage M u  voltage Ave. voltage Max. voltage Ave. acUve 
Electric Powsr System deviation - deviaUon - deviation - deviation - power 

Permitted Permitted Ideal Ideal losses 
('XI (W ('h) (W 

Original 0.6898 11 .72 2.8176 4.501 78.71 10 

DGs with ANN mntroller 0 0 1.1107 1.982 54.6043 

Improvement (%) 100 100 60 56 31 

Table 7.1 Summary of the results of the research conducted. 

7.3 Further research 

Based on the research conducted during this study, the following areas can be improved or be 

recommended for future research: 



a) Refinement of the ANN training data; 

b) Other power network configurations; 

c) DG penetration on distribution level; 

d) The impact of DG on other power quality issues 

The training data developed by the CF are based on the same active output power for all the DGs. 

This constraint limited the output combinations of the DGs to an acceptable size. The output 

combinations of the DGs could be refined to a larger domain of output voltage and active power 

levels. This refinement would affect the developed model and ultimately the performance of the power 

network. The load boundaries of the network are set to the network load capacity and not to the 

current operational boundaries of the loads. Changing the training data to the operational boundaries 

and updating it as the boundaries change need to be devised. 

The primary objective of distribution systems is to supply customers at a voltage that is within a 

prescribed range. Adding DGs on a distribution feeder at different locations and increasing the DG 

penetration level directly affects the control of voltage regulation devices like LTCs (load tap 

changers), SVRs (step voltage regulators) and switched capacitor banks. Devising an integrated 

control scheme can be used to assist these devices in the overall voltage regulation of the distribution 

feeder. Implementation of such a control scheme, however, requires a communication infrastructure 

not currently available in most distribution systems. 

The primary power quality phenomena addressed in this research is under-and ove~oltages. Adding 

DG to a power system potentially influences the quality of power provided to other customers 

connected to the grid. Some of the other power quality attributes that is of concern include harmonic 

distortion, flicker and voltage imbalance. These key issues could be considered in further 

investigations into the effect of DG on the quality of supply. 

7.4 Closure 

The conclusion of this dissertation is that the use of DGs with ~ ise the power 

quality in an electric power system is meaningful. This is achieved through proper positioning and 

control. The evaluation of the power quality in the electric power system is however subject to power 

quality definitions used to optimise only certain parameters and it is recommended that further 

research be done on power quality and DG as discussed in section 7.3. 



Annexures 

A Power quality definitions 

Current Distortion Distortion in the ac line current. See also Distortion. 

Distortion Any deviation from the normal sine wave for any ac quantity. 

Dropout Voltage The voltage at which a device ceases operation. 

Flicker Impression of unsteadiness of visual sensation induced by a light stimulus whose luminance 

or spectral distribution fluctuates with time. 

Frequency Deviation An increase or decrease in the power frequency. 

Frequency Response In power quality usage, it refers to the variation of impedance as a function of 

frequency. 

Fundamental (Component) The component of order one of the Fourier series of a periodic quantity. 

Ground A conducting component by which the circuit is connected to the earth. 

Harmonic (Component) The component of order greater than one of the Fourier series of a periodic 

quantity. 

Harmonic Content The quantity obtained by subtracting the fundamental component from an 

alternating quantity. 

Harmonic Distortion Periodic distortion of the sine wave. 

Harmonic Number An integer multiple of the fundamental frequency. 

Harmonic Resonance A condition were the power system resonates near one of the major 

harmonics produced by non-linear components. 

Interharmonic (Component) A frequency component of a periodic quantity that is not an integer 

multiple of the fundamental frequency. 

Low-Side Surges A current surge that's injected into the transformers secondary terminals upon a 

lightning strike to the grounded conductors in the vicinity. 

Noise Unwanted electrical signals that produce undesirable effects in the circuits. 

Non-Linear Load Electrical load whose impedance varies throughout the cycle of the ac input 

voltage. 

Notch A switching disturbance of the normal power voltage; lasting less than a half cycle. 

Oscillatory Transient A sudden, non-power frequency change in the steady-state condition of the 

voltage or current. 

Overvoltage A voltage having a value of at least 10% above the nominal voltage. 

Phase S h i i  Displacement in time of one voltage waveform relative to another. 

Sag A decrease to between 0.1 and 0.9 pu in rms voltage or current. 

Swell A temporary increase in the rms voltage or current of more than 10% the nominal voltage. 




