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Abstract 
 

This paper provides a review on fault detection techniques on active magnetic bearing systems and electrical machines. The following 

non-linear processing fault detection techniques are discussed in this paper: 1) Time domain analysis, 2) Frequency domain analysis, 3) 

Time-frequency analysis, and 4) Feature analysis. Time domain analysis is discussed and broken up into data collection, time domain 

features and Weibull distribution. Frequency domain analysis is discussed and broken up into Cepstrum analysis, enveloped spectrum 

analysis, equi-sampled discrete Fourier transform, high frequency resonance technique, shock pulse analysis and spike energy analysis. 

Time-frequency analysis is discussed and broken up into short-time Fourier and bilinear transform, which includes Wigner-Ville distri-

bution. Feature analysis is discussed and broken up into artificial neural networks, feature selection and extraction, feature set reduction, 

fuzzy logic and pattern recognition. This paper focuses only on nonlinear fault detection techniques and ends with a conclusion on the 

discussed fault detection techniques for active magnetic bearing systems and electrical machines. 

 
Keywords: Fault Detection Techniques; Active Magnetic Bearing Systems; Cepstrum Analysis; Wigner-Ville Distribution; Electrical Machines. 

1. Introduction 

This paper provides a review of the fault detection techniques that 

are currently available for active magnetic bearing system (AMBs) 

and electrical machines. Figure 1 provides a tree diagram of the 

different fault detection techniques that will be discussed in this 

paper. Fault detection techniques can be broadly categorised into 

linear and non-linear processing techniques. The benefits of non-

linear processing techniques versus standard linear processing 

techniques depend on the complexity of the problem. This paper 

focuses specifically on non-linear processing techniques and the 

area of linear processing techniques is not discussed in this paper. 

Non-linear processing techniques can be categorised into: 1) time 

domain analysis which is discussed in section 2, 2) frequency 

domain analysis which is discussed in section 3, 3) time-frequency 

analysis which is discussed in section 4 and 4) feature analysis 

which is discussed in section 5. 

For this paper the fault detection techniques in the shaded blocks 

of figure 1 are discussed in slightly more detail. Shock pulse anal-

ysis is discussed in section 3.5 and spike energy analysis is dis-

cussed in section 3.6, both of these analyses are used to detect 

impacts on bearings. Short-time Fourier transforms segment the 

data into overlapping time-windows, whereas bilinear transforms 

uses the instantaneous frequency for analysis, which provides a 

more direct type of analysis. More detail on time-frequency analy-

sis is provided in section 4, short-time Fourier transforms is dis-

cussed in section 4.1 and detail on bilinear transforms is provided 

in section 4.2. 

Artificial neural networks (ANNs) focus on a black box approach 

and fuzzy logic on a grey box approach. A fuzzy logic controller 

has the ability to incorporate experience, intuition and heuristics 

instead of relying on a mathematical model. More detail on feature 

analysis is discussed in section 5, ANNs is discussed in section 5.1 

and fuzzy logic is discussed in section 5.4. 

 
Fig. 1: Tree Diagram of the Different Fault Detection Techniques. 

2. Time domain analysis 

This section provides an overview of time domain analysis, by 

discussing data collection, time domain features and Weibull dis-

tribution. 

http://creativecommons.org/licenses/by/3.0/
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2.1. Data collection 

The collection of a consistent and reliable set of measurements, 

covering the physical and electrical properties of the machinery, is 

vital for reliable diagnosis of faults [1]. A-priori knowledge re-

garding the factors influencing vibration measurements is im-

portant to define a meaningful and compact feature set. Statistical 

considerations indicate that increasing the sample size may reduce 

the variance of results. The sample size is especially important to 

discover the potential non-linear relationships inherent in the data 

[1]. RMS acceleration has been successfully used for years using a 

magnet-mounted accelerometer feeding into a vibration meter. 

2.2. Time domain feature 

The following time domain features can be extracted from data [2], 

[3]: Mean root mean square (RMS), crest factor, variance, skew-

ness and kurtosis. The following provides a brief description of 

each follows. The mean value of a function x (t) over an interval T 

is: 

 


=

T

0
x(t)dt

x
T

                                                                                  (1) 

 

The RMS value of a function x (t) over an interval of T is: 
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The crest factor is the ratio of the peak level to the RMS level: 
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x
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x
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The variance is the mean square value relative to the mean: 
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The skewness is the third statistical moment of a distribution: 
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The kurtosis is the fourth statistical moment of a distribution: 
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2.3. Weibull distribution 

The Weibull distribution is useful in the statistical analysis of 

vibration signals, especially with skewed distributions [4]. The 

Weibull distribution was invented in 1937 by Waloddi Weibull 

when comparing mortality rates of different population groups. He 

invented a formula that could describe the different shaped graphs 

in each of the three zones [5]. 
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R(T) e                                                                                  (7) 

 

Where R (T) represents the reliability at time T, T is the time con-

sidered, η is the characteristic life, β is the shape parameter and e 

is the base for natural logs (2.71828). Information on the ad-

vantages and disadvantages of Weibull analysis are available in 

[6]. 

