
lllllll llllllllll llllllllll ~Ill lnl lllll llll llllll~lllll 
060046592W 

North-West University 

Mafikeng Campus Library 

LIE GROUP ANALYSIS OF CERTAIN 

NONLINEAR DIFFERENTIAL 

EQUATIONS ARISING IN FLUID 

MECHANICS 

by 

BELINDA THEMBISA MATEBESE (17008468) 

Dissertation submitted for the degree of ~faster of Science in Applied 

~fathematics in the Department of ~ 1athematical Sciences in the 

Faculty of Agricult ure, Science and Technology at North-\iVcst 

University, JV1afikcng Campus 

November 2010 

Sup ervisor: P rofessor C M K halique 

Ace. No .. j 

SITY 



Contents 

Declaration 

Dedication . 

Acknowledgements 

Abstract ..... . 

Introduction 

1 Lie gr oup theor y of PDEs 

1.1 J ntrod uct ion . . . . . . . 

1.2 Continuous oue-parametcr groups 

1.3 Prolongation of point l ransformation!> and Group gcll(•rator . 

1.4 Group admitted by a PDE 

1.5 Group in\'ariants 

1.6 Lie algebra . 

1. 7 Conclusion . 

2 Solutions of the ZK equation with power law nonlinearity in (3+1) 

dimensions 

2.1 Symmetry analysis 

2.1.1 Lie point symmet ries 

1 

3 

5 

6 

7 

11 

11 

12 

13 

lG 

17 

1 

19 

20 

21 

21 



2.1.2 Exact solutions .. . 

2.2 ExtPnded Tanh-function method . 

2.3 (G'f G) expansion method . ... 

2.4 Solitary wave ansatz method; Soliton solution 

2.5 Conclusion . . . . . . . . . . . ....... . . 

3 Solutions of a nonlinear flow problem 

3.1 Introduction .. .. 

3.2 Problrm statement 

3.3 Solution . . . . . . 

3.4 Rrsults and discussion 

3.5 Conclusion . . . . . . . 

4 Conclud5ng r emarks 

Bibliogr aphy 

2 

22 

27 

29 

31 

33 

35 

35 

36 

39 

41 

47 

49 

50 



Declaration 

I declare that the dissertation for the degree of ~laster of Science at North-West 

l.iniversity. ~ Iafikeng Campus. hereby subwitted, has uot pre, ·iously beeu submitted 

by me for a degree at this or any other university. that this is my own work in design 

and execution and that all material contained herein has been duly acknO\dC'dged. 

BELI~DA TllE~'lBlSA ~1ATEBESE 

15 ~ovemb<'r 2010 

3 



D edication 

To my late grandmother Daki , my family Audrey, sis Xoliswa, Mbita, Za, my father 

Tati and Katlcgo. 

4 



Acknow ledgem ents 

I would like to thank my supervisor Professor Civ1 J<halique for his guidance, patience 

and support throughout this research project and Mr AR Adem for his assistance. I 

would also like to thank Professor A Biswas and Professor T Hayat for fruitful dis­

cussions. Thanks also to the ~orth-\'>(est Uni,·ersity, :\ Jafikeng Campus and :'\ational 

Research Foundation for their financial assistance during 2009-2010. 

Above all, I would like to thank the most high God, who guided and protected me 

this far. 

5 



Abstract 

This research studies two noulinear differentia l equations arising in fluid mechanics. 

Firstly. t he Zakharo\'-Kuznetsov's equat io n in {3- 1) dimensions with an arbit rary 

power law nonlinearity is considered. The method of Lie symmetry analysis is used 

to carry out the integration of Zakha rov-K uznetsov·s equation . Also, the extended 

tanh-function method and t he G' /G method arc used to integrate the Zakharov­

Kuznetso,··l:> equation. The non-topological soliton solution is obtained by the aid of 

solitary wave ansat z method. ~umcrical simulation i given to support the analyt ical 

development. 

Secondly. the nonlinear flow problem of an incompressible d scous fluid is considered . 

T he fluid is t ak<'n in a channrl ha\'ing two weakly permeabl<' mo\'ing porous walls. 

An incompre sible fluid fills the porous space inside the channel. The fluid is mag­

nctohyrlrorlynamic in t he prrs<'n<'c of a t imc-ckpenrlcnt magnet ic field . Lie group 

method is appli<'d along \Yith per turbation met hod in the derivat ion of analy tic solu­

tion. T he effects of l he magnetic fickl , porous medium. per meal ion ficynolds uumbcr 

and ,,·all dila tion ra te on the axial velocit y arc shown and discussed. 
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Intr<)duction 

Fluid ~lechanics is one of the most important areas of study i111 Applied Mathemat­

ics and Theoretical Physics. This a rea of study and research appears in c\·cryda~· 

lives. The study of fluid flow has a \·ariety of applications in Yarious scientific and 

engineering fields. such as aerodynamics, hydrodynamics. convection heat transfer. 

oceanography, dynamics of multi-phase flows etc. 

~lost scienUfic problems and phenomena that arise in fluids a re modelled by nonlinear 

ordinary or partial di fferentia l equat ions. These equations are widely used to describe 

complex phenomena in \·a rious fields of sciences which combint> different types of 

differential equat ions (see for example [1]- [!5]) . 

Thf're a rf' a numbrr of approaches for solving nonlinE>ar partial difl"erential equal ions. 

which range from completely anal.,·tical to compktely numerical ones. 

Lie group analysis. based on symmetry and irwariancc principles. is a systematic 

method for solving nonlinear differential rquations analytically. Originally clen'loprd 

by So ph us Lie (1 -12-1 99), the philosophy of Lie groups has become an essential part 

of the mathematical cul ture for anyone inwstigating mathematical models of physi­

cal. engineering and natural problems. Lie group analysis embodies and synthesizes 

::;ymrnetrie · of differential equations. A S)'IIIIIICtry is dcsc.:ribctl roughly as a c:hauge or. 

a transformation, that !raves an objec-t apparently unchanged. Symmetries permeate 

many mathematical models . in particular those formulated in ll?rms of differential 

equations. 

The Zakhamv-Kuzncstsov (ZK) equation is a nonlinear evolution equation (. LEE) 
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that has been studied for the past decades. The equation "''as first derived for 

describing weakly nonlinear ion-acoustic \Yaves in a plasma comprising cold ions and 

hot isothermal electrons in the presence of a uniform magnetic field [6]. The ZK 

equation 

and 

is the best known two- and three-dimensional generalization of the KdV equation 

investigated in [7. 8, 9]. The ZK equation is not integrable by the inverse scattering 

transform method. It was found that the solitary-wave solut ions of the ZK equation 

are inelastic [10]. Shivamoggi [11] showed that it possesses the Painleve property by 

111aking a Paiulevc analysis of the ZK equation. 

Several researchers haYc used various :nethods. for examplc Exp-function method 

[12]. Homotopy perturbation method and ,·ariational iteration method [13]. among 

others. to soh·r the Zl< <'quation in (2-1)-dimcnsions. Biswas and Zerrad )4: and [15] 

considered the 21..: equation ,,·ith dual-power law nonlinearity and later considered 

the ZK equation in plasmas with power law nonlinearity to obtain 1-soliton solution 

using the solitary wavr ansatz method. Biswas [16] used the soli tary wave ansatz 

method to obta in 1-soliton solution of the generalized Zl< equRtion with nonlinear 

dispf'rsion and ti mf'-d<"pC'nclcnt coefficient . Deng [ 17] appli ('d ext ended hyp0rholic 

function method to (2+ ! )-dimensional Zakharov-l<.uznctsov (Zl<) equation and its 

genera lized form 11ncl obtained new explicit and exact solitary wave. multiple nontriv­

ial rxact periodic travcJiing wave solutions, solitons solutions and complex solutions. 

