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ABSTRACT

Curvature radiation (CR) is believed to be a dominant mechanism for creating gamma-ray emission from pulsars
and is emitted by relativistic particles that are constrained to move along curved magnetic field lines. Additionally,
synchrotron radiation (SR) is expected to be radiated by both relativistic primaries (involving cyclotron resonant
absorption of radio photons and re-emission of SR photons), or secondary electron–positron pairs (created by
magnetic or photon–photon pair production processes involving CR gamma rays in the pulsar magnetosphere). When
calculating these high-energy spectra, especially in the context of pulsar population studies where several millions of
CR and SR spectra have to be generated, it is profitable to consider approximations that would save computational
time without sacrificing too much accuracy. This paper focuses on one such approximation technique, and we
show that one may gain significantly in computational speed while preserving the accuracy of the spectral results.
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1. INTRODUCTION

Curvature radiation (CR) arises when relativistic particles
are constrained to move along curved orbits, for example,
along magnetic field lines above a pulsar’s stellar surface (e.g.,
Harding 1981). This mechanism has played a central role in
explaining high-energy (HE) emission in all the standard pulsar
models: the polar cap (PC) model (Daugherty & Harding 1982,
1996) where radiation occurs very close to the neutron star
surface, the outer gap (OG) model (Cheng et al. 1986; Romani
1996) with radiation originating above the null charge surface,
in a gap which develops close to the last open field lines, and the
slot gap (SG) model (Arons 1983; Muslimov & Harding 2003)
with radiation coming from narrow gaps close to the last open
field lines, extending from the stellar surface almost up to the
light cylinder. Additionally, synchrotron radiation (SR) may also
be emitted by secondary electron–positron pairs created in the
magnetosphere via magnetic pair production in the SG (Harding
et al. 2008) or via photon–photon pair production in the OG
(e.g., Hirotani 2005). Predictions of inverse Compton scattering
(ICS) components are more uncertain, but are typically of
much lower flux compared to the SR and CR components
(Bulik et al. 2000). Lastly, cyclotron resonant absorption of
radio photons by relativistic primaries, followed by spontaneous
SR, has been invoked for millisecond pulsar (MSP) modeling
(Harding et al. 2005) as well as for the Crab (Harding et al.
2008).

The single-particle CR spectrum is characterized by a power
law with a simple exponential cutoff (similar to the SR spec-
trum). A phase-averaged HE pulsar spectrum, which may be
thought of as an averaged, cumulative spectrum involving the
addition of many single-particle CR spectra which originate
in different parts of the magnetosphere, is therefore expected
to share common features with a single-particle spectrum. The
Fermi Large Area Telescope (Fermi-LAT) has recently pub-
lished its First Pulsar Catalog (Abdo et al. 2010a) containing
nearly 50 gamma-ray pulsar detections and indeed fit their
spectra using power laws with exponential cutoffs. The spec-
tral cutoffs are around a few GeV, as expected for the case
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of radiation-reaction-limited acceleration of relativistic elec-
trons, where the acceleration rate equals the loss rate (e.g.,
Harding et al. 2005):

e|E||| ∼ 2e2γ 4
RR

3ρ2
c

. (1)

Substituting γRR = (1.5E||/e)1/4ρ
1/2
c into the expression for the

cutoff energy (see Equation (9)), one obtains

Eγ, cutoff ∼ 4 E
3/4
||,4 ρ

1/2
c,8 GeV, (2)

with E||,4 = E||/104 statvolt cm−1 the electric field parallel to
the magnetic field and ρc,8 = ρc/108 cm the curvature radius.
However, the power-law indices are typically much softer than
the predicted index of −2/3 for monoenergetic, single-particle
emission. This effect is believed to be due to superposition of
many single-particle CR spectra from different field lines that
add to give the observed spectrum. Also, when fitting a super-
exponential spectral shape to the data (Nel & De Jager 1995),

dN

dE
= KE−Γ exp

[(
− E

Ec

)b
]

, (3)

sometimes a value of b < 1 is obtained, as in the case of
Vela, where b = 0.68 was found (Abdo et al. 2010b). This
has been ascribed to the fact that Ec varies with phase, leading
to an average spectrum that decreases slower with energy than
exponentially.