3. Frequency domain analysis 

This section provides an overview of frequency domain analysis. 

It is well known that defects in rotating machinery may be moni-

tored using vibration frequency domain analysis. Certain features 

from frequency domain analysis can be generated to predict mul-

tiple faults [7]. These features can be determined by using com-

mon condition-monitoring techniques. The following features can 

be extracted from frequency domain analysis: 1) amplitude of the 

vibration spectrum at rotational frequency and 2) higher frequency 

domain components. 

According to Taylor [8], force imbalance in a rotor may be detect-

ed using vibration frequency domain analyses. A peak in the spec-

trum at the running speed frequency of the shaft will indicate im-

balance. The amplitude of acceleration at the running speed fre-

quency may be related to the amount of imbalance in the rotor.  

3.1. Cepstrum analysis 

Cepstrum analysis is used to detect periodicities in the spectral 

analysis of a signal, as well as to separate the effect of varying 

transfer functions [9]. It is well suited as a tool for the detection of 

families of harmonics with equal spacing. It is defined as the in-

verse Fourier transform of the logarithm of the Fourier transform 

of a time signal x (t) and is given by [4]: 

 

( )  1 − =  
cxx

C x(t)
10

log                                                                (8) 

 

The real Cepstrum is defined as: 

 

( )( )( )1real log−=  RCEPS(x) x                                                     (9) 

 

Where   is the Fourier transform and 1−  is the inverse Fourier 

transform of the input signal. 

 

 
Fig. 2: Cepstrum Calculation [10]. 

 

The name Cepstrum comes from reversing the first four letters in 

the word “spectrum”. Figure 2 (a) shows an input waveform. The 

waveform is spectrum analysed (shown in figure 2 (b)) and the log 

of the magnitude spectrum (shown in figure 2 (c)) is then obtained. 

The Cepstrum analysis (shown in figure 2 (d)) is obtained by the 

inverse Fourier of the log of the magnitude spectrum. From the 

Cepstrum analysis the defect frequency is clearly visible. The 

nonlinear (in-harmonic) system can be made more linear by using 

the log spectrum [10]. 

3.2. Envelope spectrum analysis 

Envelope spectrum analysis is a technique especially suitable for 

early detection of damage [11]. The technique consists of a band-

pass filter that reduces frequency components not related to the 

bearing. The signal is then enveloped by full-wave rectification 
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and low-pass filtered before an analysis of the spectrum is per-

formed [4]. 

Stewart Hughes [12] demonstrated that the bearing condition is 

best indicated by looking at the demodulated signal in a narrow 

frequency band, centred around the natural frequency of the bear-

ing housing. The bearing defect frequencies, dependent only on 

bearing geometry and speed, show up clearly in the demodulated 

signal, whereas in the normal frequency spectrum they could lie 

buried in low frequency background noise. 

The block diagram shown in figure 3 summarises the steps of the 

envelope analysis process. The frequency analysis of the envelope 

provides a diagnosis of the vibration, i.e. the defect frequencies 

become evident. A defect frequency, which exceeds the back-

ground level in the spectrum by 20 dB, indicates a fault condition, 

which needs to be rectified. With regular monitoring the machine 

can still be run [13]. 

Unlike other methods that depend on measuring an overall bearing 

damage level, the envelope spectrum provides a positive diagnos-

tic tool, that points conclusively to the bearing, without any inter-

ference of high frequency noise [12]. 

 

 
Fig. 3: Block Diagram of Envelope Process [13]. 

3.3. Equi-sampled discrete Fourier transform 

Figure 4 provides a block diagram of the enveloped equi-sampled 

discrete Fourier transform (ESDFT). Low frequency large ampli-

tude AMB vibration components can be separated from higher 

frequency response signals by means of a band pass filter. In the 

envelope spectrum method, the resulting signal is rectified and 

low-pass filtered in order to detect the envelope of the signal [14].  

The low frequency information is extracted from the carrying 

resonance frequency band. After these operations the resulting 

signal is transformed to the frequency domain by means of the 

ESDFT. An absolute maximum plot is obtained and the data is 

analysed for increases in defect frequencies. 

 

 
Fig. 4: Block Diagram of the Enveloped ESDFT. 

