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Abstract 

This study covers four fundamental features of tuberculosis dynamics (variable contact 
rates, differential infectivity, migration and staged progressioll). The first model under 
consideration covers the geueral contact rates and differential infectivity. The second 
model explores niigration and staged progression. In this model, the spread of tuber- 

culosis is studied through a two-patch epidemiological s stem SE1 	E,I . The study 

proves that when the basic reproduction ratio is less than unity in the models, the 
disease-free equilibrium is globally asyHhJ)tOticallY stable and when the basic reproduc-
tion ratio is greater than unity, a unique endemic equilibrium exists and happens to be 

globally asymptotically stable under certain conditions. 

Direct and indirect Lyapunov methods as well as LaSailes invariant set principle are used 

to investigate the stability of endemic equilibria. 

Numerical simulations are provided to illustrate the theoretical results. 
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Chapter 1 

Introduction 

Despite the availability of effective treatment, tuberculosis remails a major global cause 
of morbidity and mortalit , with around one-third of the world's population believed to 
be infected. It is estimated that in 2004, 1.7 million people died due to the disease and 
8.9 niillion new cases of infection were recorded. The highest incidence of the disease is 
in sub-Saharan Africa, partly due to interactions with HIV, which has fuelled dramatic 
rises in incidence of the disease in many countries. Other factors may contribute to 
TB epidemic incimling the elinunation of TB control progranimes, drug use, poverty 
and immigration [3, 4]. Humans are the natural reservoir for M. tuberculosis, which 

is spread from person to person via airborne droplets [13, 14, 21]. M. tuberculosis 

may need only a low infectious dose to establish infection [5]. Factors that affect the 
transmission of M. tuberculosis include the number, viability, and virulence of organisms 
within sputum droplet nuclei and most importantly, time spent in close contact with an 
infectious person. Socio-economic status, family size, crowding, nialnutrition and limited 
access to health-care or effective treatment also influence transmission. Infection with 
M. tuberculosis is dependent on non-linear contact processes that are determined by 
population size and density, as well as other factors. Demographic characteristics of a 
population, therefore, play a significant role in the development and progression of a TB 
epidemic. People who are infected with TB, do not feel sick, do not have any symptoms 
and cannot spread TB. However they may develop TB at later stage. The symptoms 
of active TB of the lung are coughing, sometimes with sputum or blood, chest pains, 
weakness, weight loss, fever and night sweats. Latently infected individuals (inactive TB) 
become infectious (active TB) after a variable (typically long) latency period. Latent 
periods range from months to decades. Most infected individuals never progress towards 
the active TB state. Treatment requires long-term use of antibiotics (at least 6 months is 
recommended for short course therapy), but is generally highly effective, including those 
with HIV, provided the patient is adherent. Lack of adherence can result in bacterium 
acquiring drug resistance. Transmission of drug-resistant strains is a significant problem 

in many parts of the world. 

1 
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1.1 Motivation 

In order to model the progress of an epidemic in a large population comprising individu-
als in various fields, the population diversity must be reduced to a few key characteristics 
relevant to the infection under consideration. For example, for most common childhood 
diseases that confer long-lasting immunity, it makes sense to divide the population into 
those who are susceptible to the disease, those who are infected and those who have 
recovered and considered immune. These subdivisions of the population are called com-
partments. Diseases that confer immunity have a different compartmental structure 
from diseases without immunity. The terminology SIR is used to describe a disease 

which confers immunity against re-infection, to indicate that the passage of individuals 

is from the susceptible class S to the infective class I to the removed class R. On the 

other hand, the terminology 515 is used to describe a disease with no immunity against 
re-infection, to indicate that the passage of individuals is from the susceptible class to 
the infective class and then back to the susceptible class. Other possibilities include 

SEIR and SEJS models, with an exposed period between being infected and becoming 

infective, and SiRS models, with temporary immunity on recovery from infection. The 
independent variable in our compartmental models is the time t and the rates of transfer 
between compartments are expressed matheniaticahly as derivatives with respect to time 
of the sizes of the compartments and as a result, the models are formulated as differential 
equations. Mathematical models for tuberculosis have proven to be useful tools in as-
sessing the epidemiological consequences of medical or behavioural interventions (which 
may cause many direct and indirect effects) because they contam explicit mechanisms 
that link individuals with a population-level outcome such as incidence or prevalence 

(see [1] to [46] and references therein). 

The next section presents definitions of some of the concepts that will be used throughout 

this study. 

1.2 Definition of concepts 

Equations of the form 
do 

= f(i, u)  

where f is continuous and X-valued on a set U R x X are used to describe continuous 

evolution systems. Here, u(t) E X is the state of the system at time f and f is a given 

vector field on X. The space X is the state space of the system; a point in X specifies 
the instantaneous state of the system. It is assume that X is a Banach space. When X 

is finite dimensional, the evolution equation is a system of ordinary differential equations 
(ODE's). Partial differential equations (PDE's) can be regarded as evolution equations 
on an infinite dimensional state space. In this case, the solution n(i) 	u(t, x) belongs 

to a function space in x at each instant of time t. 
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Definition 1.2.1. (Initial value pro b/em) 

An initial value pu b/cur (IVP) for equation (1.1) is guien by 

f(t, ii) 	 (1.2) 
u(I o ) = i/O 

where f is continuous and X-u'alued on a set U c R x X, with (ia . no ) E U. 

Definition 1.2.2. (Solution) 

Ajhnetioa i(t) is a solution to the ODE (1.1) if it satisfies this equation, that is, if 

dt)

dt 

	
= f(t.(t)) 	 (1.3) 

for all t E I C I. an open interval such that (t, ç5(/)) E U for all I E I. 

Definition 1.2.3. (lnteqr'al form, of the solution) 

The function 

= u0  +f(s, c(s))ds 	 (1.4) 
to 

is cal/ed the inteqiul form of the solution to the IVP (1.2). 

Definition 1.2.4. (Lipschitz condition) A vector-valued function f(t.. x) is said to .satisf)j 

a Lipschitz eon dition in a reqion 7? in (I, x) -space if for some constant L (called the 

Lipschitz constant), we have 

Lf(t+r) - f(ty)( <La' - y. 	 (1.5) 

whenever (1. r) E 7? and (I. y) E R. 

Epidemiological iiiodels are in general, forniulat e(I in terms of nonlinear systems of or-

dinary differential equations. Aecordnigly we set X = R in I he rest of I Ins proposal. 

The equation in IVP (1.2) is rewritten as 

dx = f(t. x); x(t) E I. 	 (1.6) 

It is assumed that f(t. r) sat 1isfies the standard coiiditioiis for the existence and unique-

ness of solutions. Such conditions are, for instance, that f(1, x) is Lipschitz contiiiious 

with respect to a:, imiformly in t and iccse contmnous in 1. 

Definition 1.2.5. (Stability) 

A solution (t) of (1.6) is stable if V, Vt0  > 0, 3 6((, t o ) > 0 such that whenever any 

solation i(t) of (1.6) satisfies I(to) - 	 we have 	(t) - d(t) <qVt > to. 
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Definition 1.2.6. (Asymptotic stability) A solnt?on (/) of (1.6) ys asymptotically stable 

if it is stable and 60  > 0 such that whenever any solutzon /(t) of (1.6) sat?sfles 	(t0 ) 

< S, the identity 

Em ((t) - çi(t) = 0 

holds. 

Definition 1.2.7. (Invariant set) 

A set J\ of points in phase space is invariant with respect to the system (1.6) if every 

solo lion starting in K remains iii K for all future time. 

1.3 	Aims and objectives of the study 

Despite the fact that the infect ions agent that causts tuberculosis was discovered iii 
1882, inany aspects of the nat nra! history and transmission dynamics of TB are still not 
fully understood. This is reflected in differences in the structures of mathematical mod-

els of TB, which In turn, pmduce differences in the predicted impacts of interventi011s. 

Gainiig a greater unclerstaiiding of TB transmission dynamics recpures further empir-
ical laboratory and field work, niathemnatical modelling and interaction between them. 
\Iode11iug can be used to c1uantifv uncertaiiitv due to different gaps in our knowledge to 

hell) identify research priorities. 

The iirpose of this study is to explore four important aspects of Tuberculosis (lynanucs 
that are not adequately discussed in the literal ure amid to develop large models mcor-
poratimmg these components. The aims and objectives of the study are described, in the 

following subsections: 

(a) Motivated by [13. 141. the study ainms at investigating the global properties of a 
deterinmistic niodlel for tiil merculosis transmission dvnamiiics ,vith t Wa differential 

infectivity with a general contact rate incorporating constant recruit went, vacci-

nation. slow and fast progression. effective chemopropimylaxis (given to latently 

infected indivicluids) and I hierapeutic 1 reatment s (given to infectious). The study 

iiit roduces a new epiclemiological class known as hidden (loss of record) class. Loss 
of record refers to infectious individuals who began effective therapy in the liospi-
tal and miever returned for sputuni examinations (hue to long duration of I reatmnent 

regimen, l)o\erty and mrmentalitv. Iii this case. health officers (10 not usually know 

heir status. One reason to introduce this new epideniiohogical class is because 

I lus plienomnenoim is common and occurs especially in Southern Africa. The study  

intends to analyse the stability behaviour of the model. The study will compute 

the basic reproduction ratio R0 , investigate the global as mnptotic stability of the 

disease-free equilibrium (DFE) and check the sI ability of the endemic equilibria on 

the non-negative orthiant under certain assumptions. The global (1nm aics of the 

nmodeh will he resolved through the use of Lyapunov functions. Furthermore some 
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coefficients will be allowed to be time-dependent in order to extend earlier results. 

Numerical methods will be used iii order to test the validity of 1 lie generalised 

1110(101. 

(h) The second aspect of the research is based on [36] and consists of the study of 

tuberculosis through a two-patch epideiiiiological systeiii S 	I I winch in- 

corporates inigrat ion from one it cli to another just by sliscept ihie individuals. 

The model used is considered with bilinear iicidence and migration between two 
pal dies. where infected and infectious individuals cannot nhigrate from one patch 
to another (Inc to niedical reasons. The existence and uniqueness of the associated 

endemic equilibria are discussed. Quadratic Ibrins and Lvapunov functions are used 
to show I hat when the basic reproduction ratio is less than one, the disease-free 

eqilibri 	(DEE) is globll asnptoticll stle, and vhen it is greater thanm   
OIie, there exists in each case, a unique endemic eqiiilihrniiii (boundary equilibria 
and endeniic equilibrium) winch is globally asvniptotically stable. Numerical sini-
ulat ion results are providd to illustrate the theoretical results. In this pErt ion, the 

st ability of a 2n + 4-dimensions system will be investigated using Lyapunov-LaSahle 

huict ions and quadratic forms. 

The dissertation is structured as follows: Chapter 1 proic1es a brief background for the 
study. discusses the prehinmary tools and introduces the fundamental aspects of this 

research work. Chapter 2 discusses tuberculosis niodels with two differential infectivity 

011(1 general contact rat es. In chapter 3. the study investigates the global properties of tu-

berculosis models with st aged progression and nngrations. Chapter 4 presents numerical 

siiuulal ions of the models discussed in I lie study as well as a general conclusioii. 



Chapter 2 

General rates and differential 
infectivity 

2.1 Model formulation 

In I ins chapter, a geiieral model for the spread of tubercuk)sis with variable contact 
rates and differential infe(tivitv is derived. A diagrammatic representatiomi of the spread 
of the disease is present ccl in Fig 2.1. The population is sub-divided into four classes: 
susceptible. in! entiv infected (exposed). infect ions and lndden (loss of sight) with the 
average number of individuals in each conipart mont denoted by S, E. I and L respec-
tivelv. All recnutnient is into the susceptible (lass, and occurs at a constant rate A. The 
rate constant for non-disease related (leatli is i, thus 1/ji is the average lifetime, infec-
tious and loss of sight have additional dent h rates due to the disease with rates constant 
d1  and (/2.  respectively. Since it is not known whether loss of sight would recover, chic 
or still be infectious, it is assumed that a fraction 	of t hem is still infectious and can 
transmit the disease to susceptible. Transmission of M. tuberculosis occurs following 
adequate contact bet\veell a susceptible and an infectious individual or a loss of sight 
that continues to harbour the disease. It is assunied that infected individuals are not 
infectious and I mis, not capal ile of t rauisniitt ing the bacteria. The standard mass bal-
ance incidence expressions d.I and I36SL are used to mdicate successful transnnssion 
of M. tuberculosis clue to non-linear contact (Iynalmncs in the population by infectious 
and loss of sight respectively. A fraction p of the newly infected individuals are assumed 
to undergo fast progression directly to the infectious class, while the remainder are la-
tently infected and enter the latent class. Once latently infected with Al. Tuberculosis, 
an individual will remain in this condition for life unless reactivation occurs. To account 
for treat nient i'E is defined as the fraction of infected individuals receiving effective 
chenioprophyhaxis, and 1.2 as the rate of effective per capita therapy. It is assmnned that 
chenioprophvlaxis of latently infected individuals F reduces their reactivation at rate i'. 

