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Abstract

The mean-variance method is hugely used for portfolio management. However, this

approach assumes normality in the distribution of the assets’ returns, which is not

always observed in reality. Furthermore, using the variance as a measure of risk

penalises the upside deviations of the returns, which investors consider as profit. Al-

ternatives such as the semivariance measure has been proposed to overcome these

drawbacks. This study aims to investigate the performance of the portfolios using

semivariance as a measure of risk. A sample of ten companies from the Johannesburg

Stocks Exchange Top 40 index is used for analysis. Using the Lagrange method for op-

timisation, the optimal portfolios from the mean-variance and the mean-semivariance

approaches are constructed. The results show that the optimisation using the semi-

variance as a measure of risk produces desirable benefits: the optimal portfolios con-

structed achieve less risk and higher returns than those constructed using optimisa-

tion with the variance as a measure of risk. Furthermore, a tracking error analysis for

portfolio performance indicates that the minimum-risk portfolio constructed by the

mean-semivariance approach has less tracking error as compared to the minimum-risk

portfolio constructed by the mean-variance method.

Keywords: Portfolio selection, Mean-variance model, Mean-semivariance model, La-

grange method, Portfolio performance.
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1. Introduction

1.1 Background

In the financial markets, investors are continually seeking for strategies to select opti-

mal portfolios that can achieve optimal returns. The problem investors face in select-

ing optimal portfolios is known as portfolio optimisation. Modern Portfolio Theory

founded by Harry Markowitz in the seminal work Markowitz (1952) pioneered portfo-

lio optimisation. In the paper, Harry Markowitz provided the mean-variance model.

It is a useful tool for portfolio management developed to enable investors (financial

economists, financial institutions and practitioners) to follow optimal strategies for

assets selection.

To construct optimal portfolios, the mean-variance model uses the variance or the

standard deviation of the returns to measure the risk. This model has quickly been

integrated by practitioners and fund managers in the management of their portfolios

and is regarded as the most commonly used optimisation approach for portfolio in-

vestment. However, quantifying the risk by the variance has been observed to not

match with investors’ perception of risk (Roy 1952). Furthermore, the mean-variance

model has been criticised for assuming normality in the distribution of the assets.

Indeed, the variance evaluates as a risk both the favourable and the unfavourable

fluctuations of an asset or a portfolio’s returns, while investors view risk as to the

returns falling below their expected target returns. For this reason, using the variance

to measure the risk may be inappropriate.

Given the drawbacks of the variance measure, other alternatives of risk measurement

have been developed and proposed in the form of downside risk measures (Markowitz

1959). The most general is Lower Partial Moments: for a specified target return, only

the nth power of the asset or the portfolio’s returns deviating from this target are

1
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measured as a risk. In addition, these measures consider any possibility of asymmetry

in the distribution of the assets’ returns and also consider the investor’s preferences

towards risk. Constructing portfolios using downside risks may reduce the risk while

allowing achieving higher returns than portfolios constructed under the mean-variance

model.

One of the downside risk measures is the Lower Partial Moments of power two, called

the semivariance. The semivariance measures the weighted sum of squared devi-

ations of returns from the expected value of the returns. Empirical evidence has

shown the superiority of the semivariance over the variance for risk measurement.

Mean-semivariance model provides better portfolios than the mean-variance model

(Markowitz 1959). However, computing mean-semivariance model is not easy. Unlike

the mean-variance model, which uses a symmetric and exogenous matrix of covari-

ances, the matrix of semicovariances is asymmetric and endogenous, thus creating

difficulties in computation. Given this problem in the mean-semivariance model, how

can one estimate the elements of the semicovariance matrix such that the model can

easily be expressed and solved as the mean-variance model? The major part of the

literature on semivariance is focused on developing approaches to overcome this diffi-

culty. Hogan & Warren (1972) presented a proposal which computationally requires

rigorous, intensive iterative algorithms and still ends to an endogenous semicovariance

matrix. Markowitz, Todd, Xu & Yamane (1993) reformulated the mean-semivariance

problem. By introducing additional variables to the mean-variance model, and apply-

ing the Critical Line Algorithm, the semivariance efficient frontier could be computed.

In Estrada (2007) and Estrada (2008), a heuristic method yielding a symmetric and

exogenous matrix of semicovariances was approached. This approach enables to deter-

mine optimal portfolios for the mean-semivariance by using the closed-form solution

of the mean-variance model. Hogan & Warren (1972) proposed a co-Lower Partial

Moments technique for the semivariance. This contribution makes the theoretical

and computational utilities of the mean-semivariance model insured and has later

been generalised in Nawrocki (1991) where a heuristic approach was used to convert
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into a positive semi-definite matrix the asymmetric matrix of semicovariances. de

Athayde (2001) developed an optimal algorithm to construct a mean-downside risk

portfolio efficient frontier using the analytic solution of the mean-variance model.

From Sharpe’s beta regression equation, Ballestero (2005) proposed a semicovariance

matrix based on the semivariance below the mean return.

1.2 Problem Statement

As stated above, the mean-variance model is the one that is mostly used. However,

the mean-variance model has its weaknesses, among them, assuming normality in the

distribution of the assets. This assumption does not always hold in reality. Assets’

distribution may exhibit skewness. The application of a measure that captures the

downside part of the assets’ distribution, such as the semivariance, which is the focus

of the study, is more plausible.

Portfolio optimisation problems are usually expressed as quadratic problems whereby

an optimisation solver is used to get an optimal solution. However, some of the

optimisation problems lead to localised solutions, which might not be that optimal.

As a result, the study resorts to using numerical methods to find optimal solutions to

optimisation problems. In particular, the Lagrange method to optimisation proposed

by Merton (1972) will be used for the study. The Lagrange method to optimisation

only requires constraints in the optimisation. Moreover, optimisation solutions for

downside risk frameworks are difficult to access, and the majority prefer then to use

numerical methods. Hence, the Lagrange method is suitable for this.

From earlier above, the empirical evidence on semivariance is concentrated on de-

termining the semicovariance matrix. However, the interest in this work is not on

the estimation of the semicovariance matrix, but on producing optimal portfolios us-

ing the mean-semivariance approach with the semivariance approach proposed by de
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Athayde (2001).

As a result, based on the above argument, the study seeks to use the mean-semivariance

approach to construct portfolios using the assets/companies selected from the Johan-

nesburg Stocks Exchange Top 40 index.

1.3 Motivation

Models in portfolio optimisation guide investors in the selection and allocation of

the assets, such that their investments are exposed to minimum risk. These models

have practical implications for risk management and portfolio selection. The mean-

semivariance approach could be useful for such investors, allowing to control the

downside risk of their investments while achieving the objectives on the return.

1.4 Aim of the Study

The study aims to review the theory on portfolio optimisation and to investigate the

performance of the mean-semivariance approach for portfolio optimisation in com-

parison to the mean-variance approach.

1.5 Objectives of the Study

The objectives of the study are:

• To review the theory on portfolio optimisation.
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• To investigate the performance of the mean-semivariance approach in the minimum-

risk optimisation with comparison to the mean-variance approach.

• To investigate the tracking error of the mean-semivariance portfolio relative to

the benchmark.

1.6 Method of investigation

The research is designed using the following methodology:

• Assets from the JSE Top 40 index are collected. This index is composed of the

top 40 shares on the JSE market, ranked by market capitalisation. The study

focuses on the daily adjusted closing prices (the last price during a trading day,

adjusted for dividend) of each company, for a period ranging from May 2019

to July 2019. These data are obtained from the INET BFA website, which is

Africa’s leading provider of financial data feeds and analysis tools.

• Using Python programming language and Microsoft Excel, the data prices

are converted into returns and used for analysis. The returns of the portfolio

are obtained using the respective assets’ returns. The statistical moments (the

mean, the variance, the semivariance, the covariance and the semicovariance)

of returns are calculated. These parameters are used as inputs for both the

mean-variance and the mean-semivariance models.

• The Lagrange method for optimisation is used to find optimal portfolios, and

the efficient frontiers are graphically expressed.
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1.7 Structure of the work

This study consists of two major parts: one ( from Chapter 2 to Chapter 4) devel-

ops concepts on portfolio optimisation while the other (Chapter 5) reports on some

empirical work. The remainder of the study is structured as follows:

Chapter 2 describes the concepts of risk and return in portfolio investment and

describes their mathematical expressions.

Chapter 3 presents different frameworks for portfolio optimisation. These include

the mean-variance model and the mean-downside risk models for the semivariance,

the Value At Risk and the Conditional Value at Risk measures. In this chapter, some

measures for portfolio performance are also presented. These are the Sharpe ratio,

the Sortino ratio, the maximum drawdown and the tracking error measure.

Chapter 4 presents the mean-semivariance framework and discusses the difficulty

related to portfolio optimisation based on the mean-semivariance approach. The

algorithm proposed to overcome this difficulty is presented.

Chapter 5 provides an empirical study to support the approach presented in chapter

4 by comparing the practical results of the mean-variance and the mean-semivariance

models. An analysis of portfolio performance is also provided.

Chapter 6 concludes the study and provides some insights for further researches.



2. The concept of return and risk

Models in portfolio theory are built according to investors preferences. The primary

goal when investing is to make a profit or get more return. However, since the

financial market is a very uncertain environment, investors should also consider the

risk they may suffer from investing in any of these insecure securities available in

the market. Return, risk and investor’s preferences are then important concepts in

portfolio optimisation that are introduced in this chapter. Before that, given that

financial instruments evolve in a stochastic way, results in portfolio optimisation are

not exact but estimates. Some probability concepts are thus first introduced.

2.0.1 Definition. Random variable (Shreve 2004)

Financial instruments evolving in a random way are described as a random variable.

A random variable is a function that assigns a real number as value to an outcome

of an experiment (e.g an investment) in a probability space. This is one of the basic

concepts in probability theory.

2.0.2 Definition. Probability measure, σ−algebra (Shreve 2004)

To define a probability space one first needs three elements:

• A set Ω 6= ∅, called the sample space. The set contains all possible outcomes ω,

from a probability experiment. A subset of Ω is called an event.

• A set F called σ−algebra, which consists of collection of subsets ω ∈ Ω, or

collection of all possible events. F is called σ−algebra if it satisfies the following

conditions:

– ∅ ∈ F

– If A ∈ F , then Ac ∈ F ; where Ac is the complement of the event A.

7
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– If {An}∞n=1 ∈ F , where An ∈ F , then
∞⋃
n=1

An ∈ F .

• A probability measure P assigning probabilities to each event. Let (Ω,F) a

measurable space ( this is, F is σ−algebra on Ω). A probability measure is a

function P : F −→ [0, 1] such that:

– P [Ω] = 1 and P [∅] = 0

– 0 ≤ P [A] ≤ 1, ∀ A ∈ F

– For any sequence of disjoint sets (An ∩ Am = ∅, for n 6= m) in F , it holds

that P [
∞⋃
n=1

An] =
∞∑
n=1

P [An].

2.0.3 Definition. Filtration (Carbone 2016)

Let T be an ordered set (e.g the time). A filtration is a family {Ft}t≥0 of σ−algebras

on the set Ω such that Fs ⊂ Ft, ∀ s 6 t in T . If t designates the time, Ft refers to

the collection of all events observable until and including time t.

2.0.4 Definition. Probability space (Shreve 2004)

A probability space is defined as the set consisting of the triple (Ω,F ,P). A filtered

probability space is defined as the set consisting of (Ω,F , {Ft}t≥0,P).

A random variable X defined on (Ω,F ,P) is said to follow a Gaussian or a normal

distribution with mean µ and variance σ2, denoted by X ∼ N(µ, σ2), if for all

−∞ < a < b < +∞ (Weisstein 2002):

P(a 6 X 6 b) =

∫ b

a

1√
2πσ

exp

(
−x− µ

2σ2

)2

dx .

For a given investment time interval, securities or assets will produce a sequence of

random returns, whose values may all be different. A stochastic process can describe

the movement of an asset’s values during that period.
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2.0.5 Definition. Stochastic process (Carbone 2016)

A stochastic process {Xt, t > 0} is defined as a collection of random variables defined

on the same probability space (Ω,F ,P). Given the set R of real numbers, a stochas-

tic process can be described as a mapping X : R × Ω −→ R, (t, ω) −→ X(t, ω),

representing the ω sample path of the process.

The stochastic process is said adapted to the filtration {Ft} if Xt ∈ Ft. We say Xt

is an Ft− measurable random variable ∀ t > 0. Values of X(t, ω) can only be given

by information available until time t. One commonly used stochastic process is the

Brownian motion.

