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Abstract

This dissertation presents a method for selecting a micro-controller unit (MCU). The driving force
behind this method is to determine whether or not a MCU will have enough processing power for a
complex control algorithm to execute within its available control period. The �rst iteration of the
method can be used to rede�ne the criteria that the MCU must adhere to. The method has been
implemented, and a MCU was evaluated. The evaluation of the MCU gave enough information
to estimate additional parameters for the criteria. From this updated criteria list a second MCU
was chosen that adhered to all the items of criteria except the operating frequency. This was
intentionally disobeyed to show that the evaluation part of the selection method would conclude
that this MCU will not be able to execute the complex control algorithm within the available control
period. The �rst MCU that was evaluated was then used to implement the control algorithm for
the intended application. The selection of a MCU and the timing estimations serves as veri�cation
of the selection method. The successful control of the plant and the time the control algorithm
took to execute which converged with the estimated timings serves as validation of the selection
method.

Keywords� AMB, PMSM, Period, MCU, Control, Frequency, Selection, Peripherals, Simulink, Mat-
lab, Embedded, Coder, STM32, Controller, Discrete, Method
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Chapter 1

Introduction

1.1 Background

1.1.1 Introduction

Selecting a MCU for a control project can be a daunting task. A guide on how to select a MCU for
an application seen in [8] falls short when it comes to determining if a speci�c controller will be able to
support the intended application. Often an overpowered MCU is selected to ensure successful operation.
This is especially true for complex control algorithms. Selecting a MCU that will not be able to support
the application can become an expensive venture. It would be bene�cial if it can be said with certainty
that a speci�c MCU will run the application with the required performance.

1.1.2 Example

Introduction

Consider a system where a ferromagnetic material needs to be levitated in mid-air using electromagnets.
There is extensive research on systems like these especially in the �eld of electric machines. Instead of
using ball bearings (between the rotor and the stator) researchers in this �eld replaced it with an AMB.
AMBs are essentially electromagnets con�gured in a speci�c manner to establish levitation of the rotor.

Technical details to example

An author who designed such an AMB system determined that the control loop of his system need to be
executed at a frequency of 10 kHz [9]. He needed to implement his control on a MCU or single board
computer (SBC) in order to verify his AMB controller. The author broke the control loop down to very
basic assembler code to determine the speci�cations of the processor within the controller needed [9]. This
gave a rough estimation of the minimum mega �oating operations per second (MFLOPS) the controller
needed to execute. These estimations do not consider the architecture of the controller or any time delays
between the memory and central processing unit (CPU), but purely the computational timings. This
method also doesn't consider the delays associated with the peripherals or delays of any interface (I/F)
electronics. From the results of the mentioned author, the estimated execution time does not match the
implemented execution time. It was estimated that the control of the AMB system would execute within
5 µs whereas the implementation of the AMB control was executed in 18.18 µs. The implemented control
took a factor of 3.6 longer than calculated. The estimations and recorded timings in this example were
done on an AMB system with 5 AMB stators [9]. This author did not know how to specify the processing
requirements for a MCU correctly. The reasoning behind the assembler decomposition was a step in the
right direction.

Reason for more background information

To solve this large deviation, it is important to note at what stage in the author's methodology this
calculation has been used.

1.1.3 Systems design

Developing a system for a speci�c application which involves electronics has a methodology to it. A proven
and most widely used methodology is the systems design approach. This methodology was also used by

17
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the previously mentioned author [9]. The methodology for a project which involves the control of a plant
will look more or less like this:

Methodology:

1. Introduction

2. Problem Statement

3. Plant

4. Controller

5. Simulations

6. Implementation

7. Control veri�cation

The big deviation between the estimated execution time and the implemented execution time would form
part of the implementation stage of the methodology as mentioned above. However, to move on to the
implementation stage, information from the controller stage is needed.

1.1.4 Control loop and control frequency

The control loop forms part of the "Controller" section of the systems design approach. Figure 1.1 is a
typical example of a control loop. The control algorithm can be seen as the controller subsystem, the
reference, the feedback from the system and the output to the plant.

Figure 1.1: Typical Control Loop

A control law will include the following stages: feedback stage, processing stage and an output stage.
Concerning digital control, the control law will need to be executed at a designed frequency. The feedback,
processing and output stage will each consume a portion of the control period. The control period is
de�ned as:

Tcontrol =
1

fcontrol
, (1.1)

where Tcontrol is the control period and fcontrol is the control frequency.
The control period executed at a designed control frequency is illustrated in Figure 1.2. A single control

period can also be seen as a control step. Each control step will include the previously mentioned feedback,
processing and output stages. Considering a single control step as a function, the control frequency can
be established by calling the function at the designed control frequency. If the function is called in a
continuous polling manner and the accumulated time that each stage consumes exceeds the control period,
the designed control frequency will not be met. This phenomenon is called an over-run. If the accumulated
time does not exceed the control period, the CPU of the MCU will do nothing within that remaining time
of the control period. The concept explained above is captured by the timeline shown in Figure 1.2.

Figure 1.2: Control Period
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1.1.5 Implementation

MCU selection

The selection of a MCU forms part of the Implementation section of the systems design approach. The
information from the control section will assist in compiling a list of speci�cations that the MCU must
adhere to. The methodology of selecting a micro-controller can be seen below:

1. Get requirements for MCU.

2. Compiling a list of MCUs with requirements from step 1.

This list of requirements must include the peripherals that the MCU will need. The requirements
should also include the type of CPU the MCU should utilise. This implies whether or not the CPU should
include a digital signal processing (DSP) unit or a �oating point unit (FPU).

Examples

In the academic literature there seems to be a trend regarding the implementation of a control law. A
short list of control research for AMBs and PMSMs can be see in Table 1.1. Most academics use SimulinkR©

to design and test a control concept. The advantage to using SimulinkR© is that the implementation of
this control law is usually done on a dSpace controller. The dSPACER© company has made it very easy
for control theory academics to implement their designed controller onto the dSPACER© hardware. The
hardware support package that dSPACER© made for SimulinkR© has made it easy to implement a controller
on their hardware. More details on hardware support packages for SimulinkR© can be seen in Section 2.7.2.

Table 1.1: Summary of simulation packages and controllers used
Author Control

application
Simulation
package used

Implemented
controller

AMB
Steyn [10] H AMB SimulinkR© dSPACER©

Myburgh [7] AMB SimulinkR© dSPACER©

Kiani [11] Hybrid 3 pole AMB ? Pentium 4 CPU
Aucamp [12] Model predictive

AMB
SimulinkR© dSPACER©

Le Roux [13] AMB ModelSim and
MatlabR©

FPGA

PMSM control
Zolfaghari [14] Neural PMSM

control
SimulinkR© dSPACER©

De Klerk [15] PMSM SimulinkR© dSPACER©

Qutubuddin [16] Brain emotional
PMSM

SimulinkR© FPGA

Guo [17] In wheel PMSM ? TI
Kruger2011 [6] Vector PMSM SimulinkR© dSPACER©

AMB and PMSM control
Kruger2014 [18] AMB, PMSM control SimulinkR© dSPACER©

Baumgartner [19] Slotless self-bearing
PMSM

ANSYS and
COMSOL

FPGA

Herbst [9] AMB and PMSM SimulinkR© TI

Current selection helpers

The big-O notation is a good estimate to determine how complex and computationally expensive an
algorithm is. However, it can not give a clear answer to whether or not a MCU will be able to execute the
control within the required timeframe of the control frequency. More information about the big-O notation
can be seen in Section 2.6. Benchmark software for embedded MCUs also exists but requires the MCU in
order to classify the computational intensity of the control algorithm to the benchmark. The Embedded
Microprocessor Benchmark Consortium (EEMBC) has a variety of benchmark suits which can be used.
More information about this can be seen in Section 2.4.
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1.2 Problem statement

No clear method can precisely determine if a MCU would be able to execute a speci�c control algorithm
within a certain time �budget�. There is a trend where the engineer selects an overpowered controller for
the application or sticking with what he/she knows. The engineer is used to working with a speci�c brand
and MCU line with regards to his/her experience with that micro-controller. The use of a dSPACER©

controller or an overpowered MCU, however, is not possible in all scenarios. This is especially true for
the world outside academia. The cost of a dSPACER© controller is expensive, and an overpowered MCU
is unnecessary if the cost can be reduced by selecting a cheaper MCU that will �t the application and its
cost. A solution between the big-O-notation and EEMBC benchmark software is needed.

1.3 Issues to address

1.3.1 Introduction

A method for selecting a MCU which will be used for a real-world application (not just for academic
purposes) is needed. A method that will provide certainty about a possible MCU. Determining how much
delay a peripheral will add to the control period can be calculated.

Issues that will be addressed can be seen in the list below:

• Find a way to select a MCU which will be able to execute the intended application within its time
budget.

• Determine how to validate that the selection method has successfully provided a MCU that can
execute the intended application within the required time budget.

1.4 Methodology

During this dissertation a MCU selection method will be designed, implemented, veri�ed and validated.
For a selection method to be designed and implemented, a proposal on how the method will work can be
seen in Section 1.4.1. The veri�cation and validation for this dissertation is explained in Section 1.4.2 and
1.4.3 respectively.

1.4.1 Proposal

Table 1.1 shows examples of complex control algorithms. These algorithms can be used as a starting point
for the selection method. The proposal commences just before the implementation stage. The control
chosen from the table is already simulated and veri�ed within SimulinkR©. This is where the plant's time
constant can be obtained as well as the controller's time constant. It is recommended that the control in
SimulinkR© be tested with a discrete controller. It is also recommended to test the e�ects of double, single,
�xed point and integer �nite word length e�ects. These e�ects can be investigated, and ultimately the data
type can be chosen accordingly. The discrete controller will have a cycle time or execution frequency(In
most cases this will be equal to each other). Call this Y.

The next step would be to identify MCU candidates for the implementation of the discrete controller.
This can be done by compiling a list of required hardware peripherals that the controller must include.
The speci�cation of the hardware peripherals can also be calculated from the information obtained by the
simulations. It is also recommended to include the e�ects that these hardware peripherals will have on the
controller in the simulations.

The list of candidates will most likely have di�erent architectures, integrated development environment
(IDE)'s, compilers, etc. All of the supporting software should be downloaded at this stage. The supporting
IDE will most likely have an instruction-set simulation program embedded into it. These programs will
also most likely have the functionality of a "virtual stopwatch".

The next step will be to use SimulinkR© to compile the control algorithm to c/c++ code. If SimulinkR©

was not used, the next step will be to convert the simulations into use-able code for a speci�c MCU.
The stopwatch can then be used to obtain the total time the controller will take to execute the coded

control algorithm. Call this X.
The answer to whether or not the chosen MCU will be able to execute and control the plant can be

answered in the following manner:
MCU load is the time of the executed algorithm normalised to the control period:

Load =
X

Y
× 100%

The output of this calculation should be less than 100%. The engineer should use his/her own discretion
when selecting a MCU which operates close to 100% load.



1.5. DISSERTATION OVERVIEW 21

1.4.2 Veri�cation

Veri�cation is concerned with determining whether or not a speci�c algorithm or equation has been imple-
mented correctly. This is typically done by means of comparisons to literature or empirical data. For this
work, the veri�cation is mainly concerned with the estimated execution time which the selection method
is based on. Detailed results of the veri�cation process can be found in Chapter 4 Section 4.3.9 and 4.3.10.

1.4.3 Validation

The main purpose of validation is to determine whether a solution meets the initial requirements.
This implies that, if the MCU identi�ed by the selection method is acceptable, then the estimated

performance speci�cations would be achievable in practice.
Thus, in order to validate this research, an identi�ed MCU will be used to realise automatic control of an

AMB system (as a case-study problem). Details of the validation, as well as the performance measurements
of the implemented system, can be found in Chapter 5 Section 5.2.

1.5 Dissertation overview

Chapter 2: Literature
Chapter 3: Method Design
Chapter 4: Method Implementation
Chapter 5: Results and veri�cation
Chapter 6: Conclusion and recommendations
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Chapter 2

Literature

2.1 Introduction

The research needed for the successful design of the selection method was documented in this chapter. To
design a MCU selection method a deep understanding of the MCU is needed. It is also recommended to
understand how the instruction sets work and a how a control algorithm will utilise the instruction set
and the MCU architecture. Methods to express the control algorithm will be investigated. Methods to
express a MCU's processing power will also be investigated. Finally, the literature will present authors
that implemented some selection method strategy.

2.2 Micro-controllers

A MCU is a device which can be programed to control a wide variaty of devices. The use of a MCU is
needed in applications which requires a bit more complexity to it or has more than one function it needs
to execute. A MCU consists of the following parts [1]:

• The CPU
• Memory
• And the peripherals

2.2.1 CPU

Figure 2.1 is an example of how a CPU works. The program is stored in the program memory. With each
clock cycle, the program counter is incremented. The instruction that needs to be executed is located in
the memory that the program counter is pointing to [1]. The contents of this memory are the instruction
that needs to be executed along with any additional parameter(s) that the instruction might need. The
instruction at this memory location is copied to the instruction register where it is decoded and executed.
The execution of the instruction is realised through the use of prede�ned logic function blocks. The output
of these logic blocks is routed to the control lines of the CPU [1]. Each logic block can be seen as an
instruction. A collection of instructions is called an instruction set.

2.2.2 Memory

Memory is divided into two categories namely: volatile and non-volatile [1]. Volatile memory loses its data
when it is switched o�. Non-volatile memory retains its data when it is switched o�. Program memory
is located in non-volatile memory. Each MCU will make use of both types of memory. The non-volatile
memory will be used for the program memory whereas the volatile memory will be used as random access
memory (RAM) [1].

2.2.3 Peripherals

Alongside the CPU and the memory, a MCU will have peripherals. Peripherals can be seen as highly
specialised function blocks which are separate from the CPU. Communication and use of the peripherals
are established with a data bus. Each peripheral will have registers in the memory space which will be
used to establish the control and use of the peripheral. The peripheral uses these registers to execute their
speci�ed function. A list of peripherals commonly found in MCUs can be seen in the list below:

• Timers
• analog to digital converter (ADC)

23
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Figure 2.1: How MCUs execute programs [1]

• digital to analog converter (DAC)
• serial peripheral interface (SPI)
• inter-integrated circuit (I2C)
• universal asynchronous receiver transmitter (USART)
• direct memory access (DMA)

2.3 Instruction sets

As mentioned in Section 2.2 a MCU has a CPU embedded in it. A CPU has registers which temporarily
hold information [20]. These registers are used by the instructions that will be executed. The program
counter and the DPTR registers also play an important role in the use of instruction sets [20]. A CPU
only understand binary numbers. The use of assembly language makes it easier for the programmer
to understand and program the MCU. The assembly language is a text-based language which can be
converted to binary code for the CPU to execute [20]. The assembly language has structures which need
to be adhered to in order for it to be compiled to machine code [20]. The instructions that a CPU can
execute is given by the manufacturer to explain the functions of each instruction that the CPU can execute
[20].

