Carbon dioxide methanation in a catalytic microchannel reactor

N Engelbrecht
22800433

Dissertation submitted in fulfilment of the requirements for the degree Master of Engineering in Chemical Engineering at the Potchefstroom Campus of the North-West University

Supervisor: Prof RC Everson
Co-supervisor: Dr S Chiuta
Assistant supervisor: Dr DG Bessarabov
Assistant supervisor: Prof HWJP Neomagus

May 2017
DECLARATION

I, Nicolaas Engelbrecht, declare herewith that the dissertation entitled: “Carbon dioxide methanation in a catalytic microchannel reactor”, submitted in fulfilment of the requirements for the degree Master of Engineering in Chemical Engineering, is my own work, except where acknowledged in the text, and has not been submitted to any other tertiary institution in whole or in part.

Signed at North-West University (Potchefstroom Campus)

Nicolaas Engelbrecht

14/11/2016

Date
ACKNOWLEDGEMENTS

The author would like to thank a number of people for their assistance and contributions during this study. Your continuous support and guidance proved invaluable during this period.

Project related acknowledgements:

- Prof. Raymond Everson for the leadership and support you provided during the course of this study. Thank you for your involvement and constant mentorship in every weekly meeting. Your contributions and recommendations was greatly appreciated.
- Dr. Steven Chiuta for your continual assistance and contributions in all aspects of this study. Your inputs were truly helpful. Furthermore, you always made time for me and I truly appreciate that. In addition, the valuable life lessons I learned from you will always be cherished.
- Dr. Dmitri Bessarabov for the opportunity I had to be part of HySA Infrastructure Centre of Competence. In addition, the financial support you provided through the Department of Science and Technology is much appreciated. Your valuable inputs during this study are also acknowledged.
- Prof. Hein Neomagus for your valuable insight and guidance during weekly meetings. It is greatly appreciated.
- Prof. Schalk Vorster for your contributions and recommendations during language editing of this dissertation.
- Ted Paarlberg for building experimental apparatus used during this study. Thank you for your assistance in this regard.
- Hennie Coetzee and Frikkie Conradie for making CFD modelling possible and providing assistance whenever needed.
- Dr. Andries Krüger and Phillimon Modisha for technical assistance and contributions with regards to my experimental setup.
- Isabella Ndlovu for teaching me the basics of operating a gas chromatograph and your assistance with CFD modelling.
- Louise, Lara, Tony and Neels for your help and support with regards to general administration and the handling of orders.
Personal acknowledgements:

- Firstly, to our Heavenly Father for His end-less love and daily guidance. All the glory to Him who blessed me with abilities beyond imagination, who gives me strength during difficult times and whose love constantly surrounds me. Without Him, nothing would have been possible.
- Yvonne, my mother, and Frits, my father, for your never-ending love and support. Your nurture and guidance made me the man I am today.
- Carla, my sister, for your love and support throughout. Your positive attitude inspired me when I needed it most.
- Finally, to all other family and friends for your constant support and motivation during tough times.
ABSTRACT

The work reported in this dissertation demonstrated the practicality of a catalytic microchannel reactor for CO₂ methanation implemented via the Sabatier reaction for potential power-to-gas applications. A combined experimental and computational fluid dynamic (CFD) modelling approach was used to evaluate the microchannel reactor washcoated with an 8.5 wt.% Ru/Al₂O₃ catalyst. For the experiments, a stoichiometric feed ratio (1:4) of CO₂ and H₂ was used. The reactor was evaluated for CO₂ methanation at different reaction temperatures (250–400°C), pressures (atmospheric, 5 bar and 10 bar), and gas hourly space velocities (32.6–97.8 NL·g⁻¹·h⁻¹). The highest CO₂ conversion of 96.8% was achieved for the lowest space velocity (32.6 NL·g⁻¹·h⁻¹) and conditions corresponding to 375°C and 10 bar. The CH₄ production was however maximised operating the reactor at conditions corresponding to high space velocity (97.8 NL·g⁻¹·h⁻¹), high temperature (400°C) and at 5 bar. At this operating point the reactor showed 83.4% CO₂ conversion, 83.5% CH₄ yield and high CH₄ productivity (16.9 NL·g⁻¹·h⁻¹). The microchannel reactor demonstrated good long-term performance and no observable catalyst deactivation even after start-stop and continuous cycles, thereby proving its ability to handle dynamic operation required for power-to-gas applications. A CFD model was developed and used to interpret the experimental reactor performance, as well as provide fundamental insight into the reaction-coupled transport phenomena within the reactor. Most importantly, global kinetic rate expressions were developed using model-based parameter estimation. Results from the CFD model corresponded with good agreement to the experimental reactor performance in terms of CO₂ conversion and CH₄ yield over a wide range of operating parameters. The model also provided velocity and concentration distributions to better understand the transport principles established within the reactor. Overall, the results presented in this dissertation pinpointed the important aspects of realising CO₂ methanation at the micro-scale and could provide a platform for future studies using microchannel reactors for power-to-gas applications.

Keywords: Power-to-gas concept, CO₂ methanation, Sabatier reaction, experimental reactor evaluation, microchannel reactor, Ru/Al₂O₃ catalyst, computational fluid dynamic (CFD) modelling, kinetic parameter estimation
TABLE OF CONTENTS

DECLARATION .. I

ACKNOWLEDGEMENTS .. II

ABSTRACT ... IV

TABLE OF CONTENTS ... V

LIST OF TABLES ... IX

LIST OF FIGURES ... X

LIST OF SYMBOLS .. XIV

LIST OF PUBLICATIONS RELATED TO THIS STUDY ... XV

CHAPTER 1: INTRODUCTION ... 1
 1.1 Background and problem statement .. 1
 1.2 Motivation ... 3
 1.3 Objectives ... 4
 1.4 Scope of the dissertation ... 4

CHAPTER 2: LITERATURE REVIEW ... 6
 2.1 Introduction ... 6
 2.2 Technology pathways for implementing power-to-gas 8
 2.2.1 Renewable H₂ blending a natural gas network ... 9
 2.2.2 Chemical methanation ... 9
 2.2.3 Biological methanation ... 9
 2.2.4 Dual-fuel gas turbines ... 10
 2.3 CO₂ methanation via the Sabatier reaction .. 10
 2.3.1 Reaction mechanism .. 12
2.3.1.1 Successive CO\textsubscript{2} and CO dissociation to form surface carbon..............................12
2.3.1.2 Direct hydrogenation of adsorbed CO ...13
2.3.1.3 Considerations on reaction mechanism...13
2.3.2 Thermodynamics of CO\textsubscript{2} methanation..13
2.4 Current status of CO\textsubscript{2} methanation..15
2.5 Reactor technology options for CO\textsubscript{2} methanation...21
 2.5.1 Fluidized-bed reactor ...21
 2.5.2 Slurry bubble column reactor ..21
 2.5.3 Fixed-bed reactor ..21
 2.5.4 Microchannel reactor ...22
 2.5.5 Summary..22
2.6 Microchannel reactor technology ..23
 2.6.1 Advantages of microchannel reactors...23
 2.6.2 Differences of microchannel reactors to conventional reactor types24
 2.6.3 Limitations and design challenges of microchannel reactor technology....................25
2.7 Reactor modelling and simulations for CO\textsubscript{2} methanation...25
 2.7.1 Computational fluid dynamic (CFD) modelling of microchannel reactors for CO\textsubscript{2} methanation ..29
 2.7.2 Reaction kinetics of CO\textsubscript{2} methanation on supported Ru catalysts29
 2.7.3 Summary..30

CHAPTER 3: EXPERIMENTAL APPARATUS ..31
3.1 Microchannel reactor design..31
3.2 Catalyst preparation..33
3.3 Experimental planning...33
 3.3.1 Thermodynamic equilibrium ..33
3.4 Experimental apparatus..35
3.5 Experimental procedure ...37
CHAPTER 4: RESULTS AND DISCUSSION: EXPERIMENTAL RESULTS

4.1 Reactor performance parameters

4.2 Effect of reactor temperature on CO₂ methanation performance

4.3 Effect of reactor pressure on CO₂ methanation performance

4.4 Effect of space velocity on CO₂ methanation performance

4.5 Reactor pressure drop analysis

4.6 Durability test of reactor performance

4.7 Repeatability of experimental data points

4.8 Optimum reactor conditions for CH₄ production

CHAPTER 5: COMPUTATIONAL FLUID DYNAMIC (CFD) MODEL DEVELOPMENT, RESULTS AND DISCUSSION

5.1 CFD model development

5.1.1 Model geometry

5.1.2 Model assumptions

5.1.3 Governing equations

5.1.4 Boundary conditions

5.1.5 Reaction kinetics

5.1.6 Solution method

5.2 CFD model results

5.2.1 Kinetic parameter estimation

5.2.2 Model validation: CO₂ conversion and CH₄ yield

5.2.3 Microchannel reactor transport phenomena

5.2.3.1 Velocity distributions

5.2.3.2 Concentration distributions

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

6.2 Contributions to current knowledge

6.3 Recommendations
BIBLIOGRAPHY ..64

APPENDIX A: GAS CALIBRATION CURVES ..76

APPENDIX B: FULL SET OF EXPERIMENTAL DATA ..80

APPENDIX C: PARITY PLOTS ..81
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Liquid volumetric energy densities of common hydrogen-containing fuels</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of experimental CO₂ methanation reactors reported in literature</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>A summary of literature on mathematical modelling for CO₂ methanation</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Optimum reactor conditions and performance parameters of microchannel reactor</td>
<td>44</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary of catalyst physical properties used for modelling the porous catalyst computational domain</td>
<td>47</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of governing equations for modelling the free-fluid and porous catalyst computational domains</td>
<td>47</td>
</tr>
<tr>
<td>5.3</td>
<td>Best-fitting kinetic parameters at different operating pressures</td>
<td>51</td>
</tr>
<tr>
<td>A.1</td>
<td>Example of the data collection table used during the experimental investigation</td>
<td>79</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1: P2G technology implementation ... 2

Figure 2.1: Discharge time and capacity of different energy storage methods 7

Figure 2.2: Equilibrium product formation (d.b.) of CO$_2$ methanation at atmospheric
pressure ... 14

Figure 2.3: Effect of temperature and pressure on equilibrium CO$_2$ conversion 15

Figure 2.4: Rates of CH$_4$ formation as a function of residence time at different
temperature conditions .. 27

Figure 3.1: (a) Depiction of reactor platelet with 80 microchannels and fluid distribution
manifolds engraved (b) second reactor platelet with only fluid distribution
manifolds engraved for laser welding to complete the reactor (c) magnified
view of 5 microchannels with applied catalyst washcoat and (d) a single,
uncoated microchannel with dimensions .. 32

Figure 3.2: Microchannel reactor used during experimental investigation 32

Figure 3.3: Equilibrium product formation (d.b.) of CO$_2$ methanation (stoichiometric
H$_2$:CO$_2$ molar feed ratio) .. 34

Figure 3.4: Effect of temperature on equilibrium CO$_2$ conversion 34

Figure 3.5: Effect of temperature on equilibrium CH$_4$ yield (stoichiometric H$_2$:CO$_2$ molar
feed ratio) .. 35

Figure 3.6: Flow diagram of CO$_2$ methanation setup ... 36

Figure 3.7: Experimental setup used for conducting CO$_2$ methanation experiments. (1)
Control box (2) mass flow controllers (3) continuous gas analyser (4)
microchannel reactor unit (5) water condenser and (6) online GC 36

Figure 4.1: Effect of reactor temperature on CO$_2$ conversion (left) and CH$_4$ yield (right)
at atmospheric pressure and GHSV of 32.6, 65.2 and 97.8 NL.g$_{cat}^{-1}.h^{-1}$ 39

Figure 4.2: Effect of reactor temperature on CO$_2$ conversion (left) and CH$_4$ yield (right)
at 10 bar pressure and GHSV of 32.6, 65.2 and 97.8 NL.g$_{cat}^{-1}.h^{-1}$ 40
Figure 4.3: Effect of reactor pressure on CO$_2$ conversion (left) and CH$_4$ yield (right) at 400°C and GHSVs of 32.6, 65.2 and 97.8 NL.g$^{-1}$.h$^{-1}$...40

Figure 4.4: Effect of GHSV on CO$_2$ conversion (left) and CH$_4$ yield (right) at atmospheric pressure and reactor temperatures of 250°C, 325°C and 400°C ...41

Figure 4.5: Effect of GHSV on CO$_2$ conversion (left) and CH$_4$ yield (right) at 10 bar pressure and reactor temperatures of 250°C, 325°C and 400°C ..42

Figure 4.6: Reactor pressure drop analysis at 10 bar pressure and GHSVs of 32.6, 65.2 and 97.8 NL.g$^{-1}$.h$^{-1}$..42

Figure 4.7: CO$_2$ conversion (left) and CH$_4$ yield (right) over an extended test period of 150 h at reactor temperature of 375°C, 10 bar pressure and GHSV of 65.2 NL.g$^{-1}$.h$^{-1}$..43

Figure 4.8: Repeatability of CO$_2$ conversion (left) and CH$_4$ yield (right) at atmospheric pressure and reactor temperatures of 275°C, 350°C and 400°C43

Figure 5.1: Discretized model geometry used during CFD modelling containing 43 520 free-triangular domain elements ...46

Figure 5.2: Model fit on CO$_2$ conversion (left) and CH$_4$ yield (right) at atmospheric pressure and GHSVs of 32.6, 65.2 and 97.8 NL.g$^{-1}$.h$^{-1}$...52

Figure 5.3: Model fit on CO$_2$ conversion (left) and CH$_4$ yield (right) at 5 bar pressure and GHSVs of 32.6, 65.2 and 97.8 NL.g$^{-1}$.h$^{-1}$...52

Figure 5.4: Model fit on CO$_2$ conversion (left) and CH$_4$ yield (right) at 10 bar pressure and GHSVs of 32.6, 65.2 and 97.8 NL.g$^{-1}$.h$^{-1}$...53

Figure 5.5: Axial velocity (v_x) profile at the mid-xz plane for 250°C (left) and 400°C (right) at atmospheric pressure and GHSV of 32.6 NL.g$^{-1}$.h$^{-1}$..54

Figure 5.6: Axial velocity (v_x) profile at the mid-xz plane for 250°C (left) and 400°C (right) at 10 bar pressure and GHSV of 32.6 NL.g$^{-1}$.h$^{-1}$..55

Figure 5.7: Species mole fraction (d.b.) along normalised microchannel length (x/L) for 32.6 NL.g$^{-1}$.h$^{-1}$ (left) and 97.8 NL.g$^{-1}$.h$^{-1}$ (right) at 400°C and atmospheric pressure ..56
Figure 5.8: Species mole fraction (d.b.) along normalised microchannel length (x/L) for 32.6 NL.g-1.h-1 (left) and 97.8 NL.g-1.h-1 (right) at 400°C and 10 bar pressure

Figure 5.9: Reaction rate along normalised microchannel length (x/L) for atmospheric (left) and 10 bar pressure (right) at 400°C and 32.6 NL.g-1.h-1

Figure 5.10: Axial CO\textsubscript{2} mass flux at the mid-xz plane for 32.6 NL.g-1.h-1 (left) and 97.8 NL.g-1.h-1 (right) at 400°C and atmospheric pressure

Figure 5.11: Axial CO\textsubscript{2} mass flux at the mid-xz plane for 32.6 NL.g-1.h-1 (left) and 97.8 NL.g-1.h-1 (right) at 400°C and 10 bar pressure

Figure 5.12: CH\textsubscript{4} concentration along normalised microchannel height (z/H) for atmospheric (left) and 10 bar pressure (right) at different x-coordinates (10, 100, 300 and 500 µm) from the microchannel inlet at 400°C

Figure A.1: Hydrogen calibration curve used to calculate H\textsubscript{2} mole fraction in product gas during experiments

Figure A.2: Carbon dioxide calibration curve used to calculate CO\textsubscript{2} mole fraction in product gas during experiments

Figure A.3: Methane calibration curve used to calculate CH\textsubscript{4} mole fraction in product gas during experiments

Figure A.4: Carbon monoxide calibration curve used to calculate CO mole fraction in product gas during experiments

Figure B.1: Effect of reactor temperature on CO\textsubscript{2} conversion (left) and CH\textsubscript{4} yield (right) at atmospheric pressure and GHSVs of 32.6, 48.9, 65.2, 81.5 and 97.8 NL.g-1.h-1

Figure B.2: Effect of reactor temperature on CO\textsubscript{2} conversion (left) and CH\textsubscript{4} yield (right) at 5 bar pressure and GHSVs of 32.6, 48.9, 65.2, 81.5 and 97.8 NL.g-1.h-1

Figure B.3: Effect of reactor temperature on CO\textsubscript{2} conversion (left) and CH\textsubscript{4} yield (right) at 10 bar pressure and GHSVs of 32.6, 48.9, 65.2, 81.5 and 97.8 NL.g-1.h-1
Figure C.1: Parity plot of model predicted vs experimental CO$_2$ conversion at atmospheric pressure ...81

Figure C.2: Parity plot of model predicted vs experimental CO$_2$ conversion at 5 bar pressure ..81

Figure C.3: Parity plot of model predicted vs experimental CO$_2$ conversion at 10 bar pressure ..81
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Greek symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>δ</td>
</tr>
<tr>
<td>a_i</td>
<td>ε</td>
</tr>
<tr>
<td>C_{CO_2}</td>
<td>κ</td>
</tr>
<tr>
<td>C_F</td>
<td>λ</td>
</tr>
<tr>
<td>D_i</td>
<td>μ</td>
</tr>
<tr>
<td>D_{ij}</td>
<td>μ_{eff}</td>
</tr>
<tr>
<td>E_a</td>
<td>ρ</td>
</tr>
<tr>
<td>H</td>
<td>ρ_s</td>
</tr>
<tr>
<td>ΔH_r</td>
<td>ω_i</td>
</tr>
<tr>
<td>k</td>
<td>κ_{eff}</td>
</tr>
<tr>
<td>k_{eff}</td>
<td>$K(T)$</td>
</tr>
<tr>
<td>L</td>
<td>m_{cat}</td>
</tr>
<tr>
<td>M_i</td>
<td>M_{cat}</td>
</tr>
<tr>
<td>M_j</td>
<td>n</td>
</tr>
<tr>
<td>\dot{n}_{in}</td>
<td>\dot{n}_{out}</td>
</tr>
<tr>
<td>P</td>
<td>P_d</td>
</tr>
<tr>
<td>P_{atm}</td>
<td>atm</td>
</tr>
<tr>
<td>R_i</td>
<td>R_e</td>
</tr>
<tr>
<td>r_{RWGS}</td>
<td>r_{SB}</td>
</tr>
<tr>
<td>r_{Sb}</td>
<td>r_{out}</td>
</tr>
<tr>
<td>t</td>
<td>t_0</td>
</tr>
<tr>
<td>T</td>
<td>T_0</td>
</tr>
<tr>
<td>v_i</td>
<td>v_x</td>
</tr>
<tr>
<td>v_j</td>
<td>v_x</td>
</tr>
<tr>
<td>\dot{v}_{out}</td>
<td>\dot{v}_{out}</td>
</tr>
<tr>
<td>v_x</td>
<td>v_x</td>
</tr>
<tr>
<td>u</td>
<td>u</td>
</tr>
<tr>
<td>W</td>
<td>ω</td>
</tr>
<tr>
<td>X_{CO_2}</td>
<td>χ</td>
</tr>
<tr>
<td>Y_{CH_4}</td>
<td>χ</td>
</tr>
<tr>
<td>y_i</td>
<td>SNG</td>
</tr>
<tr>
<td></td>
<td>$P2G$</td>
</tr>
<tr>
<td></td>
<td>$P2L$</td>
</tr>
<tr>
<td></td>
<td>PV</td>
</tr>
<tr>
<td></td>
<td>RES</td>
</tr>
<tr>
<td></td>
<td>$RWGS$</td>
</tr>
<tr>
<td></td>
<td>TCD</td>
</tr>
<tr>
<td></td>
<td>$vol.$</td>
</tr>
<tr>
<td></td>
<td>$wt.$</td>
</tr>
</tbody>
</table>

Abbreviations

- BET: Brunauer–Emmett–Teller
- CAES: compressed air energy storage
- CFD: computational fluid dynamic
- d.b.: dry basis
- DP: differential pressure
- GC: gas chromatograph
- GHG: greenhouse gas
- GHSV: gas hourly space velocity, NL.g$_{cat}^{-1}$.h$^{-1}$
- HID: helium ionization detector
- MS: molecular sieve
- PARDISO: parallel sparse direct linear solver
- P2G: power-to-gas
- PHS: pumped hydro-storage
- PIL: power-to-liquid
- PV: photovoltaic
- RES: renewable energy sources
- RWGS: reverse-water-gas-shift
- SNG: synthetic natural gas
- TCD: thermal conductivity detector
- vol.: volume
- wt.: weight

xiv
Peer-reviewed journal publications

http://dx.doi.org/10.1016/j.cej.2016.10.131

The methanation of carbon dioxide (CO₂) via the Sabatier process is increasingly gaining interest for power-to-gas application. In this investigation, a microchannel reactor was evaluated for CO₂ methanation at different operational pressures (atmospheric, 5 bar, and 10 bar), reaction temperatures (250-400 °C) and space velocities (32.6-97.8 L.g⁻¹.h⁻¹). The recommended operation point was identified at reaction conditions corresponding to 5 bar, 400 °C, and 97.8 L.g⁻¹.h⁻¹. At this condition, the microchannel reactor yielded good CO₂ conversion (83.4%) and high methane (CH₄) productivity (16.0 L.g⁻¹.h⁻¹). The microchannel reactor also demonstrated good long-term performance at demanding operation conditions relating to high space velocity and high temperature. Subsequently, a CFD model was developed to describe the reaction-coupled transport phenomena within the microchannel reactor. Kinetic rate expressions were developed and validated for all reaction conditions to provide reaction source terms for the CFD modeling. Velocity and concentration profiles were discussed at different reaction conditions to interpret experimental results and provide insight into reactor operation. Overall, the results reported in this paper could give fundamental design and operational insight to the further development of microchannel reactors for CO₂ methanation in power-to-gas applications.

