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ABSTRACT

TITLE: Alternative method for equipment condition monitoring on South African mines
AUTHOR: GJ Cloete
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The practicality of accurate condition monitoring and fault diagnostics depends on the type of
parameter measured and the accuracy of the measurement. In the South African mining
industry, it is common to find large electrical machines with limited logged parameters, which

significantly decreases fault diagnostic capability.

In this study, a condition monitoring methodology that incorporates an autoregressive fault
detection model is developed to improve condition-based maintenance strategies on South
African mines. Autoregressive models have shown to be able to detect and predict equipment
defects with available temperature parameters. A method to determine the condition of
equipment is developed by establishing an autoregressive model on the modal parameters of
both healthy and unhealthy machines. The method was validated by comparing results with

the mine’s maintenance reports.

The model was implemented in two case studies which include large three-phase induction
motors. Case Study 1 presents a large disturbance in the temperature of a non-drive end
bearing of a multistage centrifugal compressor that was detected by the model. Case Study 2
presents a gradually increasing motor winding temperature of a multistage centrifugal pump

that was also successfully detected.

The method is a viable alternative to the mines due to the capability of automatically detecting
faults even within the mines’ alarm and trip limits. The model automatically adapts to the
behaviour of the input parameters and monitors the mean and variance shifts. This allows the
method to be interchangeable with different types of equipment. The method can continuously
evaluate a system of multiple components and provide simple, actionable feedback if a fault

is detected.
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ALTERNATIVE METHOD FOR EQUIPMENT
CONDITION MONITORING ON SOUTH AFRICAN MINES

CHAPTER 1

INTRODUCTION TO CONDITION MONITORING
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1.INTRODUCTION TO CONDITION MONITORING
1.1. INTRODUCTION

Chapter 1 provides background on condition monitoring and the relevant information regarding
condition monitoring. It will serve as motivation for the study and it will briefly explain the

approach taken to achieve the aims of the study.

Condition monitoring aids in the detection, diagnosis and prognosis of faults in industrial
systems (Beebe, 2004). Potential economic and safety implications of early fault detection

makes condition monitoring an appealing field of research (Fugate, Sohn & Farrar, 2001).

Process industries are looking to reduce machine downtime and maintenance costs (Wasif et
al., 2012). A reduction in machine downtime and maintenance costs can be achieved by
implementing a condition monitoring strategy (Beebe, 2004). Previous studies conducted by
Chindondondo, et al. (2014) and Shafiee, et al. (2015) have reported a maintenance cost
reduction of 8% - 30% by implementing a condition-based maintenance (CBM) strategy.

This study will focus on large electric motor-driven machines used in deep-level mines in South
Africa. Examples of these machines include compressors, dewatering pumps and ventilation
fans. These machines have a direct influence on the production of a mine (Karakurt et al.,
2011; Wilson et al., 1975).

A condition monitoring methodology for the equipment is developed in this study. The
methodology contains a model that aids to detect changes in developed signals. The

developed model is implemented and verified on available case studies.

1.2. CONDITION MONITORING

The process of monitoring the condition or state of machinery and processes is called
condition monitoring. Condition monitoring is regarded as a type of maintenance inspection
with the purpose to detect signs of degradation, diagnose cause of faults and predict when a
fault may occur (Beebe, 2004). The aim of condition monitoring is to predict equipment and
process failure before it occurs whereby the equipment availability is maximised and

associated hazards are reduced.

1.2.1. MEASURED PARAMETERS

Different parameters are used to measure the condition of equipment. Real-time condition
monitoring makes use of non-destructive test methods. The following test methods are

typically used as condition indicators (Zhou et al., 2007):

Alternative method for equipment condition monitoring on South African mines 2



e Vibration monitoring

e Temperature monitoring

e Current monitoring

e Acoustic emission monitoring
e Sound pressure monitoring

e Laser displacement monitoring
¢ Chemical (oil) analysis

e Operational performance monitoring

Vibration and temperature are commonly logged parameters on large mining equipment.
Usually, only a select few of these techniques are used to monitor the condition of the
equipment. It is not always necessary to make use of all these techniques since the critical

test methods are equipment specific.

Key performance parameters include power consumption, flow(s), pressure(s) and calculated
efficiency. Typical condition monitoring parameters include temperature and vibration. The
measured parameters along with their set alarms are usually displayed online on the

supervisory control and data acquisition (SCADA) system for operators to monitor.

If these monitored parameters exceed manufacturer’s/operator’s set limits an alarm triggered
to indicate that a fault is imminent or has occurred. The equipment usually has a fail-safe
programmed into the programmable logic controller (PLC) that will automatically trip the
equipment. The SCADA will inform the operator that the equipment has tripped and the fault
can be reported remotely by the client’s remote alarm monitoring system - if such a system

exists.

1.2.2. CONDITION PREDICTION MODELS

In literature, different modelling techniques are implemented to detect and predict equipment
health (Jardine et al., 2006). These models make use of parameters divided into three main
categories: waveform data analysis, value type data analysis and data analysis combining

event data and condition monitoring data (Jardine et al., 2007).

Three different domains are used to analyse a time series, namely: time-domain analysis,
frequency-domain analysis and time-frequency analysis (Jardine et al., 2006). This study will

focus on the time-domain analysis of temperature and vibration profiles.
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Condition prediction models analysing the time-domain parameters have been shown to
successfully detect, predict and diagnose faults in industry (Baillie & Mathew, 1996). By

predicting faults, the availability and reliability of machinery can be increased.

1.2.3. AVAILABILITY AND RELIABILITY

One of the main aims of maximising equipment availability is to increase production of a mine.
The production of a mining company is usually listed as a key performance indicator (KPI)
(Harmony Gold Mining Company Limited, 2017; Lonmin Plc, 2017). In the mining industry,
one of the main KPIs is the cost per amount of material retrieved from the earth (intensity). A
condition-based maintenance strategy can aid to increase the availability of production

affecting equipment (Sitayeb et al., 2011).
System availability, a fundamental measure for reliability is shown in Equation 1.1:

Mean time to failure(MTTF)
Mean time to failure (MTTF) + Mean time to repair (MTTR)

Availability = (1.1
A machine with high availability is a machine that is only shut down for short periods of time
due to maintenance or failure (Tavner, 2008). Availability is given as a percentage as
calculated by using Equation 1.1. High availability is one of the main criteria for satisfactory

performance (Davies, 1998).

Reliability of a machine is the measure of the consistency that the machine can operate
without failure for a set time. It can statistically be defined as the probability that a machine

will remain online producing as required for the desired period (Beebe, 2004).

Certain factors affect the reliability of the equipment. The design of the machine and the
maintenance philosophy are the main contributors that affect the reliability of a machine
(Beebe, 2004). The design of the machine includes the materials used, quality of the design

and the quality of construction.

1.2.4. EQUIPMENT FAILURE

Equipment failures affects the reliability and availability. Bloch (1990) completed a root cause
analysis on centrifugal pumps that experienced mechanical failure. The root cause analysis
determined why the centrifugal pumps had failed. The failure cause distribution is shown in

Figure 1-1.
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FIGURE 1-1 CENTRIFUGAL PUMPS FAILURE CAUSE DISTRIBUTION

Figure 1-1 shows that factors such as the materials used, the quality and design have an effect
of the failure of pumps. Figure 1-1 also shows that the main source of pump failure is
maintenance deficiencies. Maintenance deficiencies can be mitigated with a continuous

condition monitoring strategy (Wasif et al., 2012; Chindondondo et al., 2014).

The maintenance philosophy contributes to the reliability of the machine after construction.
The reliability of a machine is proportional to the cost of making the machine and will likely
influence the maintenance cost. Beebe (2004) states that only 10% — 20% of machines reach
their design life. Independent studies have shown that 15% — 20% of all equipment failures

are age related (Amari & McLaughlin, 2006).

Condition monitoring aids in detecting early damage of machines. Damage to a machine can
have potential economic and life-safety implications (Fugate et al., 2001). The principle

causes of major accidents are shown in Figure 1-2.
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Arson / sabotage

Design errors 3%

4%

Natural hazards
7%

Mechanical failure
38%

Unknown /
miscellaneous
12%

Operational errors
26%

FIGURE 1-2: PRINCIPLE CAUSES BEHIND MAJOR ACCIDENTS
(DAvIES, 1998)

A survey completed by Davies (1998) reviewed 100 petrochemical plant accidents that took
place between 1958 and 1987. Figure 1-2 indicates that 38% of all accidents occurred due to
mechanical failure which stresses the importance of condition monitoring practices. In many
of these cases, the accidents could have been prevented if the condition of the equipment

was pro-actively monitored.

1.3. SOUTH AFRICAN MINING INDUSTRY

To fully understand condition monitoring the challenges specific to the South African industry
will be assessed. Factors specific to South Africa, such as the economic climate, deep level
mining and existing data handling infrastructure all influence current condition monitoring

methodologies and strategies.

1.3.1. ECONOMIC CLIMATE

Mining companies are facing severe economic and financial challenges (Neingo & Tholana,
2016). South Africa was the leading gold producer until 2009 when China exceeded South
Africa, and is still the leading producer to date. South Africa is currently the seventh top gold
producer in the world behind China, Australia, Russia, United States of America, Canada and
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Peru (Jasinski, 2017). South Africa produced an estimated 140 metric tons in 2016 which is a

decrease from 145 metric tons in 2015 (Jasinski, 2017).

The monthly gold production index provides an indication of the extent that the production has
fallen in South Africa from above 350 index points in January 1980 to less than 50 index points
in January 2015 (Statistics South Africa, 2015). South Africa produced 87% less gold in
January 2015 compared to January 1980 (Statistics South Africa, 2015).

The number of employees in the mining and quarrying industry are declining (Statistics South
Africa, 2016). The average wages in the South African mining and quarrying industries are
increasing at a rate higher than inflation (Statistics South Africa, 2016). Both the decrease of
gold production and the wage increases stress the fact that the mining industry must adapt to
the changing economic climate.

1.3.2. DEEP-LEVEL OPERATIONS

Monitoring and maintaining the condition of equipment in a South African underground mine
is challenging due to the country’s unique reef formations, as well as depths to reach the ore
bodies (Johansson, 2010). This leads to many operational obstacles that can affect condition
monitoring. Monitoring the condition of underground equipment is more difficult than
equipment on the surface.

Underground conditions such as the temperature and humidity increase the difficulty of
working underground. Virgin rock temperatures of 60°C are expected at 4000 m depths and
are not uncommon in the deep gold mines of South Africa (Stephenson, 1983; Neingo &
Tholana, 2016). In South African deep-level mines, it is common for a gold mine to be deeper

than 3000 m below the surface.

These conditions can have a degrading effect on both the equipment and on the employees’
performance thus increasing unplanned breakdowns and maintenance difficulty. To cool the
working environment to a more bearable climate, gold mines utilise ventilation and

refrigeration systems which are among the cost drivers (Neingo & Tholana, 2016).

Seismic activity can also have an impact on the availability and reliability of equipment.
Seismicity mainly affects the production of the mine, but seldom affects the performance or
condition of the large underground energy consumers such as pumps, fridge plants and other

cooling auxiliaries (Neingo & Tholana, 2016).
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1.3.3. DATA HANDLING

A mine is one large system that can be broken down into smaller subsystems to simplify data
handling. This increases the difficulty of stable transmission of data to a central database.
The cost to install or upgrade the infrastructure to transmit the data required for condition
monitoring depends on the mine’s existing infrastructure and long-term strategy. To make the
study practical, the data collected by the mine’s existing infrastructure will be used to

determine the condition of the equipment.

To simplify the data collection methodology, it is divided into three main steps. The first step
is the transmission of data between the PLC and SCADA system. The next step is to obtain
the data from the SCADA and process the data remotely while ensuring data integrity. The
third step is to report the results to the end user. The data obtained for this study is obtained

remotely. The data transmission path is shown in Figure 1-3.

Database &
data
processing

Email recipient

Secure mobile
network

Sensor

Network switch SCADA EMS Mobile router

FIGURE 1-3 DATA TRANSMISSION PATH INTO ALARM

Using the data transmission path shown in Figure 1-3, the data is retrieved from the historian
database in half hourly intervals to reduce data transmission cost. The transmitted data can

include the following parameters, depending on what type of equipment is monitored:

e Active power output

o Reactive power
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e Power factor

e Current and voltages

e Non-drive end (NDE) and drive end (DE) bearing temperatures of both the equipment
and the motor

o Gearbox bearing temperatures (for gear-drive motors)

e NDE and DE vibration of the equipment and the motor

o Gearbox bearing vibration (for gear-drive motors)

e Motor winding temperatures

¢ Equipment specific performance parameters

Some South African mines have extensive logs of these parameters; up to millisecond
intervals. Mines can improve its current fault detection abilities by implementing alternative

and more effective detection and prognosis techniques.

1.3.4. IMPACT OF CONTINUOUS MONITORING IMPLEMENTATION

The benefits of implementing a continuous condition monitoring strategy include a reduction
in the number of unplanned shutdowns, increased system availability, potential to pre-order
spare parts, increased safety in plant operations, increased process efficiency and more

effective process control.

By continuously monitoring and predicting the health of the process or equipment can
decrease the number of unplanned shutdowns and mitigate production losses. If the condition
of the system is declining and the responsible group is informed of the system’s state, a pre-

emptive strategy can be established to counter the risks.

If the group or responsible person is informed of a possible breakdown, the risk can pre-
emptively be assessed and spare parts can be pre-ordered to reduce down time that would

have been used to wait for parts to arrive.

A part of condition monitoring includes efficiency monitoring. One of the symptoms of a faulty
electrical motor is the reduction of efficiency (Nandi et al., 2005). If the equipment is powered
by an electrical motor, the efficiency or performance of the machine is then also dependent
on the condition of the electrical motor. This makes monitoring the performance a viable
indicator of the condition of the equipment. There are many more benefits to condition

monitoring Neale & Woodley (1975) summarised the benefits in Table 1-1.

TABLE 1-1 THE BENEFITS OF CONDITION MONITORING
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(ADAPTED FROM NEALE & WOODLEY, 1975)

Benefits

Methods by which condition monitoring gives these

advantages

Lead time

Better machine knowledge

Reduces machinery
related accidents, injuries

and fatalities

Enables safe planned plant
stops when instant shut down

is not permissible.

Machine condition, as
indicated by an alarm, is
adequate if instant shut down

is permitted.

Enables machine shut down
for maintenance to be related
to required production or
service, and various
consequential losses from
unexpected shut downs to be

avoided.

Possibility to increase
availability by maximising
time between planned
machine overhauls and, if
necessary, allows a machine
to be nursed through to the

next planned overhaul.

Enables machine to be shut
down without destruction or
major damage requiring a
long repair time.

Enables the maintenance
team to be ready, with spare
parts, to start work as soon

as machine is shut down.

Reduces inspection time after
shutdown and speeds up the
start of correct remedial

action.

Increased
running time
Increased
machine
availability
Reduced
maintenance
time
—
>
o
e
>
(@)

Increased rate of nett

output

Allows some types of
machine to be run at
increased load and/or speed.
Can detect reductions in
machine efficiency or
increased energy

consumption.

Improved quality of

product or service

Allows advanced planning to
reduce the effect of
impending breakdowns on
the customer for the product
or service and thereby
enhances company
reputation.

Can be used to reduce the
amount of product or service
produced at substandard

quality levels.
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14. CONDITION MONITORING APPROACH

1.4.1. MAKING CONDITION MONITORING PRACTICAL

State of the art equipment produces tremendous amounts of data. Analysing this data can
result in a large time and financial expense (Wiggelinkhuizen et al., 2007; Yang et al., 2014).
Bauer et al. (1998) states that the measurement equipment in the mining environment must
be robust because of the extreme conditions. To make condition monitoring practical, the
method itself should be robust. It has to compensate for limited logged parameters and still

result in an accurate fault detection estimate.

The monitoring method should be cost effective. By using the mine’s current monitoring
infrastructure, implementation cost can be minimal. If the infrastructure already includes

condition monitoring functionality, the focus can be shifted to the data analysis.

To increase the practicality of the condition monitoring method, performance parameters can
be monitored. Performance monitoring is more practical because the performance parameters
are more commonly measured. Performance monitoring is essentially a type of condition
monitoring. Running machinery or processes in an unhealthy condition can have an adverse
effect on the performance of the equipment. An example of such an effect is that the
deterioration in the condition of the machine causes an increase in energy usage (Beebe,
2004).

The condition monitoring model, in this study, will be developed using data from South African
mines. The study will focus on large electric motor-driven machines since most machines on

the mine and in the mining industry are powered electrically.

1.4.2. APPROACH TO CONDITION MONITORING

The aim of improving condition monitoring capabilities, is to improve the CBM. CBM process
consists of many sub steps. The whole architecture of CBM is summarised into seven steps
(Prakash Kumar & Srivastava, 2014). This study focusses on signal processing condition

monitoring health assessment and prognostics step presented in Figure 1-4.
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Data acquisition

The collection of data between the equipment and central database

Signal processing

Remove distortions to Remove data that is not Transform the signal to
restore the signal to the indicative of equipment make relevant features
underlying original shape condition more explicit

Condition monitoring

Compare on-line, real time data with set limits

Health assessment

Prescribe if the health of the monitored equipment has degraded from installation. It also
serves to generate diagnostics records to propose fault possibilities.

Prognostics

Logistic data from previous steps are required to calculate the future health of equipment.

Decision Support

The prognostics result should be assessed and an optimal maintenance actions should
be proposed to the assessor.

Presentation

This layer should contain data of the previous steps. It should contain the equipment
health assessment, prognostic and decision.

FIGURE 1-4 ARCHITECTURE OF CONDITION-BASED MAINTENANCE
(PRAKASH KUMAR & SRIVASTAVA, 2014)

A limiting step of this study is the data acquisition, therefore the focus shifts to the signal
processing to improve condition monitoring, health assessment and prognostics steps of the
equipment. The approach of this study will focus on reducing the difficulty of implementing a
condition monitoring strategy.

Alternative method for equipment condition monitoring on South African mines 12



1.5. CONCLUSION

Condition monitoring is an appealing field of research because of its benefits (Fugate et al.,
2001). A list of problems concerning condition monitoring in the South African mining industry

is presented in Section 1.5.1. The aims of the study are given in Section 1.5.2.

1.5.1. PROBLEM STATEMENT

Many industries depend on a remote monitoring system built into the SCADA to indicate the
condition of equipment. This method only triggers alarms when failures occur. This results in
large failure-related cost such as production losses, consequential damage to other
equipment, catastrophic failure replacement cost, unplanned maintenance overtime cost, etc.
(Beebe, 2004; Wasif et al., 2012).

South African mines only measure limited condition defining parameters. Gouws (2007) states
that the connection of sensors for the purpose of condition monitoring is not always possible.
Therefore, the need for a practical condition monitoring method increases that can assist with
detection and prognosis using available data.

Previous studies propose many complex solutions for condition monitoring. These solutions
require a large amount of representative data for fault prognosis or diagnosis. In practice, a
large amount of data is rarely available or accessible.

Financial constraints limit many South African mining companies to effectively implement a
condition monitoring system. Infrastructure to acquire and manage large amounts of data is
imperative for the precise monitoring of equipment condition. An upgrade to the existing
infrastructure can be required if the current infrastructure is not adequate to execute the

specific maintenance strategy.

A low sample rate of 30 minutes is available, which has been considered too low for accurate
fault detection (Yang et al., 2014). Thus, a need for a condition monitoring method that is

practical, robust and accurate for the low sample rates exists.