6 
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Figure 2.1.Model of tuberculosis with general coot act rates and dill ereiitial infectivity. 

(N)p(I+L) 

Thus, a tract iou (1 - j' ) E of iiifect ed iuidividuals who do not receive effective cheino- 
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propliyiaxis become infectious with rate constant k. so that 1/k is the average latent 
period. Thus, individuals leave the class F to 1 at rate k(1 - r1 ). After receiving an 
effective therapy, infectious individuals can spoiitaiieously recover from the disease with 
rate constant 2,  entering the infected class. A fraction ç(l - r2)1 of infectious individu-
als who began I heir treat uienl will not ret urn to hospital for sputuni exanunation. After 
sonie time, some of them will return with the disease in hospital at constant rate . It is 
assumed that the emigration only affects the class of infectious I so that the fraction J 
of infectious leaves the class / without therapy treatment due to poverty and mentality. 
Since TB latent individuals are not capable of transmitting the disease, it is assunieci 
that a susceptible individual may become infected only through contact with infectious 
individuals. In each unit I ne. a susceptible individual has an average 3(N)] contacts 
that wot ild suilhiec to transunt the infecti( ill \Vliere N = S + F + 1 is the total population 
size. Thus, the rate ( at u liich susceptible ible lndi\ iduals are nife t d is 	) I 

The dynamical system described by Fig 2.1 is given by the following differential system 

S = A - [J(N)S(l + SL) /15, 

E = 3(N)(1 - p)5(i + SL) + 21 - [p + k(1 - 

i = 3(N)jS(I + L) ± k(1 - i 1 )E + 5L [p + d ± ( + (1 - 12) + 1211, 
L 	p(l - 7.2)I - (p + d2  + L. 	 (2.1) 

Paramnetets A, p, il l . d2, k r, and 12 are assuuned to be positive and all other parme-
ters are lion-negative with p e [0. 1]. Since the model (2.5) monitors hunian populations. 
it is fun lien assumed that all the state varial des are non-negative at time I = 0. It then 
follows from the differential equations that the variables are 11011-negative for all / > 0. 
Funt hiermore, ridding all equal ions itt (2.5) gives 

N = A - IiN  - ((/1 + 6)1 - (/2 L. 	 (2.2) 

Consequently, in the absence of tuberculosis infection, N —* A/p as t - oc and A/p is 
an upper bound of N(!) provided that A' (0) < A/p. Also, if Y(0) > A/p, then A' will 
decrease to this level. Thus. the following feasible region: 

={(S.E1.L)R.0<S+E+J+L<+a}. 	 (2.3) 

is a compact forward positively nivariamit set for a > 0 and that for a > 0thus set is 
absorbing. Furthermore, each solution of R 0  approaches 0 so that the study restricts 
its analysis to this region. In this region. the usual existence, uniqueness and continu-
ation results hold for the system. In general, the model cannot he reduced to a lower 
dimensional model without making additional assumptions oii the parameters. 
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2.2 	Analysis of models with general contact rates 

In this section, focus is on models with variable contact rates /J(N). The hidden (loss of 

sight) class L is ignored and it is assumed that the contact rate 8(N) is a non-negative 
(0 function of the total population N > 0 (see Fig 2.2). It is further assumed that 

/ (N) > 0; / (N) <0; and (A8(N))' > 0. 	 (2.4) 

Reniui* 1. It is easy to notice that 8(N) = 	correspoiicls to the standard incidence rate, 

that  ( AT) = f3 corresponds to the mass action incidence rate, and that /(N) = /C(N) 

(orrespondls to the saturating contact rate, where 

C(A) = 
1 AT 

1 + 1) N + 1 + 2h 

Figure 2.2: Model of tuberculosis with general contact rates. 

This lea(k to the following system of (lifierelltial equati 115 for the rate (Ilange with 

respect to I hue of the numbers of susceptible, latently infected and infect ions individuals: 

I S = A-8(N)SJ-1iS, 

l
F = 8(i\T)(1 - p)SI + 2J - [ + k(1 - i 1)]E, 	 (2.5) 

2.2.1 Basic reproduction ratio 

\Ianv epi(henl101ogical models have a threshold conchit ion winch can he used to determine 
v1iether an infection will be eliniinated froni the population or become endemic. The 
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basic reproduction nunil )er 9io 7  is defined as the average number of secouidai' 1I1f('ctiofl5 

produced by an infected individual in a completely susceptible population. Indeed, Mo  is 

sinplv a normalised bifurcation (t ranscrit ical) couiditioui for epicleuniological models, such 

that Mo  > 1 implies that the endemic steady state is stable (i.e., the infection persists) 
and, Mo < 1 implies that the uninfected steady state is stable(i.e., the infection can 

be eliminated froin the populat iou. The model has a disease-f ree equilibrium (DFE), 
obtained by setting the right hand side of Eq. (2.5) to zero and I = O. given by Po  = 

(Se, 0, 0) with S0  = A/1i. The stability of this equilibrium will be investigated using the 

next generation operator [43. 44. 45. 46]. Using the not at ion in Ref. [46] on the sstem 

(2.5), the matrices F and V. for the new infection I erms and the remnainilig transfer terms 

are, respectively given by 

F 
= 	0 d(S0)S((1 - I)) 

0 	(So)Sop 

011(1 	

ii + [(1 	li) 	12 

= 	—h(1 - r) 	(1+ 7 2 

\vliere (I = j + d 1  + . The spectral racli is or the largest eigenvalue of its next generation 

operator is given by 

ii( 
= p(FV') 

= So)So [iip + [(1 - r1)] 	
(2.6) 

d[ii + h(1 - 11)] + 1172 

where f) represents the spectral radius (the donunant eigenvalue in magnitude) of FV 1 . 

The threshold quantity N O  is the basic reproduction nunul)er for TB infect ion. It nicasures 
he average nun iber of new TB infections generated by a single infectious individual iii a 

(olnplet clv susceptible populat ion. Consequently. the disease-free equilibrium l )  of the 

basic model (2.5) is locally asymptotically stable (LAS) whenever 9io  < 1 and unstable 

if NO  > 1. This implies that TB can be eliminated from the comnnuunity (when 9io < 1) if 

lie sizes of the population of system (2.5) are in the basin of attraction of the disease-free 

equuihibriuini J ) . 

2.2.2 Global stability of the disease-free equilibrium 

The following t hueorem pro\idles the global stability of t lie disease-free equilibriumn. 

Theorem 2.2.1. The disease-free equilihiinrru 11) of model (2.5) is globally (lSyTFlpiotZCally 

stable UI l/ie non-negative orthorit R 0  when 	< I. 

Pr'oof Consider the following Lyapunov-LaSalle function: 

V(E, 1) = k(1 - ri )E + [ji + k(1 - Ti)]!. 	 (2.7) 
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Its time derivative along the solutions of system (2.5) satisfies 

1T(E. I) =k(1 - r 1 ) E + [p + h(1 - ii)] I 

	

- r1 )[(N)(1 - p)SI + 121 - [ p + k(1 - ri)]E] 	
(2.8) 

+ [p + P(1 - ri )] [8(N)pSI + k(1 - ri )E - (J + 7'2) 11 

=[8(N)S[pp + k(1 - ri)] - 12/ 	d[t + k(1 - i'i )]]I. 

Now. using Eq. (2.4). it gives 8(N)8 < 8(8)8 < 8(S0 )S0 . With this in mmd, (2.8) 

becomes 

A(S0 )[pii. 
 V ( 1, I) 	[7 2/' ± [p + k(1 	r1  )]d] (j 	+ (1 - i 1 )Jd + 1 211 ] 	 (2.9) 

=[7.2j1 + [t + k(1 	vi )]d] (9 	1)1. 

Thus. V ( J, I) < 0 If 9io  < I. Furthermore. V ( L'. 1) = 0 if and only if No = I or 

1 = ft 111(111. 1 lie largest compact invariant set in { (S, F, I) e R3  > 0, 17(E. J) = 01 

is the singleton { P0 1. Therefore, by the LaSalle-Lyapunov theoreni [40], all trajectories 

that start in 0 approach P0  when t —* oc. Since 0 is absorbing. this proves the global 

asvmnptot ic stability on the 11011-negative orthant 1? for o 	I. II should be emphasized 

that the need to consider a positively invariant compact set is to est ablishi the stability 

of I )  since V( . J) is not positive (iefimule. Generally, the LaSallcs iiiyariamlce priiiciple 

only proves the attract ivitv of the equilibrium. Considering D permits to conclude for 

the stability [39, 40, 41]. This fact is oft en overlooked in the literature using LaSahle's 

mvariance princille. This concludes the proof. 

2.2.3 Existence and uniqueness of endemic equilibrium 

This,  section presents a result concerililig the exist ence and uniqueness of emcieinic eqmu-
lihriuiii for the model bormulated above. This will he achieved bY using the basic repro-

duct ion ratio MO . Let J = (S. E* 1*) he the positive endeniic ec1uilibriuni of model 

(2.5). Then. I lie positive eiideniic equilibrium (steady state with I > 0) can he obtained 

by setting the right hand side of each of the three differential equations in model (2.5) 

eqimai to zero, giving 

A — 3(iV*)S*1* — 	= 0, 
8(N)(1 — p)s*J + 721 	[k(1 -Ti) + Ii]E* = 0, 	 (2.10) 

(N*)pS*1 + k'(l — jm)E* — ((1 + 72)1 = O. 

and 
A — pA' — (d1  + )

J* 	0. 	 (2.11) 

Using Eq. (2.11), the first and second equations of (2.10), S, E and 1* in I ernis of AT* 
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can easily be expressed in the forni: 

- 	A(d 1  + ) 	 1* = A-jiX and 

- 8(N* ) (A - jj!\T) + 1i(d1  + ) 	(11  + 	 (2.12) 
* 	(A _/,Ar*) 

I _(AT)A(1-I)) 	
+ 	

2 

F =, + h(1 - r) L3(N*)(A - /,AT*) + 1i(d i  + () 	11 + 

Substituting (2.12) in I he t lOrd equation of (2.10) yields 

(A - /iN)P(X*) = 0. 	 (2.13) 

where 

Clearly. A - JIA* = 0 is a hxed point of (2.10). which corresponds to the disease-free 

equilibrniiii J. Since N* E [0, S0 ]. one has 

F(0) = - /3(0)A(d1  + 	i( 1 - p) - 1i[/(0)A + 1i(d 1  + )] [ + ji + k(1 - r)] 

- 11 (d 1 
 + 	2[i1  + h(i - ii)]. 

F(S0 ) =ji(d + [1 2/' + d[1i + h(1 - ii )]](9 - 1). 

Clearly, it appears that F(0) < 0. it is now a trivial matter to observe that F(S0 ) > 0 

when 9io  > 1. The existence follows Ironi the iiteriiiediat e value theorem. Now. J(A[*) 

is monotone ilicreasing, so that F(IV*) = 0 has onlY one, posit lye rcot in the interval 

[0. S() ]. Thus, the lollowing result is established. 

Lemma 2.2.2. Wheii 	> 1 the model (2.5) has a unique endemic eqiolibrium J = 

(S, E*, 1*) wit/i 5* E* and I  all non-neqatnie. 

2.2.4 Global stability of the endemic equilibrium 

Herein, the global stability of the eiideinic e(1uilibriuln P of system (2.5) is studied and 

the following result obtaiiied: 

Theorem 2.2.3. If9io > 1, the unique endemic equilibrium J of the model (2.5) is 
qlobaiiij (i ymptotzcally stable M 0 \ { F = I = ()} wh enever 

S E S / 
and - < -. 	 (2.14) 

Proof. Consider the following Lyapunov function caiididate [29, 30, 31, 32, 33, 34, 3.5, 38]: 

U(S. E. I) = (S - S in(S)) + A(E - E* ln(E)) + B(J - J ln(i)), 	(2.15) 
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where A and 13 are positive (oust ants to he deteriiiined later. Difireiitiating this function 
with respect to time yields 

)S + A(1 - 
F 	

+  

- 	- (N)Si - pS) 

El 
+ A(1 - T)[/3(N)(l - p)SI + 12! - [i' ±  

+ B(1 	)[d(N)pSi + k(1 	- (d + 7 2)11. 