The structure of an assembly instruction can be seen in Listing 2.1 [20]. The square brackets indicate
that its contents are conditional to the instruction. The label: is used to obtain the pointer address
of the current line/instruction. This label can then be used at a later stage to address this line. The
mnemonic is the word that represents an instruction. The mnemoic is a descriptive text based word of the
instruction. The operands is the location where the function's parameters will be entered. These operands
will be provided by the manufacturer's description of the function. The comment serves no purpose to the
instruction. The programmer can use this to provide additional information about the program at this
instruction or line.

Listing 2.1: Assembly instruction structure [20]

[ l a b e l : ] mnemonic [ operands ] [ ; comment ]

Each instruction requires a certain amount of cycles to execute. The manufacturer will provide this
amount along with the description. This cycle count per instruction (ncycles) can also indicate the
time (tduration) the instruction will used to execute, as a cycle has a direct relation to the operating
frequency(foperating). This relation can be seen in (2.1).

tduration ∝ ncycles ∝ foperating (2.1)

Equation (2.1) is very important when it comes to determining the performance of a MCU. This
relationship can be used to not only determine the time a single instruction takes execute but can be used
to convert a number of cycles to a time.
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2.4 Benchmarking

Benchmarking uses the concept which was communicated by (2.1). It uses this concept and a number of
algorithms written in c-code and compiled for the speci�c MCU to the speci�c instruction set that it uses.
Benchmarks use eight di�erent categories to score a MCU's architecture, peripherals and the compiler used
for programming [21]. The benchmark will run a series of code testing each category. The benchmark
will then evaluate that category based on how long the MCU took to execute it. A weighted sum of the
categories is then used to compile a single score that can be seen as the benchmark score [21]. These
categories can be seen in the list below [21].

• �xed-point mathematical algorithms
• �oating-point math. algorithms
• logical calculations
• digital control
• loops and conditional jumps
• polynomial calculations
• fast Fourier transform
• lookup tables

As stated previously the benchmark scores the MCU on each of these categories. Using these scores, the
benchmark is calculated and provided as a single score. Benchmarking of a MCU gives a clear answer to
the performance of the MCU.

Benchmark scores of a MCU can help select whether or not a MCU has enough processing power to
execute the intended application [22]. In terms of the Dhrystone benchmark, MCUs running an operating
system (OS) requires 300-400 Dhrystone mega instructions per second (DMIPS) whereas a real-time op-
erating system (RTOS) would require as little as 50 DMIPS [22]. This article provides estimates to what
benchmark scores is for these applications, but a more concrete answer for a speci�c application is needed.

2.5 Digital control theory

A typical second order plant can be represented by (2.2) [2].

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(2.2)

Where ωn is the natural frequency, ζ is the damping ratio, and s is the s-domain variable.

The time domain equivalent of this plant for a step input can be seen in (2.3) [2].

y(t) = 1− 1

β
e−ζωnt sin(ωnβt+ θ) (2.3)

Where t is time in seconds, β =
√

1− ζ2, and θ = cos−1 ζ, and 0 < ζ < 1

The e�ects of varying the damping ratio from 0.1 to 2 can be seen in Figure 2.2.
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Figure 2.2: Transient response of a 2nd order system for a step input [2]

The settling time of a control system can be seen in Figure 2.3. Equation (2.4) can be used to calculate
the settling time (Ts).

Figure 2.3: Step response of a control system [2]

ζωnTs = 4 (2.4)

The settling time is equal to 4 time constants. Thus the time constant can be calculated in (2.5). The
settling time is derived from (2.3) by �nding the point in time where the equation stabilizes within a 2%
margin (δ) [2].

τ =
1

ζωn
(2.5)
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Digitising the control of a plant has a destabilising e�ect. The destabilising e�ect of a zero-order hold
with regards to a step input can be seen in Figure 2.4. The sampling period of the digital controller in
this �gure is equal to the time constant of the continuous system.

Figure 2.4: Destabilizing e�ects of zero-order hold [3]

Table 2.1 shows the e�ects that a controller's sampling frequency (time constant) has on the control
of the plant. The closer the values in the �rst column is to 1 the more accurate the digital controller will
control the plant with respect to the equivalent s-domain controller. τ in the second column refers to the
time constant of the plant whereas T refers to the sampling period of the digital controller.

Table 2.1: Samples per time constant [3]
Accuracy relation to s-domain τ/T
0.999 999.5
0.99 99.5
0.9 9.5
0.8 4.48
0.4 1.09

Using this table the digital control theory book [3] concludes that a general rule of thumb is that the
digital controller needs a time constant of at least �ve times smaller than the plant's time constant to
accurately control the plant.

2.6 Big-O-notation

The big-O-notation in computer science provides a formulation of time taken by the algorithm vs the
number of inputs into the algorithm [23]. The big-O-notation does not provide the exact timing of an
algorithm executed on an architecture but rather provides the relationship between the number of inputs
and the output time. In a control scheme, the number of inputs will always be �xed. The big-O-notation
can provide an answer to how much longer a control scheme will take if the number of inputs increases.
Thus the big-O-notation will only provide a classi�cation to how complex a control scheme is [23].

2.7 Code generation software

The use of code generation software enables rapid prototyping by generating software which will be used to
program the MCU according to the project's needs. Two code generation programs will be discussed in this
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section. The output of these code generation programs can then use the relationship mentioned in (2.1)
to calculate the timings of the MCU or the Big-O-notation can be applied to the generated algorithms.

2.7.1 CubeMX

STM32CubeMX is a STMicroelectronicsR© product [24]. The software is a graphical software con�guration
tool used to generate code to initialize a STM32 MCU and it's peripherals. The con�guration tool makes
use of STMicroelectronicsR©'s hardware abstraction layer (HAL) or low layer (LL) application programming
interface (API), and the ARM cortex microcontroller software interface standard (CMSIS) to initialize the
MCU. The con�guration tool can create a project for a variety of IDEs. The project �le is used to setup
the compiler and the programming toolchain to program the MCU. This tool: "make developers' lives
easier by reducing the development e�ort, time and cost" [24].

The generic structure of HAL API for a peripheral has functions that will initialise the resource, start
the functionality of the resource and �nally terminate the resource if need be. All necessary initialization is
done by the STM32CubeMX con�guration tool [24]. The programmer can start the resource when needed
and ultimately terminate it if need be. The HAL API do, however, have a detailed description on how to
use the API at the beginning of each source �le, if further detail of software is needed.

2.7.2 MatlabR©/SimulinkR©

The SimulinkR© Coder add-on is for SimulinkR© is used to generate C and C++ code from the SimulinkR©

models, State�ow charts and MatlabR© functions. The source code generated by this add-on can be used
for real-time and non-real-time applications. This enables functionalities like simulation acceleration, rapid
prototyping and hardware-in-the-loop testing [5].

Key features of SimulinkR© Coder will include can be seen in the list below [5]:

• ANSI/ISO C and C++ code and executables for discrete, continuous, or hybrid SimulinkR© and
State�ow models

• Integer, �oating-point, and �xed-point data types using row- and column-major layout

• Code generation for single-rate, multi-rate, and asynchronous models

• Single-task, multitask, and multicore code execution with or without an RTOS

• External mode simulation for parameter tuning and signal monitoring using XCP, TCP/IP, and
serial communication protocols

• Incremental and parallel code generation builds for large models

The Embedded CoderR© add-on can extend the functionality of the SimulinkR© Coder. The Embedded
CoderR© will generate C and C++ code which is faster, more readable and compact [5]. This add-on allows
for more control over generated functions, �les and data [5].

Key Features the the Embedded coderR© has is listed below [5]:

• Optimization and code con�guration options extending Matlab Coder
TM

and SimulinkR© Coder

• Storage class, type, and alias de�nition using data dictionaries

• Multirate, multitask, and multicore code execution with or without an RTOS

• Code veri�cation, including SIL and PIL testing, custom comments, and code reports with tracing
of models to and from code and requirements

• Standards support, including ASAP2, AUTOSAR, DO-178, IEC 61508, ISO 26262, and MISRA C
(with SimulinkR©)

• Advanced code optimizations and device drivers for speci�c hardware, including ARMR©, IntelR©,
NXPR©, STMicroelectronicsR©, and Texas InstrumentsR©

2.8 Interface electronics

Introduction

Communication with external components is sometimes needed. There are di�erent ways of communi-
cating with external components. The need to communicate with external could be because the internal
components of the MCU are absent or it is not good enough. Using external components can be time-
consuming with respect to the time that the MCU has available within the control period. The use of
external components needs to be carefully chosen to �t the time constraints of the project.
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External peripheral interfaces

Parallel

A parallel interface is where several bits (usually 4 or 8) is clocked to the IC at once. This is an extremely
fast I/F but is limited to the speed at which external component can be updated. This is usually given in
mega samples per second (MSPS) [25].

SPI

The SPI peripheral is a serial communication device. A serial communication device clocks the bits of the
data one at a time. A SPI peripheral makes use of a 3 wire system [25]. The 3 wires consist of a MISO,
MOSI and clock ports. The SPI device can either be a master or a slave. The MOSI port of a SPI device
can be seen as the outgoing data port. The MISO port of a SPI device can be seen as the incoming data
port. Each pulse of the clock port indicates to the SPI devices that there is a bit on the incoming/outgoing
port. In a network of SPI devices, there will be a single master device and multiple slave devices [25]. The
master device is responsible for the generation of the clock port. A 4 wire SPI system is exactly like the
3 wire system. However, the 4th port on the 4 wire system is the slave select port (SS). In a network of 4
wire SPI devices, the master is also responsible for providing the slaves with their SS signals [25].

I2C

The I2C interface also uses a clock and a data line to establish communication between devices [25]. A data
transfer on the I2C I/F starts when a master device produces a start condition [25]. The start condition
is followed by one or two bytes that contain the address and control information. All the I2C devices on
the I/F has an address [25]. If the I2C device is not acting as the master, the devices will listen to the
communicated data. The device would act upon the communication if the data were intended for it [25].

Evaluation of technologies

A parallel I/F will be the fastest I/F to use. This I/F does, however, need a large amount of general purpose
input output (GPIO) pins to be realised. The SPI I/F is very fast and can be used to communicate data
with speeds up to 50 Mbps. The use of a SPI I/F with a large number of SPI slaves can become expensive
in terms of GPIO use. The slaves that are being communicated to need to be selected. Thus the required
GPIO pin count increases as the number of slave devices increases. The use of an I2C I/F on the other
hand does not use the slave select method. The I2C I/F uses an addressing method to communicate
with multiple devices on the same bus. This method does increase the total number of bits that need to
communicate on the I/F which leads to a larger delay between the start of communication and the start of
the intended function of the I2C device. In general, I2C devices in comparison to SPI devices has a slower
data transfer speed.

2.9 Current selection methods

Morishima [26] simulated the control algorithm with a combination of SimulinkR© and Synopsys CoMET.
CoMET is an instruction set simulation (ISS) which is used to simulate the instructions generated by
MatlabR©. CoMET accumulates the cycles that the control algorithm uses to execute and control the plant
completely. The article used this method to compare di�erent control techniques for motor control of a
hard disk drive (HDD). The cycle counts between the di�erent control techniques were compared and
evaluated [26]. This article showed that constraints liken RAM size, ROM size and operating frequency
can be obtained through code simulation.

A constraint satisfaction algorithm can be used to assist in MCU selection by matching design require-
ments to the capabilities of individual MCU pins [27].

A neural network can be used to extract relevant information from large MCU databases [28]. An
article presents a method for self-organising maps to help assist in the selection of a MCU.

Another way on deciding what MCU needs to be selected is by using a weighted decision matrix [29].
Using a weighted decision matrix requires experiments/experience with said MCUs to provide a score for
the matrix accurately.

2.10 Conclusion

A MCU consists of several parts. One of these parts is the CPU. The CPU may or may not include a FPU
or DSP core. Each MCU has an instruction set that it uses. These instruction sets will include functions
to utilise all the functions of the MCU. This implies that if the CPU has a FPU or DSP core that the
instruction set will include instructions for these cores. The compiler that will be used to convert c-code
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to binary code will be specially designed to utilise the special instructions if need be. Thanks to programs
like STM32CubeMX and MatlabR©/SimulinkR© the c-code can be automatically generated for the control
algorithm designed in said package. This enables a developer to concentrate on the control of the plant
and the digitisation of it. The developer can then focus more on the selection of the MCU and the I/F
electronics needed. Benchmarking, the big-O-notation and the methods mentioned in Section 2.9 can be
used to assist in the selection process.



Chapter 3

Method design

In this chapter, the controller selection method will be designed. This chapter will also cover simulation
recommendations for the intent to convert the simulation to program code which can be used for the em-
bedded application. This chapter will also cover simulation recommendations that will assist the selection
method to accurately estimate the parameters required for the MCU and detailed steps of the selection
method.

3.1 Introduction

A controller simulation will start with the modelling of a plant. The plant will then be tested with ideal
theoretical sources. A controller will then be designed to utilise these sources to control the plant. When
the controller shows promising results, the ideal sources can be replaced with more realistic sources that
will most likely be used at implementation. The e�ects of these realistic sources can (if necessary) be
compensated for by the controller. Controlling these realistic sources might also have some e�ects on the
plant and the control thereof. Compensating for these e�ects will ensure successful implementation of the
controller. The gist of this is that any hardware that will be used to control the plant, which will a�ect
the control, need to be simulated for the controller to control the plant.

3.2 Methods overview

3.2.1 Selection method

The proposal is repeated and summarised here for convenience. These steps will be the basis of the method
that will be designed. These steps are done after the simulation of the discrete controller in SimulinkR© and
trade-o� studies for the hardware of the project. This implies that both the control and all the hardware
to control the plant has been decided on. The method to choose a MCU is:

1. Obtain all necessary plant information from discrete controller simulations done in SimulinkR©.
2. Using the information from step 1, compile a list of possible MCUs to use for the project.
3. Obtain the supporting software for the MCUs
4. Compile the discrete controller of the simulations to code which will be used on the MCU.
5. Use supporting software in simulated debugging mode and time the control step.
6. Evaluate how much did the algorithm use of the control period.