1.5.2. AIM OF THE STUDY

o Develop a method to improve condition-based maintenance strategies on South
African mines.
o Develop and validate an alternative method that continuously predicts faults using

readily available, measured parameters.
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e Develop a method to continuously predict the condition of equipment and display

information in a practical and usable format.

1.5.3. OVERVIEW OF THESIS

Chapter 1 sets the overview of the study. Elements concerning condition monitoring are
explained and a list of advantages concerning condition monitoring are given. It also includes
the steps taken to reach the aims of the study. The problem statement is presented along with

the aims of the study.

Chapter 2 presents the literature on the topic of condition monitoring. To fully comprehend
the state of the art the literature includes international studies and studies completed in South
Africa. The literature search provides the basic concepts of condition monitoring. It compares
how condition monitoring techniques are implemented in other industries and which
parameters are required to make use of these techniques. The parameters are assessed
individually to ensure that the measured parameters will give an accurate estimation of

equipment condition.

Chapter 3 explains the development of the model. From the findings in Chapter 2, the
technique is chosen to determine the condition of the equipment. The model is developed,
trained and fine-tuned to suite the specific parameter and equipment. The method is compared
to alternative techniques and critically evaluated.

Chapter 4 shows how the available condition monitoring data from different mines and
equipment is used to test the autoregressive model in two separate case studies. The results

are given and discussed in this chapter.

Chapter 5 reports the findings of the study. A summary of the study is given and a conclusion
is drawn. The final condition monitoring methodology is reported. Recommendations for

further studies are presented.
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2. CONDITION MONITORING OVERVIEW
2.1. INTRODUCTION

To fully comprehend condition monitoring methods, a literature review is done in Chapter 2.
The literature study first provides the basic concepts of condition monitoring. Different
condition monitoring techniques are presented and evaluated. The implementation of a
condition monitoring technique is discussed. The common condition indicating parameters are
listed and discussed. Different methods of how data is pre-processed and analysed is

explained in this chapter.

2.2. CONDITION MONITORING BACKGROUND

Condition monitoring focuses on detecting the failure while a root cause analysis focuses on
the underlying root causes of the fault (Tavner, 2008). Figure 2-1 shows the difference
between the failure sequence and root cause analysis. Figure 2-1 is constructed using an
example failure; the failure of a main shaft on a rotating electrical machine.

Failure mode

Main shaft
failure -
Root Condition
I . .
cause I : monitoring
analysis and fault
Fracture Deformation _
detection
High cycle . Low cycle o
fatigue Corrosion fatigue or Misalignment
¢ overload

Root causes

FIGURE 2-1 CAUSE-AND-EFFECT DIAGRAM OF A MAIN SHAFT FAILURE
(TAVNER, 2008)

According to Vas (Cited by Nandi et al., 2005), the most prevalent faults in rotating electrical

machines are:
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e Dbearing;
e stator or armature faults;
o the broken rotor bar and end ring faults of induction machines;

e and the eccentricity-related faults.

These faults are detected by monitoring various parameters. Beebe (2004) gives a table of
symptoms or parameters that are relevant to pumps in Appendix A. Neale & Woodley (1975)

summarised indications of machine or component deterioration in Appendix B.

By identifying outliers or a change in the behaviour of these parameters can give an indication
of the equipment condition (Beebe, 2004). If such a change is detected or predicted, it allows

maintenance to be scheduled or other action to be taken to prevent failure.

2.2.1. MAINTENANCE PHILOSOPHIES

Two important types of maintenance include corrective maintenance and preventive
maintenance. According to European standards, Standard EN 13306, these maintenance

types can be broken down as shown in Figure 2-2.

Maintenance
Corrective Preventive
maintenance maintenance
Planned Emergency Condition- Predetermined
corrective maintenance based maintenance

FIGURE 2-2 MAINTENANCE BREAKDOWN

Figure 2-2 illustrates that corrective maintenance includes planned corrective maintenance
and emergency maintenance. The figure also illustrates that preventative maintenance
includes CBM and predetermined maintenance. Moubray (1997) introduced a P-F curve as
illustrated in Figure 2-3 (Wessels, 2003).
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FIGURE 2-3 ASSET FAILURE CURVE
(Adapted from Etchson, 2017)

Figure 2-3 presents an asset failure curve, or in this case, a DIPF curve. Other variations
include PF, IPF curves (Munion, 2017). The illustration provides context for the different
maintenance types. The vertical axis (y) represents the asset condition and the horizontal axis

(x) represents time.

The curve in Figure 2-3 shows that the asset gradually deteriorates throughout time form point
I, the date of installation. P on the curve, shows the point in the process at which it is first
possible to detect a fault. If a fault remains undetected or unmitigated, the rate of deterioration

accelerates until a functional failure occurs at point F (Munion, 2017).

Failure symptoms and condition detection technigques are added to the curve to indicate the
asset condition. Figure 2-3 also displays the different types of maintenance and in what
regions they occur. The maintenance types after point P on the graph is explained, namely
corrective maintenance and preventive maintenance which include predictive maintenance as

described below.
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2.2.1.1. CORRECTIVE MAINTENANCE
Corrective maintenance is also known as reactive maintenance, breakdown maintenance,
operate to failure or run-to-failure (Beebe, 2004). This type of maintenance is performed after
a breakdown or when a fault is detected. Early in a machine’s lifetime, a minimal number of
incidents of failure is expected (Sullivan et al., 2010). Beebe (2004) states that corrective
maintenance can sometimes be cost effective if the maintainability of the equipment is

unproblematic.

2.2.1.2. PREVENTIVE MAINTENANCE
If a condition monitoring strategy detects a fault before it occurs, maintenance can pre-
emptively be scheduled to repair the fault. This process is called predictive maintenance.
Preventive maintenance includes predictive maintenance. Preventive maintenance is the
actions performed on a machine that can detect, prevent or mitigate the degradation of the
machine with the aim to extend the machine’s lifetime (Beebe, 2004).

A real-time, online, condition monitoring system aids in preventive and predictive maintenance
strategies. Predicting a potential fault then allows for convenient repair scheduling (Beebe,
2004).

2.2.1.3. MAINTENANCE STRATEGY COMPARISON

Studies have shown that corrective maintenance is the predominant mode of maintenance in
the mining industry (Mkemai, 2011; Sullivan et al., 2010). More than 55% of maintenance
resources and activities of an average facility are spent on corrective maintenance, 31% is
spent on preventive maintenance, 12% is spent on predictive maintenance and 2% is spent
on other methods (Sullivan et al., 2010). In addition to the predicted savings, preventive
maintenance will effectively extend the life of the equipment (Beebe, 2004; Sullivan et al.,
2010).

Louit & Knights (2001) state that implementing an adequate maintenance philosophy can
result in reduced hidden costs, reduced unplanned and emergency work at a small cost of
more planning, and higher preventive and planned maintenance expenses. A large part of the
hidden costs and unplanned and emergency work are converted into cost savings (Louit &
Knights, 2001).

To understand how the different types of maintenance are performed, Costinas & Comanescu
(2004) compiled a table that explains the different techniques used to successfully implement
the maintenance plan. Table 2-1 is adapted to accommodate the mining industry’s monitoring

systems and not only the monitoring of substations as was used in their study.
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Corrective

maintenance

Preventive

maintenance

Predictive

maintenance

Proactive

maintenance

TABLE 2-1 DEVELOPING STRATEGIES FOR MAINTENANCE MANAGEMENT
(ADAPTED FROM COSTINAS & COMANESCU, 2004)

Maintenance strategy

Replacement or repair is performed only

if a failure occurred.

Time based maintenance,
recommendation from manufacturer and
experience with same type of equipment;
it has been practiced as the usual
maintenance strategy in electrical power

systems for many years.

In accordance with condition and
importance; concept of availability &
reliability and reliability centred
maintenance (RCM); power supply

monitoring.

Proactive approach can be suited for
equipment associated with the
organisation's significant environmental

aspects.

Required techniques / tools

The spare parts and equipment

themselves.

Waveform analysis: data sheets;

periodic component replacement.

Waveform analysis: vibration
monitoring; spectrographic oil
analysis; thermographic analysis;
infrared thermography; ultrasonic
inspection; use of computers for

analysis and trending.

Monitoring and correction of
failure root cause; root cause
analysis; failure mode effect and
criticality analysis (FMECA).

Mkemai (2011) compared the time spent on corrective maintenance and preventive

maintenance of load haul dump machines in mines in Sweden. He found that corrective

maintenance seems to dominate the maintenance activities in a mining environment. The

study also showed that the time spent on corrective maintenance strategies increased if the

machinery aged.

2.2.2.

INDUSTRY APPROACH, STANDARDS AND STRATEGIES

Many condition monitoring systems are available for implementation in South Africa (Siemens
South Africa, 2009; Crystal Instruments, 2017a; Rockwell Automation, 2017a; SKF, 2017). An

example of such a system is given in Figure 2-4.
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FIGURE 2-4 SCADA CONDITION MONITORING PANEL

Figure 2-4 shows a condition monitoring panel displayed on a mine’s SCADA interface. This
specific example illustrates all the measured, condition-determining parameters of a
multistage centrifugal compressor. The grey areas of each bar in the figure displays the trip
limits. The SCADA system is developed by Rockwell Automation, but the condition monitoring

of the equipment is handled by Siemens.

To monitor the parameters, the International Organisation for Standardisation’s (1ISO) 10816-
3 guideline is convenient to use for the process alarm and trip limits. Table 2-2 illustrates a
recommended vibration velocity severity chart. According to Table 2-2, the vibration severity
depends on the rated power and the foundation type of the motor. Machinery running with
shaft speeds of more than 600 rpm should be analysed with a frequency of 10-1000 Hz (ISO
10816-3, 2009). Machinery running at speeds of more than 200 rpm should be analysed with
a frequency of 2-1000 Hz (1ISO 10816-3, 2009).

TABLE 2-2 VIBRATION SEVERITY CHART
(ISO 10816-3)

Machinery groups 2 and 4 Machinery groups 1 and 3

Velocity Rated Power
mm/sec RMS Group 2: 15 kW —-300 kW  Group 1: 300 kW - 50 MW
11.0
7.1
4.5
35
2.8
2.3
1.4
0.7
0.0

Foundation type Rigid Flexible Rigid Flexible
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Referring to Table 2-2, the red cells indicates severe condition, and the green cells indicate

an acceptable operating condition. The foundation type of the equipment depends on how the

machine is mounted to the floor. The mine operates with a compressor vibration trip limit of 6

mm/s and an alarm limit of 4 mm as shown in Figure 2-5.
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FIGURE 2-5 ALARM AND TRIP LIMITS OF A COMPRESSOR

The parameter data shown in the SCADA screenshots, Figure 2-4 and Figure 2-5, are logged

in a database that can be analysed internally or by specialist third party companies. A list of

available online monitoring systems in South Africa is compiled in Table 2-3.

Supplier

Crystal

instruments

Siemens

TABLE 2-3 EXAMPLE OF AVAILABLE CONDITION MONITORING SYSTEMS

Monitoring

system

Engineering
Data
Management:
Post Analyser

Simatic
Maintenance

Station

Analysis type

Online

analysis

Waveform analysis and value

analysis: Fast Fourier

transform (FFT) spectral

analysis; octave and acoustic

Yes

analysis; order tracking; orbit

plot; sine reduction; basic

signal conditioning

Waveform analysis and value

analysis whic

analysis

h include oil Yes/No

Source

(Crystal
Instruments,
2017b)

(Siemens
South Africa,
2009)
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Emonitor Waveform analysis and value

N _ o (Rockwell
Rockwell Condition analysis: Trend projection; _
_ o _ Yes Automation,
Automation  Monitoring FFT spectral analysis;
_ _ 2017b)
Software automated diagnosis
Surveyor Waveform analysis and value
SKF _ Yes (SKF, 2017)
NetEP analysis
, Remote _ (TAS Online,
TAS Online o Value analysis Yes
monitoring 2017)
Waveform analysis, value
analysis and physical
. _ _ (WearCheck,
WearCheck = N/A inspection: Operational No 2017)

deflection shape, transient

analysis, resonances tests

Table 2-3 provides a list of available condition monitoring systems that is available for use in
South Africa. The list only includes a small mumber of the available suppliers. The analysis
technique is also included in Table 2-3 to show how the condition of the equipment is
determined. The systems report on the current state of the equipment and give suggestions

to what should be corrected.

2.3. DATA EVALUATION AND ANALYSIS METHODOLOGY

Raw data has to be pre-processed to ensure that the critical, representative data is analysed
(Baillie & Mathew, 1996). Four main parts should be contained in a condition monitoring
system, namely: the sensor, data acquisition, fault detection and diagnosis (Grimmelius, 1999;
Tavner, 2008). This section will discuss the different sensors, how the data is stored and

available data analysis methods.

2.31. SENSORS

Vibration, shock and acceleration is measured using different types of accelerometers. Direct

techniques include accelerometers of the following types (Brodgesell et al., 2003):

Seismic (Inertial)
Piezoelectric
Piezoresistive and strain gauges

Electromechanical sensors

moo w2

Capacitive and electrostatic
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Velocity sensors

. Noncontact proximity sensors

I om

Mechanical switches

Optical sensors

The typical range of vibration frequency, in Hz, for the different accelerometer types are given
below (Brodgesell et al., 2003):

A. DCto 50 Hz

B. From 1 to 15 000 Hz; special designs can go up to 30 000 Hz
C. From O to about 1000 Hz

D. Between 10 and 1000 Hz

F. 0to 3500 Hz

H. 0 to 5000 Hz

Most rotary equipment vibrates at frequencies of between 1 and 20 000 Hz (Brodgesell et al.,
2003). Overall vibration levels are monitored in analogous RMS detectors (Vecef et al., 2005).
If the analogous vibration levels exceed the set trip limits, the machinery will trip. Special
exceptions occur where a higher vibration set limit is set during the start-up of machinery.
Specifics of a vibration sensor that is commonly used in the mining industry is attached in

Appendix D.

Many different classes of temperature sensors are available (Rall et al., 2003). The different
classes have specific temperature ranges, accuracy and cost involved (Rall et al., 2003). The
selection of a suitable sensor depends on the specific application (Rall et al., 2003).
Temperature measurements are usually sampled at low sample rates (Ashlock & Warren,
2015).

2.3.2. FILTERING

To ensure that the data is representative, it must be filtered. Filters reject unwanted noise
within a certain frequency range (Rall et al., 2003; Ashlock & Warren, 2015). Filters are used
to prevent aliasing from high-frequency signals (Rall et al., 2003; Ashlock & Warren, 2015).
The aim of a filter is to obtain a better signal-to-noise ratio (Vecer et al., 2005). Low-pass

filters are commonly used to eliminate high-frequency noise and 60 Hz power line noise.

Since temperature measurements are usually sampled at slow rates, it makes the
measurements susceptible to high-frequency noise (Ashlock & Warren, 2015). Filtering the

temperature signals increase the accuracy of the measurement.
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Regardless of the type of measured parameter, the data has to be evaluated. Examining the
guality of the data is a critical step to mitigate fault detection errors. The aim of the data
evaluation step is to ensure that the data is at a high level of quality before it is processed and
assumed to be accurate. Guenel et al. (2013) states that the evaluation of multiple sensor data
is often a major problem due to complex interdependencies between measured sensor data

and the actual system condition.

2.3.3. DATA ANALYSIS

Computation is required to analyse quantitative data for fault detection (Han & Song, 2003).
Some high-frequency vibration monitoring systems analyse complete Fourier spectra (Jardine
et al., 2006). The analysis of resulting condition indicators are computed and considered in
the decision making process to trip the machine (Vecer et at., 2005). In this study, the high-
frequency signals are not available, so other data analysis methods are considered in this

subsection.

2.3.3.1. CONTROL CHARTS
Control charts are one of the primary techniques used in statistical process control (SPC) and
are typically used to monitor the mean shift of statistical distributions (Kullaa, 2003). Control
charts indicate significant changes in a system operation thus it can be applied to detect

changes in equipment condition.

A control chart is a useful data analysis tool used to display the individual data points together
with the mean and standard deviation of the dataset. Typical statistical calculations include
the mean, standard deviation and frequency distribution. The mean is essentially the average
of the filtered data. The standard deviation, or accuracy, measures the distribution of data
point on either side of the mean. The control chart provides information about the consistency

of the responses to help better understand the data.

A Shewhart X control chart is used to monitor the mean of a quality characteristic of process
variables. This control chart illustrates the basic trend of a process variable. It is simple to set

up and easy for operators to understand.

Page (1954) proposed a cumulative sum (CUSUM) control chart which is another method to
detect a shift in process mean. Studies have shown that the CUSUM chart is more efficient in
detecting small and moderate shifts in the process mean than the X control chart (Reynolds
et al., 1990; Zhang et al., 2004). The CUSUM chart is updated using fixed-length sampling
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intervals. Reynolds et al. (1990) suggested a CUSUM scheme which is updated using varied

time intervals.

Exponentially weighted moving average (EWMA) is another statistic to monitor the mean shift
of a quality characteristic. EWMA chart, just like the CUSUM chart, is commonly used for
relatively small shift detection (Zhang et al., 2004).

S and R charts are suitable for variance shift detection (Zhang et al., 2004). To detect mean
and variance shifts concurrently X and S (or R) charts can be plotted on a joint graph. Another
more recent approach, control chart is the weighted loss CUSUM chart. The aim of this chart

is to detect both mean and variance shifts in one chart (Zhang et al., 2004).

A study performed by Reynolds & Lu (1997) states that using traditional control chart
methodology on auto-correlated processes can result in a biased estimate for process
parameters. The study evaluates various types of EWMA control charts that were fitted to
original observations or on residuals from a fitted time series model. The study showed that
moderate levels of autocorrelation can have a significant effect on the performance of control
charts. When autocorrelation is present, traditional control chart methodology should not be
applied without modification (Reynolds & Lu, 1997).

Reynolds & Lu (1997) recommends that charts using residuals from a fitted time series model
are not better unless the level of autocorrelation is high. So, for the condition monitoring
method used in this study, it is critical that the residuals of the fitted time series model have a

high level of autocorrelation.

2.3.3.2. MEAN AND VARIANCE SHIFT ANALYSIS STUDIES
Jun & Suh (1999) monitored the mean shift of time-domain averaged vibration signals for tool
breakage detection. The tool was used to detect breakage for numerical control (NC) milling
operations. They made use of Shewart X, EWMA and adaptive control charts to detect

breakage.

Kullaa (2003) made use of univariate and multivariate X, CUSUM and EWMA charts to monitor
the condition of the Z24 Bridge in Switzerland. The study monitored the mean shift of modal

parameters such as stiffness, mass, damping, and boundary conditions.

Wang & Wong (2002) proposed a technique to detect faults in the vibration signals of
helicopter transmission gears. The technique first establishes an autoregressive (AR) model

on healthy gears. The AR model is then used as a linear prediction error filter to predict the
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future-state signal from the gear. The condition of the gear is diagnosed by characterising the
error signal between the filtered and unfiltered signals. This technique was validated using

numerical simulation and experimental data.

Wang & Wong (2002) have shown that the AR modelling method is capable to detect a gear
tooth crack earlier and with a higher level of confidence than with the traditional residual

kurtosis method.

Fugate et al. (2001) also fitted an AR model to a healthy concrete bridge’s vibration signal.
The residuals errors were seen as damage-sensitive features. Fugate et al. (2001) applied the

residuals to X and S charts to monitor the mean and variance shifts.

Multiple parameters indicate the condition of gearboxes, so Baydar et al. (2002) proposed a
multivariate statistical analysis to detect faults in helical gears. Q and T? statistics were
adopted as the condition indicators. The study also predicted growing faults in the gearbox by

monitoring the confidence regions based on kernel density estimations (KDE).

