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Abstract

This research studies two nonlinear differential equations arising in fluid mechanics.
Firstly, the Zakharo'\'-l(uznct-so\"s equation in (3+1) dimensions with an arbitrary
power law nonlinearity is considered. The method of Lie symmetry analysis is used
to carry out the integration of Zakharov-Kuznetsov's equation. Also, the extended
tanh-function method and the G'/G method are used to integrate the Zakharov-
Kuznetsov's equation. The non-topological soliton solution is obtained by the aid of
solitary wave ansatz method. Numerical simulation is given to support the analytical

development.

Secondly, the nonlinear flow problem of an incompressible viscous fluid is considered.
The fluid is taken in a channel having two weakly permeable moving porous walls.
An incompressible fluid fills the porous space inside the channel. The fluid is mag-
netohydrodynamic in the presence of a time-dependent magnetic field. Lie group
method is applied along with perturbation method in the derivation of analytic solu-
tion. The effects of the magnetic field, porous medium, permeation Reynolds number

and wall dilation rate on the axial velocity are shown and discussed.



Introduction

Fluid Mechanics is one of the most important arcas of study in Applied Mathemat-
ics and Theoretical Physics. This area of study and research appears in everyday
lives. The study of fluid flow has a variety of applications in various scientific and
engineering fields, such as aerodynamics, hvdrodynamics, convection heat transfer,

oceanography, dynamics of multi-phase flows etc.

Most scientific problems and phenomena that arise in fluids are modelled by nonlinear
ordinary or partial differential equations. These equations are widely used to describe
complex phenomena in various fields of sciences which combine different types of

differential equations (see for example [1)-[5]).

There are a number of approaches for solving nonlinear partial differential equations,

which range from completely analytical to completely numerical ones.

Lie group analysis. based on symmetry and invariance principles, is a systematic
method for solving nonlinear differential equations analytically. Originally developed
by Sophus Lie (1842-1899), the philosophy of Lie groups has become an essential part
of the mathematical culture for anvone investigating mathematical models of physi-
cal, engineering and natural problems. Lie group analysis embodies and synthesizes
svmmetries of differential equations. A symumetry is described roughly as a change or,
a transformation, that leaves an object apparently unchanged. Symmetries permeate
many mathernatical models, in particular those formulated in terms of differential

equations.

The Zakharov-Kuznestsov (ZK) equation is a nonlinear evolution equation (NLEE)
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that has been studied for the past decades. The equation was first derived for
describing weakly nonlinear ion-acoustic waves in a plasma comprising cold ions and
hot isothermal electrons in the presence of a uniform magnetic field [6]. The ZK
equation )

Uy + auu, —~b (u.r.r + Hyy )J- =0

and

Wy + autly + b (Uge + Uy + 1), =0

is the best known two- and three-dimensional generalization of the KdV equation
investigated in [7, 8, 9]. The ZK equation is not integrable by the inverse scattering
transform method. It was found that the solitary-wave solutions of the ZK equation
are inelastic [10]. Shivamoggi [11] showed that it possesses the Painleve property by

making a Painleve analysis of the ZK equation.

Several researchers have used various methods, for example Exp-function method
[12]. Homotopy perturbation method and variational iteration method [13]. among
others, tosolve the ZK equation in (2-+1)-dimensions. Biswas and Zerrad [14] and [15]
considered the ZK cquation with dual-power law nonlinecarity and later considered
the ZK equation in plasmas with power law nonlinearity to obtain 1-soliton solution
using the solitary wave ansatz method. Biswas [16] used the solitary wave ansatz
method to obtain 1-soliton solution of the generalized ZK equation with nonlinear
dispersion and time-dependent coefficient. Deng [17] applied extended hyperbolic
function method to (2+1)-dimensional Zakharov-Kuznetsov (ZK) equation and its
generalized form and obtained new explicit and exact solitary wave, multiple nontriv-
ial exact periodic travelling wave solutions, solitons solutions and complex solutions.
Wazwaz (18] employed the sine-cosine ansatz and obtained exact solutions with soli-
ton and periodic structures for the (2+1) and (3+1) ZK equation and its modified
form. Later Wazwaz [10] used the extended tanh method to study the ZK equation,
the generalized ZK equation, the modified ZK equation and a generalized form of

the modified ZK equation and obtained new solitons and periodic solutions.

In this research we study the ZK equation with power law nonlinearity in (3+1)



dimensions given by
Gt + aq" gz + b (Gzz + Gy + ¢22), = 0, (1)

where a, b and n are constants. In equation (1), the first term represents the evolu-
tion term while a represents the coefficients of power law nonlinearity, and b is the
coefficient of dispersion terms. The parameter n is the power law parameter while
g is the wave profile. The independent variables z, y, z and ¢ represent spatial and

temporal variables respectively.

In the second part of our research we consider two-dimensional flow in a deformable

channel with porous medium and variable magnetic field.

The two-dimensional flow of viscous fluid in a porous channel appears very use-
ful in many applications. Hence many experimental and theoretical attempts have
been made in the past. Such studies have been presented under the various as-
sumptions like small Reynolds number (R, ). intermediate R, large R, and arbitrary
R.. The steady flow in a channel with stationary walls and small R, has been
studied by Berman [19]. Dauenhaver and Majdalani [20] numerically discussed the
two-dimensional viscous flow in a deformable channel when —50 < R, < 200 and
—100 < a < 100 (o denotes the wall expansion ratio). In another study, Majdalani
et al. [21] analyzed the channel flow of slowly expanding-contracting walls which
leads to the transport of biological fluids. They first derived the analytic solution for
small R and a and then compared it with the numerical solution. The flow prob-
lem given in study [21] has been analytically solved by Boutros et al. [22] when
Reynolds number and a vary in the ranges —5 < R, < 5 and —1 < a < 1. They
used the Lie group method in this study. Mahmood et al. [23] discussed the homo-
topy perturbation and numerical solutions for viscous flow in a deformable channel
with porous medium. Asghar et al. [24] computed exact solution for the flow of
viscous fluid through expanding-contracting channels. They used symmetry method

and conservation laws.