Please note that a detailed explanation of step 1 in the list above is discussed in Section 3.4.1.

3.2.2 Method validation

A more traditional approach that most people use for validation that the MCU will be able to implement
a control algorithm can be seen below. This method can also be used to validate the selection method
that will be designed.

Method:

1. Set an unused GPIO pin high at the beginning of the algorithm
2. Set the same unused GPIO pin low at the end of the algorithm.
3. Follow the necessary steps in the IDE to �ash the code to the MCU.
4. Use an oscilloscope to view the waveform generated by the GPIO pin.

31
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The waveform generated can be used to provide two critical details to the execution of the control
algorithm. The period of the waveform will represent the chosen control period(also equal to the sampling
period). The timing of the duty cycle is the time the MCU took to execute the control algorithm. This
time can be used to validate the selection method as mentioned in Section 1.4.3.

3.3 Considerations

3.3.1 Using SimulinkR© for the intend to program an embedded system

A good simulation will lead to a better speci�cation estimation for a MCU. After this, the controller
can be converted to a discrete controller (assuming the control was simulated in a continuous SimulinkR©

model) and the e�ects of this can be compensated for. A trade of study can be made on the e�ects that
data types have on the controller.

Introduction to an example

A good example of a simulation can be seen in Figure 3.1. This simulation is done by MathWorks [4]. The
simulation simulates the physical parameters in order to realise a linear actuated motion by means of a
direct current (DC) motor given an input command.

Figure 3.1: Screen-shot of MathWorks example simulation of a DC motor linear actuator [4]

Goal of example

From this simulation, the speci�cations of the motor, electronics and other hardware components can be
obtained. The goal of this simulation was to obtain information like this. This simulation was also created
to implement the speed and current control with analog electronics.

Recommendations for simulation

This example also shows how a simulation can grow during the development of the simulation. It also
shows how the hardware a�ects the control and the plant. It is recommended to develop the simulation
over time in a similar manner in order to make a better-informed decision when it comes to hardware and
MCU selection. The growth of a simulation will follow.

Extending example

However, it is possible to control this system with a MCU instead of analog electronics. All the speci�cations
for the hardware have been obtained by the simulation so far, but if we want to implement a MCU
instead of the analog electronics, it is recommended to simulate additional discrete controller e�ects. The
"SimulinkR©" variant is selected for the speed and current control subsystem. It is recommended to test
the e�ects that �xed point, and �oating point data types have on the system. The e�ects that these data
types can be evaluated in order to determine if a FPU with a MCU is needed. All of this can be done
within the speed and current control subsystem.

Preparing extended example for MCU implementation

The speed and current control subsystem can then be used to generate code for a MCU. The inputs and
outputs of the MCU from and to the plant need to be established by means of communication with the
MCU's peripherals.
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Growth of a simulation

The simulation starts with a plant. This can be seen in Figure 3.2.

Figure 3.2: A DC motor linear actuator

This plant is controlled by an ideal voltage source. This can be seen in Figure 3.3.

Figure 3.3: Ideal Simscape voltage source

The controller needs to control both the current and the speed. The ideal motion and current sensors
for this can be seen in Figure 3.4 and 3.5 respectively.

Figure 3.4: Ideal Simscape motion sensor
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Figure 3.5: Ideal Simscape current sensor

These sources and sensors were then used to test the proportional integrate (PI) current and PI speed
control. This control can be seen in Figure 3.6.

Figure 3.6: Speed and current control subsystem

The contents of the current and speed control subsystems can be seen in Figure 3.7 and 3.8 respectively.

Figure 3.7: Current control subsystem

Figure 3.8: Speed control subsystem

This will verify that the PI control for both the current and the speed will work. It would be bene�cial
if the control can compensate for any hardware that will be used. This example extends the simulation
to include the hardware that will be used to realise this system. The current sensor is replaced with an
equivalent model which has a limited bandwidth of sensing. This can be seen in Figure 3.9.
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Figure 3.9: Model of current sensor

The ideal motion sensor of Figure 3.4 is replaced with a digital encoder and can be seen in Figure 3.10.

Figure 3.10: Model of digital Encoder

The ideal voltage source was also replaced with an H-Bridge circuit using metal oxide semiconductor
�eld e�ect transistor (MOSFET)s. This can be seen in Figure 3.11.

Figure 3.11: H-Bridge Circuit

The P-channel and N-channel MOSFETs is also modelled and can be seen in Figure 3.12 and 3.13
respectively.
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Figure 3.12: P-Channel MOSFET model

Figure 3.13: N-Channel MOSFET model

The contents of the interface block (seen in Figure 3.11) can be seen in Figure 3.14.

Figure 3.14: Direction control

This interface control block is used to control the direction of the motor. Now that the hardware has
been modelled the e�ects that they have on the plant can be compensated for by the control seen in Figure
3.6.
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Recommendations for design in SimulinkR© with end code in mind

When it comes to hardware implementation, there are things to note. Consider GPIO pin that needs to
be toggled in the middle of a control loop and note the problem with this scenario. Normal hardware
support software for a GPIO toggle has a sink block con�guration to it. The problem in this scenario is
that SimulinkR© uses a diagram structure. Any disjointed diagrams will be executed sequentially. Because
a GPIO toggle block is not connected to the control loop diagram, the GPIO block will, in code, be
executed after the control loop diagram. The use of subsystems, tokens and SimulinkR© functions needs to
be used to overcome this problem. Using an atomic subsystem and isolating the section where the GPIO
pin needs to be toggled can be used. A token system can be used when multiple sink blocks need to be set
within a control loop. The token system is useful when the sink blocks need to be executed in a speci�c
sequence. An example of this can be seen in Figure 3.15. The contents of the "Processing" subsystem
is the reason for using the token system. The contents of this subsystem is a State�ow diagram seen in
Figure 3.16. It was required that the kernel State�ow diagram be executed after the Input subsystem of
Figure 3.15. When this diagram is compiled to c-code, the token system will not be coded, but the order
in which the subsystems execute is maintained. When the same sink block or smaller disjointed SimulinkR©

diagram needs to be used multiple times throughout the control loop, the use of a SimulinkR© function is
then recommended. An example of this can be seen in Figure 3.17. The CSBus function is called more
than once in this example. The settings for this block can be seen in Figure 3.18. The contents of the
SimulinkR© function can be seen in Figure 3.19.

Figure 3.15: Token example

Figure 3.16: Reason for using tokens

Figure 3.17: A SimulinkR© diagram utilizing a SimulinkR© function call
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Figure 3.18: SimulinkR© function call dialog

Figure 3.19: A SimulinkR© function block contents

Conclusion

This section gave recommendations for controller design and simulations in SimulinkR©. The recommenda-
tions is summarized and listed below:

1. Start the simulation with a good model of the plant.
2. Do the controller design using ideal sensors and sources.
3. Do trade-o� studies to determine what hardware will be used when the system will be implemented.
4. Extend the simulation by including the models of the sensors that will be used.
5. Include models of the sources that will be used.
6. Adjust the controller designed in step 2 to compensate for simulation adjustments made in steps 4

to 5.

3.3.2 Algorithm performance improvements

Because of the nature of the controller it is crucial to utilised the control period as e�cient as possible.
This section will demonstrate a few recommendations to improve the time used by the algorithm.



3.3. CONSIDERATIONS 39

PID implementation variants

There are di�erent methods to implement the proportional integrate derivative (PID) control using SimulinkR©.
The �rst method is to use a diagram realization of a PID control. This can be seen in Figure 3.20.

Figure 3.20: PID control using a diagram realization

The time this PID control realization took to execute can be seen in Figure 3.21.

Figure 3.21: Execution time of the diagram PID variant

The second method to use is SimulinkR©'s PID controller block. This can be seen in Figure 3.22.
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Figure 3.22: PID control using SimulinkR©'s PID block

The time this PID control realization took to execute can be seen in Figure 3.23.

Figure 3.23: Execution time of SimulinkR©'s PID block

The third method to use is the CMSIS DSP library. This library includes software for PID control.
This method to execute this method can be seen in Figure 3.24.
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Figure 3.24: PID control using CMSIS's DSP library

The MatlabR© function blocks seen in Figure 3.24 is used to call the C-Code function "pidCall()". The
C-Code for this function can be seen in Figure 3.25.
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Figure 3.25: C-code to initialize and call the PID controller

The header �le for the code seen in Figure 3.25 can be seen in Figure 3.26.

Figure 3.26: The header �le of c-code used to initialize and call PID controller

In order to utilize the CMSIS PID controller software it must �rst be initialize. A MatlabR© function
block is included initialize subsystem in the root of the SimulinkR© model. This MatlabR© function block is
used to call the initialized function "pidInit" seen in Figure 3.25. The MatlabR© code to call this c-function
can be seen in Figure 3.27.

Figure 3.27: MatlabR© code to call the PID initiate c-function
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The block used to call the MatlabR© code seen in Figure 3.27 can be seen in Figure 3.28.

Figure 3.28: Block used to include MatlabR© code for initiation of CMSIS PID controller

Once the CMSIS PID controllers is initialized the "pidCall" function can be called. This function is
called using the MatlabR© code seen in Figure 3.29. This MatlabR© code is used in the MatlabR© function
block seen in Figure 3.24.

Figure 3.29: MatlabR© code to call the PID step c-function

The time this PID control realization took to execute can be seen in Figure 3.30.

Figure 3.30: The execution time the CMSIS PID variant used

The results of the 3 PID implementation methods is summarized in Table 3.1. These results is nor-
malised to a 100 µs control period and displayed in a bar graph seen in Figure 3.31.

Table 3.1: PID implementations execution timings
Implementation Timing
Diagram 1.875µs
SimulinkR© Block 1.889µs
CMSIS PID 2.727µs
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Figure 3.31: Comparison between variants normalized to the required control frequency

Table 3.1 shows the estimated execution timings of the 3 di�erent methods of implementing a PID
controller on a MCU. It is important to note that every micro-second that can be spared in the control
period is crucial. The results show that the PID diagram has the fastest execution. The reason why the
SimulinkR© PID block takes longer to execute is due to the fact that the SimulinkR© block includes additional
code compare to the PID diagram variant. The additional code is due to the fact that the SimulinkR© PID
block has additional PID settings that can be adjusted. The CMSIS PID software takes even longer, and
it is due to the manner the PID control is implemented with their version of for loops. Analysis of the
CMSIS implementation of the PID control shows that there is more lines of code used compared to the
SimulinkR© version. Each extra line of code used will lead to longer execution times of the algorithms.

Floating point operations

The default variable type that MatlabR©/SimulinkR© uses is double precision �oating point. In the simulation
models, a data type should be explicitly de�ned if a data type other than a double is used. Using a data type
that is not supported by the MCU can drastically increase the computational time of the algorithm. This
implies that double �oating point operations executed on a single point FPU will use more considerably
more processing time. The PID control seen in Figure 3.20 is executed using double variables. This
execution time of this PID control can be seen in Figure 3.32. The results seen in Figure 3.21 is obtained
with the same PID control but with single variables. The results of the single vs double variables are
normalised to a 100 µs control period and can be seen in Figure 3.33.

Figure 3.32: PID execution time with double variables
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Figure 3.33: Comparison between single vs. double variables normalized to the required control
frequency

The results seen in Figure 3.33 shows the negative e�ects of choosing a data type which is not supported
by the MCU. The MCU will do the double point calculations with a single point FPU. Because the double
point variable has twice the amount of bit as a single point, the single point will execute each instruction
for both the lower and higher word of the double word variable.

MCU settings for performance improvements

The initialisation of a MCU can be a daunting process. Frameworks like Arduino, MBED and the dSPACE
SimulinkR© blocks initialises the MCU to operate at maximum capacity. In cases where frameworks like
these are not used it is important to know how to initialise a MCU to operate at maximum capacity. The
�rst and most important peripheral to initialise is the clock. If the clock is operating at maximum frequency,
the MCU will most likely operate at its maximum capacity. To demonstrate this the control in Figure 3.20
is executed on a Nucleo-F746ZG at the default clock frequency of 16 MHz. The waveform generated by the
GPIO for this result can be seen in Figure 3.34 as the "Default" graph. The pulse width of this can be seen
in Figure 3.36 under the default description. Increasing the clock frequency to 216 MHz reduces the time
drastically. The result of this can be seen in Figure 3.34 as the Max Clock graph. The pulse timing of this
can be seen in Figure 3.36 under the Max clock description. The MCU also have an instruction and data
instruction pipeline caches. Enabling these caches will improve the MCU's performance. The waveform
and pulse timing of this can be seen in Figure 3.34 and 3.36 respectively under the Cache description. This
speci�c MCU has a tightly coupled memory (TCM) bus interface. Using the TCM interface instead of
the advanced eXtensible interface (AXI) interface will also reduce the computational time. The waveform
and pulse timing of this can be seen in Figure 3.34 and 3.36 respectively under the TCM description. The
results show that in order to obtain maximum performance from the MCU the clock frequency needs to
be set to maximum, the instruction and data caches need to be enabled, and the TCM bus needs to be
used instead of the AXI bus.
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Figure 3.34: Occilioscope results of the Nucleo-F746ZG tests

Figure 3.35: Pulse width timings of occilioscope results
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Figure 3.36: Comparison between of the timings normalized to 100 µs

3.4 MCU selection method

In order to use the method, an extensive SimulinkR© simulation model is needed. The model will need to
include the e�ects that the hardware will have on the plant so that the MCU can compensate for it. All
of the hardware choices need to be �nal at this point, meaning that it will be clear which peripheral will
be used to control the hardware. The only question that must remain for this project is the choice of the
MCU. Figure 3.37 shows the �ow diagram of the method that will be used. The sections that follow will
explain in detail what must be done during each step. The basic steps seen in Figure 3.37 is listed below:

1. Obtain information from the simulation.
2. Create a list of MCU candidates.
3. Convert the simulation to code.
4. Simulate the code for the MCU from the list.
5. Use the code to obtain the needed memory and operating frequency requirements and add it to the

criteria for the list of MCU candidates.
6. Repeat step 4 in order to verify that the code executes within the time constraint.

Please note that the method is not a linear approach and might require some iteration within the steps.

3.4.1 Obtain information from simulations

Information that needs to be obtained from the simulations is the plant's time constant. This time constant
will be used to determine at what frequency the discrete controller needs to operate. The information from
the simulation will also determine the data type that will be used and ultimately the MCU.

