Topical delivery of clofazimine, artemisone and decoquinate utilizing vesicles as carrier system

L van Zyl

orcid.org/ 0000-0002-9775-0347

Thesis submitted in partial fulfilment of the requirements for the degree Doctor of Philosophy in Pharmaceutics at the Potchefstroom Campus of the North-West University

Promoter: Prof J du Plessis
Co-Promoter: Dr J Viljoen

Graduation May 2018
Student number: 20855125
The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF.
If we knew what we were doing, it would not be called research, would it?

-Albert Einstein
Table of contents

TABLE OF CONTENTS

TABLE OF CONTENTS i

TABLE OF TABLES xi

TABLE OF FIGURES xv

ACKNOWLEDGEMENTS xxiii

ABSTRACT xxiv

References xxvi

UITTREKSEL xxvii

Bronnelys xxix

PREFACE

CHAPTER 1

Introduction and problem statement

1.1. Introduction and problem statement 2

1.2. Research aim and objectives 3

References 4

CHAPTER 2

Review article published in Tuberculosis

1. Introduction 8

2. Classification of cutaneous tuberculosis 9

2.1. Inoculation of tuberculosis from an exogenous source 9

2.2. Tuberculosis from an endogenous source 9

2.2.1. Haematogenous tuberculosis 10
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1.1. Tuberculids</td>
<td>11</td>
</tr>
<tr>
<td>3. Atypical mycobacterium infections of the skin</td>
<td>12</td>
</tr>
<tr>
<td>4. Current treatment regimens of cutaneous tuberculosis</td>
<td>13</td>
</tr>
<tr>
<td>4.1. True cutaneous tuberculosis and tuberculids</td>
<td>14</td>
</tr>
<tr>
<td>4.2. Atypical mycobacterium infections</td>
<td>14</td>
</tr>
<tr>
<td>5. Summary</td>
<td>15</td>
</tr>
</tbody>
</table>

Acknowledgements
Funding
Competing interests
Ethical approval
References

CHAPTER 3
Article on the validation of the analytical method accepted for publication in DIE Pharmazie

Abstract

1. Introduction

2. Investigations, results and discussion

3. Experimental

Acknowledgements
Disclaimer
References
CHAPTER 4

Manuscript to be submitted to the Journal of Pharmaceutical and Biomedical Analysis on the topical delivery of artemisone, clofazimine and decoquinate encapsulated in vesicles and their in vitro efficacy against a tuberculosis cell line

Abstract

29

Keywords

29

Highlights

30

1. Introduction

31

2. Materials and methods

32

2.1. Materials

32

2.2. Methods

32

2.2.1. Preparation of vesicles

32

2.2.2. Pre-formulation and characterisation

33

2.2.2.1. Isothermal calorimetry

33

2.2.2.2. Encapsulation efficiency

33

2.2.2.3. Zeta-potential, size distribution and vesicle size

33

2.2.2.4. pH and viscosity

33

2.2.3. Topical delivery

34

2.2.3.1. Skin preparation

34

2.2.3.2. Skin diffusion studies

34

2.2.3.3. Tape stripping

34

2.2.4. Efficacy against tuberculosis

35

3. Results and discussion

35

3.1. Pre-formulation and characterisation

35

3.1.1. Isothermal calorimetry

35
3.1.2. Encapsulation efficiency 37
3.1.3. Zeta-potential, size distribution and vesicle size 37
3.1.4. pH and viscosity 39
3.2. Skin diffusion studies 40
3.3. Efficacy against tuberculosis 41
4. Conclusions 41
Acknowledgements 43
References 44

CHAPTER 5
Final conclusion and future prospects

5.1. Final conclusion 47
5.2. Future prospects 50
References 51

ANNEXURE A
Analytical method validation for the concurrent determination of decoquinate, artemisone and clofazimine by means of HPLC

A.1. Introduction 53
A.2. High performance liquid chromatography method validation for decoquinate, artemisone and clofazimine 53
A.2.1. Chromatographic conditions 53
A.2.2. Reference standard and sample preparation 54
A.2.3. Analytical validation of test procedure and acceptance criteria 55
A.2.3.1. Linearity 55
A.2.3.2. Limit of detection and quantitation 59
A.2.3.3. Accuracy 60
ANNEXURE B

Full compatibility report of clofazimine, artemisone and decoquinate with vesicle components