In this research work we generalize the flow analysis of [22] with the influence of



magnetic field and porous medium given by

o o
o ﬁaﬂ. ﬁﬁﬁ - el i 9% 2 9% 59 ré62HA(t) _ 3)
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with the following boundary conditions

(i) =0, v=-V,=-Aa atj=a(t).
(i) ===0, =0 at§=0,

(i) @=0 atz=0, (5)

where - denotes the differentiation with respect to t. In the above expressions u
and 7 are the velocity components in T (axial coordinate) and § (normal coordinate)
directions, respectively, p is the fluid density. P is the pressure, ¢ is the time, 4 is the
kinematic viscosity, ¢ and k are the porosity and permeability of porous medium,
respectively, r is the electrical conductivity of fluid. V,, is the fluid inflow velocity,
A is the injection coefficient corresponding to the porosity of wall and ¢ = Vy/V,,

where Vy and V, respectively, indicate the volume of the fluid and control volume.
The outline of the research project is as follows:

In Chapter 1 the basic definitions and theorems concerning the Lie group method are
recalled. Chapter 2 deals with the construction of exact solutions of the ZK equa-
tion with power law nonlinearity in (3+1) dimensions using the Lie group method,
extended tanh method, (G'/G)-expansion method and solitary wave ansatz method.
In Chapter 3 Lie group analysis is applied along with perturbation method to obtain
an analytical solution for the nonlinear flow problem of an incompressible viscous
fluid and then compare it with the numerical solution. Chapter 4 summarizes the

results of the dissertation.

Bibliography is given at the end.
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Chapter 1

Lie group theory of PDEs

In this chapter a brief introduction to the Lie group theory of partial differential
equations is given. This includes the algorithm to determine the Lie point symmetries

of partial differential equations.

1.1 Introduction

More than a hundred years ago, the Norwegian mathematician Marius Sophus Lie
realized that many of the methods for solving differential equations could be unified
using group theorv. He developed a symmetry-based approach to obtaining exact
solutions of differential equations. Symmetry methods have great power and gener-
ality - in fact. nearlyv all well-known techniques for solving differential equations are
special cases of Lie's methods. Recently, several books have been written on this
topic. We list a few of them here. Ovsiannikov [25]. Olver [26], Bluman and Kumei
(27], Ibragimov [28].

The definitions and results presented in this chapter are taken from the books men-

tioned above,
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1.2 Continuous one-parameter groups

Let z = (z',...,2") be the independent variables with coordinates z' and ¢ =
(g'...,q™) be the dependent variables with coordinates ¢ (n and m finite). Consider

a change of the variables x and ¢ involving a real parameter a:
T,:r = fi(z,q.a), ¢ = ¢°(z,q.0). (1.1)
where a continuously ranges in values from a neighborhood D' € D C R of a = 0,

and f' and ¢ are differentiable functions.

Definition 1.1 A set G of transformations (1.1) is called a continuous one-parameter

(local) Lie group of transformations in the space of variables = and g if
(i) For T,. T, € G where a,b € D' € D then )T, =T, € G, ¢ = ¢(a,b) € D
(Closure)
(ii) Ty € G if and only if a = 0 such that T, T, = T, Ty = T, (I1dentity)
(ili) For T, € G,ae D' C D, T;' =T,-» € G, a~! € D such that

T, Ty = T,-1 Ty = Ty (Inverse)

We note that the associativity property follows from (i). The group property (i) can

be written as

JUE G, b) = [i(r.q. 0(a, b)),
¢* = 0°(%.4.b) = 6°(r.q,6(a.b)) (1.2)

1]

and the function ¢ is called the group composition law. A group parameter a is called

canonical if 6(a.b) = a + b.

Theorem 1.1 For any o(a,b), there exists the canonical parameter a defined by

a =/ —s . where w(s) = ad),(s’b) :
0 u'(S) ob b=0

12



1.3 Prolongation of pbint transformations and Group

generator

The derivatives of g with respect to z are defined as

¢ = Di(¢%). Q‘% = D;Dy(gi), -~ , (1.3)
where
Dlzﬁ-',- a0 -i-q?-i'F"'-. t=T1....n (1.4)

9 0 W g

is the operator of total differentiation. The collection of all first derivatives ¢ is

denoted by q1). i.e.,

gy =) v=l.m =10
Similarly

gz =1{¢%} e=Ll..m. ij=1..n

and q(3) = {¢{j;} and likewise q(4) etc. Since ¢ = ¢5;. q2) contains only g5 for i < j.
In the same manner g3 has only terms for i < j < k. There is natural ordering in

q(4) {9(s) "

In group analysis all variables x.g.gq) - - are considered functionally independent
variables connected only by the differential relations (1.3). Thus the ¢¢ are called

differential variables and a pth-order partial differential equation (PDE) is given as

E(z,9.90). - q) = 0. (1.5)
Prolonged or extended groups

If z = (z. q), one-parameter group of transformations G is

z' = fi(z,q,a), [la=o= 7",

¢* =06%(x.q,a), 6°la=0=1¢". (1.6)

13



According to the Lie’s theory, the construction of the symmetry group G is equivalent

to the determination of the corresponding infinitesimal transformations :
iz +afl(z.q), ¢ =q"+an’(z.q) (1.7)

obtained from (1.1) by expanding the functions f* and ¢® into Taylor series in a

about @ = 0 and also taking into account the initial conditions
flig=7" ¢lazo=06"

Thus. we have

. or o>
fma) =L |, PEa=a| (1.8)
a=0 a=0

One can now introduce the symbol of the infinitesimal transformations by writing

(1.7) as
rix(l+aX)r. ¢@=(1+aX)g.

where

X = E"(-r,q)i +n(r.q)

oz W

g
This differential operator X is known as the infinitesimal operator or generator of
the group G. If the group G is admitted by (1.5). we say that X is an admitted

operator of (1.5) or X is an infinitesimal symmetry of equation (1.5).
We now see how the derivatives are transformed.

The D; transforms as
D; = Di(f?)D;, (1.10)
where D), is the total differentiations in transformed variables #'. So
@ =Dy(¢°), = Dyq)=Dug}). .
Now let us apply (1.10) and (1.6)

Di(¢*) = Di(f")Diy(q)
= D,-(fj)(}?. (1.11)

14



This

afj' ﬁafj 8@“ 3(50
—t = |0 =t - 1.
The quantities & can be represented as functions of =, ¢, gy, a
for small a, ie., (1.12) is locally invertible:
7 =vf(z.q.q9000), ¥ =q. (1.13)

The transformations in . q. g;1) space given by (1.6) and (1.13) form a one-parameter
group (one can prove this but we do not consider the proof) called the first prolon-

gation or just extension of the group G and denoted by G,
We let

@ ~q +a@@ (1.14)
be the infinitesimal transformation of the first derivatives so that the infinitesimal
transformation of the group G is (3.12) and (1.14).