Beyond making rough estimates of spectral shapes (indices
and cutoffs) to demonstrate the plausibility of the CR mecha-
nism in the context of HE pulsar models as described above,
several million CR spectra may have to be generated in order
to produce detailed, quantitative spectral predictions which may
be compared with high-quality measurements of phase-averaged
and phase-resolved gamma-ray spectra (e.g., Abdo et al. 2010a).
Such computationally expensive calculations are needed, for ex-
ample, if one intends to study radiation properties of a sizable
population of pulsars (e.g., Story et al. 2007), or for examining
the cumulative emission generated by an ensemble of MSPs be-
lieved to be responsible for the HE emission recently detected
by Fermi-LAT from several globular clusters (GCs; Abdo et al.
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2009, 2010c). In addition to CR calculations, this also holds for
computing X-ray to gamma-ray SR spectral components. It is
therefore profitable to consider approximations that would save
computational time without sacrificing too much accuracy.

The aim of this paper is twofold: first, we discuss an
approximation technique for calculating CR and SR spectra
efficiently and accurately. Second, this paper also serves to
provide more details regarding previous calculations of pulsed
CR gamma-ray fluxes expected from a population of MSPs in
the GCs 47 Tucanae and Terzan 5 (Venter et al. 2009a). While
we previously approximated the pulsed CR flux using delta
functions (see Section 4.1) for the single-particle spectra (Venter
& de Jager 2008), Venter et al. (2009a) used the approximation
scheme presented below (Section 4.2) and deferred the details
to this follow-up paper. The technique described below has wide
applicability. It may be applied to any pulsar model where
the B-field and E-field are specified, assuming that emission
from the different radiation mechanisms may be calculated
independently. In particular, we envision that this technique may
be useful for three-dimensional particle acceleration models
where E|| is calculated at each position in the magnetosphere
where acceleration takes place. (Note that this technique will
not make any contribution in terms of reducing computation
time in the context of purely geometrical models, which are
commonly used to study pulsar light curves by postulating
some emissivity at certain magnetospheric locations without
making any quantitative assumptions about E||(r, θ, φ); see,
e.g., Dyks & Rudak 2003; Venter et al. 2009b.) Beyond pulsar
models, the technique may also be useful for cases where
CR and/or SR are invoked to explain measurements of other
astrophysical sources such as pulsar wind nebulae. Generally,
the technique may improve calculation speed for any application
where particle tracing is needed in order to calculate their
acceleration, transport and subsequent radiation, and where
enough information is available to model the ambient fields
which determine these processes.

The paper is organized as follows: in Section 2, we summa-
rize the standard CR expressions; we discuss the calibration of
our code as well as our approximation technique in Section 3
and 4, respectively, while we present our results in Section 5.
We discuss the meaning of the CR cutoff energy from theoret-
ical and observational perspectives in Section 6. The spectral
approximation technique has wider applicability, and we argue
that it may also be extended to include synchrotron radiation
(SR) in Section 7. Our conclusions follow in Section 8.

2. STANDARD CR EXPRESSIONS

There have been somewhat different approaches in the lit-
erature regarding the calculation of the CR spectrum. Jackson
(1962) considers a particle moving instantaneously at a con-
stant speed on a circular path. This approximation is valid when
discussing radiation from extremely relativistic particles un-
dergoing arbitrary accelerations. For the case of longitudinal
acceleration along a B-field line with curvature radius ρc, the
critical frequency is defined by Jackson (1962) as

ωJ
CR ≡ 3γ 3c

ρc

, (4)

with γ the electron’s Lorentz factor, and c the speed of light
in vacuum. The power radiated per energy interval by a single

particle is then given by

(
dP

dE

)J

CR

=
√

3αf γ c

2πρc

κJ

(
Eγ

EJ
CR

)
= P (ω)

h̄
, (5)

κJ(x) ≡ 2x

∫ ∞

2x

K5/3(x ′) dx ′, (6)

EJ
CR = h̄ωJ

CR = 3h̄cγ 3

ρc

, (7)

with P (ω) the power spectrum per frequency ω, αf the fine-
structure constant, and K5/3 the modified Bessel function of
order 5/3.