1. Introduction
2. Method of analysis for compatibility
3. Results
 3.1. Combination of artemisone, clofazimine and decoquinate
 3.2. Artemisone in combination with phosphatidylcholine
 3.3. Clofazimine and phosphatidylcholine
 3.4. Decoquinate and phosphatidylcholine
 3.5. Artemisone, clofazimine and decoquinate in combination with phosphatidylcholine
 3.6. Artemisone in combination with cholesterol
 3.7. Clofazimine in combination with cholesterol
 3.8. Decoquinate and cholesterol
 3.9. Artemisone, decoquinate and clofazimine in combination with cholesterol
3.10. Phosphatidylcholine and cholesterol
3.11. Artemisone and Tween®20
3.12. Clofazimine and Tween®20
3.13. Decoquinate and Tween®20
3.14. Phosphatidylcholine and Tween®20
3.15. Combination of Tween®20 and cholesterol
3.16. Decoquinate, artemisone and Tween®20
3.17. Decoquinate, clofazimine and Tween®20
3.18. Artemisone, clofazimine and Tween®20
3.19. Artemisone, clofazimine, decoquinate and Tween®20
3.20. Liposomes containing artemisone
3.21. Liposomes containing clofazimine
3.22. Liposomes containing decoquinate
3.23. Liposomes containing artemisone, decoquinate and clofazimine
3.24. Transferosomes containing artemisone
3.25. Transferosomes containing clofazimine
3.26. Transferosomes containing decoquinate
3.27. Transferosomes containing artemisone, decoquinate and clofazimine
3.28. Niosomes containing artemisone
3.29. Niosomes containing clofazimine
3.30. Niosomes containing decoquinate
3.31. Niosomes containing artemisone, clofazimine and decoquinate
3.32. Conclusion
ANNEXURE C
Liposomes, niosomes and transferosomes utilised for topical drug delivery

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1.</td>
<td>Introduction</td>
<td>107</td>
</tr>
<tr>
<td>C.2.</td>
<td>Background</td>
<td>107</td>
</tr>
<tr>
<td>C.2.1.</td>
<td>Liposomes</td>
<td>108</td>
</tr>
<tr>
<td>C.2.2.</td>
<td>Niosomes</td>
<td>110</td>
</tr>
<tr>
<td>C.2.3.</td>
<td>Transferosomes</td>
<td>111</td>
</tr>
<tr>
<td>C.3.</td>
<td>Preparation of vesicles</td>
<td>112</td>
</tr>
<tr>
<td>C.3.1.</td>
<td>Materials</td>
<td>112</td>
</tr>
<tr>
<td>C.3.2.</td>
<td>Method of preparation</td>
<td>112</td>
</tr>
<tr>
<td>C.4.</td>
<td>Pre-formulation of vesicles</td>
<td>116</td>
</tr>
<tr>
<td>C.4.1.</td>
<td>Differential scanning calorimetry</td>
<td>116</td>
</tr>
<tr>
<td>C.4.2.</td>
<td>Isothermal calorimetry</td>
<td>117</td>
</tr>
<tr>
<td>C.4.3.</td>
<td>Hot stage microscopy</td>
<td>120</td>
</tr>
<tr>
<td>C.5.</td>
<td>Characterisation</td>
<td>123</td>
</tr>
<tr>
<td>C.5.1.</td>
<td>Transmission electron microscopy</td>
<td>123</td>
</tr>
<tr>
<td>C.5.2.</td>
<td>Encapsulation efficiency</td>
<td>125</td>
</tr>
<tr>
<td>C.5.3.</td>
<td>Zeta-potential, size and size distribution</td>
<td>127</td>
</tr>
<tr>
<td>C.5.4.</td>
<td>pH</td>
<td>144</td>
</tr>
<tr>
<td>C.5.5.</td>
<td>Viscosity</td>
<td>146</td>
</tr>
<tr>
<td>C.6.</td>
<td>Efficacy against tuberculosis</td>
<td>149</td>
</tr>
<tr>
<td>C.6.1.</td>
<td>Effect of empty vesicles on tuberculosis cells</td>
<td>151</td>
</tr>
<tr>
<td>C.6.2.</td>
<td>Effectivity of a combination of APIs against tuberculosis</td>
<td>151</td>
</tr>
</tbody>
</table>
C.6.3. Effect of the type of vesicle used to encapsulate the APIs on tuberculosis cells 151

C.7. Summary 152

References 154

ANNEXURE D
Transdermal diffusion studies of different vesicle dispersions

D.1. Introduction 158
D.2. Methods and materials 159
D.2.1. Preparation of phosphate buffer solution 159
D.2.2. Skin preparation 159
D.2.3. Skin diffusion studies 161
D.2.4. Tape stripping 162
D.2.5. HPLC analysis 162
D.3. Results and discussion 162
D.3.1. Skin diffusion studies and tape stripping 162
D.4. Conclusion 169