Higher-order prolongations of G, viz. G, G® can be obtained by derivatives of

(1.11).

Prolonged generators

Using (1.11) together with (3.12) and (1.14) we get
Di(f)(q;) = Dile")
Di(z" +a&)(q5 +aC) = Di(¢° +an®)
(df +abD&? (q}1 +ali) = ¢ +aDy?
¢ +al +aq; D;§ = ¢ +aDy”

¢ = Di(n®) —qfDi(§?). (sum on j). (1.15)

1

This is called the first prolongation formula. Likewise, one can obtain the second

prolongation, viz.,

¢ = Di(n?)— q5D,(€*), (sum on k). (1.16)

15



By induction (recursively)

C::.I-z .... 5. Dip(C:::.sg.....f,,_]) = ‘Tﬁ..‘g.....i,,-,jnip (gj}- (sum on j). (1.17)
The first and higher prolongations of the group G form a group denoted by G ... Gl
The corresponding prolonged generators are

[

X = X4 Cf‘% (sum on 7, a).

XM o= xbilgea 9 oy
where
. 0 J
-'=cf v R (4} T, gt
X=¢ (i-q)al_t- +7 (t.q)aqa
1.4 Group admitted by a PDE
Definition 1.2 The vector field
- i - G el d -
X2k ('r"?)[)‘r" + 1 (J?.q)aqu, (1.18)
is a point symmetry of the pth-order PDE (1.5), if
XP(E)=0 (1.19)
whenever E = 0. This can also be written as
XPEl. =0, (1.20)

where the symbol |;_, means evaluated on the equation E = 0.

16



Definition 1.3 Equation (1.19) is called the determining equation of (1.5) because

it determines all the infinitesimal symmetries of (1.5).

Definition 1.4 (Symmetry group) A one-parameter group G of transformations
(1.1) is called a symmetry group of equation (1.5) if (1.5) is form-invariant (has the

same form) in the new variables 7 and §. i.e.,
E(%.3.4%. . 4») = 0. (1.21)

where the function E is the same as in equation (1.5).

1.5 Group invariants

Definition 1.5 A function F(z.q) is called an invariant of the group of transfor-

mation (1.1) if
F(z,q) = F(['(z.9.a). 0*(2,9.0)) = F(z,q), (1.22)

identically in z, ¢ and a.

Theorem 1.2 (Infinitesimal criterion of invariance) A necessary and sufficient
condition for a function F(r.q) to be an invariant is that
oF

) bhs D
XF=§8(x,q)=— +7° (r,q)w

— =0. (1.23)

It follows from the above theorem that every one-parameter group of point transfor-
mations (1.1) has n functionally independent invariants, which can be taken to be

the left-hand side of any first integrals
Ji(z,q) = ¢, ,Julz:9) =

of the characteristic equations

da* dz" ' I -

E(zq) xq) nl(zq) 7(x.q)

17



Theorem 1.3 If the infinitesimal transformation (3.12) or its symbol X is given,
then the corresponding one-parameter group (' is obtained by solving the Lie equa-
tions
g5
da

@3, ——=1"49 (1.24)

subject to the initial conditions

i i SOy =
Tln:U_I‘ q L_,-:g—q-

1.6 Lie algebra

Let us consider two operators X; and X, defined by
- d - d
X, :{i(x,q)@ + 17 (z, Q)%
and
: d d
2= 2 — o(z.q)—.
X2 =6(2.0) 5 + 7 (z.q) o
Definition 1.6 The commutator of X, and X,. written as [X;. X5], is defined by

[X1, Xo] = X1(X2) — Xa(Xy).

Definition 1.7 A Lie algebra is a vector space L (over the field of real numbers) of

: %)
operators X = €(xz, Q)f)(? +n*(x, Q)di with the following property. If the operators
a

7 v @ o e 88
X =&, ¢)=— +n3(x,q) 97

- i ad e d
X1 =& (r,q)7— +n7(x,q) E

oz’ ag’

are any clements of L. then their commutator
[X1. Xo] = X1(X2) — Xa(X1)
is also an element of L. It follows that the commutator is
1. Bilinear: for any X.Y.Z€ Landa. b e R,

[aX +bY, 2] = a[X, Z] + b]Y, Z), [X, aY + bZ] = a[X, Y] +b[X, Z);

18



2. Skew-symmetric: for any X,Y € L,

(X,Y] = -[Y, X);

3. and satisfies the Jacobi identity: for any X.Y,Z € L,

X, Y], 2) + [IY, Z), X] +[[2, X],Y] = 0.

1.7 Conclusion

In this chapter we presented briefly some basic definitions and results of the Lie

group analysis of PDEs. These included the algorithm to determine the Lie point

svminetries of PDEs.

19



Chapter 2

Solutions of the ZK equation with
power law nonlinearity in (3+1)

dimensions

In this chapter, we first use the Lie symmetry analysis to find the group-invariant
solutions of the ZK equation with power law nonlinearity in (3+1) dimensions given

by
Gt + aq" @z + b (qee + Gy + =), = 0. (2.1)

where a, b and n are constants. Here the first term represents the evolution term
while a represents the coefficients of power law nonlinearity, and b is the coefficient
of dispersion terms. The parameter n is the power law parameter while g is the
wave profile. The independent variables «, y. z and ¢ represent spatial and temporal

variables respectively.

Subsequently, the extended tanh function method and the G'/G method are used
to integrate the ZK equation. The soliton solution is obtained by the aid of ansatz
method. There are numerical simulation to support the analytical development. This

work is new and has been submitted for publication. See [29].

20



2.1 Symmetry analys‘is

In this section Lie point symmetries of the equation (2.1) are first calculated and

then used to construct exact solutions.