The ESDFT is defined as [15]: 

 

= = − =ESDFT(k,m) FFT(k* m,n), k 0, ,N / m 1 ,n 1, ,N

(10) 

 

Where N is the number of samples in the FFT and m is the width 

of the comb filter in the frequency domain. The DFT of the kth 

entry of the nth channel, y (k,n) is given by (11) [16] 

 

,− −

=

= = =
M

j2 (p-1)(k 1) / M
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And the convolution of k and m is obtained by using 

 

= + − =
j

w(l) k(j)m(l 1 j), l 1, M                                      (12) 

 

Where w is the convolution vector. The ESDFT is inversely relat-

ed to the period (in samples) over which the synchronous average 

(SA) is taken in the time domain. Hence long periods in the time 

domain give a small value of m in the frequency domain (the 

combs of the comb filter spaced close together) and vice versa 

[17]. 

It is well known that the SA may reduce noise by a factor of 1/N 

[18] (where N is the number of samples in the buffer). In particu-

lar, any vibration not synchronous with the trigger period T will be 

filtered out if a sufficient number of averages are taken. As the 

ESDFT, actually computes an SA it should also reduce the noise 

by a factor of 1/N. Hence the good performance of the SA in 

reducing non-synchronous noise is also apparent in the ESDFT.  

More specifically, it is shown that the frequency components at 

the characteristic defect frequency (and harmonics) actually corre-

spond to the spectral information of the signal average. The 

ESDFT retains the frequency components only corresponding to 

integer multiples of the trigger frequency Tf. The ESDFT keeps 

the prototype filters corresponding to an integer multiple of the 

sampling frequency, which corresponds to the trigger frequency 

[19].  

The frequency domain transfer function of the ESDFT is given by 

 

ESDFT (j) = ( ) ( ) + +j j

o mL
H e H e                                         (13) 

 

Where m = 1, 2, 3… and L is an integer corresponding to L = Fs/Ft 

(Fs is the sampling frequency and Ft is the trigger frequency) and 

J = 1/L = Ft/Fs. The prototype DFT filter bank [20] is a shifted 

version of the prototype filter H0 (ej) 
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Where k = mM/L and (M/L)/M = J = 1/L = Ft /Fs. 

3.4. High frequency resonance technique (HFRT) 

The high frequency resonance technique (HFRT) of envelope 

detection is described by McFadden and McFadden [16]. A bear-

ing defect excites a high frequency resonance at the characteristic 

defect frequency in the same way that a bell rings when struck by 

a hammer.  

Thus the envelope of the high frequency resonance provides in-

formation about the (low frequency) modulating function. The 

signal from the accelerometer is amplified and bandpass filtered 

around a resonance. An envelope detector consisting of a non-

linear element (a half- or full-wave rectifier, or raising the signal 

to a power such as with a squarer) is subsequently applied to ex-

tract the envelope of the signal. The frequency component is then 

analysed at the characteristic defect frequency [21]. 
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The HFRT utilizes the fact that much of the energy resulting from 

a defect impact manifests itself in the higher resonant frequencies 

of a system. Demodulation of these frequency bands through use 

of the envelope technique is then employed to gain further insight 

into the nature of the defect while further increasing the signal to 

noise ratio. If periodic, the defect frequency is then present in the 

spectra of the enveloped signal [22]. 

Figure 5 shows a process diagram for the HFRT. Raw vibration 

data is passed through an anti-aliasing filter. The signal is then 

bandpass filtered around a selected high frequency band. The 

band-passed signal is then demodulated with a non-linear rectifier 

and low-pass filtered to cancel high frequency components and 

retain the low frequency information associated with the fault [16]. 

The HFRT takes advantage of the large amplitudes of a defect 

signal in the range of a high frequency system resonance, and 

provides a demodulated signal with a high defect signal-to-noise 

ratio in the absence of low frequency mechanical noise. 

The HFRT filters the signal around a suitable demodulation fre-

quency, followed by rectification and low-pass filtering (envelope 

detection) [9]. The normalized ratio of the demodulation peak in 

the demodulation spectrum relative to the carpet level provides a 

measure of the defect growth and is regarded as the best feature of 

bearing defect evolution [23]. 

 

 
Fig. 5: High Frequency Resonance Technique Process. 

 

In Shiroshi [24] the effect of non-linear transfer functions on the 

amplitude density function and power spectrum of band limited 

‘white noise’ is derived. On page 222 of Akansu [25] the result of 

y = bx2 is given as: 
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where the power spectrum has a constant value A, centred at 0 

and bandwidth of . It should be noted that the above expres-

sions are based on the assumption of continuous signals [16]. 

3.5. Shock pulse analysis 

This type of analysis is used to detect impacts on the bearings. 

More information on shock pulse analysis is available in [26]. 

3.6. Spike energy analysis 

This type of analysis measures the intensity of the energy spikes. 

Spike energy analysis is similar in theory to shock pulse analysis. 

More information on spike energy analysis is available in [27]. 

4. Time-frequency analysis 

This section provides an overview of time-frequency analysis. 