© 2016 Elsevier B.V. All rights reserved.
Conferences attended during this study period

CHAPTER 1: INTRODUCTION

In Section 1.1 an overview is presented of the important aspects of the background and problem statement of this work. The motivation for this work is provided in Section 1.2. Then the overall and specific objectives of this work are presented in Section 1.3. Finally, the scope of this dissertation is given in Section 1.4.

1.1 Background and problem statement

The ever-expanding global industrial and commercial sectors raise questions about the supply capacity of existing energy resources, e.g. coal and crude-oil (deLlano-Paz et al., 2015:50). Moreover, social and environmental sustainability is of major concern, as currently fossil fuel combustion emits harmful greenhouse gases (GHGs). Carbon dioxide (CO$_2$) is widely regarded as the biggest contributor to GHGs produced by human activity. In 2013 South Africa emitted 420.4 million tons of CO$_2$, the 15th highest by country globally (IEA, 2015:49). According to Zhao et al. (2015:916) South Africa’s high CO$_2$ emission rate is largely attributed to vast coal resources and considerable subsidies granted to the energy sector by the government. In addition, South Africa started benefiting from a carbon tax policy only in 2015 (National Treasury, 2013:58). The necessity of alternative energy resources is therefore evident, as the dependency on fossil fuels needs to be decreased (Awan & Khan, 2014:237).

Renewable energy sources (RES) such as solar and wind are widely considered as some of the high-ranking potential solutions to the current energy crisis (Ludig et al., 2011:6674). Renewable energy technologies provide sustainable and cleaner sources of energy, which will ultimately reduce humanity’s carbon footprint. However, the natural intermittency of solar and wind energy, as well as instances of power oversupply, complicates the sustainability of renewable energy as a base load power source (Finn & Fitzpatrick, 2014:11). The fact that power generated by RES cannot be stored on a large scale and used during times of limited supply (night-time or periods of low wind speed) suggests that an alternative medium for energy storage is required (Scamman & Newborough, 2016:10080). In view of this, the power-to-gas (P2G) technology concept was initially proposed in Germany under the “Energiewiende” (energy-turnaround) as a power-grid balancing mechanism to capture and store surplus energy and then used during times of low supply capacity such as night-time or periods of low wind speed (Sterner, 2009:104,106; Ludig et al., 2011:6674; Gaileitner, 2013:2040; Pregger et al., 2013:350; Henning & Palzer, 2014:1004; Vandewalle et al., 2015:28; Götz et al., 2016:1371; Scamman & Newborough, 2016:10080; Chiuta, Engelbrecht, et al., 2016:400). Essentially, P2G
converts excess renewable power into a valuable chemical energy carrier such as hydrogen (H_2) or methane (CH_4), that can be used in different sectors, i.e. the chemical industry, the mobility sector, the gas sector (e.g. for domestic heating) or used to reproduce electricity back into the power grid. The integration of renewable power through P2G and possible implementation pathways of the technology are illustrated in Figure 1.1.

![Figure 1.1: P2G technology implementation](image)

To implement the concept of P2G two crucial steps are necessary to produce CH$_4$. Firstly, the excess power generated by RES during periods of oversupply is used in the water electrolysis process to produce renewable hydrogen (power-to-hydrogen). If a CO$_2$ point source is available (e.g. biogas plant, fossil-fuel combustion plant or cement manufacturing process), the CO$_2$ is subsequently combined with H$_2$ according to the well-known Sabatier process (Bensmann et al., 2014:413; Vandewalle et al., 2015:28; Rossi et al., 2015:341). Methane is produced with a relatively high volumetric energy density, typically used in the transport sector, energy storage and power generation applications (Hoekman et al., 2010:45). In this manner P2G technology therefore provides a method of converting and storing renewable energy in chemical energy carriers whilst also consuming CO$_2$, thereby promoting carbon-neutral and clean energy solutions.

Despite its attractiveness, the implementation of the Sabatier process in P2G setups requires reactors that can operate efficiently in dynamic and frequent start-stop scenarios. Conventional reactors, such as fixed-bed reactors, are well-known for industrial methanation, but are generally intended for continuous operation. It is noteworthy that reactors having fast response times, as well as load-following capabilities, are used for CO$_2$ methanation in the context of power-to-gas applications. Also, the highly exothermic nature of the Sabatier
reaction is of significance as reactors should have high heat transfer characteristics. As a result, conventional reactors have heat and mass transfer properties that will limit the methanation reaction under demanding reactor conditions (Liu & Ji, 2013:742,743). Microchannel reactors however can sustain the dynamic operation required and provide the quick start-up times necessary for effective operation (Men et al., 2007:82). Microchannel reactor technology essentially demonstrates the concept of process intensification through improved heat and mass transfer properties. Furthermore, reactor units are generally more compact, and by applying a “number-up” approach offers modular-based plants with medium to large-scale capacity for P2G applications. According to Brooks et al. (2007:1162) microchannel reactors provide benefits, such as improved catalyst stability and precise temperature control over the reactor. These characteristics coupled with high heat and mass transfer properties will ensure that microchannel reactors deliver improved reactor performance over extended time periods (Fogler, 2012:201).

1.2 Motivation

Solar and wind energy are able to provide clean energy solutions on a large scale if methods providing energy storage are established. An effort is made to prove the feasibility of CO₂ methanation in which CH₄ is produced as an energy storage media in power-to-gas applications. Carbon dioxide is readily available from concentrated industrial point sources and currently considered as a waste product (Vandewalle et al., 2015:28). In contrast to previous studies, this dissertation focuses specifically on the implementation of the Sabatier process in a microchannel reactor. Microchannel reactor technology is generally process-intensifying in nature as high surface-to-volume ratios support improved heat and mass transfer properties (Hessel et al., 2004:202; Holladay et al., 2004:4768). Dynamic and intermittent (start-stop) operation is another advantage critical for application in P2G processes (Chiuta et al., 2013:14988). A thorough analysis of the existing literature indicated very few studies on Sabatier-based microchannel reactors, as only the work previously reported by Brooks et al. (2007:1161) investigated a pure feed of CO₂ in a microchannel reactor.

This study will investigate, experimentally as well as numerically, the effects of reactor temperature, pressure and space velocity on the performance of the reactor (i.e. CO₂ conversion, CH₄ yield and specific CH₄ productivity). The work reported by Brooks et al. (2007:1161) used a simple one-dimensional plug-flow model to describe their microchannel reactor. The current investigation however will provide a detailed computational fluid dynamic (CFD) model of the reactor in the three-dimensional space. The mathematical modelling of the Sabatier reactor will assist in describing experimental data obtained in this
investigation and define reactor performance at optimum reactor conditions. In essence, using CFD modelling to describe the microchannel reactor will also contribute to a better understanding of the reaction-coupled transport phenomena within the reactor.

1.3 Objectives

The overall objective of this study is to establish the performance of a laboratory-scale microchannel reactor for the methanation of CO$_2$ over a suitable reaction catalyst. Furthermore, to develop a three-dimensional model of the microchannel reactor and validate the results obtained using experimental data.

The specific objectives of this work are:

i. To design, develop and demonstrate a microchannel reactor with a commercial Ru/Al$_2$O$_3$ catalyst washcoat for the methanation of CO$_2$.

ii. To determine the optimum reactor conditions that produce high CO$_2$ conversion, CH$_4$ yield and CH$_4$ throughput.

iii. To develop a CFD model that describes and provides fundamental insight into the reaction-coupled transport phenomena occurring within the microchannel reactor.

iv. To validate the CFD model with experimental performance parameters defined as CO$_2$ conversion and CH$_4$ yield.

1.4 Scope of the dissertation

Chapter 1 presents an introduction on the background and motivation for the work done in this dissertation. The specific objectives of this study are also listed in this chapter.

Chapter 2 presents relevant literature on the concept and implementation of P2G technology using renewable energies. Previous accounts of literature on the methanation of CO$_2$ using conventional and sophisticated reactors are summarised, as well as relevant modelling studies of Sabatier-based reactors.

Chapter 3 presents the experimental setup used during this investigation. The experimental microchannel reactor is described, as well as details on other apparatus and procedures followed during the experimental investigation.

Chapter 4 presents the results obtained during the experimental investigation of the microchannel reactor and discusses the influence of reactor temperature, pressure and space velocity on the performance parameters defined as CO$_2$ conversion, CH$_4$ yield and specific CH$_4$ production rate.
Chapter 5 presents a detailed CFD model development of the Sabatier-based microchannel reactor. Through kinetic parameter estimation, the mathematical model is validated on data gained through the experimental investigation. In addition, this chapter serves to explain the reaction-coupled transport phenomena encountered in the microchannel reactor.

Chapter 6 summarises this dissertation with an overview of conclusions related to the objectives set out for this investigation and proposes recommendations for further research done on the subject of CO₂ methanation using microchannel reactor technology.
CHAPTER 2: LITERATURE REVIEW

This chapter serves as a review of relevant literature and presents a concise background to the present study. In Section 2.1 an overview of the current energy crisis and renewable energy as a possible solution is presented. The power-to-gas concept is also introduced in this section. In Section 2.2 a discussion of possible technology implementation pathways for power-to-gas is given. In Section 2.3 the background of the Sabatier process, the reaction mechanism and thermodynamics are presented. In Section 2.4 a comprehensive discussion of previously reported literature on CO\textsubscript{2} methanation in laboratory-scale reactors is given. In Section 2.5 an overview is given of possible reactor technology options considered for implementing the Sabatier process in power-to-gas applications. Section 2.6 focuses on the advantages, differences from conventional reactors and possible technology limitations of microchannel reactor technology. Lastly, in Section 2.7 relevant literature on modelling and simulation of microchannel reactors for CO\textsubscript{2} methanation is presented. Also, appropriate reaction kinetics is discussed in this section.

2.1 Introduction

Recently the focus on adequate energy supply has been highlighted as global economies continue to develop. These developments have raised questions about the sustainable use and supply capacity of current fossil fuel resources. Furthermore, as efforts have been made to meet global energy demands, CO\textsubscript{2} emissions have increased significantly as a result. All of these factors are therefore incentives for the current development of renewable and low-carbon energy technologies (Wang et al., 2011:3703).

Renewable energy sources (RES) are often regarded as the solution to increasing global energy demand, as the scenario of using fossil fuels as primary energy resource is weakening (Schiebahn et al., 2015:4285). Renewable energy sources (e.g. solar and wind) are effectively infinite sources of energy with predictable and therefore reliable patterns. Solar and wind farms can be employed in virtually any location supporting these technologies, with minimal environmental or social impact. In recent years there has been a considerable growth in the advancement of renewable energy technologies such as solar and wind power (Varone & Ferrari, 2015:208). These technologies have made substantial progress in terms of technical development and commercial implementation worldwide.

The daily intermittency (night-time or periods of low wind speed) of RES is arguably the greatest restriction regarding continuous power supply from renewables. During periods of oversupply from renewable energy sources, many power-grids are not able to handle the
supply capacity from these power sources. In addition, the share of renewables are ever-increasing in global energy portfolios. As an example, in Germany peak supply from renewable power sources supplied nearly all of the country’s power demand momentarily on 15 May 2016 (Shankleman, 2016). In another case, Scotland’s energy demand was fulfilled by wind power on 7 August 2016, as 106% of the country’s demand was generated by wind turbines (Johnston, 2016). On the contrary, during night-time or periods of low wind speed, renewable energy sources will be unable to supply any electricity to the power grid. It is therefore evident that methods of large-scale renewable energy storage are desired to provide grid-balancing.

The storage of energy (Figure 2.1) has previously been implemented with methods such as pumped hydro-storage (PHS), flywheels, compressed air energy storage (CAES), electrochemical (e.g. batteries) and thermal energy storage. These systems however provide only small to medium scale energy storage for limited time periods. Currently, alternative methods of storing energy on a large scale are researched (Koohi-Kamali et al., 2013:140,143,155; Judd & Pinchbeck, 2013:3). Promising methods of energy storage such as renewable hydrogen and synthetic natural gas (SNG) provide storage capacity in the GWh range (Figure 2.1).

![Figure 2.1: Discharge time and capacity of different energy storage methods (adapted from Judd & Pinchbeck, 2013:3)](image)

To compensate for the naturally intermittent supply of solar and wind energy, the power-to-gas (P2G) concept is proposed. The P2G process makes use of excess renewable energy during periods of peak energy supply and stores the energy in the form of chemical
energy carriers (Sterner, 2009:104,106). This energy conversion is achieved through the water electrolysis process and subsequently produces H₂. An additional methanation step using CO₂ can be implemented to produce CH₄, given a ready source of CO₂ (Figure 1.1). With the implementation of P2G technology, fossil fuels and their use in industrial applications can be reduced, possibly providing cleaner energy solutions. The power-to-gas concept can be extended to power-to-X as other chemicals (e.g. syngas, methanol, dimethyl ether etc.) can be used as possible energy carriers depending on the end-use application (Varone & Ferrari, 2015:208; Wang et al., 2011:3704; Yang et al., 2014:1135).

2.2 Technology pathways for implementing power-to-gas

Methane is a particularly attractive option for P2G implementation, as possible applications for CH₄ include the transport and chemical industries. The application of renewable CH₄ is supported as it is a hydrogen-dense energy source and has a substantially higher liquid volumetric energy density than hydrogen (Table 2.1). In addition, synthetic produced CH₄ (SNG) can be stored on a large scale in natural gas networks, as SNG complies with specifications to CH₄ quality in natural gas networks (90‒95% CH₄) (Vandewalle et al., 2015:29; Gabbar et al., 2015:188). By converting the excess renewable energy into CH₄ as chemical energy carrier, grid balancing can be achieved through a conventional gas-turbine combustion process, regenerating electrical power (Garmsiri et al., 2014:2507). As mentioned by Sterner (2009:104) the P2G concept therefore has the ability to increase the dependency on RES-based generation methods i.e. scenarios where the majority of an energy portfolio consists of renewables. Energy storage can be achieved through a number of chemical energy carriers. Table 2.1 presents the liquid volumetric energy densities of typical hydrogen-containing fuels.

Table 2.1: Liquid volumetric energy densities of common hydrogen-containing fuels (adapted from U.S. DOE, 2001)

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Liquid volumetric energy density (MJ.L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>8.49</td>
</tr>
<tr>
<td>Methane</td>
<td>20.92</td>
</tr>
<tr>
<td>Propane</td>
<td>23.49</td>
</tr>
<tr>
<td>Gasoline</td>
<td>31.15</td>
</tr>
<tr>
<td>Diesel</td>
<td>31.44</td>
</tr>
<tr>
<td>Methanol</td>
<td>15.80</td>
</tr>
</tbody>
</table>
2.2.1 Renewable H\textsubscript{2} blending a natural gas network

Hydrogen produced through water electrolysis is used as chemical energy carrier and supplied to a natural gas network. On the other hand, this implementation method has its shortcomings. According to Altfeld & Pinchbeck (2013:12) H\textsubscript{2} blends of up to 10 vol.\% can be tolerated by general end-use applications. Also, in applications using modern gas turbines supporting premixed burners (i.e. power generation), H\textsubscript{2} blend ratios are restricted to below 5\% (Judd & Pinchbeck, 2013:4). Likewise, limitations on components sensitive to H\textsubscript{2} (e.g. steel pipelines and SNG storage tanks) restrict any high H\textsubscript{2} blend ratios (to <10\%) as long-term material durability and embrittlement pose safety concerns (Altfeld & Pinchbeck, 2013:12; Garmsiri et al., 2014:2512).

2.2.2 Chemical methanation

In the case of chemical methanation, renewable energy is stored in the form of CH\textsubscript{4}. Methane is produced involving the following two conversion steps:

i. Water electrolysis using excess renewable energy, producing H\textsubscript{2} and O\textsubscript{2}.

ii. The successive use of H\textsubscript{2} in the Sabatier methanation reaction supplied by a concentrated point source of CO\textsubscript{2}. A suitable catalyst is used in this reaction step.

As CH\textsubscript{4} is produced through two simple conversion steps, the round-trip energy conservation is reasonably higher (i.e. energy losses are minimal) as for the production of other hydrocarbons comprising more reaction steps. Also, CH\textsubscript{4} has an attractive liquid volumetric energy density (Table 2.1) and various industrial applications. Combined with the incentive of CH\textsubscript{4} for production and large-scale storage capacity in natural gas networks, it has great potential in the application of P2G technology. Chemical methanation will therefore be the focus area of this dissertation.