Considering (2.10), it can be deduced that 

SJ* 	J 
A = d(N)S*i + //S. p + k(1— r) = .3(A*)(i 

 

(1+ '2 = d(AThS + k(i - 
11 

\\Tit}i tins iii mmd, (2.16) beconies 

U(S. E,!) =(1 - )[/3(N*)S*J* + jiS 	- 13(N)SJ - jiS] 

+ 4(1 - )[d(A')(1 - p)S1 + 721 - /010 - p)5*J* 
121] 

± 13(1 - )[3(X)SI + 1(1 - 	- /3(N)])SI - P(1 - 

= - 
p( S)2  (T)j 	

- 

3(N)S*I 

+ 13(1 - )[p/3(N*)S*F( @(N*)S1 
	- 	) + 	(i - 1i)E*( - 

(2.18) 

Now, using (2.10) results in 

p + 1(1 11) 
[/3(N* 	 + )(1 - 1))* r 	121] 
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Then. (2.18) may be rewritten as follows: 

U(S, E. 1) 

	

*)2 
+ 1\Ts*1 [(i_ 	

)
+ i) 

/ 	E ) /d(N)SJ 	E\ 	/ 	j*\  

	

+A(1—p)l1—M 	 —l+J3J)I1H 
F 	()*J* E*) 	 I) 8(N)S1 1* 

I3(l 	p)( 	
) (F 

	I 	 ( 	E (I 	E 

13141  

(2.19) 

Now. let 
_ S E / N 

. 

and 	
3(wX) 

fJ(w) = I(N*) 

Then 

( 	
*)2 

+ 

3(N*)S*1 [(i  

+ 131) (i - 
	

@jeu)rz - z) 
+ 

 

+ 121 [A (i 	) (:- ) + ji+k(1—i) (i 
	

) 
(i 

	

( 	
*)2 

= 	p 	
s 	

+ f(i, j. . 

(2.20) 

where 

j, z, w) = 3(N)S* Jfi (x. y, z, w) + 7 .21*f 2( z,  w), 

	

+ Pp (i 	) (q(w).r: - ) + 'L' 	

(1 - 1) 

	

.f2(w) 	Y) +  Bk(I — 
	

(y 
+k(1i) 	) 1i 	

- 

(2.21) 
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The constants A and B can he chosen in the form A = A (p) and 13 = B(p) such that the 

function f is non-positive for all a. y. z. w E R>0 so that the time derivative of U(S. F. 1) 
is less than zero. In order to cancel the coefficients of p and z iii the expressions of f 
and ,[2  respectively, it is possible to choose 

= 	1(1 - 7-1) 	
and 13 =

p, + (1 - r1) 	
(2.22) 

p + k(1 - i') 	ty + k(1 -- r1 ) 

Substituting (2.22) into (2.21)) and rearraliging gives 

w) = 1 + q(w).z - + 
A(1 c)(1 - 	gw 	- z— + 

z 

p[L + k(1 	ii)] (1 - 	g(ii'):r). 	 (2.23) 
pji + (1 - ci) 

k(1 - 7-1) p 	z 

7)/I + k(1 - 1') 

( 
\ 	P 

From the second equation of (2.23), using the arithmetic-geometric means inequality, it 
clearly appears that the function 12  is less or equal to zero with equality at p 	. On 

the other han(i, differentiating the function Ti wit hi respect to yields 

iTT1 	 k( 1 	c) [i' + k( 1 - Ti)] / 	 IZ 	P + g(u').r -  
dJ) 	 [jip + (1 - 7 .1)] 2  	 p 

If a. y. z. a' are fixed, then 
i9 Ti has a constant sign for p E [0. 1]. Thus. Ti  is maxinused 
01) 

at p = 0 or at p = 1. Suppose that p = 1, then. filling it into the first equatioll of (2.23) 
yields 

Using (2.4), one has q(w) < 1. Then, if x < 	the abcve equation becomes 

	

f1 (x.w,z,w) < 2 — x - 
	 (2.24) 

which is less than or equal by the, ant hmet ic-geonietric mean inequality, wit ii equality if 
and only if 1 = 1. Similarly, if p = 01  then t lie function f (i. p. z. ii') becomes 

	

1.) 	1 	t 
p, z, w) = 3 + g(ii')z (i 

- 	
- z - - 

Using (2.4) yields g(w) < 1. Then, if i < y, it follows that 

fi (r.y..w) < 3— 	- - 	 (2.25) 
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which is also less than or equal to zero by arithmetic-geometric mean inequality, with 
equality if and only if x = 1 and y = z. Thus, U(S, E, I) is less or equal to zero 

with equality only if S = S and y = z. LaSalle's extension [39, 40, 41] implies that 
solutions of (2.5) which intersect the interior of 0 limit to an invariant set contained in 

= {(S, E, I) E R 0, S = S, E/E = I/I*}.  Then, it follows that the only invariant 
set contained in Q is the set consisting of the endemic equilibrium point P. Therefore, 

all solutions of system (2.5) which intersect the interior of 0 \ {E = I = 01 limit to P. 

Then, it could be concluded that the endemic equilibrium J is globally asymptotically 

stable on 0 \ {E = I = Of for all non-negative initial conditions if inequalities (2.14) are 

satisfied. This ends the proof. 	 El 

Remark 2. It is possible for inequalities (2.14) to fail, in which case, the global stability 
of the endemic equilibrium of model (2.5) has not been established. The local stability 
result and numerical simulations, however, seem to support the idea that the endemic 
equilibrium of model (2.5) is still global asymptotically stable even in these cases. 

2.3 	Analysis of models with differential infectivity 

In this section, the focus is on differential infectivity and it is assumed that the contact 

rate l is constant (see Fig 2.3). The system of non-linear ordinary differential equations 
goveruing the evolution process reads: 

S = A—/lS(I+6L)1iS, 

E = 	(1 - p)S(I + 6L) + T2J - [ + k(1 ri )]E, 
(2.26) 

i 	= /pS(1 + SL) + k(1 ri )E + L - [ji + d1  + (1 72) + 7.21I, 

L = 

The basic reproductiomi ratio of this epidemiological system will he computed analytically. 
Furthermore, coiiditions for the existence and uniqueness of non-trivial equilibria and 
threshold comiditions for as mptotical stability will he investigated. 

2.3.1 Positive invariance of the nonegative orthant 

Without loss of generality, it is assumed that the dynamic of system (1) without infection 
is asymptotically stable. In other words, for the system 

S = A — pS. 
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Figure 2.3: Modcl of tuberculosis with differential infectivity. 

lp (I-'-L) 

A 
 ).1111V11 (1—p)(I±iL)  

r 
VL 

i.i -'-d 

there exists a unique constant S > 0 such that 

A =1L S*, 	AS>0 for 0S<S; 	and 	A—S<0 for S > S*.  

(2.27) 

The following result is established: 

Proposition 2.3.1. The non-negative orthant R 4  is pos"ztwely invariant for the system 
(2.26). 

Proof. The positive invariance of the nonnegative orthant by (2.26) is iirimediate with 
the assurnptioii on the niodel. This systerii can he rewritten in the following form: 

{ ± = 	r) - x(81  1 y), 
(2.28) 

+ A) , 

where (. .) is the usual scalar product in T, 

(y\ /E\ 	 (1—p\ 
x=S, y= 	Y2 	= 	I 	31=(O8SL3), 13= 	p 

L 	 0 

and the matrix A is given b 

	

r2 	 0 

A= 	k(1—ri ) 	—(i+di +(1—r2 )+r2 ) 

	

0 	 c(l-12) 
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Note t hat (.v 13 d[ + A) is a Met zler matrix if i > 0 (A Met zler matrix is a iiiatrix with 

off-diagonal entries non-negative [14. 15. 16]). \\Tith  the hypothesis (2.27) 	(0) > 0 

and I he half line R I  is posit ively invariant by .i = 	,c (31 	Since it is well 

known I hat a ii iear Met zier system lets invariant the nonnegative ortliant, this proves the 

positive ivariance of the nonnegative orthant T for the system (2.26). This achieves 

the prcof. 

2.3.2 Boundedness and dissipativity of the trajectories 

From the Jno(lel (2.26), if the total population is denoted liv :T(I), the" 

N(t) = S(t) + E(1) + 1(t) + L(t) 

a i id 

= A - N(t) - d1  1(t) d2  L(fl. 

Tlnis, this yields 
iV(i) <A - piV(I). 

It lollows I lint lini .V(t) 	= 
t 	 /1 

it is sI might forward to pro\e that for > 0 the simplex: 

ft = {(S. 1+ 1. L) E R. 	N(t) < 	+ 	 (2.29) 

is a compact Iorvard invariant set for the system (2.26) and that for 	> O. this set is 

ahsorhuiig. Ibis the study is limited to this simplex for > 0. 

2.3.3 Basic reproduction ratio 

The system (2.26) has an evident equilibrium DFE = (3*, 0, 0. 0) wit Ii S 	A/1i when 

there is no disease. This equilibrium point is the disease free equilihrniin (DFE). 

The basic reproduction i'atio, 9io  is calculated using the next generation approach, de-

veloped in Van den Driessclie and Watmough [46]. The basic reproduction number is 
defined as the dominant eigenvalue of the next generation matrix. In order to find the 
basic reproduction inimber, it is important to distinguish new infections from all other 
class transit ions in the population. The infected classes are I, L and E. Following Van 

dcii Driessche and Watmough [46] system (2.26) could be written as 

= f() = () - V(x) = F(x) - (V(x) - V (a)). 	 (2.30) 
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where x = (E, I, L, S). F is the rate of appearance of new infections in each class, V is 
the rate of transfer into each class by all other means and V is the rate of transfer out 
of each class. Hence, 

F(x) = (8(1 - p)(I + L)S, 13p(I  + SL)S, 0, o), 

and 
A1 E - r2 1 

V 	- 	
A2 ] - k(1 - ri )E - 

- 	A 3 L - (1 r2)J 
0 

The jacobian matrices of F and V at the disease-free equilibrium DEE = (0,0,0, A/1i) 
call be partitioned as 

DF(DFE) = [ 0  ] , 
0 0], 	

DV(DFE) = 
	'2 

where F and V correspond to the derivatives of F and V with respect to the infected 
classes: 

0(1 - p)S* 	(1 - P)aS* 	 A1 	0 
F = 	0 	/3pS 	pOS* 	and 	V = —k(1 ri ) A2  -' 

0 	0 	0 	 -l(1--r2) A3  0 

The basic reproduction number is defined, following Van den Driessche and Watmough 
[46], as the spectral radius of the next generation matrix, FV': 

9io- 
	 8S*[p 	L(1 ri )][ jn + r2 + + 6(1 - r2 )] 

[i + k(1 	ri)][(// + d)(i + ('2 + y) + c(l - r2)(i + ('2) + r2j1( ji + 8 + y)] •  
(2.31) 

2.3.4 Global stability of the disease-free equilibrium 

The following result about the global stability of the disease-free equilibrium is obtained: 

Theorem 2.3.2. When 9io  < 1, then the DFE is globally asymptotically stable in Q; 
this implies the global asymptotic stability of the DFE on the nonnegative orthant R. 
This means that the disease natuTally dies out. 

Proof. Let us consider the following LaSalle-Lyapunov candidate function: 

VDFE(t) = AE + 131 + CL, 	 (2.32) 
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where A. B and C are positive constants to be deternuned tat er. Its time derivative 
along the trajectories of (1) satisfies 

VJ)FE(t) = AE+B1+CL. 

A[8(1 - p)S(I + SL) + 121 - [ii. + 01 - ri)]E. 