2.0.6 Definition. Brownian motion (Carbone 2016)

A stochastic process {Bt} defined on (Ω,F ,P) is called a one-dimensional Brownian

motion or Weiner process if the following properties hold:

• B0 = 0

• For all 0 6 s < t < ∞, Bt − Bs is independent of Fs. The process {Bt} has

independent increments

• For all 0 6 s < t, Bt −Bs ∼ N(0, t− s) is normally distributed

• Each sample path of the process is continuous with probability one.

One useful property of a Brownian motion is that its value increases or decreases

randomly by 1 unit with equal probability.

Given the necessary probability terms, the two features of an asset: the return on

a given period and the risk associated can be introduced. Note that any return is

considered as a random variable defined on a probability space as in Definition 2.0.4.
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2.1 Rate of return

The concept of return is described as in (Atzberger 2010). Let P (0) and P (T ) re-

spectively be an asset’s value at time 0 and time T . The rate of return r, which also

represents the yield of the asset is given from the expression P (T ) = (1 + r)P (0) by:

r =
P (T )− P (0)

P (0)
. (2.1.1)

The term (1 + r) can be seen as an interest rate required at the end T of a period,

for a deposit of P (0) at the beginning of the period.

However, given that assets evolve randomly over the given period [0, T ], the value

P (T ) is unknown at time 0 and so will be the value of r. The mean of the returns is

thus used to refer to the variability in asset’s values over time. This is denoted by:

µ = E[r] , (2.1.2)

where E stands for the expectation of the random variable r. The expected rate of

return gives an estimation of how large the returns may be on average.

Suppose now that n assets are available to construct a portfolio, and let W be the

initial capital to be invested. Let’s denote by Wi the amount of money to be invested

in asset i. The wealth zi invested in this asset is defined by:

zi =
Wi

W
. (2.1.3)

Since the total capital W is invested:

n∑
i=1

Wi = W and this implies
n∑
i=1

zi = 1 .

To define the return of a portfolio, denote by V the value of the portfolio, so that
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V (0) = V and V (t) =
n∑
i=1

Wi

Pi(0)
Pi(t). The return of the portfolio Rp(t) at time t is

then defined as:

Rp(t) =
V (t)− V (0)

V (0)

=

n∑
i=1

Wi

Pi(0)
Pi(t)−W

W

=
n∑
i=1

Wi

W

Pi(t)

Pi(0)
−

n∑
i=1

Wi

W

=
n∑
i=1

Wi

W

(
Pi(t)

Pi(0)
− 1

)
=

n∑
i=1

zi
Pi(t)− Pi(0)

Pi(0)

=
n∑
i=1

ziri . (2.1.4)

This results in a linear combination of the asset’s return. The portfolio rate of return

defined in Equation (2.1.4) is the weighted average of the asset’s rates of return, with

each asset’s weight given by zi. The portfolio’s expected return µp, is also a linear

combination of the expected rates of return of the assets, given by:

µp = E[
n∑
i=1

ziri]

=
n∑
i=1

ziE[ri]

=
n∑
i=1

ziµi .

As an asset’s rate of return is considered a random variable, the resulting return from

investing in such asset may be far from the return an investor is expecting to get. To



Section 2.2. Volatility Page 12

quantify how the returns deviate from the expected return, the variance is used as

the measure. The variance indicates then how volatile or risky an asset or a portfolio

is.

2.2 Volatility

Given an asset with r and µ defined respectively as in Equation (2.1.1) and Equation

(2.1.2), the volatility of the return is calculated using the variance as:

σ2(r) = E[(r − µ)2] . (2.2.1)

Let a portfolio constructed of n assets, and denote by σ2
i the variance of asset i, where

i = 1, · · · , n. To measure how the return of the portfolio is volatile, the relationship

between each different asset should be considered. Since towards risk, investors will

seek to reduce or eliminate the risk if possible, a good strategy should be to combine

in the portfolio assets whose returns move in opposite directions over time. That is,

when a down event occurs, making the value of an asset decreasing, this asset should

be mixed with one whose value increases given the down event has occurred.

To quantify how correlated the assets are, the measure of covariance or correlation is

used, described as follows:

σi,j = E[(ri − µi)]E[(rj − µj)] ,

where σi,j denotes the covariance between asset i and asset j. The correlation ρi,j

between two assets i and j is given by the expression:

ρi,j =
σi,j
σiσj

. (2.2.2)

Note that the correlation ρi,j lies in the range [−1, 1] and that σi,j = σj,i and for
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i = j, σi,i = σ2
i . From this, all the covariances can be presented in a non-singular,

positive definite and symmetric matrix Ci,j, called the covariance matrix:

Ci,j =


σ2
1 σ1,2 . . . σ1,n

σ2,1 σ2
2 . . . σ2,n

...
...

. . .
...

σn,1 σn,2 . . . σ2
n

 . (2.2.3)

The variance of the portfolio is given by:

σ2
p(Rp) = E[(Rp − µp)2]

= E[(
n∑
i=1

ziri −
n∑
i=1

ziµi)
2]

= E[(
n∑
i=1

zi(ri − µi))2]

= E

[
n∑
i=1

zi(ri − µi)

]
E

[
n∑
j=1

zj(rj − µj)

]

=

(
n∑
i=1

ziE[(ri − µi)]

)(
n∑
j=1

zjE[(rj − µj)]

)

=
n∑

i,j=1

zizjE[(ri − µi)(rj − µj)]

=
n∑

i,j=1

zizjσi,j

= ZTCZ , (2.2.4)

where in Equation (2.2.4), Z = (z1, z2, · · · , zn) represents the vector of weights, ZT

is its transpose and C is the matrix defined in Equation (2.2.3).

Note that in financial investments, the fraction of weights defined in Equation (2.1.3)
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can take negative values. This means an investor is allowed to trade an asset he/she

doesn’t own. This case is called short selling and the investor is in a short position.

Indeed, the investor (short seller) borrows an asset or a stock from a broker willing

to lend, in the hope of a future decline in the value of the asset. The short seller

will later purchase back the stock and return to the lender at a given date, the same

amount or number of shares borrowed. The short position is thus said closed. In

contrast, when the seller owns the stock, he/she is in a long position (Engelberg,

Reed & Ringgenberg 2018).

Figure 2.1 bellow gives an illustration of the evolution of different assets’ daily returns

over a specified period. This figure clearly shows how much the returns can be volatile.

Figure 2.1: Daily asset’s returns

Reducing the value of σ2
p(p) will result in reducing the risk of the portfolio. In finance,

a common way of doing that is by diversifying the holding in the portfolio.
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2.3 Diversification

Diversification is a strategy for portfolio risk management that aims to reduce the total

portfolio’s risk by combining a variety of financial instruments within the portfolio.

The strategy is not only a matter of combining assets but especially of combining

assets whose returns are not perfectly correlated. In the case of positive correlation,

diversification does not hold. Indeed, assets positively correlated behave in the same

way, and mixing them within the portfolio does not reduce the risk. Including non-

positively correlated assets is preferred, mixing them help to reduce the portfolio’s

risk since, in this case, the positive performance of investing in some assets neutralizes

the negative performance of investing in others.

From Equation (2.2.2), the covariance can be derived as σi,j = ρi,jσiσj. This expres-

sion of σi,j is used in the variance σ2
p(Rp) and present the three forms of correlation

following (Roudier 2007):

• Perfect positive correlation (ρi,j = 1):

The expression of the variance is reduced to:

σ2
p(Rp) =

n∑
i,j=1

zizjσiσj

= (
n∑
i=1

ziσi)
2 .

Let’s consider the case of investing in only two assets. If z1 is the weight invested

in asset 1, so (1 − z1) is invested in asset 2 and the total investor’s capital is

invested, is z1 + (1 − z1) = 1. The portfolio’s risk and return are proportional
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to z1:

σ2
p = (z1σ1 + (1− z1)σ2)2 (2.3.1)

σp = σ2 + z1(σ1 − σ2) , (2.3.2)

and the portfolio’s return

µp = z1µ1 + (1− z1)µ2

= µ2 + z1(µ1 − µ2) .

To get the optimal weights Z∗ that will give the smallest possible risk, find the

value of z1 that will make σp = 0. From Equation (2.3.2):

z∗1 =
−σ2

σ1 − σ2
and z∗2 =

σ1
σ1 − σ2

.

The result shows that when combining two risky assets which are perfectly

correlated, the minimum portfolio risk is realised by taking a short position in

one of the two assets, here asset 1. This gives an optimal portfolio’s return of:

µ∗p = µ2 + z∗1(µ1 − µ2)

= µ2 +
µ2 − µ1

σ1 − σ2
σ2 .

For this case, (ρi,j = 1), the possible portfolios to be constructed by varying the

allocation are on a straight line joining a 100% investment in asset 1 to a 100%

investment in asset 2.

• No correlation (ρi,j = 0):
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The variance of the portfolio is given by:

σ2
p =

n∑
i=1

z2i σ
2
i

= (z1σ1)
2 + ((1− z1)σ2)2 . (2.3.3)

The portfolio with the minimum risk is found in the same way as above. Find

the optimal weight that will make the variance in Equation (2.3.3) equals to

zero. This gives:

z∗1 =
σ2
2

σ2
1 + σ2

2

and z∗2 =
σ2
1

σ2
1 + σ2

2

,

and the optimal portfolio’s return

µ∗p = µ1
σ2
2

σ2
1 + σ2

2

+ µ2
σ2
1

σ2
1 + σ2

2

.

The possible portfolios to construct for this case will lie on a curve. Note that

a correlation of zero does not mean there is no relationship between the assets,

but instead, there is no linear relationship between them.

• Negative correlation (ρi,j = −1):

The variance of the portfolio is given by:

σ2
p =

n∑
i=1

z2i σ
2
i − 2

n∑
i,j=1

zizjσiσj

= (z1σ1 − (1− z1)σ2)2 . (2.3.4)

Again, the minimum portfolio’s risk is realized for the optimal weight that makes

equation (2.3.4) equals to zero, which weight is given by:

z∗1 =
σ2

σ2 + σ1
,
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and the optimal portfolio’s return

µ∗p =
σ2µ1 + σ1µ2

σ2 + σ1
.

When there is a negative or anti-correlation between assets, the possible portfo-

lios to be constructed, with different combination of assets will lie on 2 segments.

Figure 2.2 below (where the correlation ρ is denoted by rho) plots possible portfolios

in a (σp − µp) plane, with respect to the three forms of correlation:

Figure 2.2: Plot of portfolios for different values of ρ

Source: Roudier (2007)

Given −1 < ρ < 1 and z1 + z2 = 1, a general formula for finding the minimum

portfolio’s risk constituted of two assets, is given by setting the derivative of the

variance in Equation (2.3.1), (for i = 1, 2), with respect to z1, equals to zero. This

gives:

z∗1 =
σ2
2 − σ1σ2ρ1,2

σ2
1 − 2σ1σ2ρ1,2 + σ2

1

.
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In financial investment, some investors are observed to be risk-averse. Given the

uncertainty in the financial market, they prefer to invest in a risk-less asset, even if

the potential return may be lower. This behaviour of the investor’s preferences is

modelled by the notion of a utility function that is introduced in the next section.

2.4 Utility theory and risk aversion

Utility theory has its foundations in (Von Neumann & Morgenstern 1944). The

theory is based on the assumption that investors don’t choose alternatives yielding

the highest return but rather choose options yielding the most top expected utility.

2.4.1 Definition. Utility functions ((Fishburn 1970))

Let A be a set of goods or alternatives. Let a, b ∈ A and define > as the relation

is preferred to. To choose, investors will prefer asset a over asset b if a ≥ b (this

superiority may be in terms of higher return or lower risk). If numbers can be assigned

to a and b, these numbers are called utilities, and a utility function denoted by

u(a) ∈ R will be the utility associated with each good a ∈ A. The concept of utility

function measures preferences over a set of goods. The utility function u(a) represents

an agent’s (investor) preferences if:

u(a) ≥ u(b) given that a ≥ b .

In the attempt to find an accurate description of an agent willing to get a maximum of

profit, Von Neumann & Morgenstern (1944) addressed the subject with the notion of

a mathematical theory of games of strategy. They developed some axioms underlying

utility theory, which define a rational decision-maker. The axioms can be found in

Johnstone & Lindley (2013), and (Fishburn 1970).



Section 2.4. Utility theory and risk aversion Page 20

• The completeness axiom: all outcomes are assigned a utility and can thus be

compared among them. ∀ a, b ∈ A, either a ≥ b or b ≥ a.

• Transitivity axiom: for any a, b, c ∈ A if a is preferable to b and b preferable

to c then a is preferable to c. ∀ a, b, c ∈ A, if a ≥ b and b ≥ c then a ≥ c.