2.1.1 Lie point symmetries

A Lie point symmetry of a differential equation is an invertible transformation of the
dependent and independent variables that leaves the equation unchanged. Deter-
mining all the svmmetries of a differential equation is a formidable task. However,
Sophus Lie (1842-1899) realized that if we restrict ourself to symmetries that depend
continuously on a small parameter and that form a group (continuous one-parameter
group of transformations), one can linearize the symmetry conditions and end up with

an algorithm for calculating continuous symmetries.
The symmetry group of the ZK equation (2.1). viz.,

Gt +aq" ¢z + b (qus + Gyy +22), = 0.
will be generated by vector field of the form

d 5 O J d ad
‘attatiat i wm ey
where £, 7 =1,2,3,4 and 5 depend on x, y, z, t and ¢. Applying the third prolon-

gation pr’®TI" to (2.1) and then solving the resultant overdetermined system of linear

partial differential equations (PDEs) vields the following Lie point symmetries

d d a ' d d
eg ieg g g heTig g
and
d 0 d o d
Fa= nré—; + ny—- =+ H’E:‘* +* 3?1’0)1'. QQ%.

The commutation relations between these vector fields is given by the following table,

the entry in row 7 and column j representing [[';.T,]:

21



Table 2.1: Commutator Table

[[i:T;] | T ', [Ty Iy I's I's
Iy o (o |o o =T | T
r, 0 0 0 0 Iy I's
| 0 0 0 0 0 Iy
I, 0 0 0 0 0 3,
I's Iz |-T1]0 0 0 0
I Iy | -Ty| -I3| =3[ |0 0

2.1.2 Exact solutions

One of the main purposes for calculating symmetries of a differential equation is
to use them for obtaining symmetry reductions and finding exact solutions. In this
subsection we will use the symmetries calculated in the previous subsection to obtain

exact solutions of the ZK equation (2.1).

One way to derive exact solutions of (2.1) is by reducing it to an ordinary differential
equation (ODE). This can be achieved with the use of Lie point symmetries admitted
by (2.1). It is well known that the reduction of a partial differential equation with
respect to r-dimensional (solvable) subalgebra of its Lie symmetry algebra leads to

reducing the number of independent variables by 7.

We now consider the symmetry I'y +I'; + I's and reduce the ZK equation (2.1)
to a PDE in three independent variables. This symmetry vields the following four

invariants:
f=z=2 g=1, h=z-y. =g

Treating € as the new dependent variable and f, g and & as new independent vari-

ables, the ZK equation (2.1) transforms to

99. + af" 8, + 266, + 2{)6”;1 <+ 21)9}-&& =0 (2.2)



‘which is a nonlinear partial differential equation (NLPDE) in three independent
variables. We now further reduce (2.2) using its symmetries. It can be shown that

equation (2.2) has the following four Lie point symmetries:

J
Tl o ﬁ?

0
TQ = })?-

d
TS — a.

d o] d 0
¥y = nfw -+ 3?1‘(}% =F nh% = 286_9

The symmetry To + pY3 (p is a constant) yields the three invariants

r=f. s=g—ph, o=080,

which gives a group invariant solution ¢ = ¢(r,s) that satisfies a NLPDE in two

independent variables, namely
s — G-P@n Qs — prséser,s == gb.oolrrs + prz@ms = 0. (23)
The symmetry algebra of (2.3) is generated by the vector fields

d
= 5= —.
i dr aod 27 s

The combination aX; + I, (a is a constant) of the two symmetries ¥, and ¥, vields
the following invariants

u=r—oas, PY1=7¢

and consequently using these invariants (2.3) is transformed to the nonlinear third

order ODE
[2bp*a? + 2bp*a + 2bpl" (u) + ap(w(u))™'(u) — ' (u) =0 (2.4)
which can be written as
By (u) + Byt (u)d (u) + Bt (u) =0, (2.5)

where

B; = 2bp’a® + 2bp%a + 2bp, By =ap, B3=-l. (2.6)
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Integrating equation (2.5) twice with respect to u and taking the constants to be

zero we obtain

This is a first-order variables separable equation. Integrating this equation and taking
the constant of integration to be zero and reverting back to the original variables,

we obtain the solution of the ZK equation (2.1) for arbitrary values of n in the form

- DT s .
alie y 2, )= {E——-—-ﬂi—-——} sech”™ (A4;) . (2.8)
2ap

where
H{H;J,r — (:‘1() T l)-;,r + z — r“*}

.1] =t
2y/2bp(a?p* +ap+1)

We now give profiles of the solution (2.8) for two specific values of ni; namely n =1
and n = 2.
By choosinga = 1.h=1l.p=1.n= 1.0 =1,y = 0.z = 0, we have the following

T file of solution (2.8).

Figure 2.1: Profile of solution (2.8)

By choosinga=1.b=1,p=1.n=2 a =1, y=0, z = 0. we have the following

profile of solution (2.8).



Figure 2.2: Profile of solution (2.8)

We now obtain group-invariant solutions of (2.1) for special cases, n =1 and n = 2

By choosing n = 1 in (2.4) and solving the corresponding equation yields the following

group invariant solutions of the ZK equation (2.1) for n = 1.

f j l . v 2 2 2 \ l
g(r.y, z.t) = —=|16b68* (a®p"+ap+1)——
a D
+24b3° Jn a’p*+ap+1 ]F
L2085 b BN botan? (Ber 4BV r X
1eot” (Ju +4) +tan” (Ju+0); |. (2.9)
glr,y.z.1) = — 166532 (a®p* +ap +1) :
a | ; [
—24p 32 { a’p? + ap + 1}
{coth® (3u +4) + tanh® (Bu + 6)} |. (2.10)

and

glr.y.z.t) =

cn?(Bulw)

S}J ‘:2 J 2...‘2 — 1 _'1".1 12 T 0Op— l] — -l
_8b8%p( )(@p'tapt+1)-1] (2.11)
p ]

[\]
o



where u = apz — (ap+ 1)y + z — at and «, B, 4 are arbitrary constants. en(Z|m) is

the Jacobian elliptic function [30]. which is defined as follows: If

Z = / L.
o \/1—msin?g
where the angle ¢ is called the amplitude, then the function en(Z|m) is defined
as en(Z|m) = coso. Here m is called the modulus of the elliptic function and
0<m<1.
By taking n = 2 in (2.4) and solving the corresponding equation we can obtain the

following group invariant solutions of the ZK equation (2.1) for n = 2.