Other authors have used different definitions of κ(x) and
ωCR (e.g., Harding 1981; Daugherty & Harding 1982; Cheng &
Zhang 1996; Story et al. 2007; Venter et al. 2009b):

ωCR ≡ 3γ 3c

2ρc

= ωJ
CR

2
, (8)

ECR = h̄ωCR = 3h̄cγ 3

2ρc

= 3λ–Cγ 3

2ρc

mec
2, (9)

with λ–c = h̄/(mec) the Compton wavelength. In this case, the
instantaneous power spectrum (in units of erg s−1 erg−1) is given
by (

dP

dE

)
CR

=
√

3αf γ c

2πρc

κ

(
Eγ

ECR

)
, (10)

and (Erber 1966)

κ(x) ≡ x

∫ ∞

x

K5/3(x ′) dx ′ (11)

≈
{

2.149 x1/3 x 	 1
1.253 x1/2e−x x 
 1.

(12)

Upon integrating Equation (10) over energy, one finds the total
power radiated by the electron primary, which is also equal to
the total CR loss rate of the electrons (see Equation (1)):

∫ (
dP

dE

)
CR

dE = ĖCR = −2e2cγ 4

3ρ2
c

. (13)

The low-energy (LE) part of the CR photon spectrum may be
written, using Equation (12), as (Story et al. 2007)

(
dN

dE

)
low

= 1

dAE

(
dP

dE

)
CR

≈ 0.518αf

dAh̄1/3

(
c

ρc

)2/3

E−2/3
γ ,

(14)
which is the same as Equation (7) of Harding et al. (2005) within
a factor of ≈2 (apart from the factor dA = ΔΩd2, with ΔΩ the
beaming solid angle). Similarly, the HE CR photon spectrum
becomes(

dN

dE

)
high

≈ 0.282αf

dA

(
c

γρch̄

)1/2

E−1/2
γ e−Eγ /ECR . (15)

The problem arises when the definitions of various quantities
above are mixed. For example, Daugherty & Harding (1982);
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Meszaros (1992) define the CR power spectrum as follows:(
dP

dE

)
CR

= 1

h̄

(
dI

dω

) (
c

2πρc

)
=

√
3αf γ c

2πρc

κJ

(
2

ω

ωCR

)
,

(16)
and assume that κJ(x) is equal to the approximate forms of
Equation (12), which is not the case. Furthermore, the extra
factor of 2 in the argument of κJ(x) leads to an error of factor
4 in the normalization constant as well as the lower limit of
the integral when calculating (dP/dE)CR. Removing the extra
factor of 2 in the argument of κJ(x), and using ωJ

CR instead of
ωCR, would solve the problem.

Another example occurs when Harding et al. (2008) state that
they are using ECR/mec

2, but in fact are using ωCR. The latter
seems to be a typo, but they also use κJ(x) instead of κ(x),
leading to a factor of 2 difference in normalization. However,
their code correctly calculates the total number of CR photons
emitted per unit time in an energy interval dE = E2−E1 around
an energy Ebin (Venter et al. 2009b),

dṅγ,CR = Ṅdt
ĖCR

Ebin
×

∫ E2

E1
κ(x) dx∫ ∞

E0
κ(x) dx

, (17)

(with E0 	 ECR, Ṅ the injection rate of primaries from the
stellar surface, and Ebin measured in cgs units) so there is no
impact on their CR spectra.

In summary, the following equalities hold:

κJ

(
Eγ

EJ
CR

)
= κ

(
Eγ

ECR

)
= κJ

(
1

2

Eγ

ECR

)
= κ

(
2

Eγ

EJ
CR

)
. (18)

Much confusion can be ruled out by being consistent in the use
of the various definitions of CR expressions.

3. CALIBRATION OF CODE

In order to verify the CR spectral calculation from our code,
we calculated the CR power spectrum (see Equation (10))
using different techniques. Figure 1 shows the various spectra.
The thick, gray line indicates our “calibration curve,” which
was calculated using logarithmic integration (Venter 2008,
see also the Appendix), and for N = 10,000 steps. This
spectrum coincides with the low-x and high-x approximations
of Equation (12) as indicated by thick dashed lines (with
x ≡ Eγ /ECR). The thin lines indicate spectra calculated using
Simpson integration for linearly spaced x-values, for N = 100,
500, 1000, and 10,000 respectively. A larger number of steps
N leads to better approximation of the calibration spectrum,
as expected. Lastly, the dot-dashed line indicates a calculation
using a combination of the approximate forms of κ(x), as
well as an interpolation of numeric tables for κ(x), valid for
intermediate values of x.