References 170

ANNEXURE E
Author’s guide for DIEPharmazie

E.1. Aim 171
E.2. Conditions 171
E.3. Ethical considerations 172
E.3.1. Conflicts of interest 173
E.3.2. Informed consent 173
E.3.3. Human and animal rights 173
ANNEXURE F
Author’s guide to the Journal of Pharmaceutical and Biomedical Analysis

F.1. Introduction 177
F.1.1. Types of paper 178
F.1.2. Submission checklist 178
F.2. Before you begin 179
F.2.1. Ethics in publishing 179
F.2.2. Declaration of interest 179
F.2.3. Submission declaration and verification 179
F.2.4. Changes to authorship 180
F.2.5. Copyright 180
F.2.6. Role of the funding source 181
F.2.7. Open access 181
F.2.8. Submission 183
F.3. Preparation 183
F.3.1. Peer review 183
F.3.2. Article structure 184
F.3.3. Essential title page information 185
F.3.4. Abstract 186
F.3.5. Keywords 186
F.3.6. Artwork 188
F.3.7. Tables 189
F.3.8. References 189
F.3.9. Video 192
F.3.10. Supplementary material 193
F.3.11. AudioSlides 194
F.3.12. Interactive plots 194
F.4. After acceptance 194
F.4.1. Online proof correction 194
F.4.2. Offprints 195
F.5. Author inquiries 195

ANNEXURE G
Certificate of language editing 197
TABLE OF TABLES

CHAPTER 1
Introduction and problem statement

Table 1.1: Physicochemical properties of the three chosen APIs 2

CHAPTER 2
Review article published in Tuberculosis

Table 1: Atypical mycobacterium species responsible for cutaneous infections 9
Table 2: The classification of established leprosy 14

CHAPTER 3
Article on the validation of the analytical method accepted for publication in Die Pharmazie

Table 1: Solubility (µg/ml) (37°C) determined for artemisone, clofazimine and decoquinate in nine different solvents 24
Table 2: Obtained validation parameters for the three compounds 24
Table 3: Precision data for artemisone, clofazimine and decoquinate 24

CHAPTER 4
Manuscript to be submitted to the Journal of Pharmaceutical and Biomedical Analysis on the topical delivery of artemisone, clofazimine and decoquinate encapsulated in vesicles and their in vitro efficacy against a tuberculosis cell line

Table 1: Encapsulation efficiency (%) of vesicle dispersions containing 1% API(s) 37
Table 2: Zeta-potential, size and size distribution (PDI) of the different dispersions 38
Table 3: The pH and viscosity of 1% API dispersions at 25±1.0°C 39
Table 4: Growth inhibition (%) of the APIs in solid form, as well as in, the different dispersions

ANNEXURE A
Analytical method validation for the concurrent determination of decoquinate, artemisone and clofazimine by means of HPLC

Table A.1: Linear regression data obtained for artemisone
Table A.2: Linearity data for clofazimine
Table A.3: Linearity data obtained for decoquinate
Table A.4: Limit of detection (LOD) determined for artemisone, clofazimine and decoquinate
Table A.5: Accuracy of artemisone
Table A.6: Accuracy of clofazimine
Table A.7: Accuracy of decoquinate
Table A.8: Artemisone repeatability
Table A.9: Clofazimine repeatability
Table A.10: Decoquinate repeatability
Table A.11: Intermediate precision of artemisone
Table A.12: Intermediate precision of clofazimine
Table A.13: Intermediate precision of decoquinate
Table A.14: Reproducibility of artemisone
Table A.15: Reproducibility of clofazimine
Table A.16: Reproducibility of decoquinate
Table A.17: Precision of artemisone between three days
Table A.18: Precision of clofazimine between three days
Table A.19: Precision of decoquinate between three days
ANNEXURE C
Liposomes, niosomes and transferosomes utilised for topical drug delivery

Table C.1: Liposome vesicles (5%) 115
Table C.2: Transferosome vesicles (5%) 116
Table C.3: Niosome vesicles (5%) 116
Table C.4: Compatibility report of different ingredients used for vesicle preparation 119
Table C.5: Encapsulation efficiency (%EE) of the vesicles in the different dispersions 126
Table C.6: Amount (mg) of API entrapped in the vesicles for the different dispersions with the initial amount added to dispersion in brackets 127
Table C.7: The average zeta-potentials for the different dispersions 128
Table C.8: Average sizes (n=3) of the niosomes with 0.2% API and 4 min sonication 129
Table C.9: Average sizes (n=3) of the vesicles of different dispersions 131
Table C.10: Average pH measurements (n=3) of the different dispersions at room temperature (25±1.0°C) 145
Table C.11: The average viscosity (mPa.s, n=12) for the different dispersions at 25±1.0°C 148
Table C.12: Dispersions prepared for efficacy against tuberculosis 149
Table C.13: Efficacy against *Mycobacterium tuberculosis* H37Rv 150
Table C.14: Percentage inhibition of the three APIs, combination of the APIs and also when encapsulated into selected vesicles
TABLE OF FIGURES