Note that u = apz — (ap + 1)y + 2 — ot and 0 is a constant in cach of the following

solutions.
3 5
gl 4, 2t) = cot(Asu + 8) + A, tan(Aqu + 4), (2.12)
daAp
where
A= —i and A, = 1{ 4
dap V16bp (a2p? +ap + 1)
glpyy, b)) = \/—@[ coth(Asu +4) +.~'13tanh(‘4_;u+5'}]. (2:13)
2 apAsg
where

Sl
i

1
_43 = and Azl - \/_lﬁ(bp {(]2'”2 +ap+ 1})

w} (2.14)

q(a t) foi? : + 0
.Y,z t) = 4| ————sn| [ — U+
S5 ap (w? +1) 2bp (W2 +1) (a?p? +ap+1)
where sn(Z|m) = sin .

By talangia = =lLb= le= Lo £ 1.6 = 0, = gy = 0,2 = 0 we have the

following plot of the solution (2.14).
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Figure 2.3: Profile of solution (2.14)

2.2 Extended Tanh-function method

In this section we use the extended tanh-function method [31] and obtain a few exact

solutions of the ZK equation (2.1) for n = 1. We rewrite (2.4) for n =1 as
Bov" (1) + By (u)(u) + By (u) = 0. (2. 15

where

}'Sju '.”-'-!:-"3 1 2Fﬂr’l‘-"i; B I 2.}.1‘(1_ 113,1 = ap. H_: = — ]

with

H=Qpr— (r!}"J + 1)y + = — at.

By taking n = 1. let us consider the solution of (2.15) in the following form

AL
Vi

.- .-,-,-}_-Z_t._,(r;mr_ (2.16)

= tanh'(u), M is a positive integer that can be determined by bal-

where (((u))
ancing the highest order derivative with the highest nonlinear terms in equation and
Ag. - . Ay are parameters to be determined. The crucial step of the method is to
take full advantage of a Riccati equation that the tanh function satisfies and use its

solutions to construct exact solutions.

2
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The required Riccati equation is written as

G =d+G*.

(2.17)

The balancing pm('(;dure vields A = 2 so the solutions in (2.16) are of the form

7."'(’") = Ay + 4;6 + .4.2(;‘2.

Substituting (2.17) and (2.18) into (2.15), we obtain algebraic system of equations

in terms of Ag, A;. A2 by equating all coefficients of the functions G to zero. The

corresponding algebraic equations are

24, Bod® + AgABid + Ay Bad = 0.

16A;Byd* + A2Byd + 2A0A2Byd + 2A,Bsd = 0,
8A,Byd + 3A,A2B1d + AgA By + A1 B, =0,
40A2Bod + 2A3B1d + A3B; + 2A0A2B) + 24,8, = 0.
6A,By + 3A; 4,8, = 0.

2A3B; +24A;B = 0.

Solving the system of algebraic equations with the aid of Mathematica. we have the

following cases:

Case 1.

olE, 2, t) = 2 12B,d tanh? (\/—du) —~ 8Byd — Bs|.

qlz.y. z.1) = — | 12Byd coth? (\/—fu) - 8Byd — By,

glz.y,2.1) = 2ls 12Byd tan® (\/Hu) - 8Byd — B»|.
B, | ]

]
—_—
B
=
L8]
—
—
Il
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[— 12Byd cot? (\/Eu) —8Byd — By,

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)



Case 2.

B, 12B,
] = Ag==—, Ai=0, As=- 3
(4 0, 0 Bl 1 0 42 Bl .
1 2
Q(I. Y.z, f) = —W Bou® + 128, |. (223]

2.3 (G'/G) expansion method

In this section we use the (G'/G)-expansion method [32] to obtain a few exact solu-

tions of the ZK equation (2.1) forn = 1.

By taking n = 1, let us consider the solution of (2.15) in the following form:

M i
g Gu) 2.2
o =3 (). (224
where G/(u) satisfies
G"+ MG+~ uG =0 (2.25)

with A and p constants. The positive integer A will be determined by the ho-
mogencous balance method between the highest order derivative and highest order
nonlinear term appearing in (2.15) where Ag. .-+ . Ay are parameters to be deter-

mined.

The balancing procedure yields M = 2, so the solutions in (2.15) are of the form

ble) =y A (%(%)) iy (C_((ET)) (2.26)

Substituting (2.25) and (2.26) into (2.15), we obtain algebraic system of equations

in terms of Ag. A, A by equating all coefficients of the functions (G'(u)/G(u))" to
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zero. The corresponding algebraic equations are

A1 Bo)?(— 1) — 6A2BoApt® — 2A,Boji® — AgAy1Byjt — Ay By = 0,

— A1 BpA3 — 14A4,Bo N2 — 8A1 By — ApA1 Bid — A1 By
—]6.‘-1280;12 st .4?.81}1 — 244014-23[# - QAQBQ,U =@,

—8A5BoA% — TA1BoA? — 52A,BoAp — A2Bi A — 2A3A9 BiA
-2.4ng)~ = 8A1.Bg;1 = 3:4[14281,{1 s AnA1B1 et ,4182 =0.

—38A4,B,)% — 12A; BoX — 344,81\ — 40A, By
—2A3B1p1 — A3B; — 240 A, By — 2458, = 0,

—2A2B, A — 54438\ — 34, A2B; — 6A;B; = 0,

—2A§Bl = 2*’1;428(] = (.

Solving the system of algebraic equations with the aid of Mathematica, we have the
following :

- —/\28()—8[18{]—82 \ __].QAB[} 1 _.’1_1
Ap = Bl . Al = Bl . An = /\

When A% —4pu > 0,

glw,y.z,1) = .{1.;[6;3 (Bn (,\2 - 4u) + By) (_EEN\/XJ-.‘I“)

+205C1 (5B (A — 4pn) — By) /N =
__ng (Bo (Az . -1;1) + BQ) ] ! (2.27)

where

x1= By (le:"'m + Cz) 4
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When A2 —4p < 0,

st = A 3B0(C = CF) (3 — 4
P By (Clsin (%u\/—ip—A?)-r-Cgcus (%u\/-ip—,\z))Q
+By (- ()t2 — 4;:.)) - 82:!. (2.28)
When A\? — 4u = 0,
. _ 1 [ 12BsC}
q(.:,y, z. f) = _Bl [m -+ BQ:I (229)