SimulinkR©/MatlabR© has built-in tools to linearise a plant or model. The reason why the plant needs
to be linearised is because the mathematical model of the plant is not linear the controller will not be able
to control the plant. This is because the controller is a linear controller and will not be able to control a
non-linear plant. The linear controller can, however, control the plant at a speci�c pre-de�ned operating
point where the non-linear model is linearised. To linearize the plant the open-loop input and open-loop
output need to be identi�ed. The open-loop input and open-loop output is simply the input and output of
the plant. In the case of the linear actuator example mentioned in Section 3.3.1 the open-loop input needs
to be de�ned as seen in Figure 3.38.
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Figure 3.37: High level �ow chart of the designed selection method
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Figure 3.38: Specifying the input for linearisation

The open-loop output needs to be de�ned as seen in Figure 3.39. Thus the input and output locations
for the linearisation can be seen in Figure 3.40. These locations can be speci�ed within the current control
loop of the example.

Figure 3.39: Specifying the output for linearisation

Figure 3.40: Locations of I/O for linearisation

Once the input and output are de�ned the linearise tool can be launched. The tool can be found under
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Figure 3.43: Linearisation result

the Analysis>Control Design menu as seen in Figure 3.41.

Figure 3.41: Location of the linearise tool

Once the tool is launched the system will be linearised once the step (or any other methods) is selected.
This can be seen in Figure 3.42.

Figure 3.42: Location of the linearise tool

The linearized plant model can now be copied to the MatlabR© workspace for further analysis. This step
can be seen in Figure 3.43. By clicking and dragging the plant model from the Linear Analysis Workspace
section to the MatlabR© workspace section within the linearization tool.

Once the plant(in this case the electric linear actuator) is in the MatlabR© workspace the necessary
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controller frequency can be calculated. The MatlabR© live script seen in Figure 3.44 was used to extract
the time constant from the plant and ultimately determine the minimum controller frequency needed.
Please note that these calculations are based on the content discussed in Section 2.5.

The minimum control frequency obtained from the MatlabR© script seen in Figure 3.44 can now be used
as the sample/control frequency for a digital controller used to control the current of the electric linear
actuator.

3.4.2 MCU peripheral choices and I/F electronics

The choice of peripherals needed in a MCU and the I/F that will need to be used are interdependent.
The peripherals needed is mostly reliant on how the plant is going to be controlled and how the plant will
provide feedback to the controller. It is thus recommended to do an extensive and in-depth trade-o� study
that will ensure a fast and cost-e�ective implementation. What is implied by fast is the fact that the delay
the peripheral adds to the overall control step execution needs to be considered. Trade-o� study does not
form part of this selection method, but it is highly recommended to do this because the uncertainty of a
peripheral will halter the selection process.

3.4.3 Peripheral requirements

The peripheral requirements must now be calculated. Taking classic control theory into account the
resolution of the peripheral needs to be calculated. This can be done by deciding the acceptable margin
of error for the controller. Once this margin of error has been decided on the resolution can be calculated
by using the margin, the time constant of the plant (with hardware e�ects taken into account) and the
control period. Using these three variables the minimum resolution required to digitise the margin of error
can be calculated. The sample rate that the peripherals need to achieve must at least be equal to the
control frequency. A communication peripheral needs to be at least be eight times faster than the control
frequency because if the data to be communicated is at least 8-bits long it will take the peripheral the
whole control period to transfer the data. This is assuming the peripheral speci�cation is given in bits per
second.

As seen in Section 2.5, the deviation can be con�gured as 2% of the voltage output range. The frequency
can be chosen as 1/τ . Using these values, the resolution can be calculated starting with Equation (4.1).

Vdisturbance(n) = Deviation@Frequency (3.1)

The absolutely minimum voltage di�erences that the ADC needs to be able to pick up can be calculated
with equation (3.2):

dvarray(n) = Vdisturbance(n× T )− Vdisturbance((n− 1)× T )), n ∈ N ∪ n ≥ 1 (3.2)

Where: T is the control period and dvarray is an array of voltage di�erences between samples.

dvmin = min(dvarray) (3.3)

Taking the minimum value of Equation (3.2)(using Equation (3.3)) we can determine the minimum
resolution required to digitize the disturbance. Equation (3.4) to (3.6) are used determine the resolution:

numLevels =
Vsensmax
dvmin

(3.4)

Where: Vsensmax = is the maximum voltage value the sensor will provide.

nresbits = log2(numLevels) (3.5)

nminRequired = ceiling(nresbits) (3.6)

Where: nresbits is the resolution in bits and nminRequired is the resolution in bits rounded up to the
nearest integer.

3.4.4 MCU criteria

Using the information of the previous sections a criteria list can be compiled. MCU candidates need to
adhere to all the items on the list in order to be considered. The criteria list will include the following:

• The peripheral's required, their resolution and sampling rate.

• What data type will be used and whether or not the MCU needs to include a FPU or not.

• The number of GPIO pins required.



52 CHAPTER 3. METHOD DESIGN

Figure 3.44: Linearisation result
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3.4.5 List of MCU candidates

The list of MCU candidates needs to be ordered in descending order of clock speed, �ash and RAM. For
simulation purposes, the best MCU in this list will be chosen in order to determine the required clock
speed, �ash and RAM. Some aspects of the simulation results can be scaled. Thus the time that this
MCU uses to execute a control step can be used to calculate clock speed. Once the code has been compiled
the required �ash and RAM can be used to update the criteria list.

3.4.6 Algorithm to code

SimulinkR© has an extensive library of hardware support packages. The chance that a MCU candidate has
a hardware support package is very likely. Using this hardware support packages, the algorithm that needs
to be coded can be compiled to c-code that the speci�c MCU will be able to utilise.

SimulinkR© can program other embedded targets as well. STMicroelectronicsR© is another vendor that
developed SimulinkR© blocks. Figure 3.45 provides an example of the blocks used to interface with a STM32
controller.

Figure 3.45: STM32 Interface Blocks

Other well known controllers are also supported, these include Arduino, Raspberry Pi, Lego Mindstorm
and much more. These controllers can be interfaces with SimulinkR© by downloading the hardware support
packages through the MatlabR©/SimulinkR© add-on manager. Figure 3.46 shows the hardware support page
within the add-on manager.
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Figure 3.46: SimulinkR© Hardware Support [5]

Using STMicroelectronicsR© in conjunction with MatlabR©/SimulinkR© allows one to program the con-
troller to the MCU. STMicroelectronicsR© also allows the user to program the MCU by means of a third
party application. Additional evaluations can be done to the converted control program when using third
party applications, like using the ISS of said application.

3.4.7 Code simulation

The code simulation is done by utilising an ISS. Instructions and the properties thereof are explained
in Section 2.3. An ISS is a simulation program which accumulates the cycle count as the program is
being virtually executed. The MCU will have a constant clock pulse per cycle. Using this information
with the total cycle count and operating frequency, the real-time duration in seconds can be calculated.
Keil's MDK-ARM V5 IDE has a simulator function which can be used for ARM MCUs. The simulator in
combination with the performance analyser can be used to obtain execution timings of the code.

3.4.8 Peripheral delay calculations

The �ow diagram seen in Figure 3.47 is used to determine how to calculate the delay the peripheral will
cause. The �gure has three possible outcomes which involve calculating delays for a peripheral as is, a
peripheral using a DMA controller and an external peripheral.

Figure 3.47: I/O delay calculations �ow chart

Peripheral communication calculations

To start the function of a peripheral, the necessary bit in the peripheral's control register needs to be set.
Setting this bit is done by transferring a byte between the CPU and the peripheral. The bus between the
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CPU and the peripheral will be clocked at a pre-de�ned speed. The peripheral might have some delay time
before the peripheral responds with the necessary value which the CPU is waiting for, before continuing
with the program. In the case of an ADC, there is the sampling time and the conversion time that need
to be taken into account. Thus the delay of a peripheral can be calculated in the following manner:

1. The number of bytes transferred between the CPU and peripheral for the initialisation of peripheral.

2. The number of cycles/ the duration of any delays the peripheral might have.

3. The number of bytes being transferred between the CPU and the peripheral after the peripheral has
executed its task.

Equation (3.7) can be used to calculate the timing of item 1 and 3. Equation (3.8) can be used to
convert the number of cycles to a timing in seconds. This equation might be used in step 2 if the peripheral's
speci�cation is given in cycles. The accumulative time of steps 1 to 3 can be seen as the peripheral's delay.

tBusDataTransfer = nBytes/fBusSpeed (3.7)

tBusDataTransfer is the time which the number of bytes (nBytes) will take to be transferred at speci�c
bus speed (fBusSpeed).

tcycle2time = nCycles/fOperating (3.8)

tcycle2time is the time which a number of cycles (nCycles) will take at speci�c operating frequency
(fOperating).

DMA calculations

The use of a DMA controller will decrease the delay of a peripheral. Consider a peripheral that is used as
an input (like an ADC). The use of a DMA will only use step 3 in the process mentioned in the previous
section. The trigger that is set up for the peripheral will be used to execute steps 1 and 2 without the
CPU being halted. Once the peripheral has reached step 3 the DMA controller will transfer the response
value to a pre-de�ned byte(s) in the memory. The program will transfer the data from the memory to
the CPU once the information from the peripheral is needed. The DMA can also be used to serve data
to the peripheral via the memory. This implies that the data that the peripheral will use can be written
to a section in the memory. The DMA controller, the location of the data in the memory and a hardware
trigger will ensure that the peripheral will execute its function.

The time delay of a peripheral using a DMA controller can be calculated using Equation (3.7). The
bus speed in this equation will be the speed of the bus between the memory and the CPU.

External component calculation

Calculating the time a external component will use to execute it's function can be done by using the �ow
diagram seen in Figure 3.48. The peripheral will also use the steps seen in Section 3.4.8 under the heading
Peripheral communication calculations. The additional time delay that a serial communication
peripheral will have in step 2 can be calculated using Equation (3.9). The additional time delay that a
parallel device adds during step 2 can be calculated with Equation (3.10).

Figure 3.48: I/O delay calculations of external peripheral �ow chart
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tserialCom = nbits/fbaudrate × ntransfersPerControl (3.9)

tserialCom is the time it takes for a number of bits (nbits) to be transferred with the peripheral device
at a speci�c baudrate (fbaudrate) for a ntransfersPerControl number of times.

tparallelCom = ntransfersPerControl × treqOnTime (3.10)

tparallelCom is the time it takes for the MCU to transfer the data to the external device for a ntransfersPerControl
number of times. The treqOnTime is the time required for the data to be read by the external device.

3.4.9 Evaluate total duration

The estimated timings of the input, processing and output stages need to be accumulated. The accumulated
value can then be used to compare it to the control period. If the accumulated value is less than the control
period the MCU will control the plant and no overruns will occur. Step 5 seen in the introduction of
Section 3.4 calculates additional parameters for the criteria list. Equation (3.12) can be used to calculate
this parameter. The required memory parameter information can be obtained from the IDE's build log
after a successful compilation of the code.

Workload% =
Texetime
Tcontrol

× 100% (3.11)

fminRequired =Workload%× foperatingFrequency (3.12)

3.5 Conclusion

The �ow chart seen in Figure 3.37 gave a detailed overview of the steps mentioned in Section 3.4. Section
3.4.1 to 3.4.9 were used to explain how the �ow diagram is used in much more detail. It is important to
note that step 6 in the steps mentioned in Section 3.4 is an iterative step and can be evaluated until all
requirements are satis�ed. The whole method is an iterative procedure. The procedure will not provide
the perfect solution because of the uniqueness of each MCU and the vendor. The procedure will however
give a very clear answer whether or not the MCU under investigation will be able to execute the intended
control application.



Chapter 4

Method implementation

The controller selection method designed in Chapter 3 will be implemented in this Chapter. The selection
method will commence after a description of the plant, and the controller that will be used is given. This
Chapter and the choice �nal choice of MCU will serve as the veri�cation of this dissertation.

4.1 Plant

A PMSM at the North-West University (NWU)[7] cannot operate at rated speed for long periods of time
because of heat generated by the motor. The developed system is called the TWINS motors. A source of
heat within this system is the ball bearings between the rotor and stator. To reduce heat generated in the
system, it was decided to �t the TWINS with AMBs.

The layout of the system is comprised of a rotor, stator and two radial, hetero-polar, four pole electro-
magnetic bearings. The layout of the PMSM with AMB can be seen in Figure 4.1.

Figure 4.1: PMSM with AMB

The AMB system consists of the following components:

• The two radial AMBs is comprised of two four-pole hetero-polar electromagnetic stators.

• 8 Current controlled power ampli�er (PA)s.

• four position sensors to measure the rotor's radial position.

• The rotor to be levitated.

The peripheral requirements for the controller can be derived from the list above. These peripherals
can be determined by establishing how the sensors, power and controllable source are interfaced with the
controller. The AMB system has already been designed[?] The design of the AMB lead to the choice of

57
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PAs. A Eddy current sensor was chosen to act as the rotor position feedback. The peripherals required
are:

• 8 DACs which can output 0 to 10 volts for the power ampli�ers' current reference.

• 4 ADCs which will read the position sensors' feedback.

The PA that was chosen will need a DC voltage input between -10V and 10V. This voltage is used as
input and converted to a current. This input voltage has a 1:1 ratio with the current which is internally
controlled. The negative side of the PA's spectrum will not be used as this will in�uence the �ow of
magnetic �ux within the AMB. Thus an analog signal between 0 and 10V needs to be generated. The
eddy current sensor will be used to provide feedback of the rotor's position. The eddy current sensor has
an output of 0V to 10V which translate to 0mm to 1mm between the sensor and the surface in question.

4.2 Discrete Controller

The control loop seen in Figure 4.2 has been categorised into four subsystems. The entirety of the control
loop has been used by multiple masters' dissertations at the NWU [18, 7, 13]. The Figure has been modi�ed
for presentation purposes. The �rst subsystem called "ADC2Sensor" seen in Figure 4.2 is used to obtain
the position of the rotor from the sensor using ADC's. The value obtained by the sensors needs to be
converted into useful information for the control. The PID control uses this distance value (in meters)
as input. The PID block can be seen in Figure 4.3. This block calculates the error and then implements
a standard PID control law. The output of the PID law, in this case, is the command current. A bias
current is added to the command current and sent to the next part of the loop. The low pass �lter (LPF)
sub-system �lters unwanted audible frequencies out of the biased command current. The last subsystem
that the controller will need to execute is the conversion of the biased command current to a digital value.
The DACs subsystem will use this value to convert it into a voltage which the PA will use as a reference.
The PA will use its own internal control loop to provide the AMB with the biased command current. Each
sensor input controls 2 PAs.