+ B[@pS(I + SL) + k(l - r i )E + 7L [/1 + (1 + (1 - )-2) + 1 21 1] 

+ C[(1 - 12)1 - (ii + d2  

= 	H[i' ± (1 - r)] + Bk(1 - i)] E 

+ 	[A8(1 - p)S + .41' ± BI3jS - 13[11 + (Li  + 0(1 - 12) + 12] 

+ [A8(1 - 1))65 + B31)SS ± B7 - C(11 + (1,2 + 2)}L + C(1 12)11 . 
(2.33) 

The constants A, 13 and C are chosen such that the coefficients of E and L are equal to 
zero. This. it could tediously be l)0\Ii that 

A = k(1 — Ti). 	B= i+(1 - r) 	 (2.34) 

and 	 63*[p// + h(1 	li)] + 21/1  + k(1 - Ti)] 	 (2.35) 
= 	 / j±a2 + 2  

Since S < St substituting the positive constants,  A, 13 and C given in (2.34) and (2.35) 

yields 

	

(1? - 1)1. 	 (2.36) 
1)(i + (/2 + 2) 

where 

1) = [ + (1 - T1)][(J1 + (Ii )(/t + (/2 + 7)  + (/(1 - T2)(11 + d2)] + 19/1(1/ + d 2  ± 2) 

So. E)FE(t) < 0 when 	< 1. By LaSalle's invarlauce principle, the largest invariant 
set in 	contained in {(S, E, 1, L) E K. 4 	VDFE(1) = 0} is reduced to the DEE. 
This pro\es the global asyniptot ic stability on L ( [32, Theoreni 3.7.11, page 346]). 

Since Q, is absorbing, this irovcs the global asymptotic stability on the non-negative 
on hant when 9io  < 1. The need to consider a posit ivelv invariant compact set to 
establish the stability of the DFE is emphasized since the function Vj)FE(i)  is not positive 
definite. Generally. the LaSalle's invariance principle only proves the attractivity of the 
equilibrium; considernig QE  permit to conclude for the stability [30-32]. This fact is 
often overlooked in the literature using LaSalle's invariance principle. This concludes 
the proof. 
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2.3.5 Existence and uniqueness of the endemic equilibrium 

A result concerning the existence and uniqueness of endemic equilibrium for the model 
formulated above is presented herein. This will be achieved by using the basic reproduc-
tion ratio 9. 

Let EE = (S*,  E*,  1*,  .U) be the positive endemic equilibrium of model (2.26). Then, 
the positive endemic equilibrium (steady state with I, L > 0) can be obtained by setting 
the right hand side of equations in the model (2.26) equal to zero, giving 

A - 8S*(I + SL*) - JIS* = 0, 

8(1 - p)S*(I* + L*)  + 7'21 - A1E* = 0, 
(2.37) 

pS*(I* + SL*)  + k(1 - ri)E* + L* - A21* 0, 

- 12)1* - A3L* = 0, 

where 

Al = p + :(1 - 7' 1 ). 	A2  = p + d1  + (1 12) + r2 	and 	A:i p + d2  + y. 

Using the first, second and fhurth equations of (2.37), 

AA3  

jiA3 +[A3  +(1 

F* - 1* 	/3pA[A3  + (1 - 12)] 
A 1  pA3  + fl{A3p + {A3  + 6(1 r2)111* + 2 

and 
- Q(l - i)I 

43  

are obtained. 

Now, substituting the above expressions of S*,  E and L* in the third equation of (2.37), 

the following equation of second degree is obtained: 

J*(aJ* + i)) = 0, 

with 
(I = /[i){p + d2  + + r(1 	7 2)] + k(1 - 11)7 2(/1  + (12 + )], 

b = 	 7 (R0  - 1), 
IjD 

where D is dehiied as in (2.36). Theii, it can be observed that the above equation has 

two solutions: J* = 0 which corresponds to the disease free-equilihriumri and P = 
0 
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Thus, if Tio  > 1. h > 0 and P = 	> 0. Thus. the endemic equilibrium is (Iclilled by 

A A 3  (1 

11A30 + /3[A3  + (1 - 

Fta 

 [ 
	

3pA[A3  + 9(1 - 

1iAci + 8[A31i + 8[A3  + 6(1 	i2)]Jb 
+ 2 

= 	and 	Lt 	
0( 1 -  72)1) 	

(2.38) 
a 	 aA3  

fims. the Iollowiiig result is established: 

Lemma 2.3.3. When 9io  > 1, there exists a unique endemic equilibrium 7)07711 J 	= 
(5*, E,  I,  L) for the sijslein (2.26) where St, Ft, J  and Lt ale defined asin (2.38) 

wInch is in the norr-neqatiie orthant 

2.3.6 Global stability of the endemic equilibrium 

Theorem 2.3.4. 	When Mo  > 1, the endemic equilibrium FE = (5*, Ft P, J*) is 

qiobo ii'1J (isljIlIptol)eall?J stable in Q. iTnplyinq the global asyrnj)t otic stability zn the 71011-

71 ego tile oithaii I. This implies that the disease is uncontrollable. 

Pioo[ if we ('olisider the s stein (2.26) when 910  > 17  there exists a uni(ue endemic 
equilibrium (St E. 1*.  L) given as iii (2.38). in order to est ablisli the condition for 
global asyinpiot iC stability of this endemic equilibrium. the following  IYapunov funct iou 
(011(1 idat e is considerech 

= (S - S In 3) + o(E - Ft lnE) + 02(1 - 
1 in I) ± (13(L 

J hi L). (2.39) 

where (lj i 02 and 03 are positive constants to be determined. Differentiating this function 
wit ii respect to tline yields 

+ai  (1_)E+o2 (i_)J+o3 (1__) L. 

[A-1iS—S(I±L)] 

+ ui (i 	) [3(1 - p)S(J + L) + 721 - A1 E] 

+ (2 (i - 
	

[dpS(I + L) + k(1 ri )E + L - A211 

+ 03 (i 
- 

L*)  
 [çi(1 - r2)J - A3 L]. 	

(2.40) 

St  = 
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By considering equation (2.37), 

A = 

A1 F* = 

A21 	= 7L* + k(1 - ri)E* + pS(1*  + SL*), 
(2.41) 

- 12)1 

is obtained. With this in mind, 

VEE(t) = (i - 
	

[1S + 13S*(I*  + SL*) - pS  - /3S(1 + L)] 

+o (i 
- 	

[/(1 - p)S(1 + L) + r21] a1 A1  E + a1r21* 

+02 (i - 
	

[/pS(I + L) + k(1 - ri )E + LJ - a2 A2i + a2L* 

+02dJ)S*(I* + L*)  + 03 (i - 
L*)  
 (1 - r2)J - a3 A3 L + 03(1 - 72)1* 

+o(1 - J))S(I* + SL*)  + a2(1 - ri )E*.  
(2.42) 

It follows that 

VEE(t) = 
	(S —S)2 + s*i* (i 

- 	
+ S*L* (i - 

S* ) 	 8*) 

- p) + 0 21)  1]SL + [0,1r2  + o:3 0(1 - r2) o2 A 2  + jS]J 

+[-03A3 + 02 + BS]L + [-0,1A1 + o2k(1 - 

Ip 1* 
+3[ai(1 - 1)) + (L2p - 1]S1 + (12k(1 - ri )E* (i - 

+a3(1 - r2)1* (i - IL*) + 027 L* (i - 
L 1*)  
 + alr2

I* (i - E*J) 

—cii8(1 - p)S* 	(I + SL*) - o2pS* 	(I* J  + 

- ]))S*(I* + L*)  + 028pS(l + SL*). 
(2.43) 
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E 1*  L*) .  
Now. let (x, j. z, w) = 

( 	
--• 	

then 

(S_5*)2 
+ /S*J*(1 - x) + Oi8(l - p)S*(i + L*)  + /*I(1 - 

+ 8S*[ai(1 - p) + 021)1(1  + L*) + [—:1i + o2k(1 - r1 )]E 

± 	[Ui 12 ± (13( 1 	12) - u2 A2  + S] I + fi [-1 + ai (1 - 7)) + (121)] S I 

+ 8[-1 + (/1(1 - p) + a2 p]SL + 0l72I (i - 
	

+ (1+)( 1 	12) (i - 

r 
-1) 
z + + (72k(1 - ,.1 )E* (i - 

	
- (l!8(1 - p)S* ( 	

Ili 

(123PS —  (i + W 	+ (i9L (i - 
	

+ [—o:3 A 3  + 0 27  

(2.44) 

The positive constants ai, U2 and 03 are chosen such that tile coefficients of Si, SL, E, 

I and L are equal to zero, that is, 

—1 + 0(1 - p) + a2 p = 0, 

—o1 A1  + 02(1 - Ti) = 0, 
(2.45) 

—o 3 A3  ± u + 86S = 0. 

12 + (/3(/)(1 - 12) - 02A2 + h@S = 0. 

Using (2.37). it can be easily shown that the fourth equation of (2.45) is satisfied pro-

vided the first and third equations of (2.45) are sat ishecl. nfllerefore,  only the following 

eqiiatioiis are considered 

	

(11( 11 	p) 	0+) = 1. 

(19(1 	i). 	 (2.4(i) 

u;1 A: + a27 
+ 3$* = 

Solving I lie above equal ions yields 

k(1 - r) 	 1SS + (i7 
01 	

(1 p)h(1 - Ti) +])Ai 	
2 	

(1 - p)k(l 

Al
_  r' ) + A 	

and 	(13 
= 

(2.47) 
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Replacing the above expressions of a, a2  and a3  in (2.44) miplies 

VEE(t) = 
	(S 5*)2 + /3S*I*(2 	) + 3S*L*(2 - - ai3(1 - p)S*J*_ 

- ai/3(1 - p)SS*L* 	a28pJ— - U25P S*L* 

+ air21* (i 	) + a3/3(1 - 12)1* (i - 
	

+ a2k(1 ri)E*  (i 

+ (l2L* (i 	

(2.48) 

Recalling that ai(1 - p) + a2p = 1, the above equation becomes 

(S_S*)2  
VEE(i) = — p 	+ [01(1 - p) + 02 p]/315*1*(2 x) 

+ 	[a i (l p) + 02p]88S*L*(2 - x) - ai/3(1 - p)5*1*xz 

- (ii/3(1 - p)S*L* 	- a2BpS*l*_ - a2 /3p6S*L* 
xw 	 xvi 

+ 01 121*  (i - 
	

+ 03/3(1 - 12)1*  (i - 
	

+ a2k(1 ri)E*  (i 

+ (L2 L* (i - 
Z) 

'U) 

= _( 	5*)2 +a/3(1 _p)5*J* (2— x - y  )  + (L2/1P5 1  (2_ x - 

+ afi(l - p)SS*i (2 - - 
	

± a2/3p6S*L* (2 - x - 
27] 

+ ai7'2I* (i - —!)) + a2k(1 - 7.)F* (2 - 
z 	 Y) 

+ 03()(1 - 7j1* (i - —'l ) + a27L* (i - 
z 	 vi 

(2.49) 

Multiplying the second equation of (2.46) by E and the second equation of (2.41) by a 
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gives 
a 1  A1E* = a2k(1 - 

o1A1E = air21* + a(1 - p)S*(J* + SL*) 

Hence, it clearly appears that 

—0,1/(1 - p)8*(J* + L*) - 0jr2 J + o2k(1 - ri)E* = 0 

Multiplying the above equation by F1  (u) where a = (c, y, z, w)T  and l (a) a function to 
be determined later, yields 

—ai/(1 - p)S*(E + L*)Fi(n) - air2I*Fi(n) + a2k(1 - i)E* F1( ) = 0. 	(2.50) 

Also, multiplying the tlnrd equation of (18) by U and the fourth equation of (14) by a 
yields 

J 03/1:1Ti = 	+ 

1 3 A3U 03 (1 r2)1*.  

Thus, it can be deduced that 

- 72)1 + a2L*  + S*L* = 0. 