2.4. CONDITION PREDICTION MODEL

Condition prediction models use state or condition indicating parameters to estimate the
condition of equipment. The condition indicating parameters or state observers helps to

measure the condition of equipment that can not necessarily be seen or be measured directly.

2.4.1. KEY MONITORED PARAMETERS

The condition of machinery and processes affects certain parameters, such as vibration,
temperature, acoustic emissions, etc. As mentioned in Section 2.4.1, the vibration,
temperature and equipment specific performance parameters are the most commonly logged

parameters.

Equipment monitoring can be divided into two groups, namely condition monitoring and
performance monitoring. According to Yates (2002), the performance monitoring is the
monitoring of performance parameters that determines the efficiency of the equipment and
condition monitoring reduces the risk of failure. The operating functions and benefits of the

two groups are summarised in Figure 2-6.
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FIGURE 2-6 PERFORMANCE MONITORING AND CONDITION MONITORING
(YATES, 2002)

An example of the measured parameters of a multistage centrifugal pump and a multistage
centrifugal compressor are given in Figure 2-7 and Figure 2-8 respectively. The parameters
shown in both figures are typical monitored parameters on compressors and pumps. The
figures were constructed using available parameters from different sources from South African
mines and only the common measured parameters are shown. The cooling systems of the

compressors are excluded from the drawings.

Mines make use of multistage centrifugal pumps that are essentially multiple pumps in series
to obtain a desired performance (Beebe, 2004). The pumps are used in dewatering systems
of underground mines, or to lower the water level in open pit mines. Deep mining operations

have dams and pumping stations situated at different depths.

The pumping station typically contains at least two or more pumps, of which at least one serves
as a backup. The pumping capacity of the pumps should be more than the inlet flow to avoid
flooding. Figure 2-7 gives an illustration of the typical monitored parameters of a multistage

centrifugal pump.
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NR. DESCRIPTION NR. DESCRIPTION

D1 MOTOR SHAFT DISPLACEMENT Vi MOTOR DE BEARING VIBRATION
S1 SWITCHGEAR HEALTHY BOOLEAN V2 PUMP DE BEARING VIBRATION
F1 MOTOR COOLING WATER FLOW D2 SUCTION VALVE POSITION

Tl MOTOR NDE BEARING TEMPERATURE F2 SUCTION FLOW

T2 MOTOR WINDING TEMPERATURE U P1 SUCTION PRESSURE

T3 MOTOR WINDING TEMPERATURE V F3 BALANCE DISK FLOW

T4 MOTOR WINDING TEMPERATURE W T8 PUMP NDE BEARING

T5 MOTOR AIR TEMPERATURE D3 PUMP IMPELLER DISPLACEMENT
T6 MOTOR DE BEARING TEMPERATURE P2 DISCHARGE PRESSURE

T7 PUMP DE BEARING TEMPERATURE D4 ACTUATED DISCHARGE VALVE

FIGURE 2-7 MONITORED PARAMETERS OF A MULTISTAGE CENTRIFUGAL PUMP
(Adapted from Oberholzer, 2014)

Figure 2-7 illustrates the typical condition monitoring parameters of a multistage centrifugal
pump. The illustration includes both the electrical motor and pump components. The list of

measured parameters in the illustration is compiled from different sources in literature.

The compressors deliver compressed atmospheric air to underground consumers. Examples
of the underground compressed air consumers include rock drills, refuge bays and loading
boxes. Some mines do not use pneumatic equipment but power the equipment hydraulically.
Pressurised air, in deep-level mines, is required by law for the sole purpose of supplying air to
underground refuge bays.
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(78] [79]

NR. DESCRIPTION NR. DESCRIPTION

D1 MOTOR SHAFT DISPLACEMENT V1 MOTOR DE VIBRATION

S1 SWITCHGEAR HEALTHY BOOLEAN D2 AXIAL DISPLACEMENT

F1 MOTOR COOLING WATER FLOW V2 GEARBOX VIBRATION

T1 MOTOR NDE BEARING TEMPERATURE V3 COMPRESSOR DE VIBRATION

T2 MOTOR WINDING U TEMPERATURE P1 COMPRESSOR DISCHARGE PRESSURE
T3 MOTOR WINDING V TEMPERATURE P2 COMPRESSOR STAGE 3 PRESSURE

T4 MOTOR WINDING W TEMPERATURE P3 COMPRESSOR STAGE 2 PRESSURE

T5 MOTOR COOLANT TEMPERATURE P4 COMPRESSOR STAGE 1 PRESSURE

T6 MOTOR DE BEARING TEMPERATURE T12 COMPRESSOR STAGE 3 TEMPERATURE
T7 GEARBOX DE BEARING TEMP T13 COMPRESSOR STAGE 2 TEMPERATURE
T8 GEARBOX NDE BEARING TEMP T14 COMPRESSOR STAGE 1 TEMPERATURE
T9 GEARBOX THRUST BEARING TEMP V4 COMPRESSOR NDE VIBRATION

T10 GEARBOX NDE BEARING TEMP D3 COMPRESSOR AXIAL DISPLACEMENT
Ti1 GEARBOX DE BEARING TEMPERATURE D4 GUIDE VANE POSITION

FIGURE 2-8 MONITORED PARAMETERS OF A MULTISTAGE CENTRIFUGAL COMPRESSOR

Figure 2-8 illustrates the typical condition monitoring parameters of a multistage centrifugal
compressor. The illustration includes the electrical motor, gearbox and compressor. The list

of measured parameters in the illustration is compiled from different sources in literature.

2.4.1.1. CONDITION MONITORING PARAMETERS

Parameters such as temperature and vibration are considered as condition monitoring
parameters (Yates, 2002). Willier (1971) as referenced by Murray (1989), developed an

equation (Equation 2.1) that uses a rise in temperature across a pump to determine the pump’s
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efficiency. This means that temperature can be considered a performance parameter because

it is a measure of the energy losses on the machine (Murray, 1989).

Component

Wind turbine
generator

Electrical
power

transformers

Helicopter
transmission

gears

Experimental
test rig

gearbox

Experimental

test rig

Mine

excavators:

TABLE 2-4 KEY MONITORED PARAMETERS OF DIFFERENT STUDIES

_ Modelled
Technique
parameters
Non-linear state
estimation Temperature
technique
Artificial neural o
Vibration
networks
High sample rates
Autoregressive Gearbox vibration
modelling

Meshing resonance Gearbox vibration
and spectral

kurtosis methods

Autoregressive Bearing vibration

modelling

Reference

(Guo et al.,

2012)

(Booth &

McDonald,

1998)

(Wang
Wong,
2002)

(Wang
al., 2017)

(Baillie
Mathew,
1996)

Other condition monitoring techniques

Failure mode, Electric

effects

criticality analysis hydraulic system

motors,

(Mkemai,

and bearing system and 2011)

&

et

&

Resolution

10 min (2 min

verification)

10 minutes

High

Various (High)

High

Non-random

Table 2-4 shows the key monitored parameters of different studies. Table 2-4 also includes

the sample resolution used in the specific study. And divides the studies accordingly. A

FMECA on mine excavators is also added to the list.
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2.4.1.2. PERFORMANCE MONITORING PARAMETERS

Murray (1989) states that monitoring a pump’s efficiency is complementary to other condition
monitoring techniques such as vibration and lubrication oil monitoring. An advantage of
performance parameters is that it is commonly logged on mining equipment, usually intended
to be used specifically for performance monitoring. Performance parameters, for example, the
flow, discharge pressure and power consumption of a pump, can be used to calculate the
efficiency of the pump. Table 2-5 gives the fundamental terms and units used in pump
performance monitoring with the SI units in bold.

TABLE 2-5 FUNDAMENTAL TERMS AND UNITS IN PUMP PERFORMANCE
(BEEBE, 2004)

Quantity Other terms used Symbol Units

Flow Volumetric flowrate, capacity, Q m3 L
discharge, quantity s s

q k.
Sometimes Tg

Head Total head, total dynamic head, H m, kPa
generated pressure, generated
head
Power Power absorbed P W, kW
Efficiency n %

There are two different ways to calculate the efficiency of a multistage centrifugal pump,
namely the conventional method and the thermodynamic (or thermometric) method (Murray,
1989; Beebe, 2004). The conventional method uses measured flow, head and power to
calculate the efficiency. The thermodynamic method requires measuring the temperature and
pressure rise across the machine. The temperature increase across a machine is a measure
to determine the energy losses in the machine, while the pressure increase determines the
useful work (Murray, 1989; Beebe, 2004). The thermodynamic method of calculating the

efficiency is given by Equation 2.1.

1

n= (2.1)

pcpAT

1-pT +—F5
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Where:

e 7 is the efficiency of the pump

* ¢ is the specific heat capacity of the fluid

o AT is the measured temperature increase across the machine
o AP is the measured pressure increase across the machine

o T is the absolute temperature

o is the coefficient of cubical expansion of the liquid

For compressors, the monitored performance and condition indicating parameters are similar
to those of pumps. The fundamental terms and units to determine the performance of a
compressor is given in Table 2-6.

TABLE 2-6 FUNDAMENTAL TERMS AND UNITS IN COMPRESSOR PERFORMANCE

Quantity Other terms used Symbol Units
Nm3? Nm3 Std m®
Volumetric flowrate, discharge, quantity, ’ ’
Flow 9¢€. 9 y 0 s ' h h
mass flowrate kg
S
Power Power consumption P W, kW
Pressure Discharge pressure, delivery pressure, . Pa, kPa, bar

aftercooler pressure

Suction temperature, stage suction
Temperature temperature, discharge temperature, K,°C
aftercooler temperature

Guide vane position / blow off valve

0
position 2

Position

Efficiency n %

For compressors, the monitored parameters are similar to those of the pumps. The
fundamental terms and units to determine the performance of a compressor is given by Table
2-6.

Table 2-6 provides a list of the parameters monitored to determine the performance of a
compressor. The overall efficiency of a centrifugal compressor varies between 70% and 85%
(Campbell et al., 1992). To determine the thermodynamic efficiency, n, for an individual

multistage centrifugal compressor, the following data is required:
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¢ Flow (Normalised or standardised)

e Power consumption

e Suction, stage suction and discharge temperatures of usually three to four stages on
a centrifugal compressor

e Aftercooler temperature and pressure

e Pressures between stages

e Guide vane position

¢ Blow off valve position

Apart from the performance parameters, a list of other condition monitoring methods are
tabulated in Table 2-7. The list is adapted from Zhou et al., (2007). Table 2-7 shows the

advantages and disadvantages of the specified monitoring scheme.

TABLE 2-7 DIFFERENT CONDITION MONITORING METHODS

Monitoring schemes

Vibration monitoring

Chemical analysis

Temperature

measurement

Acoustic emission

(ultrasonic frequency)

Sound measurement

Laser displacement

measurement

Stator current

monitoring

Major advantages

Reliable; standardised
(ISO standards
available)

Physically monitoring

the equipment

Standard available in
some industries (IEEE

standards available)

High signal-to-noise

ratio

Easy to measure

Alternative to vibration

monitoring scheme

Inexpensive; easy to

implement

Major disadvantages

Expensive; intrusive, subject to

sensor failures

Limited to closed loop oil supply;

specialist knowledge required

Embedded temperature detector
required; other factors may

cause same temperature rise

Acoustic emission sensor
required; specialist knowledge

required

Background noise must be
shielded

Laser sensor required; difficult

to implement

Sometimes low signal-to-noise

ratio; still in development stage
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2.4.1.3. SAMPLE INTERVALS
Representative input data intervals are required to accurately develop a model and monitor
the disturbances in the system. The model will only be able to detect a disturbance if the input
data gives an indication of a potential disturbance. For example, if one is to monitor equipment
temperature in a daily interval at 24HO0 every day, the only the seasonal sinusoidal
temperature profile can be observed. If the temperature is measured hourly, the daily
sinusoidal profiles as well as the yearly profile can be observed. Similarly, a fault may only be

observed by monitoring a certain interval. Thus, it is imperative to monitor the correct intervals.

Figure 2-9 to Figure 2-11 illustrates the effect of failure by plotting a normal distribution of the
probability of a fault to occur vs. the reliability of a machine.

100 W 100
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o
=
° ‘©
S 60 H 60 =
> o
£ 2
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© o
@ 40 40 8
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o
S

20 20

0 J m 0
0 20 40 60 80 100
Life of component, %
——Fast fault ——Fast fault failure probability

FIGURE 2-9 RATE OF FAILING OPERABILITY AS TIME PROGRESSES: FAST SPEED FAULT
(TAVNER, 2008)
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FIGURE 2-10 RATE OF FAILING OPERABILITY AS TIME PROGRESSES. MEDIUM SPEED FAULT
(TAVNER, 2008)
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FIGURE 2-11 RATE OF FAILING OPERABILITY AS TIME PROGRESSES: SLOW SPEED FAULT
(TAVNER, 2008)
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Figure 2-9 through to Figure 2-11 shows the progression from a reliable to non-reliable
operation at different fault progression rates: fast fault (Figure 2-9), medium fault (Figure 2-10)
and a slow fault (Figure 2-11). Figure 2-9 shows a rapid progression from reliable to non-
reliable at the 50% point. The probability of failure rises sharply at this point. The area under
the normal distribution curve is equal to one, because there is 100% probability of failure
throughout the life of a machine. The same graphing methodology is repeated for the medium
and slow fault.

The different rates of failure should be considered while developing a model to detect
equipment faults. Analysing a set interval that does not represent the fault yields inaccurate
results (Vecer et al., 2005; Yang et al., 2013). Therefore, the model should at least take the
interval of the measured parameter into consideration. If possible, the model should be tested
with different intervals, relevant to the parameter type.

Inspection intervals parameters are vital to detect phased deterioration of equipment (Sherwin
& Al-Najjar, 1999). Beebe (2004) states that the monitoring of vibration in monthly, quarterly
and yearly intervals is unusual. Sherwin & Al-Najjar (1999) developed practical models for
optimum condition monitoring inspection intervals using Markov models. Data sample
intervals of 10 minutes have been considered too low for accurate fault diagnosis when

conventional condition monitoring techniques are used (Vecer et al., 2005; Yang et al., 2013).

2.4.2. EXISTING METHODS

Different condition monitoring techniques exist with specific inherent attributes and
requirements. These techniques range from basic statistical analysis of the data to in-depth

model-based condition monitoring methods.

2.4.2.1. STATISTICAL MODELS AND INDICATORS
Guo et al. (1998) proposed an integrated real-time statistical monitoring scheme shown in
Figure 2-12. This strategy is implemented in the semiconductor fabrication process, but the
methodology of the strategy follows a generic structure that can be applied to other systems
as well. The scheme requires tool data and process data as process variable inputs. Tool data

includes different statistical indicators.
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FIGURE 2-12 INTEGRATED REAL-TIME STATISTICAL MONITORING SCHEME
(ADATTED FROM GUO ET AL., 1998)

Referring to Figure 2-12, Guo et al. (1998) gives an illustration of how a statistical monitoring
scheme works. The illustration shows that process data and tool data is required for data
classification. After the data has been classified, patterns are fitted to the data. Using the fitted
patterns, two methodologies are followed to analyse the equipment condition namely special

cause detection and common cause detection.

Special cause detection includes univariate and multivariate SPC methods to determine the
condition of equipment. The univariate and multivariate SPC methods analyse the residuals
of the fitted pattern to determine the state of the process. Common cause detection evaluates

the raw or fitted values, and includes the standard trip and alarm level decisions.

Guo et al. (1998) proposed a feature factor; a method to determine the condition of a process
using multiple monitored parameters. The feature factor is a scalar factor between one and

zero which normalises and reflects the state of the parameter (Guo et al., 1998).

Vecef et al. (2005) compiled a list of statistical time-domain features used to analyse
developed vibration signals. These vibration statistical indicators are calculated before it is

sent to the data historian.
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TABLE 2-8 STATISTICAL VIBRATION CONDITION INDICATORS
VECER ET AL. (2005)

Indicator Calculation Parameters
Root mean T, Vrms 1S the RMS value of the velocity of the
square vibration signal
Vrms = |= | v2(t)dt ; - S
value Tms T T is the integration time
(RMS) Ti v is the velocity of the moving object
Delta RMS Varms = AVpms Varms IS the delta RMS
is the maximum value of the signal in the
Peak value | P | Ve g
= Maximum of dataset | dataset
S CF is the crest factor
k— k . .
Crest factor CF = % Speak—peak IS the peak to peak value of the signal
Srms 1S the RMS value of the vibration signal
EO is the energy operator
Energy EO . 47 ep .
2. ©N —~4 | Ax is the mean value of signal Ax
operator _ N2 (g — A%) A 2 N
= X;i = Siy1 — Si
EO N A2 2 i i+1 A
(EO) (Z1(@x = 89D)" | s the number of points in the dataset
Kurt Kurt is Kurtosis
KUrtosis N-IV (s —5)* N is the number of points in in the history of
= TN 2 signal s
(i (G = 9) s; is the i-th point in the time history of signal s
ER is the energy ratio
. o(d) is the standard deviation of the difference
Energy ratio o(d) :
(ER) ER = ) signal
a(r) is the standard deviation of the regular
signal

Table 2-8 shows the statistical condition indicators used when vibration is analysed. The same
indicators can be applied to temperature. Gouws (2007) presents the time-domain features
listed in Table 2-8 that can be applied to all other parameters. The EO and ER are not included
Gouw's list (2007).
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2.4.2.2. UNIVARIATE TIME SERIES MODELS
As explained in Section 1.2.2, the study will focus on analysing time series data. There are
three main groups of univariate time-series models which are widely present in literature,
namely, AR, moving average (MA) and autoregressive moving average (ARMA) processes.
Another group is a non-stationary model, an autoregressive integrated moving average
(ARIMA).

Autoregressive models are used to approximate underlying parameter behaviour (Zhang et
al., 2004). An example of an AR model is given in Equation 2-2:

P
y(t) =ay+ ax(t—k)+e (2.2)
0 kz ‘

Where:

y(t) is the observed parameter, e.g., temperature and vibration

p is the order of the equation

k is the time delay

€ is the Gaussian white noise with zero mean and standard deviation o

There are a few different methods available to determine the model coefficients, ay, k = 0,...p.
The Yule-Walker is one method used to determine the type of method and requires solving
using the Levinson-Durbin recursion (LDR) (Wang & Wong, 2002). Selecting the appropriate
order of p is essential for a good model fit, because a large p over-fits the data and a small p

under-fits the data.

An approach to determine the model order is the Akaike Information Criterion (AIC) (Zhang et
al., 2004). The optimal model order can be obtained by minimising the AIC below:

AIC(k) =log(a?) + 2k (2.3)

In the LDR, the error powers (p, = o) are for all AR models. This means Equation 2-3 is

rewritten as Equation 2.4 below:

AlIC(k) = log(py) + 2k (2.4)
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The first term will decrease with an increase in the order (k), while the second term will restrict

an increasing order. The predicted signal can then be calculated with Equation 2-5:

14
9(6) = ap+ ) @yt =i @5)
k=1

The difference between the actual and the model is calculated using the Equation 2.6:
e(t) =y() —y(@) (2.6)

e(t) is the calculated residual that will follow an independent and identically distributed (l1D)
normal distribution. An estimated probability density function of the residual distribution can
be plotted and be analysed. If the condition of the equipment changes, the change will result

in a changed residual distribution, which will reflect in a change in variance or mean shift.

Schlechtingen & Santos (2010) found that AR models yield accurate results for modelling
temperature of bearings in wind turbines. The large mass of the motor casing around the
bearings cause bearing temperature to have a high autocorrelation (Schlechtingen & Santos,
2010).