Figure 4.2: Screen-shot of control loop in SimulinkR©
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Figure 4.3: Screen-shot of PID Subsystem in SimulinkR©

4.3 Implementing Method

In this section the steps mentioned in Section 3.2.1 will be followed to determine the time a MCU will use
to execute the PID control described in Section 4.2 on the PMSM with AMBs mentioned in Section 4.1.
This section will also serve as veri�cation for this dissertation.

The �rst step is to obtain information from the simulations to calculate the resolution needed for the
peripherals and the necessary control frequency. In most cases, some interface electronics is needed which
will protect and translate the inputs and outputs to the correct measures. The interface electronics is
chosen alongside the MCU.

4.3.1 Simulation information

The necessary simulation information from x is extracted and provided here. Simulations with a mass-
spring-damper system we found that there will be a max disturbance of 105N will displace the rotor with
0.2mm occurring at a frequency of 500 Hz. According to control theory book [3], a digital controller needs
to sample and execute the control at least �ve times faster than the plant's time constant. Faster than
a factor of 5 will improve the MCU's ability to control the plant. The control of this plant has been
previously veri�ed by [7]. A control frequency of 10 KHz was used to control this plant [7]. The AMB
structure has been designed and a appropriate PA and Eddy current sensor has been chosen [7]. From this
information, the peripherals and I/F electronics can be chosen.

4.3.2 Interface electronics and peripheral choices

The interfaces that is required for the MCU is mentioned in Section 4.1. The STM32 MCUs from STMi-
croelectronics has GPIO pins operating at 3.3 V. This implies that I/F electronics will need to be used to
convert the input and output voltages of the MCU to the appropriate levels.

It is not very common to �nd a MCU with 8 DACs. Thus other technologies to consider is:

• SPI DACs

• I2C DACs

• pulse width modulation (PWM) with �lter to convert Duty cycle to an average value.

• Parallel DACs

Considering the advantages and disadvantages of each of the above methods to convert digital data
into analog values (see Section 2.8), the SPI DACs were chosen.

The behaviour of the eddy current sensor and the voltage outputs that it will provide can degrade the
e�ective resolution of the ADC. The surface that the eddy current sensor is going to sense is rounded. This
will cause DC voltage o�sets. However, the linear response of the sensor is not a�ected. An I/F circuit
using digital pots was designed to overcome this problem. This circuit in its reset state passes the voltage
through to the ADC. The circuit and parts used for this I/F circuit can be seen in Appendix B. The
MCU will then use the AMBs to determine the minimum and maximum voltage output of the sensors by
activating the appropriate AMBs. The minimum value will be used to subtract the minimum DC voltage
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o�set from the sensor input using a digital pot with a subtracting op-amp con�guration. The output of
the subtracting op-amp will be ampli�ed using a combination of the minimum and maximum voltage. The
calculation procedure will look like the diagram seen in Figure 4.4. The I/F circuit used for the ADCs can
be seen in Figure 4.5.

Figure 4.4: I/F calibration method

Figure 4.5: ADC I/F circuit

The output to the PAs will be realised 4 dual channel SPI DACs. There will thus be 8 SPI components
that will be addressed (4 dual channel 100 KOhm digital pots and four dual-channel DACs).

An LCD keypad shield will be used as user input (UI). This shield needs an additional channel of an
ADC and 7 GPIO pins to communicate with. The decoder will be used for the chip select (CS) channels
needs 4 GPIO pins, 3 to address the 8 SPI components and 1 to enable/disable the CS channels.

4.3.3 Peripheral requirements

The simulations produced a disturbance occurring at a frequency of 500Hz for a G6 unbalanced load[7].
In essence, this can be seen as the plant's time constant.

The required resolution for the peripherals needs to be calculated to keep the rotor within a 0.01 mm
margin of the nominal airgap at a 500 Hz. This margin was chosen according to the control theory book [3].
Taking the designed sampling frequency of 10 kHz, the sensor will translate the disturbance to a voltage
output represented by Equation 4.1. This equation is derived from Equation 3.1.

Vdisturbance(n) = 10v/mm ∗ 0.01 ∗ cos
(

2π500n

TcontrolPeriod

)
, n ∈ N (4.1)

The voltage output of this equation can be seen in Figure 4.6. Figure 4.6 shows the sample and hold
characteristics of the ADC and Equation 4.1 is de�ned for positive integers. Equation 3.2 to 3.6 is used to
calculated the resolution needed.

The same method is used for the DAC's. The input to the equations for the DAC was calculated by
the PID control. Equation 3.2 to 3.6 was implemented for both the ADC and DAC in SimulinkR© and
the diagram used can be seen in Figure 4.7. The sensor gain block seen in this �gure was changed to 1
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for the calculations of the DAC. The resolutions required is listed below (See Figure 4.8 for results from
equations):

• a ADC of at least 11 bits resolution sampling at a frequency of 10kHz.

• a DAC of at least 12 bits resolution updating it's value at a frequency of 10kHz.

A higher resolution peripheral will lead to a tighter control margin. A tighter control margin implies
that the rotor will have a smaller deviation from the centre/reference point. This bare minimum calculation
of the peripherals does not take into account the noise that might be added into the system. This is based
on the smallest di�erence in voltage the peripheral needs to pick up or produce within a control step.
These equations can be seen as the minimum resolution needed to keep the rotor within a 0.01mm margin
from the reference.

Figure 4.6: Voltage output of 0.01mm disturbance

Figure 4.7: Resolution Calculations

Figure 4.8: Resolution Calculations Method
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4.3.4 MCU criteria

The MCU must be able to do �oating point operations. Double �oating point precision is not necessary
(see Section 3.3.2 for reason why it is not necessary). This equates to the following speci�cations for the
MCU:

• 12-bit ADC with 5 channels (5 alternative function (AF) pins)

• SPI channel (2 AF pins for clock and data and 4 GPIO pins for CS decoder)

• 7 Digital Out pins for LCD (7 GPIO pins)

A MCU with 30 pins or more where 19 of these pins is function speci�c outputs and 11 are for GPIO
purposes.

4.3.5 Shortlisting

Using the criteria of Section 4.3.4 a list of possible MCU can be compiled. From the STMicroelectronics
website the following MCU lines has single precision FPUs:

• STM32F4

• STM32F7

• STM32L4

• STM32L4+

From this list, the F7 line has a few MCUs that have double precision FPUs which need to be excluded.
These rages are listed below::

• STM32F7x5

• STM32F7x7

• STM32F7x9

There are 454 di�erent STMicroelectronics MCUs that meets our criteria (see Figure 4.9). For testing
purposes, the MCU(s) operating at max frequency in this list will be considered. The test will provide us
with an executed time which can be used in relation to the operating frequency to determine the minimum
operating frequency needed of the MCU. The next step is to narrow down the MCUs by displaying all
the MCUs which can operate at the max frequency possible. This gives a narrowed down list of only 60
MCUs. Note that these 60 MCUs are of the STM32F7 line(See Figure 4.10).

Figure 4.9: List of MCU's meeting our criteria
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Figure 4.10: List of MCU's with clock frequency of 216MHz sorted by Flash size in decending
order

The major di�erences within these lines are the peripherals that are packed into the MCU. Another
di�erence is the size in �ash available for programming etc. Sort the MCUs in descending order of �ash
memory size and RAM size.

From these steps, the STM32F746ZG stood out. The reason being there is a development board
available with this MCU on it, the Nucleo-F746ZG (See Figure 4.10). For fast deployment and prototyping
purposes, it would be bene�cial to use a development board. This eliminates the process of developing a
printed circuit board (PCB) to interface external component with the MCU. The PCB will also need to
perform functions like programming the MCU. These development boards provide a STLink. The STLink
can program and debug the MCU.

The purpose of choosing the MCU with maximum frequency, maximum �ash and RAM is for testing
purposes only, as the next step we will extract the recommended frequency, �ash and RAM from the coded
algorithm.

4.3.6 Algorithm to code

The next step is to set up the MCU. SimulinkR© uses a project that has been set up in CubeMX in order
to generate the code needed for the MCU to boot and be con�gured according to your speci�cations. For
more information about CubeMX see Section 2.7.1. SimulinkR© or the vendor of the MCU will be able
to provide the hardware support package for your MCU. This support package will enable SimulinkR©

to convert the Simulation (discrete controller) into C/C++ code speci�cally for the targeted MCU. See
Section 2.7.2 for more information on MatlabR©/SimulinkR© coder. In case of a situation where there is
no support package available, the controller can be compiled to C/C++ code which can be imported into
the embedded C environment. It is then up to the programmer to call the appropriate functions at the
appropriate times.

This is followed by setting up the software interfaces between the algorithm and the MCU. Once
these interfaces are done the algorithm can be compiled to C-code using the appropriate settings in
SimulinkR©(See Figure 4.11). The hardware support package used for this project will need the user
to compile the code with an external IDE. This external IDE is speci�ed in the CubeMX project �le.
The compiling process will generate all the �les needed to the current folder(see Figure 4.12). During this
compile process, the SimulinkR© coder calls the CubeMX interface to compile and generate the correct
project �les within the same directory.
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Figure 4.11: PID Control Algorithm to be converted to C-Code

CubeMX can create project �les for the following IDEs:

• EWARM (30-trail)

• MDK-ARM (linker free for code up to 32k)

• TrueStudio (free)

• SW4STM32 (free)

Of these IDEs, Keil's MDK-ARM is the only IDE which has a simulation and is free to use for projects
up to 32KB in size. This is useful in our case as we want to simulate the control algorithm and calculate
the time it took to be executed. This feature uses the principle that each assembler instructions takes
a set time to be executed. The simulator analyses the assembler instructions and calculates the time
sequentially. The settings of the CubeMX project can be seen in Appendix A.

4.3.7 Software Simulation

Software Setup

The SimulinkR© coder produces c/c++ code in a similar way to how SimulinkR© models are simulated.
SimulinkR© initialises each block or model at the beginning of the simulation. This is followed by a step
function of said block or model. The step function is then executed at the desired (solver) frequency. The
embedded application uses the solver frequency as the implemented control frequency.

Before compiling the instructions in Keil, there are a few limitations to note. The simulator does
not simulate the hardware. Simulation signals can be created in such a case. Some of the STM32 HAL
software relies heavily on hardware responses. This includes the internal phase lock loop (PLL) of the
reset and clock control (RCC) peripheral. Because the RCC is responsible for handling the system tick
and thus the main control loop timing this poses a problem for the simulation. Preparing the program for
the simulator can help us overcome some of these problems(Figure 4.13). By commenting out the system
tick setup function, the HAL software that waits for the PLL response will not be executed. This will not
a�ect the output timings of the simulation as the simulation timings rely on the frequency set in Keil's
project settings. This setting was con�gured by the CubeMX software. The CubeMX software has set the
frequency to 216 MHz. The step function in question is also added into the main function. This can be
seen in Figure 4.13. The initialise function needs to be called before the step function in order for the step
function to work. The reason for placing these functions at this speci�c point in the code is because the
GPIO and ADC with the DMA con�guration do not rely on hardware responses. This implies that they
can be simulated by the simulator.
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Figure 4.12: Open generated Keil Project
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Figure 4.13: Code setup for Simulation

Figure 4.14 shows how to set up the Simulator. Step 4 in this �gure can be seen in Figure 4.15. This
step is necessary because another problem with the simulator is the read and write permissions of the
�ash memory that needs to be simulated. This can be done by writing a .ini �le and including it in the
simulation settings page(See Figure 4.15). The contents of this �le can be seen in Figure 4.16.

Figure 4.14: Enable simulation mode

Figure 4.15: Simulation initiation �le settings
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Figure 4.16: Contents of .ini �le

Because the timings of the hardware can be calculated we only need to use the simulation software
to calculate the processing part of the control algorithm. Thus the code is edited and compiled in such
a manner that the processing timing can be obtained before the simulator "hangs" at the software that
relies on hardware responses. The simulator is also con�gured in such a manner that timings are calculated
with the MCU �nal operating frequency that is con�gured with the CubeMX interface. This setting in
CubeMX de�nes the clock frequency in the Keil project. The Keil IDE uses this value for the simulator.
The simulator does not take into account that the MCU starts up at a slower clock frequency.

Software simulation procedure

This information is repeated here to justify the two functions (initialise and step) that is being called at
the start of the main loop for the simulation purposes. Within the step function, a GPIO pin is set before
the processing stage. The same GPIO pin is reset after the processing stage. Debug breakpoints are set
on these two lines of code. The simulation will start and the time between these two points are taken.
Breakpoint 1 can be seen in Figure 4.17. The performance analyser's stopwatch needs to be reset(Figure
4.18) before continuing to breakpoint 2. The resulting time shows how fast the MCU will take for the PID
algorithm to be executed once. The PID loop takes 1.875 us to execute. This result can be seen in Figure
4.19.

Figure 4.17: Breakpoint at start of PID calculations
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Figure 4.18: Reset stopwatch at �rst break point

Figure 4.19: Break point at end of PID and LPF

4.3.8 Input and output peripherals delay

A closer look on how to calculate the delays the peripherals take see Section 3.4.8. The ADC in this
example has been con�gured to work with the DMA controller. As mentioned in Section 3.4.8 the delay
for this con�guration only depends on the bus speed between the CPU and the RAM memory.

The bus between the RAM and CPU is clocked at 216 MHz. This equates to a single variable to arrive
at the CPU in 4.63 ns. Multiplying this number by 4 for the 4 ADC channels equates to 18.52 ns. The
interface created in SimulinkR© for this needs to convert these values to usable distance measures for the
PID control. The time required to convert these values can also be simulated because the use of the DMA
eliminates the use of the HAL's hardware response procedure. The software simulation takes into account
the delay of the values being transferred from the memory to the CPU. The timing of this conversion
equates to 1.53 µs (See Figure 4.20). The value seen in Figure 4.20 takes the 18.52 ns into account.