\\"azwaz 11 ] cmplo~rcd the sinE>-cosine ansatz and obtained exact solutions "ith soli­

ton and periodic structures for the (2+1) and (3~1) ZK equation and its modified 

form. Later \\"azwaz [10] used the exter.ded tanh method to study the ZJ\ equation. 

the generalized ZK equat ion. the modified ZK equation and a generalized form of 

the modified Zl< equat ion and obtained new solitons and periodic solutions. 

In this research we study the ZK equation with power law nonlinearity in (3+1) 
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dimensions giYen by 

(1) 

where a , b and n are constants. In equation (1), the first term represents the evolu­

tion term while n represents the coefficients of power law nonlinearity. and b is the 

coefficient of di persian terms. The parameter n is the power law parameter while 

q is the ,,.a,·e profile. The independent ,·ariables x, y, z and t represent spatial and 

temporal variables respectively. 

In the second part of our research we consider two-dimensional flow in a deformable 

channel with porous medium and variable magnetic field. 

The two-dimensional flow of viscous fluid in a porous channel appears very use­

ful in many applications. Hence many experimental and theoretical attempts have 

been made in the past. Such studies have been presented under the various as­

sumptions like small Reynolds number (Rc) - intermediate Re, large Re and arbitrary 

Re· The steady flow in a channel with stat ionary walls and small Rc has been 

studied by Berman [19]. Dauenhaver a·nd ~Ia jdalani [20] numerically discussed the 

t\,·o-dimensional ,·iscous flo"· in a deformable channel "·hen -50 < R1 < 200 and 

- 100 < n < 100 (n denotes the wall expansion ratio). In another study. !\Iajdalani 

et a l. [21] analyzed the channel flow of slowly expanding-contracting wa lls which 

lectds to the trausport of biological fluids. Tltcy first ueriveu the analytic solution for 

small R and a and tlten compared it with the numerical solution. The flow prob­

lem given in study [21] has been analytically soh·ed by Boutros et al. [22] when 

Reynolds number and a vary in the ranges -5 < Rc < 5 and -1 < a < 1. They 

used the Lie group method in this study. ~Iahmood et al. [23] discussed the homo­

ropy perturbation and numerical solutions for ,·i cous flow in a deformable channel 

with porous medium. Asghar et al. [24] computed exact solution for the flow of 

viscous fluid through expanding-contract ing channels. They used symmetry method 

and conservation laws. 

In this research ~vork we generalize the flow analysis of [22] with the influence of 
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magnetic field and porous medium given by 

with the following boundary conditions 

(i) 

(ii) 

(iii) 

fi. = 0, v = -Vw = - Ait a.t fj = a(t) , 

()fi -- 0 0 0 v = at y- = , ag , 

u = 0 at x = 0, 

(2) 

(3) 

(4) 

(5) 

where · denotes the differentiation with respect to t. In t he abo,·e expressions u 

and v are the velocity com ponents in x (a..xial coordinate) and y (normal coordinate) 

directions, respectively, p is the fluid density, P is the pressure, t is the t ime, 8 is the 

kinematic viscosity, <P and k are the porosity and permeability of porous medium, 

respectively, T is the electrical conductivity of Auid. Vw is the fluid inflow velocity, 

A is the injection coefficient corresponding to the porosity of "·a ll and ¢ = VJIVc, 

where \11 and Fe, respectiYely, indicate the volume of the fluid and control ,·olume. 

The outline of the resea rch project is as follows: 

In Chapter 1 the basic definitions and t heorems concerning t he Lie group method are 

recalled. Chapter 2 deals with the construction of exact solutions of the ZK equa­

t ion with power law nonlinearity in (3+1) dimensions using the Lie group method. 

extended tanh method , (C' /C)-expansion method and solita ry wave ansatz method. 

In Chapter 3 Lie group analysis is applied along with perturbation method to obtain 

an analytical solution for the nonliuear flow proulcm of an incomprcssiulc ,·iscous 

fl uid and then compare it with the ::1umerical solution. Chapter 4 summa rizes the 

results of the dissertation. 

Bibliography is given at the end. 
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Chapter 1 

Lie group theory of PDEs 

In lbis chapter a brief int roduction to the Lie grou p theory of partial differentia l 

<'quation~ is given . T his includes t he algorithm to determine the Lie point symmetries 

of partial differential equations. 

1.1 Introduct ion 

~lore than a hundred years ago. the Norwrgian mathematician :\1arius Sophus Lie 

rca lized l hat many of the methods for soh·ing differ<:>ntial equations could be unified 

using group theory. He developed a symmetry-based approach to obtaining exact 

solutions of differential equations. Symmetry methods have great. power and gener­

ality- in facr. nearly all well-kno\\'n wch niques for soldng d ifferential equat ions are 

special cases of Lie's methods. Recently, SC\'eral books have been \\Titten on this 

topic. \\'c list a fc,,· of them here. Ovsiannikov [25]. Olver 126]. Bluman and Kumci 

127], Ibragimov 12 ]. 

The definitions and rc ults presc111cd in this chavtcr arc taken from the boob men­

tioned above. 
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1.2 Continuous one-parameter groups 

Let x = (:c1, ... , x") be t he independent variables ·with coordinates xi and q = 
(q 1 , . . , qm) be the dependent variables with coordinates q0 (nand m finite ). Consider 

a change of the variables x and q involving a real parameter a: 

(1.1) 

where a continuous!~· ranges in Yalues from a neighborhood D' C 1) C ~ of a = 0, 

and t and q>0 are differentiable functions. 

Definition 1.1 A set C of transfonnations (1.1) is called a continuous one-parameter 

{local) Lie group of transformations in the space of variables x and q if 

(i) For Ta. Tb E C \\"here a, b E D' C 1) then Tb Tn = Tc E G, c = ¢(a . b) E 1) 

(Closure) 

(ii ) To E G if and only if a = 0 such that T0 T, = T,, T0 = Ta (Identity) 

(iii ) For Ta E G. a E 7)' c V. Ta- 1 = Ta-• E G. a- 1 E D such that 

T, Ta-• = Ta • Ta = To (ltwcrse) 

We note that the associativity proper:y follows from (i) . The group property (i) can 

be \\"ri tten as 

.ri _ p(.r. ij,b) = _ri (.r.q. </;(a .!J)). 

q0 _ 6°(x.q.b)=6°(.r.q.¢(a,b)) {1.2) 

and the function 6 is called the group compositwn loU'. A group parameter a is ca lled 

canonical if o(a, b)= a+ b. 

Theorem 1.1 For any ct>(a, b), there exist s the canonical parameter a defined by 

- r ds D</>(s, b) I 
a= Jo w(s). where w(s) = 8b b=O . 
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1.3 Prolongation of point transformations and Group 

generator 

The derh·ativcs of q with respect to x are defined as 

(1.3) 

D, = !)a ,qf;)a -qf)na +···. i= l. ... ,n. 
v:c' vqo: oq'j " 

(1.4) 

is the operator of total differentiation. The collection of all first derivatives qf is 

denoted by Q(l) · i.e .. 