Preferences are internally consistent.

• Independence axiom: for a, b ∈ A, with a > b. Let p the probability of the

existence of a third good c ∈ A, with p ∈ [0, 1]. If pa+ (1− p)c > pb+ (1− p)c,
then the choice of c is irrelevant. This means, the agent’s preference of a over

b will still hold independently of the existence of c.

• Continuity axiom: let a, b, c ∈ A, such that a > b > c. Then, there is a

probability p such that the agent is indifferent between choosing the combination

pa+ (1− p)c or the good b. The two choices are equally preferable.

However, the fundamental attribute of a utility function is that it is an increasing

function, so that u
′
(a) > 0 (Johnson 2007). It follows that u

′
(b) 6= 0, this fact means

that an agent is never delighted and will always prefer more to less.

The common known utility functions are:

• Quadratic utility: the general form is u(a) = a− α

2
a2, with α > 0.

• The exponential utility: u(a) = −e−αa, where α > 0. This also called the

positive utility, with u(a) = 1 − e−αa. This utility offers easiest mathematical

tractability when asset returns are normally distributed.

• The logarithmic utility: u(a) = log a.

• The power utility: u(a) =
a1−α

1− γ
, where γ > 0, γ 6= 1 . The log utility is a

particular case of the power utility with the limit of γ going to 1.



Section 2.4. Utility theory and risk aversion Page 21

In general, it is difficult to interpret the absolute value of a utility function; instead,

the utilities of wealth are ranked (Wojt 2009). Another concept discussed in the

following is to describe the decision maker’s preferences under risk.

2.4.2 Definition. Risk aversion

The behaviour of an agent whose preferences, when exposed to uncertainty, go to a

good with the more predictable rate of return, even if lower, rather than a good with

an unknown return which might be higher than expected, is described by the concept

of risk aversion. An investor, for example, may choose to invest in a bank account

where he knows his capital will grow at a constant known rate, rather than a risky

investment as a stock, which may bring a higher return than a bank account, but

associated to a very high level of risk. One of the oldest work on risk aversion can be

found in (Dyer & Sarin 1982).

Investors may have different attitudes toward risk Johnson (2007): Risk-averse in-

vestors are the ones avoiding risk. They are willing to accept less return than the

expected return, instead of taking the risk to receive nothing. The utility function

of a risk-averse investor shows diminishing marginal utility, this is, u
′′
(a) ≤ 0 and

is concave. Risk neutral investors are rather indifferent between receiving less, more

than the expected return or receiving nothing. They have a level of risk equals zero

and linear utility functions.

On the other hand, risk affine is investors risk-seeking. These investors are willing to

undertake higher risk, as long as they earn a lot. They have convex utility functions.

The risk aversion can be measured in two ways, for an utility function u(a):

• The absolute risk aversion (ARA): absolute risk aversion measures risk

aversion to a loss in absolute terms (Johnson 2007). It is given by:

A(a) = −u
′′
(a)

u′(a)
.
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The allocation of capital or wealth to risky assets depends on the following

ARA’s characteristics:

– For agents with a constant absolute risk aversion (CARA), as the capital

increases, the individual allocation weights remain the same. The unique

example is the exponential utility function u(a) = 1−e−αa, with A(a) = α.

– For agents with a decreasing absolute risk aversion (DARA), as the capital

increases, the weight allocated in each asset also increases. The following

inequality holds:

∂A(a)

∂a
= −u

′
(a)u

′′′
(a)− (u

′′
(a))2

(u′(a))2
< 0 .

This only holds for u
′′′

(a) > 0, which allows the utility function to be

positively skewed. An example of DARA is the log utility u(a) = log a,

with A(a) =
1

a
.

– For agents with an increasing absolute risk aversion (IARA), as the capital

increases, the holding in the assets decreases. The following inequality

holds:

∂A(a)

∂a
= −u

′
(a)u

′′′
(a)− (u

′′
(a))2

(u′(a))2
> 0 .

There is no restriction on u
′′′

(a), however IARA can allow a negatively

skewed utility function with u
′′′

(a) < 0 .

• The relative risk aversion (RRA): relative risk aversion measures aversion

to a loss relative to agent’s wealth (Johnson 2007). Given by:

R(a) = aA(a) = −au
′′
(a)

u′(a)
.

For this measure, the allocation of capital to risky assets follows the RRA’s
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characteristics:

– For agents with a constant relative risk aversion (CRRA), as the capital

increases, the assets allocation of weights remains the same.

– For agents with a decreasing relative risk aversion (DRRA), as the capital

increases, the assets allocation of weights also increases.

– For agents with an increasing relative risk aversion (IRRA), as the capital

increases the assets weights decrease.

CRRA is observed to be more realistic than CARA because generally, rational agents

invest more significant amounts in risky assets as they become wealthier.

DARA implies CRRA, but the reverse does not always hold. As an example, the

utility function u(a) = log a implies RRA = 1.

Given that the return and the risk on a portfolio can be quantified, how can an investor

formulate models in order to manage the portfolio according to his/her preferences

on risk and return? Descriptions of such models are presented in the next chapter.



3. Risk measures, portfolio

optimisation frameworks and

perfomance measures

Portfolio optimisation is about maximising the expected return of a portfolio for a

given level of risk or minimising a portfolio’s risk for a desired portfolio’s return. This

study focuses on optimisation for risk minimisation. For this purpose, appropriated

optimisation models must be defined. The performance of a model will here depend on

the risk measure used since the goal is to help the investor by determining the amount

of risk he/she may face for the given return he/she expects from an investment.

As introduced in Chapter 1, the mean-variance model has been the most commonly

used in the literature on portfolio optimisation. However, given its various drawbacks,

which will be presented in the following sections, other measures called downside risk

measures had been introduced. This chapter presents then the mean-variance model

and some downside risk measures for portfolio optimisation.

3.1 Mean-variance model

The mean-variance model is based on the mean and the standard deviation or the

variance of a portfolio. In the goal of risk diversification in investing, this model helps

investors by selecting a group of assets as a solution, such that their collective risk is

lower than any single asset on its own.

24
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3.1.1 Mathematical formulation

Recall from Section 2.1 and Section 2.2, the expected return µp and the variance σ2
p

of a portfolio:

µp =
n∑
i=1

ziµi ,

and

σ2
p =

n∑
i,j=1

zizjσi,j

= ZTCZ .

Approach 1: Minimising the portfolio’s risk, for a target portfolio return. The

problem is formulated as:

minimiseZ ZTCZ

subject to ZTµ = µp (3.1.1)

ZT1 = 1

zi ≥ 0 ,

where ZT represents the transpose of the vector w, C the matrix of covariances, µ

is the vector of the asset’s expected returns and the vector 1 = 1, 1, · · · , 1︸ ︷︷ ︸
n times

. The

non-negativity constraint means that short position is not allowed. However this is

condition is not always imposed.

Using the method of Lagrange, an analytical solution, the so-called closed-form solu-

tion, to the problem can be derived. A lemma from McLeish (2011) is first presented.
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3.1.2 Lemma. Consider the following optimisation problem with p constraints:

minimise {f(z) : z ∈ Rn}

s.t h1(z) = 0, · · · , hp(z) = 0 .

Given that the functions f, h1, · · · , hp are continuously differentiable, a necessary solu-

tion to the problem is that there exists a solution in the n+p variables (z1, · · · , zn, α1, · · · , αp)
of the equations

∂

∂zi
{f(z) + α1h1(z) + · · ·+ αphp(z)} = 0, i = 1, · · · , n

∂

∂αj
{f(z) + α1h1(z) + · · ·+ αphp(w)} = 0, j = 1, · · · , p ,

where the constants αj are the Lagrange multipliers and the differentiated function

{f(z) + α1h1(z) + · · ·+ αphp(z)} is the Lagrangian.

Following Lemma 3.1.2 and following Merton (1972), a solution for the problem in

Equation (3.1.1) can be derived as follows:

The Lagrangian function is given by:

L(Z, α1, α2) = ZTCZ + α1(Z
Tµ− µp) + α2(Z

T1− 1) .
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The first order conditions are given as:

δL

δZ
= 2CZ − α1µ− α21 = 0n

δL

δα1

= ZTµ− µp = 0

δL

δα1

= ZT1− 1 = 0 ,

(3.1.2)

where 0n is a zero-vector of n elements. Solving the first equation in the system of

Equations (3.1.2) for Z:

Z =
1

2
α1C

−1µ+
1

2
α2C

−11 ,

where C−1 represents the inverse of the covariance matrix C. Plugging the expression

of Z in the two last equations in the system of Equations (3.1.2):
1

2
α1µ

TC−1µ+
1

2
α2µ

TC−11 = µp

1

2
α1µ

TC−11 +
1

2
α21

TC−11 = 1 .

(3.1.3)

Let a = 1TC−11, b = µTC−11 and c = µTC−1µ, with a, b, c constants. The system of

equations in (3.1.3) can be solved for α1 and α2:

α1 =
2(aµp − b)
ac− b2

and α2 =
2(c− bµp)
ac− b2

.

with α1 and α2 plugged in w, the expression of the optimal weight if found as:

Z∗ = C−1(α1µ+ α21) . (3.1.4)
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Note that α1 and α2 have dependence on µp, the target portfolio mean. Since C is a

positive definite matrix, so is C−1 and a, c > 0 1and (ac− b2) > 02. The variance of

the portfolio for a given value of µp is thus given by:

σ2
p = Z∗TCZ∗ =

aµ2
p − 2bµp + c

ac− b2
. (3.1.5)

By varying the value of µp, this represents a parabola. To find the global minimum

variance portfolio, set to zero the derivative of Equation (3.1.5) with respect to µp,

this is:

aµp − 2b

ac− b2
= 0 .

This gives the portfolio with the least risk at (µ∗p =
b

a
, σ2∗

p =
1

a
) and the global

minimum vector of weights:

Zg =
C−11

1TC−11
. (3.1.6)

Approach 2: Maximising the portfolio’s expected return while a constraint of min-

imising the risk is settled. The problem is formulated as:

1If a matrix, in our case the covariance matrix C is a non-singular matrix, therefore positive
definite, it follows that its inverse C−1 is also. And it also follows that the elements of the matrix
inverse are such that σi,j = σj,i for all i, j. Thus, a and c as defined above are quadratic forms of
the matrix C−1, meaning they are strictly positive, unless all µi = 0 Merton (1972)

2Given that C−1 is positive definite, it follows by definition that (bµ − c)C−1(bµT − c) > 0 =
(c2a− 2b2c+ b2c) > 0 = c(ac− b2) > 0, and since c > 0, hence (ac− b2) > 0 (Merton 1972).
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maximiseZ ZTµ

s.t ZTCZ = σ2
p (3.1.7)

ZT1 = 1 (3.1.8)

(3.1.9)

Constructing the Lagrangian again, we have:

L(Z, α1, α2) = ZTµ+ α1(σ
2
p − ZTCZ) + α2(1− ZT1) .

Taking the differentiation with respect to w gives:

∂L

∂Z
= µ− 2α1CZ − α21 = 0n .

Solving this equation for Z the optimal weights are derived as:

Z∗ =
α21− µ

2α1C
(3.1.10)

= C−1
(

1

2α1

µ− α2

2α1

1

)
. (3.1.11)

To get the Lagrangian multipliers α1 and α2, the constraints of the problem are used.
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Firstly Equation (3.1.8):

Z∗T1 = 1

(µ− α21)T
[
C−1

2α1

]T
1 = 1

(µT − α21
T )

[
C−1

2α1

]
1 = 1

1

2α1

(µTC−11− α21
TC−11) = 1

1

2α1

(b− α2a) = 1 .

This gives α2 as:

α2 =
1

a
(b− 2α1) . (3.1.12)

Now using constraint in Equation (3.1.7), the expression for α1 is given as:

α1 =

√
ac− b2

4(σ2
pa− 1)

,

and plugging this into Equation (3.1.12):

α2 =
1

a

[
b−

√
ac− b2

(σ2
pa− 1)

]
,

where a, b and c are defined as for the approach 1. The calculations can be found in

(Wojt 2009). with α1 and α2 inserted in Equation (3.1.10), the optimal weights are

now given as:

Z∗ = C−1

√σ2
pa− 1

ac− b2
µ+

(
1

a

(
1− b

σ2
pa− 1

ac− b2

))
1

 ,
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which has the form of Z∗ = C−1(fµ+h1) as in Equation (3.1.4), with f =
2(aµp − b)
ac− b2

and h =
2(c− bµp)
ac− b2

. Using any of these two relations, let’s use the first one:

√
σ2
pa− 1

ac− b2
=
aµp − b
ac− b2

σ2
pa− 1

ac− b2
=

(aµp − b)2

(ac− b2)2

σ2
p =

aµ2
p − 2bµp + c

ac− b2
,

which is exactly the same as the minimum portfolio variance found in Equation (4.2.1).