The DAC outputs will be realised by the dual channel SPI DACs. The timing to convert the PID
control output into a 16-bit integer for the DAC can be simulated by the simulation software. The timing
of the CS GPIO toggle (for both set and reset) and SPI data transfer needs to be calculated. The toggle
of a GPIO pin can be calculated by the software simulation as the software only needs to set or reset a bit
in a register. The SPI channels utilise its own PLL peripheral in order to obtain high transfer rates. Thus
this cannot be simulated by the software simulator. The transfer rate of the SPI has to be con�gured as
6.75 MBits/s. Each transfer transfers 16 bits at a time. One transfer equates to 2.37 µs. The total transfer
time for the SPI 8 channels is 18.96 µs. Before transmitting the data to the SPI DACs, the output of the
PID loop needs to be converted to digital values that the SPI DAC can use. This can be simulated. This
conversion was timed at 3.458 µs for one DAC and can be seen in Figure 4.21. Multiplying this value by
8 gives the total conversion for the values to be transmitted through the SPI channel. This equates to
27,872 µs. Adding the transfer time the time used by the MCU and SPI DACs to output to the PAs is
around 46.835 µs.
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Figure 4.20: ADC conversion timing delay

Figure 4.21: SPI DAC conversion timing delay

4.3.9 Results

The table below provides the timings simulated and calculated for the STM32F746ZG MCU.

Table 4.1: Simulated timings of code and peripherals
Stage Timing
ADC input and processing 1.523µs
PID and LPF execution 1.875µs
Output prepreation and SPI DACs timing 48.835µs
Total 52.233µs

Workload% =
1.874µs

100µs
× 100% = 1.874%

Figure 4.22 shows a program created in MatlabR© to calculate the minimum required operating fre-
quency needed of the MCU in order to use 100% of the control period. The calculation for this minimum
frequency can be seen in Equation 3.12.

Figure 4.22: Minimum frequency of MCU required to run PID control of AMB's at 10KHz

Using equation 3.11 and equation 3.12 the minimum operating frequency needed for this control can
be calculated with Equation 4.2.
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fminRequired =
Texetime
Tcontrol

× foperatingFrequency (4.2)

The use of an external peripheral needs to be taken into account when calculating the minimum
required frequency for the MCU. The time the SPI peripheral uses to communicate the data to the
external peripheral's was calculated as 18.96 µs. Subtracting this from the control period leaves the total
processing time which was available for the MCU. This equates to 81.04 µs. The time the output stage
used to process the data before transmitting it was 27.872 µs. Using this value for the output stage
processing along with the 1.523 µs input time and 1.875µs PID time the total processing time is: 31.27
µs. External peripherals will not make use of the operating frequency of the MCU and thus the time used
by these components should be subtracted from the control period as the MCU will only have that time
available for processing. The communication to the external peripherals cannot be directly scaled as it has
�xed discrete increments. The available processing time will be used for the control period in the equation.
Using a 31.27 µs as the execution time and 81.04 µs as the control period, the minimum required operating
frequency can be calculated as 83.346 MHz(See Equation 4.3).

fminRequired =
31.27µs

81.04µs
× 216MHz = 83.346MHz (4.3)

This operating frequency needs to be met by the MCU as well as a SPI transfer rate of 6.75 MHz to
realise this control procedure. During the compilation of the project the compiler output the size of the
code. This can be seen in Figure 4.23. The �ash memory required for this project will need to be at least
larger than 12.72 KB (Code+RO-data+RW-data). The required RAM size can is 1.832 KB (RW-data+ZI-
data). The operating frequency and SPI transfer rate also need to be equal to or higher than the values
mentioned above.

Figure 4.23: Compiler output of program size

4.3.10 Final Results

The steps initial steps of Figure 3.37 was done in Section 4.3.1 to Section 4.3.9. The information obtained
from these Sections can be used to rede�ne the MCU criteria. The new criteria can be seen in Table 4.2.

Table 4.2: Updated criteria
Description/Requirement Speci�cation
FPU single precision
ADC ≥12 bit @ ≥0.01

MSPS
SPI ≥6.75 Mbps
Operating frequency ≥83.346 MHz
Form factor Nucleo 144
Flash memory ≥12.72 KB
RAM memory ≥1.832 KB

The reason why the Nucleo 144-pin form factor is included in the criteria is to allow easy migration of
the generated code to a new MCU. The same steps will be followed as done in Section 4.3.1 to 4.3.9 but
with the new updated criteria (Table 4.2). Using this criterion but not adhering to the minimum operating
frequency, the NUCLEO-L496ZG was chosen. This can be seen in Figure 4.24. The red blocks in this
�gure highlight the settings used for the �lter and to highlight the chosen MCU. The operating frequency
of this MCU is 80 MHz. The use of all the right peripherals and set-up of this MCU was done by using
the Migration tool of STM32CubeMX. Figure 4.26 shows the migration process used to import the MCU
settings from the previously used CubeMX project.
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Figure 4.24: Filter settings that matches criteria exactly

The total processing time obtained by the code simulation is 81.113 µs. This can be seen in Figure
4.25. If the SPI peripheral is clocked at 6.75 MHz, the data transfer will take 18.963 µs. This will calculate
to a total algorithm execution time of approximately 100.076 µs. One might expect a larger overrun, but
there is a slight di�erence in architecture. This implies that the HAL drivers are slightly di�erent. The
di�erence between the F7 HAL library and the L4 HAL library is the reason why the overrun of this MCU
is not as big as expected. This second iteration shows the importance of simulating the software of a MCU
beforehand. The NUCLEO-L496ZG does, however, have a faster SPI peripheral. This would imply that
the control algorithm will execute within the control period by increasing the SPI speed. This MCU has
a SPI peripheral which is capable of speeds up to 50 Mbps.

Figure 4.25: STM32L496ZG processing duration

Figure 4.26: STM32CubeMX project migration tool
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4.4 Conclusion

The NUCLEO-F746ZG would be the better choice for the implementation of the control algorithm. Ad-
ditional software might be added later for better user experience. Given that the MCU has 45% of the
control period available the additional software can use this available time. The NUCLEO-L496ZG can be
used to control the plant, but no additional software can be added, only the core control algorithm will be
able to run on this MCU. The steps followed in Section 4.3.9 and 4.3.10 can be iterated until the MCU
under investigation satis�es the all the requirements and needs of the engineer. In this case the NUCLEO-
F746ZG left with additional computation time is chosen for UI and future development purposes. This
Chapter serves as the veri�cation to this dissertation.



Chapter 5

MCU Implementation and results

In this Chapter the MCU chosen in Chapter 4 will be implemented with the same controller and plant
described in Section 4.2 and 4.1 respectively. More practical details of the plant, PAs, sensors and the
MCU are given in this Chapter. The time that the MCU took to the control algorithm will be measured
along with the step response of the controller. The results of this Chapter will assist in the validation of
the selection method.

5.1 Plant

The plant were constructed [7] as mentioned in Section 4.1 for the evaluation of a AMB control algorithm.
The selection method was implemented in Section 4.3 and the code generated during the course of the
selection method will now be implemented on the Nucleo-F746ZG. The selection method produced esti-
mated durations of each stage of the control algorithm. These estimations will be validated by the use of
the validation method mentioned in Section 3.2.2. The plant can be seen in Figure 5.1 and 5.2.

Figure 5.1: The implemented AMB system on PMSM
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Figure 5.2: Close-up view of the sensors and PAs

The choice of the MCU and the development of the I/F electronics has been done during the process
of this masters project. The implemented MCU and I/F electronics can be seen in Figure 5.3.

Figure 5.3: Close-up view of the MCU and the I/F electronics

Details of the AMB plant, PAs, eddy current sensors, the I/F electronics and the MCU will be discussed
in the sections to follow.

5.1.1 The AMBs for the PMSM

The speci�cations of the AMBs can be seen in Table 5.1[7]. The structure of the AMB can be seen in
Figure 5.4. The symbols shown in round brackets in Table 5.1 correspond with the symbols seen in Figure
5.4.
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Table 5.1: AMB speci�cations [7]
Description Value
Coil Inductance 6 mH
Coil Resistance 150 mΩ
Designed force (Fmax) 150 N
Coil length(lc) 26 mm
Coil thickness(tc) 7 mm
Coil radius(rc) 65 mm
Number of turns(N) 58
Peak �ux density(B) 0.7236 T
Pole width(w) 36 mm
Axial length(l) 20 mm
Stator outer radius(rs) 85 mm
Pole radius(rp) 32 mm
Journal radius(rj) 32.5 mm
Shaft radius(rr) 9 mm
Rotor weight 4.44kg
Bias current 2.5 A
Calculated current gain 30.4 N/A
Calculated open loop sti�ness 152.2 N/m

Figure 5.4: Structure of the AMB

A detailed discussion of the plant can be seen in Section 4.1.

5.1.2 PA and Eddy current sensors

The PA that was used is the Analog Servo Drive from Advanced Motion Controls (12A8). It has a peak
current rating of 12 A, a continuous current rating of 6 A and an input supply of 20-80 VDC. It was used
in its current control con�guration. A di�erential voltage input will be used by the PA's internal control
loop to convert the voltage value to a current. The PA has a voltage to current ratio of 1. The PA can be
seen in Figure 5.5
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Figure 5.5: Power Ampli�er used for this project

The Eddy current sensor that was used for this project can be seen in Figure 5.6 (DT3005-U1-A-C1).
The sensor has a measuring range of 1 mm on aluminium objects. It has an o�set distance of 0.1 mm, a
linearity of 2.5 µm (≤ 0.25% full scale output (FSO)) and a resolution of 0.5 µm(≤ 0.05% FSO).

Figure 5.6: Eddy current sensor used for this project

5.1.3 MCU

The MCU that will be used is the STM32F746ZG. This MCU is available on a development board. The
Nucleo-F746ZG will be used for the implementation of the controller algorithm on the plant. This MCU
has a ARM 32-bit Cortex-M7 CPU with a single precision FPU, adaptive real-time (ART) Accelerator,
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L1-cache and DSP instructions. It has a 1 MB �ash memory, 6 SPIs, 3x12-bit 2.4 MSPS ADC with up to
24 channels and a general purpose DMA. The Nucleo-F746ZG can be seen in Figure 5.7.

Figure 5.7: Eddy current sensor used for this project

5.1.4 I/F electronics

The functionality of the I/F circuit has been explained and can be seen in Section 4.3.2. The schematic
of the I/F electronics can be seen in Appendix B. The list of components that were used can be seen in
Table 5.2.

Table 5.2: Components used for the I/F electronics
Component Total number

used
2 port screw terminals 15
LM2902N 14-pin integrated circuit (IC) with quad op-amps 5
IL300 linear opto-coupler 12
MCP4251-104E/P dual digital SPI pot 4
SN74HCT138 8 channel decoder 1
MCP4922 dual channel SPI DAC 4

5.2 Results

5.2.1 Method validation

The code that was used in Section 4.3.7 is implemented on the Nucleo-F746ZG development board. The
two functions called at the beginning of the main loop are removed, and the clock initialisation function is
uncommented. The GPIO pin which is set at the beginning of a stage and reset after the stage can be used
to obtain the execution duration of each stage. An oscilloscope was then used to capture the waveform
generated by the GPIO pin of each stage. The resulting waveforms can be seen in Figure 5.8.



78 CHAPTER 5. MCU IMPLEMENTATION AND RESULTS

Figure 5.8: Scope waveforms

The pulse width timings of these waveforms can be seen in Table 5.3.

Table 5.3: Stage execution duration
Stage Duration
Input duration 1.008 µs
Process duration 1.7668 µs
Output duration 52.715 µs
Total duration 55.871 µs

The percentage that each stage uses of the control period can be seen in Figure 5.9.
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Figure 5.9: Percentage of control period used

5.2.2 Controller validation

Figure 5.10 shows the ADC values during the operation of the AMB system. The ADC values represent the
position of the rotor. An ADC value of approximately 2048 is the centre point between the two opposing
AMBs. The 0.5 mm reference equates to an equivalent ADC value of 2048. Figure 5.11 is an image overlay
of 2 still images taken of the system at 1000 ms and 3000 ms. The blue and red circles seen in this �gure
are the positions of the rotor in each still image. The blue circle is the resting position(taken at 1000 ms)
whereas the red circle is the levitating position(taken at 3000 ms).

Figure 5.10: Sensor feedback during control execution
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Figure 5.11: Image overlay of the system's resting(blue) and levatation(red) states

5.3 Result discussion

The estimations timings match the implemented timings within an acceptable margin. The estimated and
practical durations can be seen in Table 5.4. The negative values in the deviation column is an indication
that practical durations were faster than the estimated durations. Large negative deviation values are good
news, but it is an indication that the method of estimating the value can be improved or investigated.
The deviation of the input stage had a positive 0.52% impact on the time available in the control period.
The process stage had a positive 0.11% impact, whereas the output stage was underestimated and had a
negative 3.88% impact on the available time of the control period.

Table 5.4: Comparison between estimated and practical timings
Stage Estimation Practical Deviation Deviation's im-

pact on control
period

Input duration 1.523 µs 1.008 µs -33.81% -0.52%
Process duration 1.875 µs 1.7668 µs -5.77% -0.11%
Output duration 48.835 µs 52.715 µs 7.95% 3.88%
Total duration 52.233 µs 55.871 µs 6.96% 3.64%

5.3.1 Output stage deviations

Upon examining the SPI HAL library there was code not taken into account because of reasons mentioned
in Section 4.3.8. Every line of code uses the time available of the control period. This code(which is not
simulated) is the reason why the implemented output stage duration is longer than the estimated duration.

5.3.2 Processing and input stage deviations

The Keil simulation software simulates the architecture of a Cortex M4 processor even when the target uses
a Cortex M7 as speci�ed in the Keil project �le. The Cortex M4 processor and the Cortex M7 processor
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has the same architectures, but the M7 has some additional features. The reason the input and processing
stage executed faster than estimated is because the simulator did not simulate the additional features found
in the cortex M7. The e�ects the additional features has at this small computational window is noticeably
small. This is clearly shown by the last column seen in Table 5.4. The M7 would perform much better
than the M4 when large amounts of data need to be processed. The paid version of the Keil MDK-ARM
IDE has more advanced models which can be used for simulation purposes. These models will include
models like the Cortex M7. The additional features of the M7 include TCM interface and instruction and
data caches which improves the execution duration of instructions.

5.3.3 Future development

The AMBs levitates the rotor of a PMSM. Vector control can be used for controlling the speed of a PMSM.
Vector control is a closed loop control for PMSM machines. Vector control uses the machine's current,
voltage and rotor position as input. A vector control algorithm is given in Figure 5.12 [6].

Figure 5.12: Vector control of a PMSM[6]

The selection method was used to evaluate the time needed for this control algorithm to execute. The
evaluation of the timing was done on the NUCLEO-F746ZG. The time the NUCLEO-F746ZG will take to
execute this control algorithm is 4.921 µs. The results of this can be seen in Figure 5.13.