2.2.3 Biological methanation

Integrating renewable H\textsubscript{2} in conventional biogas plants offers a resulting upgrade of biogas CH\textsubscript{4} quality through biological methanation. Biological methanation is a relatively new prospect of producing CH\textsubscript{4} for energy storage and large-scale application. Instead of chemically synthesised CH\textsubscript{4}, methanogenic archaea is used to biochemically catalyse biogas (Burkhardt & Busch, 2013:74). Biogas generally consists of up to 50\% CO\textsubscript{2} (CH\textsubscript{4} being the major fraction) and is commonly encountered in applications such as anaerobic biomass digesters and sewage treatment plants (Bensmann et al., 2014:413; Yang et al., 2014:1135).
There are however a few disadvantages to the methanation of biogas. Firstly, biogas contains some impurities. Among others, \(\text{NH}_3 \), \(\text{H}_2\text{S} \) and \(\text{O}_2 \) have negative impacts such as toxicity to anaerobic bacteria, corrosiveness on process equipment and flammability in the presence of \(\text{CH}_4 \), respectively (Yang et al., 2014:1136). Prior to the methanation process, a cleaning and purification stage is therefore necessary which adds to increased capital costs. Secondly, only a few studies reported in the literature were devoted to the upgrading of biogas, which is therefore a relatively new P2G implementation pathway (Bensmann et al., 2014:414).

2.2.4 Dual-fuel gas turbines

Dual-fuel gas turbines have capabilities of incorporating different combustion fuels for operation. Natural gas and liquid fuels, in particular diesel, are appropriate fuels for combustion, although liquid fuels are expensive and rarely used. The purpose of these turbines is to explore compact power generation units for on- and offshore use, while ensuring reliable operation (Stambler, 2003:25). High quality SNG produced through methanation is therefore appropriate for combustion. The use of conventional gas turbines operating on natural gas is more realistic as lower operating and maintenance costs are supported.

2.3 \(\text{CO}_2 \) methanation via the Sabatier reaction

The Sabatier reaction was first reported by Paul Sabatier, a French chemist whose work on the catalytic hydrogenation of organic species was published in 1913 (Sterner, 2009:109). The Sabatier reaction (Equation 2.1) is a highly exothermic reaction between \(\text{H}_2 \) and \(\text{CO}_2 \). The forward Sabatier reaction is frequently described in literature as \(\text{CO}_2 \) methanation or \(\text{CO}_2 \) hydrogenation, whilst the reverse reaction is referred to as steam-methane reforming, implemented industrially to produce \(\text{H}_2 \) (Lunde & Kester, 1974:27). In past the Sabatier reaction was regularly investigated in the temperature range of 200–400°C using Group VIII metal supported catalysts such as Ni, Ru, Rh or Pd (Brooks et al., 2007:1162; Gogate & Davies, 2010:903; Goodman, 2013:8; Lunde & Kester, 1973:423; Park & McFarland, 2009:92; Wang & Gong, 2011:5,6).

\[
\text{CO}_2 + 4\text{H}_2 \leftrightarrow \text{CH}_4 + 2\text{H}_2\text{O} \quad (\Delta H_{298K} = -165 \text{ kJ.mol}^{-1})
\]

nickel has generally been used as a \(\text{CO}_2 \) methanation catalyst due to its low cost and widespread use (Schaaf et al., 2014:5; Koschany et al., 2016:505). Nickel has the ability to convert about 40–70% \(\text{CO}_2 \), but with rather varying selectivities towards \(\text{CH}_4 \). Lunde & Kester (1974:27) reported that several problems were encountered with the use of a Ni-
based catalyst. To ensure Ni is in its most active form, hydrogen reduction at reactor start-up is compulsory. Carbon deposition may occur at higher temperatures and slow catalyst deactivation can be expected as a result of sulphur poisoning due to the presence of feedgas impurities such as hydrogen sulphide (H2S). The use of Rh and Pd as active supported catalysts for CO2 methanation was also investigated, but showed undesirable CO2 conversions in fixed-bed reactors (Gogate & Davies, 2010:903; Park & McFarland, 2009:92).

Generally, it is recognised that the highest CO2 conversions are obtained on supported Ru catalysts (Lunde & Kester, 1974:27; Solymosi et al., 1981:166; Prairie et al., 1991:130; Duyar et al., 2015:27). Moreover, catalyst supports such as Al2O3, TiO2, SiO2 and ZrO2 are commonly used. However, TiO2 and Al2O3 are considered best with ZrO2, also providing reasonable CO2 conversions (Lunde & Kester, 1974:27; VanderWiel et al., 2000:3; Brooks et al., 2007:1161). Also, according to Lunde (1974:229) and Zamani et al. (2014:145) Ru catalytic activity increases as higher metal loadings are used at low reaction temperatures. Brooks et al. (2007:1162) noted that supported Ru is a stable catalyst during lifetime testing. However, the catalytic activity of Ru is best exploited as a single-metal catalyst, unlike in studies done by Luo et al. (2005:1421) and Zamani et al. (2014:143) where Ru was studied as a multi-metallic catalyst.

Although the Sabatier reaction was discovered in 1913, the interest in its use began to gain momentum in the 1970s, when it was successfully implemented in a laboratory-scale reactor by Lunde & Kester (1973:423). Since then, the Sabatier process has been used as motivation to produce CH4 for synthetic fuel applications, as an effective method of storing renewable energy and in space-based applications to revitalise confined atmospheres of metabolically generated CO2.

Recently, the National Aeronautics and Space Administration agency (NASA) has explored the Sabatier process on the International Space Station (ISS) in order to convert metabolically generated CO2 into drinkable water and CH4. In 2010 a Sabatier-based system was successfully installed on the ISS in combination with the atmosphere revitalisation system (NASA, 2011; Junaedi et al., 2014:2). This system improves the efficiency of the ISS’s resupply capabilities, as less water has to be transported from Earth. Previously, CO2 generated by the CO2 removal assembly and H2 produced by the oxygen generator assembly were vented into space. In future long-distance space missions, the Sabatier process may well utilise CO2 from the Martian atmosphere to produce CH4 and used as propellant on the return journey to Earth (Brooks et al., 2007:1161).
In 2012 a P2G demonstration plant was inaugurated by the German Centre for Solar Energy and Hydrogen Research (ZSW) in Stuttgart, Germany. The 250 kW pilot plant produced CH\(_4\) at a rate of 300 m\(^3\)/d (ZSW, 2016). According to the researchers at ZSW, the pilot plant would provide much-needed data for scale-up of P2G technology. With the support of ZSW, Audi AG in 2013 initiated the world’s first industrial-scale P2G methanation plant (6 MW) in Werlte, Germany. The plant was constructed in collaboration with ETOGAS GmbH and is able to produce an annual 1 000 metric tonnes of Audi’s so-called “e-gas” (Audi AG, 2013; ZSW, 2016).

2.3.1 Reaction mechanism

In the past, there was difficulty to establish the exact Sabatier reaction mechanism being followed (Wei & Jinlong, 2011:6). Uncertainties about the intermediate compound present during the rate-determining step have led to two main reaction mechanisms being proposed. The first proposed mechanism for CO\(_2\) methanation involves the conversion of adsorbed CO\(_2\) into adsorbed carbon monoxide (CO). Consequently CO undergoes dissociation to form surface carbon. The successive elementary steps are based on the same reaction mechanism as CO methanation originally proposed by Bahr (1928:2177). With the formation of adsorbed CO, there is still no definite proof for the mechanism of CO methanation either. The second proposed mechanism is based on the formation of CO and carbon formates as reaction intermediates (Marwood et al., 1997:244).

2.3.1.1 Successive CO\(_2\) and CO dissociation to form surface carbon

The dissociation of CO\(_2\) leads to the formation of adsorbed CO (Weatherbee & Bartholomew, 1982:466). The dissociation of CO occurs, forming surface carbon. In both these steps surface oxygen is also produced and successively hydrogenated to form H\(_2\)O. On the other hand, surface carbon is hydrogenated to form CH\(_4\). In previous work Weatherbee & Bartholomew (1981:67) witnessed that the methanation of CO\(_2\) had almost the exact specific reaction rate than that of CO below 300°C on a Ni/SiO\(_2\) catalyst. This leads to the conclusion that both these reaction mechanisms are governed by the same rate-controlled step. The dissociation of CO\(_2\) is thus unlikely to be the rate-determining step. Indeed, Peebles & Goodman (1983:4384,4385) also determined that the rate-limiting step in this reaction mechanism is either the dissociation of CO to form surface carbon or the hydrogenation of surface carbon, depending on different reaction conditions. The theory that the rate-limiting step is the dissociation of CO is also supported by Choe et al. (2005:1687).
2.3.1.2 Direct hydrogenation of adsorbed CO

The second proposed mechanism for CO₂ methanation was suggested by Marwood et al. (1997:244). In this mechanism, a hydrogen carbonate species (HCO₃⁻) is observed on the catalyst surface as CO₂ reacts with a surface hydroxyl (OH⁻) group (Wei & Jinlong, 2011:6,7). The adsorbed hydrogen carbonate provides a pathway for the formation of an interfacial formate (HCOO⁻) through reaction with adsorbed hydrogen. The decomposition of the formate produces adsorbed CO and re-establishes the surface hydroxyl group. The subsequent hydrogenation of CO produces CH₄.

2.3.1.3 Considerations on reaction mechanism

In general, there are many factors to consider when attempting to pinpoint the exact reaction mechanism for CO₂ methanation. The reverse-water-gas-shift (RWGS) reaction (Equation 2.2) is thermodynamically favoured at high temperatures to form CO. Therefore, operating conditions, different catalysts and support materials, catalyst loading, preparation method and morphological properties (e.g. catalyst surface area and pore volume) etc. may all contribute to the specific reaction mechanism. Also, the presence of gas impurities in the feedstream may alter the reaction mechanism (Goodman, 2013:25). Consequently, products such as CO and CH₃OH might be obtained. By considering all these factors, it becomes evident that a consensus cannot be reached with respect to the reaction mechanism for CO₂ methanation (Goodman, 2013:21; Park & McFarland, 2009:97).

2.3.2 Thermodynamics of CO₂ methanation

Gao et al. (2012:2364) investigated the equilibrium product formation of CO₂ methanation via the Gibbs free energy minimization method. Their work investigated, inter alia, a stoichiometric 1:4 (CO₂:H₂) molar feed ratio at atmospheric pressure. The effect of temperature is illustrated (Figure 2.2) on the equilibrium product distribution. At low temperature (<400°C) the formation of CH₄ is dominant through the exothermic Sabatier reaction (Equation 2.1).
Figure 2.2: Equilibrium product formation (d.b.) of CO₂ methanation at atmospheric pressure (taken from Gao et al., 2012:2364)

The reaction between H₂ and CO₂ may also produce CO through the slightly endothermic RWGS reaction (Equation 2.2). At higher temperatures (>600°C) CO occurs as the major carbon-containing product as the endothermicity of the RWGS reaction increases reaction extent with increasing temperature. To focus on CH₄ formation, low temperature is therefore essential.

\[
\text{CO}_2 + \text{H}_2 \leftrightarrow \text{CO} + \text{H}_2\text{O} \quad (\Delta H_{298K} = +41 \text{ kJ.mol}^{-1})
\] 2.2

The overall CO₂ conversion is illustrated (Figure 2.3) with a variation in temperature and pressure. According to Le Châtelier’s principle, higher operating pressure favours greater CO₂ conversions as the Sabatier reaction involves a reduction in number of moles with reaction extent. The effect of a pressure increase from 1 to 10 atm proved significant as the CO₂ conversion increased substantially in the 300–600°C temperature range. Higher pressures (30 and 100 atm) resulted only in a slight increase in CO₂ conversion. In the temperature region (200-600°C) where the Sabatier reaction is dominant, CO₂ conversion decreased with increasing temperature. A trade-off situation is therefore required. Conditions which should favour CO₂ conversion are low temperature and high pressure although an adequate temperature is required to provide an equilibrium-limited reaction rate.
2.4 Current status of CO₂ methanation

Table 2.2 presents a summary of previously reported literature, in chronological order, on experimental CO₂ methanation reactors. A brief discussion of each contribution will then be presented.

Table 2.2: Summary of experimental CO₂ methanation reactors reported in literature

<table>
<thead>
<tr>
<th>Source</th>
<th>Reactor type</th>
<th>Reactor conditions¹</th>
<th>Catalyst used (wt.%)</th>
<th>Highest CO₂ conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunde & Kester (1974:31)</td>
<td>Packed-bed</td>
<td>0.3:0.7 (CO₂:H₂), 204-371°C</td>
<td>0.5% Ru/Al₂O₃</td>
<td>85%</td>
</tr>
<tr>
<td>Weatherbee & Bartholomew (1982:461)</td>
<td>Packed-bed</td>
<td>dilute feed, 227-327°C, 0.4 bar</td>
<td>3% Ni/SiO₂</td>
<td><10%</td>
</tr>
<tr>
<td>Peebles & Goodman (1983:4383)</td>
<td>Batch</td>
<td>dilute feed, 279-437°C</td>
<td>Ni(100)</td>
<td>78%</td>
</tr>
<tr>
<td>Ohya et al. (1997:242)</td>
<td>Packed-bed with integrated membrane</td>
<td>206-446°C, 1 bar</td>
<td>0.5% Ru/Al₂O₃</td>
<td>87%</td>
</tr>
<tr>
<td>VanderWiel et al. (2000:3)</td>
<td>Packed-bed</td>
<td>110-350°C</td>
<td>5% Ru/ZrO₂</td>
<td>90%</td>
</tr>
<tr>
<td>Luo et al. (2005:1421)</td>
<td>Integrated micro-reactor</td>
<td>360-400°C, 2 bar</td>
<td>1% Ru-Y/sepiolite</td>
<td>32.4%</td>
</tr>
<tr>
<td>Brooks et al. (2007:1167)</td>
<td>Microchannel</td>
<td>254-347°C</td>
<td>3% Ru/TiO₂</td>
<td>89.5%</td>
</tr>
<tr>
<td>Hwang et al. (2008:119)</td>
<td>Packed-bed with integrated membrane</td>
<td>225-300°C, 1-3 atm</td>
<td>35% Ni-based</td>
<td>±92%</td>
</tr>
<tr>
<td>Park & McFarland (2009:92)</td>
<td>Fixed-bed</td>
<td>450°C</td>
<td>6.2% Pd–Mg/SiO₂</td>
<td>59%</td>
</tr>
</tbody>
</table>

¹ Stoichiometric feed ratio (CO₂:H₂) and atmospheric pressure unless specified otherwise
Table 2.2: (continued): Summary of experimental CO$_2$ methanation reactors reported in literature

<table>
<thead>
<tr>
<th>Source</th>
<th>Reactor type</th>
<th>Reactor conditions2</th>
<th>Catalyst used (wt.%)</th>
<th>Highest CO$_2$ conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gogate & Davies (2010:903)</td>
<td>Fixed-bed</td>
<td>1:1 (CO$_2$:H$_2$), 270°C, 20 atm</td>
<td>2% Rh/TiO$_2$</td>
<td>19.2%</td>
</tr>
<tr>
<td>Hoekman et al. (2010:49)</td>
<td>Packed-bed</td>
<td>dilute feed, 200-350°C</td>
<td>20% Ni/Al$_2$O$_3$</td>
<td>60%</td>
</tr>
<tr>
<td>Bakar & Toemen (2012:527)</td>
<td>Packed-bed</td>
<td>100-400°C</td>
<td>Ni/Ru/Pd (90:8:2)/Al$_2$O$_3$</td>
<td>53%</td>
</tr>
<tr>
<td>Müller et al. (2013:3776)</td>
<td>Packed-bed</td>
<td>275-500°C</td>
<td>0.5% Ru/Al$_2$O$_3$</td>
<td>93.3%</td>
</tr>
<tr>
<td>Schoder et al. (2013:344)</td>
<td>Packed-bed</td>
<td>300-400°C</td>
<td>5% Ru/Al$_2$O$_3$</td>
<td>89.1%</td>
</tr>
<tr>
<td>Junaedi et al. (2014:9)</td>
<td>Monolithic</td>
<td>1:4.5 (CO$_2$:H$_2$), 250-400°C</td>
<td>Ru-microlith</td>
<td>96.2%</td>
</tr>
<tr>
<td>Schaaf et al. (2014:13)</td>
<td>Fixed-bed</td>
<td>400-500°C, 20 bar</td>
<td>Ni-based</td>
<td>70%</td>
</tr>
<tr>
<td>Tada et al. (2014:10093)</td>
<td>Fixed-bed</td>
<td>250-500°C</td>
<td>1.8% Ru/CeO$_2$</td>
<td>±90%</td>
</tr>
<tr>
<td>Zamani et al. (2014:146)</td>
<td>Packed-bed</td>
<td>100-300°C</td>
<td>Ru/Mn/Cu(10:30:60)/Al$_2$O$_3$</td>
<td>98.5%</td>
</tr>
<tr>
<td>Duyar et al. (2015:32)</td>
<td>Packed-bed</td>
<td>dilute feed, 230-245°C</td>
<td>10% Ru/Al$_2$O$_3$</td>
<td>89%</td>
</tr>
<tr>
<td>Rossi et al. (2015:344)</td>
<td>Monolithic</td>
<td>300-350°C, 2 bar</td>
<td>Ni-based</td>
<td>81%</td>
</tr>
<tr>
<td>Garbarino et al. (2015:9172)</td>
<td>Fixed-bed</td>
<td>dilute feed, 250-500°C</td>
<td>3% Ru/Al$_2$O$_3$</td>
<td>91%</td>
</tr>
<tr>
<td>Martin (2015:35)</td>
<td>Packed-bed</td>
<td>350-500°C, 1 bar</td>
<td>Ni-based</td>
<td>63%</td>
</tr>
<tr>
<td>Lim et al. (2016:33)</td>
<td>Batch</td>
<td>1:3 (CO$_2$:H$_2$), 180-210°C, 10-20 bar</td>
<td>12% Ni/Al$_2$O$_3$</td>
<td>±98%</td>
</tr>
<tr>
<td>Pandey & Deo (2016:102)</td>
<td>Fixed-bed</td>
<td>dilute feed, 250°C</td>
<td>10% Ni/Fe (75:25)/Al$_2$O$_3$</td>
<td>±22%</td>
</tr>
<tr>
<td>Xu et al. (2016:141)</td>
<td>Fixed-bed</td>
<td>150-400°C</td>
<td>5% Ru/TiO$_2$-Al$_2$O$_3$</td>
<td>±85%</td>
</tr>
<tr>
<td>Ducamp et al. (2016)</td>
<td>Fixed-bed</td>
<td>200-275°C, 4-8 bar</td>
<td>14% Ni/Al$_2$O$_3$</td>
<td>89%</td>
</tr>
</tbody>
</table>

Lunde & Kester (1974:27) investigated CO$_2$ methanation on a 0.5 wt.% Ru/Al$_2$O$_3$ catalyst to explore methods of CH$_4$ synthesis for fuel applications. A packed-bed reactor was used to conduct the experimental investigation. The reactor showed a CO$_2$ conversion of 85% at approximately 371°C. Weatherbee & Bartholomew (1982:461) investigated the Sabatier reaction at low reactant partial pressures to determine reaction kinetics and the

2 Stoichiometric feed ratio (CO$_2$:H$_2$) and atmospheric pressure unless specified otherwise.
mechanism on a 3 wt.% Ni/SiO$_2$ catalyst. Experiments were conducted at high space velocities (30 000–90 000 h$^{-1}$). Consequently, CO$_2$ conversions below 10% were reported.