The problem of minimising the variance of the portfolio, presented in the approach

1 and the one of maximising the portfolio return, presented in approach 2, give the

same solution and are thus equivalent (Wojt 2009). In optimisation theory, this is

called the feature of duality and is an essential tool, especially when looking for fewer

computations.

Another approach can be to optimise the expected utility of the return on investment.

Von Neumann & Morgenstern (1944)’s notion of a utility function, introduced in

Section 2.4, has allowed Markowitw to interpret his mean-variance approach by the

theory of rational investor’s behaviour under uncertainty. Related work can be found

in Kroll, Levy & Markowitz (1984), Levy & Markowitz (1979) or (Kijima & Ohnishi

1993).

Approach 3: Maximising the expected utility.

Let the return of a portfolio Rp = ZTR, where R is the vector of asset’s returns. If at

time 0, V0 represents the value of the portfolio, at time 1 this value will have grown

from V0 to V1 = V0(1 + ZTR). Given the investor is following a quadratic utility
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function of the form u(z) = z − 1

2
Z2, where z represents the wealth which is of V1,

E[u(z)] = E[z]− 1

2
E[Z2]

= E[z]− 1

2
[variance(z) + E2[z]] , (3.1.13)

where variance = ZTCZ and E[z] = ZTµ. The optimisation problem in the expected

utility framework can be given by:

maximiseZ E[V0(1 + ZTR)]

s.t ZT1 = 1 .

Using the expectation as in Equation (3.1.13), the problem is solved as in approaches

1 and 2 described above. A solution can be found in (Wojt 2009).

In the remaining of this research, the first approach will be used.

3.1.3 The efficient frontier

Solving the problem of whether maximising the return or minimising the risk of a

portfolio, results in a set of portfolios that are constructed from different ways of

combining assets. The collection of these portfolios constitutes the feasible region.

Among them are the optimal portfolios, that offer less risk for a given target return

or high return for a specific level of risk. The combination of the optimal portfolios

traces out a convex curve on the σ − µp plane. Markowitz calls this the efficient

frontier. Portfolios that lie from the minimum-variance portfolio to the upper right

of the curve are those from which there is no other portfolio that offers a higher return

for the same risk. These portfolios are sub-optimal and preferred to investors. Figure

3.1 below describes the efficient frontier.
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Figure 3.1: Markowitw efficient frontier

The circles represent the different portfolios, and the curve represents the efficient

frontier. The collection of all possible points constitutes the feasible set or feasible

region.

The equation of µp along the frontier is given in Merton (1972) by:

µp = µ∗p ± σ2∗
p

√
(ac− b2)(aσ2

p − 1) .

Up to here, the models and the Markowitw’s efficient frontier described above were

for cases when investing in only risky assets. Now, consider there are also risk-less or

risk-free assets available on the market. The inclusion of such an asset can affect the

efficient frontier and thus, the investor’s decision.
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3.1.4 Including a risk-free asset

Let rf the return of the risk-free asset. Since it is known with certainty, rf = µf ,

where µf represents the expected risk-free return. Let α the weight invested in the

risky asset and so 1 − α the weight in the risk-free asset. The expected portfolio

return is expressed as:

µp = αµ+ (1− α)µf .

The covariance σi,j between any risky asset i and the risk-free asset j will be equal

to zero since:

σi,j = E[r − µ]E[rf − µf ]︸ ︷︷ ︸
zero

.

The variance of the portfolio is expressed as:

σ2
p = α2σ2

i + 2α(1− α) σi,j︸︷︷︸
zero

+(1− α)2 σ2
j︸︷︷︸

zero

= α2σ2
i ,

so that the standard deviation is given as:

σp = ασi .

The portfolios represented by (σp, µp) for varying values of α will lie on a straight line

joining the points (0, rf ) and (σi, r). This tangent line will touch the efficient frontier

composed of risky assets at a point let us say F , where F lies on the efficient frontier.

3.1.5 Definition. One fund theorem (Merton 1972)
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This theorem stipulates that any efficient portfolio, any point on the new feasible

region, can be constructed by combining the risk-free asset and the portfolio of risky

assets represented by F . Then, every investor will purchase a single portfolio, which

is the market portfolio.

The mean-variance model is now formulated as follows:

minimiseZ ZTCZ

s.t ZTµ+ (1− ZT1)rf = µp .

As in the case of only risky assets, an analytical solution of the problem, as in Ekern

(2007), Haugh (2006) or Engels (2004), is derived using the Lagrange method. The

Lagrangian function is constructed as:

L(w, α) = ZTCZ + α(µp − rf − (µ− rf1)TZ) .

Taking the derivatives, we have:
∂L

∂Z
= ZC − α(µ− rf1) = 0n

∂L

∂α
= µp − (µ− rf1)TZ − rf = 0 .

(3.1.14)

Solving the first equation in (3.1.14) for Z, the optimal weights are given as:

Z∗ = αC−1(µ− rf1) ,

plugging this into the second equation gives:

µp − rf = α(µ− rf1)TC−1(µ− rf1)

= α(c− 2rfb+ r2fa) . (3.1.15)
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The expression for the portfolio’s risk is by:

σ2
p = Z∗TCZ∗

= α(Z∗Tµ− rfZ∗T1)

= α(µp − rf ) from (3.1.15) . (3.1.16)

Using expressions in Equation (3.1.15) and Equation (3.1.16), the variance can be

written as:

σ2
p =

(µp − rf )2

(c− 2rfb+ r2fa)
,

such that

µp = r ± σp
√

(c− 2rfb+ r2fa) .

Recall that from the case where the portfolio is managed for only risky assets, the

set of minimum-variance portfolios lie on the parabola (or hyperbola when working

with the standard deviation σp) given in Equation (4.2.1). As the investor includes

a risk-free asset, the minimum-variance portfolios will lie on two lines given by the

expressions:

Upper-line = r + σp

√
(c− 2rfb+ r2fa)

Lower-line = r − σp
√

(c− 2rfb+ r2fa) .

Since investors are interested in portfolios on the upper-right of the efficient frontier,

for which µp ≥
b

a
, the Upper-line tangent to the hyperbola will provide the optimal

portfolio or, the tangency portfolio (tangent point to the efficient frontier through the

point (0, rf )). Figure 3.2 shows of the new efficient frontier.
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Figure 3.2: Markowitw efficient frontier with a risk-free asset

Source: Haugh (2006)

By solving simultaneously equations:

σ2
p =

aµ2
p − 2bµp + c

ac− b2

µp = r + σp

√
(c− 2rfb+ r2fa) ,

the coordinates (σFp , µ
F
p ) of the tangency portfolio F are found to be:

σ2F
p =

c− 2rfb+ ar2f
(b− arf )2

µFp =
c− brf
b− arf

,

and the value α =
µFp − rf

c− 2rfb+ ar2f
, so that the tangency optimal vector of weights is
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given by:

Z∗F =
C−1(µ− rf1)

b− arf
.

Even though the mean-variance model is easily applied and gives an excellent pre-

sentation on the risk-return trade-off, researches after Markowitw have shown that

using the variance for risk measurement is not efficient. Indeed, the model rests on

assumptions that do not always hold in reality and so impact on its performance.

3.1.6 Criticisms on the mean-variance model

Some of the assumptions in the mean-variance model are discussed:

• There are no transaction costs. Taxes and brokerage commissions are not con-

sidered. The only factor that accounts in the selection of assets is the risk.

• Investors are rational and risk-averse. Between two portfolios that offer the

same return, investors will prefer least riskier one.

• Variance as risk measure considers both upper and lower returns deviations as

risk, while in reality, investors care about losing, and are more interested in

quantifying the magnitude of the loss they may suffer from lower returns.

• Investors are constrained to observe only the two first moments, the mean and

the variance (even if higher moments like skewness or kurtosis are observable)

which perform well when returns are assumed multivariate normally distributed

and the utility function quadratic. However, assuming normality in the returns

of assets is a fact that does not always hold in reality. If the underlying distribu-

tion of returns is not normal, the variance is likely to provide misleading asset
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allocation decisions. Researchers such as Jansen & De Vries (1991), Karoglou

(2010) investigated on the nonnormality of asset’s returns.

• There is no uncertainty considered, the mean returns and the covariances are

assumed known and estimated using historical information. This produces port-

folios sensitive to estimation errors. Indeed, future uncertainty must be included

in the estimation of these parameters. In Best & Grauer (1991) and Chopra &

Ziemba (2013), it is shown that for small changes in the inputs parameters, the

resulting assets allocation is affected, producing extreme portfolio weights and

a lack of diversification

• Variance as risk measure tends to overweight assets with the higher expected

return. The benefit of diversification is then broken.

Markowitz himself recognised the inefficiency of the variance as a measure of risk and

proposed the use of a more realistic measure, the semivariance, which is one of the

downside risk measures that are presented below.

3.2 Downside risk measures

As mentioned above, the variance measure rests on some unrealistic assumptions.

Other measures called downside risk were then introduced by (Markowitz 1959).

These measures, as the name suggests, unlike the variance, only consider downside

deviations of the returns. They all focused on the left-hand tail of the returns’ distri-

bution, however, each with its specific given minimum acceptable level of return, from

which the left-hand tail begins. In this section, some of those measures are presented.

Before, let’s introduce the characteristics that a sufficient risk measure must possess.
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3.2.1 Coherent risk measure

A measure of risk, denoted by ϕ, is a mapping:

ϕ : G → R ,

where G represents the set of possible risks. For a stochastic random variable A ∈ G,

the measure ϕ(A) represents then the risk of A.

Artzner, Delbaen, Eber & Heath (1999), introduced some properties that must satisfy

a good risk measure, a coherent risk:

• Positive homogeneity. For any number λ ≥ 0, and for any A ∈ G,

ϕ(λA) = λϕ(A) .

The amount of risk depends on the size of the position. If the amount of λ

increases the size of a portfolio, the risk will be scaled by the same amount.

This makes sense if risks are measured in different currencies.

• Sub-additivity. For all risky assets A ,B ∈ G,

ϕ(A+B) ≤ ϕ(A) + ϕ(B) . (3.2.1)

Two assets should achieve a risk lesser than or equal to the sum of the risks of

the individual asset. This property presents a sense of diversification. Indeed,

combining assets reduces the overall risk of the portfolio. Furthermore, it gives

an upper bound for the combined risk, which is the summation of the risks of

the individual assets.
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From the first property:

ϕ(A+ A) = ϕ(2A) = 2ϕ(A) .

This changes the inequality in Equation (3.2.1) into equality. A convex measure

is a risk measure satisfying both the positive homogeneity and the sub-additivity

properties. It can be shown that:

∀ λ ∈ (0, 1) ,

ϕ(λA+ (1− λ)B) ≤ ϕ(λA) + ϕ((1− λ)B)

= λϕ(A) + (1− λ)ϕ(B) .

• Monotonicity. For any risky asset A ,B ∈ G, such that A ≤ B, it implies that

ϕ(B) ≤ ϕ(A) .

If asset A is worth less than asset B, then the risk of asset B is always less than

the risk of asset A.

• Translation invariance. For any A ∈ G, and for any number λ,

ϕ(A+ λ) = ϕ(A)− λ .

This property means, when adding (or subtracting) cash of an amount λ, to the

portfolio, the risk is reduced (or added) by the same amount λ. A particular

case is when adding an amount of λ = ϕ(A), the risk is reduced, since:

ϕ(A+ ϕ(A)) = ϕ(A)− ϕ(A) = 0 .

Other measures of risk, presented against the variance are now introduced.
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3.2.2 The Lower Partial Moments

The concept of moments represents a set of parameters used to measure a distribution.

A general mathematical formulation for moments can be given as follows:

3.2.3 Definition. Moments (Walck 1996)

Let A a random variable with Cumulative Density Function FA(a), and let a given

target β. The moment of degree n is given by:

µn(FA(a)) = E((A− β)n)

=

∫ +∞

−∞
(a− β)ndFA(a) ,

where E represents the expectation and the degree n = 1, 2, 3, · · · . When β is the

mean of the distribution, the moments are called central moments.

Four moments are the most commonly used:

• The first order, with n = 1, which represents the mean, denoted µ = E[A].

• The central moment of the second order n = 2, the variance, E[(A− µ)2].