2.4 Solitary wave ansatz method; Soliton solution

In this section we will focus on obtaining the 1-soliton solution of (2.1) by the aid
of solitary wave ansatz method. It needs to be noted that this method has been

employed to carry out the integration of many NLEEs [14, 15, 16].
The solitary wave ansatz for the l-solitpn solution of (2.1) is taken to be
q(z,y,2,1) = Asech’r, (2.30)
where
7= Byr + By + Baz — vt. (2.31)

In (2.30) and (2.31), A represents the soliton amplitude, B; for i = 1, 2, 3 represents

the inverse width of the soliton. v is the soliton velocity and the exponential p. which
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is unknown at this point, will be determined. Thus, from (2.30), we obtain

@ = Avpsechrtanhr, (2.32)
g: = AB,p sech’rtanhrT, (2.33)
q"q: = apBA™! sech?"*lir, (2.34)
Gezz = —p ABjsech”rtanhr
+p(p +1)(p + 2)AB3sech”*?*7 tanh 7. (2.35)
Geyy = —p°AB;Bjsech?rtanht
—p(p +1)(p + 2)AB; B3sech” 7 tanh 7, (2.36)
Ges: = —p>AB;B3sech”rtanht
—p(p +1)(p + 2)AB; B2sech”*r tanh . (2.37)

Substituting (2.32)-(2.37) into (2.1), yields
vp sech’t — apB, A" sech? ™7 + b[ — p*Bysech’r(B? + B + B?)
+p(p +1)(p + 2) Bysech” (B} — B3 - B'g’)] = 0. (2.38)
Equating the exponents p(n + 1) and p + 2. we have
pln+1)=p+2. (2.39)
which leads to

fe= (2.40)

2
n’
From (2.38) setting the respective coefficients of the linearly independent functions
scch?r and sech”**7 to zero yields

2b(n + 1){n + 2)(B? + B2 + B2)]'/"

A= 2.41
an? { )
and
4bB,(B? + B2 + B?
o= BB, *282 ). (2.42)
n
Thus, the 1-soliton solution to (2.1) is given by
q(z.y.z,t) = Asech®"r, (2.43)
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where the amplitude A is given by (2.41) and the velocity © by (2.42).

Figure 4 below shows the profile of a 1- soliton solution (3.22) with n = 1 and for

a=1,b=1Bi=1,B=1B3=1,1=0,2=0.

The profile of a 1- soliton solution (3.22) withn=2and fora=1.b=1. B) = 1.

By=1.B3=1.t=0, z=0is given in Figure 5.

Figure 2.5: Profile of solution (3.22

2.5 Conclusion

In this chapter we studied the Zakharov-Kuznestsov (ZK) equation with power law

nonlinearity in (3+1) dimensions. Several solutions of this equation were obtained by
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employing various modern methods of integrability, i.e., Lie group method, (G'/G)
method, extended tanh-function method and solitary wave ansatz method. The nu-
merical simulations are also given to supplement the theory. The solutions obtained
are cnoidal waves, p-oriodic solutions, singular periodic solutions and solitary wave

solutions.
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Chapter 3

Solutions of a nonlinear flow

problem

In this chapter a nonlinear flow problem of an incompressible viscous fluid is stud-
led. The fluid is taken in a channel having two weakly permeable moving porous
walls. An incompressible fluid fills the porous space inside the channel. The fluid
Is magnetohydrodynamic in the presence of a time-dependent magnetic field. Lie
group method is applied in the derivation of analytic solution. The effects of the
magnetic field, porous medium, permeation Reynolds number and wall dilation rate
on the axial velocity are shown and discussed. The work of this Chapter has been

accepted for publication. See [33].

3.1 Introduction

In many applications the two-dimensional flow of viscous fluid in a porous channel
appears to be very useful. Many experimental and theoretical attempts have been
made in the past. For example, Berman [19] studied the steady flow in a channel
with stationary walls and small Reynolds number R,. Majdalani et al. [21] consid-
ered the two-dimensional viscous flow between slowly expanding or contracting walls

with weak permeability. Their study focused on the viscous flow driven by small



wall contractions and expansions of two weakly permeable walls. Based on double
perturbations in the permeation Reynolds number Re and wall dilation rate o, they
carried out their analytical procedure. Boutros et al. [22] studied the solution of
the Navier-Stokes n.quations which described the unsteady incompressible laminar
flow in a semi-infinite porous circular pipe with injection or suction through the pipe
wall whose radius varies with time. The resulting fourth-order nonlinear differential
equation was then solved using small-parameter perturbations. Asghar et al. [24]
used the Lie group analysis to compute exact solution for the flow of viscous fluid

through expanding-contracting channels.

The purpose of this research work is to generalize the flow analysis of [22] in two
directions. The first generalization is concerned with the influence of variable mag-
netic field while the second accounts for the features of porous medium. Like in [22],
the analvtic solution for the arising nonlinear flow problem is studied by employ-
ing the Lie group method along with perturbation method, with R, and a as the
perturbation quantities. Finally, the graphs for self-axial velocity are plotted and

discussed.

3.2 Problem statement

We consider an incompressible and magnetohydrodynamic (MHD) viscous fluid in
a rectangular channel with walls of equal permeability, An mcompressible fluid
saturates the porous space between the two permeable walls which expand or contract
uniformly at the rate o (the wall expansion ratio). In view of such configuration,
symmetric nature of flow is taken into account at y = 0. Moreover, the fluid is
electrically conducting in the presence of a variable magnetic field (0,4H(t).0). Here
4 is the magnetic permeability and H is a magnetic field strength. The induced
magnetic field is neglected under the assumption of small magnetic Reynolds number.