Frequency spectrum monitoring has become common in fault 

detection besides overall level monitoring. In most cases the ordi-

nary Fourier transform is used to obtain frequency information. 

The main disadvantages of the Fourier transform are that every 

short duration interference in the signal is spread over the whole 

frequency band, the frequency components represent the whole 

time series and that even a slight frequency change in the signal 

makes it hard to analyse the frequency content. Frequencies that 

are close together cannot be separated if the frequency resolution 

is low [28]. 

Recently, the time-frequency analysis has been introduced as a 

condition monitoring tool by many researches [2], [29], [30], [31]. 

An advantage of time-frequency distributions is that they can re-

veal details of non-stationary signals and signals that evolve with 

time. In general, time-frequency analysis requires a lot of calcula-

tion power and the interpretation of the results require a lot of 

effort [32]. 

4.1. Short-time fourier transform 

The short-time Fourier transform (STFT) is used to analyse the 

frequency spectra of signals that evolve with time. More infor-

mation on the STFT is available in [29], [33] and [34]. 

4.1.1. Autoregressive fault detection 

There exists much written material about autoregressive fault de-

tection, but less empirical experimentation. This method has the 

capability to obtain high spectral resolution with short datasets 

[35]. More information on autoregressive fault detection is availa-

ble in [36], [37], [38] and [39].  

4.1.2. Prony analysis technique 

This analysis technique analyses transient component [39]. The 

technique is useful to determine complex natural resonances and 

complex amplitudes associated with exponential representations of 

waveforms [40]. More information on the Prony analysis tech-

nique is available in [3], [7], [37], [38], and [41]. 

4.1.3. Wavelet transform 

Wavelet transform are used to reduce the dimensionality of a vi-

bration signal [41]. Wavelet transform operate on the principle 

that all signals can be reconstructed from sets of local signals of 

varying scale and amplitude, but constant shape [14]. More infor-

mation on wavelet transform is available in [17], [21], [25], [31], 

[42] and [43]. 

4.2. Bilinear transforms 

Another class of time-frequency distributions is the so called bi-

linear transforms. Unlike spectrograms, they do not segment the 

data [34]. The WVD is the basic transform of bilinear transforms. 

The WVD is based on the instantaneous frequency, which is the 

derivative of the phase of the signal [2]. Bilinear transforms and 

STFT are used in similar applications and the selection between 

these transforms is often done experimentally. Further, the success 

of analysis depends on proper tuning of the parameters [33]. The 

WVD is widely utilised in a wide area of fault detection of me-

chanical structures, such as gear transmission or machine tool 

wear [30], [44].  

Amplitude modulated signals that are not found in spectrograms 

can be revealed by the WVD, because the frequency components 

or time domain transients are too close together. On the other hand, 

the bilinear nature of the WVD leads to interference between 

components in the time-frequency domain [29]. In addition, the 

cross terms between noise and signal makes WVD noisy. WVD 

even places the noise at times where the signal is pure from noise. 

The unambiguity is poor, because of the fact that WVD gives 

negative values unlike the spectrogram [28], [41].  
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4.2.1. Wigner-ville distribution 

The Wigner-Ville distribution (WVD) was first defined for quan-

tum mechanics by E. P. Wigner in 1932 and later by J. Ville [45] 

in 1948 that derived a joint representation from a mathematical 

foundation to utilise it in signal representation. This distribution 

approximates a specified time-frequency description in the mini-

mum mean-square error sense [46].  

The technique was developed to overcome a limitation of the 

STFT, where high-resolution cannot be obtained simultaneously 

in both the time and the frequency domains [42]. Due to similari-

ties the WVD has been interpreted by Flandrin and Escudié [47] 

as a modified version of the STFT. 

In the WVD, no reduction of the number of data points in the 

time-shifting operation is necessary [24]. The starting point for 

this distribution is the Fourier transform of the ensemble-average 

instantaneous correlation as shown in (16) [48]: 

 

2*( ) ( )
2 2
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−+  
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where x* is the conjugate of x for complex signals or Hilbert 

transform of x for real signals which, in theory, is a measure of the 

frequency content of a non-stationary random process x(t). How-

ever, in practice, it is never possible to compute the ensemble-

average function accurately, because an infinite number of data 

are necessary [48]. One solution to deal with the non-stationary 

case is to omit the ensemble-average in (17): 
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Equation (17) represents the WVD, which belongs to the class of 

bilinear frequency distributions defined by Cohen [28] and given 

by the equation below [46]: 
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Where ø(ξ, τ; t, v) is the kernel function, u is time and ξ and τ are 

the bilinear distribution time delays [49]. The discrete representa-

tion of (17) is [24]: 
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Where Ts is the sampling period and must be chosen so that Ts ≤ 

(π/2ωmax) and ωmax is the highest frequency in a random signal 

[28].  