Q(l) = {qf} a= l. ... ,m, i = l. ... ,n. 

Similarly 

Q(2 ) = {q~} a = l. .... m. i . j = 1, .... 11 

and Q(3) = { qf;d and likewis0 Q(4 ) etc. Since ctj = q'j; , Q(2) contains only qfj for i $ j. 

In the same manner Q(J) has only terms for i $ j $ k. There is natural ordering in 

Q(4) .Q(s) · · · · 

In group analysis all variables x. q. Q(l) · · · arc considered functionally independent 

Yariablcs roHnC'rted only by the differential relations (1.3). Thus the q~ are called 

differential variables and a pth-order partial differential equation (PDE) is given as 

E(x, q. Q( l ) · .. . . Q(p)) = 0. (1.5) 

P rolonged or extended groups 

If z = (x . q). one-parameter group of transformations G is 

(1.6) 
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According to the Lie 's theory, the construction of the symmetry group G is equiva lent 

to the determinat ion of the corresponding infinitesimal transf or·mat·ions : 

-; ,..._. • , ci( ) x-.. x,a., x .q . (1. 7) 

obtained from (1.1) by expanding t he functions Ji and 6° into Taylor series in a 

about a = 0 and also taking into account the initial conditions 

Thus, we have 

. aji I 
C(x ,q) =a , 

a a=O 

a¢PI ?J"(x , q) = -a . 
a a=O 

(1.8) 

One can now introduce t he symbol of the infinitesimal transformations by writing 

{1.7) as 

xi ~ (1 + a X )x . q-o ~ (1 + aX)q. 

where 

, , i( , a o( ) a 
.A= E. :r, q,-a . +77 :r . q -a . 

X' qo 
{1 .9) 

This d ifferenti al opera to r X is known as the infin itesimal operator or genera tor of 

the group G. If t he group C is admi tted b.r {1.5) . we say that X is an admitted 

operator of {1 .5) or X is an infinitesimal symmetry of equation (1.5). 

\Ye now sec how the der ir ativcs arc t ransformed. 

The D, transforms as 

where DJ is the tota l differentiat ions in t ransformed variables .T;. So 

_ ow let us apply (1.10) and (1.6) 

Di(¢>" ) = D;(Ji) D;(if ) 

= D;(Ji)qj. 

14 
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This 

( 
[) Ji 8 0 fj) ::o Od>0 fJ O</P 
[)xi + q, [)qf3 q] = ox' + q, [)q/3 . 

The quantities f/} cim be represented as functions of .r, q, Q(i)l (l 

for small a. ie., (1.12) is locally invertible: 

(1.12) 

(1.13) 

The transformations in .r. q. q(l} space gjYen by (1.6) and (1.13) form a one-parameter 

group (one can prO\·e this but ·we do not consider the proof) called the first prolon­

gat ion or just extension of the group G and denoted by Gl11. 

\\'c let 

(1.14) 

be the infin itesimal transformation of the first derivatiYes so that the infinitesimal 

transformation of the group Gl11 is (3.12) and (1.14). 

JlighN-ordrr prolongations of C. viz. Gl21, C l3l can be obtained by deri\·atiYes of 

(1. 11). 

Prolonged gen erators 

Using (1.11) together with (3.12) and (1.14 ) we get 

D,(p)(fi;') - D, (<V0
) 

D,(:ri + a{1 )(qj + a(j) D i ( qo + aqo ) 

(~f + aD,~J)(qj + a(j) - qf +a Di1Jo. 

qf + a(f + aqj D;{j - qf + aD,ryo. 

(f - D,(r{') - qj D,({'). (sum on j ). (1.15) 

This is called the first prolongation formula. Likewise, one can obtain the second 

prolongation, viz .. 

(1.16) 
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By induction (recursively) 

The first and higher prolongations of the group G form a group denoted by Gill, 0 0 0 
, G!Pio 

The corresponding prolonged generators arc 

x [tJ X o.f) ( ) = + (. - sum on i. a 0 

t aqf 

x lvl = x !P-lJ + ~ a 
(tJ ..... tp aqa 

0 

t), .... tp 

p?. 1. 

where 

1.4 Group admitted by a PDE 

D efinition 1.2 T he Yector field 

v i( ) a o ( ) a .'\ =~ Xoq -
0 

. + 'I] :r;, q ~, xt uqo 
(1.18) 

is a point symmetry of the pth-order PDE {1.5). if 

xiPl(E) = o (1.19) 

whenever E = 00 This can also be \nittcn as 

x!Pl £ 1 = o 
E=O ' 

(1.20) 

where t he symbol IE=O means evaluated on the equation E = 00 
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Definition 1.3 Equation {1.19) is called the determining equation of (1.5) because 

it determines all'the infinitesilual symmetries of (1.5). 

Definition 1.4 (Symmetry group) A one-parameter group G of transformations 

(1.1) is called a symmetry group of equation (1.5) if (1.5) is form-invariant (has the 

same form) in the new variables x and q, i.e. , 

E(x, q. q(l) · · · · , q(v>) = o, (1.21) 

where the function E is the same as in equation (1.5). 

1.5 Group invariants 

Definition 1.5 A function F(x, q) is called an invariant of the group of transfor­

mation (1.1) if 

F(x,q) = F(r (x, q, a) .. <r(x, q.a )) = F(x, q) , (1.22) 

identicall~· in x . q and a. 

T heorem 1.2 (Infinitesimal criter ion of invariance) A necessary and sufficient 

condition for a function F(.r. q) to be an invariant is that 

"F _ i( )aF o(. ) aF _ 0 .1\ =~ x,q -a + 77 x, q -a - . 
X' qo 

(1.23) 

It follows from the above theorem that every one-parameter group of point transfor­

mations (1.1) has n functionally indepenrlcnt im·ariants, which can be taken to be 

the left-hauJ side of any first iutegrals 

of the characteristic equations 

dx1 dx" dq1 dq" 
= ··· = = = ···= 

~ l(x, q) {n(x,q) ry1(x, q) 1t(x,q)" 
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T heorem 1.3 If the infinitesimal transformation (3.12) or its symbol X is given, 

then the corresponding one-parameter group G is obtained by solving the Lie equa­

tions 

(1.24) 

subject to the initial conditions 

1.6 Lie algebra 

Let us consider two operators X 1 and X 2 defined by 

and 

X2 =(~(.r.q) 88 .. + ry~(x . q) 8
8 . 

x' - qu 

Definition 1.6 The commutator of X1 and X 2 • written as [X1. X2] . is defined by 

[XJ' X2] = X I (X2)- X2(Xt). 

Definition 1. 7 A Lie algebra is a vector space L (over the field of real numbers) of 

operators X = ~i ( x. q) '.::lfj . + r("" ( x, q) ~ with the following property. If the opera tors 
v X1 vq 

v i ( ) a Cl'( ) a ."\ 1 = ~1 .r, q ~ . . + r]] .r, q -
0 

. 
vX1 q 

arc any elements of L. then their commutator 

is also an clement of L. It follows that the commutator is 

1. Bilinear: for any X. Y , Z E Land a, b E 1R. , 

[aX + bY, Z] = a[X. Z] + b[Y,Z), [X, aY + bZ] = a[X , Y] + b[X , Z]; 
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2. Skew-symmetric: for any X , Y E L, 

[X, YJ = -[Y,XJ: 

3. and satisfies the J acobi identity: for any X. Y, Z E L, 

[[X. Y], Z] + [[Y, Z], XJ + [[Z, X]. YJ = 0. 