Figure 5.13: Vector control of a PMSM timing on NUCLEO-F746ZG[6]
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Chapter 6

Conclusion and recommendations

6.1 Method selection

6.1.1 Method selection implementation

This dissertation presents a MCU selection method for complex control algorithms. The selection method
is presented, and a �owchart of this can be seen in Figure 3.37. This method was used to select a MCU for
the control of an AMB which levitates the rotor of a PMSM. The method requires a complete SimulinkR©

simulation of the controller. The goal of the simulation is to test and design the controller, but it can also be
used to program and estimate the requirements of the MCU needed to implement this controller. Initially,
a MCU with the fastest operating speed and largest �ash and RAM size was selected to determine the
minimum required operating speed, �ash and RAM. The simulation of the control algorithm was evaluated
for code build and compiled for the NUCLEO-F746ZG. The simulation of the code along with additional
peripheral delay calculations concluded that the control algorithm would take 52.233 µs to execute on the
NUCLEO-F746ZG. This calculates to a workload of 53%. The method concluded that this MCU would
be able to execute the control algorithm and ultimately control the plant. The evaluation information of
this controller was then used to calculate that the minimum operating frequency required for a similar
MCU is 83.346 MHz. The criteria for compiling a list of MCU candidates was updated as seen in Table
4.2. The method has provided a MCU which will have enough processing power to execute the control
algorithm, however, selecting a MCU with lower speci�cations will reduce the cost to the system. Using
the criteria, a new MCU was chosen, adhering to all the parameters of the criteria except the operating
frequency. This was intentionally done to show that the selection method concludes that this MCU will
not be able to execute the control algorithm within the control period. The fact that the selection method
provided a discrete answer whether or not the MCUs evaluated can be used serves as veri�cation for the
selection method.

6.1.2 MCU implementation

The MCU which was chosen at the end of Chapter 4 was implemented on the AMB system. This imple-
mentation was documented in Chapter 4.2. The resulting execution time of the control algorithm on the
MCU was 55.871 µs. This is only a 3.64% deviation from the estimated timing. The reason behind the
deviations was explained in Section 5.3. The fact that the deviations is less than 5% and the fact that the
rotor can be levitated (see Figure 5.10 and 5.11) validates the MCU selection method presented in this
dissertation.

The reason why STMicroelectronics was considered in this dissertation is because they were the only
vendor that enables the use of a third party application with all the tool-chain parameters already compiled.
In other words, STMicroelectronicsR© o�ered the best support for the method created and presented during
this dissertation.

6.2 Recommendations

6.2.1 Selection method

Selection method improvements

The selection method is implemented in such a way that the use of data type is already known. This
implies that before using the selection method, the engineer already knows if the MCU needs a FPU. The
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selection method can be improved to include trade-o� studies between data types and whether or not the
MCU needs a DSP, single point or double FPU.

For this method to be supported by vendors other than STMicroelectronicsR© further knowledge is
needed for setting up and importing the Matlab conversion code into other vendor's IDEs.

Other IDEs

The use of other IDEs like MPLab and Atmel Studio could also be used for the method presented in
this dissertation. The results obtained from these IDEs should, however, be veri�ed before it can be
recommended to use them for this method.

6.2.2 Kernel

Any additional actions that the MCU must be able to do during a control step needs to be included in the
software simulation. It is important to note that every single line of code uses the available time of the
control period. An example of additional program code will be if feedback during operation needs to be
given to the operator. The method of feedback should not cause an over-run. This could be accomplished
by only using a fraction of the available time in the control period or using a peripheral like a DMA
controller which will not disturb the operation of the CPU.

6.2.3 Hardware improvements

Output stage improvements

In this project, only one SPI peripheral was used in combination with a CS decoder. The use of more than
one SPI in combination with the DMA controller will have a faster output stage duration. The use of the
DMA controller, in this case, enables the possibility that the SPI peripherals can be used simultaneously.
This can be implemented on this MCU as it has 6 SPI peripherals. One SPI peripheral can be used to
set up the 4 SPI digital pots for the interfacing circuit. 4 SPI channels will then be used in combination
with a DMA to achieve parallel communication to the SPI DACs. The duration of the pre-processing of
the data will still take 27.872 µs. The total data transfer time will then be reduced from 18.96 µs to 4.74
µs. This will reduce the estimated output stage duration from 48.835 µs to 23.70 µs.

Further investigations

Figure 5.10 shows the output of the four sensors during the controller execution. From this graph, it can
be seen that Sensor 4 deviates a lot more from the reference than the other sensors. Sensor 3 and four
has been reused from a previous project whereas sensor 1 and 2 is brand new. There is a loud audible
hum which is produced on the side of the PMSM which has the AMB that utilises this sensor. Further
investigation into these problems is required to draw a reasonable conclusion to both the deviation and
the loud hum.

Power supplies

The bench power supplies used for this project can be replaced. A power supply and power distribution
network can be designed to replace the bench power supplies that are currently being used. Replacing
these power supplies will take the system one step closer to being used in a real-world application.

PMSM control

The AMBs is used to levitate the rotor of a PMSM. The controller has the timer peripherals to provide an
inverter with the needed signals to produce 3 phase power for the PMSM. The Nucleo-F746ZG has two
timer peripherals which can be used for 3 phase applications. These timer peripherals can also be used in
combination with the DMA. The MCU has enough time of the control period available to implement a
closed-loop vector control. This is proven by the results shown in Figure 5.13 in Section 5.3.3.
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Page 1

NucleoFinalSetup Project

Configuration Report

1. Description
1.1. Project

Project Name NucleoFinalSetup

Board Name NUCLEO-F746ZG

Generated with: STM32CubeMX 4.27.0

Date 10/25/2018

 

1.2. MCU

MCU Series STM32F7

MCU Line STM32F7x6

MCU name STM32F746ZGTx

MCU Package LQFP144

MCU Pin number 144
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NucleoFinalSetup Project

Configuration Report

2. Pinout Configuration
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NucleoFinalSetup Project

Configuration Report

3. Pins Configuration

Pin Number

LQFP144

Pin Name

(function after

reset)

Pin Type Alternate

Function(s)

Label

6 VBAT Power

7 PC13 I/O GPIO_EXTI13 USER_Btn [B1]

8 PC14/OSC32_IN  * I/O RCC_OSC32_IN

9 PC15/OSC32_OUT  * I/O RCC_OSC32_OUT

13 PF3 I/O ADC3_IN9

15 PF5 I/O ADC3_IN15

16 VSS Power

17 VDD Power

22 PF10 ** I/O GPIO_Output SPI_CS_E

23 PH0/OSC_IN  * I/O RCC_OSC_IN MCO

[STM32F103CBT6_PA8]

24 PH1/OSC_OUT  * I/O RCC_OSC_OUT

25 NRST Reset

26 PC0 I/O ADC3_IN10

27 PC1  * I/O ETH_MDC RMII_MDC [LAN8742A-CZ-

TR_MDC]

29 PC3 I/O ADC3_IN13

30 VDD Power

31 VSSA Power

32 VREF+ Power

33 VDDA Power

35 PA1  * I/O ETH_REF_CLK RMII_REF_CLK

[LAN8742A-CZ-

TR_REFCLK0]

36 PA2  * I/O ETH_MDIO RMII_MDIO [LAN8742A-CZ-

TR_MDIO]

37 PA3 I/O ADC1_IN3 LCD_Buttons

38 VSS Power

39 VDD Power

41 PA5 I/O TIM8_CH1N

43 PA7  * I/O ETH_CRS_DV RMII_CRS_DV [LAN8742A-

CZ-TR_CRS_DV]

44 PC4  * I/O ETH_RXD0 RMII_RXD0 [LAN8742A-CZ-

TR_RXD0]

45 PC5  * I/O ETH_RXD1 RMII_RXD1 [LAN8742A-CZ-

TR_RXD1]

46 PB0 I/O TIM8_CH2N
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NucleoFinalSetup Project

Configuration Report

Pin Number

LQFP144

Pin Name

(function after

reset)

Pin Type Alternate

Function(s)

Label

47 PB1 I/O TIM1_CH3N

48 PB2 I/O SPI3_MOSI

50 PF12 ** I/O GPIO_Output LCD_RS

51 VSS Power

52 VDD Power

53 PF13 ** I/O GPIO_Output LCD_D7

54 PF14 ** I/O GPIO_Output LCD_D4

55 PF15 ** I/O GPIO_Output SPI_CS_d2

59 PE8 I/O TIM1_CH1N

60 PE9 ** I/O GPIO_Output LCD_D6

61 VSS Power

62 VDD Power

63 PE10 I/O TIM1_CH2N

64 PE11 ** I/O GPIO_Output LCD_D5

66 PE13 I/O TIM1_CH3

67 PE14 ** I/O GPIO_Output Outputs

68 PE15 ** I/O GPIO_Output Processing

69 PB10 ** I/O GPIO_Output InputPeriod

70 PB11 ** I/O GPIO_Output ControlPeriod

71 VCAP_1 Power

72 VDD Power

74 PB13  * I/O ETH_TXD1 RMII_TXD1 [LAN8742A-CZ-

TR_TXD1]

75 PB14 ** I/O GPIO_Output LD3 [Red]

76 PB15 I/O TIM8_CH3N

77 PD8  * I/O USART3_TX STLK_RX

[STM32F103CBT6_PA3]

78 PD9  * I/O USART3_RX STLK_TX

[STM32F103CBT6_PA2]

83 VSS Power

84 VDD Power

85 PD14 ** I/O GPIO_Output LCD_B

86 PD15 ** I/O GPIO_Output LCD_E

91 PG6 ** I/O GPIO_Output USB_PowerSwitchOn

[STMPS2151STR_EN]

92 PG7 ** I/O GPIO_Input USB_OverCurrent

[STMPS2151STR_FAULT]

94 VSS Power

95 VDDUSB Power

96 PC6 I/O TIM8_CH1
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Pin Number

LQFP144

Pin Name

(function after

reset)

Pin Type Alternate

Function(s)

Label

97 PC7 I/O TIM8_CH2

98 PC8 I/O TIM8_CH3

100 PA8 I/O TIM1_CH1

101 PA9 I/O TIM1_CH2

102 PA10  * I/O USB_OTG_FS_ID USB_ID

103 PA11  * I/O USB_OTG_FS_DM USB_DM

104 PA12  * I/O USB_OTG_FS_DP USB_DP

105 PA13 I/O SYS_JTMS-SWDIO TMS

106 VCAP_2 Power

107 VSS Power

108 VDD Power

109 PA14 I/O SYS_JTCK-SWCLK TCK

111 PC10 I/O SPI3_SCK

112 PC11 I/O SPI3_MISO

120 VSS Power

121 VDD Power

124 PG9 ** I/O GPIO_Output SPI_CS_d0

126 PG11  * I/O ETH_TX_EN RMII_TX_EN [LAN8742A-

CZ-TR_TXEN]

128 PG13  * I/O ETH_TXD0 RMII_TXD0 [LAN8742A-CZ-

TR_TXD0]

129 PG14 ** I/O GPIO_Output SPI_CS_d1

130 VSS Power

131 VDD Power

133 PB3  * I/O SYS_JTDO-SWO SW0

137 PB7 ** I/O GPIO_Output LD2 [Blue]

138 BOOT0 Boot

143 PDR_ON Reset

144 VDD Power

 

** The pin is affected with an I/O function 

 * The pin is affected with a peripheral function but no peripheral mode is activated
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4. Clock Tree Configuration
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5. IPs and Middleware Configuration
5.1. ADC1
mode: IN3

5.1.1. Parameter Settings:

ADCs_Common_Settings:

Mode Independent mode

ADC_Settings:

Clock Prescaler PCLK2 divided by 4

Resolution 12 bits (15 ADC Clock cycles)

Data Alignment Right alignment

Scan Conversion Mode Enabled *

Continuous Conversion Mode Enabled *

Discontinuous Conversion Mode Disabled

DMA Continuous Requests Enabled *

End Of Conversion Selection EOC flag at the end of single channel conversion

ADC_Regular_ConversionMode:

Number Of Conversion 1

External Trigger Conversion Source Regular Conversion launched by software

External Trigger Conversion Edge None

Rank 1

Channel Channel 3

Sampling Time 56 Cycles *

ADC_Injected_ConversionMode:

Number Of Conversions 0

WatchDog:

Enable Analog WatchDog Mode false

 

 

5.2. ADC3
mode: IN9

mode: IN10

mode: IN13

mode: IN15

5.2.1. Parameter Settings:

ADCs_Common_Settings:
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Mode Independent mode

<html><img

src='jar:file:D:/Programs/STM32CubeMx/plugins/ipmanager.jar!/com/st/microxplorer/plugins/ipmanager

/util/error10x10.png' <font color=red><b> &nbsp ADC_Settings</font></b></html>:

Clock Prescaler PCLK2 divided by 4

Resolution 12 bits (15 ADC Clock cycles)

Data Alignment Right alignment

Scan Conversion Mode Enabled *

Continuous Conversion Mode Enabled *

Discontinuous Conversion Mode Disabled

DMA Continuous Requests Enabled *

End Of Conversion Selection EOC flag at the end of single channel conversion

ADC_Regular_ConversionMode:

Number Of Conversion 4 *

External Trigger Conversion Source Regular Conversion launched by software

External Trigger Conversion Edge None

Rank 1

Channel Channel 10 *

Sampling Time 3 Cycles

Rank 2 *

Channel Channel 13 *

Sampling Time 3 Cycles

Rank 3 *

Channel Channel 9

Sampling Time 3 Cycles

Rank 4 *

Channel Channel 15 *

Sampling Time 3 Cycles

ADC_Injected_ConversionMode:

Number Of Conversions 0

WatchDog:

Enable Analog WatchDog Mode false

 

 

5.3. SPI3
Mode: Full-Duplex Master

5.3.1. Parameter Settings:

Basic Parameters:
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Frame Format Motorola

Data Size 16 Bits *

First Bit MSB First

Clock Parameters:

Prescaler (for Baud Rate) 8 *

Baud Rate 6.75 MBits/s *

Clock Polarity (CPOL) Low

Clock Phase (CPHA) 1 Edge

Advanced Parameters:

CRC Calculation Disabled

NSSP Mode Enabled

NSS Signal Type Software

 

 

5.4. SYS
Debug: Serial Wire

Timebase Source: SysTick

 

5.5. TIM1
Clock Source   : Internal Clock

Channel1: PWM Generation CH1 CH1N

Channel2: PWM Generation CH2 CH2N

Channel3: PWM Generation CH3 CH3N

5.5.1. Parameter Settings:

Counter Settings:

Prescaler (PSC - 16 bits value) 0

Counter Mode Up

Counter Period (AutoReload Register - 16 bits value ) 0

Internal Clock Division (CKD) No Division

Repetition Counter (RCR - 16 bits value) 0

auto-reload preload Disable

Trigger Output (TRGO) Parameters:

Master/Slave Mode (MSM bit) Disable (Trigger input effect not delayed)

Trigger Event Selection TRGO Reset (UG bit from TIMx_EGR)

Trigger Event Selection TRGO2 Reset (UG bit from TIMx_EGR)

Break And Dead Time management - BRK Configuration:

BRK State Disable
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BRK Polarity High

BRK Filter (4 bits value) 0

Break And Dead Time management - BRK2 Configuration:

BRK2 State Disable

BRK2 Polarity High

BRK2 Filter (4 bits value) 0

Break And Dead Time management - Output Configuration:

Automatic Output State Disable

Off State Selection for Run Mode (OSSR)  Disable

Off State Selection for Idle Mode (OSSI)  Disable

Lock Configuration  Off

Dead Time 0

PWM Generation Channel 1 and 1N:

Mode PWM mode 1

Pulse (16 bits value) 0

Fast Mode Disable

CH Polarity High

CHN Polarity High

CH Idle State Reset

CHN Idle State Reset

PWM Generation Channel 2 and 2N:

Mode PWM mode 1

Pulse (16 bits value) 0

Fast Mode Disable

CH Polarity High

CHN Polarity High

CH Idle State Reset

CHN Idle State Reset

PWM Generation Channel 3 and 3N:

Mode PWM mode 1

Pulse (16 bits value) 0

Fast Mode Disable

CH Polarity High

CHN Polarity High

CH Idle State Reset

CHN Idle State Reset

 

 

5.6. TIM2
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Clock Source   : Internal Clock

5.6.1. Parameter Settings:

Counter Settings:

Prescaler (PSC - 16 bits value) 0

Counter Mode Up

Counter Period (AutoReload Register - 32 bits value ) 107 *

Internal Clock Division (CKD) No Division

auto-reload preload Disable

Trigger Output (TRGO) Parameters:

Master/Slave Mode (MSM bit) Disable (Trigger input effect not delayed)

Trigger Event Selection TRGO Reset (UG bit from TIMx_EGR)

 

 

5.7. TIM8
Clock Source   : Internal Clock

Channel1: PWM Generation CH1 CH1N

Channel2: PWM Generation CH2 CH2N

Channel3: PWM Generation CH3 CH3N

5.7.1. Parameter Settings:

Counter Settings:

Prescaler (PSC - 16 bits value) 0

Counter Mode Up

Counter Period (AutoReload Register - 16 bits value ) 0

Internal Clock Division (CKD) No Division

Repetition Counter (RCR - 16 bits value) 0

auto-reload preload Disable

Trigger Output (TRGO) Parameters:

Master/Slave Mode (MSM bit) Disable (Trigger input effect not delayed)

Trigger Event Selection TRGO Reset (UG bit from TIMx_EGR)

Trigger Event Selection TRGO2 Reset (UG bit from TIMx_EGR)

Break And Dead Time management - BRK Configuration:

BRK State Disable

BRK Polarity High

BRK Filter (4 bits value) 0

Break And Dead Time management - BRK2 Configuration:

BRK2 State Disable

BRK2 Polarity High
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BRK2 Filter (4 bits value) 0

Break And Dead Time management - Output Configuration:

Automatic Output State Disable

Off State Selection for Run Mode (OSSR)  Disable

Off State Selection for Idle Mode (OSSI)  Disable

Lock Configuration  Off

Dead Time 0

PWM Generation Channel 1 and 1N:

Mode PWM mode 1

Pulse (16 bits value) 0

Fast Mode Disable

CH Polarity High

CHN Polarity High

CH Idle State Reset

CHN Idle State Reset

PWM Generation Channel 2 and 2N:

Mode PWM mode 1

Pulse (16 bits value) 0

Fast Mode Disable

CH Polarity High

CHN Polarity High

CH Idle State Reset

CHN Idle State Reset

PWM Generation Channel 3 and 3N:

Mode PWM mode 1

Pulse (16 bits value) 0

Fast Mode Disable

CH Polarity High

CHN Polarity High

CH Idle State Reset

CHN Idle State Reset

 

 
 

* User modified value
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6. System Configuration
6.1. GPIO configuration

IP Pin Signal GPIO mode GPIO pull/up pull

down

Max

Speed

User Label

ADC1 PA3 ADC1_IN3 Analog mode No pull-up and no pull-down n/a LCD_Buttons

ADC3 PF3 ADC3_IN9 Analog mode No pull-up and no pull-down n/a

PF5 ADC3_IN15 Analog mode No pull-up and no pull-down n/a

PC0 ADC3_IN10 Analog mode No pull-up and no pull-down n/a

PC3 ADC3_IN13 Analog mode No pull-up and no pull-down n/a

SPI3 PB2 SPI3_MOSI Alternate Function Push Pull No pull-up and no pull-down Very High

*

PC10 SPI3_SCK Alternate Function Push Pull No pull-up and no pull-down Very High

*

PC11 SPI3_MISO Alternate Function Push Pull No pull-up and no pull-down Very High

*

SYS PA13 SYS_JTMS-

SWDIO

n/a n/a n/a TMS

PA14 SYS_JTCK-

SWCLK

n/a n/a n/a TCK

TIM1 PB1 TIM1_CH3N Alternate Function Push Pull No pull-up and no pull-down Low

PE8 TIM1_CH1N Alternate Function Push Pull No pull-up and no pull-down Low

PE10 TIM1_CH2N Alternate Function Push Pull No pull-up and no pull-down Low

PE13 TIM1_CH3 Alternate Function Push Pull No pull-up and no pull-down Low

PA8 TIM1_CH1 Alternate Function Push Pull No pull-up and no pull-down Low

PA9 TIM1_CH2 Alternate Function Push Pull No pull-up and no pull-down Low

TIM8 PA5 TIM8_CH1N Alternate Function Push Pull No pull-up and no pull-down Low

PB0 TIM8_CH2N Alternate Function Push Pull No pull-up and no pull-down Low

PB15 TIM8_CH3N Alternate Function Push Pull No pull-up and no pull-down Low

PC6 TIM8_CH1 Alternate Function Push Pull No pull-up and no pull-down Low

PC7 TIM8_CH2 Alternate Function Push Pull No pull-up and no pull-down Low

PC8 TIM8_CH3 Alternate Function Push Pull No pull-up and no pull-down Low

Single

Mapped

Signals

PC14/OSC3

2_IN

RCC_OSC32_IN n/a n/a n/a

PC15/OSC3

2_OUT

RCC_OSC32_O

UT

n/a n/a n/a

PH0/OSC_I

N

RCC_OSC_IN n/a n/a n/a MCO

[STM32F103CBT6_PA8]

PH1/OSC_O

UT

RCC_OSC_OUT n/a n/a n/a

PC1 ETH_MDC Alternate Function Push Pull No pull-up and no pull-down Very High RMII_MDC [LAN8742A-

CZ-TR_MDC]
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IP Pin Signal GPIO mode GPIO pull/up pull

down

Max

Speed

User Label

*
PA1 ETH_REF_CLK Alternate Function Push Pull No pull-up and no pull-down Very High

*

RMII_REF_CLK

[LAN8742A-CZ-

TR_REFCLK0]

PA2 ETH_MDIO Alternate Function Push Pull No pull-up and no pull-down Very High

*

RMII_MDIO [LAN8742A-

CZ-TR_MDIO]

PA7 ETH_CRS_DV Alternate Function Push Pull No pull-up and no pull-down Very High

*

RMII_CRS_DV

[LAN8742A-CZ-

TR_CRS_DV]

PC4 ETH_RXD0 Alternate Function Push Pull No pull-up and no pull-down Very High

*

RMII_RXD0 [LAN8742A-

CZ-TR_RXD0]

PC5 ETH_RXD1 Alternate Function Push Pull No pull-up and no pull-down Very High

*

RMII_RXD1 [LAN8742A-

CZ-TR_RXD1]

PB13 ETH_TXD1 Alternate Function Push Pull No pull-up and no pull-down Very High

*

RMII_TXD1 [LAN8742A-

CZ-TR_TXD1]

PD8 USART3_TX Alternate Function Push Pull No pull-up and no pull-down Very High

*

STLK_RX

[STM32F103CBT6_PA3]

PD9 USART3_RX Alternate Function Push Pull No pull-up and no pull-down Very High

*

STLK_TX

[STM32F103CBT6_PA2]

PA10 USB_OTG_FS_I

D

Alternate Function Push Pull No pull-up and no pull-down Very High

*

USB_ID

PA11 USB_OTG_FS_

DM

Alternate Function Push Pull No pull-up and no pull-down Very High

*

USB_DM

PA12 USB_OTG_FS_

DP

Alternate Function Push Pull No pull-up and no pull-down Very High

*

USB_DP

PG11 ETH_TX_EN Alternate Function Push Pull No pull-up and no pull-down Very High

*

RMII_TX_EN [LAN8742A-

CZ-TR_TXEN]

PG13 ETH_TXD0 Alternate Function Push Pull No pull-up and no pull-down Very High

*

RMII_TXD0 [LAN8742A-

CZ-TR_TXD0]

PB3 SYS_JTDO-

SWO

n/a n/a n/a SW0

GPIO PC13 GPIO_EXTI13 External Interrupt Mode with

Rising edge trigger detection

No pull-up and no pull-down n/a USER_Btn [B1]

PF10 GPIO_Output Output Push Pull No pull-up and no pull-down Very High

*

SPI_CS_E

PF12 GPIO_Output Output Push Pull No pull-up and no pull-down Very High

*

LCD_RS

PF13 GPIO_Output Output Push Pull No pull-up and no pull-down Very High

*

LCD_D7
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IP Pin Signal GPIO mode GPIO pull/up pull

down

Max

Speed

User Label

PF14 GPIO_Output Output Push Pull No pull-up and no pull-down Very High

*

LCD_D4

PF15 GPIO_Output Output Push Pull No pull-up and no pull-down Very High

*

SPI_CS_d2

PE9 GPIO_Output Output Push Pull No pull-up and no pull-down Very High

*

LCD_D6

PE11 GPIO_Output Output Push Pull No pull-up and no pull-down Very High

*

LCD_D5

PE14 GPIO_Output Output Push Pull No pull-up and no pull-down Low Outputs

PE15 GPIO_Output Output Push Pull No pull-up and no pull-down Low Processing

PB10 GPIO_Output Output Push Pull No pull-up and no pull-down Low InputPeriod

PB11 GPIO_Output Output Push Pull No pull-up and no pull-down Low ControlPeriod

PB14 GPIO_Output Output Push Pull No pull-up and no pull-down Low LD3 [Red]

PD14 GPIO_Output Output Push Pull No pull-up and no pull-down Low LCD_B

PD15 GPIO_Output Output Push Pull No pull-up and no pull-down Very High

*

LCD_E

PG6 GPIO_Output Output Push Pull No pull-up and no pull-down Low USB_PowerSwitchOn

[STMPS2151STR_EN]

PG7 GPIO_Input Input mode No pull-up and no pull-down n/a USB_OverCurrent

[STMPS2151STR_FAULT]

PG9 GPIO_Output Output Push Pull No pull-up and no pull-down Very High

*

SPI_CS_d0

PG14 GPIO_Output Output Push Pull No pull-up and no pull-down Very High

*

SPI_CS_d1

PB7 GPIO_Output Output Push Pull No pull-up and no pull-down Low LD2 [Blue]
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6.2. DMA configuration

DMA request Stream Direction Priority
ADC1 DMA2_Stream0 Peripheral To Memory Low

ADC3 DMA2_Stream1 Peripheral To Memory Low

 

ADC1: DMA2_Stream0 DMA request Settings: 

Mode: Circular *

Use fifo: Disable

Peripheral Increment: Disable

Memory Increment: Enable *

Peripheral Data Width: Half Word

Memory Data Width: Half Word

 

ADC3: DMA2_Stream1 DMA request Settings: 

Mode: Circular *

Use fifo: Disable

Peripheral Increment: Disable

Memory Increment: Enable *

Peripheral Data Width: Half Word

Memory Data Width: Half Word
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6.3. NVIC configuration

Interrupt Table Enable Preenmption Priority SubPriority
Non maskable interrupt true 0 0

Hard fault interrupt true 0 0

Memory management fault true 0 0

Pre-fetch fault, memory access fault true 0 0

Undefined instruction or illegal state true 0 0

System service call via SWI instruction true 0 0

Debug monitor true 0 0

Pendable request for system service true 0 0

System tick timer true 0 0

TIM2 global interrupt true 0 0

EXTI line[15:10] interrupts true 0 0

DMA2 stream0 global interrupt true 0 0

DMA2 stream1 global interrupt true 0 0

PVD interrupt through EXTI line 16 unused

Flash global interrupt unused

RCC global interrupt unused

ADC1, ADC2 and ADC3 global interrupts unused

TIM1 break interrupt and TIM9 global interrupt unused

TIM1 update interrupt and TIM10 global

interrupt

unused

TIM1 trigger and commutation interrupts and

TIM11 global interrupt

unused

TIM1 capture compare interrupt unused

TIM8 break interrupt and TIM12 global interrupt unused

TIM8 update interrupt and TIM13 global

interrupt

unused

TIM8 trigger and commutation interrupts and

TIM14 global interrupt

unused

TIM8 capture compare interrupt unused

SPI3 global interrupt unused

FPU global interrupt unused

 
 

* User modified value
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7. Power Consumption Calculator report
7.1. Microcontroller Selection

Series STM32F7

Line STM32F7x6

MCU STM32F746ZGTx

Datasheet 027590_Rev4
 
7.2. Parameter Selection

Temperature 25

Vdd 3.6
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8. Software Project
8.1. Project Settings

Name Value
Project Name NucleoFinalSetup

Project Folder D:\Johan-Omen\Google Drive\Meesters\System

Toolchain / IDE MDK-ARM V5

Firmware Package Name and Version STM32Cube FW_F7 V1.12.0

 

8.2. Code Generation Settings

Name Value
STM32Cube Firmware Library Package Add necessary library files as reference in the toolchain project configuration file

Generate peripheral initialization as a pair of '.c/.h' files No

Backup previously generated files when re-generating No

Delete previously generated files when not re-generated Yes

Set all free pins as analog (to optimize the power

consumption)

No

 



Page 20

NucleoFinalSetup Project

Configuration Report

9. Software Pack Report
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