5. Feature analysis 

This section provides an overview of artificial neural networks, 

feature selection and extraction, feature set reduction, fuzzy logic 

and pattern recognition. 

5.1. Artificial neural networks 

The area of artificial neural networks is well known and much 

written material exists, some of these are [31], [34], and [50]. 

5.2. Feature selection and extraction 

The vibration signals form a multivariate feature space. The re-

quired number of training samples for a classifier generally in-

creases exponentially as a function of the number of features, 

assuming uncorrelated data [1]. Furthermore, the performance of 

the classifier is closely linked to the quality of the features. 

The extraction of a compact feature set, which may still capture 

most of the correlation inherent in the original sample space, is 

thus crucial in a multivariate setting. Suitable feature extraction 

methods highlight the important discriminating characteristics of 

the data, while simultaneously ignoring the irrelevant attributes 

(i.e. noise) [1]. 

The frequency domain provides a useful feature set for machine 

diagnostics [4]. Machine defects are related to specific frequency 

domain features [4], [51]. The frequency domain is well suited to 

the detection of periodic machine vibrations. Impulsive vibrations 

are better analysed in the time domain than in the frequency do-

main. The wavelet transform analyses a signal jointly in the time-

frequency domain, subject to the uncertainty principle. The uncer-

tainty principle states that an increase in time resolution results in 

a decrease in frequency resolution and vice versa [52]. 

5.3. Feature set reduction 

The reduction of the feature set to the minimum required for ac-

ceptable modelling is important in the design of structured exper-

iments. The influence of a set of experimental variables on the 

response variable(s) is determined by conducting a series of exper-

iments. The resulting response surface may be used in a simula-

tion to augment the existing data set [52].  

Since the required number of experiments is exponentially propor-

tional to the number of experimental variables to be considered, 

the smallest possible number of features should be used. An ex-

haustive evaluation of all possible experiments would be prohibi-

tive. More sophisticated experimental design techniques would 

therefore be required to minimize the required number of hyper-

cubes to cover the multivariate space [43]. 

5.4. Fuzzy logic 

Fuzzy logic controllers have the ability to cope with knowledge 

presented in a linguistic form instead of a conventional mathemat-

ical framework [53]. Much written material exist on fuzzy logic, 

some of these are [34], [35] and [50]. 

5.5. Pattern recognition 

The performance of a non-linear classifier, such as a neural net-

work, is directly dependent on the number of training examples 

relative to the degrees of freedom (complexity) of the classifier 

[1], [54]. As a rule of thumb, the number of samples should be 10 

to 100 for each independent feature. 

Jack and Nandi [55] examine the use of support vector machines 

(SVM), a pattern recognition technique, in the detection of bearing 

faults in a test rig. The aim of the SVM technique is to find the 

largest separating hyperplane (support vectors). The kernel func-

tion maps the data, using a non-linear transfer function, into an-

other dimension in which the classes could be linearly separable 

with an appropriate choice of parameters.  

Jack and Nandi [55] also examine the important question of fea-

ture selection using a genetic algorithm (GA). Their [55] results 

indicate that the SVM comes close to the ANN without GA fea-

ture selection [55]. Using GA feature selection the SVM and ANN 

have comparable performance [56], [57]. 

A pattern recognition system consisting of sensing, pre-processing, 

feature extraction, classification and post processing is shown in 

figure 6. Pre-processing of data includes filtering, domain trans-

forms or segmentation of data. Segmentation of data is done in 

order to isolate one period of a signal or different operation modes 

from each other. The feature extraction converts the pre-processed 

data to sets of numerical values namely feature vectors that de-

scribe the different classes [58].  

The features should be selected such that for patterns of one class 

(such as healthy system) the sets of values are as similar as possi-

ble and that the sets differ as much as possible from the sets of 

other classes (such as a faulty system). In the classification phase, 
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the feature vectors are placed in one or several classes using tem-

plate matching, distance calculations or neural networks. 

 

 
Fig. 6: Phases of the Pattern Recognition System. 

6. Conclusion 

This paper provided a review of fault detection techniques on 

active magnetic bearing systems and electrical machines. An 

overview of the fault detection techniques currently available was 

provided. 

Fault detection techniques were categorised into linear and non-

linear processing techniques, with this paper focussing specifically 

on non-linear processing techniques. Non-linear processing tech-

niques were categorised into: 1) time domain analysis, 2) frequen-

cy domain analysis, 3) time-frequency analysis and 4) feature 

analysis. Figure 1 provided a tree diagram of the different fault 

detection techniques that was discussed in this paper. 