We draw two conclusions from this exercise. First, it is pru-
dent to use a method (such as logarithmic integration, which uses
logarithmically spaced x-values) which takes into account that
spectra are usually displayed on graphs with logarithmic axes.
This is evidenced by the fact that the logarithmic integration
method gives very nearly the same spectrum as the calibration
spectrum for only N ∼ 100 steps, while the spectra calculated
using Simpson integration do not approximate the calibration
spectrum very well at low energies, even for N ∼ 10,000. Sec-
ond, our interpolated spectrum is quite satisfactory (we get an
MISE value of 0.0041 when comparing the interpolated and

Figure 1. CR spectrum calculated using different techniques. The thick, gray
line indicates our “calibration curve,” which was calculated using logarithmic
integration and N = 10,000 steps. The thick dashed lines indicate the low-
x and high-x approximations (with x ≡ Eγ /ECR), while the thin lines
indicate Simpson-integrated spectra for N = 100, 500, 1000, and 10,000 steps,
respectively (spectra corresponding to larger N approximate the calibration
spectrum better, as expected). Lastly, the dot-dashed line (barely visible at
x ∼ 1) indicates a calculation using a combination of the approximate forms of
κ(x), as well as an interpolation of numeric tables for κ(x) valid for intermediate
values of x.

calibration spectra; see Equation (27)), and does not need any
numerical integration calculation. Therefore, we will be using
this last method in what follows when calculating κ(x) and the
corresponding CR spectrum.

4. APPROXIMATION TECHNIQUE

4.1. Delta-function Approximation

To save computational time when computing CR gamma-
ray spectra, we used the following approximation (e.g., Venter
& de Jager 2008). First, we calculated the incremental photon
luminosity dLγ radiated in an incremental time dt by primary
electrons, which are accelerated along a B-field line by the
parallel E-field. We used the total radiated CR power per electron
primary, ĖCR (Equation (13)):

dLγ = ṄdtĖCR, (19)

with Ṅ ≈ c|ρGJ|dS/e the number of electron primaries coming
from a stellar surface patch dS per second, and ρGJ is the
Goldreich–Julian charge density (Goldreich & Julian 1969). We
then binned dLγ /(ECRdE) according to ECR (see Equation (9))
for an energy bin size of dE, and divided by dA = 2πd2 sin ζdζ ,
with d the distance to the pulsar and ζ the observer’s line of sight
measured with respect to the rotation axis, in order to obtain
the phase-averaged photon spectrum with units 1/(erg s cm2)
(Venter 2008):

dN

dE
(E,χ, ζ ) = 1

dAdE

∫∫∫ ζ+dζ/2

ζ−dζ/2

[
dLγ

dφ dE dζ

]

× I (E, dE)

ECR
dφ dE dζ, (20)

with χ the magnetic inclination angle. Integration takes
place over all observer phases of radiation φ, some nar-
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row strip in observer angle ζ , and all photon energies E;
I(E, dE) is the indicator function which is nonzero only if
ECR ∈ (E,E + dE).

One may view this technique as a method approximating
single primary CR photon spectra by delta functions positioned
at ECR, and with integrated values (areas) dLγ /(ECRdEdA).
This approximation indeed saves time, as a single-particle CR
spectrum (over many photon energies) is approximated by only
one point (at one photon energy), and yields values that are
reasonably close to more complicated and time-consuming
calculations of CR gamma-ray integral fluxes and photon
spectra. This is especially true for population studies, where
the computation time may become very long when using several
parameters and a fine parameter grid, as well as large numbers of
population members. Also, the correct value of the total radiated
CR gamma-ray power is preserved in the resulting gamma-ray
spectra (and may be recovered as the first energy moment of
the photon spectrum times dA). An example of spectral results
obtained using this method may be seen in Figure 2 of Venter
& de Jager (2005) as well as in Figure 2 of Venter & de Jager
(2008).