Wang & Wong (2002) states that an AR(p) (AR model with the order p) model built on a
stationary process will be able to predict stationary processes that are of the same family.
Thus, a model will be used to make accurate predictions for any processes that are not related.

2.4.2.3. AUTOREGRESSIVE RESIDUAL ANALYSIS
AR models are used to model stochastic data to detect changes and predict future values
based on a weighted sum of past values (Wang & Wong, 2002; Zhang et al., 2004). The
difference between the AR model's prediction and the actual value is defined as the AR
residual. AR residual analysis is a method used to analyse the natural disturbance of

equipment (Guo et al., 1998).

Baillie & Mathew (1996) compared three different AR modelling techniques namely, back-
propagation neural networks, radial basis functions and traditional linear AR models. The
back-propagation neural network and radial basis functions are non-linear and the Box Jenkins
model is linear. Baillie & Mathew (1996) fitted the models to a time series vibration of a rolling
element bearing for various signal lengths. The study found that the back-propagation neural

network outperformed both the radial basis functions and the linear regressive AR model.
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Artificial neural networks (ANNSs) are considered an attractive option for diagnostics as these
networks offers excellent pattern recognition and classification abilities (Marais et al., 2015).

Baillie & Mathew (1996) consider ANNs to be more complex than linear models.

Statistical methods and ANNSs are becoming commonly used to detect patterns that can aid in
fault diagnosis and prognosis (Baillie & Mathew, 1996). Schlechtingen & Santos (2010) did a
comparative analysis of neural network and regression based, or AR, condition monitoring
approaches for wind turbine fault detection. The study applied three different developed
models to five measured faults and anomalies. The wind turbine’s monitoring system includes

the following developed signals:

e Power output

e Generator bearing temperature
e Generator stator temperature

e Generator slip ring temperature
e Shaft speed

e Gearbox oil sump temperature
e Gearbox bearing temperature

¢ Nacelle temperature

Two catastrophic generator bearing failures occurred on a 2 MW offshore wind turbine. The
anomalies were detected on the bearing temperature parameter. Both failures occurred on
the same machine and both occurrences required a bearing replacement. Figure 2-13 shows
the monitored bearing temperature. The two catastrophic bearing damages and the period

used to train the ANN are illustrated in Figure 2-13.

Bansal et al. (2005) used neural networks in a predictive maintenance system. The study
found that the accuracy of the predictive maintenance system is a direct function of the validity
of the simulated data used to train the neural network. The neural network required a large
amount of data to be trained (Bansal et al., 2005). This is a disadvantage for data infrastructure

that cannot handle such an amount of data to train the model.
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FIGURE 2-13 BEARING TEMPERATURE EVOLUTION WITH THE TWO DAMAGE OCCURRENCES AND THE PERIOD USED TO
DEVELOP THE MODEL
(SCHLECHTINGEN & SANTOS, 2010)

2.4.3. VERIFICATION AND VALIDATION

To validate the aforementioned models, analysing the statistics have been shown to be an
effective technique (Kleijnen, 1999; Sargent, 2012). Sargent (2012) defined a list of 17
techniques used to validate simulation models. Examples of the proposed techniques that is
used in this study include: comparison to other models, historical data validation, parameter
variability-sensitivity analysis, internal validity and predictive validation. A combination of these
techniques is generally used to verify and validate subsequent models and the overall model
(Sargent, 2012).

Five of the techniques that Sargent (2012) defined can be implemented for the verification and
validation process to accommodate the available data and model used in this study. These
techniques are: animation, historical data validation, parameter variability-sensitivity analysis

and internal validity. The techniques are briefly described below:

Animation: Graphically display the model’s operational behaviour. Kleijnen (1999) describes
animation as the face validity of the statistical analysis. Face validity is the capability of an
individual to determine if the model’s input and output relationship is reasonable. In this case,
the developed model and the actual values can be shown on a control chart. Sargent (2012)
classifies face validity as a separate validation technique. The animation of a real-time control

chart will ease the face validation.
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Historical data validation: The model is applied to available historical data and is tested to the
behaviour of the system. In this case, to test if the model can predict faults that were

experienced in practice.

Parameter variability - sensitivity analysis: This technique involves the changing of the values
of the input and internal parameters of the model to determine the effect on the model’s
behaviour. The observed behaviours of varying the parameters should be the same in both
the model and real system.

Internal validity: Replicating results of the chosen stochastic model and analysing the
stochastic variability of the results. A large variability spread may cause the model’s results to

be questionable.

Predictive validation: Using the model to predict the system’s behaviour and comparing the
model's forecast to the actual system behaviour can give an indication of the model's

accuracy.

The above-mentioned techniques are used in Chapter 3 to determine the operational validity
of the model. Operational validation is the process of determining whether the model’s output

is accurate enough for the intended purpose.

Two approaches can be followed to assess the operational validity of the model, namely a
subjective approach or an objective approach. Sargent (2012) classifies the two approaches

into an observable and non-observable systems in Table 2-9.

TABLE 2-9 OPERATIONAL VALIDITY CLASSIFICATION

Decision approach | Observable system Non-observable system
Subjective approach e Comparison using graphical e Explore model behaviour
displays e Comparison to other models

e Explore model behaviour

Objective approach e Comparison using statistical e Comparison to other models

tests and procedures. using statistical tests

Referring to Table 2-9, an observable system means that it is possible to collect data on the
operational behaviour of the problem entity. ‘Comparison’ means the comparison to either the

model and the system output or another model or statistical tests and procedures. ‘Explore
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model behaviour means to analyse the output behaviour of the model using a sensitivity

analysis.

To determine accuracy of the AR model, the model’s prediction is statistically compared to the
actual value. Common statistical measures are used indicate the model’s accuracy include
(Devore & Farnum, 2005):

e Residuals or explained variance (EV)
e Root mean square error (RMSE)

e Mean absolute error (MAE)

e Residual sum of square (RSS)

e Coefficient of multiple determination (R?)

The calculation methodology of the above-mentioned statistical evaluation parameters is
provided in Appendix C. Another statistic used the p-value, or observed significance level,
which aids to determine the significance of a variable in a model. The null hypothesis, H,, is
the hypothesis that the modelled data is a representation of the actual data. If the desired

significance level, a, is the probability of a type | error to occur then the following applies:

e Reject H if p-value < «a

e Do not reject H, if p- value > «a

Thus, a smaller p-value indicates a more statistically significant model. Statistically a condition
monitoring system can give two types of errors, type | error and type Il error. A type | error
occurs if a fault is triggered under healthy conditions and a type Il error occurs if a healthy
condition is reported when a fault exists. If one of these errors occur, the integrity of the

condition prediction system is questioned.

Another statistic proposed by Yang et al. (2013), the condition monitoring criterion, c, is

calculated using Equation 2.7.

X .
max sk V(a; — b;)x!| dx
_ fxmm J ol (@ — by)x’| @7

Xmax — Xmin

Where:
e a; and b; represent the coefficients of the models derived respectively from present
and historic data.

®  Xpax aNd x,,;, are respectively the maximum and the minimum values of x.
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From Equation 2.7 it can be inferred that ¢ = 0 when the equipment is healthy while ¢ > 0 if

there is fault. The more serious the fault the larger the value of ¢ tends to be.

Yang, et al. (2013) states that the significance of the fault-related features (temperature,
vibration, etc.) is dependent on the load of the equipment. By using the evaluation criterion, c,
the issue has been mitigated by the integral calculation. Defining the threshold for ¢ is

imperative to good fault detection (Yang et al., 2013).

2.5. CONCLUSION

Minimal literature concerning the implementation or methodology of a condition monitoring of
equipment in the South African mining industry is available. The South African mines from the
two case studies have the necessary infrastructure to implement a preventative maintenance
strategy, or already have a preventative maintenance strategy in place. The data is not readily

processed to automatically detect changes and have to be pre-processed.

AR residual analysis detects the natural disturbance of process (Guo et al., 1998). This
analysis method has been shown to be effective to predict faults in helicopter transmission
gears and to detect unusual vibrations in bridges. Wang & Wong (2002) states that an AR(p)
(AR model with the order p) model built on a stationary process will be able to predict stationary
processes that are of the same family. Hence it can be used to develop a generic baseline to

accommodate different machines and sizes.

The AIC is an estimator used to determine the best fit models. The best fit model is determined
by calculating the AIC for different model orders and by choosing the smallest result. The AIC
makes use of the MLE statistical method.

Only a few studies considered low sample rates as input parameter to the model. Low sample
rates of 10 minutes are considered A low sample rate of 10 minutes is considered too low for
accurate fault detection (Vegef, Kreidl & Smid, 2005; Yang et al., 2014). These studies did not

evaluate changes over a longer period.

Analysing statistics has been shown to be an effective technique to validate a model (Kleijnen,
1999; Sargent, 2012). Five techniques are chosen for the validation, namely: Animation (face
validation), sensitivity analysis, historical data validation, internal validity and predictive

validation. An objective approach will be followed by using statistical test procedures.
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3. METHOD DEVELOPMENT
3.1. INTRODUCTION

The methodology and reasoning behind the method development is presented in Chapter 3.
The data acquisition and evaluation is explained in Section 3.2. A method to analyse
equipment’s idling, or resting, temperature is proposed. The model choice and AR residual
analysis methodology is explained in Section 3.3. The model verification and validation is

discussed in Section 3.4.

3.2. DATA ACQUISITION AND EVALUATION

Pre-processing of data includes the classification into three different states: operational, idling
and erroneous data. The classification allows for more accurate data analysis of the available

data. The acquisition and evaluation of the data will be explained using example case studies.

3.2.1. OVERVIEW

As an example case study, a typical data sample of a 1.8 MW centrifugal pump is used to
evaluate the quality of the data. Figure 3-1 and Figure 3-2 shows the half hourly averaged

vibration and temperature of the multistage centrifugal pump.

RMS vibartion, mm/s

——Motor DE —— Motor NDE —— Pump DE —— Pump NDE

FIGURE 3-1 DEVELOPED VIBRATION SIGNALS OF A MULTISTAGE CENTRIFUGAL PUMP
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Temperature, °C

——Motor DE  ——Motor NDE ——Pump DE ——Pump NDE

FIGURE 3-2 RAW BEARING TEMPERATURE DATA FOR A MULTISTAGE CENTRIFUGAL PUMP

Figure 3-1 and Figure 3-2 shows the half hourly RMS vibration and temperature respectively.
From both figures, vibration and temperature spikes are observed. The pump is switched off
during Eskom’s peak demand periods to reduce the cost of electricity, which is the cause of
the spikes.

3.2.2. ACQUISITION AND EVALUATION

Data acquisition is a basic requirement of condition monitoring. The lack of data can be a hind
hindrance to monitor the condition of equipment and processes. Large amounts of data have
to be analysed over different time intervals for accurate fault detection and condition
monitoring. The data capturing methodology described in Section 1.3.3, which states that the
data is only available in half hourly intervals.

SCADA historians can store data to an accuracy of 1 ms (Schneider Electric Software, 2016).
All historian databases in this study use the delta storage method which stores the data values
only if a change occurs. For this study, the data is retrieved from the historian using the cyclic
retrieval mode which only retrieves data values that occur at a specific time interval (Schneider
Electric Software, 2016).

The half hourly data for this study is retrieved from the historian using the cyclic method
described by Schneider Electric Software (2016). In short, cyclic retrieval is the retrieval of

stored data based on the specific cycle resolution of the stored data. The retrieved data may
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not correspond to the actual stored data but is an adequate representation for the retrieval

interval.

Half hourly data extraction intervals make the acquisition of the data practical with the
disadvantage of losing detail information. An advantage of using larger sample intervals is that
data that is available in smaller intervals can be processed to larger intervals. By doing so, the
data processing using the larger intervals can be standardised and will be easy to implement
on different types of equipment. The data acquisition interval constraint is unfavourable for the
purpose of immediate fault detection, so the aim of the model is to detect changes in the
shortest time possible.

For the example case study, 0.3% of the data has been lost. The lost data is excluded in the
model fitting procedure. Data loss can have an effect on the AR model output and order
selection. The model order is determined by minimising the AIC. The calculation of the AIC is
described in Section 2.4.2.2. Since the AR model is dependent on the previous time step
value, the prediction of the future value will be affected.

To ensure the data is representative, it is classified into three modes: operational, idling and
disregarded data. The equipment’s operating status is required for the classification

procedure. The operation status classifier is illustrated in Figure 3-3.

Raw Raw
temperature vibration
digital digital :
Running
status
digital
Data loss? No
Is the equipment
Yes operational?
No Yes
Disregard Idling analysis Operathnal
data analysis

FIGURE 3-3 RUNNING STATUS CLASSIFIER
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Referring to Figure 3-3, the classifier splits the data into operational and idling modes and
disregards the lost data. The running status is retrieved from the historian database using the
cyclic retrieval mode, resulting in a returned value between or equal to one or zero. If the value
falls between zero and one, the data is disregarded. Using the proposed running status

classifier, it is expected that the number of type | errors is reduced.

3.2.3. IDLING ANALYSIS

Analysing the idling temperature and vibration of the machine can give information of the
specific temperatures and vibrations while the equipment is in idle mode or not in working
order. In underground operations, the temperatures of air surrounding the pumps in the same
pump station can vary significantly if the ventilation is insufficient. This means that the normal
operating conditions vary for each specific pump and should be taken into consideration in the

fault detection step.

The temperature, after the rate of cooling is equal to or less than a specified amount, can give
an indication of the ambient temperature. The method to estimate the ambient air temperature
will only be feasible if there is no external cooling source. The method is illustrated in Figure
3-4.

Running
status filtered
temperature

Rsutg?l:rslg _ 5 Iscooling rate > Desired ~Yes » Idling analysis
) cooling rate 9 Y
history
No

.

Disregard data

FIGURE 3-4 DETERMINING IDLE TEMPERATURE OF THE EQUIPMENT
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By specifying a desired cooling rate, the temperature data can either be ignored or be
analysed in the idling analysis. This classification process will only be significant for
temperature analysis. The idling analysis will reveal information of the ambient condition of
the equipment. It will be useful in underground mines to passively determine if the ventilation

or cooling mechanisms are sufficient.

Figure 3-5 shows the relationship of a bearing temperature of a wind turbine generator bearing
to the ambient temperature and active power (Wiggelinkhuizen et al., 2007).

Temperature of
generator bearing (°C)

w
o
>

2000

Ambient temperature .
(°C) 1000

4 18 Active power (kW)

FIGURE 3-5 TEMPERATURE OF A WIND TURBINE GENERATOR BEARING VS. AMBIENT TEMPERATURE AND ACTIVE POWER
(WIGGELINKHUIZEN ET AL., 2007)

Figure 3-5 shows that the ambient temperature and power output affects the temperature of a
wind turbine generator bearing. Hence, if the ambient temperature is monitored, a more
accurate prediction of the losses to heat losses can be estimated. If the ambient conditions
are not monitored, the temperature of an idling machine can be used to estimate the idling
temperature. An example of the temperature of a machine that is not running is presented in
Figure 3-6. Figure 3-6 shows NDE bearing temperatures of a centrifugal pump after has been
stopped.
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FIGURE 3-6 COOLING RATE OF A MULTISTAGE CENTRIFUGAL PUMP

Figure 3-6 illustrates the declining temperature of the pump and motor when the pump is
switched off at 18:00 on 28 March 2017. The motor is only cooled by ambient air if the pump
is switched off. The minimum temperature of all the data points is 22.3 °C, thus, it can be
assumed that the ambient air temperature for the measured period is lower than 22.3 °C for
this specific pump. Using this information, the specific pump alarm limit can be adjusted

accordingly to accommodate abnormal ambient temperatures.

3.3. DEVELOPMENT OF METHOD

3.3.1. DESIGN REQUIREMENTS

The method has certain criteria that needs to be adhered to in order to ensure practicality and
accuracy as mentioned in the problem statement described in Section 1.5.1. The design
requirements are given below and will allow the implementation of the model to be practical
and cost effective. The method should:

e Operate automatically

¢ Analyse multiple systems

e Make use of existing infrastructure
e Continuously evaluate the system

e Provides simple feedback that leads to swift actions being taken
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In order to reach these design requirements, the key parameters are evaluated to ensure an

accurate and practical method is implemented.

3.3.2. KEY PARAMETER SELECTION

According to Zhang et al. (2004) the selection of parameters sensitive to the condition of the
equipment is critical for condition diagnosis and prognosis. Only the core parameters will be

used to develop the method to keep the method as simple and generic as possible while

keeping it applicable to different machines. A list of monitored parameters is given in Figure
3-7 and Figure 3-8.

- S o
o g

FIGURE 3-7 MULTISTAGE CENTRIFUGAL COMPRESSORS MEASURED PARAMETERS
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FIGURE 3-8 MULTISTAGE CENTRIFUGAL PUMP MEASURED PARAMETERS

Figure 3-7 and Figure 3-8 shows the available parameters that are monitored of the equipment
in the case study. In this study, the parameters used include temperature, vibration and
performance parameters. The selection of the AR model input parameters are discussed in
Sections 3.3.2.1t0 3.3.2.3.

3.3.2.1. TEMPERATURE
Temperature logs are not required at such a high sample rate as vibration because the heat
transfer rate is slow in comparison to the rate of vibration energy change. Temperature has
been shown to have high autocorrelation with machines that have large mass that surrounds
the measured component (Schlechtingen & Santos, 2010), hereby motivating the use of

temperature as a key parameter for AR modelling.

3.3.2.2. VIBRATION
Vibration is usually analysed at high frequencies. A maximum RMS vibration value is available
in a half hourly resolution for this study. Many studies use vibration analysis methods to
determine the condition of rotating machinery. These analysis methods use high sample rates
which is not available in this study and therefore those techniques cannot be used (Jardine et
al., 2006; Krauel & Weishaupl, 2016).

Krauel & Weish&upl (2016) states that Fourier transformations are used to describe oscillating

behaviour and can easily give erroneous results if the sample rates are too low. Yang et al.
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(2014) also considers a sample rate of ten minutes too low for accurate fault diagnosis on a

similar rotating machine.

3.3.2.3. PERFORMANCE PARAMETERS
Performance parameters also give an indication of the condition of the equipment and how it
can also be used as an input parameter to the monitoring method (Murray, 1989; Yates, 2002;
Beebe, 2004). The efficiency of compressors and pumps can be calculated using the

parameters listed from the illustrations in Figure 3-7 and Figure 3-8.

To determine if there is a correlation of the performance between the condition and
performance indicators the vibration of the machine is plotted versus the power consumption
in Figure 3-9. The compressor in the example is one compressor in a series of five
compressors that has a common discharge manifold. The measured performance parameters
include the guide vane position, power and the manifold’s flow, and pressure which are

available.

The guide vane position and compressor combination is constant. The outlet manifold
pressure varied between 240 and 376 kPa. In this case, the performance parameter is chosen

to be power. The vibration of the compressor motor is plotted versus the power consumption

in Figure 3-9.
14
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FIGURE 3-9 COMPRESSOR VIBRATION VERSUS POWER CONSUMPTION
Figure 3-9 shows the relationship of vibration versus the power. According to Devore &

Farnum (2005) the correlation coefficient, R = 0.722, or coefficient of determination, R? =

0.5213 suggests a moderate positive relationship between the power and the vibration.
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Another vibration-performance correlation example is shown in Figure 3-10. The NDE
vibration is plotted versus the efficiency of the pump. The efficiency of the pump is calculated
using the Equation 2-1 which is a function of the temperature and pressure increases over the
pump (Murray, 1989; Beebe, 2004).

y = 0.0224x + 0.0529
R2=0.8382
°

Vibration, mm/s
= = N
o (62 = (6] N (&3]
[ ]

0 20 40 60 80
Efficiency, %
e Main Motor NDE Vibration Y-Axis

——Linear (Main Motor NDE Vibration Y-Axis)

FIGURE 3-10 CORRELATION BETWEEN PUMP EFFICIENCY AND VIBRATION

Figure 3-10 shows the vibration plotted versus the efficiency. The data consists of 3327 data
points. The high coefficient of correlation R? = 0.84 suggests a strong positive relationship
(Devore & Farnum, 2005). The collected data points only show the machine under normal

operating conditions.