1. 7 Conclusion 

In this chapter we presented briefly some basic definitions and results of the Lie 

group analysis of PDEs. These included the algorithm to determine the Lie point 

symmetries of PDEs. 
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Chapter 2 

Solutions of the ZK equation with 

power law nonlinearity in (3+1) 

dimensions 

In this c·hapter. we first use the Lie symmetry analysi to find the group-im·ariant 

solutions of t he ZE equation wi th power law nonlineari ty in (3+1) climrnsions gi,·en 

b~· 

(2.1) 

where a , b a nd n are constants. Here t he fi rs t term represents the evolution term 

whi le <1 rrprcsents the coefficients of power law nonlineari ty, and lJ iR the coefficient 

of dispersion terms. The parameter n is the power law parameter whil e q is the 

waYe profile. The independent variables x . y, z and t represent spRtial and temporal 

variable's rcsprctivcly. 

Subsequently, the extended tanh function method and thr C' / G method arc used 

to integrate the ZK equation. The soliton solution is obtained by the aid of ansatz 

method. There arc numerical simulation to support the analytical development. This 

work is new and has been submitted for publication. Sec 129}. 
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2.1 Symmetry analysis 

In this section Lie point symmetries of the equation (2. 1) are first calculated and 

then used to construct exact solutions. 

2 .1 .1 Lie point symmetries 

A Lie point symmetry of a differential equation is an invertible transformation of the 

dependent and independent variables that leaves the equation unchanged. Deter­

mining all the symmetries of a differential equation is a formidable task. However, 

Sophus Lie (1842-1899) realized that if we restrict ourself to symmetries that depend 

continuously on a small parameter and that form a group (continuous one-parameter 

group of transformations), one can linearize the symmetry conditions and end up with 

an algorithm for calculating continuous symmetries. 

The symmetry group of the ZK equation (2.1). viz .. 

will be generated by vector field of the fo rm 

whrrc ~i. i = 1, 2, 3, 4 and 17 depend on x, y, z, t and q. Applying the t hird prolon­

gation pr<3lf to (2. 1) and then solving the resultant overdetermined system of linear 

partial differential equations (PDEs) yields the following Lie point symmetries 

and 

a r1 =-a . :r 

a a 
fs=-z-+y­ay az 

a a a a a r6 = nx- + ny- ~ nz-...!... 3nt-- 2q-. ax ay oz at 8q 

The commutation relations between these vector fields is given by the following table, 

the entry in row i and column j representing [ri · ri]: 
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Table 2.1: Commutator Table 

1ri. f 1] r1 r2 r3 r4 rs f s 

r1 0 0 0 0 -r2 r1 
r2 0 0 0 0 r1 r2 
r3 0 0 0 0 0 r3 
r4 0 0 0 0 0 3f4 

f s r2 -r1 0 0 0 0 

fs - r1 -r2 - r3 -3r4 0 0 

2.1.2 Exact solutions 

One of the main purposes for calculating symmetries of a differential equation is 

to use them for obtaining symmetry reductions and finding exact solutions. In this 

subsection we will use the symmetries calculated in the prcYious subsection to obtain 

exact solutions of the ZI< equation (2.1 ). 

One \\'ay to deri,·e exact solution of (2.1) i~ by reducing it to an ordinary differential 

equation (ODE). This can be achieved with the use of Lie point symmetries admitted 

by (2.1 ). It i \\'ell known that the reduction of a partial differential equation "·ith 

respect to r-d illlcnsiona l (solvable) subalgcbra of its Lie symmet ry algebra leads to 

reducing the number of independent variables by r-. 

We now consider the symmetry f 1 + f 2 + f 3 and reduce the ZK equation (2.1) 

to a PDE in three independent variables. This symmetry yields the following four 

invariants: 

f = Z - y. g = t, h =X- y. 8 = q. 

Treating 8 as the new dependent variable and J, g and has new independent vari­

ables, the ZK equation (2.1) transforms to 

(2.2) 
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. which is a nonlinear partial differential equation (NLPDE) in three independent 

variables. We now further reduce (2.2) using its symmetries. It can be shown that 

equation (2.2) has the following four Lie point symmetries: 

og' 
a 

ah · 
a a a a 

nf a f + 3ng oh + nh oh - 28 ae. 

The symmetry Y 2 + p Y 3 (p is a constant) yields the three invariants 

1· =!: s = g- ph, ¢; = B, 

which gives a group invariant solution ¢; = <J;(r, s) that satisfies a JLPDE in two 

independent variables, namely 

The sYmmetry algebra of (2 .3) is generated by the vector fields 

a 
and L:2 = 

08
. 

(2.3) 

The combination aL:1 + E2 (a is a constant) of the two symmetries E 1 and E2 yields 

the following invariants 

u = r - as, 'l/J1 = <P 

and consequently using these invariants (2.3) is transformed to the nonlinear third 

order ODE 

which can be written as 

(2 .5) 

where 

(2 .6) 
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Jntegrating equation (2 .5) twice with respect to u and taking the constants to be 

zero we obtain 

B1 12 B2 + 2 B3 2 
-'1.' (u) + 'lj_{' (u) + - '1.' (u) = 0. 
2 (n + 2)(n + 1) · 2 ' 

(2.7) 

This is a first-order \'ariables separable equation. Integrating this equat ion and taking 

the constant of integration to be zero and reverting back to the original variables, 

we obt.ain the solution of the ZK equation (2.1) for arbitrary values of n in the form 

_ _ [(n + 1)(n + 2)] 
1
/n 2/ n 

q(x . y . ... . l) -
2

ap sech (.4 1). (2.8) 

where 
n{ap.r- (ap + l)y + z - o f} 

·
11 

= 2J2bp(o 2 p2 + o p + 1) · 

We now give profiles of the solution (2. ) for two specific \·alues of n : namely n = 1 

and n = 2. 

By choosing a = 1. b = 1. p = 1. r1 = 1. u = 1. y = 0 . .: = 0, we have t.he following 

profi ]p nf "nh1tinn (2.8). 

).5 

q J .O 

15 

Figure 2.1: Profile of solution (2. · ) 

By cboosing a = 1, b = 1, p = 1. n = 2. o = 1, y = 0. z = 0. we have the following 

profile of solution (2.8) . 
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Figure 2.2: Profile of solution (2.c ) 

We now obtain group-invariant solutions of (2.1) for special cases, n = 1 a.nd n = 2. 