Certain features from frequency domain analysis can be generated 

to predict multiple faults, which can be determined by using the 

condition-monitoring techniques listed in section 3. Generally 

time-frequency analysis requires a lot of calculation power and the 

interpretation of the results require a lot of effort, which can be 

done by using the techniques listed in section 4. Measurable fea-

tures are normally features which provide the best results for a 

specific fault condition. More details on electrical machines are 

provided by [59]. 

References 

[1] A.J. Hoffman and C.J.A. Tollig, “Neural network recognition of 

partial discharge signals,” Proceedings of the Seventh South African 

Universities Power Engineering Conference, University of Stellen-
bosch, South Africa, Jan. 1997. 

[2] B. Bonato, R. Ceravolo, A. de Stefano, and M. Knaflitz, “Bilinear 

time-frequency transformations in the analysis of damaged struc-
tures,” Mechanical Systems and Signal Processing, no. 4, pp. 509-

527, 1997. https://doi.org/10.1006/mssp.1997.0094. 

[3] S.M. Kay, Fundamentals of statistical signal processing, Prentice-
Hall, 1993. 

[4] M.P. Norton, Fundamentals of noise and vibration analysis for en-

gineers, Cambridge University Press, 1989. 
[5] T. Honkanen, “Modelling industrial maintenance systems and the 

effects of automatic condition monitoring,” Helsinki University of 

technology, Feb. 2004. 
[6] B. Keeter, “Introduction to Weibull,” Technical Report, ARMS Re-

liability Engineers. 

[7] S.W. Lang and J.H. Mcclellan, “Frequency estimation with maxi-
mum entropy spectral estimators,” IEEE Transactions on Acoustic, 

Speech, and Signal Processing, vol. 28, no. 6, pp. 716-724, 1980. 

https://doi.org/10.1109/TASSP.1980.1163467. 

[8] J.I. Taylor, “The vibration analysis handbook,” Vibration Consult-

ants, 1994. 
[9] R.B. Randall, “Bearing diagnostics in helicopter gearboxes”, Pro-

ceedings of the Condition Monitoring and Diagnostic Engineering 

Management (COMADEM) Conference, pp. 1–11, Manchester, Sep. 
2001. https://doi.org/10.1016/B978-008044036-1/50001-9. 

[10] L. Meng and G. David, “Pitch detection,” University of Regina, 

March 2004. 
[11] D. Ho and R.B. Randall, “Optimisation of bearing diagnostic tech-

niques using simulated and actual bearing fault signals,” Mechani-

cal Systems and Signal Processing, vol. 5, no. 14, pp. 763–788, 
2000. https://doi.org/10.1006/mssp.2000.1304. 

[12] C.W. Reeves, The vibration monitoring handbook, First Edition, 

Coxmoor Publishing, Oxford, UK. 
[13] R.E. Uhrig, “Integration of artificial intelligence systems into a 

monitoring and diagnostic system for nuclear power plants,” Spe-

cial Meeting on Instrumentation and Control of the Halden Re-
search Centre, Lillihammer, 1998. 

[14] J. O'Brien and J. Macintyre, “Wavelets: An alternative to Fourier 

analysis,” Vibration in Fluid Machinery Seminar, Institution of Me-
chanical Engineer, Nov. 1994. 

[15] N.T. van der Merwe, “The application of signal processing and arti-

ficial intelligence techniques in the condition monitoring of rotating 
machinery,” PhD Dissertation, North-West University, 

Potchefstroom, 2004. 

[16] P.D. McFadden and M.M. Toozhy, “Application of signal averag-
ing to vibration monitoring of rolling element bearings,” Report no. 

OUEL 2216/99, University of Oxford, Department of Engineering 
Science, Oxford, 1999. 

[17] A.V. Bonaldo, “Wavelet transform: algorithm based in fast Fourier 

transform,” MSc. thesis, Mechanical Engineering Department, Fed-
eral University of Rio de Janeiro, 1993. 

[18] J.S. Mitchell, An introduction to machinery analysis and monitor-

ing, Pennwell, Second Edition, 1993. 
[19] J.S. Bendat and A.G. Piersol, Random data, analysis and measure-

ment procedures, Second Edition, John Wiley & Sons Inc., 1986. 

[20] P.P. Vaidyanathan, Multirate systems and filter banks, Prentice-
Hall, 1993. 

[21] N.G. Nikolaou and I.A. Antoniadis, “Application of wavelet pack-

ets in bearing fault diagnosis,” Proceedings of the 5th WSEAS In-

ternational Conference on Circuits, Systems, Communications and 

Computers (CSCC 2001), pp. 12–19, Greece, July 2001. 

[22] A.J. Hoffman and N.T. van der Merwe, “A comparative evaluation 
of neural classification techniques for identifying multiple fault 

conditions,” Proceedings of the 5th WSEAS International Confer-

ence on Circuits, Systems, Communications and Computers 
(CSCC), pp. 209–214, Greece, July 2001. 