CHAPTER 2
Review article published in Tuberculosis

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1:</td>
<td>Inoculation tuberculosis in a child</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2:</td>
<td>Tuberculosis verrucosa cutis</td>
<td>9</td>
</tr>
<tr>
<td>Figure 3:</td>
<td>Scrofuloderma</td>
<td>10</td>
</tr>
<tr>
<td>Figure 4:</td>
<td>Scrofuloderma in a male patient showing lymph gland involvement</td>
<td>10</td>
</tr>
<tr>
<td>Figure 5:</td>
<td>Orifacial tuberculosis</td>
<td>10</td>
</tr>
<tr>
<td>Figure 6:</td>
<td>Tuberculous gamma on the dorsum of the right foot of an eight-year old boy</td>
<td>10</td>
</tr>
<tr>
<td>Figure 7:</td>
<td>Lupus vulgaris plaque of the face, neck and chest</td>
<td>11</td>
</tr>
<tr>
<td>Figure 8:</td>
<td>Deforming, ulcerative lupus vulgaris in a caucasian male</td>
<td>11</td>
</tr>
<tr>
<td>Figure 9:</td>
<td>Cutaneous miliary TB before rupture of papules and crust formation</td>
<td>11</td>
</tr>
<tr>
<td>Figure 10:</td>
<td>Lichen scrofulosorum of the forearm and abdomen</td>
<td>11</td>
</tr>
<tr>
<td>Figure 11:</td>
<td>Papulonecrotic tuberculid</td>
<td>12</td>
</tr>
<tr>
<td>Figure 12:</td>
<td>Erythema induratum of Bazin showing prevalence in the lower extremities</td>
<td>12</td>
</tr>
<tr>
<td>Figure 13:</td>
<td>Infection with Mycobacterium marinum in the upper extremities</td>
<td>12</td>
</tr>
<tr>
<td>Figure 14:</td>
<td>Buruli ulcer in an eleven-year old boy from Australia</td>
<td>12</td>
</tr>
<tr>
<td>Figure 15:</td>
<td>Cervicofacial Mycobacterium haemophilum lymphadenitis in a child, A: presenting as a red swelling of the skin, B: after skin breakdown, and C: ulcerating open wound</td>
<td>13</td>
</tr>
<tr>
<td>Figure 16:</td>
<td>A fresh tattoo infected with Mycobacterium chelonae</td>
<td>13</td>
</tr>
</tbody>
</table>
CHAPTER 3
Article on the validation of the analytical method accepted for publication in \textit{Pharmazie}

Fig. 1: Molecular structures of A) clofazimine, B) artemisone and C) decoquinate.

Fig. 2: Chromatographs of a standard solution containing clofazimine, artemisone and decoquinate, respectively. The top chromatogram signifying detection obtained at 284 nm and the bottom chromatogram showing detection at 210 nm.

Fig. 3: Chromatographs obtained with a solution containing typical excipients used in formulation of solid oral dosage forms, observing clofazimine, artemisone and decoquinate, respectively. The top chromatogram signifying detection obtained at 284 nm and the bottom chromatogram showing detection at 210 nm.

Fig. 4: Chromatographs of excipient solution for transdermal/topical delivery systems showing clofazimine, artemisone, and decoquinate, respectively. The top chromatogram signifying detection obtained at 284 nm and the bottom chromatogram showing detection at 210 nm.

CHAPTER 4
Manuscript to be submitted to the \textit{Journal of Pharmaceutical and Biomedical Analysis} on the topical delivery of artemisone, clofazimine and decoquinate encapsulated in vesicles and their in vitro efficacy against a tuberculosis cell line

Figure 1: Heat flow versus time graph obtained for a combination of ART, CLF and DQ

Figure 2: Heat flow data obtained for ART, CLF, DQ and Tween®20

Figure 3: TEM imaging illustrating: A. Liposomes, B. Niosomes and C. Transferosomes prepared with pure water
Figure 4: Average concentrations of APIs present in the stratum corneum-epidermis (SCE) and epidermis-dermis (ED) after tape stripping

ANNEXURE A
Analytical method validation for the concurrent determination of decoquinate, artemisone and clofazimine by means of HPLC

Figure A.1: Chromatogram of a reference standard injected into HPLC and the retention times of the three APIs

Figure A.2: Linear regression curve of artemisone

Figure A.3: Linear regression curve for clofazimine

Figure A.4: Linear regression curve for decoquinate

ANNEXURE B
Full compatibility report of clofazimine, artemisone and decoquinate with vesicle components

Figure 1: Heat flow versus time graph obtained for a combination of artemisone, clofazimine and decoquinate.