Also, multiplying the above equation by F2(u)  where n = (x, y, z, w)" and F.2(n) a 
function to be deterimneci later and using a1  (1 - p) + a2p = 1 gives 

—a3ç(1 - 1'2)I*F2(n) + a2 L*F2(u) + [ai(1 - p) + a2p18S*L*F2(n) = 0. 	(2.51) 

Thus, plugging (2.50) and (2.51) into (2.49) yields 

VEE(t) = - (
S _S*)2 + 

a1/i(1 - p)S*I* (2 x - 	- Fi(n)) 

+ (1i/(1 p)OSL* (2 - x - 	- Fi (u) + F2(')) 

+ a23pS*1* (2 - x - 
	

+ a21 p S*L* (2 - - 	+ F2(v)) 	
(2.52) 

+ 017 21* (i - - F(ii)) + 02k(1 - ri)E* (i - + 

+ a3(1 - r2)1 (i - - - 
P2(n) + 

a27L* (1 - - + F2(n)). 
7L) 	

) 	

! 	Z 

z 	 11) 

Next, the functions Fi (v) and F2(n) are chosen such that the coefficients of E* and L* 
are equal to zero. In this case, 

Fi(n) = - 1 	and 	F2(n) = 1 - . 	 (2.53) 
U 	 z 



CHAPTER 2. GENERAL RATES AND DIFFERENTIAL INFECTIVITY 	27 

It follows that 

VEE(t) = 
	(

S _5*)2 
+ a18(1 - p)S*I* (3_ - 	

- z) 

5 	 XZ y 

- p)SS*L* (4 - - 	
- 	 (2.54) 

+a27L* (2 - -+ (12 3pS*I* (2 - - 

+0 1 121* (2 - - —)  + 0281) S*L* (3 - - 	
- LI 	 FW 

Using the arithmetic-geometric means inequality, it can he observed that VEE (t) is less 

or equal to zero with equality only if S = S* and y = z = w. By LaSalle's invariance 
rimiciple, it can be concluded that the endemic equilil)riurn is globally asymptotically 

stable in c2E . Since Q, is absorbing, this proves the global as mptotic stability in the 
non-negative orthant. This concludes the proof. 



Chapter 3 

Models with staged progression and 
migration 

3.1 Model formulation 

A model br I uberciilosis (lyIiiiiiliCS iii two sUb-po)Ulat 10115 15 coiisiderecl iii this chap! or. 
The disease in each population is described by SE1 	E,I JS compartmental models, 
lvii ii staged progression to the disease. There is one class of susceptible individuals 

(h). 71 classes of latently infected individuals (E1 ) and one class of infectious individuals 
(1). wit Ii i = 1. 2. The subscript i stands for population i. II is assumed that the 
I Iallslmssioli does not occur during migration. The recrnutnient iii each population is 
only iii the susceptible class and occurs at a (Oflst1lIlt rate A; only the susceptible 
individuals are concerned by Imgrations at rate a j  between the two populations. The 
infectious individuals (10 not nhigrate froin one population to anot her, for medical reasons. 
The force of mortalit v is a constant p i , i = 1. 2. for susceptible classes. iijj. I = 1, 2. 
j = 1, 2. . 	, n, for latently infected classes and ,uj,., I = 1. 2, for infectious classes 
the additional death rate due to disease affects only the class 1i  and has a constant 
rate d. 1 = 1. 2. It is assumed that I here is no chemoprophvlaxis for latent lv infected 
individuals. The initiation of therapeutics imnniediatelv removes individuals from the 
class of active status i and places I hem into the susceptible class Si  at rate 	As TB 
confers I eniporarv mununit v, the recovered individual ret urns to the susceptible class 
after an ininuine period. 

The new infections occur aft or adequate cont act between the susceptible and infectious 
individuals. Here, latently-infected individuals are not infectious. The rate at which the 
susceptible are infected is ul ]i  Si . This could model for instance dynamics in crowded 
areas. The transfer diagramnie of the model is captured in Fig 3.1: This yields the 

28 
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Figure 3.1: Model of tuberculosis with migration and staged progression 

?11 

A1  

?12 -+. I I 

A21 

?20 

following set of lifferential equations: 

- S1 	= Ai(/li+c1i)Si — /3iJiSi+cL2S2+7ioJi, 

1 i1 	= Ii 1181 	(/'ii + ii) E,,  jn 

= 	E1 	(11 12 + 712) E121 

 

 

Eiji = 7ii E1,1 - ( ji + 21n)  E11, 

11 	= 71n E1 - (' + d1  + 	) Ii, 

32 	= A2 - ( I 2 + a2) S2 	2 12 82 + Ui Si + 720 12, 

= 12 12 S2 - (P21 + 1) E21, 

21 E21  - (['22 + 22) E22. 

= 	E21 - (/'2 + T21t) E2. 

= T'2n E2r, - (/112 ± (12 ± T'2) 12 

(3.1) 
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Svsteni (3.1) can he represented as 

= 	1 (:r) - 11 x i K e1  I  Y1 ) + 710 Y1,n+1 

)e +A1 Y1  
(3.2) 

- 02 X2( 	Y2) + 720 Y2,n+1 

= /322( 1 +1 1 Y2)e ±A 2 Y2  

where () is the scalar usual product in R 1  x = (x1 32)',  Y1  = ( E11 , E12 , 	, E1, 11)T 

I 	 T 	J - I r 	 i 	r 	- I, 	 IT 
t//li, /J12 	, Yin, //1,nL1) , 	2 - 	2l, 	22, 	, '2n, '2) 	- t/)21, /J22 	, Y2n, )12,n+1) 

(e') is the canonical basis of R', i(:) = 1(x 1 ) + a2  x2, 2(x) = 2(x2 ) + a 1  xi , 

A1 - 	+ ai)xi, y2(x2) = A2  - (/12 + a2)x2 , the matrices A1  and A2  are 

Metzler stable [15, 37] and given by 

—(lii 0 	0 0 0 

711 12 	0 0 0 
) 712 	13 

A1 
= 

0 71,71-1 —a 0 
0 ... 0 In 0 1,n 	1 

and 
21 	0 	0 	0 	0 

721 — 022 0 0 	0 

A2 0 
7 —a 22 	23 	0 	0 

— 	. 	. 

0 	. . . 	72rl 	02n 	0 
0 	 0 	72n 	 1 

respectively, where uu = (/111 + u), a12  = (//12 + 712), a13  = (//13 + 713), 	, (11n =  

(itl, + 7in),  a+i 	(i + d1  + 710), a21 = (['21 + 7i), a22 = (Y22 + 72), a23  = (/22:3 + 723), 

= ([/2n + 72n), 02+1 = 0I2 + (/2 + 720). 

3.2 Mathematical properties 

3.2.1 Positivity of the solutions 

Since the variables considered here are non-negative quantities, it is necessary to ensure 
that their values are always non-negative. 
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Theorem 3.2.1. : The non-negative orthant 	is positively invariant by (3.1). This 
means that every trajectory which begins in the positive orthant will stay inside. 

Proof System (3.2) can be written in the following form: 

xi 	= 01(x) - 31 xi((-, +i Y1) + 710 Y1,n, 

= 	2(x) - 02 x2 ( C 1  Y2) + 720 32,n+1, 

(3.3) 
= 	(ej e] +n1 ) y, 

= 	(02 3!2 (el)T e 11  + n2) y2, 

where A1, A2  are Metzler matrices. Since x(t) > 0, the matrices (31  xi (e+i)T eI + A1 ) 

and (02  x2  (e+i)T  e + A2) are Metzler matrices. It is well known that a linear Metzler 
it,

system lets the nonnegative orthant invariant [15]. 

On xi = 0, :i = A + 	Yj,n+1 > 0. Then, no trajectory can pass through the set "ri = 0. 

This proves the positive invariance of the non-ngative orthant 	by (3.1). 	El 

3.2.2 Boundedness of the trajectories 

Froin the system (3.1). 

N(t) 	S1 (t) + E(t) +.. + E1 (t) + Ii (t) + S2(t) + E21(t) + . + E2 (t) + 12(1) 

and 
N(t) <A1  + A2  - 

where ji = min(i 1). 

It follows that urn A'(i) < 
A1  + A2 

The following lemma is thus obtained. 
11 

Lemma 3.2.2. The simplex 

I (Si, F11 , 	E1 . j  S2, E21, . . F12n, i) E R 1+4 

FE 	
I S1 +E11 ++E1 +I1 +52 +E21 ++E2 +J2  < 

A1±A2
+r 

/1 

(3.4) 
is a compact forward invariant set for (3.1) and that for e > 0 this set is absorbing, and 
so the study is limited to this simplex for 5 > 0. 

In the simplex F, Eq.(3.1) is mathematically well-posed. 
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Lemma 3.2.3. : The sirriplcr 

= {(r, y) E F 	i <r}, 	 (3.5) 

is a compact forward invariant set. for Eq. (8.1). 

3.2.3 Local Stability of the Disease-Free Equilibrium (DFE) 

I\T1IIV epideflhiologi(?ll models have a I lireshold condit iou which can he determined whet Tier 

iifection will be elmiinated from the popril 	 n iou or become endenc [30]. The basic 

reproduction nunmber 91() .is defined ii the average number of secondary infections pro-

(111(0(1 by an immieeied iiidiviclual in a comimpletely smiscept ihie population [12]. As discussed 

in [30 7  31], 9io  is a siiimply nornialised hifircatioii (I ranscritical) p?lralimeter for epmdemni- 

oh)gical models, such that 	iimiplies that the endeniic steady state is stable (i.e., the 
infection persists) and Mo implies that the nniii!ect ed steady slate is stable (i.e., the 

iii eel ion can be eli innat ed from the population). 

There is a trivial equilibrium f = ( ....
)T of Eq.(3.2), whelm is the solution of I) :r+A = 

0. Eq.(3.1) has a Disease-Free Equilibrium give!! by (Sj, 0, 	. 0, S, 01  . , 0). v1uc1i 

always exists in the non-negative orthant R+4.  The explicit expressions of S and S 

are 

s2* ==  (//21 + a2 )Ai  + 

/111/121 + jiI, a2  + //21 01 

(//11 ± o i )A2  + 'u A1  

/ 1 111/21 + /1i 	+ /121 Ui 

Lemma 3.2.4. 	Usinq the sairie method as in [i6J, the basic rcpiiditctjon ratio of (8.1) 

is 91 = ii'ax(9.) , where fR is the basic reproduction of population i. 

Proof Let us consider a SE1  . . . E, IS model of oiie populatiomi with staged progressioll 

as in [32] it is easy to observe 1 hat the basic ratio is 

57 
7/1 7/2 	'gn  

Oil O ......()m (lj 

For t he evoluit iou equal ion (3.1). the basic repro(imetiomi ratio of each POP'llatl0ii is  

separat clv given 1 )v 

= 31  
m 	1 (p + (12)Am  + (12 A2 	

(3.6) 
0  ..... 01n 0  Ii p1/12 + 111 02 + //201 

011(1 

= 	2 	
21 2.....m 	i 	(/1  + ai )A2  + a, A1 	

(3.7) 
21 022 	0 in 012 111/1 2 + Pm a2  + f12  (11 

in order to use the same method as in [46] for (3.2) to compute the basic reproduction 

ratio, the expression F(X) derived from the other compartment (1110 to the contaimimnation 
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and the expression V(x) resulting from the other compartments due to any other reason 
are 

32 '282 

' 21 

, 22 P22  

'Y2uE2n 

0 

0 

diriEiri 

2n P2  

A1 	(Ri + (li) S1 - i Ti Si + 2 2 + 710  11 

A2 - (R2 +a2)S2 - 82 12 S2  + a 1  S1  + 72012 

with r = (E1  i, . . 	Eth  1, E21, 	, 	12, 51, S2). Therm, the Jacobian matrices at DFE 
are 

DT(x*) = [] 

	
and 1)V(x*) 	

[ 	

o

J4] 0 0 

where 

T(x) 

and 
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P=I 

0 0 0 /91St 0 0 0 0 0 

711 0 0 0 0 0 0 0 0 

0 Y12 0 0 0 0 0 0 0 

0 71,n-1 0 0 ... 0 0 0 0 

0 0 'Yin 0 0 0 0 0 

0 ... 0 0 0 0 0 0 132 S 

0 0 .. 0 0 721 0 .. 0 0 

0 0 0 0 0 '22 0 0 

0 0 0 0 0 fl2,1 0 0 

0 0 0 0 0 0 2n 0 

and 

—o 11 	0 	•.. 	0 	0 	0 	... 	0 	0 	0 

0 	12 	0 	 0 	0 	0 	• - 	0 	0 

0 	•.. 	—ci_ 	0 	0 	0 	... 	0 	0 	0 

0 	0 	 —() In  0 	0 	 0 	0 	0 

0 0 	 0 0-021  0 	 0 0 

0 0 	0 	 0 0 — G22 0 	 0 

0 0 	 0 0 0 	 0 2,n-1 0 

0 0 	 0 0 0 0 	 0 

The next generation matrix is —FV. It can he observed that since 9io  is the largest 

eigerivahie of the next generation matrix, 

910  = max(9,9). 	 (3.8) 

Lemma 3.2.5. 	The disease-free equilibriurri of (3.1) is locally asymptotically stable 

Whenever 9io  < 1, and unstable if o  > 1. 