The physical model of the flow is shown in Figure 1.



cla
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Figure 3.1: Coordinate system and bulk fluid motion

In view of the aforementioned assumptions, the governing equations can be written

as
di v
dz 0 Lo
o _ou _ou 19P e d%i ! T
= Tl P == == —_—
ot " 'pr " ‘oy  por |z ' o
2 r72
: p
ov ot _ob 10P % 9] s¢
i B Sae T oo S <RI [ R0 [P 3.3
TRl e "[afz ® a—gz] i \43)
with the following conditions
i) =0, 0=-V,=—-Aa atj=a(l).
o
(ii) %: 5=0 atj=0
(iii) @=0 atZ=0. (3.4)

In the above expressions # and © are the velocity components in 7 and j-directions,

respectively, p is the fluid density, P is the pressure, 1 is the time, s is the kinematic

viscosity, ¢ and k are the porosity and permeability of porous medium, respectively, r

is the electrical conductivity of fluid, V,, is the fluid inflow velocity, A is the injection
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coefficient corresponding to the porosity of wall and ¢ = V;/V, (where Vi and V,
respectively, indicate the volume of the fluid and control volume).
The dimensional stream function ¥ (Z, 7, 1) satisfies Eq.(3.1) according to the defini-

tions of & and 7 given below

0T o
= -~ "oz
which further takes the form
187 _ av
b=la T (35)

when y = §/a(t). Substituting Eq.(3.5) into Eqgs.(3.2)-(3.4) and then relating the

non-dimensional variables to the dimensional ones

i v T 7 P
= —_— = — = — W= l — :
2 Vi e Vo' % a(t)’ aVy, i pV.2
= a . r1é%a 1 s0a
t = = —_—, ‘\' — ) — T b i
g’ * g % B (3:6)
we obtain
1
Vi+ ¥, 0, -V, ¥, + P, — R—[n-lliy +ay¥y, + Yooy + Uyl
; . .
-4~E'Il!,r + N Hz(t)llly = () (3.7)
1
Vop + ¥y U — 9,9, — P, — ﬁ—[uy'l’xy + Wayy + Vosg)
1 \
and
) P,=0, ¥.=1 aty=1,
(ii)) P,=0¥,=0 aty=0.
(iii) ¥,=0 atzr= (3.9)
where
u="y,, v=—V, (3.10)
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and subscripts denote the partial derivatives, N is the magnetic parameter, R (=

aVy/s) is the permeation Reynolds number and R is porosity parameter. It should

be pointed out that the present problem reduces to the problem studied in [22] when

N =0 and R = oc. Further ad = constant and o = aa/s, which implies that

a = (1 + 2.5atag?)'/?. Here ay denotes the initial channel height.

3.3 Solution

In this section we solve the present problem by following closely the Lie group method

in [22] under which equations (3.7) and (3.8) remain invariant. Following the method-

ology and notations in subsection (3.1) of [22] we note that the difference only occurs

in the definitions of A, and A,. In order to avoid repetition we only write the values

of A; and As here as

1
Ay = Vp+9,V,, -V, 0, +P, - -ﬁ-[a-\liy +oyVyy +Wopy + ¥yl

S, £ NHY)E,,

Ay = U4+ PV, -V, 9, — P, - F:t-[ay\]'!zy + oy + Vo] + —l-\IJ,.

R

where for other definitions and calculations, the readers may consult [22].

following the detailed procedure as given in [22] we finally obtain

d*h p . 1 d®h
—Ka;i-k [ﬂahy—-h!(l - 3KK, -(Ty-a
2 b i " ; s ! dh
+| —aK —2aKyK; —hK3+ hK; — KK5;—3KKg + & + N -CE

2
K, (dh) + [— aKK;+ %f{g +NK; - aKKey — KKqg - Kf\’m] h

%

+[K7— Ks]h2 =t 3.

Fae
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Now

(3.12)



where

F - HrH
K, = H,, 1\2—Fya Ky = Hy- K4=ny
s Hyy . Hy HyH .. _ H.H,,
K ik hﬁ = 7 K5 —H 5 Kg = —H 3
H H
Ko=—2% K= -2 :
9 7 0= " (3.13)
with
u= x%, v= -0 (3.14)
and (' satisfies
d'G &G _d°G d*G d*G d*G
il ol BT i el el R
" +a[y a7 +"a’y2] +R.G a7 R./R a7 R, 0 N
dG d*G "
_REE;-(E;E =0 (310)
along with
2
(i) %L” =0, () GO)=1. G d ;;(20) =1, GVGili=0 (818

and K = R.. Writing

G = G;+ R.Gy+ R’G3+0(R?),
(J"] = (;10 e OG“ -+ l.’.l'2G12 2 i 0(03).
Gy = Gyp+aGay + 02023 -+ 0{03).

Gy = Ga+aGs +a*Gy +0(a®).

we solve the problem consisting of equation (3.15) and conditions given in (3.16)

using second-order double perturbation and finally arrive at

Gi(y) = S [y(_(zs_y? —13)(y% — 1)%a% + 210(” — 1)’ — 1400(y* — 3)}}, (3.17)
1

—2310a(—2y*((240N — 227)R + 240) + (552N + 681)R + 65Ry* + 552)
+a?(—35y"((3905N — 6561) R + 3905) + 24*((133595N + 50481) R + 133595)
—3((29953N + 114111)R + 29953) + 12600Ry5))] (3.18)
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Ga(y)

It can be

y(y? —1)*
1271350080000 R2
—26N(875y° + 18305y + 293y2 — 51137)

1260a( R2(1001N?(5y° — 9)(25y% — 37)

—4060y® + 63133y° + 357696y* + 427177y + 394166)

+26R(TTN(5y* — 9)(25y> — 37) — 875y° — 18305y* — 293y 4 51137)

+1001(5y* — 9)(25y* — 37)) + *(105Ry®((6510N — 46873)R + 6510)

—42y°( R(350N((1339N — 7698) R + 2678) + 3099111 R — 2694300) + 468650)
+14y* (R(900N((6552N — 10585) R + 13104) — 2957491 R — 9526500) + 5896800)
—y?(R(84N((1262105N + 3260532) R + 2524210) — 95806709 R + 273884688)
+106016820) + 3R(42N((245908N + 2413431)R + 491816) + 100425529R
+101364102) + 783825R%y'? + 30984408) + 491400( R(7y*((55N — 102) R + 55)
—2y%(T7TN((10N — 23) R + 20) + 530R) + T7N((44N + 69) R + 88) + 28Ry’
—~1406R + 1771(2y* + 3)) + 308(11 — 5y*)) |. (3.19)

casily noted that for N = 0 and R — oc. G(y) reduces to the result

presented in [22], provided we use a first-order double perturbation. This shows

confidence in the present calculations. The shear stress at the wall with y = 1 is

d*G(1
Twe = Kz ( ), (3.20)
dy?
The velocity components through Egs.(3.14) and (3.19) are given by
AoS G (3.21)
dy
0 = =@ (3.22)

3.4 Results and discussion

In this section we study the effects of magnetic field V, porous medium R, on self-

axial velocity both analytically and numerically and the results are plotted. The
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numerical solution is obtained by using the shooting method, coupled with Runge-

Kutta scheme.
A. Self-axial velocity

Figures 3.2 and 3.3 demonstrates the behaviour of the self axial velocity u/x for
magnetic parameter N = (.5, porosity parameter & = 0.5. permeation Reynolds
number R, = —1 and 1, at —1 < a < 1. Figure 3.2 shows the case of R, = —1.
When a > 0, the flow towards the centre becomes greater, this leads to the axial-
velocity to be greater near the centre. We noticed that this behaviour changes when
a < 0, that is, the flow towards the centre results in lower axial velocity near the

centre and higher near the wall.