Correlation is a measure of association, but association does not imply causation (Devore &
Farnum, 2005). Factors such as the number of start-up and shutdown, cavitation can have an
effect on the linearity of the data. No definitive conclusion is drawn from the correlation of the

condition monitoring parameters and that the performance parameters.

3.3.3. MODEL TYPE

Baillie & Mathew (1996) recommend linear AR models for when data is freely available and if
a simple system is desired. Schlechtingen & Santos (2010) found that AR models vyield
accurate results for modelling temperature of bearings in wind turbines. The large mass of the
motor casing around the bearings cause a high autocorrelation of the bearing temperature
signal (Schlechtingen & Santos, 2010). Assuming most large electrical equipment such as
compressors, pumps and fans have similar heat dissipation rates, an AR model can be used
to model the temperatures of the equipment. The performance of AR residual analysis with

the temperatures of different types of equipment will be analysed in this study.

Alternative method for equipment condition monitoring on South African mines 57



3.3.4. METHOD DEVELOPMENT

3.3.4.1. METHOD OVERVIEW
An overview of the condition monitoring method is given in Figure 3-11. The method
development will follow the flowchart provided in Figure 3-11. The overview is based on the
work of Ogidi et al. (2016) developed for the monitoring of the condition of wind turbines. This
method is based on the real-time condition analysis. It prioritises the comparison of parameter

data to set alarm and trip limits and employs the condition analysis method.
Set alarm criteria

Acquire parameter
data

No

Compare with alarm
No limits

Quality of Yes
measurement
OK?

Outside alarm
criteria?

Yes

Implement condition
analysis method

NO | |mplement condition

?
Fault detected? prediction model

Yes
Fault No | consider routine
predicted? maintenance
Yes

Perform confirmatory
and discriminatory
check

Alarm/alert
(Repair action is
needed)

FIGURE 3-11 FLOWCHART FOR FAULT DETECTION AND CONDITION PREDICTION
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3.3.4.2. TRIP AND ALARM LIMITS

Referring to the flowchart in Figure 3-11, the first step is to set alarm criteria for the pump. The

alarm and criteria for a centrifugal pump on Mine A is given in Table 3-1. The pump trip values

are added to Table 3-1 as a reference to show what is considered too high.

TABLE 3-1 ALARM AND TRIP LIMITS OF A CENTRIFUGAL PUMP

Instrument

Motor NDE Bearing Temperature
Motor DE Bearing Temperature
Motor DE Bearing Vibration
Pump NDE Bearing Temperature
Pump DE Bearing Temperature
Pump DE Bearing Vibration
Pump Inlet Pressure

Pump Outlet Pressure

Motor Winding U Temperature
Motor Winding V Temperature
Motor Winding W Temperature
Impeller Displacement

Balance Disc Flow

Motor Air Temperature

Motor Shaft Displacement

Column Flow

Input
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Digital
Analogue
Analogue

Analogue

Analogue

Alarm

76

76

4

76

76

4

N/A

N/A

115

115

115

Manual Setup: 3 mm

40

115

N/A

N/A

Trip
80

80

8

80

80

8
1600
16 000
120
120

120

45
120

<2
>8

Unit
°C

°C
mm/s
°C

°C
mm/s
kPa
kPa
°C

°C

°C
Proximity
I/'s

°C

mm

I/s

Table 3-1 shows the upper trip and alarm limits of the different measured parameters of the

pumps in the example. After the alarm criteria has been set, the parameter data is compared

to the alarm criteria for an instantaneous check; this check serves as face validation for the

alarm criteria. Thereafter a filter is added to ensure that the quality of the data is acceptable.
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If the parameter does not exceed the alarm criteria, then the condition is accepted. If the
parameter exceeds the trip limit, a confirmatory and discriminatory check is recommended.
When the alarm level is exceeded, the condition analysis and prediction model is

implemented.

3.3.4.3. MODEL-BASED CONDITION PREDICTION SYSTEM

A flow chart of the AR condition prediction system is given in Figure 3-12. It is adapted from
work done by Baillie & Mathew (1996). Baillie & Mathew (1996) illustrates the methodology of
the AR model as seen in Figure 3-12.

Machine state
(diagnosis)

1

Classifier

Model prediction

e
" errors enoF
+
» 3 NE
- One step 3
ahead
Autoregressive predicted .
model of operational output Autoregressive
parameter (30 minutes) | model for no fault
7y
y(t) > y(t-1) J vt - — — ]y

Tapped time delay line

Pre-processed
vibration or
temperature

signal

FIGURE 3-12 A MODEL-BASED CONDITION PREDICTION SYSTEM
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Referring to Figure 3-12, the model-based prediction system shows how the machine
diagnosis is determined. For a first order AR model, AR(1), only one previous data point,
namely y(t — 1), is considered. For a second order AR model, two previous data points are
used, namely: y(t — 1) and y(t — 2), and so forth. Thus, if the AR model is updated in real-
time, the y(t —i) values have to be stored in memory and read to update the model to

determine the future value.

Figure 3-12 shows that the residuals, or errors, e;zr and eyor, are analysed in the classifier to
make a machine diagnosis. The error behaviour for temperature is expected to be similar for
machines with similar amount of mass around the probe, depending on how the probe is
installed.

The AR model is applied in a dewatering pump case study. The AR model was fitted to data
developed while the equipment was under normal operation conditions. The temperature of
the NDE bearings was modelled for with data of the most reliable pump. A first, second and

third order linear AR model was fitted to the temperature data. The three models are shown

below:
9(t) = 0.97 - y(t — 1) + 1.54 (3.1)
9(t) = 1.30 - y(t — 1) — 0.34 - y(t — 2) + 2.06 (3.2)
9(t) = 1.33-y(t — 1) — 0.51 - y(t — 2) + 0.14 - y(t — 3) + 1.75 (3.3)

The calculated AIC, RSS, MLE and the p-value for the AR(1), AR(2) and AR(3) models are
given in Table 3-2.

TABLE 3-2 AUTOREGRESSIVE MODEL RESULTS ON CONTINUOUS DATA

AlC RSS MLE p-value
AR(1) 0.88 25683 12.9 1.50E-09
AR(2) 1.12 22875 11.5 1.23E-71
AR(3) -1.54 86623 43.4 1.09E-14

From Table 3-2 it is observed that the p-values are small which means that the AR model is
statistically significant. The AIC should be minimised to find the best fit. In this case the third

order model has the lowest AIC, therefore the third order model is used to model the
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temperatures. The actual temperature signal versus the predicted signal is plotted in Figure
3-13. The residuals are plotted Figure 3-14.
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FIGURE 3-13 ACTUAL TEMPERATURE VERSUS AR(3) PREDICTED TEMPERATURE
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FIGURE 3-14 RESIDUALS OF THE AR MODEL
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Referring to Figure 3-13, the AR model follows the trend of the actual temperature. The
model’s resulting statistics are shown in Table 3-3. Figure 3-14 shows the difference between
the actual temperature and the predicted temperature. By comparing Figure 3-13 and Figure
3-14, it is seen that the outlier residuals correlate with the sudden drop and rise of
temperatures.

TABLE 3-3 AR(3) REGRESSION STATISTICS OF UNFILTERED TEMPERATURE RESIDUALS

Multiple R 0.975
R? 0.950
Adjusted R? 0.950
Standard deviation 3.073
Root mean square error 9.430
Observations 2600

Referring to Table 3-3, the regression statistics is given. The regression model uses the data
for the whole month of March, therefore the number of observations are 2600 and not 336 for
a week’s data as plotted in the figures. The next step is to plot the residuals on a control chart
shown in Figure 3-15. If a disturbance occurs, it will be detected by the control chart.
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FIGURE 3-15 RESIDUAL DISTURBANCES WITH CONTROL LIMITS
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Referring to Figure 3-15, the residuals are plotted with a Shewhart chart with three upper
control limits (UCL) and three lower control limits (LCL). The UCLs are added to the chart to
monitor the underestimated temperatures whereas the LCLs are added to monitor the
overestimated temperatures. The UCLs and the LCLs are calculated using Equation 3.4 and

Equation 3.5 respectively.

UCL i = pisample + L * Tsample (3.4)
and

LCLT = psampte — " Osample (3.5)
Where:

e UCL i is the upper control limit of iteration i
e LCLi is the lower control limit of iteration i
e i is the iteration number of the limit

®  Usample 1S the sample mean

®  Osample IS the sample standard deviation

Control limits are usually set at three times above and below the standard deviation for the
UCL and LCL respectively. If the residuals follow a normal distribution around the mean, the
area bracketed by the control limits, UCL 3 and LCL 3, will on average contain 99.73% of alll
the plot points on the chart. Figure 3-15 shows many instances where the third upper control
limit (UCL 3) is exceeded.

From the correlation observed by comparing Figure 3-13 and Figure 3-14, it is noted that the
residual outliers are caused by the increase and decrease of temperature. The outliers can be
reduced by filtering the bearing temperature the running status. The AR model is updated and
trained using the running status filtered raw data. The equations for the AR(1), AR(2) and
AR(3) are given in Equations 3.6, 3.7 and 3.8.

$(t) = 0.65- y(t — 1) + 25.5 (3.6)
$() =0.54-y(t —1) — 0.16 - y(t — 2) + 21.37 (3.7)
$(t) =0.52-y(t —1) +0.072 - y(t — 2) + 0.17 - y(t — 3) + 17.92 (3.8)

Alternative method for equipment condition monitoring on South African mines 64



TABLE 3-4 AUTOREGRESSIVE MODEL RESULTS ON DISCONTINUOUS DATA

AIC RSS MLE p -value
AR(1) -2.52 23269 70.9 1.35E-41
AR(2) -2.52 23196 70.7 2.71E-03
AR(3) -2.51 23123 70.5 2.41E-03

Referring to Table 3-4, the AIC for the models are similar. The p-values are small which means
the models are significant. The AIC for the AR(1) models is the smallest, therefore the actual
temperature is plotted together with the predicted temperature in Figure 3-16. The residuals

are plotted in Figure 3-17 and the model statistics are given in Table 3-5.
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FIGURE 3-17 STATUS FILTERED, RESIDUAL DISTURBANCES

From Figure 3-16, it is observed that the predicted temperature follows the trend of the actual
temperatures. From Figure 3-17, it is observed that the disturbances of the pump do not
exceed UCL 2 or UCL 3.

TABLE 3-5 AR(1) REGRESSION STATISTICS OF STATUS FILTERED TEMPERATURE RESIDUALS

Multiple R 0.655
R? 0.429
Adjusted R? 0.427
Standard deviation 2.865
Root mean square error 8.16
Observations 328

By comparing Table 3-3 and Table 3-4, a clear difference between the filtered and unfiltered
data is that there are only 328 data points in a month when the pump was running throughout
the whole half-hour. For this specific pump, throughout the month of March, only 13% of the
data is classified as operational data. The standard deviation of the filtered data (of;itereq =
2.865) is less than that of the unfiltered data (o fiterea = 3-073). The residuals of both cases

are plotted on a normal distribution curve in Figure 3-18.
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FIGURE 3-18 NORMAL DISTRIBUTION OF FILTERED AND UNFILTERED DATA

Figure 3-18 shows the normal distribution of both the filtered and unfiltered cases. Figure 3-18
validates that the residuals of both cases form an independent and identical distribution 11D.
The Figure 3-18 shows that the filtered data, which is predicted with the AR(1) model, gives a
more accurate prediction than the unfiltered data which is predicted with the AR(3) model.
Thus, in this case, the filtered data shows a better prediction of the data points.

3.4. MODEL VERIFICATION AND VALIDATION

To test the AR model methodology, AR models are fitted to different input signals which are
presented in Figure 3-19 through to Figure 3-24. The best fit AR model will result in a more
accurate natural disturbance detection; thus the signals are chosen to imitate probable
temperature signals. Six different signals are included in the test they include:

e Linear function: to imitate a steady increase.

¢ Random function between two values: to simulate process noise.

e Sine function: to imitate usual variation.

¢ Combination of a two sine functions: to imitate usual variation in a slow process
change.

e Linear random increase: To imitate a steady increase with process noise.

e Linear random increase with a simulated fault: To simulate a fault through noise.

The equations of the simulated signals are displayed on their respective figures.
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Figure 3 19 to Figure 3 24 illustrates the simulated temperature signals AR(1), AR(2) and

AR(3) models were fitted to all the equivalent temperature signals. The regression statistics

for the models are given in Table 3-6.

TABLE 3-6 REGRESSION STATISTICS OF SIMULATED SIGNALS

Linear function

Multiple R |R? Adjusted R? |Standard Error |RSS MLE AIC p-value
AR(3) 1.000 1.000 0.979 ~0, 27720, 282.85| -5.290 ~0
AR(2) 1.000 1.000 0.990 ~0| 27720| 282.85/ -5.290 ~0
AR(1) 1.000 1.000 1.000 ~0| 27720 282.85| -5.290 ~0

Random between

Multiple R |R? Adjusted R? |Standard Error |RSS MLE AIC p-value
AR(3) 0.148 0.022 -0.009 3.019| 31004 316.37| -5.514| 0.8898462
AR(2) 0.148 0.022 0.001 3.003] 31007, 316.39, -5.514| 0.1519779
AR(1) 0.019 0.000 -0.010 3.020| 31024| 316.57| -5.515| 0.8512709

Sine function

Multiple R |R? Adjusted R? |Standard Error |RSS MLE AIC p-value
AR(3) 1.000 1.000 0.989 3.634E-15, 30150, 307.65 -5.458 ~0
AR(2) 1.000 1.000 1.000 4.419E-15| 30150( 307.65| -5.458 ~0
AR(1) 0.541 0.293 0.285 2,995 31011 316.44, -5.514| 8.975E-09

Double sine function

Multiple R |R? Adjusted R? |Standard Error |RSS MLE AIC p-value
AR(3) 0.998 0.996 0.996 0.308/ 30163 307.78 -5.459 1.287E-81
AR(2) 0.906 0.822 0.818 2.167, 30596, 312.20, -5.487| 2.386E-18
AR(1) 0.774 0.600 0.596 3.228/ 31150, 317.86] -5.523| 8.425E-21

Linear and random function

Multiple R |R? Adjusted R? |Standard Error |RSS MLE AIC p-value
AR(3) 0.494 0.244 0.220 3.419| 31234 318.72) -5.529 0.0061
AR(2) 0.426 0.181 0.164 3.541| 31328 319.67, -5.535 0.0647
AR(1) 0.389 0.151 0.142 3.586 31384| 320.24, -5538, 7.71E-05

Random and fault function

Multiple R |R? Adjusted R? |Standard Error |RSS MLE AIC p-value
AR(3) 0.890 0.793 0.786 3.661, 31400, 682.62 -7.052 0.0002
AR(2) 0.871 0.759 0.754 3.928/ 31523| 685.29, -7.060 0.0001
AR(1) 0.845 0.714 0.711 4.256 31644, 687.91 -7.067, 7.44E-28
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Table 3-6.shows the multiple correlation coefficient (R), multiple coefficient of determination
(R?), adjusted R?, standard error (or standard deviation), RSS, MLE, AIC and p-values of the

different signal’s respective models.

Referring to Table 3-6, it is observed that the multiple coefficient of determination, R?, suggests
a strong relationship between the predicted and actual temperatures in all cases where the
random function was not used. The standard errors show that the AR model accurately
predicts the linear and sine functions except for the random cases. A small p-value indicates
a more statistically significant model. The p-values are small for the linear and sine functions,

except for the random functions.

The sine function was accurately predicted with the AR(2) and AR(3) models. Since the AR(1)
model only takes the previous step value into account, it is not an accurate prediction with this
time interval. Ultimately, if the time interval is large enough and the data points are calculated
using an average function, the resulting dataset will seem linear and an AR(1) model will be
sufficiently predict the next value.

By following the developed method, the AR model order is chosen by selecting the model with
the lowest AIC value. The results show that the order of the AR model is dependent on the
type of signal and the degree of randomness.

3.5. CONCLUSION

It is possible, with the help of a Shewhart X control chart, to detect mean and variance outliers
of developed residual temperature signals. Thus, this fault detection method is feasible without
having any additional information about the alarm limits. This makes the developed fault
detection method generic and is expected to apply to other components of similar heat

capacities.

Vibration is usually analysed in the frequency domain. With the half hourly data, the high
frequency analysis is not possible, so a test was performed to analyse the correlation between
vibration and performance. Previous studies show a relationship between performance
parameters and vibration (Zhang et al., 2014). No obvious correlation was found with the

available data.

The ambient temperature of equipment has an effect on the overall machine temperature. A
method to determine the ambient temperature of idling equipment is developed. By analysing
the idling temperature, the cooling method of the equipment can be monitored without a

supplementary ambient temperature measurement.
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A running status filter was implemented to reduce the residual standard deviation which
proved to be successful, herewith improving the accuracy of the AR model. The model-based
fault detection method is implemented; the use of a filter should be justified. If the machine is

constantly running, a filter is not required.

The condition monitoring method was developed and mainly consists of four parts: a static

limit check, a best fit model choice, a displayed result and a dynamic limit check.

e The static limit check refers to the comparison of the input signal to alarm limits. If the
alarm limits are exceeded, the event should be noted and reported in a table format.

e The best fit model choice consists of fitting different AR models to the data and picking
one that best represents the data. The choice is made by minimising the AIC.

e The displayed result consists of a control chart of the parameter trend and the static
alarm and trip limits. The residuals of the fitted models along with the upper and lower
limits are given to detect any shifts.

¢ The dynamic limit checks refer to the comparison of the generated residuals to the
UCLs and LCLs.

Maintenance and breakdown reports are to validate the condition prediction model. The
reports can be difficult to obtain, and if there are reports available they do not necessarily
contain the useful or relevant information. An example of such a log is given in Appendix E.
The model is further tested and validated in Chapter 4 where the model is applied to different

case studies.
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CONDITION MONITORING ON SOUTH AFRICAN MINES

CHAPTER 4

EVALUATION OF THE ALTERNATIVE CONDITION MONITORING
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4. EVALUATION OF THE  ALTERNATIVE  CONDITION
MONITORING METHOD (CASE STUDIES)

4.1. INTRODUCTION

The focus of Chapter 4 is to evaluate the developed method. The model is implemented in
two case studies and tested if a mean and variance shift can be detected with AR residual
analysis. If such a shift is observed the method will identify the component as faulty.

The developed method is implemented on a multistage centrifugal pump of a dewatering
system and multistage compressors. The implementation of the model on the dewatering
system and compressed air section is discussed in Section 4.2 and Section 4.3 respectively.
Section 3.4 discusses the method verification and validation. The results of the developed

method are discussed and compared in Section 4.4.

4.2. CASE STUDY 1: DEWATERING SYSTEM

4.21. CASE STUDY OVERVIEW

This case study focuses on the detection of a large sudden change in a bearing temperature
of a 1.8 MW multistage centrifugal pump. An excessive temperature on the NDE motor of the
pump on level 66 of Mine A was identified and repaired. The maintenance report is attached
in Appendix F.