This lemrria shows that if NO  < 1, a small flow of infectious individuals will not generate 
large outbreaks of the disease. To eradicate the disease independently of the initial 
total number of infectious individuals, a global asymptotic stability property has to be 
established for the DFE when 9io  < 1. 
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3.2.4 Global stability of the disease-free equilibrium (DFE) 

The following theorem exists about stability of the DFE when 9 < 1 and 9 < 1 

	

Theorem 3.2.6. : When Ru < 1 (this implies 91 	1 and 9Ct 	1), then the DFE is 
globally asymptotically stable in FE . This implies the global asymptotic stability of the 
DFE on the non-negative orthant R±,  i.e., the disease naturally dies out in both two 
patches. 

Proof. Let us consider the compact form of the system, given by (3.2). 

Consider the following Lyapunov candidate function which is similar to those which can 
be found in [36, 13, 141 

	

VDFE(t) = ( e, (-A, 1  Y,) + 	(-A2 ' Y2 ) 	 (3.9) 

where (A1 ) 1  > 0 and (42 )_ 1  > 0 since A1  and A2  are stable Metzler matrices. This 
function is non-negative since the matrices (A,)-' and (A2)' are non-singular. Its time 
derivative along the trajectories of (3.2) gives 

	

VDFE(I) = (e 	(-A,)' Y,) +(-A2)' Y2) 

Y,) - (e, Y1 ) 

+ 	/32 X2( 	I (-A2 )-' c)) 	Y2) - K Cv1 Y2 ) 

(9,1 _1)(e +, IYi)+(9_1)(e +i  Y2). 

In E  we have c1  < r. This derivative can be written as 

	

VDFE(t) 	( 	- 1) y1,7+1 + ( 	- 1) Y2,n+1  <0. 

Then, we have VDFE(I) < 0. This proves the global asymptotic stability on FE  (sec [41], 
Theorem 3.7.11, page 346 ). Since FE  is absorbing, this proves the global asymptotic 
stability on the lion-negative orthiant when 9t < 1 and< 1. This achieves the proof 
that the DFE is globally asymptotically stable. 

3.2.5 Existence of endemic equilibria 

Definition 3.2.7. : An equilibrium of (3.1) is called boundary equilibrium if exactly one 
population disappears at this equilibrium. 
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Theorem 3.2.8. : The following results hold about existence of endemic equilibria. 

	

I. A unique boundary equilibrium E1 DF2 = 	 E, I, S, ..... , 0) exists 
in the non-negative orthant when 9t > 1 and 	1. This means the disease dies 
out in the second population while it is still endemic in the first population. 

A unique boundary equilibrium DF1E2 
= (. 0,.'. 0, 	, E,•• , E, I) exists 

in the non-negative orthant when 91 < 1 and 9t > 1. This means the disease is 
still endemic in the second population while it dies out in the first population. 

A unique endemic equilibrium (Si , E, 	, Ei, J, S2, E21 . . , 	 J2) exists in 

	

the non-negative orthant when 9V > 1 and 	> 1. This means the disease is still 
endemic in both populations. 

Proof. For the first part of the theorem, let us consider Eq.(3.1) at equilibrium with 
Yi,n+i 7~ 0 and 22,n+1 = 0. Then we have 

A1 - (ii1 + ai ) S + 02 2 + 710 J = / 1 
7* * 

1 	1' 

31 I 	= (bill + 711) E1. 

711 	(i'i + 712) E12, 

(3.10) 
71,n—i 	= (I'm n + 71n) E, 

3m E = (ji' + lj 

A2 —(ji2 +a2)+ai =0, 

or equivalently 

- 	 7- b -b çix ) - 1 11 Yi,r+l - jiG Ylni, 

—A1 y, = 1i • 	 ,n+1 	 (3.11) 

	

6(b) 	0. 

The second equation of (3.11) yields 

	

= 	 +i ( — A')-' e. 	 (3.12) 

Then, equation (3.12) implies (e 1 Y1) 	e)). Since 
= 	 it follows that 
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Y,n+l fii (e 1  (—Ai)'e)) ,71+1 

and since 	0, it results in 

-b 	 1  

8 (e, (—A1 )-' el) 
=911, (3.13)  

The third equation of (3.11) gives 2() = 0, which is equivalent to A2 - (J'2 + a2) + 

a1 	= 0. This then results in 

	

A2 	________ b = 	+ 	 1. 	 (3.14) 

	

(112 + a2) 	(/'2 + 02) 

The first equation of (3.11) gives 

-b 	
(b) - i()+a2 	

(3.15) 
=- 10 - 	- Yio 

It can then be deduced from (3.12), (3.13) and (3.15) that 

	

- 	1() +02 X2 
(—A1)' c). 	 (3.16) 

	

1 —  1 	
_'° 

When 9V > 1, it results from equation (3.13) that 	<, and then yi() > 0, since 

the functioii pi  models the dynamics of the first population when there is no disease. 

The condition 9V > 1 is equivalent to 

	

12 	71n 	b > 1, 

	

all a12 	(ii aIj 

which implies 

> 	 (p, + (/1 + 10) > (/ij + di + '°) > io. 
1i 	21n 

This yields 8 ii - yio > 0. Since 	 A 1  is a Metzler stable matrix, (—A1) > 0. 

Therefore, 	> 0, Y, > 0. 	> 0 and 	> 0. The boundary equilibrium E1 DF2  

given by (3.17) is a boundary endemic equilibrium. 

When 9 > 1 and 9 < 1. the first boundary equilibrium exists and is given by 
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1 

	

= Ii (+ I (—Al )'e) = 	
>0, 

-. X '() + a2  X2 (4)_i ci > 0. 
gil 	

i7io 
(3.17) 

- 	
- i() 	>0, /11,fl±1 = 

	- NO - 	- 710 

I 	A2 	b 
I 	= 

(i' 	
+ 	 1> 0. + a2) 	(2 + a2) 

For the second part of the theorem, let us consider Eq.(3.1) at equilibrium with yi+i = 0 
and Y2.n+1 	0. This results in 

A1 - (' + ai) + a2 	= 0, 

A2 - (/12 + a2) S +01 S + 720 2 	2 12 92 , 

2 I 	= (/121 + >i) 	
(3.18) 

721 	= (/122 + 722) E2, 

72.n-i L2,n_1 = ( f12ri + 72n) E, 

72 n E = (i '2 + (12 + 720) I, 

or equivalently 

c-h\_ 	-b-b 	 -h 
q2t 	) - 1J2 a2 Y2,n--1 - 120 Y2,n-f-1, 

112 Y2 	Y2 	 (3.19) 

= 0. 

The second equation of (3.19) gives 

2 X2 	1(—A2)' e. 	 (3.20) 

Then, equation (3.20) implies (e 1 	Y2) = 2 	TI+l (e +l  I (—A2)' e)). Since 

(c  I 1 I 	) = 112,n+1' it results in 

- ,2 -hi I 	f 	,j \-1 1\ -b 

	

i12,n+1 - 12 2 \ n+i t2) 	Cj Y2,+l 
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and since 	0, it yields 

	

1 	
p321 

- 32 (c 1  H42)' (a)) 

The third equal ion of (3.19) gives i() 	O. \VhiCll is equivalent to A1 	(ui + o) J + 
- 0. Tins yields 

= 	A 1 	(1 2 
+ 	 (3.22) 

+ a) 	([Li + (11) 

The first equation of (3.19) gives 

-
h 	- 	3(b) 	2(a h  2) + a1 -1) 

j 	 (3.23) -  
270  1 	

32 X - 220 	32 4 - 32(1 

It can then be deduced from (3.20), (3.21) and (3.23) that 

	

= 	
2(2) + a, X 

(—A2 1  1• 	 (3.24) 
7? 	32 . 2 - 220 

\Vlien 9y1> i 	 2( ) > 0.   l ( 	) 	 2  

siiice I lie 11111(11011 2 iiiodels the dynamics of the second populatioii vlien there is no 
disease. The (011(111 ion qj2 > 1 is equivalent to 

32 
321 322 	-Y2n 1 	

1, 
a21 a22 	12 

\Vhich i1111 )lies 

a1 	0 211  
> 	 + (12  + 220) > (/112  + 42 + 720) > 720 

22.....22n 

Tins yields /2 	- 720 > 0. Since A 2  is a Metzler stable matrix, (—A 2) > 0. 

fherefore, 	> 0, Y > 0. 	> 0 and 	> 0. The boundary equilibrium 1) Pi F2  

given by (3.25) is a boundary endemic equilibrium. 

When 9 < 1 and 9t > 1, the second boundary equilibrium exists and is given by 
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1 	
Q 12— /2 

(e 1 ( — A2)1e1) 	92> 

- 	1; 2(x)+aix1 	1 
= /32 

- 	 -b 	(—A2) 	> 0 
910 	/2 a2 - '120 

(3.25) 
- 	- 2(xh) 	- y2(x

b
2) + a1 1b

1 
> 0. Y2,n1 	82x - 720 - 	- 720 

A1 	___ 	-b + 	12>0 1 	+ ai) 	(i' + ai) 

For the third part of the theorem, the equilibrium has to be computed when both infec- 
tious individuals of the two populations co-exist. This means Ii 	0 and 11 	0. This 
equilibrium is called endemic equilibrium. The endemic equilibrium EE = (,, Yi , X21 Y2 ) 
of Eq.(3.2) should satisfy 

cii (Tr ) = /iT, i Fj 1.n+i 	710 )Ii,n+i 

+A1 Yl =0 
(3.26) 

= /12 x2 Y2,n+1 	720 Y2nI-1 

/12 '2 Y2,n+1 e) + A2 2 = 0 

The second equation of (3.26) gives 	= 11, i 	( — A,) cl and using the scalar 
usual product, 

Y) = /11 (e 	I (_A1 ) 	Y1,n+1 

Since ( co +i 	) = th,n+i and Pi,1+i 7~ 0, 

1 - a ____________________ 	 1 	
2 

Bi (c, I (—A1)' cD 

- 11 The last equation of (3.26) gives Y2 = 82 2 Y2,n-1 (—A2)' c and using the scalar usual 
product, 

/ 1 	-\ 	i / 1 	( A '\-i 1\- 
\Cn±l 	12) = /2 \ 	t2) 	iJ2 Y2,n+1 

Since (f j i 	) = Y2.n+1 and h12,T1 1 i 	0, 

- 	 .12 	 2 12 
= /12 (e 1 (—A2)' eD - 

When 9> 1 and 9> 1. then 	> 0 and y2(x2) > 0. 
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The first equation of (3.26) implies '(') = 31 i i,i— io 	with '() 
(22 X2. Then, 

- 
tIl,n+i = 	- 

— 7io 

where 	--yjo  > 0. The third equation of (3.26) implies 2() = 2 2 92n+1720 92,n+1, 
with 02(x) = 2(x2) + 01 T 1. Then, 

Y- 
2,n-{ 1 	

2(X2) + 01 
1 	 (3.30) 

= 	/2 2 - 720 

where /32 2 720 > 0. Since Yi = 	i Th ,r+1 (—A1) 1  c4 with 	and n+1 given as in 
(3.27) and (3.29), 

x 	y1 (x1) + 
a2 X2 (—A1)-1 1 	1 	 e. 	 (3.31) 

ii 	710 

Since Y2 	2 x2 Y2,n+1  (—A2) e with x2  and 92,n-j 1 given as in (3.28) and (3.30), 

£2 	2(x2) + 01 
- 	—A2)  (. 	 3.32 

o 	02 112 	720 

When 	> 1 and 	> 1, the endemic equilibrium exists and is given 1) ,  

x 
= 	>0, 

0 

/3 1 	
'(1) + (l2 2 (—A1 ' e > 0, 1 - 	91 	3 1 - 

Yi(i) +a22 
>0, 	

(3.33) 

1- 2 
- 	

> 0, - nc2 
-, 

-8 	2(x2) + a1 	
(—A 2)' ci > 0, 2 - 2 	

/32 2 - 720 

- 
- 	> 0. 

/32 12 - /20 

Im— 
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3.2.6 Global stability of boundaries equilibria 

The stability of endemic equilibria always preseIts a number of challenges. For (3.1), 

the following stability results hold. 

Theorem 3.2.9. 	1. When 9V > 1 and 9 < 1, there exists a boundary equilibrium 

	

E1 DF2  = 	 , O) 

which is globally asyrnptotjcally stable if a sufficient mild condition given by 

( 	7w —b (12 	1 + 	 ) (x - 12) 

	

[m + a) (i + 	
'o 	

) + 
	

710 	
yi,+i 

(xi - 

	

/i xi - 710 	/i x - 710 

is satisfied. This implies that the disease is endemic in the first population while it 
will die out in the second population. 