Peebles & Goodman (1983:4378) investigated the rate of reaction of CO$_2$ methanation in a batch reaction chamber in order to identify reaction kinetics and possible reaction intermediates for a mechanism. A Ni(100) catalyst surface was used in their experiments for quick alteration between a reaction and analysis chamber. A CO$_2$ conversion of 78% was achieved at 437°C. Also, the effect of surface modifiers (potassium (K) and sulphur (S)) was investigated on the production rate of CO and CH$_4$. These surface modifiers however did not have considerable effect on the mechanism for CO$_2$ methanation. The study by Ohya et al. (1997:237) investigated a 0.5 wt.% Ru/Al$_2$O$_3$ catalyst for CO$_2$ methanation in a packed-bed as part of a larger water vapour permselective membrane reactor. Among other, the effect of the selective removal of water vapour during reaction and the ratio of feed gas were investigated. At 300°C a CO$_2$ conversion of 87% was obtained. With the inclusion of the membrane, the CO$_2$ conversion increased to 98%.

VanderWiel et al. (2000:3) investigated three supported Ru catalysts of variable loading (1 wt.% Ru/G1-80, 3 wt.% Ru/TiO$_2$ and 5 wt.% Ru/ZrO$_2$) in a packed-bed reactor. An attempt was made to prove the feasibility of microreactors for space-based applications employing the Sabatier or RWGS reaction to convert CO$_2$ from the Martian atmosphere into useful fuels. Conversions approaching 90% were achieved at 250°C and space velocities lower than 18 000 h$^{-1}$. At high space velocities (>36 000 h$^{-1}$) some CO formation was observed. In an investigation by Luo et al. (2005:1419) the effect of yttrium (Y) addition was determined on the CO$_2$ methanation performance of a 1 wt.% Ru/sepiolite catalyst. At 420°C the addition of Y increased the CO$_2$ conversion from 16.4% to 32.4%. Also, the 1 wt.% Ru–Y/sepiolite catalyst showed better resistance against S poisoning and a larger surface area during CO chemisorption experiments.

Brooks et al. (2007:1161) studied a microchannel reactor with 3 wt.% Ru/TiO$_2$ catalyst for its possible use in space applications for fuel production. The microchannel reactor also incorporated a counter-flow of cooling-oil to remove heat from the reaction zone. It was found that a CO$_2$ conversion of 89.5% was achievable at reaction temperatures above 300°C. It was noted that the microchannel reactor provided good performance and catalyst durability during the investigation. Hwang et al. (2008:119) investigated a packed-bed reactor for CO$_2$ methanation using a commercial 35 wt.% Ni-based catalyst. The packed-bed of catalyst forms part of a larger CO$_2$-selective membrane reactor assembly for space-related air revitalisation systems. The reactor showed good CO$_2$ conversion (±92%) at
atmospheric pressure and 250°C. A successive reaction step using a Ni/SiO$_2$ catalyst was incorporated to convert CH$_4$ to graphitic carbon as an effective carbon capture strategy.

Park & McFarland (2009:92) investigated several Pd-based catalysts for CO$_2$ methanation activity in a fixed-bed reactor. The best CO$_2$ conversion (59%) and CH$_4$ selectivity (95%) was obtained for a 6.2 wt.% Pd–Mg/SiO$_2$ catalyst at 450°C. Their work serves to identify an appropriate mechanism for the CO$_2$ methanation reaction and would provide a better understanding of the reaction pathways on Pd-based catalysts. In an investigation by Gogate & Davies (2010:901) Rh-based catalysts were evaluated in a fixed-bed reactor for CO methanation, CO$_2$ methanation and co-methanation of CO and CO$_2$. Their work evaluated these methanation strategies as possible methods of utilising CO and CO$_2$ to produce valuable chemicals. The best catalyst identified for CO$_2$ methanation was a 2 wt.% Rh/TiO$_2$ catalyst. A CO$_2$ conversion of 19.2% was achieved with high CH$_4$ selectivity (93.3%) at 270°C and 20 atm. However, small fractions of ethane (C$_2$H$_6$), propane (C$_3$H$_8$) and CO were detected.

Hoekman et al. (2010:44) investigated the methanation of CO$_2$ as an effective method of carbon capture and sequestration (CCS) of diluted CO$_2$ in a simulated flue gas stream. A packed-bed reactor with 20 wt.% Ni/Al$_2$O$_3$ catalyst was used. The effect of different feed gas ratios, a variation in reaction temperature and space velocity were investigated. A CO$_2$ conversion of 60% was achieved at reaction conditions corresponding to 350°C and 10 000 h$^{-1}$. A stoichiometric feed ratio of 1:4 (CO$_2$:H$_2$) was recommended as H$_2$ is utilised efficiently while maintaining a high CO$_2$ conversion. Bakar & Toemen (2012:525) investigated CO$_2$ methanation as a purification technique of a simulated natural gas stream in a packed-bed microreactor. Various Ni-based catalysts were developed of which a Ni/Ru/Pd(90:8:2)/Al$_2$O$_3$ catalyst was identified as providing the best performance. At 400°C a CO$_2$ conversion of 53% and CH$_4$ yield of 39.7% was achieved. The effect of adding H$_2$S as a catalyst poisoning agent to the feed gas was also investigated. The CO$_2$ conversion was seen to decrease to 35% with low CH$_4$ yield (3.6%). However, in the 140–300°C temperature range 100% H$_2$S desulphurisation was achieved.

Müller et al. (2013:3771) investigated the catalytic performance of a packed-bed reactor with 0.5 wt.% Ru/Al$_2$O$_3$ catalyst for P2G applications. In particular, a thermo-desorption study was done to determine adsorbed CO$_2$ amounts and SEM images taken to investigate the long-term stability of the catalyst. It was found that the reactor performed best at 350°C. At this temperature condition, the reactor produced a CO$_2$ conversion of 93.3% and CH$_4$ yield of 91.7%. Schoder et al. (2013:349) investigated Ni and Ru-based catalysts in a packed-bed reactor to produce CH$_4$ as chemical energy carrier. A 5 wt.% Ru/Al$_2$O$_3$ catalyst
provided the best CO₂ conversion (89.1%) with 99.7% selectivity towards CH₄ at 300°C and low space velocity (6 000 h⁻¹). The best-performing Ni catalyst (5 wt.% Ni/Al₂O₃) exhibited a CO₂ conversion of 72.8% and CH₄ selectivity of 99.1% at 375°C.

Junaedi et al. (2014:1) reported on a microlithic reactor demonstrated in earlier work by the same authors (Junaedi et al., 2011:5033) for ground demonstration which can be incorporated in the ISS’s CO₂ reduction assembly. The reactor with Ru-based Microlith catalyst substrate was specifically designed to operate at low temperature (<400°C) and space velocities up to 30 000 h⁻¹. A CO₂ conversion of 96.2% with 100% CH₄ selectivity was achieved at 360°C and a 1:4.5 (CO₂:H₂) feed ratio. For a stoichiometric feed ratio of 1:4, a CO₂ conversion of 89.3% was reported at 370°C. Vibration tests and a 1 000 h durability test to investigate long-term catalyst performance were also performed. Schaaf et al. (2014:1) evaluated a fixed-bed reactor for CO₂ methanation as a possible method of renewable energy storage with CH₄ in natural gas networks. A Ni-based catalyst was used. At 400°C and 20 bar, a CO₂ conversion of 70% was achieved at low space velocity (5 000 h⁻¹). Two possible scale-up strategies were also proposed in AspenPlus® to produce CH₄ at production rates of 1 000 m³.h⁻¹ and 10 000 m³.h⁻¹, respectively.

Tada et al. (2014:10090) investigated the activity of different Ru/CeO₂/Al₂O₃ catalysts on CO₂ methanation performance and CH₄ selectivity in a fixed-bed tube reactor. In particular, the CeO₂ loading on these catalysts were varied. For a 1.8 wt.% Ru/CeO₂ catalyst, it was found that a CO₂ conversion of ±90% was achievable at 350°C. The Ru/30%CeO₂/Al₂O₃ and Ru/60%CeO₂/Al₂O₃ catalysts showed CH₄ selectivities close the 100% in the 300–400°C temperature range. Zamani et al. (2014:143) investigated different loadings of Ru in Ru/Mn/Cu/Al₂O₃ catalysts to purify natural gas from CO₂. At 220°C 70% selectivity towards CH₄ was achieved. Other products such as methanol (CH₃OH) contributed to a total CO₂ conversion of 98.5%. A reaction mechanism was also proposed for the Ru/Mn/Cu(10:30:60)/Al₂O₃ catalyst.

Duyar et al. (2015:27) performed a kinetic study on a 10 wt.% Ru/Al₂O₃ catalyst in an effort to produce CH₄ as an effective method of utilising CO₂. A fixed-bed reactor was used to conduct experiments at low CO₂ partial pressure (1–25 kPa). CO₂ conversions up to 89% were achieved at 230°C. Rossi et al. (2015:341) also investigated CO₂ methanation as an effective method of renewable energy storage and reducing CO₂ emissions. A Ni-based catalyst was used in a monolithic reactor system. At 300°C a maximum CO₂ conversion of 81% was achieved. Moreover, an economic evaluation was done to determine financial benefits of a power-to-gas set-up linked to an already existing commercial PV system. Producing CH₄ proved economically viable during periods of excess solar power supply.
Garbarino et al. (2015:9171) evaluated a 3 wt.% Ru/Al₂O₃ and 20 wt.% Ni/Al₂O₃ catalyst for CO₂ methanation. At 350°C and high space velocity (55 000 h⁻¹) the Ru catalyst showed 86% CO₂ conversion, with the Ni catalyst only achieving 59%. At 450°C however, the Ni catalyst performed better (79% vs 76% CO₂ conversion). The Ru catalyst’s stability in particular was evident and recommended for possible applications relating to intermittent reactor operation. The dissertation by Martin (2015:35,60) considered CO₂ methanation as a P2G application to produce CH₄ for energy storage in natural gas networks. Different Ni-based catalysts were used in a 4 mm diameter tube reactor. The first reactor configuration evaluated was a packed-bed reactor. Alternatively, washcoated metallic strips were used in such a way as to line the inside wall of the tube. Through this method, a single channel with catalyst washcoat was established. At 500°C the packed-bed reactor provided a CO₂ conversion of ±63% and the channel reactor ±60% CO₂ conversion.

Lim et al. (2016:28) used a batch reactor for CO₂ methanation experiments. A 12 wt.% Ni/Al₂O₃ catalyst was used in a spinning basket contained within the batch reactor volume. Experiments were conducted at low temperature (180–210°C) and above atmospheric pressure conditions. At 190°C a CO₂ conversion of ±98% was achieved with a high CH₄ yield (±99.5%) at initial CO₂ and H₂ partial pressures of 2.4 and 11.2 bar, respectively. Additional experimental results were used to estimate kinetic parameters. In a study conducted by Pandey & Deo (2016:99) different catalyst supports (Al₂O₃, ZrO₂, TiO₂ and SiO₂) were evaluated for CO₂ methanation using 10 wt.% Ni/Fe-based catalysts. A Ni/Fe(75:25)/Al₂O₃ catalyst was identified as providing the best CH₄ yield (22%) with greater than 90% of CO₂ converted contributing to CH₄ formation.

Xu et al. (2016:140) investigated the effect of TiO₂ addition to the catalyst support and calcination temperature of a 5 wt.% Ru/Al₂O₃ catalyst in a fixed-bed reactor. The Ru/TiO₂-Al₂O₃ catalyst did show better CO₂ conversions in the 175–350°C temperature range compared to the reference Ru/Al₂O₃ catalyst. At 375°C both catalysts provided CO₂ conversions of approximately 82%. A CO₂ conversion of 85% was achieved when the catalyst calcination temperature was increased to 1 100°C. This is a result of a phase change of TiO₂ from anatase to rutile promoting a smaller Ru particle size. Ducamp et al. (2016) investigated a fixed-bed reactor with annular cooling for CO₂ methanation using a commercial 14 wt.% Ni/Al₂O₃ catalyst. Their work was also an effort to produce CH₄ for renewable energy storage applications. At 275°C and 4 bar pressure the reactor performed well with a CO₂ conversion of 85%. When the pressure was increased to 5 bar, a CO₂ conversion of 89% was obtained.
2.5 Reactor technology options for CO$_2$ methanation

Reactor technologies suitable for power-to-gas applications should have dynamic and fast response times (load-following abilities) as renewable energy sources, in particular solar and wind, fluctuate regularly and are naturally intermittent. It is also required that the reactor cold start-up time is rapid. Moreover, the CO$_2$ methanation reaction is highly exothermic, which requires the reactor to have efficient heat removal capabilities and precise temperature control.

2.5.1 Fluidized-bed reactor

Fluidized-bed reactors are industrially used in applications such as coal gasification, production of various chemicals and waste water treatment. Research on fluidized-bed reactors for the highly exothermic methanation of CO and CO$_2$ found that fluidized-bed reactors have good heat transfer characteristics allowing for one-step operation (Kopyscinski et al., 2011:925; Schaal et al., 2014:5). However, since fluidized-bed dynamics incorporate turbulent gas-solid suspensions, a requirement for attrition resistant catalysts is evident (Kopyscinski et al., 2011:925).

2.5.2 Slurry bubble column reactor

Slurry bubble column reactors utilise gas sparging through liquid-solid suspensions and are often used in the biochemical and petrochemical industries (Kantarci et al., 2005:2263). Slurry bubble column reactors in particular have gained much attention for its use in the well-known Fischer-Tropsch synthesis and methanol synthesis processes (Degaleesan et al., 2001:1913). Three-phase slurry reactors provide high heat transfer characteristics coupled with low operating costs and minimal maintenance (Behkish et al., 2002:3307; Kumar et al., 2012:783). These reactors however have one major disadvantage, namely liquid-side mass transfer limitations, effectively causing a decrease in reaction rate (Götz et al., 2014:6). Recently, laboratory-scale slurry reactors have been investigated for CO methanation (Zhang et al., 2014:211) and co-methanation of CO and CO$_2$ (Götz et al., 2013:1147).

2.5.3 Fixed-bed reactor

Fixed-bed reactors have a wide variety of industrial application. Similar to slurry bubble column reactors, multi-tubular fixed-bed reactors are commonly used for Fischer-Tropsch synthesis in the petrochemical industry (Jess & Kern, 2009:1164). Since conventional fixed-bed reactors have limited axial and radial heat transfer characteristics,
operation under isothermal conditions is compromised (Schaaf et al., 2014:5). Therefore, a strategy of two or more adiabatic fixed-bed reactors in series is proposed for effective temperature control. According to Schildhauer & Biollaz (2015:605) the 6 MW P2G plant in Werlte, Germany makes use of a fixed-bed reactor. The reactor incorporates molten salt cooling for temperature control as the CO₂ methanation reaction is highly exothermic.

2.5.4 Microchannel reactor

Microchannel technology is comparatively new to research on catalytic reactor systems; however it has the potential to be used in various process intensifying applications (Stankiewicz & Moulijn, 2000:23,26). Essentially small microchannels in the 50–5 000 µm range significantly increases the surface-to-volume ratio of catalysts, thus allowing the reduction of equipment size while providing the same reactor throughput. (Pattison & Baldea, 2015:171; Tonkovich et al., 2004:4819). Generally, microchannel reactors are utilised in modular plants which exposes the possibility of easy scale-up to industrial-scale plants. (Tonkovich et al., 2004:4819). The American company Velocys developed the first commercial-scale gas-to-liquid (Fischer-Tropsch) reactor incorporating microchannel technology, capable of 125 b/d production capacity (Roberts, 2013:103). Linking these reactors will produce plant capacities as demanded by clients. In collaboration with Haldor Topsoe and Ventech, a modular-based Fischer-Tropsch plant was built using Ventech’s modular design and fabrication technologies. Haldor Topsoe will produce syngas feedstock for the Fischer-Tropsch plant. The first such facility, a 1 000 b/d capacity gas-to-liquid plant was manufactured for Calumet Specialty Products Partners to produce paraffinic hydrocarbons as feedstock in the further production of waxes and solvents.

2.5.5 Summary

Fluidized-bed and fixed-bed reactors have previously been considered for industrial-scale CO methanation processes. Both these reactor types have unique advantages, but there are shortcomings in each with respect to microchannel reactor technology. In the case of fluidized-bed reactor types, very good mass and heat transfer properties are achieved with intimate mixing between the gas-phase and solid catalyst particles (Kopyscinski et al., 2011:925). However, particle abrasion and entrainment are some of the challenges faced. On the other hand, fixed-bed reactors have limited heat transfer characteristics, making the operation of a single adiabatic reactor unrealistic. Microchannel reactors provide excellent heat and mass transfer and superior catalyst durability (Tonkovich et al., 2004:4819). Also, the scale-up of processing capacity is realistic with modular-based microchannel reactors.
2.6 Microchannel reactor technology

Since the 1990s, organisations such as Fraunhofer ICT-IMM, Forschungszentrum Karlsruhe GmbH, DuPont, Massachusetts Institute of Technology (MIT) and Pacific Northwest National Laboratory (PNNL) have been exploring methods of process intensification and provided an upsurge in interest and technological advancements, especially in the field of microchannel technology (Holladay et al., 2004:4768). In 1996 PNNL developed a microchannel heat exchanger that provided heat transfer coefficients in the range of 5 000 to 16 000 W.m\(^{-2}\).K\(^{-1}\), almost an order of magnitude higher than any other conventional heat exchanger for similar fluids (Tonkovich et al., 1996:119).

Microreactors originally developed through research conducted in the field of microfabrication methods for small-scale electronic units (Holladay et al., 2004:4768). Ultimately, the microfabrication methods combined with process intensification approaches gave rise to microchannel reactors and their use in catalytic reactor development. (Stankiewicz & Moulijn, 2000:26). As for reactors, process intensification refers to improved design and implementation of unit operations e.g. a reduction in reactor size whilst maintaining performance and volumetric throughput (Pattison & Baldea, 2015:171). Reactor units smaller in size therefore reduce the cost of equipment significantly. Moreover, chemical process intensification not only refers to the reduction of design dimensions, but also the incorporation of multiple unit operations into one compact, multifunctional element. The method of intensification ensures better heat management, intimate mixing as well as high chemical conversions, leading to more efficient reactor technologies (Delparish & Avci, 2016:73).

2.6.1 Advantages of microchannel reactors

Microchannel reactor technology provides many design and operational advantages over more conventional reaction types. These advantages include:

i. Very high mass transfer rates due to high surface-to-volume ratios (Holladay et al., 2004:4768). In some cases, microchannel reactors provide surface-to-volume ratios several orders of magnitude higher than conventional reactors (Hessel et al., 2004:202). VanderWiel et al. (2000:5,6) noted that high mass transfer rates are typically achieved in microchannel reactors as the characteristic path length for reaction to take place is physically reduced. Microchannel reactors can therefore be significantly smaller than other reactor types providing the same throughput, e.g. in cases of reactions being mass transfer limited (Holladay et al., 2004:4768).
Microchannel reactors provide improved heat transfer characteristics (Fogler, 2012:201). This property of microchannel reactors is very useful in applications where good temperature control is essential, e.g. in highly endothermic or exothermic reactions (Holladay et al., 2004:4768). Consequently, the occurrence of cold or hot regions within the microchannel reactor are avoided and near-isothermal operation is attained (Delparish & Avci, 2016:73).

Improved catalyst stability and performance during long-term operation with minimal thermal degradation as a result of very good heat transfer properties (Liu et al., 2012:600).

The scale-up of microchannel reactors is simplified with the so-called “number-up” technique (Liu et al., 2012:600; Roberts, 2013:103). Microchannel reactors can therefore be custom designed and delivered on site for specific application or throughput capability.