• The third order, n = 3 called the skewness,

E[(A− µ)3]

σ3
,

where σ3 is the standard deviation of the degree of the moment. This parameter,

let us denote by γ, measures the asymmetry of a distribution. Any symmetric

distribution has the third moment equals to zero. When the right tail of the

distribution is longer than the left tail, there is a positive skewness, and when

the left tail is longer than the right tail, a negative skewness occurs.
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• The kurtosis, central moment of the fourth order, n = 4,

E[(A− µ)4]

σ4
.

It is a measure of the heaviness of the tail of a distribution. For distribution

with a heavy tail, the kurtosis is high and called the leptokurtic. As well, a

thin-tail distribution has a low kurtosis called platykurtic.

The nth normalised moment of the random variable A can also be introduced as:

µn =
E[(A− µ)n]

σn
,

where σn is the standard deviation of degree of the moment.

3.2.4 Definition. Lower Partial Moments, LPM (Fishburn 1977)

One of the drivers of LPM in portfolio theory is Fishburn (1977). The nth LPM

is a family of measures of downside risk. It calculates the moment of degree n,

of observations ai that fall below a given threshold β fixed according to investor’s

preference. Given A, β and n as defined above, the mathematical formulation is given

by:

LPMn,β(FA(a)) = E[min(A− β, 0)n]

=

∫ +∞

−∞
(a− β)ndFA(a) .

In practice, the discrete case calculation is used to estimate the LPM. For T obser-

vations from a random variable A, this is:

LPMn,β =
T∑
t=1

min Pt(at − β, 0)n , (3.2.2)

where Pt is the probability that observation at occurs. If all the observations can
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occur with the same probability, then Pt =
1

T
, and:

LPMn,β =
1

T

T∑
t=1

min(at − β, 0)n . (3.2.3)

A formulation of Markowitw’s model using the LPM to measure the risk can be found

in Wojt (2009) as:

minimiseZ ZTLZ

s.t ZTµ = µp

ZT1 = 1 ,

where L will be a symmetric matrix composed of co-lower partial moments given as:

CLPMn−1,β,i,j =
1

T

T∑
t=1

(min(ai,t − β))n−1(aj,t − β) ,

so that the matrix L is:

L =


CLPMn−1,β,1,1 CLPMn−1,β,1,2 . . . CLPMn−1,β,1,T

CLPMn−1,β,2,1 CLPMn−1,β,2,2 . . . CLPMn−1,β,2,T
...

...
. . .

...

CLPMn−1,β,T,1 CLPMn−1,β,T,2 . . . CLPMn−1,β,T,T

 .

LPM are measures specified by β and n which captures an investor’s preference. In

(Harlow 1991):

When n = 0, the risk measure is of the 0-th order moment. It measures the probability

of failure below the target of β. And if β = 0%, this is just a measure of the likelihood

of a loss.

When n = 1, the risk measure is of the first-order moment. It calculates the expected
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deviation of observations below the target β. If observations are assets returns, then β

will represent a given target rate of return. This measure is called the target shortfall.

When n = 2, the risk measure is of the second-order moment, analogous to the

variance. It is a measure of the probability weighting of squared deviations. And if

the observations represent assets returns and β = mean return, the risk measure is

called the semivariance. However, if the target is fixed to the risk-free rate, β = rf

and normality is assumed in the distribution of the assets, the measure is equivalent

to the variance.

These measures are exceptional cases of the generalised LPM. As so, optimisation

approaches using the target shortfall or the semivariance as risk measure can be

defined as in the following.

3.2.5 Definition. Semivariance (Jin, Markowitz & Yu Zhou 2006)

The principle for the semivariance model is the same as for the variance described in

Section 3.1.1.

Let n different risky assets, and T observations. Denote by ri and µi respectively the

return and expected return of asset i. Denote by µp the portfolio target return and

Z the vector of the weights of the assets. The semivariance is described as:

Semi =
1

T

T∑
t=1

min(Rpt − E[Rp], 0)2 ,
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and the problem is to find the portfolio Z = (z1, z2, · · · , zn) that will

minimise
1

T

T∑
t=1

min (Rpt − E[Rp], 0)2

s.t
n∑
i=1

ziµi = µp

n∑
i=1

zi = 1

zi ≥ 0 , (3.2.4)

where Rp is defined as in Equation (2.1.4). More about the semivariance model is

discussed in the next chapter.

Using target shortfall risk measure, the investor’s problem is described as:

minimise
1

T

T∑
t=1

min (Rpt − β, 0)

s.t
n∑
i=1

ziµi = µp

n∑
i=1

zi = 1

zi ≥ 0 ,

for any given target β, like for example the risk-free rate.

3.2.6 Value at Risk (VaR)

Another downside risk measure is the so-called Value at Risk, abbreviated VaR. This

measure determines the potential loss and the probability of occurrence for the defined
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loss. VaR is composed of three main components to know: a time horizon, a given

confidence level and a loss amount expressed in money or percentage. Using the

VaR as the risk measure, the problem will be to find an optimal portfolio such that

the highest expected loss does not exceed the VaR for a given investment period, at

a given confidence level. More explanations on this measure can also be found in

(Linsmeier & Pearson 2000).

3.2.7 Example. A portfolio has a VaR equals to $100 with a 99% weekly confidence.

It means, there is a 1% probability that the value of the portfolio will fall by more

than $100 over one week. Or that the probability that the loss of the portfolio will

exceed $100 in a week is less than 99%.

The measure is formulated as follows: let the value of a portfolio A over a time horizon

from 0 to T , with a Cumulative Density Function FA. Let a given confidence level of

λ ∈ (0, 1) and let us define a VaR level of a,

VaRλ(A) = inf {a ∈ R : P (A(0)− A(T )) > a) ≤ (1− λ)}

= inf {a ∈ R : 1− FA(a) ≤ (1− λ)}

= inf {a ∈ R : FA(a) ≥ λ} .

where inf stands for infimum and P for the probability. Again, following Markowitw’s

model, the mean-VaR portfolio optimisation problem is formulated. A related study

can be found in (Lwin, Qu & MacCarthy 2017).

minimise V aRλ(z)

s.t
n∑
i=1

ziµi = µp

n∑
i=1

zi = 1 .

Value at Risk is easy to interpret since it is a number expressed in monetary units
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or percentage, and applicable to all types of assets. However, this measure presents

some drawbacks, the two most frequent ones:

• VaR does not measure the loss in the worst case. In the example above, at 1%

of cases, the loss is expected to exceed the amount of the VAR. But VaR gives

no information about the size of the loss within that 1% if a tail event occurs,

neither the maximum possible loss. It might, unfortunately, comes that trading

days within that 1% are the worst ones, that may liquidate a company.

• VaR as a measure of risk does not always satisfy the sub-additivity property

described in 3.2.1. which property ensures that diversification on a portfolio

holds and always generates lower risk for diversified portfolios.

As VaR lacks the sub-additivity property for coherent risk, investors seeking to reduce

their portfolio’s risk may be less encouraged to use the VaR measure. Figure 3.3 gives

and illustration on the VaR measure.

Figure 3.3: Profit-loss distribution and VaR

Source: Yamai & Yoshiba (2002)
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As an alternative for VaR, a coherent measure, that captivates the lose even in the

worst cases is introduced in Rockafellar & Uryasev (2000), the Conditional Value at

Risk.

3.2.8 Conditional Value at Risk (CVaR)

The Conditional Value at Risk has some advantages over the VaR as a measure of risk,

given that it is a coherent risk measure. CVaR measures the conditional expectation

of loss given that the loss is at the tail of or beyond the VaR level, and it also calculates

the size of the loss to be expected in the worst cases. Sarykalin, Serraino & Uryasev

(2008) explained the strong and weak features of the VaR and the CVaR measures

for application in risk management and portfolio optimisation. Once VaR has been

calculated, the CVaR can then be calculated as:

CV aRλ(A) =

∫ +∞

−∞
adFA(a) ,

where

FA(a) =

0 when a < V aRλ(A)

FA(a)− λ
1− λ

when a ≥ V aRλ(A).

The CVaR can be understood in two views Sarykalin et al. (2008) as:

• CVaR+ (upper CVaR): This is called the Expected Shortfall or the Mean Excess

Loss. In this case, the CVaR calculates the expected value of the loss A strictly

exceeding the VaR,

CV aR+ = E[A|A > V aRλ(A)] .
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• CVaR− (lower CVaR): This is called the Tail VaR. The lower CVaR calculates

the expected value of A exceeding the VaR,

CV aR− = E[A|A ≥ V aRλ(A)] .

Comparative studies between VaR and CVaR measures can be found in Yamai &

Yoshiba (2002) or (Yamai & Yoshiba 2005). Figure 3.4 below gives an illustration on

both the VaR and the CVaR measures. However, for fat-tailed distribution, errors

in the estimation by the ES become larger than estimation errors by the VaR, given

that losses beyond the VaR are not regular and a lack of accuracy may occur when

estimating the lose. To overcome this, more massive data are generally required when

using the ES as a risk measure, which is a weakness of the ES, since it makes it less

effective than the VaR when only a few data are available.

Figure 3.4: Profit-loss distribution, VaR and CVaR representation

Source: Yamai & Yoshiba (2002)
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3.3 Performance measures

There exists more than one way of quantifying the risk of a portfolio, the performance

of the portfolios constructed under the different measures of risk can be evaluated

through performance analysis. Many measures are available to realise a performance

analysis. In this section, five of them are presented.

3.3.1 The Sharpe ratio

Introduced in Sharpe (1994) by the American economist William Sharpe, the Sharpe

ratio is a measure evaluating the performance of a portfolio by comparing the return

of the portfolio relative to its risk. It calculates then the risk-adjusted return, a handy

tool to determine how much risk is being taken to achieve a certain level of return.

Taking into account the fact that an investor may wish to evaluate the past perfor-

mance of a portfolio, or to estimate the future performance of a portfolio, Sharpe

(1994) defines both the ex-ante and the ex-post versions of the Sharpe Ratio as fol-

lows:

• The ex-ante Sharpe ratio: this is the forecasting Shape ratio. Its calculates

an estimation of the future performance of a portfolio, formulated as:

Sante =
E[Rp −Rb]

σp
,

where Rp represents the unknown future return of the portfolio, Rb represents

the future return of a benchmark (generally the Sharpe ratio uses the risk-free

rate of return as the benchmark). The numerator of this expression defines the

portfolio’s excess return, and the denominator is the prediction of the standard

deviation of the portfolio’s excess return. The ex-ante Sharpe ratio calculates
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then the expected excess return per unit of total risk.

• The ex-post Sharpe ratio: this version of the Sharpe ratio evaluates the

past performance of a portfolio. Some applications relate futures realisations to

the past ones. This means if evaluated yearly; for example, investment A had

a higher return than investment B; it is assumed that the same scenario will

happen the following year. To express this measure, let the following notations:

Rpt the return of the portfolio at the past period t, Rbt the return of the bench-

mark at the same period t, and let Dt = Rpt − Rbt, so that D̄ represents the

average value, calculated as D̄ = 1
T

T∑
t=1

(Rpt − Rbt) for every past period t over

[1, T ]. The ex-post Sharpe ratio is expressed as:

Spost =
D̄

σd
, where σd =

√√√√ 1

T

T∑
t=1

(D − D̄)2 .

The ratio here indicates the historical average excess return per unit of historical

total risk.

Adding diversification, this is adding the number of non-correlated assets in a portfolio

decreases the risk of the portfolio and proportionally increases the value of the Sharpe

ratio. The higher the ratio, the better the performance of the portfolio. Nevertheless,

this performance only accounts if it does not cost any additional risk.

The standard deviation, however, has been criticised as mentioned in Section 3.1.1,

to evaluate as a risk the deviations from both the upper and lower fluctuations of the

returns, which may not be the investor’s view on risk, and this measure performs well

when the underlying data are assumed normally distributed. In the following, another

performance measure is presented, using the downside deviation for evaluating the

risk instead.
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3.3.2 The Sortino ratio

Unlike the Sharpe ratio which uses the standard deviation to evaluate the risk taken

associated to the portfolio’s excess return, the Sortino ratio uses the downside risk

which only focuses on the distribution of the returns that are below a required target

return, and uses as a benchmark the target return. Since positive deviations from

a target are considered to benefit for investors, the Sortino ratio is assumed to give

a better portfolio’s performance than the Sharpe ratio. From RollingeR & Hoffman

(2013), the expression of the Sortino ratio is expressed similarly to the one of the

Sharpe ratio, but with the parameters calculated differently. The target downside

risk TDR is given as:

TDR =

√√√√ 1

T

T∑
t=1

(min(Rpt − β))2 ,

where min denotes the minimum, and β the target return. The Sortino ratio is

calculated as:

Sortino =
(Rp − β)

TDR
.