Figure 2: Graph depicting the heat flow data of artemisone combined with phosphatidylcholine.

Figure 3: Heat flow versus time graph obtained for a combination of clofazimine and phosphatidylcholine.

Figure 4: Heat flow data obtained for decoquinate and phosphatidylcholine.

Figure 5: Heat flow data obtained for artemisone, clofazimine, decoquinate and phosphatidylcholine.

Figure 6: Heat flow versus time graph obtained for a combination of artemisone and cholesterol.

Figure 7: Heat flow versus time graph obtained for a combination of clofazimine and cholesterol.

Figure 8: Heat flow data obtained for decoquinate and cholesterol.
Figure 9: Heat flow data obtained for artemisone, decoquinate, clofazimine and cholesterol. 87
Figure 10: Heat flow data obtained for phosphatidylcholine and cholesterol. 88
Figure 11: Heat flow data obtained for artemisone and Tween® 20. 88
Figure 12: Heat flow data obtained for clofazimine and Tween® 20. 89
Figure 13: Heat flow data obtained for decoquinate and Tween® 20. 90
Figure 14: Heat flow data obtained for phosphatidylcholine and Tween® 20. 90
Figure 15: Heat flow data obtained for Tween® 20 and cholesterol. 91
Figure 16: Heat flow data obtained for decoquinate, artemisone and Tween® 20. 92
Figure 17: Heat flow data obtained for decoquinate, clofazimine and Tween® 20. 93
Figure 18: Heat flow data obtained for artemisone, clofazimine and Tween® 20. 93
Figure 19: Heat flow data obtained for artemisone, clofazimine, decoquinate and Tween® 20. 94
Figure 20: Heat flow versus time graph obtained for a combination of artemisone, phosphatidylcholine and cholesterol. 95
Figure 21: Heat flow versus time graph obtained for a combination of clofazimine, phosphatidylcholine and cholesterol. 96
Figure 22: Heat flow versus time graph obtained for a combination of decoquinate, phosphatidylcholine and cholesterol. 97
Figure 23: Heat flow versus time graph obtained for a combination of decoquinate, phosphatidylcholine and cholesterol when formulated as liposomes. 98
Figure 24: Heat flow data obtained for transferosomes containing artemisone and phosphatidylcholine. 99
Figure 25: Heat flow data obtained for transferosomes containing clofazimine and phosphatidylcholine. 100
Figure 26: Heat flow data obtained for transferosomes containing decoquinate and phosphatidylcholine. 101
ANNEXURE C
Liposomes, niosomes and transferosomes utilised for topical drug delivery

Figure C.1: Diagrammatical presentation of a unilamellar vesicle

Figure C.2: Labcon® hotplate and stirrer

Figure C.3: Transsonic® TS540 ultrasonicator bath

Figure C.4: Hielscher® ultrasonic processor UP200St at 200 W and 26 kHz

Figure C.5: Lipid film containing clofazimine in a beaker

Figure C.6: DSC thermogram of the three APIs and their combination

Figure C.7: Hot stage microscopy micrographs of artemisone during continuous heating

Figure C.8: Hot stage microscopy micrograph of clofazimine during continuous heating

Figure C.9: Hot stage microscopy micrograph of decoquinate during continuous heating

Figure C.10: Hot stage microscopy micrograph of artemisone, clofazimine and decoquinate during continuous heating

Figure C.11: TEM imaging illustrating: A. Liposomes, B. Niosomes and C. Transferosomes prepared with PBS as the aqueous phase

Figure C.12: TEM imaging illustrating: A. Liposomes, B. Niosomes and C. Transferosomes prepared with pure water
Figure C.13: Dispersions after centrifugation showing the formation of pellets

Figure C.14: Size distribution of niosomes containing 0.2% artemisone (A), clofazimine (B), decoquinate (C), and a combination of all three APIs (D), sonicated 4 min

Figure C.15: Size distribution of liposomes with no APIs

Figure C.16: Size distribution of the liposomes containing 0.2% artemisone (A), clofazimine (B), decoquinate (C), and all three APIs (D)

Figure C.17: Size distribution of the liposomes in the dispersion containing 0.4% of all three APIs