4.2. Spectral Shape Fitting and Renormalization

It has however been pointed out (J. Dyks 2008, private
communication) that the method described in the previous
Section for calculating CR spectra using delta functions is
somewhat crude. One loses the “spread” of the radiation over
many photon energies when one ignores both the LE and HE
tails of these single-particle spectra. This method therefore leads
to very hard LE spectral tails, as well as very abrupt HE cutoffs.
Both of these features imply that the resulting spectra do not
compare very well to similar calculations (e.g., Fra̧ckowiak &
Rudak 2005; Harding et al. 2005). Addition of LE tails should
lead to a cumulative E2dN/dE-spectrum with an LE slope of
4/3 (Rudak & Dyks 1999) when ρc is slowly changing, while
addition of HE tails should lead to a broader cumulative spectral
cutoff.

To solve this problem, we proposed (Venter 2008) the follow-
ing correction to transform the values of E2dN/dE(Ei) ≡ Yi

to Y ′
i , a corrected CR spectrum (where i = 0, 1, 2, ..., N − 1

signifies the ith energy bin and Ei the average energy associated
with bin i). First, we approximate the νFν CR power spectrum
using

E2 dN

dE
= E

dA

(
dP

dE

)
CR

≈ KE4/3 exp

(
− E

Ec

)
, (21)

as motivated by the approximate forms of the κ(x) function
(see Equation (12), and also Equations (14) and (15); also note
that Story et al. 2007 consider the LE approximation, without
exponential cutoff, as suitable for their pulsar population study).
We note that each point of the spectrum Yi (dashed line in
Figure 2) represents the addition of many single CR (delta)
spectra, where only the total power has been used, as explained
in Section 4.1. The full CR spectra should however have been
used. It is reasonable to argue that the sum of full CR spectra
at bin i may be approximated by one full (cumulative) CR
spectrum with characteristic energy Ec = Ei if the bin size
dE is small enough, and with normalization as given by the
sum of delta functions of the particular energy bin. In this case,
all the spectra in the ith bin have very similar cutoff energies,
and the result would be very close to the form of a single-
particle spectrum. This leads to the following expression for

Figure 2. Correction of the cumulative CR spectrum Yi resulting from summa-
tion of delta function approximations (thick dashed line). The thin lines are the
approximate spectra KiE

4/3
j exp(−Ej/Ei ) fitted through each point (Ei, Yi ).

The thick solid line represents the corrected spectrum Y ′
i (not normalized),

which is the sum of all such spectra (thin lines).

each (relative) normalization constant Ki of the total spectrum
for the ith bin, using Equation (21):

Ki = Yi

E
4/3
i exp(−1)

. (22)

To rectify our neglect of full CR spectra, we fit full spectra
(thin solid lines in Figure 2) through each point (Ei, Yi), and
then calculate the final CR spectrum Y ′

i by adding all these
cumulative CR spectra:

Y ′
i =

N−1∑
j=0

KjE
4/3
i exp

(
− Ei

Ej

)
. (23)

Therefore, at each Ei, we take into account the contributions
from all fitted spectra peaking near Ej to obtain the correct
level of Y ′

i . (For the special case when j = i, we recover Yi
using the definition of Ki, and add this to the series above.) This
calculation leads to the thick solid line in Figure 2.

We finally normalize Y ′
i using the total (correct) luminos-

ity represented by the νFν-spectrum Yi. We calculate (see
the Appendix)

L1 =
∫ ∞

0
E

(
dN

dE

)
dE ≈

N−1∑
i=0

Yi

Ei

δEi = δ

N−1∑
i=0

Yi, (24)

L2 ≈ δ

N−1∑
i=0

Y ′
i , (25)

and finally multiply Y ′
i by the factor L1/L2. This gives the

corrected, normalized CR spectrum indicated by the dashed
line in panel (a) of Figure 3. Integration of the photon spectrum,
using a variable lower energy limit E, gives the total flux
above E:

F (>E) =
∫ ∞

E

(
dN

dE

)
dE. (26)

The various integral fluxes are indicated in panel (b) of Figure 3.
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(a)

(b)

Figure 3. Comparison of uncorrected (Yi; short-dashed line), corrected
(Y ′

i L1/L2; dashed line), and calibration (full calculation; solid line) CR
spectra. Panel (a) indicates E2dN/dE, while (b) indicates the integral flux
F (>E). We used pulsar parameters typical of PSR J0437−4715 (stellar radius
R = 1.5 × 106 cm, pulsar mass M = 1.58 M�, inclination angle α = 35◦, and
observer angle ζ = 40◦; see Venter & de Jager 2005).