[23] J. Shiroshi, Y. Li, S. Liang, and T. Kurfess, “Bearing condition di-

agnostics via vibration and acoustic emission measurements,” Me-
chanical Systems and Signal Processing, vol. 5, no. 11, pp. 693–

705, 1997. https://doi.org/10.1006/mssp.1997.0113. 

[24] Y.S. Shin and J. Jeon, “Pseudo Wigner-Ville time-frequency distri-
bution and its applications to machinery condition monitoring,” 

Shock and Vibration, vol. 1, no. 1, pp. 65-76, 1993. 

https://doi.org/10.1155/1993/372086. 
[25] A.N. Akansu and R.A. Haddad, Multiresolution signal decomposi-

tion, Second Edition, Academic Press, 2001. 

[26] A. Chalifoux and J. Baird, “Reliability centred maintenance (RCM) 
guide,” USACERL Technical Report 99/41, Construction Engineer-

ing Research Laboratories, Apr. 1999. 

[27] Waukeshu Bearings Corporation, The benefits of magnetic bearings. 
[Online]. Available: www.magnetic.waukbearing. 

com/products/magnetic_benefits/magnetic_benefits.html. 

[28] L. Cohen, “Time-frequency distributions - a review,” Proceedings 
of the IEEE, vol. 77, no. 7, pp. 941-981, 1989. 

https://doi.org/10.1109/5.30749. 

[29] F. Crenna, R.C. Michelini, and G.B. Rossi, “Measuring vibration 
patterns for rotor diagnostics,” Proceedings of the Instrumentation 

and Measurement Technology Conference (IMTC-96), pp. 597–602, 

1996. 
[30] M.C. Pan, P. Sas, and H. van Brussel, “Non-stationary time-

frequency analysis for machine condition monitoring,” Proceedings 

of the IEEE-SP International Symposium on Signal Processing, pp. 
477-480, 1996. 

[31] P.A. Paya and I.I. Esat, “Artificial neural network-based fault diag-

nostics of rotating machinery using Wavelet-transforms as a pre-
processor,” Mechanical Systems and Signal Processing, no. 11, pp. 

751-765, 1997. https://doi.org/10.1006/mssp.1997.0090. 

[32] R.O. Duda, D.G. Stork, and P.E. Hart, Pattern classification, John 

Wiley & Sons Inc., ISBN: 0471056693, 2000. 

[33] P.D. Forrester, “Use of the Wigner Ville distribution in helicopter 
transmission fault detection,” Proceedings of the Australian Sympo-

sium on Signal Processing and Applications (ASSPA), 1989. 

[34] G. Salles, F. Filippetti, and C. Tassoni, “Monitoring of induction 
motor load by neural network techniques,” IEEE Transactions on 

Power Electronics, vol. 15, no. 4, July 2000. 

https://doi.org/10.1109/63.849047. 
[35] C.K. Mechefske, “Objective machinery fault diagnosis using fuzzy 

logic,” Mechanical Systems and Signal Processing, no. 12, pp. 855-

862, 1998. https://doi.org/10.1006/mssp.1998.0173. 
[36] S. Mallat, A wavelet tour of signal processing, Second Edition, 

Elsevier (USA), 1999. https://doi.org/10.1016/B978-012466606-

1/50008-8. 
[37] S.L. Marple, "Spectral line analysis via fast Prony algorithm," Pro-

ceedings of the IEEE International Conference on Acoustics, 

Speech and Signal Processing, Paris, France, pp. 1375-1378, 1982. 
[38] S.L. Marple, Digital spectral analysis with applications, Prentice-

Hall Inc., 1987. 

https://doi.org/10.1006/mssp.1997.0094
https://doi.org/10.1109/TASSP.1980.1163467
https://doi.org/10.1016/B978-008044036-1/50001-9
https://doi.org/10.1006/mssp.2000.1304
https://doi.org/10.1006/mssp.1997.0113
https://doi.org/10.1155/1993/372086
https://doi.org/10.1109/5.30749
https://doi.org/10.1006/mssp.1997.0090
https://doi.org/10.1109/63.849047
https://doi.org/10.1006/mssp.1998.0173
https://doi.org/10.1016/B978-012466606-1/50008-8
https://doi.org/10.1016/B978-012466606-1/50008-8


International Journal of Engineering & Technology 6343 

 
[39] M.P. Ribeiro, “Inaccessible equipment monitoring via vibratory 

signature analysis utilizing data collected by remote accelerometers,” 
Department of Mechanical Engineering, University of London, Apr. 

1999. 