In Figure 3.5 below, an illustration of the distribution of returns as considered by the

standard deviation and by the downside risk measures is shown.
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Figure 3.5: Sharpe ratio vs Sortino ratio

Source: RollingeR & Hoffman (2013)

3.3.3 The maximum drawdown

To define this measure, the notion of drawdown is first introduced.

3.3.4 Definition. Drawdown measure, DD (Goldberg & Mahmoud 2017)

A drawdown measures in percentage the decline of an investment (or an asset, trading)

during a given period. The fall occurs when the value of the investment drops from a

peak to a trough. The peak can be considered as the highest return of an investment

or a portfolio, and the trough the lowest return, during a given period. The decline

remains until the value of the investment recovers back to the peak. The time it takes

to recover a drawdown is then a significant factor because as long as the value of the

investment is below its previous peak, a lower trough could occur, increasing then the

amount of the drawdown. This measure is expressed as:

DD =
peak value− trough value

peak value
.
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Note that, a drawdown is not necessarily equivalent to a loss as viewed by investors.

The drawdown measures the loss from a peak to a trough. Let’s look at an example:

3.3.5 Example. Suppose an investor decides to buy an asset available for a value

of $1000. The value of the asset after rises to $1200 (the asset reaches a peak) and

at a later period drops to $700 (a trough) and rises back to $1200. By the time the

asset dropped in value, the investor may have declared a loss of 30%, relative to the

initial value the asset has been purchased. However, this investment has known a

drawdown of
1200− 700

1200
' 42%, relative to the highest value or peak the investment

has reached.

If again the value of the asset rises to $1400, drops to $1250 and rises to $1450.

According to the initial cost of the asset, which is of $700, the investor may not claim

any loss; however, still, the investment has known a drawdown of 11%. This confusion

usually arises because investors view failures according to the initial value of a trade.

The drawdown measure is beneficial for measuring the historical risk of different

investments or portfolios and comparing their performances — the smaller the amount

of the drawdown, the better the performance of the investment.

Assume an investment witnessed more than one drawdown during a specific period.

The maximum drawdown of this investment will be the greatest period from a peak

to a trough before recovering back to the peak, during the total investment period.

3.3.6 Definition. Maximum drawdown, MDD (Goldberg & Mahmoud 2017)

Maximum drawdown is a specific calculation of drawdown. It measures the size of the

most significant loss or the largest drawdown an investment has achieved. However,

it does not indicate how frequently this largest loss occurred, neither the time it took

the investor to recover from this most significant drawdown.

The smaller the amount of the MDD, the better the performance of the investment.

For potential forecasting strategy, investors may look at the historical drawdowns of
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their finances and consider their maximum drawdowns such that they can avoid if

possible in the future the strategy used that led to a maximum drawdown.

3.3.7 The tracking error, TE

The TE optimisation described in this section can be found in Bertrand (2010), Jiao

(2003), Jorion (2003) or (Maxwell & Vuuren 2019).

This measure evaluates in percentage the performance of a portfolio relative to a

benchmark portfolio. The comparison is studying concerning the deviation of a port-

folio’s return from the benchmark return. In the sense that, investors seek the return

of their portfolios to be as close as possible (or more) to the return of the benchmark,

and would like to calculate then how far is their portfolio from the benchmark port-

folio. Alternatively, such investors would like to quantify the risk of their portfolios

relative to the benchmark. The smaller the risk, the better the portfolio tracks the

benchmark, and the closer the return of the portfolio to the benchmark return.

In this section, the tracking error is then presented for measuring the risk of a portfolio

relative to a benchmark portfolio.

Mathematically, the TE measure is expressed as the standard deviation of the active

return (portfolio return minus benchmark return). Let Rpt the return of a portfolio

at period t and Rbt the return of the benchmark the portfolio tracks, for t ∈ [1, T ].

The TE is given by:

TE =

√√√√ 1

T − 1

T∑
t=1

(Rat − R̄at)2 , (3.3.1)

where Rat = Rpt −Rbt and R̄at is its mean.

However, a tracking error efficient frontier can also be obtained. Since the investor
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would prefer his/her portfolio to achieve lower TE value, an optimisation problem for

minimising the variance of the TE can be settled.

3.3.8 Definition. Tracking error optimisation (Jiao 2003)

This optimisation is expressed as Problem (3.1.1), developed by Markowitz (1952).

However here, the vector of the assets weights is replaced by a vector of the as-

sets active weights (portfolio’s assets weights minus the benchmark portfolio’s assets

weights), denoted Za = Zp − Zb. The function to minimise is the variance of the

TE, ZT
a CZa, where C still represents the matrix of the assets’ returns covariances as

described in Section 2.2. The model is formulated as follows:

minimise ZT
a CZa

s.t ZT
a 1 = µb (3.3.2)

ZT
a 1 = 0 .

The second constraint is explained by the fact that since the weights of the portfolio

Zp must sum to 1, and as well the benchmark weights Zb must sum to 1, then the

active weights should sum to 0. Here µb represents the target portfolio return relative

to the benchmark return.

Using the Lagrange method as in Section 3.1, an analytical solution to the problem

is found:

Define the Lagrangian function as:

L(Za, α1, α2) = ZT
a CZa + α1(µp − ZT

a µ) + α2(−ZT
a 1) .
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The first order conditions are given as:

δL

δZa
= 2CZa − α1µ− α21 = 0n

δL

δα1

= ZT
a µ− µp = 0

δL

δα1

= ZT
a 1 = 0 .

From the first equation :

Za =
1

2
α1C

−1µ+
1

2
α2C

−11 .

Plugging the expression of wa in the two last equations in the system of Equations :

α1 =
2aµp
ac− b2

and α2 = − 2bµp
ac− b2

,

where a = 1TC−11, b = µTC−11 and c = µTC−1µ, with a, b, c constants. The optimal

active weights are then expressed as:

Z∗a =
µp(aC

−1µ− bC−11)

ac− b2
.

And the optimised TE, or the variance of the TE, let’s denote by σ2
TE:

σ2
TE = Z∗Ta CZ∗a

=
aµ2

p

ac− b2
.

Solving Problem (3.3.2) for different values of µb will result in construct a TE efficient

frontier.



Section 3.3. Performance measures Page 59

In the next chapter, the study focuses on the mean-semivariance model and the

estimation of the semicovariance matrix. For the performance analysis, the Sharpe

ratio, the Sortino ratio and the tracking error measures will be considered in this

study.



4. Mean-semivariance framework

The mean-variance method for portfolio optimisation has been widely criticised.

Markowitz proposed then in Markowitz (1959) the use of the semivariance as a mea-

sure of risk in portfolio management. The measure is recognised more plausible than

the variance since it is applicable even when assets return distribution shows fatter

tails. Mao (1970) provided supports on the fact that investors are only interested

in downside risks and that the semivariance measure is more appropriate to use. As

well Harlow (1991) gave support for measuring risk according to dispersions below a

specific target return to achieve a more attractive risk-return tradeoff. This chapter

is entirely consecrated to portfolio optimisation under the semivariance risk measure.

Recall from Chapter 3:

Let n risky assets available in the market, observed for a period of T . Denote by

ri and µi the return and expected return of asset i, respectively, µp the portfolio

expected return and Zi the capital fraction allocated in asset i. The semivariance is

defined as:

Semi =
1

T

T∑
t=1

min(Rpt − E[Rp], 0)2 , (4.0.1)
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and the mean-semivariance model:

minimise
1

T

T∑
t=1

min (Rpt − E[Rp], 0)2

s.t
n∑
i=1

ziµi = µp (4.0.2)

n∑
i=1

zi = 1

zi ≥ 0 .

Markowitz (1959) suggested to approach the problem as:

minimisezi

n∑
i=1

n∑
j=1

zizjΣi,j

s.t
n∑
i=1

ziµi = µp (4.0.3)

n∑
i=1

zi = 1

zi ≥ 0 ,

where Σi,j represents the semicovariance between assets i and j, formulated as:

Σi,j =
1

T

K∑
t=1

(ri,t −B)(rj,t −B) , (4.0.4)

where B represents the investor’s target, which is the mean of the assets returns, and

K is the set of the period in which the portfolio’s return underperforms the target

return B. The problem is formulated as for the mean-variance model and provides

an exact estimation of the portfolio semivariance. However, although it provides an

exact solution to the portfolio semivariance, the solution is not as straightforward



Section 4.1. The endogeneity of the semicovariance matrix Page 62

as for the mean-variance case. Indeed, unlike the covariance matrix, for which each

parameter are externally estimated (exogenous) and then used as input in the matrix,

it comes that the matrix Σ of semicovariances is endogenous. Since semivariance only

analyses the downside risk, elements of the semicovariance matrix will depend on the

portfolio returns that underperform the investor’s target, and a change in the weights

will affect the periods in which the portfolio underperforms the target, which in turn

affects the elements of the semicovariance matrix.

4.1 The endogeneity of the semicovariance matrix

Let’s repeat the same example found in Estrada (2008), to give more light on the

endogeneity of the semicovariance matrix.

4.1.1 Example. Let two assets A and B with annual returns described in columns

two and three in Table 4.1 below, for a period from year 1 to 10. Let also a portfolio

of 80% investment in the asset A and 20% in asset B, call it portfolio 80-20. A second

portfolio invested 10% in asset A and 90% in asset B, called portfolio 10-90. The

returns of the portfolios are calculated as in Equation (2.1.4), described in columns

four and five of the table.
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Table 4.1: Example on the endogeneity of the semicovariance matrix

Portfolio 80-20 Portfolio 10-90

Year A(%) B(%) 80− 20 10− 90 A B Product A B Product

1 31.0 −21.2 20.6 −16.0 0.0 0.0 0.0 31.0 −21.2 −6.6

2 26.7 −9.3 19.5 −5.7 0.0 0.0 0.0 26.7 −9.3 −2.5

3 19.5 36.8 23.0 35.1 0.0 0.0 0.0 0.0 0.0 0.0

4 −10.1 −27.2 −13.5 −25.5 −10.1 −27.2 2.8 −10.1 −27.2 2.8

5 −13.0 −23.5 −15.1 −22.5 −13.0 −23.5 3.1 −13.0 −23.5 3.1

6 −23.4 −18.6 −22.4 −19.1 −23.4 −18.6 4.4 −23.4 −18.6 4.4

7 26.4 24.5 26.0 24.7 0.0 0.0 0.0 0.0 0.0 0.0

8 9.0 7.6 8.7 7.7 0.0 0.0 0.0 0.0 0.0 0.0

9 3.0 40.2 10.4 36.5 0.0 0.0 0.0 0.0 0.0 0.0

10 13.6 6.9 12.3 7.6 0.0 0.0 0.0 0.0 0.0 0.0

Consider portfolio 80-20. Using the square root of equation in Equation (2.2.4) the

standard deviation can be calculated. For that, the standard deviation of the assets,

let denote σA and σB, need to first be obtained using Equation (2.2.1), and also their

covariance. We have the mean of the two assets µA = 8.27 and µB = 1.62, so that

σA = 17.8% and σB = 24.1%. The covariance is found to be 0.0163, giving the

portfolio’s standard deviation as:

σ80−20 =
√

(0.8)2(0.178)2 + (0.2)2(0.241)2 + 2(0.8)(0.2)(0.0163) = 16.7% .

Lets consider an expected return or a target benchmark of B = 0%. Using Equation

(4.0.1) and returns in the third column of the table, the semi deviation, (semivariance)

of the portfolio 80-20 can be calculated and found as semi80−20 = 9.6%, (92.16%).
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Now applying the approach proposed by Markowitz. Using Equation (4.0.4), the

term (ri,t − B), for t ∈ K, returns a value of 0% when the portfolio outperforms the

benchmark and the value of the asset’s return when the portfolio underperforms the

benchmark. Results are shown in the sixth, seventh columns of the table, and the

eighth column contains their products. The elements of the semicovariance matrix

can then be calculated, and this gives:

ΣA,A = 0.0082

ΣB,B = 0.0164

ΣA,B = 0.0102 ,

giving a semideviation of:

semi80−20 =
√

(0.8)2(0.0082) + (0.2)2(0.0164) + 2(0.8)(0.2)(0.0102) = 9.6% ,

which gives an exact estimation of the semivariance defined in Equation (4.0.1). Now

changing the allocation, consider the other portfolio 10-90 and do the same calcula-

tions. The portfolio’s returns are shown in the fifth column, and the elements of the

semicovariance matrix will be calculated using data in the ninth, tenth and eleventh

columns:

ΣA,A = 0.0249

ΣB,B = 0.0217

ΣA,B = 0.0011 ,

values totally different from the ones gotten for portfolio 80-20, giving a semideviation

of:

semi10−90 =
√

(0.8)2(0.0249) + (0.2)2(0.0217) + 2(0.8)(0.2)(0.0011) = 13.4% .