By choosing •1 = 1 in (2.4) and soh·ing the corresponding equat ion ~·ields the following 

group im·ariam solutions of the ZK equation (2.1 ) for n = 1: 

and 

q(:r. y. ::. t) 11- ?(?2 ) 1 = - 16b3- o-p - op- 1 --
a - p 
+ 24b32 

{ a 2
/- op -'-1} 

{cot? (.-iu + 6)- ta.n2 (ju- 6)}]. 

q(.r . y. :::. t) = ~ [16b32 (a 2p2 + ap-+ 1) + ~ 
Q p 

- 24b32 {a 2/+op+ l} 

{ coth2 (3?1 + 6) + ta.nh2 (Bv + 6)}]. 

q(.r.y.:::.t) = l[24bJ2..}(o2p
2 +ap+ l )cn2 ( 3ul-·) 

24b32 ( .... ?- 1) (a2p2 .., ap- 1) 
.., cn2(Jul...;) 

b82p (2-J2
- 1) (ap2p2 + ap- 1) - 1]. 
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where u = apx- (ap + 1)y + z- at and a , {3, 6 are arbitrary constants. cn(ZJm) is 

the J acobian elliptic function [30], which is defined as follows: If 

where the angle <P is called the amplitude. then the function cn(ZJm) is defined 

as cn(ZJm) = cos 6 . Here m is called the modulus of the ellliptic funct ion and 

0:::; m:::; 1. 

By taking n = 2 in (2.4) and solving the corresponding equation \.Ve can obtain the 

following gro up invariant solutions of the ZI< equation (2. 1) for n = 2. 

Note that u == opx- (ap + 1)y + z - at and o is a constant in each of the following 

solutions . 

q(x ,y ,z.t) 

where 

q(:r:. y, z , t) = J3 [- 1
- coth(A4u To)+ .43 tanh (A.~v + o)]. 

2 apA3 

\\'here 
1 

q(x . y, z, i) = 6w2 [ -.,......-::--....,-sn 
ap (w 2 + 1) 

- u+ow 1 ] 
2bp (w2 + 1) (o.2p2 + op + 1) 

where sn (ZJrn) =sin q). 

(2.12) 

(2.13) 

(2.14) 

By taking a= - l.b = l. c = l , o. = l ,o = O,w = ~·Y = 0 . . :: = 0 we have the 

following plolt of the solution (2.14) . 
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Figure 2.3: Profile of solution (2.14) 

2.2 Extended Tanh-function m ethod 

In this "<'<"tion we uRc the extended tanh-function method [31] and obtain a few exact 

solution~ of the ZK <'qnation (2.1) for n = 1. \ \·e rewrite (2.4) for 11 = 1 a.<> 

(2.15) 

when" 

with 

·u = rt(J.r- (of!+ l)y +:- f\1. 

13~· raking 11 = 1. lC't ns consider the solution of (2 .15) in the following form 

M 

v(11) = 2::: .1\i(G(tL)f. (2 .16) 
i=O 

where (C{u))' = ranh'(u ) .. H is a posiriw· integer th<1t can be determined hy bal­

llncing the highe~t orcl<>r deriYatiYe \\·ith the highest nonlinear terms in equation and 

. \ 0 . · · · .. 1 ~~ are parameters to be determined. The crucial step of the method is to 

rake full ach·amag<> of a l1iccati equation that the tanh functi<m ~atisfies and use its 

solutions to c-onstruct exact solutions. 
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The required Riccati equation is written as 

G' = d+G2
. (2 .17) 

The balancing procedure yields /If= 2 so the solutions in (2.16) arc of the form 

(2.18) 

Substituting (2.17) and (2.1 ) into (2.15). we obtain algebraic system of equations 

in terms of Ao, A 1. A2 by equating all coefficients of the funct ions Gi to zero. The 

corresponding algebraic equations are 

2A 1B0d2 + A0 A1B1d + A1B2d = 0. 

16A2Bod2 + AiB1d + 2AoA2B1d + 2A2B2d = 0. 

A1Bod- 3.41A2B1d...!.. AoA1 B 1..!... A1B2 = 0. 

40A2Bod + 2A~B1d + AiB1 + 2AoA281 + 2.4282 = 0. 

6A1 Bo + 3A1A281 = 0, 

2A~B1 + 24A2Bo = 0. 

Soh·ing the system of alg<'braic equations \\·ith the aid of ).lathcmatica. we have the 

following cases: 

Case 1. 

Ao = AI = 0. A 2 
= _ 1

8
28

1 

o. 

q(x. y. z, t ) = ~1 [12B0d tanh2 
( l=du) - Bod- 8 2] . (2 .19) 

q(x . y . .::.l) = ~1 [ 12B0d coth2 
( V-du) - Bod- 82] , (2.20) 

q(x. y, z. t) = ~1 [ - 12B0dtan2 
( Jdu) - Bod- 82]. (2.21) 

q(x . y. z. t) = ~1 [- 12B0d cot2 
( Jdu) - B0d- 82] . (2.22) 
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Case 2. 

d= 0. 

(2.23) 

2.3 ( G' / G ) expansion method 

In this section we usc the (C'/G )-cxpansion method [32] to obtain a few exact solu­

tions of the ZK equa t ion (2.1) for n = 1. 

By taking n = 1. let us consider the solution of (2.15) in the follo,.ving form : 

u ( G'(u) ) t 

't'(u) = ~ A, G(u) . (2.24) 

where G(u) sat isfies 

G" - A.G' - J.LG = 0 (2.25) 

"·ith >. and I' constants. T he positiYe integer .\/ wi ll be determined by the ho­

mogeneous balance method between t he h ighest order drriva live and highest order 

uonlinear term 1-1 ppcaring in (2.15) where .'1 0• · · · . . 1\ JIJ arc parameters to be deter­

mined. 

T he balaucing procedure yields M = 2. so the solu tions in (2. 15) arc of t he form 

(2 .26) 

Substituting (2.25) and (2.26) into (2.15) . we obtain a lgebraic system of equat ions 

in terms of A0 . .'1 1 . .42 by equati ng a ll coefficients of th<' functions (G'(u)/G(u))i to 
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zero. The corresponding algebraic equations arc 

- A1 Bo>-3 - 14A2Bo.A2Jt - 8A1Bo>.p- AoA1Bt>. - At 82>. 

-l6A2Bop 2
- AiBt!i - 2AoA2BtJ.L- 2A282J.L = 0. 

- 8A2 Bo>.3 - 7 AtBo>-2 - 52A2Bo>.fJ. - Ai 81>. - 2AoA2Bt >. 

- 2/\282>.- 8A1BofJ.- 3AtA2BtJ.L - AoA1B1- A1 82 = 0. 

-38A2B0>.2 - 12A I Bo>. - 3A tA2 B l>.- 40.42BoJ.L 

-2/\~Bl/L - Ai 13t - 2.4o/12Bl - 2!\282 = 0, 

Soh·ing thC' ~ystem of algebraic equations \\'ith the aid of :\lat hcmatica. \\'C haYe the 

following : 

\\'hen >..2- -IJ' > 0. 

q(:r;, y . z, t ) 

\\·here 

12.AB0 
At =----g;-· 

2_ [c~ (Bo (>..2- ..tp) + 82) ( -e2uJ>.2 -4~') 
AI 

+2C2Cl (580 (>.2 - 4J')- 8 2) r" V>.
2

-
4
j) 

-Ci (Bo (>.2 - lp) + B2)], 
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\Vhen >.2 
- 4J1. < 0. 

q(.r. y, z. t) _ 1 [ 3Bo (Cr + Ci) (>.2 - 4J1.) 
8 1 ( C1 sin (~uJ4J1- >.2) ,..C2cos (~uJ4J1- >.2)) 2 

+ Bo(-(>.2-4tL))-B2]· (2.28) 

\\"hen >.2 - 4p = 0, 

(2.29) 

2.4 Solitary wave ansatz method; Soliton solution 

In this section we will focus on obtaining the 1-soliton solution of (2. 1) by the aid 

of solitary wave ansatz method. It needs to be noted that this method has been 

employed to carry out the integration of many ~LEEs [14. 15, 16]. 