[40] A.J. Poggio and M.L. van Blaricum’s, “Evaluation of a processing 
technique for transient data,” IEEE Transactions on Antennas 

Propagation, vol. 26, no. 1, pp. 165-173, 1978. 

https://doi.org/10.1109/TAP.1978.1141803. 
[41] L. Eren and M.J. Devaney, “Motor bearing damage detection via 

Wavelet analysis of the starting current moment,” IEEE Instrumen-
tation and Measurement Technology Conference, Hungary, Buda-

best, May 21-23, 2001. 

[42] D.E. Newland, An introduction to random vibrations, spectral & 
wavelet analysis, Longman Scientific & Technical, 3rd Edition, 

1993. 

[43] G. Yen and K. Lin, “Wavelet packet feature extraction for vibration 
monitoring,” IEEE Transactions on Industrial Electronics, vol. 47, 

no. 3, June 2000. https://doi.org/10.1109/41.847906. 

[44] A. Karasaridis, M. Maalej, and S. Pantazopoulou, “Time-frequency 
analysis of sensor data for detection of structural damage in instru-

mented structures,” Proceedings of the 13th International Confer-

ence on Digital Signal Processing (DSP), pp. 817-820, 1997. 

[45] J. Ville, “Théorie et applications de la notion de signal analytique,” 

Cables et Transmission, vol. 2A, pp. 61-74, 1948. 

[46] J.C. Moss and J.K. Hammond, “A comparison between the modi-
fied spectrogram and the pseudo-Wigner-Ville distribution with and 

without modification,” Mechanical Systems and Signal Processing, 

Academic Press, vol. 8, no. 3, pp. 243-258, 1994. 
https://doi.org/10.1006/mssp.1994.1019. 

[47] P. Flandrin and B. Escudié, “Principe et mise en oeuvre de 

L’analyse temps-fréquence par transformation de Wigner-Ville,” 
Traitement du Sinal, vol. 2, no. 2, 1985. 

[48] M. Chiollaz and B. Frave, “Engine noise characterization with 

Wigner-Ville time-frequency analysis,” Mechanical Systems and 
Signal Processing, vol. 7, no. 5, pp. 375-400, Academic Press, 1993. 

https://doi.org/10.1006/mssp.1993.1022. 

[49] P. Flandrin, “Representation temps-fréquence de sinaux non-
stationnaires,” Traitement du Sinal, vol. 6, no. 2, pp. 89-101, 1989. 

[50] M.E.H. Benbouzid and H. Nejjari, “A simple fuzzy logic approach 

for induction motors stator condition monitoring,” International 
Electric Machines and Drives Conference (IEMDC), pp. 634-639, 

2001. 

[51] B.K.N. Rao, Handbook of condition monitoring, First Edition, 
Elsevier Advanced Technology, 1996. 

[52] M.S. Nixon and A.S. Aguado, Feature extraction and image pro-

cessing, First Edition, Elsevier, 2002. 
[53] M.N. Cirstea, A. Dinu, and J.G. Khor, Neural and fuzzy logic con-

trol of drives and power systems, Elsevier Science, 2002. 

https://doi.org/10.1016/B978-075065558-3/50003-9. 
[54] S. Haykin, Neural networks: A comprehensive foundation, Macmil-

lan, 1994. 

[55] L.B. Jack and A.K. Nandi, “Fault detection using support vector 
machines and artificial neural networks, augmented by genetic al-

gorithms,” Mechanical Systems and Signal Processing, vol. 3, no. 

16, pp. 373–390, 2002. https://doi.org/10.1006/mssp.2001.1454. 
[56] K. Fukunaga, Introduction to statistical pattern recognition, Second 

Edition, Academic Press, 1990. https://doi.org/10.1016/B978-0-08-

047865-4.50007-7. 
[57] S. Theodoridis and K. Koutroumbas, Pattern recognition, Second 

Edition, Elsevier (USA), 2003. 

[58] C.M. Bishop, Neural networks for pattern recognition, Oxford Uni-

versity Press, 1995. https://doi.org/10.1201/9781420050646.ptb6. 

[59] N. Zabihi, R. Gouws, “A Review on Switched Reluctance Ma-
chines for Electric Vehicles”, IEEE International Symposium on 

Industrial Electronics (IEEE ISIE-2016), pp. 799-804, 2016. 

https://doi.org/10.1109/ISIE.2016.7744992. 

https://doi.org/10.1109/TAP.1978.1141803
https://doi.org/10.1109/41.847906
https://doi.org/10.1006/mssp.1994.1019
https://doi.org/10.1006/mssp.1993.1022
https://doi.org/10.1016/B978-075065558-3/50003-9
https://doi.org/10.1006/mssp.2001.1454
https://doi.org/10.1016/B978-0-08-047865-4.50007-7
https://doi.org/10.1016/B978-0-08-047865-4.50007-7
https://doi.org/10.1201/9781420050646.ptb6
https://doi.org/10.1109/ISIE.2016.7744992