Figure C.18: Size distribution of the liposomes containing 1% artemisone (A), clofazimine (B), decoquinate (C), and all three APIs (D)

Figure C.19: Size distribution of transferosomes in the blank dispersion

Figure C.20: Size distribution of the transferosomes containing 0.2% artemisone (A), clofazimine (B), decoquinate (C), and a combination of all three APIs (D)

Figure C.21: Size distribution of the transferosomes in the dispersion containing 0.4% of all three APIs

Figure C.22: Size distribution of the transferosomes containing 1% artemisone (A), clofazimine (B), decoquinate (C), and a combination of all three APIs (D)

Figure C.23: Size distribution of niosomes in the blank dispersion

Figure C.24: Size distribution of the niosomes containing 0.2% artemisone (A), clofazimine (B), decoquinate (C), and a combination of all three APIs (D)

Figure C.25: Size distribution of the niosomes in the dispersion containing 0.4% of all three APIs
Figure C.26: Size distribution of the niosomes containing 1% artemisone (A),
clofazimine (B), decoquinate (C), and a combination of all three
APIs (D) 143

Figure C.27: Mettler® Toledo pH meter 144

Figure C.28: A Brookfield® Viscometer used for measuring viscosity 147

ANNEXURE D
Transdermal diffusion studies of different vesicle dispersions

Figure D.1: Vertical Franz diffusion cell components and assembly 159

Figure D.2: Full thickness black skin as received from donor 160

Figure D.3: Zimmer® electric dermatome model 8821 160

Figure D.4: A Grant® JB series water bath equipped with a magnetic stirrer plate 161

Figure D.5: Average concentration of clofazimine for the liposome dispersion in
the individual Franz cells 163

Figure D.6: Average concentration of decoquinate for the liposome dispersion in
the individual Franz cells 164

Figure D.7: Average concentration of clofazimine for the transferosome dispersion
in the individual Franz cells 165

Figure D.8: Average concentration of decoquinate for the transferosome dispersion
in the individual Franz cells 165

Figure D.9: Average concentration of clofazimine for the niosome dispersion in
the individual Franz cells 166

Figure D.10: Average concentration of decoquinate for the niosome dispersion in
the individual Franz cells 166

Figure D.11: Average concentration of clofazimine for the no vesicles dispersion in
the individual Franz cells 167

Figure D.12: Average concentration of decoquinate for the no vesicles dispersion in
the individual Franz cells 167
Figure D.13: Average concentrations APIs present in the SCE and ED for the different dispersions investigated
ACKNOWLEDGEMENTS

Glory be to God our Father. Thank you for all the blessings given in abundance, for giving me this opportunity and each day carrying me through any obstacles I may face.

To Roean, the keeper of my heart, thank you for all your sacrifices, love, encouragement and a few stern words where needed.

To my family, old and new, for all your support, love, understanding and encouragement.

Prof. Jeanetta du Plessis & Dr. Joe Viljoen: Thank you for all your guidance, patience, encouragement and all the hours spent reading this thesis to help me deliver the best possible version of this work.

Prof. Jan du Preez & Dr. Minja Gerber: Thank you for all the help with the HPLC, interpreting data and writing the validation article.

Prof. Marique Aucamp: Thank you for all the hours spent with TAM, DSC and HSM.

Mrs. Hester de Beer: Thank you for always being willing to help with anything, even if it was just pointing me to the right person for the task.

Dr. Anine Jordaan: Thank you for bringing my vesicles to life through your help with TEM.

Prof. Schalk Vorster: Thank you for helping with language editing of this thesis.

Thank you to the National Research Foundation (NRF), Medical Research Council (MRC) and the Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Potchefstroom Campus for funding this project and making it a possibility.
Artemisone, clofazimine and decoquinate are part of the MALTBRedox MRC South African University Flagship Projects, which focus on oxidant-redox drug combinations for the treatment of tuberculosis and a few other diseases. These active pharmaceutical ingredients (APIs) were chosen as a possible treatment of cutaneous tuberculosis (CTB), an uncommon and undefined disease that is often misdiagnosed (Abdelmalek et al., 2013; Baig et al., 2014; Fader et al., 2010). Currently CTB is only treated with regular oral anti-tuberculous medication, with occasional invasive procedures such as skin grafts (Yates, 2010).

Artemisone, clofazimine and decoquinate have a log P of 2.49, 7.7 and 7.8, respectively (Biamonte et al., 2013; Dunay et al., 2009; Nagelschmitz et al., 2008; Steyn et al., 2011). A high log P-value indicates that the API is highly lipophilic and therefore a delivery system, namely vesicles, was chosen to improve skin permeation. Many vesicles are currently being investigated all over the world as carriers for APIs in topical delivery, though for this study liposomes, niosomes and transferosomes were selected.