Flexibility in terms of changes in feed composition and reactor conditions (Deshmukh et al., 2010:10883). Also, the quick response time (dynamic operation) of microchannel reactors ensures that this technology is practical in handling load changes due to the natural intermittency of RES (Chiuta et al., 2013:14988).

Differences of microchannel reactors to conventional reactor types

Microchannel reactors support many differences in design and operation to conventional reactor types such as fluidized or fixed-bed technologies. Some of these differences are listed below:

- Microchannel units are usually smaller compared to conventional reactor types providing the same volumetric throughput. This attribute is largely due to the intensifying nature of microchannel reactor technology (Pattison & Baldea, 2015:171; Delparish & Avci, 2016:73).
- According to Chiuta et al. (2013:14971) reaction rates in microchannel reactors are generally governed by intrinsic reaction kinetics as opposed to mass or heat transfer limitations.
- The number of degrees of freedom is significantly reduced over the reactor unit compared to other reactor types, since microchannel reactors are generally operated as multifunctional units (Pattison & Baldea, 2015:171).
2.6.3 Limitations and design challenges of microchannel reactor technology

Microchannel reactor technology supports many advantages that make this reactor technology superior to conventional reactor technology. In general, microchannel reactors however have a few limitations due to their process intensifying nature:

i. Generally, introducing measurement instrumentation (e.g. thermocouples) to microchannel reactors proves difficult as reactor geometrics are physically reduced (Pattison & Baldea, 2015:171).

ii. Microchannel reactors are generally prone to increased sensitivity to fouling because of the reactor’s intensification of the overall reaction kinetics (Holladay et al., 2004:171).

iii. According to Holladay et al. (2004:171) increased pressure drops may occur in microchannel reactors when high space velocities are initiated. This is mainly due to the reduction in microchannel cross-sections.

As the field of microchannel technology is ever expanding, these limitations and design challenges will be addressed to a point where improved reactor designs provide enhanced reactor performance without any restraining factors.

2.7 Reactor modelling and simulations for CO₂ methanation

Table 2.3 presents a summary of previously reported modelling evaluations, in chronological order, on the methanation of CO₂. A brief discussion of each contribution will then be presented.

Table 2.3: A summary of literature on mathematical modelling for CO₂ methanation

<table>
<thead>
<tr>
<th>Source</th>
<th>Reactor type</th>
<th>Reactor conditions</th>
<th>Catalyst used in describing kinetic model (wt.%)</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunde (1974:228)</td>
<td>Packed-bed</td>
<td>0.3:0.7 (CO₂:H₂), 204-360°C</td>
<td>0.5% Ru/Al₂O₃</td>
<td>1D mathematical</td>
</tr>
<tr>
<td>Ohya et al. (1997:242)</td>
<td>Packed-bed-permselective membrane</td>
<td>206-446°C, 1 bar</td>
<td>0.5% Ru/Al₂O₃</td>
<td>1D mathematical</td>
</tr>
<tr>
<td>Brooks et al. (2007:1164)</td>
<td>Microchannel</td>
<td>254-347°C</td>
<td>3% Ru/TiO₂</td>
<td>1D reactive plug flow</td>
</tr>
<tr>
<td>Schlereth & Hinrichsen (2014:704)</td>
<td>Fixed-bed</td>
<td>250-350°C, 10 bar</td>
<td>Ni/Mg/Al₂O₃ and 5% Ru/ZrO₂</td>
<td>1D plug flow and 2D</td>
</tr>
<tr>
<td>Kiewidt & Thöming (2015:61)</td>
<td>Fixed-bed</td>
<td>250-450°C, 1-20 bar</td>
<td>5% Ru/ZrO₂</td>
<td>1D plug flow</td>
</tr>
</tbody>
</table>

Stoichiometric feed ratio (CO₂:H₂) and atmospheric pressure unless specified otherwise
Table 2.3: (continued): A summary of literature on mathematical modelling for CO$_2$ methanation

<table>
<thead>
<tr>
<th>Source</th>
<th>Reactor type</th>
<th>Reactor conditions</th>
<th>Catalyst used in describing kinetic model (wt.%)</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chein et al. (2016:245)</td>
<td>Fixed-bed</td>
<td>200-500°C, 1-5 atm</td>
<td>Ni/Mg/Al$_2$O$_4$</td>
<td>2D CFD</td>
</tr>
<tr>
<td>Ducamp et al. (2016)</td>
<td>Fixed-bed</td>
<td>200-275°C, 4-8 bar</td>
<td>14% Ni/Al$_2$O$_3$</td>
<td>2D CFD</td>
</tr>
<tr>
<td>Lim et al. (2016:33)</td>
<td>Batch</td>
<td>1:3 (CO$_2$:H$_2$), 180-210°C, 10-20 bar</td>
<td>12% Ni/Al$_2$O$_3$</td>
<td>1D mathematical</td>
</tr>
</tbody>
</table>

The one-dimensional mathematical model derived by Lunde (1974:228) was constructed using a simplified thermal and chemical model. The thermal model considered partial differential equations to describe heat balances in the reactor’s thermal zones (reactor catalyst, gas flow, reactor wall and coolant flow). The chemical model involved the reaction rate equation (Equation 2.6) previously derived by Lunde & Kester (1974:30) and was used to describe species generation/consumption. The thermal and chemical model was linked by the heat generated through reaction at different temperatures.

The investigation by Ohya et al. (1997:242) used ordinary differential equations to describe species formation along the length of the packed-bed reactor. The assumption of plug-flow was made for these differential equations to be valid. No correlations were used to estimate heat, mass and momentum transport. Their work was based on the same global Sabatier rate equation reported by Lunde & Kester (1974:30). However, Ohya et al. (1997:242) refitted kinetic rate parameters to validate the experimental data points obtained in their work.

Brooks et al. (2007:1164) developed a one-dimensional reactive porous-media model describing the methanation of CO$_2$ in a microchannel reactor over a 3% Ru/TiO$_2$ catalyst. Partial differential equations were used as governing equations for energy, mass and momentum continuity. These partial differential equations were based on one-dimensional plug-flow approximations in the axial direction. In essence, any variation in gas density, species composition, velocity, temperature and pressure was neglected in radial (transverse) directions. This investigation also used the rate equation of Lunde & Kester (1974:30). Kinetic rate parameters were adjusted to provide a good fit to their data. Figure 2.4 illustrates the model fitted to experimental rates of CH$_4$ formation as a function of residence time.

Stoichiometric feed ratio (CO$_2$:H$_2$) and atmospheric pressure unless specified otherwise

4 Stoichiometric feed ratio (CO$_2$:H$_2$) and atmospheric pressure unless specified otherwise.
Schlereth & Hinrichsen (2014:704) developed four different models to describe CO$_2$ methanation in a fixed-bed membrane reactor. The first pseudo-homogeneous plug-flow model was one-dimensional with ordinary differential equations to describe mass and heat balances. In this model, pressure drop, diffusional effects and wall resistance were neglected. The second pseudo-homogeneous model was two-dimensional, as radial effects were incorporated in the heat and mass balance equations developed for the first model. However, porosity and dispersion coefficients were assumed constant. The third pseudo-homogeneous model used empirical correlations to estimate the porosity and heat transfer coefficient in the radial direction. In addition, the extended Brinkman equation was incorporated to describe the momentum balance. The fourth model was based on a dusty-gas approach to describe a one-dimensional heterogeneous reactor model. Molecular and Knudsen diffusion and differential equations were accounted for and used to describe flux densities, mole fractions and pressure drops. For all models developed, kinetic rate equations described by Xu & Froment (1989:92) for a Ni/Mg/Al$_2$O$_4$ catalyst and Schoder et al. (2013:344) for a 5 wt.% Ru/ZrO$_2$ catalyst were separately used.

The modelling study by Kiewidt & Thöming (2015:61) was based on a pseudo-homogeneous plug-flow model to describe CO$_2$ methanation in a fixed-bed reactor. Ordinary differential equations were used for mass, momentum, species concentration and energy balances to describe a single homogeneous phase within the reactor. Axial pressure drop was modelled using a Darcy-Forchheimer expression, while Newton’s law of cooling was used to describe the reactor wall cooling rate. To account for intraparticle diffusion, the effectiveness factor and the Thiele modulus were used. The effective diffusivity was calculated using the Bosanquet equation. To describe species formation, the elementary rate law developed by Lunde & Kester (1974:30) was used. Model validation was based on
experimental results presented by Schoder et al. (2013:344) on a 5 wt.% Ru/ZrO$_2$ catalyst. Kiewidt & Thöming (2015:61) used the Semenov number to predict optimum temperature profiles within the reactor. Subsequently, maximised CH$_4$ yield within the fixed-bed reactor was modelled.

Chein et al. (2016:243) used a two-dimensional CFD model to estimate CH$_4$ formation in a fixed-bed reactor. Partial differential equations were used as governing equations for energy, mass, momentum and species transport. In addition, the Brinkman-Forchheimer extended Darcy equation was used to describe fluid flow in the porous medium. In addition, the Stefan-Maxwell multicomponent diffusion model was used. The Hougen-Watson rate equation was used to describe reaction kinetics on the Ni-based catalyst (Xu & Froment, 1989:92). COMSOL Multiphysics was used to solve the mathematical model. The model was validated on experimental CO$_2$ methanation results presented by Hwang et al. (2008:119) on a 35 wt.% Ni-based catalyst. The effect of a different catalyst was studied as the rate law from Lunde & Kester (1974:30) was used to investigate the performance of a Ru catalyst for CO$_2$ methanation. From the results reported it is evident that the Ru catalyst showed better CO$_2$ conversion than the Ni-based catalyst.

Ducamp et al. (2016) developed a heterogeneous two-dimensional CFD model in COMSOL Multiphysics to model a fixed-bed reactor with annular cooling. Mass and heat balance equations were developed for the respective gas-phase and catalyst particle domains. The gas-phase and catalyst particle models were subsequently linked by the Satterfield correlations for mass and heat transfer coefficients. Similar to Chein et al. (2016:243), the Brinkman-Forchheimer extended Darcy equation was used to describe fluid flow in the porous phase. Radial diffusion was accounted for with the Gunn correlation, while the axial diffusion was estimated with the Edward and Richardson correlation. Also, reaction kinetics for the CO$_2$ methanation, CO methanation and RWGS reactions were included. Temperature and species concentration were then modelled in the axial and radial directions.

Lim et al. (2016:38) used ordinary differential equations to describe the rate of species formation and consumption in a batch reactor. The time-dependent differential equations were solved using MATLAB software based on the sum of least squares between experimental and model-predicted partial pressures. In particular, it was noted that the high selectivity (>99%) towards CH$_4$ production warranted the development of the model exclusively for the Sabatier reaction.
2.7.1 Computational fluid dynamic (CFD) modelling of microchannel reactors for CO\textsubscript{2} methanation

Modelling studies often differ in complexity from simple one-dimensional models to advanced modelling techniques such as CFD modelling. Model-based interpretation serves to define the reaction coupled transport phenomena within a reactor. An understanding of the dynamic profiles is obtained, which cannot be described by experimental results. No full CFD models have been developed for Sabatier-based microchannel reactors. In this dissertation, however, we follow the approach used recently by Chiuta et al. (2014:11390) where they developed a mathematical CFD model in the finite element-based COMSOL Multiphysics® to describe a microchannel reactor for ammonia decomposition using a 4.7 wt.% Ni-Pt/Al\textsubscript{2}O\textsubscript{3} catalyst. A single-channel modelling approach was followed in which a free-fluid phase and porous catalyst washcoat were introduced as computational domains. A follow-up study by the same authors investigated an identical reactor but with 8.5 wt.% Ru-Cs/Al\textsubscript{2}O\textsubscript{3} catalyst (Chiuta, Everson, et al., 2016:3774). A similar modelling approach was followed in this dissertation. A detailed description and model development is further discussed in Section 5.1.

2.7.2 Reaction kinetics of CO\textsubscript{2} methanation on supported Ru catalysts

Recently, Duyar et al. (2015:31,32) used two rate equations to describe CH\textsubscript{4} formation on a 10 wt.% Ru/Al\textsubscript{2}O\textsubscript{3} catalyst at atmospheric pressure. The first, an Eley-Rideal rate law incorporating the equilibrium constant (\(K(T)\)) for CO\textsubscript{2} adsorption was used in a kinetic study at low CO\textsubscript{2} and H\textsubscript{2} partial pressures. Consistent with the Eley-Rideal mechanism, it was concluded that gas-phase H\textsubscript{2} reacted directly with adsorbed CO\textsubscript{2}. The reaction rate per catalyst mass is given by Equation 2.3.

\[
r_{\text{Sabatier}} = \frac{(k(T))(K(T))(p_{\text{CO}_2})(p_{\text{H}_2})}{1+(K(T))(p_{\text{CO}_2})} \tag{2.3}
\]

The temperature-dependent reaction rate constant (\(k(T)\)) is expressed in Arrhenius form as Equation 2.4.

\[
k(T) = Ae^{-\frac{E_a}{RT}} \tag{2.4}
\]

The second proposed rate law is in empirical form to describe CH\textsubscript{4} formation at more realistic reactant partial pressures. It was found that the reaction rate showed strong dependence on the partial pressure of H\textsubscript{2} at the conditions investigated. With increasing CO\textsubscript{2}...
partial pressure, the order dependence on CO\textsubscript{2} approached zero. The reaction rate per catalyst mass is given by Equation 2.5.

\[
\dot{r}_{\text{Sabatier}} = \frac{(k(T))(p_{\text{CO}_2})^{0.34}(p_{\text{H}_2})^{0.88}}{(p_{\text{CH}_4})^{0.11}(p_{\text{H}_2O})^{0.23}}
\]

2.5

The kinetic rate expression for the global Sabatier reaction is commonly described in literature as a reversible elementary rate law. Initial work done by Lunde & Kester (1974:30) developed the rate equation incorporating an empirical factor \((n)\) to describe experimental data points obtained over a 0.5 wt.% Ru/Al\textsubscript{2}O\textsubscript{3} catalyst in a packed-bed reactor. The general form of this reversible elementary rate law is given by Equation 2.6 (Lunde, 1974:228; Lunde & Kester, 1974:30).

\[
-d\frac{dp_{\text{CO}_2}}{dt} = k(T) \times \left[(p_{\text{CO}_2})^n (p_{\text{H}_2})^{4n} - \frac{(p_{\text{CH}_4})^n (p_{\text{H}_2O})^{2n}}{(k(T))^n} \right]
\]

2.6

Under the assumption of an ideal gas mixture, the reaction rate is expressed per unit volume in Equation 2.7.

\[
\dot{r}_{\text{Sabatier}} = \frac{1}{RT} \frac{dp_{\text{CO}_2}}{dt}
\]

2.7

2.7.3 Summary

Numerous accounts of the relevant literature are discussed in Section 2.7, all of which used simple plug-flow or two-dimensional models to describe CO\textsubscript{2} methanation. These models, however, fail to describe energy, mass and momentum transfer in the three-dimensional space. An opportunity to model a reactor system for CO\textsubscript{2} methanation using three-dimensional full CFD is presented. CFD modelling is superior as it will enable a comprehensive evaluation of the reaction-coupled transport characteristics in the microchannel reactor. Identification of suitable governing equations for energy, mass, momentum and species continuity will enable the accurate modelling of both free-fluid and porous media phases. In addition, through parameter refinement the mathematical model will be validated on data gained through the experimental investigation of the reactor.
CHAPTER 3: EXPERIMENTAL APPARATUS

This chapter serves to describe the experimental apparatus used and methods followed during the experimental investigation of the microchannel reactor. The design of the microchannel reactor is described in Section 3.1. In Section 3.2 a summary of the morphological properties and preparation method of the reaction catalyst is specified. In Section 3.3 a discussion is given on initial planning done before experimentation was started. Section 3.4 provides detail on the apparatus used, while Section 3.5 describes the procedures followed during the experimental investigation.

3.1 Microchannel reactor design

The microchannel reactor was designed and fabricated in association with Fraunhofer-ICT-IMM (Mainz, Germany), constructed from SS314 stainless steel with a plate thickness of 2 mm. The microchannel reactor platelet was constructed with 80 microchannels engraved into its face (Figure 3.1: a) using a wet chemical etching method described elsewhere (O'Connell et al., 2012:12). Each channel had a width of 450 µm, height of 150 µm and length of 50 mm (Figure 3.1: d). Channels were separated by a fin with width of 250 µm. To allow for distributed fluid flow across the channels, inlet and outlet distribution manifolds with right-angled triangular shapes were fabricated at the respective reactor inlet and outlet (Figure 3.1: a,b). The microchannel reactor was laser welded with a second platelet, equally-sized with distribution manifolds (Figure 3.1: b), but without microchannels engraved into its face.
Figure 3.1: (a) Depiction of reactor platelet with 80 microchannels and fluid distribution manifolds engraved (b) second reactor platelet with only fluid distribution manifolds engraved for laser welding to complete the reactor (c) magnified view of 5 microchannels with applied catalyst washcoat and (d) a single, uncoated microchannel with dimensions

The reactor body was supported by a reactor casing containing two heating cartridges (Figure 3.2). The heating cartridges incorporated integrated thermocouples to allow for accurate temperature control. The reactor casing also included 2 small holes of 1 mm diameter for thermocouples to be inserted into the casing. The holes were positioned such that the thermocouples were next to the reactor wall. Lastly, stainless steel inlet and outlet piping was welded to the reactor’s respective inlet and outlet points.

Figure 3.2: Microchannel reactor used during experimental investigation (taken from Chiuta et al., 2015:2922)
3.2 Catalyst preparation

A commercial 8.5 wt.% Ru-Cs/Al₂O₃ catalyst (10010™, Acta S.p.A, Italy) was supplied by Acta S.p.A. (2016). The microchannel reactor with Cs-promoted Ru catalyst was originally used for work on H₂ production via ammonia decomposition by Chiuta et al. (2015:2921), but showed adequate performance towards the methanation of CO₂. The catalyst had a BET surface area of 113 m².g⁻¹ and a pore volume of 0.30 cm³.g⁻¹. The successive catalyst washcoating, drying and calcination were done according to literature described by O’Connell et al. (2012:13). The catalyst washcoat was applied to each microchannel with a layer thickness (δ) of 40 µm, amounting to a total mass of 92 mg Ru on the entire reactor platelet.

3.3 Experimental planning

Experimental preparation included the manufacture of the controller stand comprising the box for temperature and flow controller instrumentation. This stand moreover featured an array of mass flow controllers providing controlled flow of CO₂ and H₂ to the reactor. A second stand was also manufactured containing the differential pressure (DP) transmitter. This stand was manufactured in a way as to provide support for the microchannel reactor within thermally insulating material, while the pressure transmitter was connected to the reactor’s inlet and outlet piping.

To investigate the performance of the microchannel reactor, the variation of operating parameters was considered. Firstly, reactor temperature was a key parameter identified to investigate the rate of reaction taking place within the microchannel reactor. Along with temperature, the effect of varying reactor pressure allowed for an investigation where thermodynamic equilibrium was considered to be a limiting factor on the performance of the reactor. To operate the reactor close to thermodynamic equilibrium permits for optimal reactor performance and essentially contributes to an energy efficient process. Lastly, the effect of varying space velocity was included as an operating parameter to maximise CH₄ production, as increased space velocity will yield higher volumetric CH₄ production rates.