The solitary wave ansatz for the 1-soliton solution of (2.1 ) is taken to be 

q(:r:, y . z, t) = A scchPT, (2.30) 

where 

(2.31) 

In (2.30) and (2.31), A represents t he soliton amplitude, B, for i= 1, 2, 3 represents 

the inverse width of the soliton, v is the soliton velocity and the exponctJtial p. which 
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is unknown at this point, will be determined. Thus. from (2.30). we obtain 

Qt = Avp sechP7 tanh 7. 

qx = AB1P sechP7 tanh 7. 

q"qx = ap81An+l scchp(n- l)7. 

Q:rxx = -p3 AB~secbP7 tanh 7 

+p(p + 1 )(p -r 2)A B~scch1'+27 tanh 7. 

(/xyy - -713 AB1 B~sechP7 tanh 7 

-p(p + 1)(p + 2)AB1 B~scch11+2r tanh r, 

Q:r:;z = -p3 AB1B~sechP7 tanh r 

-p(p + 1)(p + 2)AB1B~scch11+2r ta nh r. 

Substituting (2 .32)-(2.37) into (2.1 ), yields 

t·p scchP7- apB1A" sechp(n-l )7- b [- p3 81 scch117(8~ + B~- Bj) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

-p(p- 1){p- 2)B1sechP-27 (Bi- B~ - Bj)] = 0. (2.3 ) 

Equating thr exponents p(n - 1) and p + 2. we haYc 

\\'h ich lrnds to 

p(n+ 1) =p+2. 

2 
p= -. 

71 

(2.39) 

(2.40) 

From (2.3 ') srtting the rcspcctiYe coefficients of thr li nrarly inckpcnd0nt funct ions 

sccbPr and S<'<'h7'-..27 to zero yields 

A = [2b(n + 1)\n + 2)( Br + Bi + Bj)] l/r• 
an2 

(2.41) 

and 

(2.42) 

Thus . the !-soliton solution to (2.1 ) is given by 

q(x . y. z, t) = Ascch2/n,, (2.43) 
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where the amplirurle .'\ is giYen by (2.41) and the Yelocity I' by (2.42). 

Figure 4 below sho\\'_ the profile of a 1- soliton ;;;oJution (3.22) with 11 = 1 and for 

(/ = 1. 11 = 1. n. = 1.. R2 = 1. R3 = 1. t = o. :: = o. 

Figure 2.4: P rofile of solution (3. 22 ) 

The profil<' of a 1- soliton .::;o)ution (3.22) \\·ith n = 2 and for a = 1. b = 1. B1 = 1. 

B2 = 1. l3:~ = 1. t = 0. :; = 0 is giYen in Figure 5. 

Figure 2.5: Profile of solution (3.:22) 

2.5 Conclusion 

In this chapter we studied the ZakharoY-KuznestsoY (ZK) equation with po·wer law 

nonlinearity in (3+ 1) dimensions . Several solutions of this equation were obtained by 
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employing \'arious modern methods of integrability, i.e., Lie group method, (G'/G) 

method. c>..icndcd tanh-function method and solitary wave ansat z method. T he nu­

merical simulations arc also giYen to supplement the theory. The• solutions obtained 

arc cnoidal waves. periodic solutions. singular periodic solutions and solitary wave 

solutions. 
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Chapter 3 

Solutions of a nonlinear flow 

problem 

ln this r hapt C'r a nonlinear flow problrm of an inromprcssihl r ,·iscous flnid is sturl­

ied. The fluid is t akm in a c·hannel haYing two weakly permeable moYing porous 

walls. Au incompressible fl uid fi lls the p orous sp<~cc inside t lH' chan nPl. T he fl ui<.l 

is magnctohydrodynamic iu the presence of a tilllc-dep endent magnetic field. Lie 

group lllt' lhod is applied in the dcriva tiou of a ualytic solutiou. The cfrccts of tlw 

magnetic field , p orous medium, permeation Rey11olds number and wall dila tion ra te 

on the axia l Yclocity arc shown and discussed. The work of this Chapter has been 

accepted for publication. Sc<' [33]. 

3.1 Introduction 

ln many applicat ions the two-<.l imcnsioual flow of Yiscous fl uid in a porous channel 

appears t o be very usefu l. t\l any experimental and theoretical attempts have been 

made in the past. For example. Berman [19] studied the steady flow in a chan nel 

with stationary walls and small Rey nolds num ber Re. ~lajda lani et al. [21] consid­

ered the two-dimensional viscous flow between slowly expanding or contracting walls 

with weak p ermeabili ty. T heir study focused on the ,;scou flow drh·en by small 
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wall contractions and expansions of two weakly permeable walls. Based on double 

perturbations in the permeation Reynolds number He and wall dilat ion rate ll', the~' 

carried out their analytical procedure. Boutros et a!. [22j studied t he solut ion of 

t he avier-Stokes equations which described the unsteady incompressible laminar 

flow in a semi-infinite porous circular pi pe with inject ion or suction through the pipe 

wall whose radius var ies with time. The resulting fourth-order nonlinear differential 

equation was then solved using small-parameter perturbations. Asghar ct al. [24) 

used the Lie group analysis to compute exact solution for the flow of viscous fluid 

t hrough expanding-contracting channels. 

The purpose of th is re earch \York is to generalize t he flow analysis of [22j in two 

direct ion . The first generalization is concemed with the influence of Yariable mag­

netic field wh ile t he second accounts for t he features of porous medium. Like in [22), 

t he analytic solution for the arising nonlinear flow problem is studied by employ­

ing t he Lie group method along with perturbation method. with R£; and a as t he 

perturbat iou quantit ies. Finally. the gra phs for self-axial Yclocity arc plotted and 

discussed . 

3.2 Problem statement 

We consider an incompressible and magnetohydrodynamic (:\1HD) ,·iscous fl uid in 

a rC'ctangular chann<>l with "·a ils of rqual permeability. An incomprC'ssibiC' fl uid 

saturates the porous space between the two pcrmcaulc walls which expand or contract 

uniformly at the rate n (the wall cxpan~ioll rat io). ln Yiew of such coufigurat ion , 

symm<'tric nature of flow is taken into account at y = 0. ),loreover, t he flu id is 

elcc.:trically cond uct ing in t.hc prcscucc of a varia ble maguetic field (0, 6H(l ). 0). Uerc 

c5 is the magnet ic permeability and H is a magnetic field strength. The induced 

magnetic field is neglected under the assumption of small magnet ic Reynolds number. 

The physical model o f t he flow is shown in Figure 1. 
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F igure 3.1 : Coordinate system and bulk fluid motion 

ln view of the aforementioned assumptions, the governing equations can be \Yritten 

as 

s¢ _ 
--v k 1 

(i) u = 0, v = - \lw = -Aa at y = a(l). 

(ii) 

(iii) 

(}iL = 0 
8fj 1 

v = 0 at y = 0, 

u = 0 at x = 0. 