This example shows how endogenous the semicovariance matrix is because its elements
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depend on the weights of the assets.

Recently, Jin et al. (2006) demonstrated the possible existence of a closed-form solu-

tion for the mean-semivariance model, presented in Theorem 4.1.3 below.

Let the optimisation problem:

minZ∈Rn E[(A+B
′
Z)−]2 , (4.1.1)

where B
′

is the transpose of the matrix B = (B1, · · · , Bn). The term x− = min(x, 0),

the variable Z is the vector of the assets weights and A, Bi, i = 1, · · · , n are random

variables with E[A2] < +∞, E[B2
i ] < +∞.

4.1.2 Lemma. If E[Bi] = 0, for all i, then problem in Lemma (4.1.1) admits a

solution. The proof of this lemma can be found in (Jin et al. 2006).

4.1.3 Theorem. For any initial budget, lets denote a ∈ R, such that

n∑
i=1

zi = a , (4.1.2)

and for any expected portfolio’s return µp ∈ R, problem in Equation (4.0.2) admits

optimal solutions if and only if it admits feasible solutions.

Proof : The objective function in the model described in Equation (4.0.2) can be

rewritten as:

E

[(
n∑
i=1

ziri −
n∑
i=1

ziµi

)−]2

= E

[(
n∑
i=1

zi(ri − µi)

)−]2
.
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Let us denote Ri = ri − µi, and with a as the invested budget, if we extract asset 1

from Equation (4.1.2), we have z1 = a−
n∑
i=2

zi. The objective function becomes:

E

[(
(aR1 −

n∑
i=2

ziR1) +
n∑
i=2

ziRi

)−]2

= E

[(
aR1 +

n∑
i=2

zi(Ri −R1)

)−]2
.

Problem described in Equation (4.0.2) is now written as:

minimisezi∈Rn−1 E

[(
aR1 +

n∑
i=2

zi(Ri −R1)

)−]2

s.t
n∑
i=2

zi(µi − µ1) = µp − aµ1 .

Two cases are considered to solve the new problem. First, consider µi = µ1 for all i,

so that it is assumed µp = aµ1. The problem is then reduced to:

minimisezi∈Rn−1 E

[(
aR1 +

n∑
i=2

zi(Ri −R1)

)−]2
, (4.1.3)

which has the same form as the optimisation problem in Equation (4.1.1) and admits

optimal solutions by Lemma 4.1.2. The second case is to consider µi 6= µ1, for any i,

let us take the case i = 2, so we have:

w2 =
µp − aµ1

µ2 − µ1

−
n∑
i=3

zi
µi − aµ1

µ2 − µ1

.
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Plugging this last equation into Equation (4.1.3), the problem becomes:

minimisezi∈Rn−2 E

[(
aR1 +

µp − aµ1

µ2 − µ1

(R2 −R1) +
n∑
i=3

zi((Ri −R1)−
µi − aµ1

µ2 − µ1

(R2 −R1))

)−]2
,

which also admits optimal solutions by Lemma 4.1.2.

The result of the theorem is that the optimisation problem in Equations (4.0.2) is

equivalent to a problem with a bounded closed feasible region (recalling the definition

from Section 3.1.3), that leads to the existence of optimal solutions. Therefore, even

with additional constraints, this result still holds as long as the sets of constraints are

closed (Jin et al. 2006).

Given that the mean-semivariance model indeed admits optimal solutions, some re-

searchers proposed techniques to treat the difficulty of dealing with the semicovariance

matrix, such that the model can be easily solved as the mean-variance model.

4.2 A solution to the endogeneity problem

Several attempts have been developed to overcome the difficulty on the semicovari-

ance matrix and to find a closed-form solution that makes the mean-semivariance

approach to be addressed as the Markowitz’s mean-variance model. In addition to

the literature mentioned in Chapter 1, in Ang (1975), using linear programming an

approximation of the semivariance proposed by Hogan & Warren (1972) is developed,

the semi-linear deviation. This measure calculates in percentage terms for each obser-

vation, the potential loss from the investor’s target return. Unlike the other proposed

semivariances, which are either positive or zero, the semi-linear deviation is either

negative or zero. Hogan & Warren (1974) proposed a solution which unfortunately

allows only for the risk-free rate as the benchmark and still results in an asymmetric

semicovariance matrix. Cumova & Nawrocki (2011) provided a proof that converts
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the exogenous asymmetric semicovariance matrix to a symmetric matrix allowing the

existence of the closed-form solution. The approach is shown to produce better results

than the proposed approaches by Markowitz and Estrada. The approach of Ballestero

(2005) is used in Boasson, Boasson & Zhou (2011), with a comparative analysis study

showing the performance of the mean-semivariance over the mean-variance model.

In this chapter, the approach proposed in de Athayde (2001) for the estimation of the

semicovariances is presented. Athayde proposed an algorithm that solves the problem

in Equations (4.0.3) using an iterative procedure presented as follows:

The algorithm

Using the same notations, to know: B for the benchmark return, ri,t and Rp,t for the

return of asset i and the portfolio’s return respectively at period t, Z for the portfolio

vector weights and µ for the vector of asset’s expected returns. Let us denote by

Pi,t = ri,t − B and by M the matrix with coefficients as in Equation (4.0.4), this is

Σi,j =
1

T

K∑
t=1

Pi,tPj,t. The idea is to construct after a finite number of iterations, a

semicovariance matrix M invariant to the portfolio. The iteration will be repeated

on the optimisation problem:

minimiseZ ZTMZ

s.t ZT1 = 1 ,

where ZT is the vector transpose and 1 is a vector of 1 as defined in Section 3.1.1.

The algorithm is described as follows:

Step 1: Start with an initial portfolio Z0 = (z0,1, · · · , z0,n), usually taken as an

equally weighted portfolio. Collect in a set S0 the periods when the returns of the

portfolio Z0 are under the target return B, and define the matrix M0 for this portfolio
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as:

M0 =
1

T

∑
t∈S0


P 2
1,t P1,tP2,t . . . P1,tPn,t

P2,tP1,t P 2
2,t . . . P2,tPn,t

...
...

. . .
...

P 2
n,tP1,t Pn,tP2,t . . . P 2

n,t

 .

Step 2: Find the portfolio Z1 solution to the problem:

minimiseZ ZTM0Z

s.t ZT1 = 1 .

Using Lagrange method, we recall from in Equation (3.1.6), the solution to this

problem is:

Z1 =
M−1

0 1

1TM−1
0 1

.

As in the first step, select in a set S1 the periods in which the portfolio Z1 underper-

forms the benchmark and construct the matrix:

M1 =
1

T

∑
t∈S1


P 2
1,t P1,tP2,t . . . P1,tPn,t

P2,tP1,t P 2
2,t . . . P2,tPn,t

...
...

. . .
...

P 2
n,tP1,t Pn,tP2,t . . . P 2

n,t

 .

Step 3: We repeat again the all process. Find the portfolio Z2 that solves the

problem:

minimiseZ ZTM1Z

s.t ZT1 = 1 .
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Using Lagrange method, the solution to this problem is:

Z2 =
M−1

1 1

1TM−1
1 1

.

Select the elements of S2 and construct the matrix M2 for t ∈ S2 in the same way as

done above.

The previous calculations are repeated in iterations. A sequence of matrices are

constructed until the first matrix Mm such that Mm = Mm+1 is gotten. The optimal

portfolio that will provide the global minimum downside risk portfolio is then given

by:

Zg
m =

M−1
m 1

1TM−1
m 1

.

Construct the efficient frontier

For a given portfolio’s target return µp, the optimisation problem to solve is:

minimise
1

T

T∑
t=1

min (Rpt −B, 0)2 = ZTMmZ

s.t ZTµ = µp

ZT1 = 1 .

Recall again that for the mean-semivariance model, the benchmark B = E[Rp], and

that the non-negativity constraint may or may not be required.

Using the Lagrange method, processing exactly as in Section 3.1.1, with the semi-

define constructed matrix Mm after m iterations. For a fixed µp, the expression of
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the optimal portfolio is given by:

Zm = M−1
m

(
aµp − b
ac− b2

µ+
c− bµp
ac− b2

1

)
,

where a = 1TM−1
m 1, b = µTM−1

m 1, and c = µTM−1
m µ, giving the minimum portfolio

downside risk as:

ZT
mMmZm =

aµ2
p − 2bµp + c

ac− b2
. (4.2.1)

Varying the value of µp will construct a parabolic curve, which is the mean-semivariance

efficient frontier.

Given the algorithm described for solving the problem on the endogeneity of the

semicovariance matrix, the mean-semivariance model can now easily be applied for

portfolio management. In the next chapter, using real financial data, we present a

practical application of the theory explained above.



5. Empirical analysis and results

This chapter presents a comparative study between the mean-variance and the mean-

semivariance models for portfolio optimisation. The analysis assumes no transaction

costs; no taxes and short selling is allowed. The investor is assumed risk-averse

and therefore seeks the portfolio with the least risk. Furthermore, the investor has

the objective to manage the risk of his/her portfolio, such that the return on the

investment is kept as close as possible to the return of a market index fixed as the

benchmark. That is, the portfolio tracks the benchmark. The minimum-variance

portfolio is solved as proposed in Markowitz (1952), and the minimum-semivariance

portfolio is solved as proposed in de Athayde (2001) see Section 4.2.

5.1 Data

The analysis is based on real data obtained from the Johannesburg Stock Exchange

(JSE) Top 40 index. This market is composed of the 40 biggest companies on the

JSE, ranked by market capitalisation (number of shares times the current share’s

price). Even though among the 400 companies on the JSE only 40 are included in the

Top 40 index, it represents over 80% of the total market capitalisation of all JSE’s

companies and thus gives an overall view of what happens to the South African stock

market as a whole. In the remaining of the work, the companies are called assets.

The data collected are the close of day assets’ prices over the May 2019 - July 2019 pe-

riod and expressed in cent South African currency, giving a total of 600 observations.

However, throughout the analysis, the assets’ returns are instead used, calculated

using the formula described in Equation (2.1.1). A universe of 10 companies of the

JSE Top 40 is selected as sample. This selection is made randomly.

72
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5.1.1 Summary statistics

Table 5.1 shows the statistics of the selected assets. The values of the third and the

fourth moment, which are respectively the skewness and the kurtosis, can easily give

an idea on the shape of a distribution. A skewness value different from zero will

indicate the presence of more peaked tail than for the normal distribution.

Table 5.1: Summary statistics of the daily assets returns

Assets Abbreviation Min Max Mean Std Skewness Kurtosis

Growthpoint Prop Ltd GRT −0.028246 0.021241 −0.000235 0.010382 −0.273926 0.551221

Imperial Logistics Ltd IPM −0.059232 0.031410 −0.004927 0.019072 −0.454898 0.285586

Impala Platinum Hlgs Ltd IMP −0.061887 0.060491 0.004915 0.025830 −0.262326 0.226407

Intu Properties Plc ITU −0.075360 0.034944 −0.005559 0.020788 −0.894064 1.548389

Investec Plc INP −0.027659 0.040258 −0.001408 0.013737 0.563527 1.130256

Investec Ltd INL −0.033708 0.036584 −0.001521 0.014365 0.218677 0.632366

Kumba Iron Ore Ltd KIO −0.073357 0.056523 0.002078 0.023890 −0.315303 0.522947

Life Healthc Grp Hldgs Ltd LHC −0.037490 0.037431 −0.002329 0.015311 0.048051 0.249872

Mondi Plc MNP −0.032913 0.029199 0.000231 0.014901 −0.012301 −0.685630

Mondi Ltd MND −0.030944 0.028286 −0.000251 0.014825 0.074218 −0.526131

The third and the fourth columns show respectively, the minimum and the maximum

returns for each stock. The fifth column shows the mean returns of each asset.

The standard deviations are shown in the sixth column, and the seventh and eighth

columns show the values of the skewness and the kurtosis, respectively. The summary

statistics are calculated over the sample period under analysis. It can be observed

that:

−0.894064 ≤ Skewness ≤ 0.563527

−0.685630 ≤ Kurtosis ≤ 1.548389 .

The boundaries of the skewness and the kurtosis (calculated using their respective

expressions as described in Section 3.2.2) indicate that the shape of the distribution is
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skewed to the left. (See 5.1). This fact encourages the use of a downside risk measure

in portfolio risk management.