2. When 9 < 1 and 9 > 1, there exists a boundary equilibrium 

DF1 E2 =(S,O,... 	 .EM) 

which is globally asymptotically stable if a sufficient mild condition given by 

1 	720 	 —h a1 ( 1 + ) — b x) 
\. 	P2 2 - 20 / 

	

+ a2) (i + 	
20 	

) 
+ 	

720 	
82 y2,4 1] (x 

	

82 12 720 	2 12 - 20 

is satisfied. 

This implies that the disease is endemic in the first population while it will die out 
in the second population. 

Proof. The approach used in [14] could be followed. Consider the following Lyapunov 
function candidate, which is almost the same as in [36, 13]: 

n f 1 

= (x  - J: ln x) + 	Vu (yii - 	ln y)  + (e 1  (_A2 ' Y) 	(3.34) 

where V, 	, vI, and vi,+i are positive constants that will be given below. Differen- 
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tiating 11' 1 DF2 (/) with respect to time gives 

(Xi 	
-b\ 	 I 	-b X 1 ) 	 1 X1 	 b 

VE1 DF2  (/3 	i ( x) 	+ 710 Pi,n-1 	 /31 l  Yi,n 1 + /3 	Pi,nI1 

	

rl 	 Li 

+LU 	31  X1  P1.n+i - (' ii P11 - 	Li P1,n I 1 	+ 13, X 
P11 	 11 

b- 
P12 	-b 

+1)12 I'M 911 	12 P12 - 711 P11 	+ 7ii Pu 
11 P12 

-b 
Pi3 	-b 

+173 1'712 P12 - 13 Y13 - 712 P P13 12 	+ 712 P12 

+i)in [7in_1 Yin-i - 1n Yin - '7i,n-i Pin-i 	+ ,n-1 Yi.n-1] 
Yin 

P1,n+1 	-b 
+V1,nf l '7in Pin - 1 1,n+1 P1,n+1 - 71n Yin 	+ '7in Yin 

P1 n-I-i 

+ (9j2 	
- i) P2,n+1 

Let us choose the coefficients of our function as 

V12 '711 E1 = Vu ([lii  + 7ii) E 

I 
13 712 '-'12 	V12 t/-12 -r 712) -'-i2 

	

Vl n  71,n-i 	_i = 1'i,nl (t ,fl_ + 71,n-i) Li,n_i 

	

W1 '7in  E1 	Vin (Pln + 7in) E n  

or equivalently 
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By the endemic relations, 

1'12 (/112 + 712) E12  = 11 (/Jii + 711) E, 

113 (/113 + 713) E13  = 1)12 (/112 + 712) E12 

1 th (it + 7in) 	= 1'l,n-i (111,n_1 + 7i,ni) 	ni 

(jaj + d 1  + 710) I = Vln (JJin + 7in) 

or equivalently 
all 

lJii 

711 Pi 	= n12 Y12 

-h 
712 Y12 - -b (113 Yl3 

-b_, 
On Yin 

- - £mni1 Yb 

Then, 

, -b -h 	 -b - 	-b 	- 	rb - 	 -b Ui 	1 Yi,n+i - il 1i Yii 	12 12 Yi2 	- in nm Yin - 1,nfi nn+i Yl.n3 1 

(3.35) 
-h_ b_ 	 b _, 	 -b - 112 7i1 Yii - 1'13 712 Y12 - 	- 11n Sin—i Yi,—i - 01,n+i Sin Yin 

The derivative of V1DF2  (t) becomes 

(r' - 1) 	(x' 	b 
(t) 	

) 
VEI DF2 	= 1(x) 	+ 710 Yn+i 	

L

. 	
- /91 i Yi,n+1+ i 

( 	
i) ?12,n 1 + 	ii,ni [(11 + 1) - 	

Ym,n+i i - 
	

yi  

m i1i,n+i P11 	k=1 
 Tb 	

Yik ?Jm,k+m 

(L 
i 	

i
Using the relation /9 	= /91(f) + 710 	the expression /9 

can be added ard subtracted. This yields 	

) 

,n+i - 	n+i 	- /9i() 
(Xi 	) 	

710 ,n+i (Xi - 
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Therefore. 

V 1 DF2  (t) 

= 	(1(x) - &(.)) (
xi 	) + 	(,n±i - 	+i) 

(x1 	i) + (9j2 	
- i) :Y2,n+1 

	

ii (r + 1) - 
	i1,n+1 	 11kY1,k-1 

X 1  bI1,n+1 i/il 	k=1 Yi Y1,k±1 

Making use of the identity 

- 	= — (iii + a1)(x1 - ) + a2(x -Tb 

and the relation 

A1 = (iii + ai)J + /3i 	- i@ 	+ 02 

yields 

	

+ ai ) + i yi, ii (x1 - 	I 1 - 	 io) + 02 (2 - 2). 

Next another function 

172 	10 	 -b 

	

VF1DF2tI) = i 	(Xi 	a 1  irixi ) 
1 1 	i 	10 

is considered. It follows that 

VE1 DF2(/) - - 
	

[( + ai) + / i Y1,n+1] (x1 - b)2 + 
1 ,L 1  

02 
- 	

(x 1  - J:)(x2 - 	 b 
01

-  
b 	 . 	- 7i0(Yi.n+i 

- 
i - 110 	£1 

Considering the summation 

T7 	I \ 	iji 	I I 	T72  

	

VE1DF2tI) 	E1 DF2 tt) + yE DF2 

results in 

	

VE1 DF2  (t) = - [(bLi + a1 ) (i + 	
o 	

) 
+ 	 ii in+i] 	

)2 

ii X1 - -Y10i X - io 	 Xi 

1  

	

-b\' 	-b 	/ 
Yio 	- I )X - J 2) 	/ 

+02 1 + 	-b 	 + 	- 1 Y2,n+1 

	

- 710 	 11 	 \ 

l b/ri+1 Yii 	?JlkYl,k-f1 

	

Y1,n+1 (n + 2) - 	- 	
- k=1 Yik Yi,c 1 
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Thus. as showii in the previous section for the stability of disease-free equilibrinn. 

(m
2 - i) < 0 in . Then. sufficient condition to have VEnf2(i) < 0 is 

(12 [i+ 	
io 	('i 	)(x2 - 2) 

81 Ti - 10 

< IH + (11) (i + 	
'° 	) + 

 

This sufficient condition can siiply be written, as 

( 	710 	 -b 
t 1 2 1  + 

/ i -b 
	(x - '2) 

xi - 71o1 

[i1 + ai) (i + 	
° 	) 

+ 	(a 1 	±), 
8 	- 7io 	i X1 - 

with f J - "y > 0. The LaSalle's invariance principle could be used to conclude 
that when this sufficient condition is satisfied, the first bouiiclary equilibrium is glob-
ally asynipt otically stable. The proof of the second part of the theorem uses the same 
approach wit Ii the functions 

fl + 1 

4111T 2) +fl2j (P2/ 	92// 7( P2/) + (e 	I () 	Y) 

172 	( \ 	(20 	 -b 
VDFI E2  tt) = , -b 	('2 - 2 ' 22) 

- (20 

3.2.7 Global stability of endemic equilibrium 

Lenima 3.2.10. Let Q(a:, y) be a qnadratic fnnction of the foiin: 

r2(ti + Ci) ,2 	(°2 n1 	22 + 0 1/ 2  t 2 m)  :r ?J+ 1 / 2  h2 '1(/'2  + (/2) P2  (336) 

where it, and 	are positive constants. Then, theme cists posilmve iaiics of U  and 112 

such that (2(', /1) ZS positive definite. 

Proof. The quadratic function Q(x, p) is positive definite if the diserininant 

A = ((12 n1 k1 2  + ai n2  k2  i)2 - 4n1 U2  k1  k2 .r 1  22(111  + a1 )(p2  + 02), 

is non-positive. Using the fact that 2(ji + a1 )(12  + a2) - 01 a2 > 0, 

A 	(a2  it I k 1  2)2 + (01 t 12 k2 1)2 - 2 it, 1/ 2  k1  k2  22 2[2(I/1 + (11)(/'2 + (12) - 0 1 021 

is obtained. Therefore, the positive constants it, and 02 could be chosen in such a way 

that A < 0 and this concludes the proof of the lemma. 	 11 
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Theorem 3.2.11. This result holds for the system (3.1): 

When 9V > 1 and 	> 1, then there exists a vnique endemic equilibrinm 

EE=(S1) E11,. ,E1 ,I1 ,52,L21, ,L2n,12) 

which is globally asymptotically stable when a mild condition (3.40) given by 

[n1  ki( 1  + Ui) - 2 1i  A:2] X1  + [1/2 k2(112 + 02) - m 02  A:1 ] X2  > 0 

is satisfied. This implies that the disease is endemic in both first and second poulations 

and then, cannot be controlled. 

Proof. Let us consider the following Lyapunov candidate function: 

n+ 1 

= 	It, (xi - 	i) + it, 	e1 (yii - Yli 	Yii) + U2 (2 - x2  in a:2) 
i=1 

(3.37) 
n + 1 

+1/2 	i' (gj - Y2i ln 
1=1 

The derivative of VE(t)  is given by 

1 	 (xi - x1) 	 ( x 1  - x 1 ) 	 - 
VEE (t) = ni 	(x) 	+ ti io Yin-il 	 - i i X1  Yi,ni + u1 1 i Y1,n+1 

ii 
+U1 Pu 	8u x1 Yn+1 - ( ui yiu 	tl l Yi,n-F-1 	+ 11i xl 

Yl  

iJl,k+1 	- 
+ 	k=1 1 1,k+I 71k Ylk 	k-f-1 Yi,k+1 - 71k Ylk 	+ 71k Yik 

V1,k-i-u 

(x2 - 2) 	 (x2 - 2) 
+1/2 2  (r) 	+ 	112,n-i-1 	 /12 x2 Y2,nH1 + 112 x2 112.n-i 1 

12 

- 
+//2 7 '21 /2 x2  ?12,nfi - 21 Y21 - 32 12 112,n 

y21  
+1 	+ 32 12 112.n*l 

!121 

n 	 Y2,k+u 	- 
+ 	k=i U2 L2,ku 

1

-12k Y2k 	a2.k+1 Y2,k-1 1 - 72k Y2k 	+ 72k Y2k 
Y2,k+1 
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Choosing for i = 1, 2, the coefficients of this function as 

1i2 i1 	= 7 )1 (liii + 7ji) E11 

1) 3 /i2 E 2  = 1)12 (2  + /j2) E12 

j.n-jj in Pin = V r  Olin + 7in) E1 

or equivalently 

\rields 

Yin+1 	(lii Yi1 

/iT Yil = -1i2 Y112 

(3.38) 
'fi2 f/i2 = (113 Y13 

fin Yin = ai,n+l Yi,n+1 

by the endemic relations. It follows that 

ii X,i Yi,n+i 	i1 Oil fiji = 1'i2 Gi2 fii2 	 in 0-in Yin = Li,n+1 1i 7n1 Yi,n+1 

(3.39) 

= i2 Yi1 1111 = Vi3 7i2 fIi2 = 	= Vin 2i,n1 Yin—i = Vi,n+1 7i,n Yi,n 
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The derivative of VE(t) becomes 

	

1 (xi - i) 	 (11 - 
VEE (t) = 	ci(x) 	+ 111 lO 1J1,n+1 

Ii 	 Ii 
(x2  x2 ) 

+'U2 2@t (12 
	x2 ) 

) 	 + 112 20 /12,n+1 
12 	 12 

Il Y1n+1 Pu 
- E 

, 	 fJlkYl,k±1 
+lLi /3i 	Y1,n+1 (n + 1) 

- Xi  !I1,n+1 Yll 	k=1 /11k /I1.k+1 

fl 	 - 

	

- 	 12 Y2,n+1 Y21 	/12k Y2,k+1 
+112 /2 12  /12,n-I1 (ii + 1) - 	- 	- 	______ 

	

12 Y2,n+1 /121 	k=1 /12k f12,k+1 

Using the relation /3j j 	= () + 'yj 	the expression 

	

- - 	(Li - 	 - - 	(12 - 12) 
/3 Li Yi,n+i 	 + /3212 /12,n+1 

11 	 12 

can be added and subtracted. It follows that 

- 
1i /3i 11 	111 /31  Li /11,n i 	- i i (1) 	 - '01 +0 Y1,n+1 

	

Li 	 Li 	 Li 

- 	 12 	i 	(X2 - 2) 	 - 	(12-2) 
+112 /32 i2  /12,n+1 - 112 /32 12 /12,n1 	- 112 2(L) 	 - 112 i20 /12,n+1 

12 	 12 	 12 

Therefore. 