Figure 3.3 shows the case of R, = 1. When a > 0, the flow towards the wall becomes
greater, the axial-velocity is lesser near the centre. When a < 0 changes, the flow
towards the wall results in lower axial velocity near the wall and higher near the

centre.
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Figure 3.2: sSelf-axial velocity profiles over a range of a at N = 0.5, R, -1 and
2=05




Figure 3.3: Self-axial velocity profiles over a range of a at N = 0.5, R. = 1 and
R=05

From the figures above. we can see that the beliaviour of the graphs is a cosine profile.
Comparing analytical and numerical solutions. the percentage error increases as N

increases for all |a|. see Tables 3.1. 3.2 and 3.3.

Table 3.1: Comparison between analyvtical and numerical solutions for self-axial ve-

locity u/r at y =0.3 for R =05.R, = -1.a = —0.5.

Analyvtical Method Numerical Method Percentage Error (%)

N=0.a  1.374237 1.375731 0.108609
N =10 1.381895 1.384237 0.169198
N=15 1.389799 1.393274 0.249420
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Table 3.2: Comparison between analytical and numerical solutions for self-axial ve-

locity u/x at y = 0.3 for R = 0.5, R, = —1 and a = (.0.

Analytical Method Numerical Method Percentage Error (%)

N =05 1398273 1.400185 0.136611
N =10 1.406663 1.409625 0.210186
N =15 1415323 1419678 0.306770

Table 3.3: Comparison between analytical and numerical solutions for self-axial ve-

locity u/x at y = 0.3 for R = 0.5, R, = -1 and o = 0.5.

Analytical Method Numerical Method Percentage Error (%)

N =05 1.423053 1.425483 0.170456
N =10 1432188 1.435905 0.258803
N =15 1441616 1.447026 0.373840

For porosity parameter R, the axial velocity and the percentage error between ana-
lytical and numerical solutions decreases as R increases, for the same |a|, see Tables

3.4, 3.5 and 3.6.

Table 3.4: Comparison between analytical and numerical solutions for self-axial ve-

locity u/x at y = 0.3 for N =0.5. R, = -1 and a = —0.5.

Analytical Method Numerical Method Percentage Error (%)

R =05 1.374237 1.375731 0.108609
R =10 1.359664 1.360126 0.033979
R=15 1.355025 1.355296 0.019936



Table 3.5: Comparison between analytical and numerical solutions for self-axial ve-

locity u/z at y = 0.3 for N =0.5.R. = —1 and a = 0.0.

Analytical Method Numerical Method Percentage Error (%)

R=05 1.398273 1.400185 0.136611
R=1.0 1.382302 1.382914 0.044241
R=15 1377219 1.377581 0.026294

Table 3.6: Comparison between analytical and numerical solutions for self-axial ve-

locity u/r at y = 0.3 for N =0.5.R. = —1 and a = 0.5.

Analytical Method Numerical Method Percentage Error (%)

R =05 1.423053 1.425483 0.170456
R =10 1405658 1.406468 0.057581
R =15 1400120 1.400610 0.035000

B. Shear stress

The figure below illustrate the effects of varying governing parameters on the char-
acter of the shear stress at the wall. For a suction-contracting process (Re = —1 and
a < 0), the shear stress is positive until expansion is sufficiently large. while for a

suction-expansion process (Re =1 and a > 0) the shear stress turns negative.
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Figure 3.4: Shear stress profiles over a range of a at N =05, R, = =1 and R=0.5

We noticed that. the wall shear stress decreases as the Reynolds number R, increases.

see Table 3.7.

Table 3.7: Comparison between analytical and numerical solutions for shear stress

Toatz=2for N =0.5 and a=—1.

Analytical Method Numerical Method Percentage Error (%)
R, =-1 6.526164 6.433047 0.665074
R, =1 -7.731125 -7.755944 0.320003

3.5 Conclusion

In this chapter. we have generalized the flow analysis of (22 with the influence of

magnetic field and porous medium. The analytical solution for the arising nonlinear
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problem was obtained by using Lie symmetry technique in conjunction with a second-
order double perturbation method. We have studied the effects of magnetic field (N)
and porous medium (R) on the self-axial velocity and the results are plotted. We
compared the analytical solution with the numerical solution for self-axial velocity
at different values of N and R. We found that as N increases the self-axial velocity
increases and as R increases the self-axial velocity decreases. Here we have noticed
that the analytical results obtained matches quite well with the numerical results for
a good range of these parameters. We also noticed that for all cases the self-axial
velocity have the similar trend as in [22], that is, the axial velocity approaches a
cosine profile. Finally, we observed that when N = 0 and R approaches infinity our
problem reduces to the problem in [22] and our results (analytical and numerical)
also reduce to the results in [22], with the use of first-order double perturbation

method.
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Chapter 4

Concluding remarks

In this research project Lie group method was applied to study two nonlinear partial

differential equations arising in fluids.

In Chapter 1, a brief introduction to the Lie group theory of partial differential equa-
tions was given. This include the algorithm to determine the Lie point symmetries

of partial differential equations.

Lie symmetry technique along with other methods of integrability. were used to carry
out the integration of the ZK equation (2.1) with power law nonlinearity in (3+1)
dimension in Chapter 2. Numerical simulations were also given to supplement the

analytical development. This work was submitted for publication. See [29].

In Chapter 3. we generalized the flow analysis of "E’JI with the influence of magnetic
field and porous medium. Lie symmetry analysis along with second-order double
perturbation was applied to obtain the analytical solution. The effect of porous
medium and magnetic field on axial velocity were shown and discussed. The work

of this Chapter has appeared in [33].

In future we will use the Lie point symmetries of the ZK equation (2.1) obtained in

this research project to construct conservation laws of (2.1).
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