(3 .1 ) 

(3.2) 

(3.3) 

(3.4) 

lu the above expressious u and v are the Ycloc:ity components in .7: and fj-directions, 

respectively, p is the fluid density, P is the pressure, t is the time, s is the kinematic 

viscosity, 4> and k are the porosity and permeability of porous medium, respectively, r 

is the electrical conductivity of fluid , Vw is the fluid inflow velocity, A is the injection 
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coefficient corresponding to the porosity of wall and d> = V1/ Vc (where V1 and Vc. 

rcspectiYely, indicate the volume of the fluid and control ,·olume). 

The dimensional st~;eam function \ll (.l:, y. t ) satisfies Eq. (3. 1) according to the defini-

tions of ii and i: given below 

- 8\ll 
'U = fJy' 

which further takes the form 

18\ll 
ii= -­a oy ) 

aw v=--. ax 

aw v=-­D:T;, (3.5) 

\\'hen y = yja(t,). Substituting Eq.(3.5) into Eqs.(3.2)-(3.4) and then relating the 

non-dimensional variables to the dimensional ones 

ii v i \}1 p 
u=v· v = V.' x= - W = - p = \(2' 

tl! 1L' 
a (I) , (/ \ltl,' {J w 

- I \111, aa . ro2u 1 ~oa 
t=- Q=- 1\ = --. -=-

' a s p\ltl' R k\lu, 
(3.6) 

we obtain 

1 
Wyi + WyW xy - WxWyy + Px- R e [o wy + oyWyy + Wxxy + Wyyy] 

1 
+ RWy+NH2 (t )Wy=O, (3 .7) 

1 
\}1 xi + Wy \}1 xx - \.lJ x W xy - Py - R e [o·yW xy + \}1 l'!JY -l \.II xx.c] 

1 
+ R \llx = 0 (3 .8) 

and 

(i) Wy =O. Wx= 1 aty=l. 

(ii ) Wyy =O, Wx=O aty=O. 

(iii ) Wy = 0 at x = 0. (3.9) 

where 

(3.10) 
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and subscripts denote the partial derivatives, N is the magnetic parameter , Re( = 

a Vw/ s) is the permeation Reynolds number and R is porosity parameter. It should 

be pointed out that the present problem reduces to the problem studied in [22] when 

N = 0 and R ~ oo. Further aa = constant and a: = ai.J.js , which implies that 

a = (1 + 2.5aia02
) 

112
• Here a0 denotes the initial channel height. 

3 .3 Solution 

In this section we solve the present problem by following closely the Lie group method 

in [22] under which equations (3. 7) and (3.8) remain invariant. Follov..-ing the method­

ology and notations in subsection (3.1) of [22] w~ note that the difference only occurs 

in the defini t ions of b- 1 and 6 2 . In order to avoid repetition we only \Yritc the values 

of 6 1 and b.2 here as 

b.l = 

(3.11) 

where for other definitions and calculations, the read ers may consult [22]. :\ow 

fol lowing the detailed proc<"dure as given in [22] we finally obtain 

-K- + - a J< y - hK1- 3I< K2 -d3h [ ] d2h 
dy3 dy2 

~ [-a: I< - 2a f( yf(2 - hK 3 ...~.. hf(4- f(/(5 - 3K K6 + ~ - N ] ~~ 

f( 1 ( ~~) 
2 

+ [ - a f( /( 2 + ~ f( 2 + IV/( 2 - aK K 6Y - I< I< 9 - J< K 1 o] h 

' [ · ]
2 Idr .., K1 - K s h + H d:r; = 0, (3.12) 
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where 

\\"ith 

K - Hyyy 
10- H · 

dG 
U =X dy, 

(3. 13) 

v= -G (3.14) 

and G satisfies 

along with 

(i) d~;l) = 0, (ii) C(l) = 1, (iii) d
2

~~0) = 0, (iv) G(O) = 0 (3 .16) 

and K = He. Writing 

c = G1 + ReG2 + R~C3 + O(R!), 

G) = G10 'oC11 - a 2G1 2 + O(a3
). 

G2 = C2o + aC21 + a 2C22 + O(a3
). 

G3 = C3o + oG31 + a 2G32 + O(a3
). 

we solve the problem consisting of equation (3.15) and conditions given in (3.16) 

using second-order double perturbation and finally arrive at 

GI(Y) = 2;00 [y( -(25y2
- 13)(y2 - 1)2o 2 + 210(y2

- 1)2a.- 1400(y2 - 3)}], (3 .17} 

G2(y) - 23284~000R [y(y2
- 1)2(831600(R( - 7 + y2 + 2) - 7) 

-2310a:( -2y2 ((240 - 227)R + 240) + (552N + 681)R + 65Ry4 + 552) 

+a2
( - 35.1/ ((3905 - 6561)R + 3905) + 2y2 ((133595~ + 5048l)R + 133595) 

- 3((29953. + 114lll)R + 29953) + 12600Ry6))] (3.18) 
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and 

C3(y) = 1 27ii~~O~;~~OR2 [ 1260a(R
2
(1001N

2
(5:t/ - 9)(25:t/ - 37) 

- 26N (875y6 + 18305y4 + 293y2 - 51137) 

- 4060y8 + 63133y6 + 357696y4 + 427177y2 + 394166) 

+26R(77. 1(5y2 - 9)(25y2
- 37) - 875y6 - 18305y4

- 293y2 + 51137) 

+1001(5y2
- 9)(25y2

- 37)) + o:2 (105Ry ((6510. - 46873)R + 6510) 

-42y6 (R(350N((1339 J - 7698)R + 2678) + 3099111R- 2694300) + 468650) 

+ 14y4(R(900N((6552N - 10585)R + 13104)- 2957491R- 9526500) + 5896800) 

-y2 (R(84N((1262105N + 3260532)R + 2524210)- 95806709R + 273884688) 

+ 106016820) + 3R(42~((245908N + 2413431)R + 491816) + 100425529R 

+ 101364102) + 7 3825R?y10 + 30984408) + 491400{R(7l((55N - 102)R +55) 

- 2y2(77 ((10N- 23)R + 20) + 530R) + 77. ((44N + 69 )R + 88) + 28Ry6 

- 1406R + 1771(2y2 + 3)) + 308(11 - 5y2) )] . (3.19) 

It cru1 be easily noted that for N = 0 and R -r oo, C(y ) reduces to the result 

p reseuted in [22], prodded we use a first-order double perturbatiou. This show::; 

confidence in the pre cnt calculations. The shear stress at the "·all ''"ith y = 1 is 

The velocity components through Eqs.(3.14) and {3.19) arc given by 

dG 
u = x-, . 

cy 
u = -C. 

3.4 Results and discussion 

(3.20) 

(3.21) 

(3.22) 

In this section we study the effects of magnetic field .'V , porous medium R, on self­

axial Yciocity both analytically and numerically and the results arc plotted. The 
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numerical solution is obtained by using the shooting method, coupled with Runge­

Kutta scheme. 

A . Self-axial velo.city 

Figures 3.2 and 3.3 demonstrates the beha,·iour of the self axial ,·cJocity uj:r for 

magnetic parameter /\' = 0.5 . porosity parameter R = 0.5. permeation Reynolds 

number Re = - 1 and L at -1 ~ a ~ l. Figure 3.2 shows the case of Re = - 1. 