3.3.1 Thermodynamic equilibrium

The importance of temperature and pressure ranges and their effect on the extent of reaction were considered by exploring thermodynamic equilibrium. A replication of the work by Gao et al. (2012:2364) was done, using the AspenPlus® V8.6 simulation package. Components for both the Sabatier and the RWGS reactions were considered as possible products in the equilibrium calculations. The Peng-Robinson fluid property package was
used in these equilibrium calculations. Figure 3.3 illustrates the equilibrium product formation as a function of temperature.

![Figure 3.3: Equilibrium product formation (d.b.) of CO₂ methanation (stoichiometric H₂:CO₂ molar feed ratio)](image)

As established by Gao et al. (2012:2364) the extent of reaction towards CH₄ formation (Sabatier reaction) dominates in the 250–400°C temperature range. The CO₂ conversion at atmospheric, 5 bar and 10 bar pressure is illustrated in Figure 3.4. Also, it is apparent that CO₂ conversion decreases with increasing temperature as the Sabatier reaction is exothermic. However, it is worthy to consider the actual rate of reaction before any assumptions are made on the optimum temperature for CH₄ formation. At atmospheric pressure and 400°C, the equilibrium CO₂ conversion is 85.4%, while at 10 bar pressure the CO₂ conversion increases to 94.1%.

![Figure 3.4: Effect of temperature on equilibrium CO₂ conversion](image)

The mildly endothermic RWGS reaction encourages CO formation at high temperature and low pressures. During the CO₂ methanation process, the RWGS reaction is seen as a secondary reaction as CO is an unfavorable carbon-containing product. The effect of increased pressure on the equilibrium CH₄ yield is illustrated in Figure 3.5. In the 250–400°C temperature range, CO formation is minimal. Consequently, the CH₄ yield is only slightly lower than the overall CO₂ conversion in this temperature range. The CH₄ yield is
seen to improve with increased pressure over the entire temperature range, while the equimolar stoichiometry of the RWGS reaction causes minimal effect with varying pressure. At atmospheric pressure and 400°C, the equilibrium CH$_4$ yield is 84.9%, while at 10 bar pressure the CH$_4$ yield increases to 94.0%.

![Figure 3.5: Effect of temperature on equilibrium CH$_4$ yield (stoichiometric H$_2$:CO$_2$ molar feed ratio)](image)

3.4 **Experimental apparatus**

A flow diagram of the experimental setup is illustrated in Figure 3.6. A flow of pure N$_2$ was used during heat-up and cool down procedures, being regulated by a thermal mass flow controller (Brooks SLA5850). The reactor temperature was maintained using two Watlow FIREROD® electric heating cartridges (300 W) inside the reactor casing, incorporating K-type thermocouples. Two more K-type thermocouples were used to measure temperature in the heating block near the reactor wall. These thermocouples were positioned on opposite ends of the reactor. The flow of H$_2$ and CO$_2$ was controlled by corresponding thermal mass flow controllers (Brooks SLA5850). An ABB continuous gas analyzer (Model EL3020) was used to confirm a stoichiometric feed ratio of 1:4 (CO$_2$:H$_2$) to the reactor. The reactor pressure drop was measured by an AT9000 DP transmitter (GTX31D) connected to the respective reactor inlet and outlet piping. A needle valve was used at the reactor outlet to create a back-pressure for experiments performed at 5 bar and 10 bar. Water vapour produced through both the Sabatier and RWGS reactions was condensed from the product gas using a Julabo F12 condenser with Thermal H5 coolant in order to protect the GC columns from moisture damage. Lastly, the flow of dry product gas was measured by an Aalborg digital mass flow meter in series to an online gas chromatograph (SRI8610C GC).
A photograph of the actual experimental setup is displayed in Figure 3.7. The online GC was used to analyse the composition (d.b.) of the product gas downstream from the reactor. The GC was fitted with a 1.8 m HayeSep D column, two molecular sieve (MS) 13X columns (1.8 m and 0.9 m), two TCDs and one HID. The first GC channel used He as carrier gas and made use of the HayeSep D and 1.8 m MS column in series. The first channel was equipped with a TCD and HID detector; however only the TCD was used. Carbon dioxide was trapped using the HayeSep D column and detected with an event program that incorporated the activation of the stop-flow solenoid. The second channel made use of the 0.9 m MS column and was used to separate H\textsubscript{2}, CH\textsubscript{4} and CO. This channel used Ar as carrier gas and was equipped with the second TCD.
3.5 Experimental procedure

Firstly, to activate the catalyst before any experiments were done, the catalyst was reduced at a reactor temperature of 400°C under a pure H₂ flow rate of 50 NmL.min⁻¹ for 1 h. After reduction, a N₂ flow rate of 50 NmL.min⁻¹ was induced for 30 min to drive off any excess H₂ before experiments were started. A constant molar stoichiometric (Sabatier reaction) feed ratio of 1:4 (CO₂:H₂) was used for all experiments conducted. Preliminary experimental runs at atmospheric pressure indicated that CH₄ formation initiated at temperatures of 250°C and higher. The highest CO₂ conversion was achieved at 400°C, at which point thermodynamic reversibility restricted CO₂ conversion at temperatures above 400°C. Investigation of the effect of moderate pressure increases was also undertaken as equilibrium calculations indicated increased CO₂ conversion (Figure 3.4). An initial flow rate of 50 NmL.min⁻¹ showed an adequate reaction rate whilst 150 NmL.min⁻¹ was regarded as the maximum flow rate due to pressure drop restrictions and minimum contact time with the catalyst surface. Consequently, to evaluate the reactor’s performance, seven reactor temperatures, three reactor pressures and five inlet flow rates were used. The reactor temperature was varied from 250 to 400°C in increments of 25°C, the reactor pressure between atmospheric, 5 bar and 10 bar pressure and the combined flow rate of H₂ and CO₂ from 50 to 150 NmL.min⁻¹ in increments of 25 NmL.min⁻¹ corresponding to space velocities (GHSV) of 32.6–97.8 NL.g⁻¹.h⁻¹.

During every experimental heat-up and cool-down procedure, a N₂ flow rate of 50 NmL.min⁻¹ was used until the desired reactor temperature was achieved. The reactor was operated in daily cycles to simulate the natural intermittency of renewable energy sources (e.g. solar and wind) in power-to-gas scenarios. The experimental investigation involved varying one parameter per experiment whilst keeping both other parameters constant. The performance of the reactor was based on quantitative data provided by the GC, the online digital flow meter as well as pressure drop measurements taken at regular intervals. Each experiment involved 2.5 h of continuous operation, with a GC sample being taken every 15 min. In total 10 data points were averaged to give one experimental data point. The repeatability of experimental data points was also investigated with 15 experiments at atmospheric pressure being repeated. In total 120 experiments totalling to 300 h were done during approximately 40 daily start-up and shutdown cycles. The reactor’s stability was assessed through a durability test lasting 150 h of continuous operation after the 120 experiments had been completed. The durability test was done at a reactor temperature of 375°C, reactor pressure of 10 bar and GHSV of 65.2 NL.g⁻¹.h⁻¹ to simulate demanding reactor conditions.
CHAPTER 4: RESULTS AND DISCUSSION: EXPERIMENTAL RESULTS

The results obtained from the experimental evaluation of the microchannel reactor are discussed in this chapter. A definition of the performance parameters used during this investigation is given in Section 4.1. The method followed to obtain equilibrium data is also discussed in Section 4.1. The effect of reactor temperature on CO₂ methanation performance is discussed in Section 4.2. In Section 4.3 the effect of varying the operating pressure on the reactor’s performance is considered. In Section 4.4 the effect of a variation in the space velocity on the reactor’s performance is established. An analysis on the reactor’s pressure drop characteristics is investigated in Section 4.5, while the durability test performed on the reactor is discussed in Section 4.6. The reproducibility of experimental data is considered in Section 4.7 using repeated experimental data points. Lastly, a discussion on the optimal reactor conditions for CH₄ production follows in Section 4.8.

4.1 Reactor performance parameters

The microchannel reactor’s performance was evaluated on the performance parameters defined as CO₂ conversion, CH₄ yield and specific CH₄ productivity. These parameters are defined by Equations 4.1–4.3.

\[X_{CO_2} (\%) = \frac{n_{T, in} y_{CO_2} - n_{T, out} y_{CO_2}}{n_{T, in} y_{CO_2}} \times 100 \]
\[Y_{CH_4} (\%) = \frac{n_{T, out} y_{CH_4}}{n_{T, out} y_{CO_2} + n_{T, out} y_{CH_4} + n_{T, out} y_{CO}} \times 100 \]
\[CH_4\ productivity\ (NL.g_{cat}^{-1}.h^{-1}) = \frac{\dot{v}_{T, out} y_{CH_4}}{m_{cat}} \]

4.2 Effect of reactor temperature on CO₂ methanation performance

The effect of reaction temperature on the reactor’s methanation ability is discussed using three space velocities and two reactor pressures (Figure 4.1 and Figure 4.2, respectively). At atmospheric pressure CO₂ conversion increased significantly with temperature for all space velocities (Figure 4.1: left). However, the effective CO₂ reaction rate at atmospheric pressure was too low for any thermodynamically-limited reaction to take place at all temperatures investigated. The highest CO₂ conversion (80.4%) was observed at the lowest GHSV (32.6 NL.g_{cat}^{-1}.h^{-1}) and a temperature of 400°C, while the thermodynamic equilibrium conversion at the same temperature was 85.3%. As shown in Figure 4.2: (left), at higher pressure (10 bar) a similar trend in CO₂ conversion with increased temperature was
observed. At temperatures of 350–400°C the lowest GHSV (32.6 NL.g\text{cat}^{-1}.h^{-1}) is strongly affected by thermodynamic limitations with equilibrium CO\textsubscript{2} conversions of 95.4–94.5%. Calculated equilibrium values of 96.5–94.1% for this temperature range found that equilibrium conversion was achieved. At these temperatures, the intermediate and highest GHSV (65.2–97.8 NL.g\text{cat}^{-1}.h^{-1}) did not show strong equilibrium limitations, with the exception of 65.2 NL.g\text{cat}^{-1}.h^{-1} at 400°C.

![Figure 4.1: Effect of reactor temperature on CO\textsubscript{2} conversion (left) and CH\textsubscript{4} yield (right) at atmospheric pressure and GHSVs of 32.6, 65.2 and 97.8 NL.g\text{cat}^{-1}.h^{-1}](image)

For CH\textsubscript{4} yield, a trend similar to that of CO\textsubscript{2} conversion at both atmospheric (Figure 4.1: right) and 10 bar pressures (Figure 4.2: right) was observed. In general a CH\textsubscript{4} yield slightly lower than CO\textsubscript{2} conversion was achieved across the entire temperature range investigated (250–400°C). This observation leads to the conclusion than CO formation according to the RWGS reaction (Equation 2.2) contributes to the total rate of CO\textsubscript{2} converted. At atmospheric pressure the highest CH\textsubscript{4} yield (76.3%) was also obtained at 400°C for 32.6 NL.g\text{cat}^{-1}.h^{-1} (Figure 4.1: right). Although the RWGS reaction produces CO as a secondary product to CH\textsubscript{4}, the CH\textsubscript{4}-producing Sabatier reaction (Equation 2.1) is dominant in the higher temperature range (300–400°C) where greater CO\textsubscript{2} conversions were observed. At a pressure of 10 bar, the lowest space velocity (32.6 NL.g\text{cat}^{-1}.h^{-1}) showed marginal to zero CO formation at temperatures of 300–400°C, as the CH\textsubscript{4} yield obtained is similar to the CO\textsubscript{2} converted (Figure 4.2). A temperature of 375°C and space velocity of 32.6 NL.g\text{cat}^{-1}.h^{-1} provided a CH\textsubscript{4} yield of 97.5%, which was the highest CH\textsubscript{4} yield calculated at 10 bar pressure. The intermediate and highest space velocities (65.2 and 97.8 NL.g\text{cat}^{-1}.h^{-1}) however did yield CH\textsubscript{4} percentages lower than the total amount of CO\textsubscript{2} converted due to CO formation across the entire temperature range (250–400°C) investigated.
4.3 Effect of reactor pressure on CO₂ methanation performance

The effect of reactor pressure is illustrated in Figure 4.3 at a reaction temperature of 400°C. With an increase in reactor pressure, a general increase in CO₂ conversion was observed (Figure 4.3: left) at all the space velocities investigated. The effect of increased reactor pressure is significant between atmospheric and 5 bar pressure while an increase in pressure from 5 bar to 10 bar pressure shows only a slight improvement in CO₂ conversion. To improve CH₄ production, a strategy of high pressure, high flow rate is proposed. However, the highest space velocity (97.8 NL.g⁻¹.cat⁻¹.h⁻¹) shows an insignificant increase in CO₂ conversion from 5 bar to 10 bar pressure (83.4–83.6%). Operation at 5 bar will therefore be more efficient due to saving on overheads related to gas compression.

Increasing pressure had a positive influence on the CH₄ yield at 400°C for all three space velocities investigated, as seen in Figure 4.3: (right). The lowest and intermediate space velocities (32.6 and 65.2 NL.g⁻¹.cat⁻¹.h⁻¹) shows equilibrium limitation of the CH₄ yield at 5 and 10 bar as increasing pressure promotes the rate at which reaction takes place. At 5 and 10 bar the effect of space velocity on the CH₄ yield is significantly less than that observed at atmospheric pressure.
4.4 **Effect of space velocity on CO$_2$ methanation performance**

The effect of altering GHSV is illustrated at atmospheric (Figure 4.4) and 10 bar pressure (Figure 4.5). In general, CO$_2$ conversion was found to decrease with increasing space velocity for both pressures presented. At atmospheric pressure (Figure 4.4: left), CO$_2$ conversion decreases significantly with increasing space velocity (32.6–97.8 NL.g$_{cat}^{-1}$.h$^{-1}$) at 400°C (80.4–48.9%), while at low temperature (250°C) only a slight decrease in CO$_2$ conversion is observed (6.6–2.2%). It is evident that operating the reactor at higher temperatures improved CO$_2$ conversion significantly. However, high flow rates are required to maximise CH$_4$ production and, at atmospheric pressure, undesirable conversions occur at high GHSVs. Elevating the reactor pressure to 10 bar proved that the conversion of CO$_2$ at 400°C was not affected appreciably by GHSV (Figure 4.5: left). A decrease in CO$_2$ conversion of only 10.9% (from 94.5% to 83.6%) was observed with a threefold increase in GHSV from 32.6–97.8 NL.g$_{cat}^{-1}$.h$^{-1}$. Thus, operating the reactor at 10 bar, 400°C and 97.8 NL.g$_{cat}^{-1}$.h$^{-1}$ will enable a high CH$_4$ production rate.

![Figure 4.4: Effect of GHSV on CO$_2$ conversion (left) and CH$_4$ yield (right) at atmospheric pressure and reactor temperatures of 250°C, 325°C and 400°C](image)

At 10 bar pressure and 325°C the effect of GHSV is pronounced, as the CH$_4$ yield is found to decrease by 60.9% (88.4–27.5%) when comparing the CH$_4$ yield at a GHSV of 32.6 NL.g$_{cat}^{-1}$.h$^{-1}$ with the yield at a GHSV of 97.8 NL.g$_{cat}^{-1}$.h$^{-1}$ (Figure 4.5: right). A similar trend is also seen in the CO$_2$ conversion (Figure 4.5: left). At 325°C the kinetic rate of reaction is slower than at 400°C where equilibrium limitation plays a significantly larger role. Consequently an increase in space velocity has a greater influence on CO$_2$ conversion and CH$_4$ yield at 325°C than at 400°C. In other words, at 400°C an increase in space velocity (32.6–97.8 NL.g$_{cat}^{-1}$.h$^{-1}$) is able to maintain the rate of the reaction with a substantially smaller drop in CH$_4$ yield of only 8.2% (94.2–86.0%). From another perspective, the effect of GHSV on CO$_2$ conversion and CH$_4$ yield can be seen in Figure 4.2 where at 325°C a great variation in these parameters is visible with increasing space velocity at 10 bar pressure. This effect is not so prominent at a lower (250°C) or a higher temperature (400°C).
4.5 Reactor pressure drop analysis

Pressure drop measurements over the microchannel reactor using three GHSVs (32.6, 65.2 and 97.8 NL.g\textsuperscript{cat-1.h-1) at 10 bar pressure are shown in Figure 4.6. As expected the pressure drop across the reactor increases with increasing space velocity. The pressure drop is also dependent on the combined effect of temperature and reaction stoichiometry linked to the kinetic reaction rate. With increasing temperature a general trend of increasing pressure drop is observed. The largest pressure drop at 10 bar pressure is found to be 5.40 kPa (108 Pa.mm-1) at 400°C and a GHSV of 97.8 NL.g\textsuperscript{cat-1.h-1. Considering the high throughput of product gas that the microchannel reactor allows under these conditions, the loss in process pressure is marginal. An advantage of operating a reactor scheme with low pressure drop characteristics is increased process efficiency obtained by avoiding additional operational costs to create a forced-flow system.

4.6 Durability test of reactor performance

A durability test of 150 h was performed in the microchannel reactor to investigate the possibility of catalyst deactivation due to thermal degradation or catalyst poisoning. The test was initiated at a reactor temperature of 375°C, reactor pressure of 10 bar and GHSV of 65.2 NL.g\textsuperscript{cat-1.h-1 to simulate harsh reactor conditions. The results from the durability test
(Figure 4.7) indicate that stability in terms of CO₂ conversion and CH₄ yield is maintained throughout the time period. The CO₂ conversion and CH₄ yield obtained throughout the test fall within a band of 4% from the calculated average CO₂ conversion (86.0%) and CH₄ yield (86.6%). The random scatter of data points around the calculated averages during the entire test period leads to the conclusion that the catalyst remains active and stable over prolonged periods of rigorous reactor operation. After the test period the microchannel reactor was inspected for mechanical or structural failure, but did not show any such deficiencies.

Figure 4.7: CO₂ conversion (left) and CH₄ yield (right) over an extended test period of 150 h at reactor temperature of 375°C, 10 bar pressure and GHSV of 65.2 NL·g_{cat}⁻¹·h⁻¹

4.7 Repeatability of experimental data points

To determine whether experimental data points were repeatable, 15 data points were repeated at atmospheric pressure. The repeated data points for reactor temperatures of 275°C, 350°C and 400°C as functions of GHSV were plotted against the experimental data points for comparison purposes (Figure 4.8). These three temperatures were picked at random to investigate data repeatability over the entire temperature range. For both CO₂ conversion (Figure 4.8: left) and CH₄ yield (Figure 4.8: right) the repeated points fall within an error margin of 6% from the experimental data points. From the comparison between the repeated and experimental data points it can be concluded that experiments conducted in the microchannel reactor are reproducible as shown by the relatively small error margin.

Figure 4.8: Repeatability of CO₂ conversion (left) and CH₄ yield (right) at atmospheric pressure and reactor temperatures of 275°C, 350°C and 400°C
4.8 Optimum reactor conditions for CH₄ production

To consider the feasibility of CO₂ methanation using renewable hydrogen, a strategy must be implemented to improve the production of CH₄. To achieve optimal production of CH₄ a balance between CO₂ conversion and reactor throughput is required. Considerations regarding the energy efficiency of reactor operation had also been considered before decisions were taken regarding the optimal reactor conditions. The best reactor performance for the highest space velocity (97.8 NL.g⁻¹.h⁻¹) was achieved at 400°C for all pressures investigated. The effect of increasing pressure was found to improve reactor performance significantly, compared to results found with atmospheric pressure experiments. However, as discussed in Section 4.3, increasing pressure from 5 bar to 10 bar had an insignificant effect on CO₂ conversion and CH₄ yield under these conditions. Operating the reactor at 5 bar pressure will therefore minimise operational expenditures while producing a satisfactory rate of CH₄ production. The optimal conditions for CH₄ production are summarised in Table 4.1.