5. RESULTS: APPROXIMATION ACCURACY AND
CODE SPEED INCREASE

We have compared the corrected spectra (dashed lines in
Figure 3) with a full calculation of the cumulative CR spectrum
(i.e., using (dP/dE)CR with no approximations; solid lines in
Figure 3) and found that the resulting spectra are very similar.
We used pulsar parameters typical of the MSP PSR J0437−4715
for illustrative purposes.

To get a quantitative measure of the goodness of fit, we used
the mean integrated square error (MISE):

MISE ≡
⎧⎨
⎩ 1

b − a

∫ b

a

[
f (x) − f̂ (x)

f (x)

]2

dx

⎫⎬
⎭

1/2

, (27)

with f̂ the approximation to f, and a = Emin, b = Emax. We
calculated the MISE value using the E2dN/dE spectra, and
integrating up to three times the energy corresponding to the
spectral maximum. The result is 0.070 (i.e., 7.0% relative error),
indicating a very good fit, as can be inferred qualitatively from
panel (a) of Figure 3.

The spectral calculation is only a part of a full pulsar radiation
code, which calculates the radiated intensity as function of
observer angle ζ and phase φ. In order to analyze the increase in
speed for the total code when using the spectral approximation
method (which is different from the increase in speed for the
spectral part of the code only), let us write down the total time
the full and approximate codes take:

tfull = tA + tCR,full (28)

tapprox = tA + tCR,approx + tcorrection ≈ tA + tCR,approx, (29)

with tCR,full and tCR,approx the time it takes to compute the CR
spectrum in each case, and tA the time it takes to do the rest
of the calculations, e.g., calculating the B-field, E-field, and
particle transport. The term tcorrection represents the time it takes
to correct the cumulative delta spectrum Yi by fitting spectra
through each bin, as explained in Section 4.2; this is negligible
compared to the other times (only a few seconds), and will be
discarded in what follows. Next, define

α ≡ tapprox

tfull
, β ≡ tCR,approx

tCR,full
, f ≡ tCR,full

tfull
. (30)

The first two of these ratios are measurable, and may be used to
find f (using tfull − tapprox):

f = 1 − α

1 − β
. (31)

The latter is the fraction of time tfull it takes to do the full spectral
calculations. We obtained β ≈ (3.15Nbins)−1, which is a factor
∼300 increase in the speed of the spectral calculation using
Nbins = 100 bins, and a factor ∼3000 increase for Nbins = 1000.
This value of β leads to α ≈ 0.33, implying an overall increase
in speed of a factor of 3. This gives f ≈ 0.67, meaning that
tA ≡ (1 − f )tfull ≈ 0.33tfull. Once we have f, we can see that
even if 1/β is very large (representing a significant increase in
the speed of the spectral calculation by using an approximation
method, as compared to a full CR calculation), there is a limit
to the increase of the speed of the total code 1/α, since

1

α
= tA + f tfull

tA + βf tfull
≈ 1 +

f

1 − f
= 1

1 − f
, β 	 1. (32)

Therefore, the only way to increase the total gain in speed (1/α)
any further would be to increase f, i.e., to decrease the relative
amount of time it takes to do the rest of the calculations. Thus,
tA limits any further increases in overall speed. There are at least
two ways to decrease tA, and therefore maximize the impact of
the proposed spectral approximation technique. In the case of
very complicated magnetospheric structure, where the B-field
and/or E-field have to be calculated numerically (and where the
light cylinder and polar cap have to be found numerically; see,
e.g., Dyks & Harding 2004), it may be wise to pre-calculate
these fields for a range of (P, Ṗ , χ ), where P and Ṗ are the
pulsar period and its time derivative, and save these results.
Any recalculation of these fields are then unnecessary when
performing a population study, as they may simply be read in
from memory as required. Second, it may be useful to pursue
analytic approximations for these fields. Both approaches may
substantially reduce tA, especially when repetitive calculations
may be avoided or speeded up.
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6. INTERPRETATION OF THE ENERGY
CORRESPONDING TO THE MAXIMUM OF THE

SPECTRAL ENERGY DISTRIBUTION (SED)