In a period of eight days from 15 to 23 March 2017, twenty alarms were triggered with the
company’s implemented condition monitoring method. The method notifies responsible

personnel if the parameter exceeds the alarm limit for more than five minutes.

The period where the alarm was triggered, before maintenance was done, is plotted Figure
4-1. The defective bearing temperature along with the alarm and trip limits are shown. The
running status of the pump is included to indicate whether the pump is operational. The trip

limit of the motor NDE was set at 80°C and the alarm level was set at 76°C.

Alternative method for equipment condition monitoring on South African mines 73



90 15
80 1.3
o 70 11
° - - — '\ - —r — %)
o 60 09 2
2% 07
3 40 2
qE) 30 0.5 §
= 20 03 &
10 | | s 1 i 0.1
0 -0.1
N N N N 3
07;/0 07;/0 07;/0 07;/0 07;/0
3/7 5 6’/7 > 6’/7 9 3/97 3/2 >
Motor NDE bearing temperature Alarm set point
—Trip set point ——Running status

FIGURE 4-1 CASE STuDY 1: NDE BEARING TEMPERATURE BEFORE MAINTENANCE

The developed NDE motor bearing temperature and the pump running status is plotted of the
primary and secondary y-axis respectively in Figure 4-1. The alarm and trip limits, 76°C and
80°C respectively, are also shown in Figure 4-1. Figure 4-1 shows that the motor bearing
temperature exceeded the alarm limit numerous times during this period. The correlation of
the running status and the temperature spikes which crosses the trip limits indicate that the

pump had tripped due to the excessive temperatures.

The maintenance report, attached in Appendix F, states that the unit was isolated and locked
out for the inspection upon arrival. The coupling and NDE bearing was opened for
investigation. It was noted that the coupling gap was about 2 mm and the rotor thrusted on the
bearing. Before the maintenance, the pump was installed incorrectly and the motor alignment,

coupling gap and magnetic centre was not determined correctly.

The problem was corrected by moving the motor away from the pump, removing and scraping
the bearing thrust face, and installing the bearing back into position. Magnetic centre was
established and the coupling gap set to 8 mm. Re-alignment was completed and the unit
started. The bearing temperatures were then monitored on the motor and settled after an hour

of operation at 63°C at both the motor bearings.
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4.2.2. MODEL IMPLEMENTATION

The AIC was determined for first, second and third order models which were fitted to the
unfiltered NDE bearing temperature signal. The AIC of the third order AR model was found to
be the minimum as determined in Section 3.3.4.3 on the same dataset. The available
temperature data before the maintenance period was used to construct a third order AR
model. This period is shown in Figure 4-2. The AR(3) model is fitted to actual NDE bearing

temperature in Figure 4-3.
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FIGURE 4-3 AR(3) MODEL FITTED TO THE TEMPERATURE BEFORE THE MAINTENANCE PERIOD.
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Figure 4-2 shows the NDE bearing temperature during and after the maintenance period. The
period before the maintenance was chosen to determine the AR model order. Figure 4-3
shows the fitted AR(3) model to the NDE bearing temperature. It is observed that the model’'s
movement corresponds to the actual temperature signal. The fitted AR(3) model is shown in

Equation 4.1 with the regression statistics in Table 4-1.

() =0.20-y(t —1) — 0.69 - y(t — 2) + 1.43 - y(t — 3) + 1.88 (4.1)

TABLE 4-1 AR(3) REGRESSION STATISTICS AR(3) MODEL

Multiple R 0.934
R? 0.872
Adjusted R? 0.872
Standard deviation 3.815
Root mean square error 14.502
Observations 1098

Table 4-1 gives the regression statistics for the period before the maintenance. The coefficient
of multiple determination (R?), indicates a strong relationship between the model and the

actual data points. The residuals for the period before and after the maintenance period is
plotted in Figure 4-4.
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FIGURE 4-4 RESIDUALS BEFORE AND AFTER MAINTENANCE
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Figure 4-4 shows the residuals of the AR(3) model along with the UCL and LCL. From Figure
4-4, it is clearly observed that the residuals of the model are more concentrated around the
mean after the bearing temperatures have been maintained on 31 March 2017. Table 4-2

gives the residual distribution before and after maintenance periods.

TABLE 4-2 RESIDUAL DISTRIBUTION COMPARISON BEFORE AND AFTER MAINTENANCE

Before maintenance After maintenance
1 to 31 March 2017 9 to 24 April 2017

Above UCL 3 4% 0%
Above UCL 2 9% 0%
Above UCL 1 15% 4%
Below LCL 1 12% 3%
Below LCL 2 3% 0%
Below LCL 3 1% 0%

From Table 4-2 it is observed that there is a significant change in the percentage of data points
exceeding the UCL and LCL. The data points are more concentrated around the mean; thus,

a variance shift is observed.

4.2.3. DISCUSSION

In the modelling stage of the method development it was shown that the data used to train the
model affects the accuracy of the prediction. In this case study, the AIC was minimised and
thereby showed that the AR(3) model is the best prediction for the dataset. The dataset used

to minimise the AR model contained the data before the maintenance was performed.

Even though the model was trained with the temperature before the maintenance, the model
was able to detect the variance shift, shown in Table 4-2. This suggests that the model can
be applied to already faulty equipment and still be able to detect mean and variance shifts. By
observing the linear trend of the percentages exceeding the control limits of the AR residuals,
it is possible to predict faults and estimate the failure date.
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FIGURE 4-5 CASE STUDY 1: TEMPERATURE RESIDUALS BEFORE AND AFTER MAINTENANCE

Figure 4-5 illustrates how the model is able to detect faults. The control limits are specified to
be static in Case Study 1, if dynamic control limits are implemented, the system can
automatically update itself, and recognise even smaller changes specific to the system. A
slow, continuous change is analysed in Case Study 2.

4.3. CASE STuDY 2: COMPRESSORS

4.31. CASE STUDY OVERVIEW

This case study determines if the method can detect a slow and continuous change. The AR
model is implemented on the compressor system where the cooling system lost effectivity.
The case study is performed on temperature signals of a 1.8 MW compressor that serves as
a backup to increase the pressure if the compressed air demand is too high, hence the many
start-ups and shutdowns.
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FIGURE 4-6 COMPRESSOR MOTOR BEARING AND WINDING TEMPERATURES
Figure 4-6 shows the rise of the motor temperatures along with the motor bearing temperature.

The main motor winding temperature U, increased from a normal operating temperature of
less than 100°C to 110°C.

4.3.2. MODEL IMPLEMENTATION

Evaluating the data shows 1% data loss throughout the observed period of 1 December 2016
to 28 February 2017. The lost data points were excluded in the model fit procedure. The whole
sample period from 1 December 2017 to 28 February 2017 was used to construct the AR

models. The results of the AR models are presented in Table 4-3.

TABLE 4-3 AUTOREGRESSIVE MODEL RESULTS

AIC RSS MLE p - value
AR(1) -0.99 65777 33.0 ~0
AR(2) -0.86 61467 30.8 ~0
AR(3) -0.85 61413 30.8 0.037
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Table 4-3 shows the AIC for the AR(1) model is the smallest, thus the AR(1) model is used to
predict the winding temperature. The model is fitted to the actual temperature of the main
motor winding temperature U and presented in Figure 4-7. The regression statistics for the
model is given in Table 4-1.
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FIGURE 4-7 AR(1) MODEL RESULTS
TABLE 4-4 REGRESSION STATISTICS OF AR(1) MODEL
Multiple R 0.981
R? 0.962
Adjusted R? 0.962
Standard deviation 4.983
Root mean square error 0.487
Observations 4278

Table 4-4 shows that the AR(1) model's regression statistics. The multiple coefficient of
determination, R?, suggests a strong correlation relationship between the model’s prediction
and the actual values. Comparing the regression statistics of both case studies shows that the

AR(1) model in Case Study 1, R? = 0.981 is larger than that of the AR(3) model in Case Study
2, R? = 0.934.
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FIGURE 4-8 RESIDUALS WITH CONTROL LIMITS
Figure 4-8 shows the residuals of the AR(1) model. 2.7% of the residuals exceed the third

UCL. Two data points from a sample of 4278 data points exceeds the third LCL. Table 4-5
shows the variance shift before and after the shutdown.

TABLE 4-5 RESIDUAL DISTRIBUTION COMPARISON BEFORE AND AFTER SHUTDOWN
Before shutdown After shutdown

1to 25 December 2016 1 January to 19
February 2017

Above UCL 3 2% 3%
Above UCL 2 4% 5%
Above UCL 1 7% 8%
Below LCL 1 3% 5%
Below LCL 2 0% 1%
Below LCL 3 0% 0%

Alternative method for equipment condition monitoring on South African mines 81



Table 4-5 shows that there is an increase in change in the percentage of data points exceeding
the UCL and LCL. The data points spread out further around the mean; thus, a variance shift
is observed. This means that the natural disturbance before the shutdown is less than the
natural disturbance after the shutdown. Figure 4-9 is added to show the small mean residual
change.
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FIGURE 4-9 WEEKLY MEAN RESIDUAL

Figure 4-9 shows the weekly mean residual change, that fell to u = —0.82 °C during the
shutdown. This means that the model overpredicted the temperature during the shutdown
period. The mean shift of the shutdown is detected. A larger mean shift is observed after the

shutdown reached a maximum of u = 0.3 °C.

4.3.3. DisScuUssION

From the residual analysis, an increase in the variance is observed. The mean difference
before and after the shutdown also showed an increase. The slow increase of the motor
winding temperature residuals could not be observed from the control chart in Figure 4-8. The

increase was observed by calculating the weekly average mean residuals, as shown in Figure
4-9.

The mean shift change suggests a disturbance in the system. The means shift analysis also

detected the shutdown period, where the AR(1) model under predicts the temperatures. If the
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mean shifts during a disturbance such as presented in Case Study 2, is benchmarked, a

specific fault can be matched in future occurrences.

4.4. CONCLUSION

The temperature signal of a defected component was analysed in this chapter. The AR
residual analysis has shown that it is able to detect a mean and variance shift. Guo et al.,
(1998) states that the AR residuals represent the natural disturbance of the system. The
results prove that the AR model can detect an unnatural disturbance, which suggests that a
fault has occurred.

In Case Study 1, the model has shown the capability of detecting a variance shift in the
operating temperature of the NDE bearing of the compressor motor. In Case Study 2, the
model has shown the capability of detecting a small mean shift change in the operating

temperature of a motor winding temperature.

The model is validated throughout the development and case studies, by implementing the
model with historical data from real machines. Sargent (2012) defines historical data validation
as one of the techniques used to validate a model. The data is shown on a control chart that
graphically displays the model’s output that validates the model’'s operational behaviour. The

illustration of the control chart eases the face validation process of the analyst (Kleijnen, 1999).

The model is validated using the parameter variability technique by using two different types
of changes to the inputs. Case Study 1 presented a large change in temperature after
maintenance was performed on the pump, and Case Study 2 presented a small change over
time. The model's behaviour was validated by using Case Study 1 and Case Study 2 as
different subjects. The observed behaviour of the model was proven to detect a sudden

change as well as a uniform change over time.

Using the model to predict the system’s behaviour and comparing the model’s forecast to the
actual system behaviour can give an indication of the model's accuracy. The regression
analysis shows the accuracy of the estimation. The calculated the multiple coefficient of
determination, or R?, and the mean square error, or MSE, statistics used to validate models.

In both case studies, the multiple coefficient of determination suggested a strong correlation.

Overall it was shown that temperature in thirty minute intervals shows high autocorrelation in
large three-phase induction machines. A mean and variance shift alarm has to be developed

for the specific equipment, setup and sample rate.
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5. CONCLUSION
51. INTRODUCTION

Chapter 5 provides the summary and recommendations of the study. In the study, problems
regarding condition monitoring in the South African mining industry and presented an
alternative condition monitoring method. The method includes a model to analyse underlying

information of available condition-indicative parameters.

5.2. SUMMARY

A need for a condition monitoring system that can operate automatically, analyse multiple
systems, continuously evaluate the system while making use of existing infrastructure exists.
This study proposed a method to turn an existing preventative maintenance strategy into a
predictive maintenance strategy, with the aim to increase equipment availability and reduce

maintenance costs.

The study has shown that the developed method can be implemented using the mines’
existing infrastructure. Even with the constraint of half hourly sample rates, the system was
able to detect the mean and variance shifts. Unfortunately, with the low sample rates, fault
diagnosis is deemed not viable for in-depth vibration analysis. Vibration is preferably analysed
in the frequency domain with high sample rates using Fourier spectral analysis. Since only

half hourly averaged data is available, the analysis is restricted to the time-domain.

Literature has shown that AR models can accurately predict temperatures in cases where the
measured component is surrounded by a large metal mass (Schlechtingen & Santos, 2010).
South African mines make use of large electrical machines that showed adequate temperature
autocorrelation to detect the natural disturbance in the system. AR residual analysis was

chosen to be used as the condition prediction model.

The developed method mainly consists of four parts: a static limit check, a best fit model

choice, a displayed result and a dynamic limit check.

e The static limit check refers to the comparison of the input signal to alarm limits. If the
alarm limits are exceeded, the event should be noted and reported in a table format.

e The best fit model choice consists of fitting first, second and third order AR models to
the data and selecting one that best represents the data. The choice is made by

minimising the AIC.
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o The displayed result consists of a parameter trend control chart of the and the static
alarm and trip limits. The residuals of the fitted models along with the upper and lower
limits are given to detect any significant signal shifts.

e The dynamic limit check refers to the comparison of the generated residuals to the
UCL and LCL.

In Case Study 1, the model was trained on a machine in an unhealthy state and displayed an
adequate fit to detect the mean and variance changes. A large variance shift was observed
that indicated an unusual disturbance. In Case Study 2, the model was trained on a healthy
machine and was also detecting the mean shift changes successfully.

An advantage of the proposed fault detection model is to detect changes that occur due to
factors outside normal operation. With this model, faults can be detected within the specified
alarm and trip limits. Another advantage is that the model can be applied generically to
different machinery without additional information about the alarm or trip limits.

5.3. RECOMMENDATIONS
The recommendations for future studies are as follows:

e The extent of interchangeability of the method should be determined in future studies.
Wang & Wong (2002) states that an AR model with the order p, AR(p), built on a
stationary process will be able to predict stationary processes that are of the same
family. The extent of the statement should be tested to determine if the model only
applies to similar equipment such as different sizes of pumps, or different models of
the same size pump.

e The effect of the model training period should be examined. Future studies should
determine if the AR model should be trained on healthy equipment, or to what extent
the model will be accurate if it is trained using unhealthy equipment.

e Linear AR models with larger orders should be evaluated.

o Other AR analysis techniques such as ANNs and radial basis functions have to be
evaluated and compared to linear regression models.

o By benchmarking the AR residuals for various types of equipment, the mean and
variance shift trends can be compared to previous test results. Thereby, the fault

detection probability can be increased.
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Appendix A SYMPTOMS OR PARAMETERS THAT ARE RELEVANT TO PUMPS
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S: Symptoms that may occur, or parameter change with fault, according to pump design

FIGURE A-1 SYMPTOMS OR PARAMETERS THAT ARE RELEVANT TO PUMPS
(BEEBE, 2004)
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Appendix B THE INDICATORS OF MACHINE AND COMPONENT DETERIORATION
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FIGURE B-1 THE INDICATIONS OF COMPONENT DETERIORATION

(NEALE & WOODLEY, 1975)
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Appendix C REGRESSION ANALYSIS

The statistical calculations in the study were using the equations presented in Appendix C.
Figure C-1 provides a supplementary illustration of how the actual and modelled values are

used to determine the explained and unexplained variance.

y =mx+b
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A || _umexplained %°¥;}
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FIGURE C-1 MODELLED DATA STATISTICS

The MSE is calculated using Equation C.1
1 n
MSE == (i = 90)? (c.1)
i=1

Where:

e nis the number of observations
e y; is the actual value for data point i

e ¥; is the predicted or fitted value
The residuals or EV are calculated using Equation C.2
EV =y, — ¥ (C.2)
Where:

e y; is the actual value for data point i

e ¥, is the predicted or fitted value
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The mean MAE is calculated using Equation C.3.

n
MAE = ) 19 -]
i=1
Where:

e ¥y is the value returned by the model

e ¥; is the actual value for data point i

The variance (¢2) is calculated using Equation C.4.

Gzzz(X;Vu)z

Where:

e X is the measured quantity variable
e 4 is the mean of the sample

e N is the number of terms in the distribution
The standard deviation, o, is the positive square root of the variance, 2.
For the analysis of the AR model, a different set of regression statistics are used.

The coefficient of multiple determination, R?, is calculated with Equation C.5.

SSResid

R?=1-
SSTo

Where:

e SSResid is the sum of the squared residuals

e SSTo the total sum of squares defined in Equation C.6

S5To = Y (i = )?

The adjusted R? for multiple regression is calculated with Equation C.7.

adjusted R> =1 —

SSResid/[n— (k+1)] [ n—1 SSResid
SSTo/(n—1) - n—(k+1) SSTo

|

(C.3)

(C.4)

(C.5)

(C.6)

(€.7)
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Appendix D VIBRATION INSTRUMENT SPECIFICATIONS

ST5484E Seismic Velocity 4-20 mA Transmitter

Datasheet

OVERVIEW

The STS4B4E is a self-contained seismic velocity transmitter
that incorporates a piezoelectric accelerometer, signal integra-
tor, RMS peak detector, and a 4-20 ma signal conditioner into a
single package. it can be mounted directly on a machine case or
bearing housing without intervening siznal conditioning equip-
ment. The amplitude of the integrated acceleration (velocity)
signal s converted to a proportional 4-20 ma signal compat-
ible with industrial process control instrumentation such as
PLCs, DCSs, and SCADA systems that an provide trending and/
or alarming capabilities for a simplified vibration monitoring
strategy.

When the flying lead or terminal block connector options are
chosen, the trAnsmitter does not need a separate environmental
housing and can directly accept conduit. To reduce installed
cost, it can be used with barriers for intrinsically safe installa-
tions, or wired directly to explosion-proof conduit fittings for
explosion- proof installations.

Meed A Local Display?

when continuous, local indication of

vibbration levels is required at the trans-

mitter, the Metrix ST5491E provides
these capabilities. Its sensing and transmitter
elements are similar to the ST5484E, but it
includes a convenient 2¥%: digit LCD display in
an integral conduit elbow and is rated for use
in temperatures from -10°C to 470°C. Refer to
Metrix datasheet 1004598 for ordering informa-

APPLICATIONS

A vibration transmitter may be appropriate in applications where
a stand-alone monitoring system may not be warranted.

The 5T5484E handles general-purpose vibration measuremeants
on 3 wide range of rotating and reciprocating machinery with
rotative speeds between 120- and &,000-rpm. Seismic measure-
ments are suitable for machines with rolling-element bearings
because shaft vibration in such machines is usually transmitted
directly through the bearing to the bearing housing without
substantial damping or attenuation. Seismic transducers can also
measure vibration that does not originate at the shaft, such as
bearing-related wear and defects, footing/foundation problems,
piping resonances that are coupled to the machine, etc.

METRIX

Flying Leads
[Dption 0=0, 1, 5, or 6) [2-wire
shown; 4-wine also available)

2-Pin MIL Conmector
{Option D=4)

& @

Why Measure Velocity?

acceleration and displacement levels are heavily influenced by
the frequencies at which the vibration is oocurring, while veloc-
ity levels are much less influenced. Thus, although acceleration,
welocity, and displacement measurements are inter-related
mathematically, seismic velocity measurements tend to be more
consistent over a wide mnge of frequencies than either displace-
ment or acceleration. Consequently, broadband [sometimes
lled “overall” or “unfiltered”) velodty measurements are
appropriate for monitoring many machines as a reliable indica-
tor of damaging vibratory energy, with the notable exception

of machines with fluid-film bearings, which are usually better
addressed by shaft-observing proximity probes.