Dispersions containing a single API, a combination of all three APIs, as well as no API, were prepared for all three types of vesicles. Characterisation of dispersions containing 0.2%, 0.4% and 1% API was performed. Isothermal calorimetry indicated that no incompatibility occurred in the 1% API combination dispersions, except the niosome dispersion, which indicated a probable incompatibility. Encapsulation efficiency was above 85% for all 1% API dispersions. The empty vesicles depicted an average size of 154 nm, 167.5 nm and 106.3 nm for liposomes, niosomes and transferosomes, respectively. Vesicle sizes increased with increase in API concentration, whereas stability decreased. Clofazimine was found to have the most significant impact on vesicle size and stability when added as 1%, increasing the average niosome size to 2 461 nm. Viscosity was below 2 mPa.s for all 1% API dispersions, ensuring even spreadability when applied to the skin. The pH of all the dispersions were between 5–6, thus limiting skin irritation.

In vitro transdermal diffusion studies were conducted on black skin, using dispersions containing 1% of all three APIs. No APIs could be detected in the receptor phase. Artemisone was not detected in the skin by means of HPLC analysis, which might be due to the fact that the concentration was below the limit of detection (LOD). The LOD for artemisone was determined at 4.42 µg/ml, whereas it was 0.042 µg/ml for clofazimine and 0.703 µg/ml for decoquinate. Higher API concentrations were present in the stratum corneum-epidermis (SCE), compared to in the epidermis-dermis (ED) for all the dispersions. Transferosomes delivered the highest
concentration clofazimine into the SCE and ED, as well as the highest concentration decoquinate into the ED. The highest concentration decoquinate in the SCE, however, was obtained by the niosome dispersion.

Efficacy against tuberculosis of the APIs (1%) encapsulated in vesicles was tested on strain H37Rv. All dispersions were found to be effective to some degree against the tuberculosis strain tested, with clofazimine in niosomes being the most effective with 52% growth inhibition. The least effective was decoquinate in niosomes, with only 8% inhibition. The combination dispersions delivered inhibitions of 42%, 38% and 12% for liposomes, niosomes and transferosomes, respectively. Surprisingly, it was found that the vesicle dispersions containing no APIs also presented some efficacy against the tuberculosis strain tested.

New knowledge contributed to pharmaceutics by this study includes encapsulating the three APIs in liposomes, niosomes and transferosomes and successfully delivering them into the skin as proved by transdermal diffusion studies. Developing an HPLC method for the concurrent analysis of the three APIs and determining the activity of the vesicle dispersion against the specific tuberculosis strain tested also contributed new knowledge. Results indicated that decoquinate, an API never before considered for tuberculosis, does have anti-tuberculous activity. No significant increase in efficacy against the tuberculosis strain was noted when combining the three APIs in a vesicle dispersion, compared to when the APIs were incorporated separately into the vesicles, though the blank vesicles had surprisingly high activity against the specific tuberculosis strain tested.

Keywords: Clofazimine, artemisone, decoquinate, liposomes, niosomes, transferosomes, transdermal
REFERENCES

UITTREKSEL

Artemisoon, klofasimien en dekokwinaat is deel van die MALTBRredox MRC Suid-Afrikaanse Universiteit Flagship Projekte wat fokus op oksidasie-reduksie geneesmiddelkombinasies vir die behandeling van tuberkulose en 'n paar ander siektes. Hierdie geneesmiddels is gekies vir moontlike behandeling van kutaneuse tuberkulose (KTB), 'n ongewone en ongedefinieerde siekte wat dikwels verkeerd gediagnoseer word (Abdelmalek et al., 2013; Baig et al., 2014; Fader et al., 2010). Tans word KTB slegs behandel met gewone orale anti-tuberkulose-medisyne, en soms met indringende prosedures soos veloorplantings (Yates, 210).

Artemisoon, klofasimien en dekokwinaat besit 'n log P van 2.49, 7.7 en 7.8,onderskeidelik (Biamonte et al., 2013; Dunay et al., 2009; Nagelschmitz et al., 2008; Steyn et al., 2011). 'n Hoë log P dui op 'n sterk lipofiliese geneesmiddel en om hierdie rede is 'n afleweringsisteem, naamlik vesikels, gekies om veldeurlaatbaarheid te verbeter. Baie vesikels word tans reg oor die wêreld ondersoek as draers van geneesmiddels vir topikale aflewering, maar vir hierdie studie is liposome, niosome en transferosome geselekteer.