We have commented that observers routinely fit a power law
plus exponential cutoff to the HE pulsar spectra (Equation (3)),
with the observationally inferred cutoff energy Ec roughly
coinciding with the spectral maximum on a νFν plot. When
using Equation (21), one can easily show that the SED maximum
occurs at Eγ,max ≈ (4/3)Ec (Harding et al. 2005). It is tempting
to associate Ec with ECR (or even Eγ,max), and indeed this is
a reasonable approximation for making rough estimates. We
alluded to this being done when associating the radiation-
reaction-limited prediction of CR cutoff energy with Ec, and
finding values that correspond particularly well to the Fermi-
LAT results (Section 1). However, since the parameter b which
characterizes the strength of the exponential cutoff is not always
unity, one sees that this association is not perfect, since the
spectrum has a more complicated shape. It is believed that the
phase-averaged and phase-resolved spectra are the superposition
of various single-particle CR spectra coming from different
regions in the magnetosphere. Each single-particle CR spectrum
depends on γ and ρc, both of which are a function of position
(since E|| and ρc determines γ , and the magnetic field structure
determines ρc). In addition, relativistic aberration and time of
flight delays play a role in determining the phase of the eventual
radiated spectrum (Dyks & Rudak 2003). The different spectra
therefore all have different respective intensities and cutoffs, and
all of these add up to give a cumulative spectrum with spectral
index softer than −2/3, and a broad exponential decay (and
possibly a roll-over near Ec). Other components different from
the CR component may also contribute to soften the observed
spectral index. In view of this, it is important to remember that
while there may be a relation between Ec and the cutoff energy
of the most dominant single-particle CR spectra (i.e., those
with highest ECR and largest intensity), a unique association
would be a simplification of a more realistic scenario where
the observed CR spectrum represents a superposition of single-
particle spectra reaching the observer from several different
altitudes in the magnetosphere.

7. APPLYING THE APPROXIMATION METHOD TO SR

As mentioned in Section 1, one would expect that CR is
not the only radiation mechanism operating in a typical pulsar
magnetosphere. For example, pair creation of curvature photons
leads to a cascade of electron–positron pairs which may radiate
SR. The critical synchrotron frequency is given by

ωSR = 3eB⊥γ 2

2mec
, (33)

with B⊥ = B sin α′, and α′ the pitch angle. Similar to
Equation (10), we have the single-particle power spectrum
(Rybicki & Lightman 1979)(

dP

dE

)
SR

=
√

3e3B⊥
hmec2

κ

(
Eγ

h̄ωSR

)
, (34)

with the spectral maximum occurring at 0.29ωSR (Longair
1994). The integral of Equation (34) yields the total SR energy
loss rate (Blumenthal & Gould 1970):

ĖSR = −2 (r0γB⊥ve)2

3c
, (35)

with r0 = e2/mec
2 the electron radius, and ve the electron speed.

Due to the fact that κ(x) is used in Equation (34) in much the
same way as in Equation (10), we have the same approximate
forms of Erber (1966) for κ(x), so that the SR spectrum is also
described by a power law at low energies, and an exponential
cutoff for ω � ωSR. We therefore argue that, since the typical
cutoff energy and total power of a single-particle spectrum are
known for SR, just as in the case of CR, and the modified
Bessel function is used in both cases to compute the spectra,
the approximation method described in Section 4.2 may be
also applied to SR: one may use delta functions of total power
situated at the critical frequency as “placeholders,” and later
correct for the full SR spectrum, either using Equation (21), the
approximations of Equation (12), or tabulated values of κ(x).

The general case of inverse Compton scattering (ICS) in an
anisotropic radiation field is quite complicated (Blumenthal &
Gould 1970), and implementing an approximation technique
similar to what we have done for CR and SR is outside the
scope of this paper.

8. CONCLUSION

We have argued that CR and SR radiation are essential and
ubiquitous in all pulsar models (and even for other astrophys-
ical sources where these mechanisms, especially the latter, are
invoked; also in a multiwavelength context) and that the ob-
served (cumulative) spectra are believed to be the result of
many millions of single-particle spectra. Even in the case of,
e.g., synchrotron self-Compton radiation, one may view the re-
spective processes of ICS and SR as independent, as long as
the soft radiation fields, the scattering of the soft photons to HE
photons, pair production and SR, with associated particle en-
ergy losses, are self-consistently calculated. In view of several
potential applications where significant spectral computation is
needed, it is therefore useful to find an approximation technique
which preserves accuracy when predicting cumulative CR and
SR spectra.