Casing displacement is not a practical measurement to make
directly and is typically just an integrated seismic velocity mea-
surement. As such, the primary decision when selecting a seis-
mic sensor will usually be whether to measure @sing velocity
or casing acceleration. As noted above, casing velocity will often
be more appropriate because it tends to be a more reliable
indicator of damaging vibratory energy over a broad frequency
spectrum for low- to medium-speed machineny.

wersLmetTievibration oom * info@ metrisvibration.com « 2E1 940 1807
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MNOTE- For machines with fluid-film bearings, shafe-

ohserving proximity probes will provide mone effective

vibration measurements than seismic trensducers due
to the rotor dynamics of the machine and the: sttenuation
of vibratory energy through a fluid-film boundary. Aooond-
inghy. Metrix recommends and provides proximity probes
and associated £-20 mA transmitbers or monitoni ng systems
fior such applications.

For machines with rolling element bearings and running
above 6,000 rpm, and/or where impulsive casing vibration
ooours, acceleration may be 2 better measurement. In such
situations, it is recommended that you consult with

3 Metrin sles professional who can review your application
and assist with selection of the proper transducer type and

FEATURES

RFL/EMI Immunity — Enhanced circuit design and installa-
tion technigues ageressively filter out noise from common
sources such as handheld radios

Excellent Moisture Resistance — The 2-pin MIL connec-

tor version is hermetically sealed to provide an IP67-rated
enclosure. Flying lead and terminal block versions are fully
potted and rated to IP66 when installed with optional I1EC
conduit elbow

Hazardous Area Approvals — Morth American (C54), Brazil-
ian (INMETRO), and European (ATEX & IEC) approvals avail-
able

Dynamic Signal Availability — 2-wire versions provide a 4-20
ma velocity- proportional signal for easy connection to PLCs,
DCSs, and other plant control systems. Optional 4-wire ver-
signs' also provide the rmw acceleration signal {100 mvyg)
for use with vibration data collectors and analyzers

wvariety of Connection Options — Flying leads, terminal
block, and MIL-type connectors available

Conduit-Ready” — Terminal block and fiying lead options
have conduit threads on top of sensor. No special housings
are required for connection of conduit

Rugged, Industrial Design — Robust construction offers out-
standing durability; built-in base and housing strain protec-
tion helps ensure that over-torqueing sensor-to- machine
and sensor-to-conduit connections won't damage internals
or bady

High- and Low-Pass Filter Options — The STS484E can be
ordered with a wide variety of low- and high-pass filter
options to precisely tailor the band over which vibration is
measurad

Polarity-Independent Wiring — Metrix patented IPT® tech-
naology allows loop power to be connected without regard
to voltage polarity, reducing field wiring errors and ensuring
that the raw acceleration output® is not phase inverted
Multiple Mounting Options — Integral and removable
mounting stud options available in both metric and English
thread sizes; fiat base mounting adapters are also available
Loop-Powered — Runs on nominal 24 V' power supplied by
the 4-20 maA current loop

Wide Supply voltage Range — Accepts loop power voltages
from 11 to 29.6 \_(intrinsically safe) or 30.0 V__(explosion
proof B non-incendive)

METRIX

RMS Amplitude Detection — Measures koot Mean Square
|RMas) vibration amplitude. Options available for Tree RMS
or scaled RMS [RMS x v2) for “derived peak™

Mumerous Full Scale Ranges — The full scale ranges provid-
ed in option AAL reflect frequenthy-ordered ranges; how-
ever, many others (too numerous to list) are also available.

Consult factory for applications requiring other full scale

ranges

Hotes:

1  Dynamic raw accelerstion signal avsilable with 4-wire versions only
{ondering options D= 1 and D=3).

2. Mefrix recommends flexible {rather than solid) conduit when pos-
sible. Solid conduit can introdwoe: preload foroes on the sensor and
alter of the vibration response of the sensor.

SPECIFICATIONS

All specifications are at 4+25°C (+77°F) and +24 V__ supply woltage
unless otherwise noted.

Inputs

Supply Voltage
[see also note
under max loop
resistance)

11-206V (24 v__nominal) (intringi-
clly safe; 11 - 30V, (24 V__ nominal)
|explosion proof and non-incendive);
Metrix patented IPT® independent polar-
ity diode bridge circuit allows voltage to
be connected without regard to polarity

Circuit-to-Case
Isolation

500 Vrms

Outputs

4-20 mA

Proportional to velocity full scale
range (4ma = 0 vibration,
20ma = full scale vibration)

Maximum 4-
20 mA loop resis-
tance

R =50 (Vs —11) £} where Vs = Supply
voltage at transmitter terminals.

MOTE: For every 50 £ of resistance in the
4-20 mA loop, 1V, sbove the minimum sup-
phy voltage (11 V] must be awsilable at the
‘transmitber terminals. For eample, 12 'll'ul
‘the transmitter terminals will allow 2 50 £ loop
rs?ﬂznm;i]?uatﬂntmmiﬂrrmirnls
will allow = 950 ) loop resistance. For intrinsi-
mally safe applications, the use of 2 passive
zemer barrier will incur a voltage drop of
spprocimately B.1 volts st the barrier, and the:
loop supply voltage is Emited to 26W . Thus,
with passive barriers and a 26V, supply, the
manimum availzble voltage at the transmitter
will be 17.9Y, and the corres ponding maxi-
mum loop resistance will be 345 0.

Dynamic Signal

100 mvi'g (102 mv / m/s’) acceleration,
filtered to same frequency band as pro-
portional velocity (see ordering options E

&F)

s metrivibration ooem + info@ metrivvibration.com « 2819401802
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Dynamic Signal 10 k2 Physical
Output .
Impedance NOTES: 'Iieml ne to £ (40°F to +212°F)
1. The dynamic signal output is short-circwit -
protected by means of 2 10 ki) resisbor, Weight 0.9 |bs (0.36 kg)
resulting in 2 relatively large output imped- Dimensions Refer to Figures 1 and 2 on page &
ance. Many data collectors and analyzers have
relatively low input impedances {100 k0 or Sensitive Axis Same as mounting stud axis
less) which will load this dynamic output and - -
sttenuzte the signal by 10% or more. Refer to eE e P [
Table 1 for the dB and percentage attenuation Enclosure * 303 stainless steel |standard)
for various boad impedances. Material * 316L stainless steel (optional)
2 Berause the STSARAE ix a lnop-powersd Enclosure Rating :";;T;ENHE"M'EHMD' [option D=a]-
devire with low operating power, the dynamic
signal output requines 3 buffer smplifier for - Flying Leads and Terminal Block Connec-
bl rures in exoess of 16 feet (5 meters). Longer tors [option D=4):
mEbile runs will also introdwee distributed ble
Epacitance that acts 2= 2 low-pass filter, attenu- & IP66 when used with the following con-
ating high- frequency signal content. In such duit elbows:
situations, consult the factory for assistance B200-001-1EC, E200-002-1EC, B2D0-003-
selecting an approprizte low-capactance cable. IEC, B200-008-|EC, B200-003-{EC
Recommended S0 fofd . . .
Pinimum (see also note 1 at ) * No Iumg"‘ Mm_used with the fiollow-
. ing conduit elbows:
Load :E::‘m E200-001, 8200-002, E200-003, B200-005,
ovnamic sgna 200-006, 5200005, 8200-009, 8200-010,
con Gon B200-101, 3200-103, E200-108
SEﬂH'IIEEI'E * NOTE: IP and NEMA ratings pending;
Frequency 2 Hz — 1500 Hz (standard) erinE i ot
Response [+/- 2 Hz — 2000 Hz [optional) Connector Types | = Flying Leads |2- and 4-wire]
3dB passband) = MIL-C-5015 (2-wire only)
» Terminal Block |2- and 4-wire)
Dptional High- 5, 10, 20, 50, 100, or 200 Hz Humidity = 95%, non-condensing (flying lead and
Pass Filter Corner | (must be specified at time of ordering) terminal block versions)
High-Pass Roll- 12 dB / octave = 100% condensing (MIL-style connector)
off Approvals
Optional Low- 230, 250, 350, 450, 500, or 1000 Hz CE Mark * Yas
Pass Filter Corner | (must be sped at time of orderi
[ peched - Hazardous * CSA
Low-pass Roll-Off | 12 dB8 / octave Areas * ATEX
Accuracy + 2 5% [within passband) * |ECEx
+ 4% (at corner frequencies) - |"“E|im |
N " = GOST [consult factory
;Tl.lnml 5.0 in  sec (others by request) {rafer to ordering option c)
— - Recommended i
Minimum Full 0.5 in / sec (others by request) 15 Bamiers
Scale Passive [Zener MTL 77E7+ or equal
Full Scale Range | » in / sec {smndard) Type)
Units = mm / sec (awailable by request) Active [Zener MTL 7706 or equal
amplitude True RMS detector; full scale may be or- Type]
Detection dered with True RMS units or scaled RMS Active MTL 5541 or equal
(RMS x vZ) for “denived peak™ measure- [Galvanic Type)
ments STSAS4EEntity | * Vmax: 29.6 V,_ [intrinsically safe)
y . Parameters = Vmax: 30V,
See ordering option AAA [explosion ;ﬂﬂfil‘ﬂ non-incendive)
= |max: 100 ma
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ORDERING INFORMATION

AAA-BCD-EF
STS484E-[TTI-LT T 1M

AAR Full 5cale Range* Hazardous Area Certification™**
1] 2| 1| 1.0in/sec |25.4 mm/s) peak® o Mo Hazardous Approval Area
1| z | 2 | 0.5 in/sec (12.7 mm/s) peak® 1 CSA US/C, Class |, Div 2, Grps A-D
1| 2| 3 | 2.0in/sec (508 mm/fs) peak? [non-incendive)

- 2 CSA US/C, Class I, Div 1, Grps B-D
1jzjaso Wﬂ (127 mm/s) peak; and Class 11, Div 1, Grps E-G (explosion proof)
1| 2|6 |0.8in/sec (20.3

in/sec (20.3 mm/) F""E'r__ 3 | aTEX, EExia IiC T4 Ga (intrinsically safe)
1| 3| 2 | 3.0in/sec (76.2 mmy's) pea 2 CSA US/C, Class I, Div 1, Grps AD
1] 5| 1] 1.0in/sec (25.4 mmys) true RMS (intrinsically safe)
1|5 2 | 0.5in/sec (12.7 mm/s) true RMS 5 IMMETR, Ex ia IIC T4 Ga |intrinsically safa)
1|5 3 ] 2.0in/sec |{50.8 mm/s] true RMS 6 | INMETRD, Ex d IIC T4 Gb [explosion proof]
1] 5[ 4] 5.0in/sec (127 mmy/s] true RMS 7 IECEx, Exia IIC T4 Ga [intrinsically safe)
1| 5 [ & ] 0.8 in/seC (20.3 mmys) true RMS 8 | amennEcex, exdiic T4 Gb [explosion proof)
1| 6| 2 | 3.0in/sec (76.2 mm/s) true RMS

Connection Type’
B Housing Material & Stud Size' o 24" Flying Leads, 2-wire;
0 | 303 55 housing, %" MPT stud [4-20 mA output only)
1 03 55 |-.;“J!'"-E'I ¥ NPT stud 1 24" Fhfiﬂg LEEd!, Q"ﬂ"ll'E'r :4—20 M output
— and dynamic raw acceleration signal)
2 303 55 housing, ¥ x 24 UNF - ¥ stud —— —
— 2 Te: B 2 4-20 mA output
3 303 55 housing, ¥ x 20 UNF — %" stud rm!"a = _w'_re i | Z onky)
— 3 Terminal Block, 4-wire®; (4-20 mA output
a 303 55 housing, M8 x 1.0 — 12 stud and dynamic raw acceleration signal)
5 303 55 housing, M10 x 1.25 — 12 stud 4 | 2-Pin MIL-Style (MILC-5015);
6 303 55 housing, ¥ x 20 UNC — %" stud (4-20 mA output only)
7 303 55 housing, ¥ x 2B UNF — ¥ stud 5 72" Flying Leads, 2-wire;
8 | 303 55 housing, MB x 1.25— 12 stud (4-20 ma output only)
— v 6 72" Flying Leads, 4-wire; (4-20 ma outpart
3 30355 hnumE, #x 16 UNC ¥ stud and dynamic raw acceleration signal )
10 316 55 housing, K" NPT stud
11 316 55 hnusllrE, ¥" NPT stud Hiet Filter
12 ilﬁsshnusnﬁ,%ixzdumF—}*'z"stud o 2 Hz (standard)
13 316 55 housing, ¥: x 20 UNF — ¥2" stud 1 5 Hz
14 316 55 hnus.lrE, ME x 1.0 - 12 stud 2 0 Hz
15 316 55 hDusIIrE, W10 x 1.25 — 12 stud 3 30 Hz
16 316 55 hnus.lrg,ﬁxm UMNC — %" stud 2 =0 Hz
17 316 55 hnus.lrE,Hx:LB UNF — ¥ stud = 200 Hz
1B 316 55 hnus.lrE, ME x 1.25—12 stud 5 prey
19 316 55 hnus"E, % ¥ 16 UNC — ¥2" stud " Custom [consult factory]’
20 303 55 housing, ¥ x 13 UNC —¥2" stud
30 316 55 hnumg. ¥ax 13 UNC —¥2" stud Filter
o 1500 Hz [standard)
1 00 Hz
2 1000 Hz
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3 2000 Hz Table 2 — Allowable Combinations for A & B Options
4 250 HE Full Scale Range AAA = Allowable B options
5 230 HE? [Miounting Stud Sizes)
121, 122 123, 126, 151, 152, | All (no restrictions)
& 350 H 122,123, 126, 151, 152,
i 153, 156
7 450 Hz
" - 124 and 154 0, 1,3, 10,11 13
X Custom (consult factory
{ ) 132 and 162 0,1,23,5,9 10,11 12 13,
15, 19
NOTES:
1. Smallerdizmeter mounting studs are not able to withstand sus-
tained ambient vibration levels above 2.0in/sec. Consult Table 2 Table 3 — Allowable combinations for € & D Options
for allewable combinations of A snd B options. c
2. The STS4BAE uses an RMS amplitude detection cirouit. Full scale o o 1 2 3 4 5 & 7 8
ranges in peak units use sEled RMS [Le., BMS x 2] The “derived
peak” measurements will sgual true peak only under the spedal o ¥ ¥ ¥ N N N ¥ L ¥
e of 2 pure sinusnid, ot complex vibration signals. 1 vy ¥ ¥ M N M ¥ M ¥
3. Hazardous Ares Certifications ane not compatible with all connec-
tion types. Consult Table 3 for zlleaable combinations of C & D 2 ki ki L ki ki ¥ L ki L
options. 3 ¥ ¥ N Y L ¥ N L N
4. Sowme spprovals reguine intrinsic safety barriers, others requine a ¥ ¥ N ¥ ¥ ¥ N ¥ M
Exphosion-Proof wiring practices. Refer to Table 4.
5. ATEX/ECEw/INMETRO Ex d [lameproof] appnovals jordering option 5 ¥ ¥ ¥ M N N | N N N
C=E or C=6) require conduit elbow EX00-ARA-IEC, sold s=parately. 5 v ¥ ¥ M N N N N N
6. | may be difficult to connect wires to terminal blocks with the
opticnal B2 conduit elbow attzched. It is sugpested that wires
be routed through conduit elbow, then landed on terminals, and
then conduit elbow secured. Use of union adapter B201 may be Table 4 -
requined. Refer to the Accessories section of this document. Approvals and commesponding wiring requirements
7. High-and Low-Pass filker corners for standard filters must be B
separated by at least one octave (low-pass frequency must be ot 3 e B
least twice the high-pass frequency). All combinations are allewed 3le=
except E= 6 and F =4, 5, or 6. Custom filbers with closer s=para- c | agency aApproved Areas E'E 'Ei E'E
tion andor different roll-offs may be available in some insEnoes. 2 ! ﬁ
Consult the factory if custom filters are reguined. EE’ 3§ : n}'
- -
1 | csa us/fc | class |, Div 2,Groups A-D .
Table 1 — {mon-incendive)
Attenuation of Dynamic Signal versus Load iImpedance (2} 2 | csa usfc | class ), Div 1, Groups
Data Collector | Dynamic Signal Dynamic Signal B-D; Class I, Div 1, .
Analyzer Load violtage Voltage Groups E-G
impedance (Z_) | Attenuation (d8] Attenuation (%) (explosion proof)
10 Mo 0.01 dB 0.1% 3| ATEC |ExiaNCcTaGa -
|intrinsically safe)
3 ML 0.02 dB 0.2% -
4 C5A Class I, Div 1, Groups -
2 M0 0.04 dB 0.5% A-D (intrinsically safe)
1Ma 0.09 d2 1% 5 | mmeTRO |ExiancTa Ga .
5000 ki3 0.18 dB % {intrinsically safe)
200 ki 0.43 dg 55 6 | INMETRO EIdIIIC.Td- ch " .
D580 proo
100 k2 0.84 dB 9% {explosion proof)
7 IECEX Exia llC T4 Ga
. -
50 kix 1.61 dB 17% (intrinsically safe)
20 k0 3.57d8 33% 8| arex/ |exducTach .
10 ki 6.10 dB 500 IECEx | {explosion proof)
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ACCESS0ORIES - ELBOWS

Conduit elbows are used with flying lead and terminal block ver-
sions of the STS4B4E transmitter. They are not compatible with
MIL-connector versions of the transmitter. & variety of available
configurations accommaodate English and metric conduit thread
sizes, hazardous area approvals, materials of construction, and
IP ratings. Most may also be purchased with or without terminal
blocks under the cap. Note that not all configurations are avail-

able with hazardous area approvals or IP ratings. Consult the
ordering information below.

Stainless steed elbows
|madels AA4=005 and 006 anly)

Copper-free sluminum elbows

[all models mxcept

AAA=D05 ardd 0DE)
ELBOWS
A | A | & | 8% | Conduit Fitting Terminal | Coating Approvals IP Rating Material

Size Block [Elbow)
ojoj1 " NPT Mo Powder csafuLt NEMAL Copper-free aluminum
ojo]1]iEc|¥ NeT Mo Powder ATEN/IECEx™! | IPGE Copper-free aluminum
ojojz ¥ NPT A-position | Powder csafult MNERAL Copper-free aluminum
ofo|2|EC]¥ NeT A-position | Powder ATEX/IECEx™ | IPGE Copper-free aluminum
ojo]3 ¥ NPT Mo Powder csafuLt NEMAL Copper-free aluminum
ojo]3|]EC|¥ NeT Mo Powder ATEN/IECEx™! | IPGE Copper-free aluminum
ojo|s ¥ NPT Mo HMone MNone None 303 stainless stesl
ojo|s ¥ NPT A-position | Mone MNone None 303 stainless steel
ojo|s M20 % 1.5 metric | No Powder csafuLt NEMAL Copper-free aluminum
ojo]8]EC|M20x 15 metric | Mo Powder ATEN/IECEx™! | IPGE Copper-free aluminum
ojo]g M20 % 1.5 metric | 4-position | Powder csafuLt NEMAL Copper-free aluminum
ofo|9|EC|M20x L5 metric | d-position | Powder ATEX/IECEx™ | IPGE Copper-free aluminum
ojijo " NPT A-position | Powder csa/uLt NEMAA Copper-free aluminum
1Jof1 " NPT Mo Powder + clear epoxy | CSA/ULY NEMAL Copper-free aluminum
1|o]3 ¥ NPT Mo Powder + clear epoxy | csa/ul’ NEMAL Copper-free aluminum
i1jo|s M20 x 1.5 metric | Mo Powder + clear epowy | CSASUL MNERAL Copper-free aluminum

MOTES:

1. G54 spproved through manufacturer [mot Bletriv for the following areas:
Class |, Drv. 1 (Grps CE D)
Class I, Div. 1 (Grps E, F & G}

Class I

2. B=IEC iz only available for £44=001, D02, 003, DOE, and 009 at this time

3 ATEM approved through manufacturer {not Metrix), [B=I1EC)
ITSO9ATENLGA171Y
Ex 126G, Exd IIC

4. IECEx approwed through manufacturer [not betrix)

IECExITE09.0024U

Exd lC

5. Elbow B3D0-8AA-IEC is required for STSABAE installations mesting
ATEMSIECEx/INMETRO Ex d (flameproof) hazardows area certifiations

METRIX

UL approved through manufacturer [not: et for

the following areas:

Clasz I; D 1 (Grps. B, C, DY
Class II; Diw. 1 (Grps. E, . G)
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ACCESSORIES - CABLES

Part Number

Description

—=gl

MOTE: Dielectric grease
must be applied on the
rubber boot connector
to prevent moisture
ingression.