Dispersies met 'n enkele geneesmiddel, 'n kombinasie van al drie geneesmiddels, sowel as geen geneesmiddel, is voorberei vir al drie tipes vesikels. Karakterisering van dispersies wat 0.2%, 0.4% en 1% geneesmiddel bevat, is uitgevoer. Isotermiese kalorimetrie-resultate het aangetoon dat geen onverenigbaarheid voorkom in die 1% geneemiddeldispersie nie. Resultate verkry vanaf die niosoomdispersie het egter op 'n moontlikheid van onverenigbaarheid gedui. Enkapsuleringeffektiwiteit was bo 85% vir alle 1% geneesmiddeldispersies. Die leë vesikels het 'n gemiddelde grootte van 154 nm, 167.5 nm en 106.3 nm gehad vir liposome, niosome en transferosomes, onderskeidelik. Vesikelgrootte het toeneem met 'n toename in geneesmiddelkonsentrasie, terwyl stabiliteit afgeneem het. Dit is gevind dat klofasimien die grootste impak gehad het op vesikelgrootte en stabiliteit wanneer dit bygevoeg is in 'n 1% konsentrasie, met 'n gemiddelde vesikelvergroting tot 2 461 nm. Viskositeit was onder 2 mPa.s vir alle 1% geneesmiddeldispersies, wat eweredige spreibaarheid sal verseker tydens aanwending op die vel. Die pH van al die dispersies was tussen 5–6, wat vel-irritasie beperk.

In vitro transdermale-afleweringstudies is uitgevoer op swart vel, deur van dispersies gebruik te maak wat 1% van al drie geneesmiddels bevat. Geen geneesmiddel is waargeneem in die reseptorfase nie. Artemisoon kon nie in die vel opgespoor word met behulp van die HPLC-metode nie, wat moontlik verduidelik kan word deur die feit dat die konsentrasie onder die opsporingslimiet was. Die opsporingslimiet van artemisoon is bepaal as 4.42 µg/ml, terwyl dit
0.042 µg/ml vir klofasimien en 0.703 µg/ml vir dekokwinaat is. Hoër konsentrasies van die geneesmiddels was wel teenwoordig in die stratum korneum-epidermis (SKE) in vergelyking met die epidermis-dermis (ED) vir alle dispersies. Transfersome het die hoogste konsentrasie klofasimien afgelewer in die SKE en ED, sowel as die hoogste konsentrasie dekokwinaat in die ED. Die hoogste konsentrasie dekokwinaat in die SKE is egter verkry deur die niosoomdispersie.

Effektiwiteit van die geneesmiddels (1%) ingesluit in vesikels is getoets teen die spesifieke bakteriële stam van tuberkulose teen die H37RV variasie. Daar is gevind dat al die dispersies effektiwiteit toon, hoewel in 'n klein mate; met klofasimien in niosome die effektiefste met 52% groei-onderdrukking. Die laagste effektiwiteit teen die spesifieke tuberkulose-stam is getoon deur dekokwinaat in niosome met 8% onderdrukking. Die kombinasie-dispersies het onderdrukkings van 42%, 38% en 12% gelever vir liposome, niosome en transfersomes,onderskeidelik. Verbasend is daar gevind dat die vesikeldispersies wat geen geneesmiddels bevat het nie, ook 'n mate van effektiwiteit getoon het.

Nuwe kennis wat bydra tot Farmaseutika deur hierdie studie, sluit in die enkapsulering van die drie geneesmiddels in liposome, niosome en transfersome, asook die suksesvolle aflewering daarvan in die vel soos bepaal deur transdermale afleveringsstudies. Ontwikkeling van 'n HPLC-metode vir die gesamentlike analyse van die drie geneesmiddels, asook die getoetste aktiwiteit van die vesikeldispersies teen die spesifieke tuberkulose-stam, dra ook by tot nuwe kennis. Resultate het aangedui dat dekokwinaat, 'n geneesmiddel wat nooit voorheen oorweeg is teen tuberkulose nie, wel anti-tuberkulose-aktiwiteit besit. Geen merkwaardige toename in effektiwiteit teen tuberkulose is waargeneem wanneer die drie geneesmiddels gekombineer is in 'n vesikeldispersie, teenoor wanneer die geneesmiddels apart ingesluit is in die vesikels nie, alhoewel die blanko-vesikels verbasend hoë aktiwiteit teen die spesifieke tuberkulose-stam getoon het.

Sleutelwoorde: Klofasimien, artemisoon, dekokwinaat, liposome, niosome, transfersome, transdermaal
BRONNELYS