Table 4.1: Optimum reactor conditions and performance parameters of microchannel reactor

<table>
<thead>
<tr>
<th>Parameter/Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst</td>
<td>8.5 wt.% Ru/Al₂O₃</td>
</tr>
<tr>
<td>Catalyst loading (mg)</td>
<td>92</td>
</tr>
<tr>
<td>Feed ratio (CO₂:H₂)</td>
<td>1:4</td>
</tr>
<tr>
<td>Reactor temperature (°C)</td>
<td>400</td>
</tr>
<tr>
<td>Reactor pressure (bar)</td>
<td>5</td>
</tr>
<tr>
<td>GHSV (NL.g⁻¹.h⁻¹)</td>
<td>97.8</td>
</tr>
<tr>
<td>CO₂ conversion (%)</td>
<td>83.4</td>
</tr>
<tr>
<td>CH₄ yield (%)</td>
<td>83.5</td>
</tr>
<tr>
<td>Reactor pressure drop (Pa.mm⁻¹)</td>
<td>245</td>
</tr>
<tr>
<td>CH₄ production rate (NL.g⁻¹.h⁻¹)</td>
<td>16.9</td>
</tr>
</tbody>
</table>
CHAPTER 5: COMPUTATIONAL FLUID DYNAMIC (CFD) MODEL DEVELOPMENT, RESULTS AND DISCUSSION

Computational fluid dynamic (CFD) modelling was used to describe the microchannel reactor for the purpose of CO\textsubscript{2} methanation in addition to the experimentally evaluated microchannel reactor. The CFD model development is presented in Section 5.1. The model geometry, assumptions, governing equations, boundary conditions, reaction kinetics and the model solution method is discussed. The results obtained from the microchannel reactor model are presented in Section 5.2. The kinetic parameters obtained, model validation on experimental data and reaction-coupled transport phenomena are presented.

5.1 CFD model development

The microchannel reactor-based CFD model demanded the definition of a free-fluid phase, as well as a porous catalyst layer as computational domains in the model geometry. Identifying suitable governing equations was essential in the development of the mathematical model, while certain assumptions were required regarding species continuity, momentum, mass and energy calculations. Recognition must be given to Chiuta et al. (2014:11390), as the specific microchannel model geometry used during this work was originally constructed by them. Chemical reaction kinetics for the Sabatier reaction along with the reverse-water-gas-shift (RWGS) reaction (modelled as a secondary reaction to the Sabatier reaction) were included to predict the respective formation of CH\textsubscript{4} and CO as observed during the experimental evaluation of the microchannel reactor. A suitable solution method was identified to solve the mathematical model and subsequently compare with the experimental results in order to identify the accuracy of the CFD model.

5.1.1 Model geometry

To obtain an accurate representation of the microchannel reactor used during the experimental investigation (Section 3.1) identical microchannel dimensions was used in this modelling study. The model geometry for CFD simulation consisted of a single microchannel with a width of 450 µm, height of 150 µm and length of 50 mm. It was assumed that microchannels within the reactor were identical, allowing the modelling approach of a single microchannel to describe the entire reactor. The even dispersal of volumetric flow by the distribution manifold is a common assumption to calculate the flow rate through a single channel and is described in the literature (Chen et al., 2008:4; Commenge et al., 2002:355). To simplify the model even further, a symmetrical approach was adopted where only half the width of the channel was modelled. The model consisted of a free-fluid region, as well as a
porous catalyst washcoat (δ = 40 µm) lining the inside faces of the microchannel. Figure 5.1 illustrates a depiction of the discretized model geometry containing 43,520 free-triangular domain elements used to describe the geometry mesh. The half-width cross-section of the discretized free-fluid phase and porous catalyst layer is visible in the yz-plane (Figure 5.1).

![Discretized model geometry](image)

Figure 5.1: Discretized model geometry used during CFD modelling containing 43,520 free-triangular domain elements

5.1.2 Model assumptions

The assumption was made that flow within the channel was weakly compressible, steady and laminar. It was assumed that the ideal gas law was valid for the multicomponent mixture and the gas density calculated accordingly. Temperature-dependent correlations for the heat capacity, thermal conductivity and viscosity of each species were obtained from the Korean Thermophysical Properties Data Bank and with the mass fraction weighted rule, used to describe each property at local points along the microchannel (CHERIC, 2016). Isothermal reactor operation was assumed, therefore asserting thermal equilibrium between the gas phase and the porous catalyst layer. The assumption was made that the homogeneous gas-phase reaction was insignificant and that reaction only took place in the porous catalyst washcoat. The catalyst washcoat properties was assumed uniform throughout the porous layer and summarised in Table 5.1.
Table 5.1: Summary of catalyst physical properties used for modelling the porous catalyst computational domain (taken from Chiuta et al., 2016:3778)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer thickness, δ (μm)</td>
<td>40</td>
</tr>
<tr>
<td>Density, ρ (kg.m$^{-3}$)</td>
<td>980</td>
</tr>
<tr>
<td>Porosity, ε</td>
<td>0.4</td>
</tr>
<tr>
<td>Permeability, κ (m2)</td>
<td>1e-12</td>
</tr>
<tr>
<td>Thermal conductivity, λ (W.m$^{-1}$.K$^{-1}$)</td>
<td>44</td>
</tr>
<tr>
<td>Heat capacity, C_p (J.kg$^{-1}$.K$^{-1}$)</td>
<td>890</td>
</tr>
</tbody>
</table>

5.1.3 Governing equations

Partial differential equations (in vector form) were used to describe the respective continuity, momentum, mass and energy conservation equations in the free-fluid and porous catalyst computational domains (Table 5.2). To describe momentum conservation in the free-fluid region, the Navier-Stokes equation for compressible fluids was used, while the Brinkman-Forchheimer extended Darcy model was used to describe momentum conservation in the porous catalyst layer. Species continuity within the free-fluid, as well as the porous catalyst phase was estimated using the Stefan-Maxwell multicomponent diffusion model, with the term describing species generation and consumption only applying to the porous catalyst phase. Furthermore, convective mass transfer was assumed in both these regions.

Table 5.2: Summary of governing equations for modelling the free-fluid and porous catalyst computational domains (taken from Chiuta et al., 2014:11392–11395)

<table>
<thead>
<tr>
<th>Free-fluid computational domain</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal gas law</td>
<td>$\rho = \frac{P}{RT} \sum_{i=1}^{5} \gamma_i M_i$</td>
</tr>
<tr>
<td>Continuity equation</td>
<td>$\nabla \cdot (\rho u) = 0$</td>
</tr>
<tr>
<td>Navier-Stokes momentum equation</td>
<td>$u \cdot \nabla (\rho u) = -\nabla P + \nabla \cdot (\mu \nabla u)$</td>
</tr>
<tr>
<td>Energy equation</td>
<td>$u \cdot \nabla T (\rho C_p) = \nabla \cdot (k \nabla T)$</td>
</tr>
<tr>
<td>Species continuity equation</td>
<td>$u \cdot \nabla (\rho \omega_i) = \nabla \cdot (\rho D_{ij} \nabla \omega_i)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Porous-catalyst computational domain</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal gas law</td>
<td>$\rho = \frac{P}{RT} \sum_{i=1}^{5} \gamma_i M_i$</td>
</tr>
<tr>
<td>Continuity equation</td>
<td>$\nabla \cdot (\varepsilon \rho u) = 0$</td>
</tr>
<tr>
<td>Brinkman-Forchheimer extended Darcy equation</td>
<td>$u \cdot \nabla (\varepsilon \rho u) = -\nabla P + \nabla \cdot (\mu_{eff} \nabla u) - \frac{\mu}{k} u - \frac{\varepsilon \rho C_p}{\varepsilon k}</td>
</tr>
<tr>
<td>Energy equation</td>
<td>$u \cdot \nabla T (\varepsilon \rho C_p) = \nabla \cdot (k_{eff} \nabla T) + (1 - \varepsilon) \Delta H_{f} \rho_s R_r$</td>
</tr>
<tr>
<td>Species continuity equation</td>
<td>$u \cdot \nabla (\varepsilon \rho \omega_i) = \nabla \cdot (\varepsilon \rho D_{ij} \nabla \omega_i) + (1 - \varepsilon) \sum_{i=1}^{5} a_i M_i \rho_s R_r$</td>
</tr>
</tbody>
</table>
The Fuller-Schettler-Giddings (FSG) equation (Equation 5.1) was used to estimate binary gas-phase diffusion coefficients based on atomic diffusion volumes (Fuller et al., 1966:21; Fuller et al., 1969:3683). This correlation was found to be the most accurate for estimating binary diffusion coefficients, based on the smallest average error compared to experimentally determined coefficients (Reid et al., 1987:634).

\[
D_{ij} = \frac{10^{-3}T^{1.75} \left(\frac{1}{M_i} + \frac{1}{M_j} \right)^{\frac{1}{2}}}{p_{atm} \left[\left(\sum v_i \right)^{\frac{1}{2}} + \left(\sum v_j \right)^{\frac{1}{2}} \right]^2}
\]

Equation 5.1

To estimate the effective binary diffusion coefficients in the porous catalyst phase, the Bruggeman correlation (Equation 5.2) was used to account for the effects of catalyst porosity on binary interactions (Fuller et al., 2009:336).

\[
D_{ij,eff} = D_{ij} \left(\frac{T}{T_0} \right)^{1.5} \varepsilon^{1.5}
\]

Equation 5.2

5.1.4 Boundary conditions

The mathematical model was solved subject to certain initial and boundary conditions. Firstly, a constant stoichiometric molar ratio of 1:4 (CO₂:H₂) at the inlet of the microchannel was used as in the case of the experimental reactor evaluation (Section 3.4). The reactants entered the microchannel through the free-fluid inlet boundary with a flat velocity profile (Cao et al., 2015:277). As a result, the magnitude of the average inlet velocity was calculated, based on the cross-sectional area of the free-fluid region. At the free-fluid exit boundary, the outlet pressure was defined as the reference operational pressure for the specific reactor condition, while viscous stress at the outlet boundary was assumed to disappear. Furthermore, velocity, temperature and species mass fluxes in the normal (outward) direction were set to zero at the microchannel exit boundary. Along the channel walls the no-slip boundary condition was applied, while no flux in terms of species mass was imposed in the normal directions on wall boundaries. Also, a constant wall-temperature boundary condition was implemented, since the assumption of isothermal reactor operation was made. A symmetric boundary condition was applied at the centre-plane to impose zero normal gradients in velocity, pressure, temperature and species mass fraction across the symmetrical boundary. Lastly, continuity in velocity, pressure, temperature and species mass were assumed at the interface between the free-fluid and porous catalyst phases.
5.1.5 Reaction kinetics

In this dissertation, the reversible elementary rate law (Equation 5.3) will be used to describe the Sabatier reaction. The work by Lunde (1974:228) and Lunde & Kester (1974:33) found a value for the empirical factor \(n \) of 0.225 with an activation energy \(E_a \) of 74.46 kJ.mol\(^{-1}\). In the work published by Brooks et al. (2007:1166), \(n \) and \(E_a \) were found to be 0.3 and 69.06 kJ.mol\(^{-1}\), respectively. In their case, kinetic data was derived using a 3 wt.% Ru/TiO\(_2\) catalyst in a packed-bed quartz tube. Subsequent experiments by Brooks et al. (2007:1166) were conducted in a microchannel reactor. The current investigation uses reference kinetics of Ohya et al. (1997:245) who also conducted an experimental investigation on a 0.5 wt.% Ru/Al\(_2\)O\(_3\) catalyst in a packed-bed reactor. An identical \(E_a \) of 69.06 kJ.mol\(^{-1}\) was found to that of Brooks et al. (2007:1166). However, the value for the empirical factor \(n \) of 0.85 differs significantly from other reported values. Ohya et al. (1997:245) found a value for the pre-exponential constant \(A \) of \(4.75 \times 10^8 \) bar\(^{-2.5}\).s\(^{-1}\). The general form of the reversible elementary rate law is given by Equation 5.3 (Lunde, 1974:228; Lunde & Kester, 1974:30).

\[
- \frac{dp_{CO_2}}{dt} = k(T) \left[(p_{CO_2})^n (p_{H_2})^{4n} - \frac{(p_{CH})^n (p_{H_2O})^{2n}}{(K(T))^n} \right] \\
\]

\(r_{Sabatier} = \frac{1}{RT} \frac{dp_{CO_2}}{dt} \) \hspace{1cm} \text{(5.4)}

The first order rate law in CO\(_2\) concentration (Equation 5.5) will be used to describe the RWGS reaction (Lebarbier et al., 2010:5). A similar difference in reaction rate constants as was found by Dagle et al. (2008:67) is expected in this investigation as to model the RWGS reaction as a secondary reaction. Respective values for \(A \) and \(E_a \) of 3.40e8 s\(^{-1}\) and 83.2 kJ.mol\(^{-1}\) were reported on a 10 wt.% Pd/ZnO catalyst in the 250–400°C temperature range. The current work will use these kinetic parameters as reference, noting that the 10 wt.% Pd/ZnO catalyst loading is comparable to the 8.5 wt.% Ru/Al\(_2\)O\(_3\) catalyst used in the current study.

\[
-r_{RWGS} = k(T) \times C_{CO_2} \text{ \hspace{1cm} (5.5)}
\]

5.1.6 Solution method

CFD modelling was carried out using the COMSOL Multiphysics® (Version 4.3b) finite element-based simulation package. A computer with 2.9 GHz (8-core Intel) processing power and 16 GB DDR3 RAM was used to run the software package. The parallel sparse direct linear solver (PARDISO) was used to solve variables to within a relative tolerance of
Three separate modelling studies were introduced for the different operating pressures (atmospheric, 5 bar and 10 bar). For each, a parametric sweep study (with reference kinetic parameters) over the range of temperatures (250–400°C in increments of 25°C) and space velocities (32.6–97.8 NL.g\textsubscript{cat}^{-1}.h-1 in increments of 16.3 NL.g\textsubscript{cat}^{-1}.h-1) was done in order to fit the performance parameters defined as CO\textsubscript{2} conversion and CH\textsubscript{4} yield. These experimental parameters correspond to those used in the experimental investigation (Section 3.5). Once an initial fit to the experimental data was obtained, an optimisation study using the Nelder-Mead solution method was conducted to find the best-fitting kinetic parameters for both reactions. The optimisation studies were done based on the sum of least squares method between the experimentally determined and model predicted CO\textsubscript{2} conversion and CH\textsubscript{4} yield.

5.2 CFD model results

This Section serves as a discussion of the results obtained from the CFD model. The best-fitting kinetic parameters are presented in Section 5.2.1. The model validation on experimental performance parameters defined as CO\textsubscript{2} conversion and CH\textsubscript{4} yield is presented in Section 5.2.2 as to evaluate the accurateness of the CFD model, with an evaluation of the transport phenomena encountered within the three-dimensional microchannel space following in Section 5.2.3.

5.2.1 Kinetic parameter estimation

In Appendix C a parity plot of model-predicted vs. experimental CO\textsubscript{2} conversion is presented for atmospheric (Figure C.1), 5 bar (Figure C.2) and 10 bar pressure (Figure C.3). A 95% prediction interval demonstrates that the mathematical model predicted experimental CO\textsubscript{2} conversion data with reasonable accuracy. Values for R2 of 0.973, 0.989 and 0.953 were obtained for the respective operating pressures (atmospheric, 5 bar and 10 bar). The best-fitting kinetic parameters, obtained by the solution method described in Section 5.1.6, are presented for each pressure in Table 5.3.

It was found that E\textsubscript{a} values for the Sabatier reaction slightly higher than the reference value (69.06 kJ.mol-1), reported by Ohya \textit{et al.} (1997:245), best described each pressure. At 10 bar, thermodynamic limitations from the reversible Sabatier rate law were found to exhibit a much larger role on the CO\textsubscript{2} conversion than at atmospheric pressure. Consequently, a decrease in E\textsubscript{a} values was seen with increasing pressure, as the effect of temperature on the reaction rate was smaller. For 5 and 10 bar, the Sabatier reaction order was significantly smaller than the reference value (0.85) reported by Ohya \textit{et al.} (1997:245). The best fitting
activation energies for the RWGS reaction were also seen to decrease with increasing pressure.

Table 5.3: Best-fitting kinetic parameters at different operating pressures

<table>
<thead>
<tr>
<th>Operating Pressure</th>
<th>Sabatier</th>
<th>RWGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (bar$^{-2.5}$,s$^{-1}$)</td>
<td>6.17e7</td>
<td>2.94e7</td>
</tr>
<tr>
<td>E_a (kJ.mol$^{-1}$)</td>
<td>77.96</td>
<td>89.83</td>
</tr>
<tr>
<td>n</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>5 bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (bar$^{-0.92}$,s$^{-1}$)</td>
<td>7.63e6</td>
<td>1.76e7</td>
</tr>
<tr>
<td>E_a (kJ.mol$^{-1}$)</td>
<td>74.73</td>
<td>85.94</td>
</tr>
<tr>
<td>n</td>
<td>0.305</td>
<td></td>
</tr>
<tr>
<td>10 bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (bar$^{-0.47}$,s$^{-1}$)</td>
<td>6.83e6</td>
<td>3.63e6</td>
</tr>
<tr>
<td>E_a (kJ.mol$^{-1}$)</td>
<td>69.35</td>
<td>77.36</td>
</tr>
<tr>
<td>n</td>
<td>0.222</td>
<td></td>
</tr>
</tbody>
</table>

5.2.2 Model validation: CO$_2$ conversion and CH$_4$ yield

At atmospheric pressure, the model trend for both the CO$_2$ conversion (Figure 5.2: left) and CH$_4$ yield (Figure 5.2: right) closely represented the results found in the experimental evaluation of the microchannel reactor. Only at the highest temperature (400°C) and lowest space velocity (32.6 NL.g$_{\text{cat}}^{-1}$,h$^{-1}$) the model deviated more significantly from the experimental data points. In particular, the lowest space velocity yielded a much higher experimental CH$_4$ yield than what was predicted by the model at this temperature. Experimentally, the Sabatier reaction (CH$_4$ formation) controlled CO$_2$ conversion more than the model predicted. This was due to a RWGS reaction rate being modelled as first order in CO$_2$ concentration, when in actual fact the RWGS reaction rate is governed by thermodynamic limitations. With increasing space velocity, lower reaction rates for both reactions were observed, translating to reduced CO$_2$ conversions (and CH$_4$ yields) across the entire temperature range (250–400°C).
Figure 5.2: Model fit on CO$_2$ conversion (left) and CH$_4$ yield (right) at atmospheric pressure and GHSVs of 32.6, 65.2 and 97.8 NL.g$_{cat}^{-1}.h^{-1}$

The model-predicted CO$_2$ conversion (Figure 5.3: left) and CH$_4$ yield (Figure 5.3: right) show a good fitting to experimental data at 5 bar pressure. An important observation was made at 400°C where the model-predicted CO$_2$ conversion exceeded equilibrium for the lowest space velocity (32.6 NL.g$_{cat}^{-1}.h^{-1}$). This was due to the simplicity of the first order rate dependence in CO$_2$ concentration used to model the RWGS reaction rate. In reality the RWGS rate is also equilibrium-limited similar to the Sabatier reaction, and not first order as modelled in this study. To increase the accuracy of the modelled RWGS reaction rate, a more complex RWGS rate law is suggested for future studies. This was also noticed at 10 bar pressure (Figure 5.4) in the higher temperature range (375–400°C).