We summarized the standard CR expressions, noting typo-
graphical errors in the literature, and also calibrated the spectral
part of our code by reproducing the LE and HE CR spectral ap-
proximations. Next, we found that we could increase the speed
of our radiation code (for calculating spectra for all observers)
by a factor of ∼3, while the results are very close to calculations
using the standard expressions. There are several applications
where this increase in speed will be useful. Some examples
include calculation of so-called phase plots (plots of inten-
sity versus observer angle ζ and phase φ; see, e.g., Romani &
Yadigaroglu 1995), from which light curves are created by mak-
ing constant-ζ slices; performing a parameter study for a pop-
ulation of pulsars, which will require spectra and light curves
for several observers; and calculation of the geometric factor
fΩ used for converting observed energy flux to total gamma-ray
luminosity (Watters et al. 2009).

If only the observed flux for one specific observer at fixed ζ is
required, and not the flux or luminosity for the whole sky (i.e.,
all ζ ), we found that the spectral calculation is only done for
∼2% of the time. In this case, the major increase in speed for the
spectral part of the code (a factor of ∼3Nbins) is not reflected in
the time the total code takes, as the total time drops by at most
2% (i.e., the spectral calculation time is negligible), leading to
a negligible increase in speed of a factor of 1/0.98 ≈ 1.02. The
approximation method is therefore not as suitable for observer-
specific applications.
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Our approximation scheme will work over the full range of
energies and will not lose any accuracy by only invoking an
LE or HE approximation of the κ(x) function when calculating
the SR or CR spectra (e.g., Harding et al. 2005; Story et al.
2007; Harding et al. 2008). Furthermore, using a spectral shape
very close to that implied by the standard expressions when
correcting our cumulative spectra as described above leads
to broader HE tails of the CR spectra as compared to using
the delta-approximation. This is an important improvement of
our HE CR flux predictions, as future ground-based telescopes
such as the next-generation High Energy Stereoscopic System
and Cherenkov Telescope Array may possibly probe the tails
of CR spectra from pulsar candidates (J. Dyks 2008, private
communication). We have therefore adopted this correction for
future work, e.g., to explain cumulative CR radiation from MSPs
in globular clusters (Venter et al. 2009a). Lastly, a full ICS
calculation will have to be done after the CR and SR spectra
have been corrected, until a similar approximation technique
has been developed for the ICS process.

This work is based on research supported by the South
African Research Chairs Initiative of the Department of Science
and Technology and National Research Foundation. We thank
the Aspen Center for Physics for providing the opportunity to
complete this manuscript.

APPENDIX

LOGARITHMIC INTEGRATION

We outline a formula for numeric integration of a function
f (E) using logarithmically spaced E-values, and referred to as
“logarithmic integration” in the text:

∫ Emax

Emin

f (E) dE ≈
N−1∑
k=0

fkΔEk. (A1)

First, we specify a logarithmically spaced energy vector:

Ek = E0e
kδ, k = 0, 1, ..., N − 1, (A2)

with E0 ≡ Emin and EN−1 ≡ Emax. It then follows that

δ = ln (Emax/Emin)

N − 1
. (A3)

One may also construct an average energy

Eavg, k = 1

2
(Ek + Ek−1) = 1

2
E0(ekδ + e(k−1)δ) (A4)

for the energy bin spanning [Ek−1, Ek], k = 1, 2, ..., N − 1,
with width

dEk = Ek − Ek−1 = E0(ekδ − e(k−1)δ). (A5)

Assuming k to be a continuous variable for the moment,

dEk

dk
= δEk. (A6)

Setting dk = 1, we find

dEk ≈ δEk. (A7)

This result can also be derived when k is a discrete value (and δ
is small):

ΔE = (Ek − Ek−1) (A8)

= E0e
kδ(1 − e−δ) (A9)

= E0e
kδ (1 − (1 − δ − · · ·)) (A10)

≈ δEk. (A11)

We can now obtain an approximate integration formula:

∫ Emax

Emin

f (E) dE ≈
N−1∑
k=0

fkδEk = δ

N−1∑
k=0

fkEk, (A12)

with fk = f (Ek) or fk = f (Eavg, k).
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