Figure 5.1: Histogram of the selected JSE Top 40 stocks

The possible correlations between the 10 assets are calculated, and the results are

shown in Table 5.2 below:

Table 5.2: Matrix of correlation between assets

GRT IPM IMP ITU INP INL KIO LHC MNP MND

GRT 1

IPM 0.357137 1

IMP 0.080947 −0.029411 1

ITU −0.098249 −0.086547 −0.084453 1

INP 0.006868 0.273102 0.104482 0.151029 1

INL 0.113797 0.296715 0.121193 0.159769 0.970578 1

KIO −0.030523 −0.085350 0.353893 −0.055426 0.171763 0.147360 1

LHC 0.385404 0.246839 0.134744 0.017395 0.251294 0.303149 0.071327 1

MNP −0.227135 −0.041787 0.213756 −0.001380 0.409198 0.377051 0.286389 0.150963 1

MND −0.200741 0.052363 0.211368 −0.000402 0.491535 0.464909 0.283200 0.191078 0.972536 1

This is a symmetric matrix such that, the correlation between assets GRT and IMP,
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for example, is the same as the correlation between IMP and GRT. These values

indicate the relationship of the assets on the selected assets/companies. Recall from

Section 2.3, a correlation of 1 means that two assets are correctly moving together.

For example, INP-INL are almost perfectly correlated (correlation value closed to 1)

to each other. If one drops in value, so will the other, and inversely if one rises in

value, the other will also increase. As well as MNP-MND are also highly correlated.

5.2 Analysis of mean-variance and mean-semivariance

approaches

In this section, results of portfolio optimisations from the mean-variance and the

mean-semivariance approaches are presented.

The input to the mean-variance approach is the covariance matrix (as constructed in

Section 2.2) presented in Table 5.3.

Table 5.3: Covariance matrix

GRT IPM IMP ITU INP INL KIO LHC MNP MND

GRT 0.0001078

IPM 7.07E-05 0.000364

IMP 2.17E-05 -1.44E-05 0.000667

ITU -2.12E-05 -3.43E-05 -4.53E-05 0.000432

INP 9.80E-07 7.15E-05 3.71E-05 4.31E-05 0.000189

INL 1.69724E-05 8.13E-05 4.45E-05 4.77E-05 0.000192 0.000206

KIO -7.57E-06 -3.89E-05 0.000218 -2.75E-05 5.63E-05 5.05E-05 0.000571

LHC 6.13E-05 7.21E-05 5.32E-05 5.53E-06 5.28E-05 6.67E-05 2.61E-05 0.000234

MNP -3.51E-05 -1.19E-05 8.23E-05 -4.28E-07 8.37E-05 8.07E-05 0.000102 3.44E-05 0.000222

MND -3.09E-05 1.48E-05 8.09E-05 -1.24E-07 0.000100 9.90E-05 0.000100 4.34E-05 0.000215 0.000219

The table shows that asset INP, INL and LHC have positive covariances with each

other assets. The degree of the different covariances is calculated by the correlations
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shown in Table 5.2, where the assets INP and INL, assets MNP and MND are very

strongly correlated.

The input to the mean-semivariance approach is the semicovariance matrix (as con-

structed in Section 4.2) presented in Table 5.4.

Table 5.4: Semicovariance matrix

GRT IPM IMP ITU INP INL KIO LHC MNP MND

GRT 0.013458

IPM 0.0104500 0.049349

IMP 0.002676 −0.003260 0.096602

ITU −0.003510 0.000368 −0.026423 0.086421

INP −0.001043 0.007355 0.006588 0.007745 0.026114

INL 0.0011800 0.008288 0.006502 0.009178 0.026928 0.029196

KIO −0.000697 −0.000858 0.032622 −0.019796 0.006401 0.006177 0.0743800

LHC 0.008333 0.010346 −0.001875 0.000139 0.012133 0.014955 0.012269 0.023856

MNP −0.00421 0.005176 0.0098321 −0.003107 0.017976 0.017345 0.014834 0.0109685 0.034601

MND −0.003553 0.008777 0.008573 −0.002858 0.020800 0.020484 0.015901 0.012809 0.032533 0.032621

The results in Table 5.4 show the relationship between the assets as calculated by the

downside deviations. Asset INL is the only one which is positively correlated to the

other assets.

Given the matrices of covariances and semicovariances above, next is to solve the

mean-variance and the mean-semivariance models as described in Equations (3.1.1)

and (4.0.3). The performance measures in the analysis are the Sharpe and the Sortino

ratios. Lets denote the minimum-variance portfolio by MV, and the minimum-

semivariance portfolio by MS. The results of the optimisations from the two ap-

proaches - MV and MS are presented in Table 5.5.
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Table 5.5: Minimum-risk portfolios

Optimisation Approaches

Portfolio Performance MV portfolio MS portfolio

Annual Return −0.19 0.02

Annual Risk 0.09 0.06

Sharpe Ratio −0.12 0.01

Sortino Ratio −0.15 0.02

Portfolio Allocation

GRT 0.52 0.72

IPM 0.04 −0.1

IMP 0.002 0.01

ITU 0.12 0.11

INP 0.81 1.07

INL −0.73 −1.03

KIO 0.02 0.05

LHC 0.01 −0.04

MNP 0.34 0.25

MND −0.15 −0.04

• The results show that the MS portfolio achieves a high annual return of 0.02

with an annual risk of 0.06, as compared to the MV portfolio which had an

annual return of −0.19 with an annual risk of 0.09. The annual return from

the MS portfolio is higher for less annual risk as compared to the MV portfolio,

which had a higher annual risk. In terms of the performance measures, the MS

portfolio has higher Sharpe and Sortino ratios..

• Asset INP constitutes the most significant component in the two portfolios with

0.81 in the MV portfolio and 1.07 in the MS portfolio, followed by asset GRT.
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Asset MNP also constitutes an essential contribution to the optimal portfolios

with a composition of 0.34 in the MV portfolio and 0.25 in the MS portfolio.

These high allocations result from the fact that by selling some assets, the

investor gets more fund than initially.

• The results show that there is more short selling in the MS portfolio, as com-

pared to the MV portfolio. Asset INL is shorted the most in both portfolios.

The respective optimal portfolios can be shown on the efficient frontiers presented in

Figure 5.2 and Figure 5.3.

Figure 5.2: Mean-variance efficient frontier
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Figure 5.3: Mean-semivariance efficient frontier

The circles in the figures show each asset positioned according to its annual return and

annual level of risk. The diamond on the different curves represents the minimum-

variance and the minimum-semivariance portfolio, respectively, which are combina-

tions of all the ten assets. The expected portfolios’ returns on the mean-semivariance

efficient frontier are achieved with less risk. The expected portfolios’ returns on the

mean-variance efficient frontier are achieved with more risk.

5.3 Tracking error analysis

Consider now that the investor wants his/her minimum-risk portfolio to track the JSE

Top 40 benchmark portfolio. The goal is to construct a new portfolio that will have

the same return as the benchmark and the same risk as to the minimum-risk portfolio.

For this analysis, the mean JSE Top 40 for the period May 2019 - July 2019 is used

as the benchmark portfolio return. The achieved mean return is of 0.09. A tracking

error analysis, denoted by TE, is then investigated. From the formula in Equation
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(3.3.1), the respective values of the TE are calculated. Lets call TE-MV and TE-MS

respectively the minimum-variance and minimum-semivariance portfolios relative to

the benchmark portfolio. The compositions of the new portfolios are shown in Table

5.6.

Table 5.6: Minimum-risk portfolios relative to the benchmark portfolio

Tracking Error Analysis

Portfolio Performance TE-MV portfolio TE-MS portfolio

TE 0.17 0.12

Portfolio Allocation

GRT 0.63 0.77

IPM −0.04 −0.12

IMP 0.06 0.01

ITU 0.05 0.1

INP 0.89 1.07

INL −0.77 −1.03

KIO 0.03 0.04

LHC −0.05 −0.06

MNP 0.47 0.36

MND −0.27 −0.12

• The tracking error performance measure is less for the TE-MS portfolio (0.12) as

compared to the TE-MV portfolio (0.17). This result indicates that the mean-

semivariance approach tracks the benchmark better than the mean-variance

method.

• The allocations show that the two optimal portfolios should go short in assets

IPM, INL, LHC and MND to track the benchmark portfolio.
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• Asset INP still constitutes the largest allocation in TE-MS portfolio (1.07) and

TE-MV portfolio (0.89).

• The results show that there is not much difference in the allocations of the MSB

portfolio as compared to the MS portfolio.

The respective efficient frontiers are shown in Figure 5.4 and Figure 5.5.

Figure 5.4: Minimum-variance portfolio relative to the benchmark
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Figure 5.5: Minimum-semivariance portfolio relative to the benchmark

• The results show that the TE-MS portfolio is confused as a portfolio on the

mean-semivariance efficient frontier, with a higher annual return of 0.09, as

compared to the return of the MS portfolio which is of 0.02. In comparison to

the benchmark portfolio, the TE-MS portfolio achieves the same annual return

(0.09) however at lower risk (0.06) as compared to the risk of the benchmark

portfolio (0.08).

• The TE-MV portfolio, however, with an annual return of 0.09 is clearly shown

to be far from the MV portfolio, which has a lesser annual return of −0.19. In

comparison to the benchmark portfolio, the TE-MV achieves the same annual

return (0.09) for a lower risk of 0.09 as compared to the risk of the benchmark

portfolio (0.13).

• The TE-MS portfolio achieves the same annual return than the benchmark

portfolio with a smaller risk than does the TE-MV portfolio.



6. Conclusions and

recommendations

The mean-variance model is the most popular used approach for portfolio selection

because it possesses a closed-form solution, and it is mathematically simple to express.

However, the model is also widely criticised because of its assumptions, specifically on

normality in the distribution of the assets’ returns and on using the variance as the

measure of risk. Many alternatives have been proposed as downside risk approaches

to consider the asymmetry in the analysis of assets’ returns. However, the compu-

tation of a downside risk approach may not be as natural as for the mean-variance

method. In this study, the mean-semivariance model was considered. Thus the study

aimed to investigate the performance of the mean-semivariance approach in portfolio

optimisation, in comparison to the mean-variance model. The Lagrange method for

optimisation was used to find solutions to optimisation problems. Furthermore, the

difficulty in the calculation of the semicovariance matrix could be resolved, resulting

in a symmetric exogenous matrix, which could make the mean-semivariance model

mathematically expressed as the mean-variance model. A sample of ten companies

selected from the JSE Top 40 index was used for analysis and optimal portfolios

constructed for both the mean-variance and the mean-semivariance approaches. The

summary statistics showed that the distribution of the returns of the selected assets

was skewed. This result hinted that the mean-semivariance approach performed much

better than the mean-variance method. The following are the significant findings from

the empirical analysis:

• The results from the minimum-risk portfolio optimisations showed that the

mean-semivariance approach produced better annualised return than the mean-

variance model. The mean-semivariance efficient frontier presented optimal

portfolios at lower risk, as compared to the portfolios on the mean-variance
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efficient frontier. The differences in the allocations are due because semivari-

ance as a risk measure only evaluates the downside deviations of the returns

from a specified target return, unlike the variance measure which assesses both

the upper and the downside deviations. Mean-semivariance optimisation pro-

vides lower portfolio risk than mean-variance optimisation, and this for the

same level of return. These findings are in line with previous researches that

also focused on comparing the results from the two models (Ballestero (2005),

Boasson et al. (2011), (de Athayde 2001)). Alternatively, investors following a

mean-semivariance strategy can reduce the risk of their portfolios while achiev-

ing the same or higher returns comparing to mean-variance portfolios.

• The results from the tracking error analysis showed that the mean-semivariance

approach produced allocations that tracked better the benchmark as compared

to the mean-variance method. Again, the differences in the allocations are

because the mean-semivariance approach uses the semi deviation in the tracking

error calculation, unlike the mean-variance method, which uses the standard

deviation. As a result, the tracking error on the mean-semivariance penalises the

downside deviations only which can reduce the tracking error on the benchmark.

In conclusion, this study only focused on portfolio selection for equities. Other assets,

such as bonds or derivatives, can be considered for future research. Besides, the

method used to construct the optimal portfolios and the efficient frontiers is limited

for constraints in the equality form. However, investors may always need to put some

restrictions on their investments, such as upper and lower bounds for the capital

to be invested in each asset. Other measures of risk than the semivariance such

as the VAR and the CVAR can be used for comparison relative to the variance.

These shortcomings are factors that may affect the findings explained above and can

constitute areas for future research.
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