Figure 5.3: Model fit on CO$_2$ conversion (left) and CH$_4$ yield (right) at 5 bar pressure and GHSVs of 32.6, 65.2 and 97.8 NL.g$_{cat}^{-1}.h^{-1}$

As the stoichiometry of the Sabatier reaction allows a decrease in moles with reaction extent, an increase in conversion equilibrium was expected for increases in operating pressure for all temperatures investigated. Indeed, an increase in modelled CO$_2$ conversion was seen from atmospheric pressure (Figure 5.2) to 5 bar (Figure 5.3) and ultimately up to 10 bar (Figure 5.4). At 10 bar, model results for the lowest space velocity (32.6 NL.g$_{cat}^{-1}.h^{-1}$) showed lower CO$_2$ conversions (Figure 5.4: left) than experimental data in the 250–300°C temperature range, while for the highest space velocity (97.8 NL.g$_{cat}^{-1}.h^{-1}$) the model-predicted CO$_2$ conversion was found to be greater for temperatures of 325-400°C. Overall, the model fit also predicted much higher CH$_4$ yields (Figure 5.4: right) over the entire
temperature range for the highest space velocity (97.8 NL.g\textsubscript{cat}^{-1}.h-1). In general, the effect of increasing space velocity was greater during the experimental investigation of the microchannel reactor than the model predicted for both CO\textsubscript{2} conversion and CH\textsubscript{4} yield at 10 bar pressure.

![Figure 5.4: Model fit on CO\textsubscript{2} conversion (left) and CH\textsubscript{4} yield (right) at 10 bar pressure and GHSVs of 32.6, 65.2 and 97.8 NL.g\textsubscript{cat}^{-1}.h-1](image)

5.2.3 Microchannel reactor transport phenomena

5.2.3.1 Velocity distributions

The axial velocity (v\textsubscript{x}) distributions shown for atmospheric (Figure 5.5) and 10 bar pressure (Figure 5.6) provide an understanding of the reaction extent at different operating conditions. At all conditions a fully-developed laminar velocity profile was seen to develop near the inlet of the microchannel. For a GHSV of 32.6 NL.g\textsubscript{cat}^{-1}.h-1, a maximum axial velocity of approximately 0.41 m.s-1 was observed near the inlet before the extent of reaction (CO\textsubscript{2} conversion), and the stoichiometry of the Sabatier reaction caused a decrease in axial velocity further down the length of the channel. At low temperature (250°C) and atmospheric pressure (Figure 5.5: left) a weakly decreasing axial velocity profile was seen down the length of the channel, as low reaction rates occurred at this temperature condition. At 400°C (Figure 5.5: right) a reduction in velocity was observed down the entire length of the channel, as higher reaction rates occurred at 400°C for both the Sabatier and RWGS reactions. It is obvious that at atmospheric pressure, thermodynamic equilibrium was not achieved as a near-constant velocity profile distinctive to equilibrium was not observed near the exit of the channel.
To increase overall CO\textsubscript{2} conversion and therefore efficient reactor operation, higher pressure operation was prerequisite. A slight decrease in axial velocity along the microchannel length was seen at the 10 bar and 250°C condition (Figure 5.6: left), however only slightly better than what was observed at atmospheric pressure (Figure 5.5: left). The best reactor performance was seen at high-pressure (10 bar) and high-temperature (400°C) operation (Figure 5.6: right) where the axial velocity reduced significantly in the first quarter of the microchannel. In the latter half of the microchannel the axial velocity tapered off towards a constant velocity magnitude as influences of equilibrium limitation hindered CO\textsubscript{2} conversion any further. In general, low fluid velocities were seen in the porous catalyst washcoat for all conditions investigated.
Figure 5.6: Axial velocity (vx) profile at the mid-xz plane for 250°C (left) and 400°C (right) at 10 bar pressure and GHSV of 32.6 NL.g\text{cat}^{-1}.h^{-1}

5.2.3.2 Concentration distributions

It is obvious from axial velocity distributions presented for both atmospheric (Figure 5.5) and 10 bar pressure (Figure 5.6) that reactor operation at low temperature proved to be unsatisfactory in terms of CO\textsubscript{2} conversion. To increase CO\textsubscript{2} conversion it is suggested that the microchannel reactor is operated under high-temperature conditions for all pressures investigated. To attain a quantitative understanding of the reaction extent, Figure 5.7 and Figure 5.8 provide illustrations of species mole fractions (d.b.) along the channel length for atmospheric and 10 bar pressure, respectively. At atmospheric pressure and 400°C, the best reactor performance was observed for the lowest space velocity (32.6 NL.g\text{cat}^{-1}.h^{-1}) as mentioned before in Section 5.2.2. This is evident in Figure 5.7 as the highest CH\textsubscript{4} fraction obtained was 0.21 at the outlet of the channel (Figure 5.7: left). With increased space velocity, the CH\textsubscript{4} outlet fraction reduced to 0.12 (Figure 5.7: right) as reaction rates deceased due to reduced contact times with the catalyst surface. Overall, high residual H\textsubscript{2} and CO\textsubscript{2} were observed as equilibrium limitation was not achieved under any atmospheric pressure conditions.
Figure 5.7: Species mole fraction (d.b.) along normalised microchannel length (x/L) for 32.6 NL·g_{cat}⁻¹·h⁻¹ (left) and 97.8 NL·g_{cat}⁻¹·h⁻¹ (right) at 400°C and atmospheric pressure

With increased pressure (10 bar) acceptable product spectra were observed at 400°C (Figure 5.8). For a GHSV of 32.6 NL·g_{cat}⁻¹·h⁻¹ a maximum CH₄ fraction of 0.68 was obtained at the channel outlet (Figure 5.8: left). Also, species mole fractions seem to form a plateau around half-way through the channel as equilibrium limitation starts. However, to increase reactor efficiency by effectively utilising the entire channel length, a high space velocity is essential. With a threefold increase in space velocity (97.8 NL·g_{cat}⁻¹·h⁻¹) the CH₄ fraction (0.65) obtained at the outlet of the channel (Figure 5.8: right) changed marginally from what was previously observed at low space velocity. Again, high-pressure, high-temperature conditions showed satisfactory reactor performance, while a high space velocity produced the best result in terms of specific CH₄ production.
The formation of CH$_4$ through the Sabatier reaction was found to be the main carbon-containing product during this study as seen in Figure 5.7 (atmospheric pressure) and Figure 5.8 (10 bar). Only small amounts of CO were obtained through the RWGS reaction kinetics also included in this investigation. This observation is validated as the Sabatier reaction rate is seen to be dominant at all conditions investigated, with the magnitude of the reaction rate 10 to 20 times higher than that of the RWGS reaction at the inlet of the microchannel (Figure 5.9). Although the RWGS reaction was effectively modelled as a secondary reaction to the Sabatier reaction, its contribution to the overall conversion rate of CO$_2$ was still important as CO formation was observed during the experimental investigation of the microchannel reactor.
Figure 5.9: Reaction rate along normalised microchannel length (x/L) for atmospheric (left) and 10 bar pressure (right) at 400°C and 32.6 NL.g$^{-1}$.h$^{-1}$.

A closer investigation of the reaction rate can be achieved through the axial mass flux contours of the reactant CO$_2$ at different operational conditions. At low pressure and 400°C the residua CO$_2$ was evident for both 32.6 and 97.8 NL.g$^{-1}$.h$^{-1}$ in Figure 5.10. At these conditions the lowest space velocity (Figure 5.10: left) provided the best performance, but as was shown by the CO$_2$ mole fractions (Figure 5.7) did not support CO$_2$ conversion limited by equilibrium and only managed low CH$_4$ fractions for all space velocities investigated.

Figure 5.10: Axial CO$_2$ mass flux at the mid-xz plane for 32.6 NL.g$^{-1}$.h$^{-1}$ (left) and 97.8 NL.g$^{-1}$.h$^{-1}$ (right) at 400°C and atmospheric pressure.
Confirmation of acceptable reactor performance at high-pressure and high-temperature conditions is evident in the axial CO$_2$ mass flux (Figure 5.11). For the lowest space velocity (32.6 NL.g$_{cat}^{-1}$.h$^{-1}$) the reduction rate of CO$_2$ is substantial in the first 10% of microchannel length (Figure 5.11: left) as these conditions instigate fast reaction rates. As expected, the highest space velocity (97.8 NL.g$_{cat}^{-1}$.h$^{-1}$) supports a more gradual reduction of CO$_2$ mass flux (Figure 5.11: right) compared to the lowest space velocity. For all pressures investigated, low axial mass fluxes of CO$_2$ were observed in the porous catalyst washcoat relative to the free-fluid region.

![Convective flux magnitude (kg/(m2.s))] ![Convective flux magnitude (kg/(m2.s))]

Figure 5.11: Axial CO$_2$ mass flux at the mid-xz plane for 32.6 NL.g$_{cat}^{-1}$.h$^{-1}$ (left) and 97.8 NL.g$_{cat}^{-1}$.h$^{-1}$ (right) at 400°C and 10 bar pressure

To obtain an understanding of CH$_4$ produced in the microchannel, a CH$_4$ concentration distribution is illustrated in Figure 5.12 along the normalised microchannel height (transverse direction to axial fluid flow) at local x-coordinates from the microchannel inlet. Close to the channel inlet (10 µm) a sharp gradient in CH$_4$ concentration was observed at the interface between the free-fluid and the porous catalyst phase for both atmospheric (Figure 5.12: left) and 10 bar pressure (Figure 5.12: right). This observation pointed to a high initial Sabatier reaction rate in this region of the porous catalyst washcoat. Further from the channel inlet (500 µm) a more uniform CH$_4$ concentration profile was apparent as a lower reaction rate occurred in the porous catalyst washcoat. Overall, higher CH$_4$ concentrations were obtained with increasing distance from the channel inlet. Also, the effect of a pressure increase to 10 bar not only benefited the Sabatier reaction’s equilibrium CO$_2$ conversion, but provided a product stream much higher in CH$_4$ concentration (Figure 5.12: right).
Figure 5.12: CH₄ concentration along normalised microchannel height (z/H) for atmospheric (left) and 10 bar pressure (right) at different x-coordinates (10, 100, 300 and 500 µm) from the microchannel inlet at 400°C
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

This chapter presents a summary of the results obtained and principal outcomes as defined by the objectives of this dissertation. In Section 6.1, the conclusions regarding the experimental and computational fluid dynamic (CFD) modelling of the microchannel reactor are made. Contributions to the current knowledge emanating from this work are given in Section 6.2. Also, the recommendations for future studies related to the use of microchannel reactor technology for CO₂ methanation purposes are given in Section 6.3.

6.1 Conclusions

i. This investigation successfully demonstrated the methanation of CO₂ in a laboratory-scale microchannel reactor with 8.5 wt.% Ru/Al₂O₃ catalyst washcoat at varying operational conditions (reaction temperature, pressure and space velocity).

ii. In general, the experimental microchannel reactor performed best under high-pressure, high-temperature conditions. At a pressure of 10 bar, equilibrium CO₂ conversion was achieved at numerous temperature conditions (350–400°C) for the lowest space velocity (32.6 NL.g⁻¹.h⁻¹) considered.

iii. To achieve optimum reactor performance, an operational trade-off between CO₂ conversion and increased space velocity was required. Ultimately, it was concluded that to maximise specific CH₄ production, a high space velocity (97.8 NL.g⁻¹.h⁻¹) was required. Although the reactor provided the best overall performance at 10 bar pressure, the effect of a pressure increase was negligible compared to 5 bar at the highest temperature condition (400°C) investigated.

iv. The most efficient operating point for CH₄ production therefore was 5 bar, 400°C and 97.8 NL.g⁻¹.h⁻¹. At this condition a CO₂ conversion of 83.4%, CH₄ yield of 83.5% and specific CH₄ production of 16.9 NL.g⁻¹.h⁻¹ was obtained.

v. In addition to the experimentally evaluated microchannel reactor, it was deemed necessary to develop a three-dimensional mathematical model to describe the reactor. Consequently, a CFD model was developed using the COMSOL Multiphysics® software package. A free-fluid phase, as well as a porous catalyst layer was identified as computational domains to accurately describe the microchannel reactor.

vi. For the Sabatier reaction, a reversible elementary rate law was identified to describe CH₄ formation. To describe small amounts of CO as a result of the RWGS reaction, a first order rate law was introduced. However, this first order rate law had limitations regarding its accuracy, as experimentally the RWGS reaction was equilibrium limited.
vii. The mathematical model was subsequently validated through comparison with results obtained from the experimental investigation of the microchannel reactor. It was determined that the mathematical model represented experimental results within reasonable agreement over a wide range of operating parameters once kinetic parameter refinement was done.

viii. The CFD model also provided an understanding of the reaction-coupled transport phenomena within the reactor. As a result, this three-dimensional modelling approach might assist future studies on the design and operation of catalytic microchannel reactors.

6.2 Contributions to current knowledge

i. A review of open literature revealed that microchannel reactor technology offers numerous advantages related to their application in power-to-gas (P2G) scenarios. However, a lack of previously reported studies related to the use of microchannel reactors for CO\(_2\) methanation was observed. The present work addressed this matter as a microchannel reactor was experimentally evaluated for CO\(_2\) methanation. The reactor showed good performance in terms of CO\(_2\) conversion and CH\(_4\) yield at various operating conditions. Also, during the experimental evaluation of the reactor, start-stop operation was initiated to simulate the natural intermittency of renewable energies (e.g. solar or wind). The knowledge attained during this investigation therefore serves to broaden the perspective on microchannel technology for P2G applications.

ii. The absence of three-dimensional modelling approaches on Sabatier-based microchannel reactors permitted an opportunity to elaborate on the design and operation of such reactors at the micro-scale. Model validation was done as the results obtained were fitted to data gathered through the experimental investigation. The CFD modelling study also comprised an examination of velocity and concentration profiles within the microchannel space. This investigation therefore contributed to current knowledge as a fundamental understanding of microchannel reactor operation was achieved.

6.3 Recommendations

i. It is recommended that a separate characterisation study is done to determine the exact catalyst properties such as density, porosity, permeability and surface area. These parameters can subsequently be used to increase the precision of modelling the porous catalyst washcoat.
ii. For future investigations, it is recommended that a multiple-reactor configuration is used to improve H_2 productivity and effectively increase CH_4 purity. A possible recommendation is a second microchannel reactor in series. A supplementary feed of pure CO_2 is added in this reaction step to increase the reaction extent in favour of CH_4 production.

iii. To increase the accuracy of kinetic parameters, it is proposed that an experimental kinetic investigation is done. By using the obtained kinetic parameters, a more reliable modelling approach of the microchannel reactor can be accomplished.

iv. In particular, it is proposed that a more complex rate law is used to represent the RWGS reaction, as realistically it is governed by equilibrium limitation. For this investigation, however, the first order rate law was deemed to be sufficient to describe small amounts of CO formation.

AUDI AG. 2013. Energy turnaround in the tank.

IEA. 2015. CO₂ emissions from fuel combustion highlights 2015.

National Treasury. 2013. Carbon tax policy paper: reducing greenhouse gas emissions and facilitating the transition to a green economy.

NASA. 2011. The Sabatier system: producing water on the space station.

Xu, J., Lin, Q., Su, X., Duan, H., Geng, H. & Huang, Y. 2016. CO\textsubscript{2} methanation over TiO\textsubscript{2}–Al\textsubscript{2}O\textsubscript{3} binary oxides supported Ru catalysts. *Chinese journal of chemical engineering, 24*:140-145.

Zamani, A.H., Ali, R. & Bakar, W.A.W.A. 2014. The investigation of Ru/Mn/Cu–Al\textsubscript{2}O\textsubscript{3} oxide catalysts for CO\textsubscript{2}/H\textsubscript{2} methanation in natural gas. *Journal of the Taiwan institute of chemical engineers, 45*:143-152.

APPENDIX A: GAS CALIBRATION CURVES

Standard gas mixtures were used to produce GC calibration curves for H₂, CO₂, CH₄ and CO. The gas calibration curves, based on peak area counts, were subsequently used to determine the product gas composition during experiments on the microchannel reactor. The respective calibration curves are illustrated for H₂ (Figure A.1), CO₂ (Figure A.2), CH₄ (Figure A.3) and CO (Figure A.4).

Figure A.1: Hydrogen calibration curve used to calculate H₂ mole fraction in product gas during experiments
Figure A.2: Carbon dioxide calibration curve used to calculate CO_2 mole fraction in product gas during experiments

Figure A.3: Methane calibration curve used to calculate CH_4 mole fraction in product gas during experiments
Figure A.4: Carbon monoxide calibration curve used to calculate CO mole fraction in product gas during experiments

An example of the data collection table used during the experimental investigation is given in Table A.1. Once data was collected and fed into a MS Excel spreadsheet, the performance parameters defined as CO₂ conversion and CH₄ yield was calculated for each experimental run.
<table>
<thead>
<tr>
<th>Time (h)</th>
<th>CO₂ Flow rate (Nml.min⁻¹)</th>
<th>H₂ Flow rate (Nml.min⁻¹)</th>
<th>Thermocouple 1 Temp (°C)</th>
<th>Thermocouple 2 Temp (°C)</th>
<th>Pressure drop (kPa)</th>
<th>Flow rate (Nml.min⁻¹)</th>
<th>H₂ mole fraction</th>
<th>CO₂ mole fraction</th>
<th>CH₄ mole fraction</th>
<th>CO mole fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B: FULL SET OF EXPERIMENTAL DATA

The effect of a variation in reactor temperature is illustrated on CO\textsubscript{2} conversion and CH\textsubscript{4} yield at all five GHSVs investigated at atmospheric (Figure B.1), 5 bar (Figure B.2) and 10 bar pressure (Figure B.3).

Figure B.1: Effect of reactor temperature on CO\textsubscript{2} conversion (left) and CH\textsubscript{4} yield (right) at atmospheric pressure and GHSVs of 32.6, 48.9, 65.2, 81.5 and 97.8 NL.g\textsubscript{cat}-1.h-1

Figure B.2: Effect of reactor temperature on CO\textsubscript{2} conversion (left) and CH\textsubscript{4} yield (right) at 5 bar pressure and GHSVs of 32.6, 48.9, 65.2, 81.5 and 97.8 NL.g\textsubscript{cat}-1.h-1

Figure B.3: Effect of reactor temperature on CO\textsubscript{2} conversion (left) and CH\textsubscript{4} yield (right) at 10 bar pressure and GHSVs of 32.6, 48.9, 65.2, 81.5 and 97.8 NL.g\textsubscript{cat}-1.h-1
APPENDIX C: PARITY PLOTS

Parity plots of model-determined CO$_2$ conversion vs. experimental CO$_2$ conversion is presented for atmospheric (Figure C.1), 5 bar (Figure C.2) and 10 bar (Figure C.3) pressure, respectively. These parity plots demonstrate the degree of accurateness of the sum of least squares method used by the optimisation strategy for kinetic parameter estimation. R2 values of 0.973, 0.989 and 0.953 were obtained for the respective operating pressures.

Figure C.1: Parity plot of model predicted vs experimental CO$_2$ conversion at atmospheric pressure

Figure C.2: Parity plot of model predicted vs experimental CO$_2$ conversion at 5 bar pressure

Figure C.3: Parity plot of model predicted vs experimental CO$_2$ conversion at 10 bar pressure