\\ 'hen a > 0, the flow towards the centre becomes greater , this leads to the axial­

velocity to be greater nca r the centre. We noticed that this behaviour changes when 

a < 0, that is, the flow towards the centre results in lower axia l \'Clocity near the 

centre and higher ncar the wall. 

Figure 3.3 shows the case of Re = l. When a> 0, the flow towards the wall becomes 

greater, the axia l-\'elocity is lesser near the centre. When a < 0 changes. the flow 

towards the wall results in lower axial velocity ncar the wall and higher ncar the 

centre. 
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Fig ure 3 . 2 : '('If-ax ial ,·elociry profiles ow•r a :-ang:e of a at .\' - 0.5. Rc = - 1 and 

R =- 0.5 
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F igure 3.3: Self-axial velocity p rofiles o\·er a range of a at N = 0.5. Re = 1 and 

R = 0.5 

Fro Ill r he figures a lJu\ 'e . we cau see that r he beha\·iuur of the gra ph:S i , a co:::ine profile . 

Comparing anitlytical and numerical solu t ions . the percentage error increases as .\" 

increases for all lol. see Tables 3.1. 3.2 and 3.3. 

Table 3 .1: Comparison between analytical and numerical solutions for self-axial ve­

locity uj:r at y = 0.3 for R = 0.5. Re = -1. a = -0.5. 

Analytical Method 

.\ "= 0.5 1.374.237 

.'\" = 1.0 1.381895 

f\ ' = 1.5 1.389799 

Numerical Methocl 

1.375731 

1.384.237 

1.393274 

44. 

Percentage Error (~. ) 

0.10 609 

0.16919 

0.249420 
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Ta b le 3.2: Comparison between analytical and numerical solutions for self-axial ve­

locity ujx at y == 0.3 for R = 0.5 , Re = - 1 and a = 0.0. 

Analytic~ll \Icthod ~ umcrical ~lcthod 

N = 0.5 1.398273 1.400185 

.. = 1.0 1.406663 

N = 1.5 1.415323 

1.409625 

1.419678 

Percentage Error (%) 

0.136611 

0.2101 6 

0.306770 

Table 3.3: Comparison between analytical and numerical solutions for elf-axial ve­

locity ujx at y = 0.3 for R = 0.5. Re = - 1 and o_ = 0.5. 

Analytical \1cthod ~umerical \1cthod Percentage Error (o/c) 

N = 0.5 1.423053 1.425483 0.170456 

.1\: = 1.0 1.4321 1..!35905 0.25 03 

N = 1.5 1.441616 1.447026 0.373840 

For porosity parameter R. th<' axial velocity and tho pcrccnt<1gc error between ana­

lytical aud numerita l solutions decreases as R incr<'ascs. for the same ICII . see Tab les 

3.4, 3.5 and 3.6. 

Table 3.4: Comparison bctw<'cn analytical and numerical solutions for elf-axial YC­

locity uj;r at y = 0.3 for S = 0.5.f4 = - 1 and o = - 0.5. 

R = 0.5 

R = 1.0 

R = 1.5 

Analytical \Icthod ~umcrical \Icthod 

1.37-1237 1.375731 

1.3596Gt1 1.360126 

1.355025 1.355296 
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Percentage Error (o/c) 

0.10 609 

0.033979 

0.019936 



Table 3.5: Comparison between analytical and numerical solutions for self-axial ve­

locity u/x at y = 0.3 for N = 0.5. Re = -1 and a= 0.0. 

Analytical ~Icthod Numerical ~Iethod Percentage Error (%) 

R = 0.5 1.398273 1.400185 0.136611 

R = 1.0 1.382302 

R = 1.5 1.377219 

1.3 2914 

1.377581 

0.04-1241 

0.026294 

Table 3.6: Comparison between analytical and numerical solutions for self-axial ve­

locity uj x at y = 0.3 for.·= 0.5, Re = - 1 and o = 0.5. 

Analytical ~'lethod ~umcrical ~1ethod Percentage Error (%) 

R = 0.5 1.423053 1.425483 0.170456 

R = 1.0 1.40565 1.40646 0.057581 

R = 1.5 1.400120 1.400610 0.035000 

B. Shear s t ress 

T he figure below illustrate the effects of varying governing parameters on the char­

acter of the shear stress at the wall. For a suction-contracting proces~ ( Rc = -1 and 

a < 0), the shear stress is positive until expansion is sufficiently large. while for a 

~uction-cxpansion process (Re = 1 and a > O) the shear strc55 turns ncgath·e. 
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F igu r e 3 .4: .... h<>ar -.tre-., prori)e, ow:- a range of a at .\" = 0.5. R1 = -1 and R = 0.5 

\\·e noric<.'d that. the wall shear stress decreases as rhe RP)·nolds munher Re incrPases . 

sC'e Table> 3. 7. 

Ta ble 3 .7: Coll1parisoll between analytical and numerical solutiolls for shear stress 

T.; at x = 2 for.\ · = 0 .. 1 and o = - 1. 

Amllyt ic-al Method :\umericaJ \fNhod Perc·C'nta.gc Error (o/t) 

R, = -1 6. 526164 

R,=l -7.731125 

3.5 Con clusion 

6.4"3047 

-7.7.55944 

O.GG507 1 

0.320003 

In thi' chapter. we ha\·e generalized rhe flow analy-is of .22· with the influence of 

magnc>tic field and porou:3 medium. The analytical solution for the arising non linear 
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problem was obtained by using Lie symmetry technique in conjunction with a second­

order douulc pcrturuatiou method. We haYc studied the effects of magnetic field (N) 

and porous medium (R) on the self-axial velocity and the results arc plotted. \i\·e 

compared the analytical solution with the numerical solution for self-axial velocity 

at different values of ;\" and R. We found that as .Y increases the self-axial velocity 

increases and as R increases the self-axial velocity decreases. Here we have noticed 

that the analytical results obtained matches quite well with the numerical results for 

a good range of those parameters. We also noticed that for all cases the self-axial 

\·clocity have the similar trend as in [22], that is, the axia l velocity approaches a 

cosine profile. Finally, we observed that when N = 0 and R a pproaches infinity our 

problem reduces to the problem in [22] and our results (analytica l and numerical) 

also reduce to the results in [22], with the use of first-order double perturbation 

method. 

48 



Chapter 4 

Concluding remarks 

In this research project Lie group method was applied to study two nonlinear partial 

d ifferential equations a rising in flu ids. 

In Chapter 1, a brief introduction to the Lie group theory of part ial differential equa­

t ions w~s given. This inrlucle the ~Jgorit.hm to cl 0tcrminc the Lie point symmetries 

of partial diffe rE>ntia l equat ions. 

Li0 symmetry t echnique along with other methods of integrability. were used to carry 

out the integration of the ZK equation (2.1) with power law nonlinearity in (3+ 1) 

dimension in Chapter 2. Numerical simulations were also given to supplement the 

analytical development. This work was submitted for publication . See j29J. 

In Chapter 3, we generalized t he flow analysis of [22] wi th t he influence of magnetic 

field aud porous mcdiulll. Lie symmetry aualysis a long with second-order double 

perturbation was applied to obtain the analytical solution. The effect of porous 

1nedimu and magn etic field on axial Yelocity were shown and c.liscussed. The work 

of this Chapter has appea red in [33J. 

In future we will use th e Lie point symmetries of the ZK equation {2.1) obtained in 

this research project to construct conservation laws of {2.1 ). 
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