1 	 (x - Ii) 	 - 	(Ii 

	

ill (ci(x) - i(L)) 	 + 'u1  ig (/11,n+i 	yi,n-i) 
Ii 	 Li 

	

fl 	 - 
- - 	 Ii /Ii,n}-1 /111 	/11k Y1,k1-1 

+01 /3i xi  /1l,i+1 (n + 1) -77 
Li /I1,n--1 Yu 	k=1 /11k Y1,k- 1 

- (12 - 12) 	 - 	(12 - 12) 
+112 (2  (x) 	2 (x)) 	+ 112 /20 (/12,n+i 	Y2,n+1) 

12 	 12 

- 	n 	- 
- 	 12 /12,n+1 /121 	/12k Y2,k+1 

+112 /32 12  Y2,n+1 (n + 1) - 	- 	-  
£2 /12,n+1 /121 	k=i /12k Y2,k+1 

Since (x) - () = — ( ii + (li)(Xi - Ii) + 02(12 - 12) and 

	

92(L) - 2() = — (/12 + 02)(L2 - 2) + a(x - /3, let us get the other form of 	and 
x2. Then, 
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:11 = - [(/11 + 01) + /i :yi.nn] (x1 
- 	 - (yi,n+i - yi,+i)(di S1 	+ 0 ( 1'2 

and 

	

:12 = - [(/12 + 02) + 32 Y2n+11 (52 - '2) 	(Y2,n+1 - Y2.n4-1 )(32 2 	720) + 0 i (:/1 	ti). 

where we used the fact that A1 = (//i + ai)i + 31 •ifjt,11 I 1 - io Th ,-t-i + (12 2• 

Let us coIlsider now another function 

v(i) = U I 

	

/10 	
(sI 	- in 2:1) + 112 	

720 	
('2 	•2 iii 52). 

1i :i:i - 710 	 /2 .12 - /20 

Ilieii, 

Ii)2 

EE() = — 111 	 [(/11 + o) + di Yi.+i] 
01 T i 	7io 

+iJi 	

- 

	

(12 7io 	(' - i)(:r2 	52)  

/31 

	

- 

1 - 710 	11 
- 	 (x - ') 	 (.v2 - 12) 

	

'li.i 7i0(yi,n- 1 - yi.+i) 	 - (19 20(/J2,n II 	/I2.n I 1) 

720 

	

	 t32 - 12) 
[(/1 2 + 02) + 32 Y2,n±1] 

	

/ 
-

2 2 - 720 	 :1:2 

+112 

	

01 720 	(Si - i)('2 - 12) 
- 

	

32 2 - 720 	.129 

The fiuiad function used 15 t'EE(t) = 11'FE( t ) +17EEM. The derivative of I los function 

gives 

= —Ui 
~

710 
(i 	+ o) i + 
	

) + 
, 	

3i m 
ii 

(si - 
i )2 

5i 	7io 	:ri 
- 710 	 :121 

+1 /1 (2 1 + 	
710 	(Si - i)(a:2 

- '2) 

	

Si - 710 	 :1:1 

+112 (i 1 + 	
720 	(1:1 	i)(:r2 	52) 

12 :1:2 	720 	 :12 

— 112 [(/12 + (12) (i + 	
720 	

) + 	
720 	

/2 Y2,n ] (:r - 52 )2 

	

/32 2 720 	/32 2 721)  

i 	51 Yin-il t/ll 
- 	

Thk /11k-Il 

	

i,n+1 /111 	121 /11k Y1,k+1 

2 	X2 /12.n-I 1 /121 	/1212 /12111 
+112 32 T2 /12n-(1 01 ± 2) 

- 2 - X2/]2fl+1 /121 
- 1i P2k /121+1 
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Letussetki=(1+ 710 )A2(1+ 720 )Xixi_iand 
i X1 - 7io 	 2 X2 - 720 

X2  = 	x2. Then, VEE(t)  can he written as 

VEE(t) 
= - 1 	

ki (1i 1  + ai )x2  X - (u1  a2  k1  X2 + '02 a1  k2  xi )Xi  x 21 
1 X2 

1 	 2 - 	[u2  k2( 2  + a2)xi X2 ] 
1 2 

___________  

/i Yi,n+1 - 
01 27 710 	 27 

(20 	 - 
- 	2 Y2,n+1 1. 

/2 27 	720 

	

X1 	27 Y1,n+i b/u 	?Jik YI,k-i 1 

	

+n1  131 xl Th,n+i (n + 2) 
- 	- I 91,fl1 m I 	k=1 Ylk ?I1,k+1 

27 X2Y2,n+1Y2I Y2kY2,k+1 

	

+112 /2 X2 Y2,n+1 (n + 2) 
- 	-C2 Y2,n+i Y21 	k=1 Y2k Y2,kfi 

	

Using the fact that X1 = i - i and X2  = 	, one obtains 

VEE(t) = - 	[iii ki (jti  + a1) X - (iLl 02 k1  
Ij 1 2 	

+ 112 a1  k2 1)X1  X21 

1 	
k2 1(['2 + a2) X 

27 	
] 

X1  X2 	
k1 (i + a) Xi  - ('02 a 1 k2  X1  + ul a2  k1  X2) + '02 k2(112 + a2) X21 

27 

	

( - 	(X2- 

"Ti
8 Yin-i I 	2 Y2,n-i-1 

( 
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Using lemma (3.2.10) for VEE (t), gives 
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Theii. the sufficient condition to have VEE() 	0 is 

[i k1 (1i1  + ai) - '02 U1 k2] X1  + [u2  k2(1i2  + a2 ) - 221 02k1 ] X2  > 0. 	(3.40) 

If this sufficient condition is satisfied. LaSalle's invariance principle can be used to con-
dude that the endemic equilibrium is globally asymptotically stable in the non-negative 

24  ortliant R 



A Recruitment rate 
(N) Transmission coefficient 
S Fraction of hidden infectious individuals 
p Proportion of newly infected individuals that 

have fast progression to the infectious class 

p Naturally death rate 
A Rate of progression from infection to infectious 

Rate of effective chemoprophylaxis 
Rate of effective therapy 

ci Rate at which infectious become loss of slight 
Rate at which loss of sight return to the hospital 

d1  Death rate of infectious individuals 
(12 Death rate of loss of slight 

100 (ycar) 1  
variable 

0.3 

0.4 
0.012 
0.006 
0.05 

0.8188 
0.02 
0.01 

0.02274 
0.27 

Chapter 4 

Numerical simulations and 
conclusion 

4.1 Models with general contact rates and differen- 
tial infectivity 

To illustrate the theoretical results contained in chapter 2, numerical simulations will be 
perforniecl using the parameter value/range in the following table. 

Table 1: Description and estimation of parameters 
Parameters 	 Description 	 value/range 

The figures obtained from the simulations can be visualised in the following figures: 

53 



CHAPTER 4. NUMERICAL SIMULATIONS AND CONCLUSION 	 54 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 

Figure 4.1: Susceptible and infections individuals S, 1, i(N) = 2. 
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Figure 4.2: Susceptible and infectious individuals S, I, (N) = 2AT. 
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4.2 Model with staged progression and migration 

The parameter values used in simulating the evolution system of ordinary differential 
equations investigated in chapter 3 is presented below: 
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Table 2 : Numerical values for the parameters of the model 

Paraniel ers Description Est iinat ccl 
va 1 ue / range 

A1  Recruitment rate into the S1  class 100/yr 

A2  Recruitment rate into the S2  class 1 10/yr 

11 Transmission coefficient of infectious mdividuals 
in the first sub-population variable 

82 Transmission coefficient of infectious individuals 
in the second sub-population varial )le 

/11  Force of mortality in 
the first sub-population 0.019896/yr 

Force of mortality in 
the second sub-population 0.019897/yr 

A 1  Rate of progression from the E1  class to 11  class 0.00013/yr 

A 2  Rate of progression from the E2  class to 12  class 0.00023/yr 

r1  R ate of effective chemoprophylaxis in E1  class 0/yr 

12 Rate of effective chemoprophylaxis in £2 class 0/yr 
Rate of effective therapy in 11 class 0.8182/yr 

12 Rate of effective therapy of in 12 class 0.8183/yr 

01 Rate of migration of individuals from 
susceptible class S1  to susceptible class S2  0.07/yr 
Rate of migration of individuals from 
the susceptible class S2  to the susceptible class S 0.0701/yr 

Rate of migration of individuals from 
the latent class E1  to the latent class E2  0.05/yr 

1)2 Rate of migration of individuals from 
the latent class E2  to the latent class ] 0.0.501/yr 

C j  Rate of migration of individuals from 
the infectious class 11 to the infectious class 12 0.02/yr 

Rate of migration from the infectious class '2 
to the infectious class 11  0.0201/yr 

(11  Additional death rate in the Ii class 0.0575/yr 

(12 Additional death rate in the 12  class 0.05731/yr 

Fast progression to the 11  class 0.015/yr 

P2 Fast progression to the '2  class 0.016/yr 

4.3 Discussions and conclusion 

Figures 4.1 and 4.2 show the dynamics of the susceptible and the infectious iiidividuals 
as time evolves. It can be observed that the systems progress to endenuc eciuilibria both 
\vitll constant transmission rate (Fig 4.1) and in the case of variable linear transnnssion 
rate (Fig 4.2). Note that infectious individual increase tremnenclousl and reach a peak. 
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Figure 4.3: Path 1 (Infected individuals) 
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Figure 4.4: Path 2 (Infected individuals) 
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then decrease and stabilise in case of constant transmission rates. However, in the situa-
tion of variable transmission rate, the infectious individuals simply increase as time goes 
on and eventually stabilise. It should be noted that in both situations, the disease-free 
equilibria are unstable while the endemic equilibria are globally asymptotically stable. 

Figures 4.3 and 4.4 project the opposite scenario of the previous figures. In these graphs, 
the overall behaviour of the infectious individuals is captured with time. The Scenario 
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is performed for several initial values for the infected individuals. The figures clearly 
show that the disease-free equilibria are globally asyiiìptotically stable and the endemic 
equilibria unstable. 

This study explored four import ant aspects of TB ci nanucs that were not properly 
discussed in the literature and developed two large models that incorporate these corn-

poneiits. 

Literature review, preliminaries and general introduction were considered in Chap-

ter 1. 

Chapter 2 considered tuberculosis models that incorporate general contact rates, 
constant recruitment, slow and fast progression, mass balance incidence, two dif-
ferent ial infectivity, effective chernoproplmvlaxis and therapeutic I reatnients. The 
well-poseclness of the models was investigated. The Lyapunov stability theory and 
Laplace invariance principle were used to explore the stability nature of the disease-
free and endemic equilibria. A fairly good agreement was obtained between the 
analytical and numerical results. 

Chapter 3 consisted of the study of tuberculosis through a two-patch epideimnolog- 
ical system SE1 	E1 which incorporates migrations from one patch to another 
just by susceptible individuals. The model was considered wit ii 1 )ililmear incidence 
and migration between two patches. where infected and infect ions individuals could 
not migrate from one patch to another for medical reasons. Time existence and 
ulliquelless of the associated endemic equilibria were discussed. Quadratic forms 
and Lvapunov functions were used to show that when the basic reproduction ratio is 
less than one, the disease-free equilibrium (DFL) is globally asvnipt ot icahlv stable. 
and when it is greater than one, there is a unique endemic equilibrium (boundary 
equilibria and endemic equilibrium) NvInch is globally as nipt ot icallv stable. The 
long-term dynamics of this system was completely investigated. The nioclel has at 
most four equilibria, depending on the values of paraniet ers 7? ). i = 1, 2. The influm-

ence of parameters R.J  is significant on the spread of tuberculosis. The boundary 
equilibrium in this case is globally asymptotically stable. When these parameters 
are greater than unity, tuberculosis becomes endemic in each population. The en-
dennic equilibrium, which is a unique equilibrium wit li both populal ions is globally 
asymnptotically stable. Numerical simmilation results were provilel to ihhustrat e the 
theoretical results. 
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