BOTE-111-M000K

2-pin MIL Splash-Proof [IP66) Cable Assembly

Used with 2-pin MIL style connector. Cable-to-sensor connection made by
means of tight friction fit between cable molded boot and sensor - does not
use threads. Connector is fully potted to provide IP66 seal against moisture
ingression. 6.4mm (0.25") diameter polyurethane jacketed @ble encapsulates
a single twisted pair of conductors and shield.

W = cable length in meters [(example: D035= 3.5 m)
Mimn. cable length: 0.5m [XxX30(=0005)

Max_ cable length: 999.5m (}000(=9995)

Note: Must be ordered in increments of 0.5m

i

BO7E-211- 000K

2-pin MIL Cable Assembly
Similar to 8578-111 but without splash-proof boot and without IP66 rating;
identical constraints on X000( ordering options.

-

2-pin MIL Connector Assembly
Similar to B978-211 but without cable (connector can be disassembled for
field installation of cable)

*

BITE-IL1-3000K0

2-pin MIL Submersible [IP67) Cable Assembly

Similar to B978-111 but uses overmolded screw-type connector for IPE7
rating. 4.9mm (0.19") diameter polyurethane jacketed cable encapsulates a
single twisted pair of 20 AWG conductors and shield. Gold plated contacts,
Stainless steel 316L Nut.

W = cable length in meters (example: 0050= 5.0 m)
NOTE: onby Sm, 10m, and 20m lengths available &t this time. Sm length stodk std;
wiher length may incwr longer lead times.

TN :a.-_'.-._

NOTE: Dielectric grease
must be applied on the
rubber boot connector
o prevent moisture
ingression.

9334111 - 30001

9334-211-M000-YYYY

2-pin ML Splash-Proof [IP66) Cable Assembly With Armor

Used with 2-pin MIL-style connector. Connector is fully potted

and provided with integral molded boot to provide IP66 seal against moisture
ingression. 7.1mm (0.228") diameter 304 stainless steel armor encapsulates a
single twisted pair of conductors and shield.

2-pin MIL Armored Cable Assembly
Similar to 9334-111 but without splash-proof boot and without IP66 rating;
identical constraints on X000( and YYYY crdering options.

000 = armaor length in meters (example: 0035= 3.5 m)
Min. armor length: 0.5m Max. armor length: 60m
Must be ordered in 0.5m increments

¥¥Y¥ = cable length in meters
Min. cable length: 1.0 Max: 999.5m Must be ordered in 0.5 m increments;
NOTE: cabde length must esoeed srmor length by at least 0.5 m.

G-

2-wire Cable Assembly

Designed for installations where conduit will not be used to protect field wir-
ing. Fittimg mates directly to all 8200 elbows with 3" NPT reducers. Cable is
2-conductor (20 AWG) twisted, shielded pair in PVC jacket. Cable grip includ-
ed for strain refief.

Material: zinc-plated steel

A= length in feet (example: 010=10 feat)
Min. cable length: 1 foot (001) Max. cable length: 299 feet (399)

METRIX
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B0 -0l Conduit Union

Fits between STS4E4E and 200 conduit elbow when there is not enough
room to rotate the elbow. Suitable for Class |, Div 1 (Grps A,B,C,D) and Class 11,
Div 1 |Grps E,FG) hammardous areas.

Material: zinc-plated steel

TOE4-001 Flange Mount Adapter

Adapts ¥1" NPT mounting stud on STS484E to 3-hole flat-base pattern. Hole

. pattern is three equally spaced 0.26" diameter holes on 1.5 diameter cirde,

Adapter is 2" diameter ¥ 0.75" thick. Material: 303 stainless steal

TOE4-002 Flange Mount Adapter
Same as 7084-001 except center hole adapts %" NPT stud on the 5484E.

TO84-D05 Flange Mount Adapter

Same as 7084-001 except center hole adapts % x 24 UNF stud on the S4B4E.
" NPT male thread to cable grip. Fits cable diameters from 0.156" to 0.25".

g B253-002 ¥ NPT to X" NPT Reducer Bushing
- ' Used primarily with 8978 cable assemblies where cable enters junction baon.
- Complete with sealing ring and locknut. Hot dip / mechanically galvanized fin-
d

adapts ¥* NPT stud on STS484E (B=0) to ¥2" NPT mounting hole.
ish. Suitable for NEMA 4 jJunction boxes.

Material: 303 stainless steal
93818-018 cable Grip Strain Relief Fitting
m similar to 93818-D04, but fits arger cable diameters from 0.4

93818-004 cable Grip 5train Relief Fitting
to 057, such as customer-supplied cables used with terminal block versions of
5TS484E (D= 2 or 3).
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Figure 1: Outline dimensions of the STS4B4E (all versions except MIL-5tyle Figure 2- Outline dimensions of the
Connector). Dimensions in mm [inches]. Optional* E200-001 conduit STSABAE-MG0N-004-KX [MIL-5tyle Connec-
elbow shown installed. tor]. Dimensions in mm [inches].

* NOTE: E200-AAM-IEC elbow is mandatory for ATEX/TECExAINMETRO
Ex d [lameproof] spprowved installations.

METR Ix wavs metrinvibration oom * info@ metrivvibration.com « 281 940 1802
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WIRING CONMECTIONS

Table 5 — Wiring Connection Legend

Connector Type

Dynamic Signal Connections

Power Connections

MIL-C-5015

Naot Available

2-wire flying leads Naot Available
2-wiire terminal block Naot Available
4-wire flying leads Red: Power +

Blue: Power -

white: Dynamic Signal -
Black: Dynamic Signal +

4-wire terminal block

NOTE:
. HND - SYMBOLS
ARE NOT ON LABEL

24 v__ power may be connected to all ST5484E models without regard
to polarity. Sensor uses IPT® independent polarity diode bridge cirouit
that will always orient woltage correctly inside sensor, regardless of
polarity externally.

NOTE: Although the ST34B4E allows polarity in either direction, installations
using LS. barriers will need to obseree cormect polarity at the barmier input side.
However, the bamrier output side (i.e., sensor connection) may be wired without
regard to polarity.

L = uC
Hloaude | -+
Red + Hed PLC o
ks
+ + — Bl N
;‘f:?r ST5e8dC
— + R
\—1. i +
- P PLCG -
Supay Qe
Figure 3: Typical installation for a single - -
ST5484E seismic vibration transmitter.
i

ADDITIONAL DOCUMENTATION

Figure 4: Typical installation for multiple
ST5484E seismic vibration transmitters.

Description Metrix Document Number
Manual Mol62

Iinstallation Drawing — Hazardous Area with 1.5 Barriers [C5A) 9426

Installation Drawing — Hazardous Area with 1.5 Barriers |CENELEC) 9278

Installation Drawing — Div 2 / Zone 2 1086105

Trademarks used herein are the property of their respective owners.
Data and specifications subject to change without notice.
[® 2014 Matrix Instrument Co., LP.

METRIX

wersmetTinvibraton oom * irfof@ metrioibration.com « 261 940 1807

Doc# 1004457 = STSASAE » Feb2017-Rey AF » Poge 9 of

9
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Appendix E MONTHLY FEEDBACK REPORT

A list of all the equipment breakdowns, trips and related problems during the month of April

2017 are presented in the Table E-1 below:

Date

01 April
2017
01 April
2017
01 April
2017
02 April
2017
03 April
2017

03 April
2017
03 April
2017
03 April
2017

04 April
2017
04 April
2017
05 April
2017
05 April
2017
05 April
2017

05 April
2017
06 April
2017
06 April
2017
07 April
2017

07 April
2017

Report

time
01h34
00h50
02h39
22h25

23h54

02h22
01h32

11h02

22h03
00h53
19h44
03h20

18h10

17h55
01h25
23h14

23h06

22h17

Equip
descri
ption

Winch
Winch
Pump
Winch

Winch

Winch
Winch

Compr
essor

Winch
Winch
Winch
Winch

Pump

Pump
Winch
Winch

Winch

Winch

TABLE E-1 MONTHLY FEEDBACK REPORT

Breakdown

55E 108x/c P2 Center
g/winch tripped

69D/L 78x/c P15 G/winch
tripped

45L Pumpb tripped

66E 78x/c P15 winch trip

55w 91x/c P15 G/winch
trip

57w 91x/c P3 g/winch
starter o/o/o

55E 104x/c P5A G/winch
trip

Comp no.3 tripped

55w 91x/c P15 G/winch
stop/start button o/o/o
55E 107x/c sect 113
center g/winch trip

55E 107x/c c/gully winch
cable damaged

55w 91x/c P17 G/box
tripped

66L 2nd dirty water dam

overflow pump no.2 flow =

OL/s
Surf supply pump tripped

66E 78x/c sectl14 P19
g/winch keep on tripping
55E 108x/c P6 C,g/winch
tripped

57wl 126x/c center
g/winch cable damage

73L 82x/c race winch no
power

Remarks

Informed n/s Elect Anna,

Call Warren. Reset O/L
condition

Informed n/s Elect
Robert to check.
informed n/s Elect
Anna.03h00 cable need
50mtr.

Morning shift to check.

Inform Anton - wait for
shutdown and start
again at 11h25

informed n/s Elect Anna.

Call out Agnes -

Call out Simon - closed
water to dam - report at
20h00 overflow running
into tip - inform Curt
Call out Kobus - reset
and start at 18h24
morning shift will check

wait for n/s Elect Anna
to call.

Call s/by Elect
Bonang.at 23h30 Pina
report back c/g.winch is
okay,informed F/man,&
Elect.

Nandipha confirm that
winch is okay

Root
cause

Tripped

Tripped

Tripped

Cable
damage

Starter

Tripped

Starter
Tripped
Cable
damage

Gully box
tripped

Tripped
Tripped

Cable
damage

Tripped
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08 April 22h40 Winch  69D/L 77x/c P11 G/winch  Informed n/s Elect Tripped
2017 no power Felix,00h41 restor
power.
08 April 04h52 Pump  45L Pumps tripped,and informed Neo,Ben-
2017 66L Pumps tripped Running at 08h00
08 April 04h52 Pump  45L Pumps tripped,and informed Neo,Ben-
2017 66L Pumps tripped Running at 08h00
10 April 23h35 Fan 75L HLG South fan Call s/by Elect
2017 tripped Nandipha.F/n is off
informed F/man.
11 April 23h53 Fan 71L 102x/c Fan tripped ask n/s Elect Felix to
2017 reset,
12 April 21h03 Winch 57w 91x/c P3A Center Ask Elect to check. Starter
2017 g/winch starter button
o/o/o
14 April 02h16 Winder East winder tripped DC Call out Bertus - running
2017 breaker when he tried to
move
15 April 09h45 Pump 66 pump nol motor NDE  Call out Thabo
2017 vibration high
17 April 22h31 Winch  52E 104x/c slusher winch  Report to Anna - report Tripped
2017 fail to start back at 01h22 that it is
running
18 April 09h30 Pump 66 & 72 dams overflowing Informed
2017 due to rx2 pump faulty Jona,Fred,Curt&
Bernard
18 April 00h42 Fan 55W 89x/c Bl/reef 45kW Anna went to 52E
2017 fan tripped 104x/c - got report at
03h21 at 52L station
19 April 02h11 Winch  Sub 71L 93x/c c/g winch Inform Thomas that he Tripped
2017 has no power will have to go get elect
at 69L elect shop
(phones are not
working)
19 April 02h17 Fan Sub 69L 77x/c T/way fan Inform Felix at 02h25 -
2017 tripped reset mini sub - report
back at 04h31
20 April 04h30 Winch 69 77 slusher winch no Morning shift to check Tripped
2017 power
21 April 22h35 Fan 55E 104E fan tripped Morning shift to check
2017
22 April 01h00 Winch  52E 104x/c center gully Morning shift to check Cable
2017 winch cable damaged damage
22 April 01h38 Winch 66 78 P19 winch trips Morning shift to check Tripped
2017
23 April 01h00 Winch  57w3 90 P4 g/winch Informed Mabusela-In Tripped
2017 tripped order at 02h25
23 April 00h05 Winch 71 93 center gully winch Informed Ncobile,Filix- Tripped
2017 tripped
23 April 23h50 Fan 57w 87 B/Reef fan tripped Informed Mabusela-In Tripped
2017 order at 01h25
24 April 22h25 Winch  57w3 91 raise winch Informed Mabusela- Cable
2017 tripped Reported back at 00h30 damage
that the cable was
damaged-in order
24 April 15h57 Pump  Sub 78L dirty water dam Call out Johan and Tripped
2017 pump no.1 of set 2, inform Eldrid - restart
tripped pumps
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26 April
2017

26 April
2017
26 April
2017
27 April
2017

27 April
2017
27 April
2017
27 April
2017
27 April
2017
27 April
2017
28 April
2017

23h25

03h50

05h00

22h35

01h55

11h42

21h25

22h55

00h10

23h00

Winch

Winch

Winch

Winch

Winch

Winch

Winch

Winch

Winch

Winch

57w3 90x/c P4 g/winch
doesn’t start

55E 104x/c P3 g/winch
pin gear loose

55E 108 center gully raise

winch trips

55w 91x/c P21 face winch

no current

57W 91x/c P7 face winch

no current

57W3 90x/c mac winch
keeps triping

55E 108x/c P2 winch
tripped

57w 91 wide raise g/winch

tripped

71 77x/c P1A g/winch
tripped

71E 102x/c center gully
no current

Informed Mabusela-
reported back at 01h45
that the drums are not
turning

Morning shift to check

Morning shift to check

Informed Anna-reported
back at 02h40 motor
needs to be replaced
due to no fan

Coenie will send
somebody to fix -
Informed Anna-In order
at 01h00

Informed Timothy-In
order at 01h40
Informed Hennie

Informed Hennie-In
order at 04h40

Pinion
gear

Pinion
Gear
Tripped

Motor

Tripped
Tripped
Tripped
Tripped

Tripped

Gully box

tripped
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Appendix F CASE STUDY 1: MAINTENANCE REPORT

L 3

MAINTENANCE REPORT

| CONDITION MONITORING

28 March 2017

@HVAC

lNTERNATIONAL

CONFIDENTIAL

HVAC International (Pty) Ltd. holds copyright of this document and owns all intellectual property mentioned or described

herein.

EXECUTIVE DIRECTORS: EH Mathews [Chairman), M Kleingeld (CEO), SM Jiyana [Projects support)
ML Sefiloane (Marketing & Strategy)
INDEPENDENT NOM EXECUTIVE DIRECTOR: KM Nassiep

DISTRIBUTOR: OSIMS and MTB eta aWdeS
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1 Introduction

HVAC International was contracted by Harmonv to do condition monitoring on the major
equipment on| W As part of the condition monitoring effort, excessive temperatures on the
Non-Drive End (NDE) of pump 35 on level 66 was identified. This report summarises the

identification, notification and corrcetive action that was taken on pump 5.

2 Identification

Alarms are set up to automatically trigger when temperatures and vibrations exceed specified limits
that are based on the trip limit of cach individual picce of equipment. For pump 35 on level 66, the

trip limit on the NDI temperature is 80°C. Based on this trip limit the alarm limit was set at 76°C.

To trigger the alarm, the NDE temperature needs to exceed the alarm limit for more than 5 minutes.
These alarms are then sent to and via SMS, and to HVAC
International via email. HVAC International also has systems in place to notify them of systematic
deterioration of equipment. Should it be picked up that the state of equipment is deteriorating and

might fail soon, mine personnel are notified as well.

From 15 March to 23 March 2017, 20 alarms were triggered by high NDE temperatures on pump 5
on level 66. ITVAC International investigated the temperatures during this period which can be seen

in Figure 1 and Figure 2.

Management
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Figure 1: 66 L pump 5 temperatures on 15 March 2017
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Figure 2: 66 L pump 5 temperatures on 16 March 2017

The corresponding power profiles can be seen in Figure 3 and Figure 4.
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Figure 3 66 L pump 5 power consumption on 15 March 2017

W 66L Pump 5 - Motor Power

Power (kW)

Time of day

Motor Power

Iigure 4: 66 L pump 5 power consumption on 16 March 2017

From these figures it can be seen that the temperature increases drastically when the pumps are
switched on, as expected. The temperature continues increasing until it reaches 80°C and trips the
pump. Note that the temperatures displayed are half hourly averages and depending on when the

measurement is taken, will be close to 80°C.
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3 Notification

HVAC International analysed the data from Management Toolbox and determined that pump 5
needs maintenance and notified Bernhard Lindner and Danie Steenkamp on 22 March 2017.
Tshepong then promptly actioned this notification and investigated the temperatures on the pump
on 24 March 2017.

4 Investigation outcome

On arrival at the pump station the unit was isolated and locked out for the inspection. The coupling
and NDE bearing was opened for investigation and it was noted that the coupling gap was about
2mm and the rotor thrusted on the bearing. The pump was installed incorrectly and the motor

alignment, coupling gap and magnelic centre was not delermined correctly.

The problem was corrected by moving the motor away from the pump, removing and scraping the
bearing thrust face and installing the bearing back into position. Magnetic centre was cstablished
and the coupling gap set to 8mm. Re-alignment was completed and the unit started. The bearing
temperatures were then monitored on the motor and settled after an hour of operation at 63°C at

both the motor bearings. The temperatures for 26 March 2017 can be seen in Figure 5.

EssEeses 66L Pump 5 - Motor Temperatures

5
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Time of day

Motor DE Temperature @ Motor NDE Temperature

Figure 5: Figure 2: 66 L pump 5 temperatures on 26 March 2017
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From this figure it is cvident that the NDE temperature of the pump reduced considerably, Before

the pump was fixed. the pump used (o operate [or a few hours. until it tripped at 80°C. Afier the
intervention, the pump temperatures increased to 72°C where it stabilised. The corresponding

power profile for 26 March 2017 can also be seen in Figure 6.

W 66L Pump 5 - Motor Power
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=
:
]
a

Motor Power

Figure 6: 66 L pump 5 power consumption on 26 March 2017
From this figure it is evident that the pump can operate for longer periods. Since the pump also
stopped tripping on high NDE temperatures, the pump can also be stopped and started to

accommodate for water demand.
5 Conclusion

By monitoring the pump condition and prompt response from the site personnel. the pump
operation was restored to original design specifications. This will ensure efficient operation and

extend the lifetime of the pump for years to come.
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